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1. Introduction

Object pose or viewpoint classification is an important
problem for a wide range of applications. This problem
has been traditionally approached from a local perspective
which exploits intrinsic features of the objects such as shape
or color [8, 9, 12, 15]. In this paper we follow the line of
[2, 7, 14] which exploits relations between objects. How-
ever, different from these works, in addition to predicting
the occurrence of an object instance, we also predict its
pose. Moreover, we reason in a 3D representation of the
scene assuming we know the ground plane, not in the 2D
image space. In addition, instead of using symbolic spa-
tial relations (e.g. in-front-of; close, near, far) we use con-
tinuous measures to define relations between objects as in
[1, 13]. Finally, different from existing work, we explore
the use of relations defined in an object-centered Frame of
Reference. We formulate pose classification as a Within-
Network classification problem which consists on making a
prediction about an object based on the neighboring objects.

2. Proposed Method

In order to measure the level to which an object fits in
a group of objects, first, we need to define relations be-
tween objects. Here, we limit ourselves to purely pairwise
relations. We define these relations in an object-centered
perspective by changing the location and orientation of the
frame of reference (FoR). First an object o; is selected and
the frame of reference is centered on it with the Z-axis fac-
ing in the frontal direction of the object. Then, we mea-
sure the relative location and pose of each of the other ob-
jects o;, one at a time, producing a relational descriptor
ri; = (rai;, ryij,72i5,70:5). In practice we ignore ry;;
since all the objects we consider are found on the ground
plane so ry;; = 0 in all cases.

Allocentric Pose Classification: with allocentric pose
classification, we refer to classifying the pose 6; of an ob-
ject o; purely based on the objects in its neighborhood
N;. In our experiments, /N; is the set containing all the
other objects o; in the scene. This pose is estimated as
0F = argmaxy,(pRN(0;|N;)), where 6; belongs to the
discrete set of possible poses and pRN (0;|N;) is a prob-
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Figure 1. Distribution of object-centered relations for cars with
the same pose (a) and opposite pose (b) respectively .

abilistic Relational Neighbor classifier (pRN) as introduced
in [10]. pRN is a simple method that can take advantage of
the underlying structure between elements in a network. It
has been successfully used, on text datasets, for social net-
work analysis, etc. This classifier operates in a node-centric
fashion meaning that it processes one object o; at a time
based on a set of m objects o; in its neighborhood V;. It is
defined as pRN (0:|N;) = 2 3, P(0ilo;)p(d)).

This classifier is composed by three terms: p(o0;|o;),
which expresses the influence of the neighboring object o;
on the object o;; the term p(d;) which measures the confi-
dence on the neighbor o;; and the normalization term Z.
In our setting, we define the influence term p(o;|o;) as
p(0;|ri;). Using Bayes’ rule we estimate p(o;|r;;) as the
posterior:

p(rijloi)p(os)
rij]0:)p(0:) + p(rij|-oi)p(—o:) M

p(oilrij) = i

To obtain the components of Eq.1, first, we run the lo-
cal detector on a validation set producing a set of hypothe-
ses per image. Then we label the hypotheses as true posi-
tives (TP) or false positives (FP) based on the Pascal VOC
matching criterion [3]. We define pairwise relations r;; be-
tween the hypotheses reported for each image. Relations
are divided in two groups. One group contains relations in
which both participants are TP hypotheses and the second
group contains relations in which at least one participant
is a FP hypothesis. Finally, the relations on these groups
are used via Kernel Density Estimation (KDE) to estimate
p(rijlo;) and p(r;;|—o;) respectively. This method captures
the statistics of typical configurations. For instance, when



8 Poses Real
ideal (RC) || chance (RC) || LC[9] | RC | LC+RC
0.47 0.13 0.27 0.20 0.30
16 Poses Real
ideal (RC) || chance (RC) || LC[5] | RC | LC+RC
0.37 0.06 0.55 0.27 0.57

Table 1. Mean Pose Classification Performance for the Ideal and
Real Scenarios (MPPE values per method). LC (Local Classifier),
for their respective baselines. RC (Relational Classifier).

applied on top of OC relations, it effectively encodes that
cars with the same pose tend to be one behind the other -
as when driving in the same lane, while cars with opposite
poses are more likely to be driving on the left - as in oppo-
site lanes (see figure 1). The priors p(0;) and p(—o;) of the
object occurring or not at the given location, are estimated
as the percentage of TP hypotheses and FP hypotheses in
the validation set, respectively. We combine the response
of the Local and Relational classifiers following the method
proposed in [13]. For more details please refer to [11].

3. Evaluation

We run experiments on the KITTI dataset [4] focusing
on the car class. To evaluate pose classification we show
the Mean Average Precision in Pose Estimation (MPPE) as
presented in [6, 8, 9, 12, 15]. MPPE is computed as the
average of the diagonal of the class-normalized confusion
matrix of the pose classifier. We evaluate the performance
on the classification of 8 and 16 poses.

Our experiments aim to answer the question: “What is
the effect of considering object relations for the task of ob-
ject pose classification?”. The first experiment considers
the ideal scenario where the local object detector and pose
estimator are 100% accurate for the objects in the neigh-
borhood. The pose of each object is then predicted based
on the ground truth locations and poses from objects in its
neighborhood. This will show the upper limit of the perfor-
mance that the Relational Classifier (RC) used for allocen-
tric pose classification can achieve. The second experiment
uses, as local classifiers (LC), the pose-aware object detec-
tors from [9] and [5] to obtain the initial object hypotheses.
These local classifiers predict 8 and 16 poses respectively.
The objective of this experiment is to evaluate the perfor-
mance of both, local and relational, classifiers alone and the
combination of the two for the task of object pose classifi-
cation in realistic settings.

Discussion: Table 1 shows that, in an ideal scenario,
the allocentric pose classifier takes advantage of finer dis-
cretization of object poses. While the absolute number is
lower for the 16 poses classifier, with twice as many out-
put labels this is a significantly harder problem. This ex-
periment shows the upper limits in performance that can
be expected from allocentric pose classification using local

detectors [5, 9]. Based only on context information, it is
not possible to accurately classify the object’s pose. At the
same time, this upper bound is similar or even higher than
what current state-of-the-art local detectors can obtain, and
therefore using context information to improve pose classi-
fication seems promising. Our experiments also shows that
it is possible, in a real scenario to classify, at least to some
extent, the pose of objects by looking at the poses and lo-
cations of other objects — even if these poses and locations
are noisy themselves. While the performance of the rela-
tional classifier alone is lower than the one obtained by the
local classifier, it is significantly above the chance levels.
Moreover, the combination of both local and relational clas-
sifier brings a mean improvement, over the local classifier,
of 2.5% and 1.7%, on [9] and [5] respectively.
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