
Shared Boxes: Rely-Guarantee

Reasoning in VeriFast

Jan Smans Dries Vanoverberghe
Dominique Devriese Bart Jacobs

Frank Piessens

Report CW662, May 2014

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Shared Boxes: Rely-Guarantee

Reasoning in VeriFast

Jan Smans Dries Vanoverberghe
Dominique Devriese Bart Jacobs

Frank Piessens

Report CW662, May 2014

Department of Computer Science, KU Leuven

Abstract

VeriFast is a verifier for single-threaded and multithreaded C
and Java programs. It takes a C or Java program annotated with
preconditions and postconditions in a separation logic notation, and
verifies statically that these preconditions and postconditions hold,
using symbolic execution. In plain separation logic, a thread either
has full ownership of a memory location and knows the value at the
location, or it has no ownership and no knowledge of the value of
the location. Existing work proposes a marriage of rely-guarantee
reasoning and separation logic to address this. In this document,
we describe the shared boxes mechanism, which marries separation
logic and rely-guarantee reasoning in VeriFast.

We introduce and motivate the shared boxes mechanism using
a minimalistic example and a realistic example. The minimalistic
example is a counter program where one thread continuously incre-
ments a counter and other threads check that the counter does not
decrease. For the realistic example, we verify functional correctness
of the Michael-Scott queue, a lock-free concurrent data structure.
We define the syntax and semantics of a simple C-like programming
language, and we define a separation logic with shared boxes and
prove its soundness. We discuss the implementation in VeriFast and
the examples we verified using our VeriFast implementation.

Shared Boxes: Rely-Guarantee Reasoning in

VeriFast

Jan Smans Dries Vanoverberghe Dominique Devriese
Bart Jacobs Frank Piessens

iMinds-DistriNet, Dept. Comp. Sci., KU Leuven, Belgium

firstname.lastname@cs.kuleuven.be

Abstract

VeriFast is a verifier for single-threaded and multithreaded C and Java
programs. It takes a C or Java program annotated with preconditions and
postconditions in a separation logic notation, and verifies statically that
these preconditions and postconditions hold, using symbolic execution.
In plain separation logic, a thread either has full ownership of a memory
location and knows the value at the location, or it has no ownership and
no knowledge of the value of the location. Existing work proposes a mar-
riage of rely-guarantee reasoning and separation logic to address this. In
this document, we describe the shared boxes mechanism, which marries
separation logic and rely-guarantee reasoning in VeriFast.

We introduce and motivate the shared boxes mechanism using a min-
imalistic example and a realistic example. The minimalistic example is
a counter program where one thread continuously increments a counter
and other threads check that the counter does not decrease. For the real-
istic example, we verify functional correctness of the Michael-Scott queue,
a lock-free concurrent data structure. We define the syntax and seman-
tics of a simple C-like programming language, and we define a separation
logic with shared boxes and prove its soundness. We discuss the imple-
mentation in VeriFast and the examples we verified using our VeriFast
implementation.

1 A Minimalistic Example

Consider the following program:

c := cons(0);
fork (while true do 〈n := [c]; [c] := n + 1〉);
while true do fork (〈m := [c]〉; 〈m′ := [c]〉;assert m ≤ m′)

We use the usual notation for heap-manipulating programs from the separation
logic literature. The command x := cons(e) allocates a sequence of consecutive
heap locations and initializes them with the values of the expressions e; the
example allocates a single cell (which we will refer to as the counter cell), and
initializes it to zero. We use the following notation for concurrent programming:
command fork c executes command c in a new thread; 〈c〉 denotes atomic
execution of command c.

1

After allocating the counter cell and storing its address in variable c, the
program forks one thread that repeatedly atomically increments the cell, and
an unbounded number of threads that inspect the cell twice and assert that its
value increases monotonically.

We wish to prove that the assert command never fails. Notice that this
program cannot be verified in plain separation logic, since no single thread can
be the exclusive owner of the counter cell. Concurrent Separation Logic (CSL),
which extends separation logic with support for critical sections accessing shared
resources with resource invariants, also does not support this example directly,
since a resource invariant could only state that the cell’s value is nonnegative
and could not describe the evolution of the counter cell’s value.

A combination of CSL and ghost cells with fractional permissions [1, 6]
could verify this example, using a dynamic form of the resource invariant-based
Owicki-Gries method [8, 6] for reasoning about concurrent programs: the shared
resource containing the counter cell could be extended with a ghost linked list
built from ghost cells. Each inspector thread, during its first inspection of the
counter cell value, would add a ghost node to the end of this list, containing as
its value the observed counter cell value. The thread would retain in its local
state a fraction of the linked list, from the head up to the thread’s node. The
resource invariant would state that each node value is a lower bound for the
current counter cell value. Upon the second inspection, the thread could match
up the linked list in the resource with its local knowledge and conclude that the
new counter cell value must be at least the previously observed value.

