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Abstract

Double-talk (DT)-robust acoustic echo cancellation (AEC) and acoustic feedback cancellation

(AFC) are needed in speech communication systems, e.g., in hands-free communication systems and

hearing aids. In this paper, we derive a practical and computationally efficient algorithm based

on the frequency domain adaptive filter prediction error method using row operations (FDAF-

PEM-AFROW) for DT-robust AEC and for AFC. The proposed algorithm features two main

modifications: (a) the WIener variable Step sizE (WISE), and (b) the GRAdient Spectral variance

Smoothing (GRASS). In AEC simulations, WISE-GRASS-FDAF-PEM-AFROW algorithm obtains

improved robustness and smooth adaptation in highly adverse scenarios such as in bursting DT

at high levels, and in a change of acoustic path during continuous DT. Similarly, in AFC sim-

ulations, the algorithm outperforms state-of-the-art algorithms when using a low-order near-end

speech model and in colored non-stationary noise.
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variable step size, prediction error method, gradient smoothing, double-talk.

1. Introduction

Acoustic echo and acoustic feedback are two well-known problems appearing in speech com-

munication systems, which are caused by the acoustic coupling between a loudspeaker and a

microphone. On the one hand, acoustic echo cancellation (AEC) is widely used in mobile and

hands-free telephony [1] where the existence of echoes degrades the intelligibility and listening

comfort. On the other hand, acoustic feedback limits the maximum amplification that can be

applied, e.g., in a hearing aid, before howling due to instability, appears [2], [3]. This maximum

amplification may be too small to compensate for the hearing loss, which makes acoustic feedback

cancellation (AFC) an important component in hearing aids. Figure 1 shows the typical set-up

for AEC and AFC. The goal of AEC and AFC is essentially to identify a model for the echo

or feedback path, i.e., the room impulse response (RIR), and to estimate the echo or feedback

signal which is then subtracted from the microphone signal. The microphone signal is given by

y(t) = x(t) + v(t) + n(t) = F (q, t)u(t) + v(t) + n(t) where q denotes the time shift operator, e.g.,

q−ku(t) = u(t−k), t is the discrete time variable, x(t) is the echo or feedback signal, u(t) is the loud-

speaker signal, v(t) is the near-end speech and n(t) is the near-end noise. In the sequel we will use

the term near-end signal to refer to v(t) and/or n(t) if, according to the context, there is no need to

point out a difference. F (q, t) = f0(t)+ f1(t)q
−1+ ...+ fnF

(t)q−nF represents a linear time-varying

model of the RIR between the loudspeaker and the microphone, where nF is the RIR model order.

Therefore, the aim of AEC or AFC is to obtain an estimate F̂ (q, t) of the RIR model F (q, t) by means

of an adaptive filter, which is steered by the error signal e(t) =
[

F (q, t)− F̂ (q, t)
]

u(t)+v(t)+n(t).

In AEC applications the loudspeaker signal u(t) is considered to be the signal coming from the

far-end side, i.e., the far-end signal. The echo-compensated error signal e(t) is then transmitted

to the far-end side. In AFC applications, on the other hand, the forward path G(q, t) maps the

feedback-compensated error signal e(t) to the loudspeaker signal, i.e., u(t) = G(q, t)e(t). Typically,

G(q, t) consists of an amplifier with a (possibly time-varying) gain K(t) cascaded with a linear

equalization filter J(q, t) such that G(q, t) = J(q, t)K(t). AEC and AFC in principle look the same

and share many common characteristics, however different essential problems can be distinguished:
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Figure 1: Typical set-ups for AEC/AFC. The left part (forward path) only relates to AFC. The right part relates to

both AEC and AFC.

1.1. The problem of double-talk in acoustic echo cancellation

Practical AEC implementations rely on computationally simple stochastic gradient algorithms,

such as the normalized least mean squares (NLMS) algorithms, which may be very sensitive to

the presence of a near-end signal [4]. Especially near-end speech, in a so-called double-talk (DT)

scenario, will affect the adaptation in the AEC context by making the adaptive filter converge

slowly or even diverge.

To tackle the DT problem, adaptive filters have been equipped with DT detectors (DTDs) to

switch off during DT periods. Since the Geigel algorithm [5] was proposed, several other DTD

algorithms have been specifically designed for AEC applications, e.g., [6]. However, in general,

DTDs take some time until an onset of a DT period is detected. Moreover, in some AEC scenarios

the near-end signal will be continuously present and then the use of a DTD becomes futile. This

may be the case for example in a noisy teleconferencing or AFC application. Therefore DT-robust

algorithms without the need for a DTD are called for. DT-robustness may be achieved based on

three approaches namely: (1) by using a postfilter to suppress or enhance residual echo, (2) by using

a variable step size (VSS) to slow down adaption during DT, (3) by prefiltering the loudspeaker

and microphone signal with a decorrelation filter to achieve a minimum-variance RIR estimate.

The first approach consists in the use of a postfilter which interplays with the AEC to suppress

residual echo (and also to reduce near-end signals) based on signal enhancement techniques [7]-

[9]. On the other hand, in [10], [11], the idea behind the postfilter design is the opposite, i.e.,
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to the enhance the residual echo in the adaptive filter loop. The postfilter design, in any case,

is typically based on single-channel noise reduction techniques, which carry a trade-off between

residual echo/noise reduction and signal distortion.

The second approach to DT-robust AEC is to equip the (stochastic gradient) adaptive filter

with a VSS which may be derived using information about the gradient vector or information about

the near-end signal power. The first type of VSS algorithms rely on two properties of the gradient

vector to control the step size [12]-[16]: (1) the property that the norm of the gradient vector

will be large initially and converge to a small value, ideally zero, at steady state, (2) the property

that the gradient vector direction will generally show a coherent trend during initial convergence

in contrast to a random trend around the optimal value during DT and at steady state. From

this class of algorithms, the only one specifically designed for DT-robust AEC is the projection-

correlation VSS (PC-VSS) which has been proposed in [17]. PC-VSS is a VSS algorithm based on

the affine projection algorithm (AP) [18] where the adaptation rate is controlled by a measure of

the correlation between instantaneous and long-term averages of the so-called projection vectors,

i.e., gradient vectors in APA, which allows to achieve robustness and to distinguish between an

RIR change and DT. PC-VSS is chosen as one of the competing algorithms in this paper and hence

further explanation will be given in Section 4.1.

Recently, more effort has been spent to steer VSS algorithm design towards DT-robust AEC.

Some of these recent algorithms are based on the non-parametric VSS (NPVSS) algorithm proposed

in [19]. The NPVSS algorithm was developed in a system identification context, aiming to recover

the system noise (i.e., near-end noise) from the error signal of the adaptive filter when updated

with the NLMS algorithm. Inspired by this idea, several approaches have focused on applying the

NPVSS algorithm to real AEC applications where the microphone signal also contains near-end

speech. Consequently, different VSS-NLMS algorithms have been successfully developed for DT-

robust AEC, e.g., [20], [21]. Their convergence, however, is slow in practice and hence, an APA

version of the VSS-NLMS algorithm in [21] has been proposed in [22] to increase the convergence

speed. The resulting practical VSS affine projection algorithm (PVSS) [22] is chosen as one of the

competing algorithms in this paper and will be further explained also in Section 4.1.

