KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering

Middleware and Methods for
Customizable SaaS

Stefan Walraven

Supervisor: Dissertation presented in partial
Prof. dr. ir. W. Joosen fulfilment of the requirements for the
Dr. E. Truyen, co-supervisor degree of Doctor in Engineering

June 2014

Middleware and Methods for Customizable SaaS

Stefan WALRAVEN

Examination committee:
Prof. dr. C. Vandecasteele, chair
Prof. dr. ir. W. Joosen, supervisor
Dr. E. Truyen, co-supervisor
Prof. dr. ir. Y. Berbers
Prof. dr. ir. E. Duval
Prof. dr. ir. E. Steegmans
Dr. D. Van Landuyt
Prof. dr. G. Blair

(Lancaster University, UK)

June 2014

Dissertation presented in partial
fulfilment of the requirements for
the degree of Doctor in Engineering

© 2014 KU Leuven - Faculty of Engineering
Uitgegeven in eigen beheer, Stefan Walraven, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

Allrights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm, electronic
or any other means without written permission from the publisher.

ISBN 978-94-6018-849-7
D/2014/7515/73

Acknowledgements

The ultimate inspiration is the deadline.
— Nolan Bushnell

This dissertation is the result of long nights of hard work, intense but inspiring
discussions and encounters, and the unstoppable combination of deadlines and my
will to succeed. However, this would never have been possible without the support
of many people to whom I want to express my sincere gratitude.

First of all, I would like to thank my supervisor Wouter Joosen for convincing me and
providing me the opportunity to do a PhD, for giving me the freedom to explore my
interests, and sometimes also for taming my temper. His advice did not only have an
impact on my research, but will remain invaluable throughout the rest of my career.

Secondly, I would like to thank Eddy Truyen, my co-supervisor and direct coach, for
our quite successful collaboration. His research vision has lead us to a (back then)
new upcoming domain, and actually made us the cloud computing pioneers within
DistriNet. He also kept impressing me with his knowledge of related work, which
often forced us to rethink and improve our ideas, even hours before a paper deadline.
Together, we formed a great team that could move mountains of work in a very short
period of time. No better proof for that than the Middleware ’11 paper.

Furthermore, I am grateful to the other members of my jury for the interesting
discussion and the valuable feedback: Yolande Berbers, Erik Duval, Eric Steegmans,
Dimitri Van Landuyt, and Gordon Blair. A special thanks goes to Dimitri for the
pleasant and efficient collaboration, and to Gordon for inviting me to Lancaster for a
short but inspiring research visit. I would also like to thank Carlo Vandecasteele for
chairing the jury and the practical advice.

Needless to say, many thanks go to my long-term office mates Bart, Bert, Maarten,
and Wouter. Our office is probably known as the loudest of the building (or even of
the campus), because of our daily intense debates on diverse topics. But it is also a
very productive and supporting environment with complementary profiles, always
willing to give their no-nonsense opinion about your work or to help when you're
struggling. A special thanks goes to Bert who introduced me in the domain of adaptive
middleware during my master thesis, and who continued to play a major role in the

i ACKNOWLEDGEMENTS

development of my research and writing skills. Likewise, I thank the LantaM taskforce
for the critical feedback on my work in progress as well as for the regular fun and
entertainment: Adriaan, Ansar, Bart, Bert, Dimitri, Eddy, Fatih, Frans, Jasper, Kristof,
Maarten B, Maarten D, Marko, Steven, and Wouter. The influence of this mixed group
of middleware developers, software engineers, language designers and system admins
had an important impact on the course of my PhD.

I would also like to thank the many (ex-)colleagues at the DistriNet research group for
the very enjoyable and creative work environment. In particular, I want to thank my
current and former Alma mates Alex, Bert L, Bert VH, Koen, Lieven, Maarten, Marko,
Nelis, Lex, Peter, Philippe, Steven, Thomas, Willem, Wouter, and Yves: the daily walk
to Alma was often a source of great ideas, or at least I got up-to-date with the latest
facts and trivia. I may also not forget the long discussions (mostly till the very end)
with the other regular attendees (“plakkers”) of the different receptions: Davy, Dries,
Jef, Kim and Koen. In addition, I am grateful to the administrative and technical staff
of the department for their often overlooked but valuable support. Special thanks to
Annick, Esther, Ghita, Katrien, and Marleen, for always helping me with a smile and
getting everything arranged. Finally, many thanks to my colleagues and friends in
Lancaster for getting me quickly settled during my stay there.

Many thanks to all the “Nerds on a high” climbers as well as the brothers and sisters
at Kung Fu Leuven for the necessary distraction during several hours per week and
for the opportunity to vent my frustrations. Special thanks to Bart, Boris, Jan, Jem,
Jeroen, José, master Lo, Mika, Nele, Nelis, Peter, Radu, Sam, Steven, Vassili, Ward,
Wouter DB, Wouter V, and Zhaoyin, for improving my climbing and fighting skills
and for pushing me to (and over) my physical limits, sometimes with insane exercises
and competitions. Furthermore, I greatly enjoyed the entertaining and intellectual
debates till the early hours with Ben, Geert, Jelle, Samuel, Steven and Wouter (often
evoking fond memories of our student years).

Ten slotte wil ik mijn dankbaarheid betuigen aan diegenen die mij het meest dierbaar
zijn: mijn familie. In het bijzonder wil ik mijn ouders en grootouders bedanken voor
hun continue en onvoorwaardelijke steun, hun luisterend oor en de wijze raad. Vooral
in de moeilijkere periodes gaf dit mij de kracht om door te zetten. Ook mag ik zeker
mijn broer Daniél en zus Andrea niet vergeten, om mij eens af te reageren en te
ontspannen, om te luisteren (of te doen alsof) als ik weer aan het zagen was, en omdat
ik altijd op hen kan rekenen. Verder wil ik nonkel Guy (“Oh-Noh”) bedanken bij wie
ik altijd terecht kon met mijn blessures (helaas al te vaak), maar gelukkig ook voor
het nodige plezier en amusement. Ik wil ook de rest van de familie bedanken voor
hun continue interesse in mijn werk, en de familiefeesten waar ik mij eens goed kan
laten gaan in hevige discussies. Heel erg bedankt allemaal!

Up to the next adventure!

— Stefan Walraven

Abstract

Software as a Service (SaaS) has been increasingly adopted by software vendors as their
main software delivery model, as it provides the opportunity to offer their software
applications to a larger market and to benefit from the economies of scale. One of the
key enablers to leverage economies of scale is multi-tenancy: resources are shared
among multiple customer organizations (the so-called tenants), which leads to higher
resource utilization and scalability. The highest degree of resource sharing is achieved
with application-level multi-tenancy. However, this focus on increased resource
sharing typically results in a one-size-fits-all approach. Asa consequence, multi-tenant
Saa$ applications are inherently limited in terms of flexibility and variability, and
cannot be customized to the different and varying requirements of the different
tenants.

This dissertation presents both a middleware framework and a software engineering
method to facilitate the development, operation and management of customizable,
multi-tenant SaaS applications. More specifically, the middleware framework
improves the flexibility of multi-tenant SaaS applications by enabling tenant-specific
customizations, while preserving the economies of scale and limiting the application
engineering complexity. The focus is on dynamically composing software variants on
a per tenant basis as well as on enforcing tenant-specific performance service level
agreements (SLAs) throughout the SaaS application. The service line engineering (SLE)
method aims to reduce the management complexity of many co-existing tenant-
specific configurations as well as the effort to provision tenants and to update and
maintain the customizable SaaS application.

This work has been validated and evaluated in the context of two types of industry-
relevant SaaS applications, i.e. a request-driven online hotel booking application
and a batch-driven document processing application. We have implemented
different prototypes on top of existing cloud platforms and the evaluation shows
the effectiveness of our solution while introducing only a very limited performance
overhead.