Such building of ghost objects probably yields a complete proof system. Still,
in the present document, we present an alternative approach, which allows the
proof author to express his insights more conveniently and more directly: shared
boxes.

A shared box can be thought of at a high level as a shared resource from
CSL equipped with a two-state invariant (or, equivalently, a rely condition)
instead of a regular single-state invariant. This enables the proof author to
express directly any desired constraints on the evolution of the shared resource.
Furthermore, we allow assertions in thread proof outlines to include shared box
assertions, assertions about the state of the shared resource that are checked to
be stable with respect to the shared box’s rely condition.

To verify the example, we put the counter cell in a shared box whose rely
condition states that the cell’s value may not decrease. Each inspector thread’s
proof outline, between the two inspections, includes a shared box assertion stat-
ing that the counter cell’s value is bounded below by the first observed value.

This general idea is very similar to what has been proposed before (e.g. [9,
4, 3, 2]). However, in order to integrate this mechanism conveniently into our
VeriFast verification tool, we have made a number of design decisions:

• Shared boxes can be created dynamically, but each shared box must be
an instance of a statically declared box class.

• A box class has a name and a parameter list.

• A box class’s rely condition is specified in the form of the combination of
a box invariant and a set of action specifications.

• A box invariant is a VeriFast separation logic assertion that may use the

2

box class parameters and may bind additional logical variables, together
with the box class parameters called the box state variables.

• An action specification consists of an action name, a parameter list, a pre-
condition, and a postcondition. The precondition is a boolean (i.e. pure,
non-spatial) expression over the action parameters and the box state vari-
ables. The postcondition is a boolean expression over the action parame-
ters and two versions of the box state variables: the old versions and the
new versions.

• Whenever a thread mutates the resources held by a box, it must specify an
action name and action arguments, and VeriFast checks that the operation
complies with the action precondition and postcondition.

• Shared box assertions are expressed as box handle predicate assertions,
referring to one of a set of box handle predicates (or handle predicates for
short) declared as part of the box class. A handle predicate declaration
consists of a name, a parameter list, and a handle predicate invariant,
which is a boolean expression over the handle parameters and the box
state variables.

• Each handle predicate declaration must include a preserved-by clause for
each box class action, which may state any ghost commands (such as
lemma invocations) required to establish that the handle predicate invari-
ant is preserved by the action.

We formalize the syntax of our proof system. Let B ∈ B range over box class
names, A ∈ A over action names, P ∈ P over handle predicate names, x ∈ X
over program variable names, and X ∈ L over logical variable names. The
syntax of box classes, assertions a, and program commands c is as follows:

boxClass ::= boxclass B(X) { inv ∃X. a actionSpec handlePred }
actionSpec ::= action A(X) req b ens b

handlePred ::= handlePred P (X) { inv b }
e ::= z | x | X | e+ e | e− e
b ::= e = e | e < e | b ∧ b | ¬b
f ::= e/e

a ::= b | a ∨ a | ∃X. a | e f7→ e | a ∗ a | [f]B(e, e) | P (e, e, e)
c ::= x := e | c; c | if b then c else c | while b do c

| x := cons(e) | x := [e] | [e] := e | 〈c〉 | fork c

We assume that logical variables X do not appear inside program commands
c. Notice that we do not formalize preserved-by clauses; we will formalize the
stability constraints but leave the mechanism for proving them unspecified. Our

proof system supports fractional permissions f on points-to assertions e
f7→ e

and box assertions [f]B(e, e). The first argument of a box assertion is the box
identifier ; the first argument of a handle predicate assertion P (e, e, e) is the
handle identifier, and the second argument is the box identifier.

The box class declaration and proof outline for the example program are
shown in Figure 1. Notice that in the formal system, in an action postcondition,
we use unprimed versions of the box invariant variables to denote the old values,
and primed versions to denote the new values.