The third approach is to search for the optimal AEC solution in a minimum-variance linear

estimation framework, rather than in a traditional least squares (LS) framework. The minimum-
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variance RIR estimate, which is also known as the best linear unbiased estimate (BLUE) [23],

depends on the near-end signal characteristics, which are in practice unknown and time-varying [4],

[24]. The algorithms in [4], [24] aim to whiten the near-end speech component in the microphone

signal by using adaptive decorrelation filters that are estimated concurrently with the RIR. In

order to achieve the BLUE, it is also necessary to add a scaled version of the near-end speech

excitation signal variance to the denominator of the stochastic gradient update equation. The use

of the prediction error method (PEM) approach [25] was proposed to jointly estimate the RIR

and an autoregressive (AR) model of the near-end speech. Among the PEM-based algorithms

proposed in [4], [24], the PEM-based adaptive filtering using row operations (PEM-AFROW) [26]

is particularly interesting because it efficiently uses the Levison-Durbin algorithm to estimate both

the near-end speech AR model coefficients and the near-end speech excitation signal variance. Thus

the algorithms in [4], [24] can be seen as belonging to a new family aiming at both reducing the

correlation between the near-end speech and loudspeaker signal, and minimizing the RIR estimation

variance.

1.2. The problem of correlation in acoustic feedback cancellation

In the AFC set-up the near-end speech will be continuously present so using a DTD is point-

less. However the main problem in AFC is the correlation that exists between the near-end speech

component in the microphone signal and the loudspeaker signal itself. This correlation problem,

which is caused by the closed loop, makes standard adaptive filtering algorithms to converge to

a biased solution [2], [27]. This means that the adaptive filter does not only predict and cancel

the feedback component in the microphone signal, but also part of the near-end speech. This gen-

erally results in a distorted feedback-compensated error signal. One approach to reduce the bias

in the feedback path model identification is to prefilter the loudspeaker and microphone signal

with the inverse near-end speech model, which is estimated jointly with the adaptive filter [2], [27]

using the PEM [25]. For a near-end speech signal, an AR model is commonly used [2] as this

yields a simple finite impulse response (FIR) prefilter. However, the AR model fails to remove

the speech periodicity, which causes the prefiltered loudspeaker signal still to be correlated with

the prefiltered near-end speech signal during voiced speech segments. More advanced models using

different cascaded near-end speech models have been proposed to remove the coloring and period-

icity in voiced as well as unvoiced speech segments. The constrained pole-zero linear prediction
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(CPZLP) model [28], the pitch prediction model [3], and the sinusoidal model [29] are examples

of alternative models used in recently proposed algorithms. However the overall algorithm com-

plexity typically increases significantly when using cascaded near-end speech models [30]. In [31], a

Transform-Domain PEM-AFROW (TD-PEM-AFROW) algorithm has been proposed to improve

the performance of an AFC without the need for cascaded and computationally intensive near-end

signal models. Significant improvement was achieved w.r.t. standard PEM-AFROW even using

low-order AR models. PEM-AFROW and TD-PEM-AFROW are chosen as competing algorithms

for AFC. TD-PEM-AFROW was also successfully applied to DT-robust AEC in [31] and it is,

therefore, also chosen as a competing algorithm for AEC.

1.3. Contributions and outline

In [32], we have proposed the use of the FDAF-PEM-AFROW framework to improve several

VSS and variable regularization (VR) algorithms. The improvement is basically due to two aspects,

(1) the short-term estimated correlation (STEC) between the near-end signal and the far-end signal

is heavily reduced when using FDAF-PEM-AFROW compared to stochastic gradient and (time-

domain) PEM-AFROW algorithms [32] and (2) FDAF itself may be seen to minimize a BLUE

criterion if a proper normalization factor is used during adaptation [33]. In this paper we propose

two modifications of the FDAF-PEM-AFROW algorithm for robust and smooth adaptation both

in AFC and in AEC in continuous DT and bursting DT without the need of a DTD. In particular,

we propose the WIener variable Step sizE (WISE) and the GRAdient Spectral variance Smoothing

(GRASS) to be performed in FDAF-PEM-AFROW leading to the WISE-GRASS-FDAF-PEM-

AFROW algorithm. The WISE modification is implemented as a single-channel noise reduction

Wiener filter applied to the (prefiltered) microphone signal. The Wiener filter gain [9] is used

as a VSS in the adaptive filter, rather than as a signal enhancement parameter. On the other

hand, the GRASS modification aims at reducing the variance in the noisy gradient estimates based

on time-recursive averaging of instantaneous gradients. The combination of the WISE and the

GRASS into the FDAF-PEM-AFROW algorithm consequently gathers the best characteristics we

are seeking for in an algorithm both for AEC and AFC, namely, decorrelation properties (PEM,

FDAF), minimum variance (GRASS, FDAF, PEM), variable step size (WISE), and computational

efficiency (FDAF).

The outline of the paper is as follows. In Section 2 we briefly present the PEM, we provide
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a simple algorithm description and explain the choice of the near-end speech model. In Section 3

the proposed algorithm is presented with in-depth explanations about the novel algorithm mod-

ifications. The motivation for including these modifications is also justified for DT-robust AEC

and AFC. In Section 4, computer simulation results are provided to verify the performance of the

proposed algorithm compared to three competing algorithms, in particular, the PC-VSS [17], the

PVSS [22] and the TD-PEM-AFROW [31] algorithm. A description of the competing algorithms is

provided together with a computational complexity analysis. The Matlab files implementing all the

algorithms and those generating the figures in Section 3-4 can be found online 1. Finally, Section

5 concludes the paper.

2. Prediction error method

The PEM-based AEC/AFC is shown in Figure 2.
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ya[t, ĥ(t)]
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Figure 2: AEC/AFC with prefiltering of the loudspeaker and microphone signal using the inverse [H−1(q, t)] of the

near-end speech model [H(q, t)].

1http : //homes.esat.kuleuven.be/ ∼ pepe
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It relies on a linear model for the near-end speech v(t), which in Figure 2 is specified as

v(t) = H(q, t)w(t) (1)

where H(q, t) contains the filter coefficients of the linear model and w(t) represents the excitation

signal which is assumed to be a white noise signal with time-dependent variance σ2
w(t) i.e.,

E{w(t)w(t− k)} = σ2
w(t)δ(k) (2)

where E{·} is the expected value operator. The near-end noise n(t) is also assumed to be a white

noise signal for the time being. As outlined before, a minimum-variance RIR model (in AEC) or

an unbiased feedback path model (in AFC) can be identified by first prefiltering the loudspeaker

signal u(t) and the microphone signal y(t) with the inverse near-end speech model H−1(q, t) before

feeding these signals to the adaptive filtering algorithm. As H−1(q, t) is obviously unknown, the

near-end speech model and the echo/feedback path model have to be jointly identified using the

PEM [25]. A common approach in PEM-based AEC/AFC is to model the near-end speech with

an AR model i.e.,

y(t) = x(t) + v(t) + n(t) (3)

= F (q, t)u(t) +
1

A(q, t)
w(t) + n(t) (4)

with F (q, t) defined previously and A(q, t) given as

A(q, t) = 1 + a1(t)q
−1 + ...+ anA

(t)q−nA (5)

where nA is the AR model order.