Beknopte samenvatting

Software as a Service (SaaS) maakt in toenemende mate opgang bij softwarele-
veranciers als het belangrijkste distributiekanaal. Het biedt hen de mogelijkheid
om hun softwaretoepassingen aan een grotere markt beschikbaar te stellen en om
te profiteren van schaalvoordelen. Een van de voornaamste manieren om deze
schaalvoordelen te bekomen is multi-tenancy, nl. het verdelen van IT-middelen over
meerdere bedrijfsklanten (de zogenaamde tenants), wat leidt tot een hogere benutting
en schaalbaarheid van deze middelen. Maximale benutting van I'T-middelen wordt
bekomen via multi-tenancy op het applicatieniveau. Dit leidt echter tot een uniforme
aanpak. Bijgevolg zijn multi-tenant SaaS toepassingen intrinsiek beperkt op het
gebied van flexibiliteit en variabiliteit, en kunnen ze niet aangepast worden aan de
verschillende en variérende vereisten van de verschillende tenants.

Dit proefschrift presenteert zowel een middlewareraamwerk als een software
engineering methode om de ontwikkeling, uitvoering en beheer van aanpasbare, multi-
tenant SaaS toepassingen te ondersteunen. Meer bepaald, de middleware verhoogt de
flexibiliteit van multi-tenant SaaS toepassingen doordat het aanpassingen op maat
van de tenant mogelijk maakt, terwijl de schaalvoordelen behouden blijven en de
complexiteit voor het ontwikkelen van de applicatie beperkt blijft. De focus ligt hierbij
zowel op het dynamisch en per tenant samenstellen van softwarevarianten, als op het
afdwingen van de dienstverleningsovereenkomsten met de tenants (d.w.z. SLA’s) over
de geleverde prestaties en dit doorheen de gedistribueerde toepassing. De service line
engineering (SLE) methode heeft als doel om de beheerscomplexiteit te verminderen
met betrekking tot de vele, naast elkaar bestaande configuraties van de verschillende
tenants, maar ook om de vereiste inspanning en de kosten voor de dienstverlening te
beperken en om de SaaS toepassing te updaten en te onderhouden.

Dit werk werd gevalideerd en geévalueerd in de context van twee soorten bedrijfsre-
levante SaaS toepassingen, nl. een hotelboekingssysteem en een documentverwer-
kingssysteem. We hebben verschillende prototypes ontwikkeld boven op bestaande
cloud platformen, en uit de evaluatie van deze prototypes blijkt de doeltreffendheid
van onze oplossingen, met een minimale impact op de geleverde prestaties.

Contents

Abstract
Contents

1 Introduction
1.1 Cloud computing
1.1.1 Characteristics and benefits
1.1.2 Cloud computing architecture
1.2 Challenges for the customization of SaaS
1.3 Goalsandapproach
14 Contributions

1.5 Structure of the dissertation

2 Comparing PaaS offerings in light of SaaS development
21 Introduction
2.2 Requirements & illustration
221 Requirements
222 Casestudy
223 Approach

2.3 Presentation of the PaaS platforms

vii

vii

10

12

viii

CONTENTS

23.1 FPorcecom-Category3 26

2.3.2 Google App Engine - Category 2 28

233 Windows Azure - Category 1 29

24 Portability 31
241 Porcecom 31

242 Google AppEngine oL 37

243 Windows Azure 40

244 Summary 44

2.5 Multi-tenancy 45
251 Forcecom o 45

252 Google AppEngine oL 438

253 WindowsAzure 51

254 Summary 57

2.6 Toolsupport 57
261 FPorcecom 57

262 Google AppEngine oL 61

263 WindowsAzure 62

264 Summary 64

2.7 Discussion & challenges 64
2.7.1 Application of results to PaaS categories 64

2.7.2 Impact of case study application and implementation decisions 68

273 Challenges. 69

28 Relatedwork L 72
29 Conclusion 75
Middleware framework for co-existing variants in multi-tenant Saa$ 17
3.1 Architectural drivers L o 78

CONTENTS ix
311 Scope ... 78
3.1.2 Non-functional requirements 79

3.2 Architecture of the middleware framework for customizable multi-
tenantSaaS 80
3.21 Baseplatform L. 81
3.2.2 A middleware layer for co-existing variants 82
33 Versatility 85

4 A middleware layer for flexible and cost-efficient multi-tenant applica-
tions 89
41 Introduction 90
4.2 Problem elaboration & motivation 92
4.2.1 Multi-tenancy architectural strategies 92
422 Motivatingexample L L. 94
423 Requirements derived from a customization scenario 94
43 Middleware support for tenant-specific customization 95
43.1 Tenant-aware componentmodel 96
43.2 Architecture of the multi-tenancy support layer 97
43.3 Implementation L. 100
44 Evaluation 101
441 Methodology 101
442 Costmodel 102
443 Measurements 106
45 Relatedwork 108
46 Conclusion 110

5 Middleware for performance isolation in application-level multi-tenancy 113

5.1

Introduction 115

CONTENTS

52 Casestudy &challenges 116
5.2.1 Business document processing as an online service 116

5.2.2 Tllustration: Scenarios for SLA-driven performance isolation . 118

523 Challenges. 119
5.3 A middleware architecture for tenant-aware SLA enforcement 120
5.3.1 Tenant SLA management 122
5.3.2 High-performance job and task execution 124
5.3.3 Tenant-aware monitoring 126
5.3.4 Prioritization 127
5.3.5 Deploymentaspects 128
54 Evaluation 129
5.4.1 Prototype implementation 129
5.4.2 Evaluation scenario & setup 130
5.4.3 Demonstration of SLA enforcement. 131
5.4.4 Performance overhead 132
545 Discussiono 136
55 Relatedwork 138
56 Conclusion 140

Efficient customization of multi-tenant Saa$S applications with service

lines 141
6.1 Introduction L 143
6.2 Problemelaboration L oL 145
6.2.1 Stateofthepractice 145
6.22 Challenges. 147
6.3 Service line engineering: Concepts & method 148
6.3.1 Domainanalysis 150

6.3.2 Service line architecture design & implementation 151

CONTENTS xi
6.3.3 Service line deployment & operation 154

6.3.4 Tenant requirements analysis 155

6.3.5 Configuration mapping 157

6.3.6 Configuration activation 157

6.4 Service line engineering in practice 158
6.4.1 Document processing SaaS application 159

6.42 Domainanalysis 160

6.43 Service line architecture design & implementation 161

6.4.4 Service line deployment & operation 164

6.4.5 Tenant provisioning 165

6.5 Evaluation 166
6.5.1 Service line efficiency 166

6.52 Discussion. oo 170

6.6 Relatedwork 172
6.6.1 Dynamic and service-oriented product lines 172

6.6.2 Customization of multi-tenant SaaS. 173

6.6.3 Variability management in software architecture 174

6.7 Conclusion L 175
7 Conclusion 177
7.1 Contributions and evaluation 177
7.2 Limitations and futurework L. 180
7.2.1 Further evaluation 180

7.2.2 Complementary research and extension 181

7.23 Multi-cloud and cross-organizational context 182

7.3 Relevance and applicability oL 184
7.4 Utility computing and beyondo o000 185

Xii

Bibliography

List of publications

CONTENTS

189

211

Chapter 1

Introduction

Computing may someday be organized as a public
utility just as the telephone system is a public utility.

— Prof. John McCarthy

During the last decades, computing systems have transformed from the mainframe
paradigm (since 1950s) over enterprise computing with client-server (since 1960s),
the web (since 1990s) and service-oriented architecture (SOA) (since 2000s), to the
paradigm of cloud computing (nowadays). Cloud computing represents the next step
in the continuous evolution towards the (ultimate) goal of utility computing [12, 162],
as envisioned by Professor John McCarthy in 1961:

Each subscriber needs to pay only for the capacity he actually uses, but
he has access to all programming languages characteristic of a very large
system ... Certain subscribers might offer service to other subscribers ... The
computer utility could become the basis of a new and important industry.

This trend involves the servicing and deployment of computing capabilities in a more
efficient and flexible way. On the one hand, each new step towards utility computing
enables service providers to offer their services to a larger customer base and to
reduce operational costs by increasing the economies of scale [12, 44]. On the other
hand, customers (i.e. end users as well as organizations and companies) are able to
outsource more non-core activities to a service provider, and have on-demand access
to a whole range of services, while only being charged on actual usage basis.