3

boxclass incrbox(c) {
inv ∃v. c 7→ v
action incr() req true ens v ≤ v′

handlePred observed(val) { inv val ≤ v }
}

{true}
c := cons(0);
{c 7→ 0}
{[1]incrbox(, c)} CreateBox
fork (
{[]incrbox(, c)}
while true do
〈n := [c]; [c] := n + 1〉 Action incr()

);
{[]incrbox(, c)}
while true do (
〈m := c〉;
{∃b. []incrbox(b, c) ∗ observed(, b,m)}
〈m′ := c〉;
{[]incrbox(, c) ∗m ≤ m′}
assert m ≤ m′

)

Figure 1: Proof of the minimalistic example program

4

StablePred
boxclass B(X) {

inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred P (U) { inv b′′ }
· · ·

}

∀v, w,w′, z, u, r, r′.
(r � (I ∧ b′′)[vwu/XY U]) ∧
(r′ � I[vw′/XY]) ∧
(b ∧ b′)[vwzw′/XY ZY ′]
⇒ b′′[vw′u/XY U]

A ` stable P

Stable
boxclass B(X) { · · · action A1..n · · · handlePred P1..m · · · }

∀i, j. Ai ` stable Pj

stable B

CreateBox
boxclass B(X) { inv ∃Y . I · · · } {[1]B(, v) ∗R} c {Q}

{I[vw/XY] ∗R} c {Q}

Action
boxclass B(X) {

inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred Pi(U i) { inv bi }

}

∀w.
{I[vw/XY] ∗Πibi[vwui/XY U i] ∗R}
c

{∃w′. I[vw′/XY] ∗Πj(b
′′
j ∨ b′j [vw′u′j/XY U

′
j]) ∗ (b ∧ b′)[vww′z/XY Y ′Z] ∗R′}

{[π]B(β, v) ∗ΠiPi(, β, ui) ∗R} 〈c〉 {[π]B(β, v) ∗Πj(b
′′
j ∨ P ′j(, β, u′j)) ∗R′}

Figure 2: Proof rules

5

Our proof system extends separation logic with extra rules for box class
stability checking, box creation, and shared box mutation. The extra rules are
shown in Figure 2. Note: there are restrictions on nested applications of the
Action rule. For now, we assume that no such nested applications occur.

We assume that each declared box class B is stable: stable B. This means
that each of the class’ handle predicates is stable with respect to each of its
actions. Stability of a handle predicate with respect to an action means that
given arbitrary values v of the box class parameters, old values w and new values
w′ of the box invariant variables, values z of the action parameters, and values u
of the handle predicate parameters, and arbitrary old and new resource bundles
r and r′ representing the old and new contents of the shared box, if the box
invariant holds in the pre- and post-state, the action pre- and postcondition
hold, and the handle predicate invariant holds in the pre-state, then the handle
predicate invariant holds in the post-state.

Rule CreateBox allows a shared box instance to be created at any time
provided its invariant holds for some part of the current locally held resources.
Those resources are then consumed and a box chunk (a resource representing
the existence of a shared box instance) is produced.

Rule Action allows the verification of an atomic command 〈c〉 that accesses
the resources held by a shared box instance of class B, with identifier β, and
with arguments v. This requires that the thread own a fraction π of the box
chunk. During verification of command c, the box invariant becomes available.
It must be re-established before the atomic command is exited. Furthermore,
local resources R may be passed into the atomic command and resources R′ may
be extracted and retained locally. Also, handle predicates may be consumed and
produced. Any number of handle predicate chunks Pi for the box instance may
be consumed on entry; their invariants bi are assumed to hold in the pre-state.
Any other number of handle predicates P ′j may be produced on exit, provided
their invariants b′j are established in the post-state. They may be produced
conditionally under conditions ¬b′′j . It is checked that there is some action A
and argument list z such that the action’s precondition and postcondition are
satisfied by the command.

In rule Action as presented in Figure 2, handle identifiers are ignored.
Handle identifiers are important in advanced scenarios which will be discussed
in a later section.

We show the example proof in the form of an annotated C program, as
accepted and successfully verified by VeriFast, in Figure 3. This example is in-
cluded in the VeriFast distribution in file examples/shared_boxes/incrbox.c.

2 Soundness Proof

In this section, we formalize the soundness property targeted by our proof system
and then we prove it.

2.1 Operational Semantics

We first formalize a small-step operational semantics for our programming lan-
guage.

6

#include <threading.h>
#include "atomics.h"
/*@ box_class incr_box(int *x) {

invariant *x |-> ?value;
action increase();

requires true;
ensures old_value <= value;

handle_predicate observed(int v) {
invariant v <= value;
preserved_by increase() {}

}
} @*/
//@ predicate_family_instance thread_run_data(inc)(int* x) = [_]incr_box(_, x);
void inc(int *x) /*@ : thread_run @*/

/*@ requires thread_run_data(inc)(x); @*/ /*@ ensures true; @*/ {
//@ open thread_run_data(inc)(x);
while(true) /*@ invariant [_]incr_box(_, x); @*/ {

;
/*@
consuming_box_predicate incr_box(_, x)
perform_action increase()
{ @*/ atomic_increment(x); /*@ };
@*/

