

Beyond the textual company of words: What corpus settings tell us about lexical collocability

Jose Tummers^{1,2}
Dirk Speelman²
Kris Heylen²
Dirk Geeraerts²

¹ Leuven University College

² KU Leuven, Quantitative Lexicology and Variational Linguistics

IVACS 2014 - Newcastle, 19-21/6/2014

Contents

- 1. Problem statement
- 2. Goal
- 3. Case study
- 4. Methodology
- 5. Results
- 6. Discussion

1. Problem statement

Lexical collocations

- Long-standing tradition in corpus linguistic research, dating back to 50ies (amongst others, Firth 1957; Granger 1998; Hoey 2005; Sinclair 1991; Stubbs 1995, 2001; Wulff 2008, 2013; see Gries 2013 for critical methodological account)
- Use in its own right to identify lexical preference patterns, in various linguistic disciplines
- Use as explanatory variable / determinant to constrain other constructions

1. Problem statement

Corpus (1/2)

- Representative sample of language use of a given linguistic community in a/given setting(s)
- Corpus-based approaches: focus on linguistic patterns and structures in language use
- Settings of language use:
 - Rarely explicitly addressed in mainstream (corpus) linguistics
 - Object of peripheral linguistic disciplines (sociolinguistics, dialectology, stylistics, etc.)

1. Problem statement

Corpus (2/2)

- Settings of language use: reflection of
 - Variety of usage settings
 - Heterogeneity linguistic community
 Socio-cultural diversity
 (Heylen et al. 2008)
- Research lexical collocation: impact of language settings hardly explicitly addressed (exception: Stefanowitsch & Gries 2008)

2. Goal

Demonstrate that lexical collocations are subject to constraints from usage settings

- 1. as measures in their own right to identify lexical preference patterns
- 2. as explanatory variables

Procedure: case study

3. Case study

Adjectival inflection in Dutch definite NPs with singular neuter N_{head}

- Two alternating morphosyntactic realizations:
 - [inflected] -e het vriendelijk-e kind ('the friendly-INFL child')
 - [uninflected] -Ø het vriendelijk-Ø kind ('the friendly-zero child')
- **Alternation** governed by intricate network of explanatory variables (Haeseryn et al. 1997; Tummers 2005)
 - Structural: lexical collocation strength AN, Det_{POS}, N_{dim}, N_{inf}, ...
 - Usage settings: national variety, register
 - Discourse processing: prosodic pattern AN
- Present talk: focus on
 - Lexical collocation strength AN
 - Register
 - National variety
 - Speaker

3. Case study

Corpus

- Corpus of spoken Dutch (Corpus Gesproken Nederlands; Oostdijk 2000)
 - 10M reference corpus of spoken Dutch
 - National variety: Belgian Dutch vs. Netherlandic Dutch
 - Register: different degrees of speaker control on situation

Corpus distribution adjectival alternatives

	n	%
Inflected	3,810	0.7675
Uninflected	1,154	0.2325
Total	4,964	1.000

Operationalization of variables (1/5)

- lex.col:
 - Lexical collocation strength between A and N (in NP)
 - Pointwise mutual information index (Church & Hanks 1990)
 - Computed based on lemmas in Leuven News Corpus (1.3 billion words; Ruette 2012) and Twente News Corpus (560 million words; Ordelman et al. 2007) for AN pairs
 - Transposed to dataset
- nat.var: Netherlandic vs. Belgian Dutch
- register:
 - high.form > mod.form > mod.inf > high.inf
 - Based on 3 binary stylistic dimensions in CGN
 - preparation: prepared vs. non-prepared
 - audience: public vs. private
 - interaction: monologue vs. dia- or multilogue

Operationalization of variables (2/5)

• lex.col:

Overview MI

Operationalization of variables (3/5)

- speaker:
 - Assumption of independence of observations: often violated in corpora
 - Observations are ① grouped under speakers, ② who will (probably) be different in replication studies

Problems

- ① Grouping
 - Speakers' idiosyncratic tendencies
 - Size of speaker's contribution
- ② Generalizability

Operationalization of variables (4/5)

• speaker: overview statistics

	Speakers	Observations
Single contributor	253 (0.23)	253 (0.05)
Multiple contributor	848 (0.77)	4,711 (0.95)
Total	1,101 (1.00)	4,964 (1.00)