However, with each new paradigm comes the need for new software systems and
middleware platforms as well as updated software engineering approaches to fully

2 INTRODUCTION

exploit the benefits associated with the new paradigm. Moreover, the focus on
increased economies of scale typically results in a one-size-fits-all solution that does
not support the continuously changing demands and requirements of the growing
customer base. Therefore, these new approaches should tackle this trade-off and
ensure that other important software qualities, such as customizability, maintainability,
performance and security, are preserved.

This dissertation focuses on providing such methodical support and middleware for the
development and operation of customizable Software-as-a-Service (SaaS) applications in
an efficient and scalable manner.

This chapter first presents the cloud computing paradigm, introducing concepts such
as Saa$, and its main characteristics and benefits (compared to the previous paradigms).
Second, we highlight the main challenges with respect to developing and managing
cost-efficient SaaS applications tailored to the customers’ needs. Next, the goals and
approach of this dissertation are discussed. Subsequently, the contributions of this
work are presented. Finally, this chapter concludes with an overview of the structure
of this dissertation.

1.1 Cloud computing

We define cloud computing as a paradigm that enables the on-demand delivery of
ICT solutions as online services, covering software applications, system software,
and hardware infrastructure. Moreover, these services can be rapidly provisioned
on request of the customers with minimal manual effort required from the provider.
This definition is derived from the National Institute of Standards and Technology
(NIST) [130], Armbrust et al. [12] and Zhang et al. [224].

This section elaborates on the main characteristics and benefits of cloud computing
and compares them with previous paradigms. Furthermore, it presents the cloud
computing architecture, including the different delivery and deployment models.

1.1.1 Characteristics and benefits

Although some claim that cloud computing is just another term to describe already
existing approaches [62], cloud computing has some specific characteristics and
associated benefits [130, 224] that differ from what is offered by previous paradigms.

Higher degree of distribution. A cloud environment is distributed at a large scale to
achieve high availability and high performance (i.e. high throughput and low latency)

CLOUD COMPUTING 3

via replication. A typical cloud consists of many data centers (using commodity
hardware) at different geographical locations [12, 224], creating a heterogeneous
geo-distributed system. Furthermore, the cloud services are accessible from any
device and location through standard mechanisms and APIs. Such a high degree
of distribution is lacking in the previous paradigms. For example, a mainframe is a
single, highly reliable machine, and a SOA consists in practice of multiple services
distributed over a limited set of nodes (often within a single organization) that are
interconnected via an enterprise service bus (ESB).

Multi-tenancy. Multi-tenancy is one of the key enablers to realize economies of
scale [44, 84]. While in the previous paradigms a service provider manages one
dedicated service setup per customer (cf. traditional application service provisioning
(ASP)), multi-tenancy enables cloud providers to employ resources more efficiently by
dynamically assigning the available resources to multiple customer organizations, the
so-called tenants. Thus, operational costs are significantly reduced by multiplexing
(shared) resources among multiple tenants. In this perspective, multi-tenancy can
be seen as an evolution of time-sharing on mainframes in the 1960s and 1970s. In
principle, a multi-tenant architecture also simplifies administration and provisioning
of tenants as well as maintenance. For example, shared resources can be upgraded
for all tenants at once.

Elasticity. Computing resources are dynamically provisioned and released on
demand (i.e. in an elastic way), giving customers the appearance of infinite capacity.
Compared to the traditional model(s), cloud computing offers customers the flexibility
to scale out rapidly (and preferably automatically) at a fine-grained level based on
the current workload, without having to constantly provision sufficient resources for
peak demand and thus avoiding over- or underprovisioning. Traditionally, systems
scale up by upgrading nodes or replacing them with more powerful ones. This so-
called vertical scaling results in expensive nodes and eventually reaches hardware
limitations. Elasticity, however, is achieved by scaling horizontally: adding more
nodes to the system and distributing the load. This is usually cheaper (commodity
hardware) and can in theory scale infinitely.

Delivery as a service. As indicated by its definition, cloud computing adopts a
service-driven delivery model': customers do not (have to) manage the resources
and applications themselves, but they are outsourced to the cloud provider. This
results in economic benefits for the customers by supporting a utility-based pricing
strategy and thus by converting capital expenses (capex) to operational expenses

INotice the difference with SOA: in the context of SOA, the fundamental building block is a service,
but the application itself (i.e. the orchstration of these services) is not necessarily delivered as a service.

4 INTRODUCTION

(opex) [12, 224]. This way, customer organizations do not have to make upfront
commitments and investments in infrastructure, but they only have to pay for the
resources and applications they actually use (i.e. pay per use). However, this also has
consequences for the cloud provider: he has to measure the usage per customer at an
appropriate level of abstraction (e.g. amount of low-level resources used, number of
end users per customer organization), (i) to control the operational costs, (ii) for billing
purposes, and (iii) to ensure that the delivered service is compliant to the agreed
service level agreements (SLAs). This requires support for monitoring, management
of the operational costs and SLAs, and reporting.

Self-service. To preserve scalability with an increasing number of customers and to
rapidly respond to changing service demand and customer requirements, capabilities
should be provisioned automatically without requiring human interaction with the
cloud provider. This requires a higher degree of automation compared to previous
paradigms, which mainly involved human interaction with slow response times
as a consequence. Moreover, the customers should be empowered to manage the
cloud services they are subscribed to via APIs, web tools and configuration interfaces,
e.g. enrolling for a service, managing end users and access control, allocating resources
on demand, configuring applications etc.

1.1.2 Cloud computing architecture

Cloud applications are typically structured according to a multi-layered software
architecture: they comprise of at least an infrastructure layer, a platform or
middleware layer, and an application layer (see Fig. 1.1). Furthermore, monitoring
and cloud management (e.g. resource allocation and configuration management) are
responsibilities that cross these different layers.

Depending on which layers are maintained by respectively the cloud provider
and the customer (cloud consumer), three cloud service delivery models can be
distinguished [130, 224]:

« Infrastructure as a Service (IaaS) delivers fundamental computing resources, such as
processing, storage and network capacity, as a service (cf. bottom layer in Fig. 1.1).
Using virtualization technology these resources are partitioned and assigned to
different customers. Customers can deploy, execute and fully control arbitrary
software in their virtual machines that run on top of the shared infrastructure. This
includes operating systems, system software and applications. However, this also
implies that the customers bear full responsibility. Amazon EC2 [2] is a well-known
example of an Iaa$ offering.

CLOUD COMPUTING 5

Resources and Technologies Cloud Service Delivery Model
Application 7
[Application Logic] | SaaS
[Application Middleware]
Platform]
< Cloud-enabling Middleware
GE) =] | Application Run-time Environment |
o)) =
& =
é ‘g | Persistence || Caching || Queuing || Authentication ||:| — PaaS
S
-§ = | (Geo-) Distribution Service |
o
[Operating System]
Infrastructure
[Virtual Machine Execution Logic] [Storage (blocks)] laaS
[Hardware (CPU, memory, disk, network)]

Figure 1.1: Overview of the multi-layered cloud architecture and the corresponding
service delivery models

« Platform as a Service (PaaS) provides a higher-level computing platform and solution
stack upon which applications and services can be developed and hosted by using
programming concepts and tools supported by the provider. The core of the
platform layer consists of a cloud-enabling middleware that provides distribution and
clustering support as well as the run-time environment and common cloud services
such as distributed storage and caching (cf. middleware layer in Fig. 1.1). Many
current middleware vendors (e.g. JBoss, Oracle and SpringSource) have adapted
their offerings for this purpose. The customer only has control over the deployed
applications, while the platform manages infrastructure-related concerns like load
balancing, scalability and availability. Examples are Google App Engine [77], Red
Hat OpenShift [175] and Windows Azure [134].

« Software as a Service (SaaS) delivers software applications as online, on-demand
services, for example Salesforce CRM [183]. The application logic consists of a
web application or service, a workflow or even an entire business process, and it is
often combined with application- and domain-specific middleware (cf. top layer in
Fig. 1.1). The control of the customer is limited to adapting the customer-specific
application configuration. The infrastructure, platform and application are managed
by the provider.