}
}
void reader(int *x) /*@ requires [_]incr_box(_, x); @*/ /*@ ensures false; @*/ {

for (;;) /*@ invariant [_]incr_box(_, x); @*/ {
;
/*@
consuming_box_predicate incr_box(_, x)
perform_action increase()
{ @*/ int m0 = atomic_load_int(x); /*@ }
producing_fresh_handle_predicate observed(m0);
@*/
/*@
consuming_box_predicate incr_box(_, x)
consuming_handle_predicate observed(_, m0)
perform_action increase()
{ @*/ int m1 = atomic_load_int(x); /*@ };
@*/
assert(m0 <= m1);

}
}
int main() /*@ requires true; @*/ /*@ ensures true; @*/ {

int x;
//@ create_box id = incr_box(&x);
//@ leak incr_box(id, &x);
//@ close thread_run_data(inc)(&x);
thread_start(inc, &x);
reader(&x);

}

Figure 3: The minimalistic example as an annotated C program accepted by
VeriFast.

7

The set of machine configurations γ ∈ Configs is defined as follows:

s ∈ Stores = X → Z
R ∈ Heaps = Z⇀ Z

κ ∈ Continuations ::= done | c;κ
θ ∈ ThreadConfigs = Stores × Continuations

γ ∈ Configs = Heaps × (ThreadConfigs → N)

A configuration consists of a heap and a multiset1 of thread configurations. A
thread configuration θ consists of a store and a continuation. A continuation is
either done, indicating that the thread has finished, or a command followed by
another continuation.

We use the notation {[a, b, c]} to represent a multiset: {[a1, . . . , an]} = 0 +
{[a1]}+ · · ·+{[an]} where 0 = λx. 0 represents the empty multiset and M +{[a]} =
M [a := M(a) + 1]. We use the notations + and] interchangeably for multiset
addition.

We define a big-step relation ⇓ ⊆ (Heaps ×Stores ×Commands)× (Heaps ×
Stores ∪ {abort}) for commands that may appear inside atomic commands:

Assign

(R, s, x := e) ⇓ (R, s[x := s(e)])

Lookup
s(e) ∈ domR

(R, s, x := [e]) ⇓ (R, s[x := R(s(e))])

LookupAbort
s(e) /∈ domR

(R, s, x := [e]) ⇓ abort

Mutate
s(e) ∈ domR

(R, s, [e] := e′) ⇓ (R[s(e) := s(e′)], s)

MutateAbort
s(e) /∈ domR

(R, s, [e] := e′) ⇓ abort

SeqAtomic

(R, s, c) ⇓ (R′, s′) (R′, s′, c′) ⇓ o
(R, s, c; c′) ⇓ o

SeqAbort

(R, s, c) ⇓ abort

(R, s, c; c′) ⇓ abort

IfTrueAtomic
s(b) (R, s, c) ⇓ o

(R, s, if b then c else c′) ⇓ o

IfFalseAtomic
¬s(b) (R, s, c′) ⇓ o

(R, s, if b then c else c′) ⇓ o

AtomicAtomic
(R, s, c) ⇓ o

(R, s, 〈c〉) ⇓ o
1A multiset over elements of a set A is a function M : A → N where M(a) is the number

of occurrences of a in M .

8

We define a small-step relation ⊆ Configs×(Configs∪{abort}) as follows:

Cons
0 < `

{`, . . . , `+ n− 1} ∩ dom(R) = ∅ R′ = R[` := s(e1), . . . , `+ n− 1 := s(en)]

(R, {[(s, x := cons(e1, . . . , en);κ)]}]Θ) (R′, {[(s[x := `], κ)]}]Θ)

Seq

(R, {[(s, (c; c′);κ)]}]Θ) (R, {[(s, c; (c′;κ))]}]Θ)

IfTrue
s(b)

(R, {[(s, if b then c else c′;κ)]}]Θ) (R, {[(s, c;κ)]}]Θ)

IfFalse
¬s(b)

(R, {[(s, if b then c else c′;κ)]}]Θ) (R, {[(s, c′;κ)]}]Θ)

WhileTrue
s(b)

(R, {[(s,while b do c;κ)]}]Θ) (R, {[(s, c;while b do c;κ)]}]Θ)

WhileFalse
¬s(b)

(R, {[(s,while b do c;κ)]}]Θ) (R, {[(s, κ)]}]Θ)

Fork

(R, {[(s, fork c;κ)]}]Θ) (R, {[(s, c;done), (s, κ)]}]Θ)

Atomic
(R, s, c) ⇓ (R′, s′)

