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Abstract. Knowledge compilation algorithms transform a probabilistic
logic program into a circuit representation that permits efficient proba-
bility computation. Knowledge compilation underlies algorithms for ex-
act probabilistic inference and parameter learning in several languages,
including ProbLog, PRISM, and LPADs. Developing such algorithms
involves a choice, of which circuit language to target, and which compi-
lation algorithm to use. Historically, Binary Decision Diagrams (BDDs)
have been a popular target language, whereas recently, deterministic-
Decomposable Negation Normal Form (d-DNNF) circuits were shown
to outperform BDDs on these tasks. We investigate the use of a new
language, called Sentential Decision Diagrams (SDDs), for inference in
probabilistic logic programs. SDDs combine desirable properties of BDDs
and d-DNNFs. Like BDDs, they support bottom-up compilation and cir-
cuit minimization, yet they are a more general and flexible representa-
tion. Our preliminary experiments show that compilation to SDD yields
smaller circuits and more scalable inference, outperforming the state of
the art in ProbLog inference.

1 Introduction

The interest in combining probabilistic reasoning and logic has grown strongly
in recent years and led to the development of different software packages, e.g.
PRISM [1], PITA [2] and ProbLog [3,4]. All of them offer a probabilistic pro-
gramming language, possibly with some restrictions, together with a variety of
exact and approximate algorithms for inference and learning. Although specif-
ically designed to support different models expressed by the language, the in-
ference algorithms are often reduced to the well-studied task of weighted model
counting [5-7]. This allows one to solve the probabilistic inference task using
state-of-the-art solvers introduced by other communities.

To reduce the probabilistic inference task to weighted model counting, one
has to perform two steps. First, the probabilistic logic program is converted
into a propositional formula which contains all possible worlds relevant to an-
swering the queries with the evidence. This formula is the relevant grounded
logic program without cycles or its equivalent Boolean circuit [7]. Second, this
formula is compiled into a more tractable target representation that supports
weighted model counting in an efficient way. This is a well-studied task known



as knowledge compilation [8]. The most general language known to support ef-
ficient weighted model counting is d-DNNF (deterministic-Decomposable Nega-~
tion Normal Form).

A knowledge compilation approach to probabilistic inference raises two chal-
lenges which, as shown later, are closely related: (1) how to choose a suitable
target representation, and (2) how to compile a Boolean circuit. For example,
historically OBDDs (Ordered Binary Decision Diagrams) [9], which are a subset
of d-DNNF, where often used as target representation [3]. Recent work, how-
ever, showed that the use of more general d-DNNF's allows one to compile more
complex programs [7]. The choice of target representation has a direct impact
on the scalability of exact probabilistic inference in probabilistic logic programs.

In this paper, we propose to use of the recently introduced Sentential De-
cision Diagrams (SDDs) [10] as target language. Unlike d-DNNFs, an efficient
apply operator is available for (uncompressed) SDDs [11], which allows one to
efficiently conjoin and disjoin two SDDs. This operator can be used for a bottom-
up compilation approach, as also supported by OBDDs. SDD compilation was
recently shown to outperform d-DNNF compilation for inference in probabilistic
graphical models [12]. This paper investigates whether using SDDs instead of
d-DNNFs yields similar benefits for reasoning with probabilistic logic programs.
Preliminary experiments show the promise of the technique.

2 Background and Related Work

In this section, we illustrate the pipeline of probabilistic logic program inference,
from a ProbLog program to a weighted model counting problem on a general
Boolean circuit, to an OBDD or d-DNNF circuit that permits efficient inference.
We refer to [4] for a detailed description of the pipeline.

2.1 Probabilistic Logic Programs

A probabilistic logic program is a logic program in which some of the facts are
annotated with probabilities. The small program shown below models a social
network with a domain of three persons which all possibly smoke. The goal of
the program is to compute the probability for each person that they actually
smoke, based on their stress-level and friends.

0.4 :: friends(a,b). 0.1 :: stress(a).
0.5 :: friends(b, a). 0.5 :: stress(b).
0.8 :: friends(a, c). 0.9 :: stress(c).
0.9 :: friends(c, a).

0.2 :: friends(c, b). smokes(X) :- stress(X).

0.1 :: friends(b, c). smokes(X) :- friends(X,Y), smokes(Y').