Orthogonally to these cloud service delivery models, the cloud computing paradigm
has several deployment models [12, 130, 224]:

6 INTRODUCTION

« Public clouds provision resources over the Internet for use by the general public.
The cloud providers ensure scalability by providing large amounts of computing
resources, while customers do not need to invest in hardware and infrastructure.
However, fine-grained control over data and applications is lacking.

« A private cloud is operated solely for a single organization (i.e. internal customers)
and is managed by this organization or a third party (on-premise or hosted).
Typically, private clouds are considered more secure, do not depend on Internet
availability, and offer more control and customizability. However, they have a
limited resource capacity.

« A multi-cloud is a composition of multiple cloud environments with as purpose to
improve availability and to avoid vendor lock-in. A hybrid cloud is a special type
of multi-cloud that consists of at least a public and a private cloud environment,
thus combining the unlimited capacity of public clouds with the increased control
of private clouds into an integrated system [113]. Typically, customers use public
clouds as a spill-over cloud to handle peak workloads (i.e. cloud bursting), while
only having to pay for these extra resources when they are actually needed. A key
concern with respect to a multi-cloud is portability of applications and data across
the different cloud environments.

This dissertation addresses enhanced support for the development and management
of public Saa$ applications, i.e. SaaS applications that are offered to external customer
organizations. Public SaaS offerings are aimed at a larger market and thus have
more explicit requirements with respect to cost efficiency, performance, scalability
and availability compared to an internal SaaS application. Notice that a public
Saa$ application can be deployed on top of a public as well as a private cloud
infrastructure (IaaS or PaaS). In the latter case, the underpinning private cloud platform
and/or infrastructure is only accessible internally, but the application running on
top of it is publicly available. The enhanced support in this dissertation is manifested
in an application middleware, located between the actual application logic and the
underpinning cloud platform (see Fig. 1.1).

1.2 Challenges for the customization of SaaS

New and existing software vendors increasingly adopt Saa$S as their main software
delivery model. The SaaS model provides these software vendors the opportunity to
offer their software applications to a larger market and to benefit from the economies
of scale associated with cloud computing. However, this migration to the SaaS model
is not straightforward for them: the cloud computing paradigm introduces, in contrast
to the traditional on-premise delivery model, additional responsibility and complexity
to manage and monitor the underpinning infrastructure and system software, as well

CHALLENGES FOR THE CUSTOMIZATION OF SAAS 7

as to deploy and host the applications. Several (often open source) solutions exist
to support SaaS providers in setting up a private cloud environment, for example
OpenStack [156] and Red Hat OpenShift Origin [175], but this still requires large
investments in infrastructure and system management. Alternatively, SaaS providers
can (partially) outsource this complexity to an external IaaS or PaaS provider.

In this dissertation we focus on the challenges at the application level, more specifically
the development, operation and management of a SaaS application. In order to make
a SaaS offering profitable, the SaaS provider is required to harvest full benefit from
economies of scale. If well-achieved by the SaaS provider, these benefits add value
to the offering and reduce the operational costs of hosting and maintaining the SaaS
application. As explained in Section 1.1, one of the key enablers to leverage economies
of scale is multi-tenancy by sharing resources among tenants, which leads to higher
resource utilization and scalability. Different architectural strategies can be applied
to achieve multi-tenancy: at the infrastructure level via virtualization, at the OS
and middleware level, and at the application level (see Fig. 1.2). Application-level
multi-tenancy results into the highest degree of resource sharing [44, 84]: end users
from different tenants are simultaneously served by a single application instance on
top of shared hardware and software infrastructure.

In addition, customization capabilities are critical to allow a SaaS provider to
differentiate from competitors [201]. Every tenant is unique with its own requirements,
and consequently standardized functionalities and services lose their value as these
requirements become more complex and diverse [81]. Especially in the case of cloud
computing with its potentially large customer base, mass customization becomes
increasingly relevant, i.e. offering software services tailored to the tenant’s needs,
where and when they need it, and at a price similar to the default (non-customizable)
alternative [56, 81].

Comparing the different levels of multi-tenancy, application-level multi-tenancy
achieves the highest degree of resource sharing between tenants, but typically
results in a one-size-fits-all approach: the multi-tenant application only satisfies
the requirements that are common to all tenants. However, the customization of
multi-tenant SaaS applications hinders economy of scale. Thus, a trade-off is required
between operational cost efficiency and flexibility, as illustrated in Fig. 1.2. It is our
ambition to address this trade-off by enabling the customization of multi-tenant SaaS
applications while preserving the economies of scale.

We have identified the following concrete challenges with respect to the customization
of multi-tenant Saa$S applications:

1. Increased engineering complexity. Application-level multi-tenancy already intro-
duces additional application engineering complexity for the SaaS provider to ensure
the necessary isolation between the different tenants as well as to provide a tenant-

8 INTRODUCTION
(1) Shared infrastructure (2) Shared middleware (3) Shared application
User 1, User 1, Usern, Usern, User 1, User1, Usern, Usern, User 1, User1, Usern, Usern,
Tenant 1 Tenant n Tenant 1 Tenant n Tenant 1 Tenant n
App: . Appn App1 - App, App
MW, MWn MW MW
oS oS (OS] (e
[Improved scalability, lower operational costs >
< Higher flexibility and isolation, lower engineering complexity |

App = Application instance | MW = Middleware instance | OS = Operating System instance

Figure 1.2: Illustration of the trade-off between high cost efficiency and scalability
versus high isolation and flexibility as well as low engineering cost, in the context of
the different architectural strategies for multi-tenancy.

specific management facility [84] (see Fig. 1.2). In addition, customizations have
to be isolated so that they only apply to a particular tenant and do not affect the
service behaviour that is delivered to other tenants (e.g. functionality, performance,
security). Support for such concurrent tenant-specific customizations is lacking,
which results in complex software constructions at the application level and high
performance overhead.

. Explosion of variations. Mass customization of the SaaS application tailored to

the different and varying requirements of all tenants leads to an explosion of
variations. Furthermore, continuous maintenance and evolution of the application
(e.g. patches or upgrades) will only enhance this effect with different versions of
the application as well as the different variations. This problem worsens with the
success of a SaaS$ offering: with an increasing amount of tenants the degree of
variability becomes unmanageable by the SaaS provider, and thus threatens the
crucial scalability and cost efficiency [201].

GOALS AND APPROACH 9

1.3 Goals and approach

Customization of SaaS applications involves non-trivial challenges with respect to the
software engineering approach as well as the supporting middleware. Consequently,
the overall goal of this dissertation is to study, develop and evaluate both methods and
middleware platforms to develop and operate customizable SaaS applications, while
preserving the key benefits of cloud computing such as cost efficiency and scalability.
More specifically, the focus is on tackling the trade-off presented above (cf. Fig. 1.2)
by introducing flexibility into multi-tenant SaaS applications. To achieve this, we
build upon two research lines: (i) software product line engineering (SPLE) [48, 168]
to improve reuse by exploiting commonalities and to manage variations, and (ii)
adaptive and reconfigurable middleware [31, 52, 103, 104, 206] to realize run-time
customizations.

We break up the overall goal into the following subgoals:

1. Dynamic and context-sensitive adaptation and composition. A multi-tenant SaaS
application should adapt at run time based on the current context. This context
is defined by the tenant associated to the current interaction and its specific
requirements, as well as by the state and behaviour of the cloud environment
(e.g. the current load has an impact on performance). Because a multi-tenant
application is shared between end users of multiple tenants, variants for different
tenants have to be composed and activated concurrently within the same SaaS
application instance. Therefore, it is critical that these co-existing variants are
isolated from each other, i.e. the adaptations should occur within the scope of a
single tenant and may not have an impact on other tenants.

2. Scalable variability management. Variability emerges from different and varying
tenant requirements, maintenance and evolution, and has a high impact on
the manageability and thus scalability of the SaaS application. To avoid an
explosion of variations, the versatility of software variations should be improved.
More specifically, customizations, driven by high-level configurations, have to be
automatically translated into the composition of a set of reusable software modules.
Furthermore, a part of the configuration complexity should be shifted towards the
tenant (i.e. self-service) to maintain the scalability with an increasing amount of
tenants.