(R, {[(s, 〈c〉;κ)〉]Θ) (R′, {[(s′, κ)]}]Θ)

AtomicAbort
(R, s, c) ⇓ abort

(R, {[(s, 〈c〉;κ)〉]Θ) abort

2.2 Meaning of Assertions

The assertions of our proof system denote resource bundles r ∈ R:

`, v, β, h, u ∈ Z
α ∈ Chunks ::= ` 7→ v | B(β, v) | P (h, β, u)

r ∈ R = Chunks → [0, 1]

A chunk is either a points-to chunk ` 7→ v, a box chunk B(β, v), or a handle
predicate chunk P (h, β, u). A resource bundle is a function from chunks to real
numbers between 0 and 1, inclusive. Note that the heaps R ∈ Heaps can be
identified with a subset of the resource bundles: we will identify heap R with
the resource bundle {(` 7→ v) 7→ 1 | (` 7→ v) ∈ R}.

We define consistency of a resource bundle as follows:

∀`, v1, v2. r(` 7→ v1) > 0 ∧ r(` 7→ v2) > 0⇒ v1 = v2

∀B, β, v1, v2. r(B(β, v1)) > 0 ∧ r(B(β, v2)) > 0⇒ v1 = v2

∀P, h, β1, u1, β2, u2. r(P (h, β1, u1)) > 0 ∧ r(P (h, β2, u2)) > 0⇒ β1 = β2 ∧ u1 = u2

consistent r

9

We define satisfaction r � a of a closed assertion in the obvious way. We say
a implies a′ iff ∀r. r � a⇒ r � a′.

2.3 Soundness Property

The soundness property that we target with our proof system is that if {true} c {true}
then (∅, {[(0, c;done)]}) 6 ∗ abort.

2.4 Soundness with respect to the Big-Step Semantics

We extend the big-step semantics to operate on resource bundles as follows:

r + rF = R+ rR (R, s, c) ⇓ (R′, s′) R′ + rR = r′ + rF

(r, s, c) ⇓ (r′, s′)

r + rF = R+ rR (R, s, c) ⇓ abort

(r, s, c) ⇓ abort

Separation logic is sound with respect to the big-step semantics:

Lemma 1. If {a} c {a′} was derived without using the CreateBox or Action
rules, and r, s � a and (r, s, c) ⇓ o, then ∃r′, s′. o = (r′, s′) ∧ r′, s′ � a′.

Proof. By induction on the derivation of the Hoare triple.

2.5 Safety Relation

We define the semantic assertions SemAsns = 2R×Stores .
We define a safety relation safe ⊆ Commands × SemAsns × R × Stores in

Figure 4.
We prove a correspondence between correctness and safety of a command.

(We prove a generalized property, involving a frame r and a weakened postcon-
dition Q; this makes the induction hypothesis strong enough for the frame rule
and the rule of consequence.)

Lemma 2. If {a} c {a′} and a′ ∗ r ⇒ Q, then a ∗ r ⇒ safe(c,Q).

Proof. By induction on the derivation.

We define safety of a continuation:

safe(done, r, s)
safe(c, safe(κ), r, s)

safe(c;κ, r, s)

We define safety of a machine configuration:

ιB : Z⇀fin B × Z∗
ιP : Z⇀fin P × Z× Z∗ ρ : dom ιB → R r = R] ιB] ιP

r = Σβρ(β) + Σiri ∀(β 7→ (B, vβ)) ∈ ιB. ρ(β) � IB [vβwβ/XBY B]
∀(h 7→ (P, β, u)) ∈ ιP. bP [vβwβu/XβY βUP] ∀i. ri, si � safe(κi, true)

safe (R,Σi{[(si, κi)]})

10

Q(r, s[x := s(e)])

safe(x := e,Q, r, s)

Lookup

r � s(e) π7→ v Q(r, s[x := v])

safe(x := [e], Q, r, s)

Mutate
r, s � e 7→ v ∗ (e 7→ e′ →∗ Q)

safe([e] := e′, Q, r, s)

AtomicNoBox
∀o. (r, s, c) ⇓ o⇒ ∃r′, s′. o = (r′, s′) ∧Q(r′, s′)

safe(c,Q, r, s)

AtomicBox
boxclass B(X) {
inv ∃Y . I
· · ·
action A(Z) req b ens b′

· · ·
handlePred Pi(U i) { inv bi }
}

r, s � [π]B(β, v) ∗ΠiPi(, β, ui) ∗
(∀w.
I[vw/XY] ∗Πibi[vwui/XY U i] →∗
safe(c,∃w′.
I[vw′/XY] ∗Πj(b

′′
j ∨ b′j [vw′u′j/XY U

′
j])