The PEM gives an estimate of the models F (q, t) and A(q, t) by minimization of the prediction

error criterion

ϑ̂(t) = argmin
ϑ(t)

t
∑

i=1

e2a [i,ϑ(t)] (6)

where the prediction error is defined as

ea [i,ϑ(t)] = A(q, t) [y(i)− F (q, t)u(i)] (7)

and the parameter vector ϑ(t) =
[

fT (t),aT (t)
]T

contains the parameters of the echo or feedback

path model and the near-end speech model i.e.,

f(t) = [f0(t), f1(t), ..., fnF
(t)]T , (8)

a(t) = [1, a1(t), ..., anA
(t)]T , (9)
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Algorithm 1.1. First part of the WISE-GRASS-FDAF-PEM-AFROW algorithm for AEC/AFC.

The first part shows the FDAF-PEM-AFROW, whereas the second part shows the WISE-GRASS.

1: Initialize: K, k = 0 and P̂Ua
= P̂Xa

= P̂Da
= F̂ = ∇ = 0M×1

2: [U(k) = F{u(k)}]

3: x̂(k) = F−1{U(k) · F̂(k − 1)} (Echo estimation)

4:
[

x(k) = F−1{U(k) · F} (True echo signal simulation)
]

5: [y(k) = x(k) + v(k) + n(k) (Microphone signal simulation)]

6: e(k) = [y(k)− x̂(k)]N+1:M (Error signal)

7: [u(k + 1) = K · e(k) (Loudspeaker signal simulation. Only for AFC)]

8: for k = 1, 2, ... do

9: [U(k) = F{u(k)}]

10: x̂(k) = F−1{U(k) · F̂(k − 1)} (Echo estimation)

11:
[

x(k) = F−1{U(k) · F} (True echo signal simulation)
]

12: [y(k) = x(k) + v(k) + n(k) (Microphone signal simulation)]

13: e(k) = [y(k)− x̂(k)]N+1:M

14: [u(k + 1) = K · e(k) (Loudspeaker signal simulation. Only for AFC)]

15: â(k) = AR{
[

eT (k) eT (k − 1)
]T

1:P
, nA} (Order nA AR coefficients estimation)

16: for m = 0, ...,M − 1 do (Decorrelation prefilter)

17: ua(m, k) = [u(kN + 1 +m), ..., u(kN + 1 +m− nA)]a(k)

18: ya(m, k) = [y(kN + 1 +m), ..., y(kN + 1 +m− nA)]a(k)

19: end for

20: Ua(k) = F{ua(k)}

21: x̂a(k) = F−1{Ua(k) · F̂(k − 1)}

22: ea(k) = [ya(k)− x̂a(k)]N+1:M [(Prediction) Error signal (7)]

23: Ea(k) = F{[0N eTa (k)]T }

(... Continue in Algorithm 1.2 ...)

Note that throughout the paper we assume a sufficient-order condition for the acoustic path model

(i.e., n
F̂
= nF ). An additional assumption is that the near-end speech v(t) is short-term stationary,

which implies that the near-end speech model A(q, t) does not need to be re-estimated at each

time instant t. That is, instead of identifying the near-end speech model recursively, it can also

be identified non-recursively on a batch of loudspeaker and microphone data. This is the idea

behind the PEM-AFROW algorithm which estimates A(q, t) in a block-based manner, using blocks

that approximates the stationary interval of speech. The PEM-AFROW algorithm was originally

developed in an AFC framework [26] and applied to a continuous-DT AEC scenario in [24]. It

performs only row operations on the loudspeaker data matrix, hence the name PEM-AFROW, and

both â(t) and σ̂2
w(t) are efficiently calculated using the Levinson-Durbin recursion. For a detailed

description of the original PEM-AFROW algorithm the reader is referred to [26].
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3. Proposed WISE-GRASS Modifications in FDAF-PEM-AFROW for AEC/AFC

The WISE-GRASS-FDAF-PEM-AFROW for AEC/AFC is given in Algorithm 1 (parts 1.1 and

1.2). The FDAF implementation corresponds to the overlap-save FDAF with gradient constraint

and power normalization [34], where u(k), v(k) and n(k) are length-M vectors, with M = 2N and

N = nF +1, satisfying the overlap-save condition in FDAF, e.g., u(k) = [u(kN −N +1), ...u(kN +

N)]T , where k = 0, 1, ....L−N
N

is the block-time index, L is the total length of the signals, and finally,

P is the block length used to estimate A(q, t) with N ≤ P ≤ 2N . The upper asterisk (·)∗ denotes

complex conjugation and [·]a:b represents a range of samples within a vector. The subscript m in

ωm, e.g., Ea(ωm, k), refers to a signal in the m-th frequency bin of a block, m = 0, ...,M−1. On the

other hand, a capital bold-face variable, e.g., Ea(k) denotes an M -dimensional vector of frequency

components. The subscript a, e.g., Ea(ωm, k), denotes a signal output from the decorrelating

prefilter, as shown in Figure 2. Lines 2, 4, 5, 7 and 9, 11, 12, 14 correspond to the data generation

and are bracketed to enphasyzed that these are not truly part of the algorithm. The specific WISE-

GRASS modifications within the FDAF-PEM-AFROW algorithm are shown in Algorithm 1.2. The

proposed WISE-GRASS-FDAF-PEM-AFROW weight update equation is given by

φ(k) =
[

F−1{µ(k) ·W(k) ·Θ(k)}
]

1:N
(10)

F̂(k) = F̂(k − 1) + µmaxF{[φT (k) 0N ]T } (11)

where F{·} and F−1{·} denote the M -point discrete Fourier transform (DFT) and inverse DFT

(IDFT) respectively, µ(k) corresponds to the power normalization step typically included in an

FDAF update, µmax sets the maximum allowed value of the step size, and W(k) together with

Θ(k) form the WISE-GRASS modifications which will be explained in detail in the following

sections.

3.1. WIener variable Step sizE

The WIener variable Step sizE (WISE) modification into the FDAF-PEM-AFROW algorithm

introduces a frequency-domain variable step size. Basically, the goal is to slow down the adaptation

in frequency bins where the Echo-to-Near-End-Signal Ratio (ENR) is low and increase it in those

frequency bins where the ENR is high. If we recall that the near-end signal consists of the near-end

speech and near-end noise, then we can calculate ENR(t) =
σ2
x(t)

σ2
v(t) + σ2

n(t)
, where σ2

x(t), σ
2
v(t) and

10



Algorithm 1.2. Second part of the WISE-GRASS-FDAF-PEM-AFROW algorithm for AEC/AFC.

The second part explains the WISE-GRASS.