Approach. Our approach is application-driven in the sense that two common types
of enterprise SaaS applications have been used throughout this work (i) to analyse
the current state of practice, (ii) to illustrate the open challenges, and (iii) to validate
and evaluate the proposed solutions. The hotel booking application is a component-
based multi-tier (web) application, which is request-driven and deployed as a single
(monolithic) software service. Customization is thus limited to this single software

10 INTRODUCTION

service, although the service can be replicated for scalability purposes. The second
application is based on a real-world Saa$ offering in the domain of online B2B document
processing. Concretely, it is a batch-driven service composition: for each incoming
batch of input data a particular workflow is executed. Both the workflow and the
different services in that workflow are subject to the customization requirements of
the tenants. In addition, non-functional concerns such as performance apply to the
end-to-end execution of the workflow.

The research approach starts with the study of and hands-on experience with the
current state of practice of middleware support for Saa$, i.e. the existing cloud-
enabling middleware platforms and PaaS offerings. By building upon commonly used
platforms, we ensure the applicability and (re)usability of the middleware solution.
Representative platforms have been investigated with respect to their support for
the development and customization of multi-tenant SaaS applications, and the open
challenges have been identified.

The second step in our approach combines the concepts and method of SPLE with
the flexibility of adaptive middleware in order to achieve the two goals we defined
above. Moreover, we incrementally improve and evolve both research lines to
make them suitable for usage in a multi-tenant context. In particular, the software
engineering method should address the management complexity of many co-
existing tenant-specific configurations, and the adaptive middleware should offer a
composition mechanism that enables run-time customization scoped to a specific
tenant. Furthermore, the adaptive middleware has to be integrated into the software
engineering method. As common abstraction for variations in this integrated
approach we use features. A feature is a distinctive functionality, service, quality or
characteristic of a software system or systems in a domain [100]. We rely on feature-
oriented modularization [9, 51, 118, 171] to implement these features as composable
and reusable software modules [163] that can be composed by the underpinning
middleware.

1.4 Contributions

The key contributions of this dissertation are summarized below:

« Comparison of representative Paa$S platforms and gap analysis. We have compared
three different and representative PaaS offerings with respect to their support
for SaaS application development, based on hands-on experience with the
(re-)engineering and implementation of the hotel booking application. Concretely,
we have investigated the portability of the application code base, the available
support for creating and managing multi-tenant applications, and the quality of the
tool support. Furthermore, we have identified the following research challenges for

CONTRIBUTIONS 11

the improvement of current Paa$ offerings in terms of supporting SaaS application
development:

— Support for application-level multi-tenancy in all its aspects is lacking. PaaS
offerings should offer support for data isolation and tenant-specific customization,
tenant-specific application management as well as performance isolation.

— Portability of SaaS applications across different cloud-enabling middleware
platforms and PaaS offerings is required to improve migration and to tackle
vendor lock-in, especially in the context of common cloud services (e.g. scalable
storage), multi-tenancy support, and application management and monitoring,.

This dissertation focuses on the multi-tenancy-related challenge.

« Middleware support for co-existing variants in multi-tenant SaaS applications. We
provide a middleware framework that (i) complements existing cloud-enabling
middleware and Paa$ offerings, and (ii) improves flexibility of multi-tenant SaaS
applications by enabling tenant-specific customizations, while (iii) preserving the
operational cost benefits and limiting the engineering complexity. Concretely,
tenants can customize the multi-tenant SaaS application to their specific functional
and non-functional requirements via a feature-based configuration interface.
Based on these tenant-specific configurations and the current context, the
middleware layer dynamically performs the end-to-end customization throughout
the distributed Saa$S application on a per tenant basis. Two specific instances of this
middleware framework have been developed with focus on:

— The run-time composition of software variants in multi-tier component-based SaaS
applications driven by tenant-specific configurations. We have implemented a
prototype on top of Google App Engine, and its evaluation in the context of the
hotel booking application shows improved flexibility with little impact on the
operational costs.

— The run-time enforcement of performance isolation in compliance with tenant-
specific SLAs over distributed environments for multi-tenant SaaS. The prototype
implementation on a JBoss AS-based private cloud platform has been evaluated
using the document processing application, introducing only limited performance
overhead.

« Service line engineering method. We present a method similar to SPLE, called
service line engineering (SLE), that facilitates SaaS providers to introduce and
manage variability in multi-tenant SaaS applications without compromising the
scalability. The concept of a service line is based on the notion of software product
lines, but offers a shared application instance that still is dynamically customizable
to different tenant-specific requirements. The SLE method is highly integrated and
generic, in the sense that the feature-level variability is consistently and explicitly
supported in each of the subsequent stages, while these stages are open for existing
work to be leveraged upon. The application of this method results (i) in efficiency

12 INTRODUCTION

benefits with respect to addressing the management complexity of many co-existing
tenant-specific configurations, and (ii) in a significant reduction of effort to provision
tenants (i.e. configuring and composing an application variant) as well as to update
and maintain the service line as a whole, though at the expense of a higher initial
development effort. The SLE method has been validated in the development of the
document processing Saa$ application.

1.5 Structure of the dissertation

This dissertation consists of the unedited versions of three key publications and one
paper draft made in the course of my doctoral program. It is structured as follows.

Chapter 2 presents the first contribution of this dissertation: the analysis of the state
of practice in the development support for SaaS applications on top of representative
PaaS$ offerings, and the identification of open research challenges in this context. This
work has been published in the Springer Computing journal [215].

The middle part consists of three chapters that discuss the second contribution in
detail. Chapter 3 presents an overview of the middleware framework that enables
SaaS providers to build and deploy customizable, multi-tenant SaaS applications. The
focus of Chapter 4 is on the middleware support for the dynamic and cost-efficient
composition of software variants in multi-tier component-based SaaS applications.
The content of Chapter 4 has been published in the proceedings of the 12t
ACM/IFIP/USENIX International Conference on Middleware (Middleware 2011) [214].
Chapter 5 elaborates on the middleware architecture to enforce performance isolation
in distributed SaaS applications in compliance to the tenant-specific SLAs.

In Chapter 6, the third contribution of this dissertation is described, i.e. the service
line engineering (SLE) method that facilitates the development, deployment, run-time
configuration and composition, operation and maintenance of multi-tenant SaaS
applications, without compromising scalability. This work has been published in the
91" yolume of the Journal of Systems and Software [217].

Finally, Chapter 7 concludes this dissertation and discusses its applicability. Further-
more, ongoing work and remaining challenges for future research in the context of
multi-tenant SaaS and utility computing are presented.

Chapter 2

Comparing PaaS offerings in
light of SaaS development *

Preamble

The adoption of Platform as a Service (PaaS) in industry is growing and PaaS shows the
potential of becoming the main development and deployment platform for enterprise
SaaS applications [146]. This chapter compares different existing PaaS offerings
with respect to their support for SaaS application development. More specifically, the
concerns with respect to application engineering and operational costs (cf. Section 1.2)
have been translated into the development requirements of portability of application
code base, multi-tenancy support, and qualitative tool support. The main contribution
of this work is introduced and summarized in Sections 2.1 and 2.7, i.e. the distinction
between three categories of PaaS offerings, the discussion of the results of the
comparative study, and the identification of open challenges for the development of
Saa$ applications. None of the platforms offers sufficient support for tenant-specific
customization. Actually, most platforms even lack any support for multi-tenancy. The
details of the comparison are described in Sections 2.2—2.6, including a description
of the requirements and criteria, the three representative PaaS offerings that we
investigated, and the technical comparison using the online hotel booking application
(as introduced in Section 1.3).

*The content of this chapter has been published in the Springer Computing journal [215].

13

Comparing Paas offerings in
light of SaaS development: A
comparison of PaaS platforms
based on a practical case study

Abstract

Software vendors increasingly aim to apply the Software-as-a-Service (SaaS) delivery
model instead of the traditional on-premise model. Platforms-as-a-Service (PaaS),
such as Google App Engine and Windows Azure, deliver a computing platform and
solution stack as a service, but they also aim to facilitate the development of cloud
applications (SaaS). Such PaaS offerings should enable third parties to build and deliver
multi-tenant SaaS applications while shielding the complexity of the underpinning
middleware and infrastructure. This paper compares, on the basis of a practical
case study, three different and representative PaaS platforms with respect to their
support for SaaS application development. We have reengineered an on-premise
enterprise application into a Saa$S application and we have subsequently deployed it
in three PaaS-based cloud environments. We have investigated the following qualities
of the PaaS platforms from the perspective of SaaS development: portability of the
application code base, available support for creating and managing multi-tenant-aware
applications, and quality of the tool support.