Operationalization of variables (5/5)

Observations per speaker

Modeling: mixed-effects models (1/2)

- Fixed effect terms: exhaust all levels of parameter; identical values in replication study
 - lex.col
 - nat.var
 - register
- Random effect term: sampled from larger population; different values in replication study
 - speaker

(Baayen 2008; Bates & Pinheiro 2000; Gelman & Hill 2007)

Modeling: mixed-effects models (2/2)

Modeling lexical collocation strength:

Modeling adjectival inflection:

- Analyses: R
 - lme4 library (Bates 2005; Bates et al. 2013)
 - arm library (Gelman & Hill 2007)
 - effects library (Fox 2008)
 - car library (Fox & Weisberg 2011)

Collocation strength AN pair

Model summary: sequential anova (Fox 2008)

```
Analysis of Deviance Table (Type II Wald chisquare tests)
```

```
Response: lex.col

Chisq Df Pr(>Chisq)

nat.var

28.217 1 1.085e-07 ***

register

37.080 3 4.426e-08 ***

nat.var:register 12.484 3 0.005895 **
```

Overview fixed effects and random effect (speaker)

Main effect national variety

Main effect register

Register 18

Interaction national variety x register

Collocation strength AN pair

- Random effect (speaker):
 - Random intercept model: separate intercept fitted for each speaker
 - ICC = 0.12

Random slopes in glmer modeling MI

Adjectival inflectional alternation

Model summary: sequential anova (Fox 2008)

Analysis of Deviance Table (Type II Wald chisquare tests)

```
Response: infl
                          Chisq Df Pr(>Chisq)
                        40.9291 1 1.579e-10 ***
nat.var
                       116.8310 3 < 2.2e-16 ***
register
lex.col
                       224.4876 1 < 2.2e-16 ***
nat.var:register
                        22.0001 3 6.523e-05 ***
                       0.6002 1
                                     0.43851
nat.var:lec.col
                     21.9796 3 6.587e-05 ***
register:lex.col
nat.var:register:lex.col 7.2918 3
                                     0.06316 .
```

Overview fixed and random effects

Main effect national variety

Main effect register

Register

24

Interaction national variety x register

25

Main effect lexical collocation strength

Interaction Register x lexical collocation strength

Highly formal register: Interaction lexical collocation strength x national variety

Moderately informal register: Interaction lexical collocation strength x national variety

Highly informal register: Interaction lexical collocation strength x national variety

Belgian Dutch: Interaction Register x lexical collocation strength

Netherlandic Dutch: Interaction Register x lexical collocation strength

Adjectival inflectional alternation

- Random effects:
 - Random intercept and random slope for lex.col
 - $ICC_{intercept} = 0.59$
 - $ICC_{slope} = 0.03$
 - r(intercept, slope) = -0,64

Correlation between random effects (r = -0.64)

6. Discussion

Results (1/2)

- Lexical collocation strength
 - No constant metric (as it is the case for word frequency; amongst others, Archer 2009; Baayen 2001; Brysbaert & New 2009)
 - Constrained by settings language use
- As lexical measure: constrained by
 - nat.var
 - register
 - nat.var x register
 - speaker's idiosyncratic properties (cannot be reduced to nat.var)
- As determinant of adjectival inflection

6. Discussion

Results (2/2)

- As determinant of adjectival inflection:
 - Main deflecting effect, mainly identifying
 - lexicalizing AN: categorizing adjectives, relational adjectives
 - lexicalized AN: institutional terms, proper names
 - Deflecting effect on adjectival inflection constrained by
 - register
 - nat.var x register
 - speaker's idiolectic properties, where lex.col mainly compensates speakers with a low disposition toward uninflected adjective

6. Discussion

Implications

- Usage settings cannot be discarded from corpus linguistic studies, since they affect basic corpus metrics
 - Minimalist conception: identification of usage settings to filter out potential constraints and biases induced by usage settings
 - Maximalist conception: full-fledged integration of settings of language use in corpus linguistic research

(Geeraerts 2005)

Leuven University College, Marketing Communication KU Leuven, Quantitative Lexicology and Variational Linguistics

jose.tummers@khleuven.be dirk.speelman@arts.kuleuven.be

http://marco.khleuven.be
http://wwwling.arts.kuleuven.be/qlvl/