∗ (b ∧ b′)[vww′z/XY Y ′Z]
∗ ([π]B(β, v) ∗Πj(b

′′
j ∨ P ′j(, β, u′j))→∗ Q)))

safe(〈c〉, Q, r, s)

CreateBox
r, s � I[vw/XY] ∗ ([1]B(, v)→∗ Q)

safe(c,Q, r, s)

Figure 4: Safety of a command

11

In words: a machine configuration is safe if there exists a set of box instances
(with a box identifier, a box class, values for the box parameters, and values
for the box invariant variables) and a set of handle predicate instances (with a
handle predicate name, a handle identifier, a box identifier, and a set of han-
dle predicate arguments) such that there exists a partitioning of the available
resources (i.e. one points-to chunk for each heap cell plus one box chunk for
each box instance plus one handle chunk for each handle) into one bundle for
each box and one bundle for each thread, such that each box’s bundle satisfies
the box invariant and all handle predicate invariants pertaining to it, and each
thread’s bundle ensures the safety of that thread’s continuation.

Lemma 3. Safety of a machine configuration is preserved by machine steps:

safe γ ∧ γ o⇒ ∃γ′. o = γ′ ∧ safe γ′

Proof. By induction on the derivation of safe(κi, true, ri, si) for the thread i
that performs the step. We elaborate an illustrative case.

• Case CreateBox. The thread’s bundle ri can be split into a part rI that
satisfies the resource invariant of some box class B, and a residue r′. We
pick a new box identifier β and extend ιB with the new box instance. We
define the new bundle for thread i as r′i = r′+{[B(β, v)]}. Since no handles
have β as their box identifier, all constraints are satisfied. We finish by
applying the induction hypothesis.

Theorem 1 (Soundness). If {true} c {true} then (∅, {[(0, κ)]}) 6 ∗ abort.

Proof. The initial configuration is safe. We can derive by induction on the
number of steps that any reachable outcome is a safe configuration.

3 Verifying the Michael-Scott Queue

We show an encoding of the Michael-Scott queue concurrent data structure (for
a garbage-collected language) into our formal syntax in Figure 5.

We wish to verify this implementation against the following specification:

{I(ε)} q := create() {queue(1, q, I)}

∀α. {I(α) ∗ P} ρ {I(α · v) ∗Q}
{queue(π, q, I) ∗ P} enqueue(q, v, ρ) {queue(π, q, I) ∗Q}

{I(ε) ∗ P} ρ {I(ε) ∗Q(0)} ∀v, α. {I(v · α) ∗ P} ρ′ {I(α) ∗Q(v)}
{queue(π, q, I) ∗ P} x := dequeue(q, ρ, ρ′) {queue(π, q, I) ∗Q(x)}

These specifications are similar to the specification style of [6], but with some
differences. When a queue is created, a queue invariant I, an assertion param-
eterized by a sequence of values, is associated with it. Upon creation of the
queue, the invariant, instantiated with the empty sequence, is consumed. The
client may include fractional ownership of ghost cells in this invariant to track

12

procedure create() returns (result){
n := cons(next := 0, value := 0);
q := cons(head := n, tail := n);
result := q

}
procedure enqueue(q, x) {

new := cons(next := 0, value := x);
done := 0;
while done = 0 do (
〈t := [q.tail]〉;
〈n := [t.next]; if n = 0 then [t.next] := new〉;
if n = 0 then

done := 1
else
〈t′ := [q.tail]; if t′ = t then [q.tail] := n〉

)
}
procedure dequeue(q) returns (result){

done := 0;
while done = 0 do (
〈h := [q.head]〉;
〈n := [h.next]〉;
if n = 0 then (

result := 0; done := 1
) else (
〈t := [q.tail]; if t = h then [q.tail] := n〉;
〈h′ := [q.head]; if h′ = h then [q.head] := n〉;
if h′ = h then (
〈result := [n.value]〉;
done := true

)
)

)
}

Figure 5: The Michael-Scott queue

13

information about the contents of the queue. Therefore, when the queue is up-
dated, these ghost cells may also need to be updated. This is made possible by
allowing the proof author to associate ghost commands ρ and ρ′ which update
these ghost cells with calls of enqueue and dequeue. the Hoare triples for enqueue
and dequeue have premises specifying the behavior of these ghost commands.