14

INTRODUCTION 15

2.1 Introduction

Cloud computing is a trend that refers to the delivery of ICT solutions as online
services, covering software applications, system software, hardware infrastructure,
etc. The concept of cloud computing includes three cloud service delivery models [130,
209]:

Infrastructure-as-a-Service (IaaS) is the delivery of fundamental computing resources
(e.g. processing, storage and networks) as a service, for example Amazon EC2 [2].

« Platform-as-a-Service (PaaS) provides a computing platform and solution stack upon
which applications and services can be developed and hosted by using programming
concepts and tools supported by the provider. Examples include Force.com [182,
219] and Google App Engine [77].

« Software-as-a-Service (SaaS) is a software deployment model that delivers software
applications as online, on-demand services, for example the Salesforce CRM
application [183].

Software vendors increasingly deliver their software applications as online services,
in accordance with the above-mentioned SaaS model, and thus become Saa$S providers.
This enables their customers to use these software services on demand. Customers are
thus freed from the management of the underpinning middleware and infrastructure.
But the SaaS model requires software vendors to harvest full benefit from economies
of scale. Resources could thus be employed more efficiently and maintenance efforts
can be centralized. These benefits, if well-achieved by the SaaS provider, add value to
the offering, and reduce the operational costs of providing the software services.

One of the key enablers to leverage economies of scale is multi-tenancy [44, 84].
Typically, a service provider manages one dedicated application instance per customer
(i.e. single-tenancy). We focus on the particular case of application-level multi-tenancy.
In this context, we define multi-tenancy as an architectural style that enables service
providers to serve end users from different tenants (i.e. customer organizations and
companies) simultaneously by a single application instance on top of shared hardware
and software infrastructure [84]. Besides the benefits of economies of scale, a multi-
tenant architecture simplifies administration and provisioning of tenants, for example
upgrades of the application only have to be applied to the shared instance and all
tenants will automatically use the most recent version.

The decision to apply multi-tenancy for a SaaS application depends on the application-
and tenant-specific requirements. Often this is a trade-off between cost efficiency
and flexibility [214]. With multi-tenancy a higher level of sharing can be achieved,
which leads to higher scalability and maximal resource utilization. However, it also
introduces additional complexity for the SaaS developers (i) to ensure the necessary
isolation between the different tenants [84], (ii) to offer a customizable application

16 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

in order to meet the unique requirements of the different tenants [201], and (iii) to
manage and monitor the different tenants in a fine-grained way.

PaaS tries to solve the challenges sketched above by delivering a higher-level
computing platform and software stack, which aims to facilitate the development and
deployment of cloud applications while also managing availability, elastic scalability,
load balancing and other infrastructure-related concerns. PaaS can therefore play a
major role for software vendors in the adoption of the cloud computing paradigm. If
such a combination of a scalable platform and a full software stack can be provided,
it would reduce the entrance barrier for software vendors to offer their respective
capabilities to a wide market with a minimum of entry costs and infrastructure
requirements [188]. Most recent research has focused on Iaa$S (e.g. Eucalyptus [153]
and OpenNebula [198]), which allows software vendors to deploy and run arbitrary
software on top of a virtualized infrastructure [130]. However, the maintenance of
operating systems, application servers and middleware platforms is expensive and
requires sufficient system administrators with the appropriate skills. This would make
PaaS a more interesting choice for software vendors willing to enter the SaaS market.

As with any paradigm shift, many new and somehow competing technologies enter
the arena; more technologies emerge and compete when the new paradigm (SaaS
in cloud computing in the context of this research) is promising major changes in
the landscape of solution and platform providers. These circumstances generate an
imminent need to investigate and conduct independent research on the relative value
and performance of new types of technologies.

A comparable situation has emerged, for example in the eighties, when perfor-
mance-critical software applications were expected to be executed by various kinds
of parallel computing technologies, ranging from MIMD [26], SIMD [194], shared-
memory environments [195] etc. Very often, parallel computing architectures came
along with specific programming paradigms and tools for parallel computing, such as
parallelizing compilers [91], message-passing environments [196] etc. Back then, the
research community had to deliver a lot of practical research to share experience and
know-how, and to drive the qualitative improvement of the corresponding platforms.
Today the domain of PaaS platforms that support the paradigm shift towards Saa$ in
cloud computing needs similar research.

The general research question that is addressed in this paper therefore is to which
extent different types of Platform-as-a-Service solutions support the development and
deployment of Saa$ applications that start from an existing code base. The approach
that has been applied is case study driven. The specific scope of the paper is in
principle limited to the broad category of enterprise applications (such as the ones
based on Java EE and .NET).

INTRODUCTION 17

Clearly, PaaS offerings need a critical assessment: can PaaS platforms enable
software developers to build and deliver SaaS applications without the complexity
of dealing with the underpinning middleware and infrastructure? This experience
report compares PaaS platforms with respect to their support of SaaS application
development. We distinguish between the following three categories of PaaS
platforms:

Category 1: PaaS platforms that mimic and match the APIs of popular enterprise
application servers and middleware platforms. Examples are Windows
Azure [134] using the NET framework and the IIS web server, Red Hat
OpenShift [175] based on the JBoss platform, Oracle Cloud [159] running on top
of the WebLogic Server, and Cloud Foundry [211] using VMware and Spring
technology.

Category 2: Focused Paa$ platforms that aim to optimally support specific types
of cloud applications. These platforms typically deploy other middleware and
storage facilities that supposedly scale better. Google App Engine [77] and
GigaSpaces’ XAP Elastic Application Platform [76] belong to this category.

Category 3: Metadata-driven PaaS platforms. Similar to focused PaaS platforms,
these platforms are designed with SaaS applications in mind. In addition,
metadata-driven PaaS platforms introduce a higher-level composition and
configuration interface that makes abstraction of the typical middleware level.
However, this limits the complexity of the applications that can be implemented.
Examples include Force.com [182, 219], WOLF [221], and TCS InstantApps [192].

In order to compare these PaaS categories, we have reengineered an on-premise
application towards the SaaS model. We have performed this task three times, each
time yielding a working application on top of one representative platform for each of
the categories listed above. In particular: we have used Windows Azure (category 1),
Google App Engine (category 2), and Force.com (category 3).

We have addressed three requirements of SaaS providers with respect to support for
Saa$ application development. (1) The cloud platform should support the portability
of SaaS applications [32, 166], between the on-premise implementation and the
SaaS-enabled implementations. Portability aims for minimizing the development
and code migration efforts when re-engineering an application towards a PaaS
deployment environment. (2) Furthermore, the platform should support the creation
and management of multi-tenant applications [44, 84], which is critical to achieve
economies of scale. (3) Finally, tool support is essential for SaaS developers to facilitate
development and testing on top of PaaS platforms [75]. Other requirements, for
instance regarding deployment, scalability and security, are out of scope of this paper.

18 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

We have conducted this case study in a disciplined and systematic way. The outcome
is explained in detail in this paper, and the practical and technical results are publicly
available! to enable reproduction of the case study, or more likely, extension of the
acquired experience and know-how by adding either application case studies or
implementations on new and/or evolved PaaS platforms. We believe that there is a
lack of in-depth case studies that reach beyond the exploratory use of PaaS platforms,
thus yielding high-level impressions rather than in-depth experience.

The contributions of this work consist of (i) the elaboration of the requirements
for the development of multi-tenant SaaS applications, (ii) the comparison of three
different and representative PaaS platforms with respect to these requirements based
on hands-on experience in a practical case study, (iii) the identification of research
challenges for the improvement of current Paa$ platforms in terms of supporting SaaS
application development, and (iv) an understanding of the impact of the selection of
(types of) PaaS platforms when developing SaaS applications.