24: for m = 0, ...,M − 1 do

25: P̂Ua
(ωm, k) = λ0P̂Ua

(ωm, k − 1) + (1− λ0)|Ua(ωm, k)|2 (Recursive power estimation)

26: µ(ωm, k) =
[

P̂Ua
(ωm, k) + δ

]

−1
(Power normalization)

27: θ(ωm, k) = Ea(ωm, k)Ua
∗(ωm, k) (Gradient estimation)

28: ∇(ωm, k) = λ3∇(ωm, k − 1) + (1− λ3)|θ(ωm, k)|2

29: α(ωm, k) = ∠θ(ωm, k) (Phase estimation)

30: Θ(ωm, k) =
√

∇(ωm, k)e[jα(ωm,k)] (GRASS)

31: P̂Xa
(ωm, k) = λ1P̂Xa

(ωm, k − 1) + (1− λ1)|X̂a(ωm, k)|2

32: P̂Da
(ωm, k) = λ2P̂Da

(ωm, k − 1) + (1− λ2)|Ea(ωm, k)|2

33: W (ωm, k) =

√

P̂Xa
(ωm, k)

√

P̂Xa
(ωm, k) + P̂Da

(ωm, k)
(WISE)

34: end for

35: φ(k) =
[

F−1{µ(k) ·W(k) ·Θ(k)}
]

1:N

36: F̂(k) = F̂(k − 1) + µmaxF{[φT (k) 0N ]T }

37: end for

σ2
n(t) are the variance of the echo, the near-end speech and the near-end noise respectively. In the

near-end-signal-free case, i.e. v(t) = n(t) = 0, the microphone signal consists only of the echo so

one could apply the maximum step size in each frequency bin. Once a near-end signal is present

in the microphone signal, and especially so if it is colored and non-stationary, the step sizes in the

different frequency bins should be reduced accordingly.

The concept for deriving the WISE is that of applying a single-channel frequency-domain noise

reduction Wiener filter to the microphone signal y(t). This may also be seen as an echo-enhancement

filter, however, we do not explicitly use the output of the filter itself, but we use the Wiener filter

gain as a variable step size in the adaptive filer. The step size in each frequency bin is then varied

by the gain of the Wiener filter at the frequency bin.

We assume that the signals are wide-sense stationary, that we have access to the full record

of samples and that disjoint frequency bins can be considered uncorrelated [35]. So, without loss

of generality, we may consider a single frequency bin and work with the m-dependency. The

frequency-domain microphone signal (3) is

Y (ωm, k) = X(ωm, k) + V (ωm, k) +N(ωm, k)

= X(ωm, k) +D(ωm, k)

where X(ωm, k) is the desired signal and D(ωm, k) is the noise signal which is to be removed from
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the microphone signal. An estimate of the desired signal may be obtained as

X̂(ωm, k) = W0(ωm, k)Y (ωm, k) (12)

which gives the (theoretical) frequency-domain Wiener filter gain as

W0(ωm, k) =
PXY (ωm, k)

PY (ωm, k)
(13)

where PY (ωm, k) = E {Y (ωm, k)Y ∗(ωm, k)} and PXY = E {X(ωm, k)Y ∗(ωm, k)} are the power

spectral density (PSD) of Y (ωm, k), and the cross-power spectral density (CPSD) of X(ωm, k)

and Y (ωm, k) respectively. A common assumption in single-channel noise reduction is that the

desired signal X(ωm, k) is uncorrelated with the noise component D(ωm, k), so that the numerator

of the Wiener filter results in PXY (ωm, k) = PX(ωm, k) and the denominator becomes PY (ωm, k) =

PX(ωm, k) + PD(ωm, k) which gives the (theoretical) frequency-domain Wiener filter gain as

W0(ωm, k) =
PX(ωm, k)

PX(ωm, k) + PD(ωm, k)
(14)

In order to obtain (14), we have neglected the terms corresponding to the expected value of the

cross-product of X(ωm, k) and D(ωm, k) assuming they are uncorrelated. Usually, the near-end

speech and the far-end speech are indeed statistically uncorrelated, which however does not imply

that the STEC between these two signals is zero. The (rather strong) assumption, of the near-end

speech being uncorrelated with the loudspeaker signal, is also adopted in most AEC applications.

In AFC applications, on the other hand, this assumption is clearly violated as explained in Section

1.2. In [32], we have shown that the STEC between the near-end speech and the loudspeaker signal

may be very large. Besides, the practical computation of (14) is generally based on time-recursive

estimates of the PSD using short-time Fourier transform (STFT) of X(ωm, k) and D(ωm, k). All

this means that, in real AEC and AFC applications, the practical computation of (14) would clearly

lead to misleading gain values.

In [32], however, we have shown that the STEC between the far-end and near-end speech can

be significantly reduced by using the FDAF-PEM-AFROW framework. Consequently, we will

consider deriving the Wiener filter gains (14) using the filtered signals (see Figure 2) so as to apply

them in both real AEC and AFC applications. Then the desired signal is the filtered echo signal

xa(t) and the filtered near-end signals, grouped in da(t) = va(t) + na(t), are considered as the

noise component in the microphone signal ya(t). The (theoretical) frequency-domain Wiener filter

12



using whitened signals will moreover result in a similar filter as the theoretical one in (14), since

PXaYa(ωm, k) = E{A(ωm, k)X(ωm, k)Y ∗(ωm, k)A∗(ωm, k)} = |A(ωm, k)|2 PXY , and PYa(ωm, k) =

E{A(ωm, k)Y (ωm, k)Y ∗(ωm, k)A∗(ωm, k)} = |A(ωm, k)|2 PY , so that

W0(ωm, k) =
PXaYa(ωm, k)

PYa(ωm, k)
=

PXa(ωm, k)

PXa(ωm, k) + PDa(ωm, k)
. (15)

We will compute time-recursive estimates of the PSDs instead and use available estimates of the

desired signal, i.e., X̂a(ωm, k), and of the noise component in the microphone signal, i.e., Ea(ωm, k).

The Wiener filter gains are thus efficiently estimated as follows

m = 0, ...,M − 1

P̂Xa(ωm, k) = λ1P̂Xa(ωm, k − 1) + (1− λ1)|X̂a(ωm, k)|2 (16)

P̂Da(ωm, k) = λ2P̂Da(ωm, k − 1) + (1− λ2)|Ea(ωm, k)|2 (17)

Finally, using (16)-(17), we can write

W (ωm, k) =
P̂Xa(ωm, k)

P̂Xa(ωm, k) + P̂Da(ωm, k)
(18)

where P̂Xa(ωm, k) is an estimate of the PSD of Xa(ωm, k) which is calculated in (16) using the

output of the adaptive filter X̂a(ωm, k) = Ua(ωm, k)F̂ (ωm, k − 1), and where P̂Da(ωm, k) is an

estimate of the PSD of Da(ωm, k) which is calculated in (17) using the prediction-error signal

Ea(ωm, k).