To verify the data structure, we declare the box class msqueue box, as follows:

boxclass msqueue box(q, I) {
inv ∃i, nodes, vs, h, t.

lseg(i, 0, nodes, vs) ∗ q.head 7→ nodesh ∗ q.tail 7→ nodest
∗ h ≤ t ∗ |nodes| − 1 ≤ t ∗ I(vsh+1..|vs|)

action enqueue(n, v)
ens nodes′ = nodes · n ∧ vs′ = vs · v

action dequeue()
ens h′ = h + 1

action move tail()
ens t′ = t + 1

handlePred was head(hd) { inv ∃j ≤ h. hd = nodesj }
handlePred was head with succ(hd, nn) {

inv ∃j ≤ h. hd = nodesj ∧ nn = nodesj+1

}
handlePred was head with succ not tail(hd, nn) {

inv ∃j ≤ h. hd = nodesj ∧ nn = nodesj+1 ∧ j < t
}
handlePred node has value(n, v) { inv ∃j. n = nodesj ∧ v = vsj }
handlePred was tail(tn) { inv ∃j ≤ t. tn = nodesj }
handlePred was tail with succ(tn, nn) {

inv ∃j ≤ t. tn = nodesj ∧ nn = nodesj+1

}
}

Here, we adopt three notational conventions (which have not yet been imple-
mented in VeriFast): firstly, for each box invariant variable Y whose primed
version is not mentioned in an action postcondition, that postcondition gets an
additional conjunct saying Y ′ = Y ; secondly, each action postcondition implic-
itly gets an additional disjunct saying that nothing has changed; thirdly, an
action precondition that is not declared explicitly defaults to true.

A proof outline for the queue is shown in Figures 6 and 7.

4 Additional Features

In this section we briefly describe additional features of VeriFast’s shared boxes.

4.1 Handle Identifiers

The examples we used in the preceding sections had the property that at no
point in time did any thread perform a distinguished role in the protocol: all
threads were subject to the same restrictions, or, in other words still, the rely
condition did not mention thread identities.

14

predicate queue(f, q, I) = [f]msqueue box(, q, I)
procedure create() returns (result){
{I(ε)}
n := cons(next := 0, value := 0);
q := cons(head := n, tail := n);
result := q
{lseg(n, 0, n, 0) ∗ q.head 7→ n ∗ q.tail 7→ n ∗ I(ε)}
{[1]msqueue box(, q, I)} CreateBox

}
procedure enqueue(q, x) {
{queue(f, q, I) ∗ P}
new := cons(next := 0, value := x);
done := 0;
{queue(f, q, I) ∗ (done = 0 ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∨ done = 1 ∗Q)}
while done = 0 do (
{[f]msqueue box(β, q, I) ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P}
〈t := [q.tail]〉;
{[f]msqueue box(β, q, I) ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∗ was tail(, β, t)}
〈n := [t.next]; if n = 0 then ([t.next] := new; ρ)〉;{

[f]msqueue box(β, q, I) ∗ (n = 0 ∗Q ∨
n 6= 0 ∗ new.next 7→ 0 ∗ new.value 7→ x ∗ P ∗ was tail with succ(, β, t, n))

}

if n = 0 then
done := 1

else
〈t′ := [q.tail]; if t′ = t then [q.tail] := n〉

)
{queue(f, q, I) ∗Q}

}

Figure 6: Proof of the Michael-Scott queue, part 1 of 2

15

procedure dequeue(q) returns (result){
{queue(f, q, I) ∗ P}
done := 0;
{queue(f, q, I) ∗ (done = 0 ∗ P ∨ done = 1 ∗Q(result))}
while done = 0 do (
{[f]msqueue box(, q, I) ∗ P}
〈h := [q.head]〉;
{[f]msqueue box(β, q, I) ∗ P ∗ was head(, β, h)}
〈n := [h.next]; if n = 0 then ρ〉;
{[f]msqueue box(β, q, I) ∗ (n = 0 ∗Q ∨ n 6= 0 ∗ P ∗ was head with succ(, β, h, n))}
if n = 0 then (
result := 0; done := 1

) else (
〈t := [q.tail]; if t = h then [q.tail] := n〉;
{[f]msqueue box(β, q, I) ∗ P ∗ was head with succ not tail(, β, h, n)}
〈h′ := [q.head]; if h′ = h then ([q.head] := n; ρ′)〉;{

[f]msqueue box(β, q, I) ∗
(h = h′ ∗ (∃v. Q(v) ∗ is good node(, β, n, v)) ∨ h 6= h′ ∗ P)

}

if h′ = h then (
〈result := [n.value]〉;
done := true

)
)

)
{queue(f, q, I) ∗Q(result)}

}

Figure 7: Proof of the Michael-Scott queue, part 2 of 2

16

In many other concurrent algorithms, thread identities do play a role in a rely
condition. For example, in the case of a spin lock, only the thread that acquired
the lock may release it (except if the thread explicitly yielded ownership of the
lock to some other thread). As another example, in an algorithm that uses
hazard pointers for memory reclamation, such as the Treiber stack [7], only the
thread that removed a node from the data structure may deallocate it.