Before this theory can be compiled, the program needs to be grounded as
shown below. We dropped the probabilistic facts in the grounded program as
they are the same as in the non-grounded program.

smokes(a) :- stress(a).

smokes(b) :- stress(b). smokes(a) :- friends(a,b), smokes(b).
smokes(c) :- stress(c). smokes(a) :- friends(a,c), smokes(c).
smokes(b) :- friends(b,a), smokes(a). smokes(c) :- friends(c,a), smokes(a).
smokes(b) :- friends(b, c), smokes(c). smokes(c) :- friends(c,b), smokes(d).

The grounded program clearly contain cycles, for example smokes(a) de-
pends on smokes(b) which again depends on smokes(a). These cycles need to be
broken in order to obtain an Boolean formula which is equivalent to the logic
program [13]. This requires the introduction of auxiliary variables, as shown be-
low in the cycle-free ground program for our example. All smokes-* atoms are
auxiliary variables necessary to break the loops.

smokes(a) :- stress(a). smokes(a) :- friends(a,b), smokes-a(b).
smokes(b) :- stress(b). smokes(a) :- friends(a,c), smokes-a(c).
smokes(c) :- stress(c). smokes(b) :- friends(b, a), smokes-b(a).
smokes(b) :- friends(b, c), smokes-b(c).
smokes-a(b) :- stress(b). smokes(c) :- friends(c, a), smokes-c(a).
smokes-a(c) :- stress(c). smokes(c) :- friends(c, b), smokes-c(b).
smokes-b(a) :- stress(a). smokes-a(b) :- friends(b, c), smokes-ab(c).
smokes-b(c) :- stress(c). smokes-a(c) :- friends(c,b), smokes-ac(b).
smokes-c(a) :- stress(c). smokes-b(a) :- friends(a, c), smokes-ab(c).
smokes-c(b) :- stress(b). smokes-b(c) :- friends(c,a), smokes-bc(a).
smokes-bc(a) :- stress(a). smokes-c(a) :- friends(a,b), smokes-ac(b).
smokes-ac(b) :- stress(b). smokes-c(b) :- friends(b, a), smokes-bc(a).
smokes-ab(c) :- stress(c).

Once a loop-free ground program is obtained, the theory can be easily repre-
sented as a Boolean circuit. Figure 1 depicts the Boolean circuit for our example.
It contains a leaf variable for every probabilistic fact, and has a root node for
every ground atom we want to compute the probability of. Intermediate nodes
correspond to individual clauses and auxiliary variables in the loop-free ground
program. This circuit can be compiled into a specific target representation for
inference (possibly after first encoding it into a CNF), as we discuss next.

2.2 Properties of Target Representations

A number of distinct compilation algorithms exist. Not only their compilation
technique differs, but also the language of the circuit they produce. The knowl-
edge compilation map [8] defines a wide range of target languages and extensively
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Fig. 1. Boolean circuit for the smokes program.

describes their properties. In this paper, we limit our discussion to the relevant
properties of the techniques and languages used for compiling probabilistic logic
programs, that is OBDD, d-DNNF and SDD.

In general, one defines three key properties for each target language: its
succinctness, the class of tractable transformations it admits, and the class of
tractable queries it supports. Succinctness refers to the size of the smallest com-
piled circuit for every Boolean formula [8]. The succinctness ordering for the
languages we consider in this paper is

d-DNNF < SDD < OBDD,

where d-DNNF < SDD denotes that d-DNNF is strictly more succinct than
SDD, and SDD < OBDD denotes that SDD is at least as succinct as OBDD.
Intuitively, there exists a Boolean formula whose smallest SDD representation is
exponentially larger than its smallest d-DNNF representation, but the smallest
OBDD for any formula is at least as big as its smallest SDD. It is an open problem
whether SDD < OBDD, although some evidence suggests it is the case [14].

A comparison of the tractable transformations and queries for the languages
is summarized in Table 1. The polytime transformations we consider are nega-
tion, conjunction and disjunction as they are essential to simplifying the compila-
tion process. The only polytime query we consider is (weighted) model counting
as this suffices for probabilistic logic program inference. All languages we con-
sider allow (weighted) model counting in time linear in the size of the obtained
circuit. Therefore we do not include this property in further discussion when we
compare different compilation techniques or languages.
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Fig. 2. Efficient circuits for the left-most child of smokes(a) in Figure 1, representing
the clause smokes(a) :- friends(a,b), smokes-a(b) and its subgoals.