An interpretation of the Wiener filter gain W (ωm, k) in terms of the ˆENR(ωm, k) can be given

by writing (18) as

W (ωm, k) =
ˆENR(ωm, k)

ˆENR(ωm, k) + 1
(19)

where ˆENR(ωm, k) = P̂Xa(ωm, k)/P̂Da(ωm, k) = P̂Xa(ωm, k)/
[

P̂Va(ωm, k) + P̂Na(ωm, k)
]

. The

Wiener filter gain is a real positive number in the range 0 ≤ W (ωm, k) ≤ 1 which is used as a vari-

able step size in (10). A maximum value for the step size is also adopted, so that the effective step

size is µmaxW (ωm, k). Let us now consider the two limiting cases of (1) an ’echo-only’ microphone

signal, i.e., ˆENR(ωm, k) = ∞ and (2) a ’near-end-only’ microphone signal, i.e., ˆENR(ωm, k) = 0.

In the first case the Wiener filter gain W (ωm, k) = 1, so the filter would apply the maximum step

size in the m-th frequency bin. In the second case, the Wiener filter gain W (ωm, k) = 0 so the

adaptation is suspended in the m-th frequency bin. In between these two extreme cases, the Wiener

filter gain reduces the step size in proportion to an estimate of the ENR in each frequency bin.
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3.2. GRAdient Spectral variance Smoothing

The GRAdient Spectral variance Smoothing (GRASS) is included to reduce the variance in the

gradient estimation, in particular, the effect on the gradient estimation of sudden high-amplitude

near-end signal samples. Although the step size control has been considered in Section 3.1, it may

not be sufficiently fast to react in certain occasions, e.g., in DT bursts. In FDAF(-PEM-AFROW),

an estimate of the gradient θ(ωm, k) = Ea(ωm, k)Ua
∗(ωm, k) is calculated for every block of samples.

This noisy estimate may be separated into two components as

θ(ωm, k) = θ0(ωm, k) + θDa(ωm, k) (20)

where θ0(ωm, k) =
[

X(ωm, k)− X̂(ωm, k)
]

Ua
∗(ωm, k) is the true gradient and

θDa(ωm, k) = Da(ωm, k)Ua
∗(ωm, k) is the gradient noise.

The concept for deriving the GRASS is that of applying averaged periodograms, which are

typically used for estimating the PSD of a signal [36]. The periodogram is defined here as the

squared magnitude of the gradient. An estimate of the true gradient PSD, at a given frequency

ωm, is obtained as

P̂
θ̂0
(ωm, k) =

1

K

K−1
∑

j=0

|θ(ωm, k − j)|2. (21)

It is shown in [36] that the variance of (21) is

var
{

P̂
θ̂0
(ωm, k)

}

≈
1

K
|θ0(ωm, k)|2 (22)

so that it is proportional to the square of the true gradient’s PSD divided by K and hence, as

K → ∞, (22) approaches zero. This concept would be sufficiently justified if the RIR does not

change and the algorithm has converged to an optimum, therefore θ0(ωm, k) = 0 by definition. In

practice, of course, the true gradient θ0(ωm, k) is time-varying. Therefore the concept of averaging

starts to lose its sense. However we will assume that the true gradient varies slowly, therefore, a

low-pass filter (LPF) with a low cut-off frequency would be more beneficial than (21).

The realization of the GRASS is based on a time-recursive averaging of the gradient estimate

(23)-(24). This is another way to obtain a first order infinite impulse response (IIR) filtering where

λ3 is the pole of the low-pass IIR filter, and it is given as

θ(ωm, k) = Ea(ωm, k)Ua
∗(ωm, k) (23)

∇(ωm, k) = λ3∇(ωm, k − 1) + (1− λ3)|θ(ωm, k)|2 (24)
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In fact, a LPF with a low cut-off frequency, will effectively filter out the gradient noise and reduce

the variance in the gradient estimation. Note that (21), is a special case of a low-pass FIR filter,

i.e., P̂
θ̂0
(ωm, k) =

K−1
∑

j=0
bk|θ(ωm, k − j)|2 with weights bj = 1/K, ∀j.

Finally, the phase α(ωm, k), that is obtained from the gradient estimate in (25), is applied in

(26) to form the GRASS, i.e., Θ(ωm, k), as

α(ωm, k) = ∠θ(ωm, k) (25)

Θ(ωm, k) =
√

∇(ωm, k)e[jα(ωm,k)] (26)

A practical simulation of the GRASS form = 15, i.e., the 15-th frequency bin, with k = 1, ..., 200

and λ3 = 0.95 is shown in Figure 3. For this simulation we have used two speech signals, u(t) and

v(t), and a noise signal n(t) sampled at 8 kHz. The AR coefficients of the near-end signal model

are estimated using d(t) = v(t) + n(t) and nA = 55. The signals, u(t) and d(t) are then filtered,

as in Algorithm 1.1 lines 16 − 20, before feeding them to the overlap-save-type recursion. The

gradient-constraint-type of calculations are performed, as in Algorithm 1.2 lines 34− 35, to obtain

both the noisy gradient and the GRASS gradient. We have assumed that the true gradient has

converged to an optimum, and thus it is, by definition, equal to zero. In Figure 3a a time-domain

representation is shown where the upper and lower figures correspond to the real part of θ(ωm, k)

and Θ(ωm, k), respectively. Besides, in Figure 3b a complex representation is shown where the

circles (◦) represent the complex value of θ(ωm, k) and the crosses (×) represent the complex value

of Θ(ωm, k). In both representations, the variance in the estimation is shown to be reduced by 7

dB, the mean value is closer to zero, and high-amplitude samples are clearly smoothed.

4. Evaluation

Simulations are performed using speech signals sampled at 8 kHz. Two types of near-end noise

n(t) are used in the simulations namely, a white Gaussian noise (WGN) and a speech babble noise

which is one of the most challenging noise types [37] in signal enhancement applications. We define

two measures which determine the relative signal levels in the simulations: the Signal-to-Echo Ratio

(SER)= 10 log10
σ2
x

σ2
v

and the Signal-to-Noise Ratio (SNR)= 10 log10
σ2
x

σ2
n

, where σ2
x, σ

2
v and σ2

n are

the variances of the echo, the near-end speech and near-end noise.

In the AEC simulations, the far-end (or loudspeaker) signal u(t) is a female speech signal and

the near-end speech is a male speech signal. The microphone signal consists of three concatenated
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Figure 3: Instantaneous gradient and GRASS estimates with m = 15 and k = 1, ..., 200. (a) Time representation:

Upper and lower figures correspond to the real part of θ(ωm, k) and Θ(ωm, k), respectively. The solid line (−)

represents the gradient estimate and the dotted line (· · · ) represents its mean value. (b) Complex representation: the

circles (◦) represent the complex value of θ(ωm, k) and the crosses (×) represent the complex value of Θ(ωm, k).

segments of speech: the first and third 12 s segment correspond to a single-talk situation, i.e., y(t) =

x(t)+n(t), while the second 13 s segment corresponds to a DT situation, i.e, y(t) = x(t)+n(t)+v(t).