The remainder of this paper is structured as follows. Section 2.2 elaborates on the
PaaS requirements imposed by SaaS developers and presents the case study that
is used throughout this paper. The representative PaaS platforms are introduced
in Section 2.3. Section 2.4 compares the different PaaS platforms with respect to
portability. Section 2.5 covers the support for multi-tenancy, and Section 2.6 addresses
the tool support for SaaS developers. Section 2.7 discusses the results and identifies
the challenges ahead. Section 2.8 covers related work. Section 2.9 concludes the

paper.

2.2 Requirements & illustration

First we define the requirements that software vendors must consider when developing
enterprise Saa$S applications on top of PaaS platforms. Furthermore, we illustrate and
further motivate these requirements by describing the application case study.

The focus of this paper is on two types of stakeholders: PaaS providers and
Saa$ providers. SaaS providers offer on-demand software services to their tenants,
potentially using a PaaS platform to develop and deploy these SaaS applications. The
Saa$ provider often becomes a customer of the PaaS provider. Another relevant
stakeholder for this paper is the tenant administrator. Each tenant should assign this
special role to someone who is responsible for managing the provided SaaS application
on behalf of the tenant, for example to configure the tenant-specific preferences.

lh‘c‘cps ://distrinet.cs.kuleuven.be/projects/CUSTOMSS/comp/

https://distrinet.cs.kuleuven.be/projects/CUSTOMSS/comp/

REQUIREMENTS & ILLUSTRATION 19

2.2.1 Requirements

The requirements that are central to this study are somehow trivial if one considers the
overall context of the paradigm shift to SaaS in cloud computing: if software vendors
consider evolving to become a SaaS provider, then they typically have economical
concerns such as the cost of re-engineering the software to become SaaS-enabled, as
well as the cost of delivering service based on the resulting (Saa$S) solution®. As for
the cost of re-engineering, this concern translates directly into the requirement of
application portability and into a second requirement of tool support that can further
reduce the efforts that are required to develop and deploy on a specific Paa$S platform.
As for the cost of delivering service, it is important that investments can be shared for
a maximal set of clients; this makes multi-tenancy extremely important in this study.

This section therefore elaborates on three key requirements: (i) support for portability
of SaaS applications, (ii) support for creating and managing multi-tenant-aware
applications, and (iii) availability of tool support for SaaS developers (e.g. development
and testing tools).

Portability. Software portability is the ability to easily deploy and use applications
on different environments (e.g. operating systems and middleware platforms). In
literature, a software application is defined as portable when the cost and effort to
port and adapt it to a new environment is less than the cost of redevelopment of a new
version and training of the developers [70, 144]. Portability is a desirable property for
SaaS applications [32, 166]. From the perspective of the SaaS providers, portability
enables them to port and adapt a SaaS application to different platforms (on premise
as well as in the cloud) with minimal changes. This will subsequently enable the
deployment and execution on multiple PaaS platforms of the same type, and even
enable a hybrid approach (both external PaaS platform and in-house). In addition,
the application easily works with other applications on local and remote systems,
and developers require little or no retraining. The requirements on portability are
decomposed into the following subrequirements:

1. Compatibility with mainstream programming models and middleware frameworks is
necessary to ensure portability of the application code to several platforms, without
requiring the rewriting of the SaaS application or extensive training of the SaaS
developers. This includes all software concepts for software engineering activities
throughout the software life cycle, such as programming models, component
models, testing and deployment.

The SaaS$ applications are developed and deployed on top of a PaaS platform instead
of the traditional middleware container used in the on-premise model (e.g. Java

This is a generic observation, early practitioners of parallel computing shared similar and essential
concerns.

20

COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

EE or .NET). Such a container provides a specific programming model and a
set of common services (often based on standards), covering the non-functional
requirements of the application, such as persistence and security. However,
PaaS platforms also have to support these common programming concepts
and middleware frameworks, without tight integration between application and
platform, to facilitate the development and to enable portability.

. A PaaS platform should offer support for easy integration with cloud services, both

internal and external. Typically, a PaaS platform offers additional, cloud-specific
services. For example, a cloud environment needs a highly performant and scalable
datastore and distributed caching. Furthermore a service-oriented environment
also requires composition with external (cloud) services and applications, such
as scalable cloud storage. Therefore, the portability requirement applies to the
platform-provided as well as external (cloud) services that are used by the SaaS
application.

Multi-tenancy. As explained above, multi-tenancy is one of the key enablers for
the SaaS model to achieve economies of scale and operational cost efficiency [44, 214],
but it also introduces some complexity [84]. Therefore a PaaS platform should offer
SaaS providers a way to endow applications with multi-tenancy, in a transparent way
or via an API, in order to allow them to benefit from the improved cost efficiency. To
enable multi-tenancy at the application level the following subrequirements should

be fulfilled [25, 84]:

1.

The core idea behind multi-tenancy is the sharing of both infrastructure and
software among all tenants. Therefore data isolation between the different tenants is
a key requirement that needs to be ensured, for instance by means of a multi-tenant
database, to prevent that tenants can access data belonging to other tenants. In
addition, the tenant of an incoming user request should be identified (via a tenant
ID) and stored as long as the request is processed (i.e. the tenant context).

Each tenant has its specific needs. Therefore tenant-specific configuration and
customization are critical to satisfy the different requirements [201]. However,
these customizations should only be applied to a specific tenant and may not affect
the other tenants. In addition, a configuration interface is required to enable the
selection of tenant-specific customizations in a safe and consistent way. Each
tenant should assign the tenant administrator role to someone who is responsible
for configuring the Saa$ application to the tenant-specific preferences, setting up
the application data (e.g. user management), and monitoring the overall service.

. In order to manage and control multi-tenant applications, SaaS providers need a

tenant-specific application management facility. Key requirements with respect
to application management are billing and metering. The SaaS provider should
be able to monitor the SaaS application on a per tenant basis to determine the

REQUIREMENTS & ILLUSTRATION 21

resource consumption by a particular tenant (for pay-per-use billing) and to enforce
the different service level agreements (SLA). On the other hand, tenants want to
monitor the total usage by their users and check whether the agreed SLAs are
provided.

Tool support. Tool support is crucial for the (fast) adoption and ease of use of new
technologies. We identified the following subrequirements [75]:

1. A development environment is required to facilitate the development of SaaS
applications using the programming model of a specific PaaS platform. Eclipse
and Visual Studio are examples of popular IDEs among developers.

2. The developed Saa$ application will be deployed on the PaaS platform. A local
development server and/or storage offers SaaS developers the possibility to easily
test the application on a local environment simulating the PaaS environment, and
to optimize the deployment configuration. This includes support for different types
of databases.

3. A testing framework is required to efficiently test applications, for instance by
means of executing unit tests. These testing tools should be able to interact with
the cloud platform (or the simulated environment) and other provided services.

2.2.2 Case study

This section presents the case study in the travel business domain that facilitates the
analysis of the development support provided by the different Paa$S platforms.

Online hotel booking

A software vendor sells hotel booking systems to travel agencies. This allows the
travel agencies to offer their customers an online service to search and book rooms
in hotels. Typically, this hotel booking application is deployed on a local server
or hosted by the software vendor. The latter is based on a traditional application
service provisioning (ASP) model: each travel agency has its own, separate application
instance (single-tenancy).

The software vendor decides to offer the online booking application to its customers
as a multi-tenant SaaS$ application, customizable to the different requirements of the
travel agencies. The base application is offered at a low cost, but additional services and
features can be selected at an additional charge to fit the tenant-specific requirements.
In this case the travel agencies play the role of tenant whereas the employees and
customers of a travel agency are considered the end users. In addition, the travel

22 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

agencies have to assign the tenant administrator role to someone of their ICT staff to
specify the tenant-specific customization preferences, and to set up the application
data (e.g. user management) via the configuration interface. In this example the
configuration is limited to the selection of a price calculation implementation.

l Tenants Saa$S Provider

Travel Agency A

Hotel
Booking Other Saa$ applications
Application

o
Customers Travel Agency B

PaaS
(e.g. Force.com,

App Engine,
Windows Azure)

Figure 2.1: The hotel booking application with SaaS deployment model

With the multi-tenant SaaS model all tenants share one or more instances of the
online hotel booking application, instead of serving a separate application instance
per tenant. This approach reduces the operational costs significantly for the software
vendor: (i) hardware and software infrastructure can be more cost-efficiently divided
among the tenants, and (ii) upgrades of the software only have to be applied to the
shared instance(s) and all tenants will automatically use the most recent version. To
provide a scalable platform that allows the travel agencies to cope with the seasonal
peeks in booking requests, the software provider wants to deploy the SaaS application
on a PaaS$ platform, as depicted in Fig. 2.1. In principle, this deployment model has the
additional advantage that the PaaS platform takes care of the infrastructure-related
concerns, and the software vendor can focus on the development and maintenance of
the hotel booking application.