VeriFast supports these scenarios by associating a handle identifier with each
handle predicate. Action specifications may specify which participants may
perform the action by constraining the special variable actionHandles, which
denotes the list of the handle identifiers of the handles consumed by the action.
As a result, only those threads which own particular handle predicate chunks
can perform certain actions.

Similarly, a handle predicate invariant may mention the handle predicate’s
identifier using the special variable predicateHandle.

To support stable and unique identities, for each handle predicate that is
produced by an action, the proof author must specify the handle identifier (which
must be the identity of one of the handles that was consumed) or else that the
handle identifier should be a fresh one.

The following examples that ship with VeriFast in the examples/shared_boxes
directory use handle identifiers:

Example Description
spinlock.c Spinlock

ticket_lock.c Ticketed lock
concurrentstack.c Treiber stack with hazard pointers

cowl.c Copy-on-write list

4.2 Nested actions

In order to build fine-grained concurrent data structures on top of other fine-
grained concurrent data structures, it is useful to be able to nest actions. Note,
however, that care must be taken to deal correctly with box re-entry, i.e. per-
forming multiple nested actions on the same box. Obviously, it would be un-
sound to produce the box invariant multiple times.

VeriFast supports nested actions. Box re-entry is ruled out by assigning
a unique box level to each box (whose relationship to existing box levels may
be specified by the proof author), and checking that an inner action is on a
higher-level box than its outer action.

The following examples use nested actions:

Example Description
gotsmanlock.c Gotsman lock [5]

atomic_integer.c Atomic integer
spinlock_with_atomic_integer Spinlock on top of atomic integer
ticketlock_with_atomic_integer Ticketed lock on top of atomic integer

It is important to note, however, that composing fine-grained concurrent
data structures each verified using shared boxes does not always require nested
actions. For example, the examples cell_refcounted.c, cowl.c, and lcl_set.c
(a set implementation using a lock-coupling list) are built on top of gotsmanlock.c
without the need for nested actions.

17

4.3 Action permissions

An alternative way to deal with algorithms where participants have distinct
roles, is using action permissions, first introduced in CAP [3]. VeriFast supports
action permissions: an action may be declared as permbased. As in CAP, an
action permission chunk is produced when the box is created. Performing a
permbased action requires (a fraction of) the action permission chunk.

The examples ticketlock_cap.c and ticketlock_with_atomic_integer.c
use action permissions.

Both of these examples use permbased actions that have parameters. In this
case, upon creation of the box, conceptually a distinct chunk is produced for
each value of the parameter. To represent this finitely in VeriFast’s symbolic
heap, a dispenser chunk is produced which represents the action permission
chunks for all parameter values except for a given list of values for which a
separate action permission has been split off.

4.4 Spatial handle predicate invariants

In CAP [3], stability of a shared region assertion may depend on chunks locally
held by the thread. VeriFast supports this as well by allowing spatial handle
predicate invariants. One example that illustrates this is ticketlock_cap.c.

5 Conclusion

Through the mechanism of shared boxes, VeriFast integrates rely-guarantee rea-
soning into its separation logic-based program logic. We introduced the mecha-
nism through the motivating examples of a monotonic counter and the Michael-
Scott queue, formalized the proof system and sketched a soundness proof, and
briefly discussed additional features and additional examples available in the
VeriFast distribution. Perhaps most notably, we achieved a reasonably clean
proof of a Treiber stack with hazard pointers.

Acknowledgements

This work was supported by the European Commission under EU FP7 FET-
Open project ADVENT (grant number 308830).

References

[1] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. In POPL, 2005.

[2] Markus Dahlweid, Micha l Moskal, Thomas Santen, Stephan Tobies, and
Wolfram Schulte. VCC: Contract-based modular verification of concurrent
C. In ICSE, 2009.

[3] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew Parkin-
son, and Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP,
2010.

18

[4] Xinyu Feng. Local rely-guarantee reasoning. In POPL, 2009.

[5] Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly
Sagiv. Local reasoning for storable locks and threads. In APLAS, 2007.

[6] Bart Jacobs and Frank Piessens. Expressive modular fine-grained concur-
rency specification. In POPL, pages 271–282, 2011.

[7] M. M. Michael. Hazard pointers: safe memory reclamation for lock-free
objects. IEEE Transactions on Parallel and Distributed Systems, 15(6),
2004.

[8] Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. CACM, 19(5):279–285, May 1976.

[9] Viktor Vafeiadis and Matthew Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, 2007.

19