The AR model order in the AEC is nA = 12, following the indications given in [32], and the APA

order is Q = 4. There are two RIRs used in the AEC simulations: an 80-taps impulse response f1

measured from a real mobile phone, and an artificial RIR f2 = f1 + n̄ · f1 simulating an abrupt RIR

change where n̄ is one realization of a Gaussian random process. In the AEC simulations, the WGN

and speech babble noise types are set at different SNRs: 30 and 20 dB respectively. Several SER

values are used for the simulations: from mild (15 dB) to highly adverse (−5 dB) DT conditions.

In the AFC simulations, the near-end speech is the same female speech signal as in the AEC

simulations. Two different AR model orders are chosen as in [4], [31]: nA = 12 which is common

in speech coding for formant prediction and nA = 55 which is high enough to capture all near-end

signal dynamics. The forward path gain K(t) is set 3 dB below the maxinum stable gain (MSG)

without feedback cancellation i.e., see (28) in Section 4.2. A measured 100-tap acoustic impulse

response was obtained from a real hearing aid and used to simulate the feedback path.

In both AEC and AFC, the window length P was chosen to be 20 ms (160 samples), which

corresponds to the average time interval in which speech is considered stationary.
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Algorithm Computation Total

PC-VSS 2NQ+ 7Q2 + 4N + 12 1084

PVSS 2NQ+ 7Q2 + 3Q+ 6 +Q+ 4Q+ 2 792

PEM-AFROW

(

8 +
4P + 2nA + 1

P

)

N +
1

P
n2
A +

(

4 +
4P + 2

P

)

nA +
P − 1

P
+ 10 980

TD-PEM-AFROW

(

8 +
4P + 2nA + 1

P

)

N +
1

P
n2
A +

(

4 +
4P + 2

P

)

nA +
P − 1

P

+10 + 6N log2 N 4015

WISE-GRASS-FDAF-PEM-AFROW
18M log2 M + 25M + 3N + n2

A + 4MnA + 4 +M

N
416

Table 1: Complexity comparison by the number of FLOPS per recursion. One FFT/IFFT is 3M log2 M and the

phase calculation is an M (= arctan(imag/real)) complexity operation.

4.1. Competing algorithms and tuning parameters

AEC simulations are performed comparing four algorithms namely: the Projection Correlation

VSS (PC-VSS) algorithm [17], the Practical VSS affine projection algorithm (PVSS) [22], the

Transform-Domain PEM-AFROW (TD-PEM-AFROW) algorithm [31] and the proposed WISE-

GRASS-FDAF-PEM-AFROW algorithm. PC-VSS belongs to the gradient-based VSS algorithms

and it is claimed to feature the appealing characteristics of being able to distinguish between RIR

changes and DT. PC-VSS is the result of improving the algorithm given in [12] to be specifically

suited for AEC in DT situations. In PC-VSS, the adaptation rate is controlled by a measure of the

correlation between instantaneous and long-term averages of the so-called projection vectors, i.e.,

gradient vectors in APA. It appears that PC-VSS outperforms the algorithms given in [12] and [38]

in DT situations. Moreover, it does not rely on any signal or system model so it is easy to control in

practice. The second competing algorithm is the practical VSS affine projection algorithm (PVSS)

[22] which stems from the so-called NPVSS proposed in [19]. PVSS takes into account the near-

end signal power variations, it is effectively used in DT situations and, it is claimed to be easy to

control in practice. PVSS has been shown to outperform the algorithms proposed in [21], [39], and

[40]. The third competing algorithms, TDPEM-AFROW, has been investigated in terms of DT

robustness in AEC and general improvement in AFC. It has been shown that the combination of a

prewhitening of the input and microphone signal together with transform-domain filter adaptation,

successfully leads to an algorithm that solves the problem of decorrelation in a very efficient manner.

TD-PEM-AFROW is very robust in DT situations and boosts the performance of the simplest AFC

(i.e., using only an AR model for the near-end signal).
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All the algorithms presented in this paper can be downloaded 2 along with the scripts generating

every figure in this section. The tuning parameters in both PVSS and PC-VSS are chosen according

to the specifications given in [22] and [17] respectively. The parameters of TD-PEM-AFROW are

chosen to have similar initial convergence curves as PVSS and PC-VSS. In the proposed WISE-

GRASS-FDAF-PEM-AFROW algorithm, the following parameters are chosen to have similar initial

convergence properties as the other algorithms: µmax = 0.03, δ = 2.5e−6 , λ0 = 0.99, λ1 = 0.1,

λ2 = 0.9. The different values of λ1 and λ2 in the time-recursive averaging for power estimation,

basically aim for having a longer averaging window for the near-end signal and a shorter averaging

window for the echo signal. Note that for higher robustness to near-end signals a higher value of

λ2 may be chosen; however, convergence would be slower.

AFC simulations are, on the other hand, performed comparing the original PEM-AFROW [26],

TD-PEM-AFROW [31] and the proposed WISE-GRASS-FDAF-PEM-AFROW. The parameters

are tuned to have similar initial performance curves. In all three algorithms the following common

values are applied: the forward path G(q, t) consist of a delay of 80 samples and a fixed gain

K(t) = K, ∀t, resulting in a 3 dB MSG without AFC, and a window of P = 160 samples is used

for estimating the AR model. For WISE-GRASS-FDAF-PEM-AFROW, λ0 = λ2 = 0.99, λ1 = 0.1,

and µmax = 0.025.

The computational complexity of the different algorithms used in the AEC simulations is given

in Table 1 using N = 80 and APA order Q = 4. The computational complexity of WISE-GRASS-

FDAF-PEM-AFROW is the lowest and that of TD-PEM-AFROWis the highest. The drawback of

most of the FDAF-based algorithms is, however, their inherent delay of N samples. In the AFC

application, this delay, or part of it, may be ‘absorbed’ by the forward path.

4.2. Performance measures

The performance measure for AEC simulations is the misadjustment (MSD). The MSD between

the estimated RIR f̂(t) and the true RIR f1 or f2 represents the accuracy of the estimation and is

defined as,

MSD(t) = 10 log10

∥

∥

∥
f̂(t)− f1,2

∥

∥

∥

2

2

‖f1,2‖
2
2

(27)

2http : //homes.esat.kuleuven.be/ ∼ pepe
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where f1,2 is either f1 or f2. The performance measure for AFC is the maximum stable gain (MSG).

The achievable amplification before instability occurs is measured by the MSG, which is derived

from the Nyquist stability criterion [27] and it is defined as

MSG(t) = −20 log10[max
ω∈φ

|J(ω, t)[F (ω)− F̂ (ω, t)]|] (28)

where φ denotes the set of frequencies at which the loop phase is a multiple of 2π (i.e., the feedback

signal x(t) is in phase with the near-end speech v(t)) and J(ω, t) denotes the forward path processing

before the amplifier, i.e., G(ω, t) = J(ω, t)K(t).