2.3 Compiling into OBDD

The first compilation approaches for inference in probabilistic logic programs
used OBDDs, a subset of the d-DNNF language, as target representation [3].
Figure 2a depicts an OBDD for the left-most child of smokes(a) in Figure 1. It en-
codes the Boolean function for the clause smokes(a) :- friends(a,b), smokes-a(b)
and its subgoals. A circular node represent a decision, whether the variable in
its label is true or false. Outgoing solid edges denote the variable being true, and
dashed edges denote the variable being false. When a terminal is reached, the
function is determined to either be true (T) or false ().

The advantage of OBDDs is twofold: (1) they support Boolean combinations
(conjunction, etc.) in polytime and, as such, allow a bottom-up compilation
approach, and (2) they support minimization of the circuit size, by modifying
the variable order that governs the OBDD structure.

Consider the cycle-free grounded logic program of the example introduced
before. A bottom-up approach would, for example, first compile smokes-ab(c),
friends(b,c¢) and stress(b), all into different OBDDs. Next, it takes the con-
junction of the OBDDs of the former two and disjoins it with the OBDD of the
latter. The results is an OBDD which represents smokes-a(b). In other words,
it compiles the nodes in Figure 1 bottom-up, combining the OBDDs of the



Language | Negation | Conjunction | Disjunction | Model Counting
d-DNNF ? o o v
SDD v 7 N Y
OBDD | v v v

Table 1. Efficient circuit operations for the different languages. ? means “unknown”,
v/ means “satisfies”, while o means “does not satisfy unless P=NP. The transformations
assume a bounded number of operands, that are OBDDs with the same variable order,
or SDDs with the same variable tree. See [8] and [10] for more details.

children to obtain the OBDD of their parent. This incremental procedure is con-
tinued until the complete program is compiled. To avoid an unexpected growth
of the circuit after a conjunction or disjunction of multiple sub-circuits, OBDD
compilers support a dynamic variable reordering to minimize the circuit size.
A disadvantage of OBDDs, however, is that they are less succinct and possibly
exponentially larger in size compared to the smallest possible d-DNNF.

2.4 Compiling into d-DNNF

State-of-the-art inference algorithms for probabilistic logic programs first encode
the Boolean circuit as a CNF and next compile this CNF directly into a d-DNNF
circuit. This approach compared favorably against bottom-up compilation using
OBDDs [7]. Figure 2b depicts a d-DNNF circuit for our example Boolean circuit.
A d-DNNF is itself a Boolean circuit, but with certain additional restrictions:
negation can only appear in the leafs, the children of a conjunction range over
disjoint sets of variables, and the children of a disjunction are mutually exclusive.

The advantage of the d-DNNF language is that it comes with size upper
bounds based on treewidth. These are tighter than the size upper bounds based
on pathwidth for OBDDs. As such, the complexity bound for d-DNNFs is the
same as for probabilistic inference algorithms typically used in other communi-
ties, for example probabilistic graphical models. The disadvantage of this lan-
guage, however, is twofold: (1) d-DNNF compilers require CNF input, and the
intermediate encoding in CNF requires the introduction of a set of auxiliary
variables, and (2) d-DNNFs do not support circuit minimization.

A cycle-free grounded logic program, as introduced before, can be directly
converted into a CNF by taking Clark’s completion of the rules. This conversion,
however, introduces a new auxiliary variable for each rule which has a body with
more than one literal. Although these extra variables avoid an exponential blow-
up of the CNF, their presence complicates the compilation process significantly.
Furthermore, compiling probabilistic logic programs into d-DNNF often leads to
circuits that are bigger than necessary because minimization is not supported.



3 Compiling into Sentential Decision Diagrams

The Sentential Decision Diagram (SDD) [10] is a newly introduced target rep-
resentation which is a strict subset of d-DNNF. Figure 2¢ depicts an SDD for
our example circuit. Circular nodes represent disjunctions and pairs of boxes
represent a conjunctions between their two children. More intuitively, circular
nodes again represent decisions, but now the decisions are over mutually exclu-
sive complex sentences, and the decisions are themselves represented as SDDs.
For example, the decision in node 4 is whether friends(b, c) A stress(c) is true
(represented by node 3) or false (represented by node 1). In the first case, one
proceeds with checking whether friends(a,b) is true. In the second case, one
proceeds with checking node 2, which is itself an SDD.