4.3. Simulation results for DT-robust AEC

In the first set of simulations the noise n(t) is a WGN at 30 dB SNR. PVSS and PC-VSS are

first tuned, as [22] and [17] respectively suggested, to obtain the best performance both in terms

of convergence rate and final MSD. TD-PEM-AFROW and WISE-GRASS-FDAF-PEM-AFROW

are tuned to have similar initial convergence rate as PVSS and PC-VSS. This set of parameters

remains unchanged throughout the simulations. All figures in this section consist of an upper part

showing the microphone signals and a bottom part showing the AEC performance. The upper part

shows the echo (dark blue) and near-end (light green) signals, and the bottom part shows the MSD

on the same time scale. When a change of RIR occurs, the first part of the echo signal (generated

by f1) will be in a lighter color than the second part (generated by f2). Plotting the time domain

representation of these signals allows us to distinguish between the amplitude and start/end points

of both the echo and near-end signals.

4.3.1. Results for bursting DT

Figures 4 and 5 show the AEC performance when a bursting DT (from 12.5 s during 12.5 s)

occurs at two different SERs (15 dB and 5 dB) immersed in WGN at 30 dB SNR (Figure 4) and

immersed in speech babble noise at 20 dB SNR (Figure 5). More specifically, in Figure 4a and 4b

a DT burst is shown at 15 and 5 dB SER respectively both immersed in WGN at 30 dB SNR. It

can be seen that in WGN, PC-VSS and PVSS achieve 5 dB improvement in final MSD compared

to the other two algorithms during single talk, i.e., −45 to −40 dB respectively. However, during

DT, WISE-GRASS-FDAF-PEM-AFROW outperforms the other three algorithms: in Figure 4a by

5 dB in the case of PVSS and TD-PEM-AFROW, and by around 10 dB in the PC-VSS case; in
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Figure 4: AEC performance in WGN at 30 dB SNR. Bursting DT occurs at different SER: (a) DT at 15 dB SER.

(b) DT at 5 dB SER.

Figure 4b these differences are increased since WISE-GRASS-FDAF-PEM-AFROW outperforms

TD-PEM-AFROW by 8− 10 dB, PVSS by 5− 8 dB and PC-VSS by 10− 20 dB.

Figure 5a and 5b show two scenarios where the near-end noise is speech babble noise at 20

dB SNR and two DT bursts at 15 and 5 dB SER occur after 12.5 s In these adverse scenarios,

the improved performance of WISE-GRASS-FDAF-PEM-AFROW compared to the other three

algorithms is demonstrated. The convergence of PVSS is seriously damaged in this scenario. As

for the PC-VSS convergence, although it is the same as with WGN during the first second, the

MSD during single-talk is much higher than with WGN. On the other hand, TD-PEM-AFROW

and WISE-GRASS-FDAF-PEM-AFROW obtain a smoother and faster convergence. During DT,

the MSD of WISE-GRASS-FDAF-PEM-AFROW remains at −40 dB, insensitive to DT. The other

three algorithms perform as in the WGN case during DT, which evidences the great difference w.r.t.

the WISE-GRASS-FDAF-PEM-AFROW performance. These differences are clearly visible in the

case of DT at 5 dB SER. After DT, WISE-GRASS-FDAF-PEM-AFROW restores the low MSD

value (−40 dB) although it is outperformed by TD-PEM-AFROW followed by PVSS. PC-VSS

seems to have serious problems in speech babble noise since its MSD is almost 10 dB larger than

for the other algorithms.

4.3.2. Results of RIR change during bursting DT

Figure 6 shows a scenario with an abrupt change of the RIR when the near-end noise is speech

babble noise at 20 dB SNR. More specifically, in Figure 6a the AEC performance is shown where
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Figure 5: AEC performance in speech babble noise at 20 dB SNR. Bursting DT occurs at different SER: (a) DT at

15 dB SER. (b) DT at 5 dB SER.

the change of RIR occurs during DT at 15 dB SER and in Figure 6b the SER is 5 dB. The poorest

performance of PC-VSS becomes apparent now since the DT contaminates its convergence and

hence the MSD is still 15 dB. On the other hand, PVSS and TD-PEM-AFROW, although quite

affected by DT, still show a descending trend in their MSD curve which implies that they are

converging during DT. In both Figure 6a and 6b, it is observed that the performance of WISE-

GRASS-FDAF-PEM-AFROW is surprisingly almost constant. This fact highlights the robustness

of WISE-GRASS-FDAF-PEM-AFROW in an adverse scenario. In fact, its performance is barely

degraded which demonstrates the robustness of WISE-GRASS-FDAF-PEM-AFROW as compared

to the other three algorithms.

4.3.3. WISE evolution

Figure 7 shows the WISE evolution, i.e., W (ωm, k) for m = 0, ..., 79 and k = 1, ..., L−N
N

, in two

different scenarios: (1) in Figure 7a speech babble noise at 40 dB SNR and bursting DT at 5 dB

SER is used, and (2) in Figure 7b both the loudspeaker signal and the near-end noise are WGN

at 20 dB SNR, and an abrupt change of the RIR (f2 = 0.5f1) occurs at the 17.5 s mark. Figure

7a displays the (dense) echo signal spectrogram and the near-end signal spectrogram which clearly

shows the near-end activity between 12.5 and 25 s. In the bottom figure, the WISE evolution shows

a drastic step size reduction during DT. At t = 20 s where the PSD of the near-end signal is low in

every frequency bin, the step size is increased in those frequency bins where the SER and SNR is

appropriate: step sizes in frequency bins 0− 10 are not increased because the echo PSD is also low
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Figure 6: AEC performance in terms of MSD(t) in speech babble noise at 20 dB SNR and an abrupt change of RIR

after 17 s occurs during bursting DT (a) DT at 15 dB SER. (b) DT at 5 dB SER.

in the frequency bins and, thus, the Wiener filter gain should be low. The step sizes in frequency

bins from 75 and on, are also smaller due to the fact that the echo PSD is lower. In Figure 7b it

is shown how the step size follows the echo spectrum ‘weighted’ by the near-end signal PSD.

4.3.4. Results in highly adverse scenarios

The performance of the algorithms is challenged in Figure 8 where two highly adverse scenarios

are proposed: In this DT situation WISE-GRASS-FDAF-PEM-AFROW significantly outperforms

PC-VSS which appears to be strongly affected by DT, and moreover shows a significant improve-

ment w.r.t. PVSS which itself outperforms TD-PEM-AFROW. In Figure 8a a change of the RIR

occurs which decreases the PVSS performance, while WISE-GRASS-FDAF-PEM-AFROW perfor-

mance is only decreased w.r.t. Figure 6b. WISE-GRASS-FDAF-PEM-AFROW shows a robust

convergence after the RIR change even in a highly adverse DT level obtaining more than 8 dB

improvement compared to PVSS after the RIR change. On the other hand Figure 8b shows an-

other highly adverse situation where a continuous DT occurs. The simulation is done using four

equal-length segments of speech babble noise at four different SERs (20, 10, 5, 30 dB). It shows that,

in these noise levels, the convergence of PVSS decreases considerably and PC-VSS diverges as the

SER increases. After convergence, WISE-GRASS-FDAF-PEM-AFROW shows the lowest MSD,

followed by that of TD-PEM-AFROW (3− 5 dB above) and then PVSS (6− 7 dB above). Finally,

Figure 8b shows that, after a change of the RIR in continuous DT, the only two algorithms that

are able to converge are TD-PEM-AFROW and WISE-GRASS-FDAF-PEM-AFROW.
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(a) (b)

Figure 7: WISE evolution in different scenarios together with the spectrogram of the echo signal and the near-end

signals: (a) speech babble noise at 40 dB SNR and bursting DT at 5 dB SER. (b) Both the the near-end noise and

the loudspeaker signal are WGN at 20 dB SNR and abrupt change of RIR (f2 = 1/2f1) occurs at the 17.5 s mark.