As a subset of d-DNNF, SDDs satisfy stronger properties which allows one,
for example, to conjoin and disjoin two SDDs efficiently by means of an apply
operator. Moreover, the compressed SDDs that we use are canonical, which leads
to practically efficient bottom-up-compilation when performing a large number
of recursive apply operations [11]. Similar to OBDDs, SDDs also support an
operation that minimizes their size, by modifying the variable tree that gov-
erns their structure [15]. On the other hand, SDDs are a superset of OBDDs
and come with tighter upper bounds on their size, based on treewidth. Conse-
quently, probabilistic inference with SDDs combines the desirable properties of
both the OBDD and d-DNNF languages: (1) a bottom-up compilation approach,
(2) minimization and, (3) succinctness and treewidth upper bounds.

In this work, we investigate techniques for compiling probabilistic logic pro-
grams into an SDD circuit. On the one hand, an SDD can be compiled directly
from the CNF encoding of the Boolean circuit and, as such, can be used to
replace d-DNNFs in the approach of [4]. On the other hand, an SDD can be
compiled bottom-up directly from the Boolean circuit, similar as with OBDDs.
This bypasses the intermediate CNF encoding and consequently there is no need
to introduce extra variables. More concretely, for every extra variable we would
have in the equivalent CNF, we now have a corresponding intermediate SDD. By
means of the apply operator, the SDD sub-circuits can be efficiently conjoined
and disjoined.

Our work on compiling probabilistic logic programs is similar to recent work
on compiling probabilistic graphical models into SDD [12]. There are two key
differences. First, our approach makes use of dynamic minimization, i.e. dynamic
reordering of the variable tree when the SDD grows beyond expectations, which
was not used before for probabilistic reasoning. Second, breaking the cycles and
the more complex rules inherent to logic programs typically require the introduc-
tion of a large number of auxiliary variables, and the cost of CNF conversion is
much higher for probabilistic logic programs than for typical probabilistic graph-
ical models. We therefore expect a bottom-up compilation approach, which does
not require the intermediate CNF representation, to have a much larger impact
when used for compiling logic programs.
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Fig. 3. Smokers experiments for a growing number of people.

4 Experiments

We experimentally compare the impact of different compilation approaches on
the compilation time and size of the compiled circuit. The probabilistic logic
program we use is a social network with the standard ’Smokers’ domain, similar
to the one used in [7]. We use random power law graphs to generate the network
since they are known to resemble social networks. For every domain size (# of
persons), we perform 10 runs and report average results.

For our experiments we do not consider OBDDs as target representation,
as previous work showed this approach is outperformed by compilation into d-
DNNF [7]. We thus compare four different compilation methods that start from
the Boolean circuit representation:

— encoding the Boolean circuit as a CNF, and compiling to d-DNNF (c24d);
— encoding the Boolean circuit as a CNF, and compiling to SDD (cnf);
compiling directly into SDD with a fixed default variable tree (sdd_f);

— compiling directly into SDD with minimization (sdd-m).

Both the d-DNNF compiler (¢2d) and SDD compiler we used are developed
by the Automated Reasoning Group at UCLA.! We use ProbLog as probabilistic
programming language. The compilation time for all methods is shown in Figure
3a and the size of the obtained representation in Figure 3b. Note that the size
of an SDD and d-DNNF cannot directly be compared, as they are defined on a
different syntax. However, every SDD can be transformed into a d-DNNF that
is at most three times larger. Hence, the reported SDD size is this upper bound.

We clearly observe the bottom-up compilation approach with SDDs, even
without minimization, outperforms the compilation approach which requires an
intermediate CNF representation. First, the methods sdd_f and sdd-_m allow to
compile probabilistic logic programs with a larger domain size. Second, these

! Both compilers are publicly available at http://reasoning.cs.ucla.edu.



methods produce circuits which are similar in size or smaller compared to the
circuits compiled by the other two methods. Third, the time necessary to com-
pile the theory is similar or less compared to the other two methods. We also
notice the impact of the minimization on the bottom-up approach (sdd-m). Min-
imization does not only allow us to compile programs with a larger domain size,
but it also produces smaller circuits in general. Minimization does take some
additional compilation time on smaller problems.

5 Conclusion

We investigated the use of a new language, called Sentential Decision Diagrams,
for compiling probabilistic logic programs. This language supports an efficient
apply operator, not available for d-DNNF's, which allows a bottom-up compila-
tion approach. Preliminary experiments show that incrementally compiling the
Boolean circuit with SDDs compares favorably against compiling the intermedi-
ate CNF representation into d-DNNF or SDD. The new approach lets us compile
a social network with a bigger domain size and the obtained circuit is smaller
compared to other compilation methods, especially when minimization is used.
These results ask for more work and experiments to fully investigate the use of
SDDs for compiling probabilistic logic programs.
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