4.3.5. Results of WISE-only, GRASS-only and WISE-GRASS in FDAF-PEM-AFROW

One figure that can shed some light on why WISE-GRASS-FDAF-PEM-AFROW is so robust

and yet performs so well is depicted in Figure 9. A simulation of FDAF-PEM-AFROW using WISE-

only, GRASS-only and the proposed combination WISE-GRASS is shown in two adverse scenarios:

speech babble noise at 10 dB and 20 dB SNR both with DT at −5 dB SER and with an abrupt

change of the RIR in Figure 9a and 9b respectively. In FDAF and stochastic gradient algorithms

in general, the excess MSE depends on the step size and noise variance [1], [41]. GRASS-only

FDAF-PEM-AFROW, although robust and smooth, has a fixed step size and thus, the final MSD

is much higher. However, it is shown how WISE-GRASS-FDAF-PEM-AFROW always obtains the

best result compared to WISE-only and GRASS-only. It is interesting to note how WISE-GRASS-

FDAF-PEM-AFROW takes over GRASS-only FDAF-PEM-AFROW to WISE-only FDAF-PEM-

AFROW at around 3 s in Figure 9a and around 5 s in Figure 9b.

4.4. Simulation results for AFC

Three AFC scenarios are shown to compare the performance of PEM-AFROW, TD-PEM-

AFROW and WISE-GRASS-FDAF-PEM-AFROW. The performance is given in terms of the MSG.

The value of W (ωm, k) = 1 for k = 1, ..., 20 because at start-up the estimated P̂Xa(ωm, k), and

therefore W (ωm, k), are very low. WISE-GRASS-FDAF-PEM-AFROW needs some initial iter-
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Figure 8: AEC performance comparison in highly adverse scenarios: (a) speech babble noise at 20 dB SNR and

a change of the RIR after 17 s during bursting DT at −5 dB SER. (b) speech babble noise (continuous DT) at

20, 10, 5, 30 dB SNR and change of RIR after 17 s.

ations until a significant feedback signal PSD is estimated. In Figure 10 the circles represent

points of PEM-AFROW, stars represent points of TD-PEM-AFROW and squares represent points

of WISE-GRASS-FDAF-PEM-AFROW. More specifically, in Figure 10a the MSG is shown when

using a near-end signal model of nA = 55 and WGN at 40 dB SNR. It can be seen that the PEM-

AFROW achieves 5 − 7.5 dB MSG improvement and TD-PEM-AFROW achieves 3 − 5 dB MSG

improvement w.r.t to PEM-AFROW. On the other hand, WISE-GRASS-FDAF-PEM-AFROW

outperforms the other two algorithms by 8 − 10 and 5 − 3 dB respectively. The superior per-

formance of WISE-GRASS-FDAF-PEM-AFROW appears more clearly in the case of a near-end

signal model of nA = 12 and WGN at 40 dB SNR shown in Figure 10b. It can be seen that PEM-

AFROW goes into the instability region and that TD-PEM-AFROW outperforms PEM-AFROW

by 6 − 7 dB when using low nA orders. WISE-GRASS-FDAF-PEM-AFROW outperforms by far

the other two algorithms, e.g., 10− 15-dB improvement compared to PEM-AFROW. Moreover, it

obtains almost the same performance as in the nA = 55 case. In Figure 10c, a nA = 55 AR model

order is used but, in this case, a speech babble noise at 20 dB SNR is chosen. In this case both

PEM-AFROW and TD-PEM-AFROW remain at around 5 dB above the instability region. On

the other hand, WISE-GRASS-FDAF-PEM-AFROW maintains its superior performance of 6 − 9

dB w.r.t. the other two algorithms. In this last scenario, Figure 10d shows the WISE evolution

in terms of its instantaneous values (in each frequency bin) as time evolves. It is clearly seen that
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Figure 9: Comparison of WISE-only, GRASS-only and the combination of the two WISE-GRASS. Bursting DT at

−5 dB SER and RIR change with continuous speech babble noise at various SNRs: (a) speech babble noise at 10 dB

SNR. (b) speech babble noise at 20 dB SNR.

some frequency bins usually have a smaller step size (e.g., frequency bin 5− 35 and 85− 100) than

others (e.g., 35 − 60 and from 70 − 85). It is also interesting to notice that, during the first 7 s,

frequency bins 5− 30 have smaller step sizes than after 7 s.

5. Conclusion

In this paper, we have derived a practical yet highly robust algorithm based on the frequency

domain adaptive filter prediction error method using row operations (FDAF-PEM-AFROW) for

DT-robust AEC and AFC. The proposed algorithm contains two modifications, namely (a) the

WIener variable Step sizE (WISE) and (b) the GRAdient Spectral variance Smoothing (GRASS)

to be performed in FDAF-PEM-AFROW, leading to the WISE-GRASS-FDAF-PEM-AFROW al-

gorithm. The WISE is implemented as a single-channel noise reduction Wiener filter applied to the

(prefiltered) microphone signal, where the Wiener filter gain is used as a VSS in the adaptive filter.

On the other hand, the GRASS aims at reducing the variance in the noisy gradient estimates based

on time-recursive averaging of gradient estimates. WISE-GRASS-FDAF-PEM-AFROW obtains

improved robustness and smooth adaptation in highly adverse scenarios such as in bursting DT at

high levels, and with a change of the acoustic path during continuous DT. Simulations show that

WISE-GRASS-FDAF-PEM-AFROW outperforms other competing algorithms in adverse scenar-

ios both in AEC and AFC applications when the near-end signals (i.e., speech and/or background
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Figure 10: AFC performance in terms of MSG(t) of the three algorithms: PEM-AFROW, TD-PEM-AFROW and

WISE-GRASS-FDAF-PEM-AFROW: (a) nA = 55 and WGN at 40 dB SNR. (b) nA = 12 and WGN at 40 dB SNR.

(c) nA = 55 and speech babble noise at 20 dB SNR. (d) WISE evolution in the same scenario as (c).

noise) strongly affect the microphone signal. WISE-GRASS-FDAF-PEM-AFROW combines the

best characteristics of robust adaptation both in continuous DT and bursting DT without the need

for a DTD. WISE-GRASS-FDAF-PEM-AFROW consequently gathers all the characteristic we are

seeking for namely, decorrelation properties (PEM, FDAF), minimum variance (GRASS, FDAF,

PEM), variable step size (WISE), and computational efficiency (FDAF).
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