The core design of the hotel booking application (Fig. 2.2) consists of two major parts:
the data model and the business logic. The data model describes the main entities in
the travel business domain. A Hotel consists of a name, an Address and a list of
rooms. The information about a Room is captured in a RoomDetails object (e.g. the
room number and the price per night). Each Room also contains a list of bookings.
Booking contains the details of a booking: the name of the customer that makes the
booking, a start and end date (booking period), the total price of the booking and the
name of the hotel as well as the room number.

The business tier contains the different components to perform bookings of rooms
(BookingComponent) and to manage the application data (ManagementComponent).
These components also provide interfaces that can be used by a front end. The

23

uornjeosridde Sunjooq [930Y 9y} Jo udIsa(:g'g 2Ny

jul i spagjoqu-
21qnop : 350~ uea|00q : Bupjows- S
Ul : GNWOOJ- 31ANOp : UBINIagISOIXeW:- %uuczoum_muummH uoIIeIN3|EYBILIgPISedD|YOId 5
buins : [2304- °1eq : 03- Junossig 1 - <ssnp>|[B <<jusuodwod>>
bulis : J2xj00gq- 93eq : Woy- <<uojesswnua>> | junodsip Sweu-
2jeq : 03 sjulesjsuo)bupjoog 3]yoadiasn
a3eq : WOy
ied i uonje|ndjedadldineaa
Bunjoog <<asn>> [B <<jusuodwor>>
L
*
sbupjooq- pIoA : (Bupjoog : Buj0oq)Buiioog@dued+ ABa3esysuorjeinjedadudi
pIoA : (Bupjoog : q)Bujoogazijeuy+
i . bupjoog : (buls : 3sanb ‘syutesysuodburjoog : sjuletIsuod)buiyoogaleald+
pion : (Buptoog : mc_v_mon:mc_v_oomgochw‘_.‘. SW00U- ued|00q : (93 : PUS ‘d3e(: UIBI] ‘Ul : PILUOOI)IILS!+
uesjo0q : (33eq : pud ‘a3eq : ulbaq)aai4si+ W00 : (3U1 : GNLIOOJ)UOOHIOB+ <<dsn>> |
S aLoy am - .mw_owm+ * <slieypquiooy>1s1Ae.Y : (31eq : pud ‘1eq : ulbaq)swooydaub+ 4 | __ | . jusuodwosbupioog | |
l1e39quiooy : () 11832qL00YIabh -+ ([] wooy : SwooJ ‘BuLS : dWeu)[PI0H+ <<asn>> @ <<juauodwod>>
(S11239QWI00Y : S|1BIAP)WO0Y+ 5 -
wooy uLjS : dweu-
PoH 0000000 A o]
s|ieyap- " <<asn>> jusuodwodjuawabeuepy | |
T ' @ <<juauodwod>>
, <<dsN>> ssaippe A13unoo-
Ul : spagjoqu- ! K-
31qNnop : JYBINISISOd- apo)|e3sod-
Ul gNWool- (Buins : buas)uondadxgbuiyoog+ Jaquinu-
|t sirous -
- |opow ejeq 2160 ssauisng

REQUIREMENTS & ILLUSTRATION

L] L]

24 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

management interface enables the travel agencies to (un)register hotels and to get an
overview of the bookings.

Customers can make inquiries about the availability of rooms during a certain period
(using getFreeRooms (Date, Date)) in the currently selected hotel. It also pro-
vides methods to book rooms: createBooking(BookingConstraints, Guest)
creates a tentative booking which can be finalized by using finalizeBooking(Book-
ing). It is possible to cancel a booking using cancelBooking(Booking).
Customers can pass their requirements by means of BookingConstraints.

A customer has the opportunity to make several bookings in multiple hotels
concurrently. Therefore, conversational state, such as the currently selected hotel and
the list of tentative bookings, should be kept on the server for the duration of the
customer’s session. The finalizeBookings (List<Booking>) operation of the
BookingComponent finalizes all tentative reservations in the customer’s session.

When a new booking is created, the total price is calculated by IPriceCalcula-
torStrategy. In this simplified case study, price calculation is offered as a feature
with two available implementations: (i) the default approach, i.e. multiplication of the
number of nights and the price per night, and (ii) a discount is assigned to customers
based on their profile (e.g. regular customers get a 10% discount on their bookings).
In the multi-tenant SaaS application, the tenants have to select one of these feature
implementations. Thus different tenants can have a different configuration.

Implementation highlights

We have implemented an on-premise version of the hotel booking application as a
component-based web application, using Java EE as well as the .NET Framework (see
Table 2.1).

In the Java EE version we used Enterprise JavaBeans (EJB) [210], a server-side
component architecture, for the business logic and the Java Persistence API (JPA) [57],
a standard framework for managing relational data, for the data model. JPA also
defines an object-oriented query language for entities stored in a relational database,
called the Java Persistence Query Language (JPQL). Further, we developed a web tier
as front end using Java Servlet [145] technology and Java Server Pages (JSP).

The NET version is implemented using the ASP.NET MVC 3 framework [133], a web
application framework that implements the Model-View-Controller (MVC) pattern.
For persistence we used the ADONET Entity Framework [132], i.e. a set of data-access
APIs similar to JPA. It is commonly used by programmers to access and modify data
stored in relational database systems, though it can also access data in non-relational
sources. Data querying capabilities are provided via the NET Language Integrated
Query (LINQ) framework. The business logic is implemented in basic C#.

REQUIREMENTS & ILLUSTRATION 25

Table 2.1: Overview of the quantitative metrics of the size of the Java EE and .NET
versions of the on-premise hotel booking application, expressed in lines of code
(comments and empty lines not included). These metrics are used to evaluate the
portability to the different PaaS platforms. Build and query scripts are not taken into
account.

Type # files # lines of code

Java 28 1210

JSP 13 490

Java EE XML (config) 4 106
HTML 3 19

CSS 1 61

C# 37 1280

NET ASP.NET web page 20 788

: XML (ASP.NET config) 6 118
CSS 1 274

For the on-premise Java EE version we used the Eclipse development environment,
the Glassfish application server (with TopLink SQL database), and JUnit as testing
framework. The tool support for the .NET implementation consisted of Visual Studio
2010 (with Unit Testing Framework), the Internet Information Services (IIS) web
server, and SQL Server Express.

2.2.3 Approach

The case study has been conducted in a systematic way by starting from a stable
and operational implementation of the proposed enterprise application, offering a
well-specified functionality as summarized above. For all the platforms that have
been addressed, we have conducted the minimal but sufficient modifications to deliver
exactly the same functionality of the corresponding enterprise application. We have
reported systematically on our activities and we then had two independent scores by
experts to express the quality of the underpinning PaaS environment.

First, we have migrated the on-premise application to a SaaS application on top of the
different PaaS platforms, without taking into account multi-tenancy. After this first
step, quantitative results with respect to portability have been gathered in the form
of the amount of lines of code that have been changed compared to the on-premise
version. This results into a score for the compatibility requirement. Furthermore,
scores are assigned to each platform to express the quality of the provided integration
support.

26 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Next, the SaaS implementations on the different platforms have been adapted and
extended (if necessary) to support application-level multi-tenancy. Subsequently, a
qualitative score is assigned for each subrequirement of the multi-tenancy support (as
described in Section 2.2.1). This score is mainly based on the availability of built-in
support to address the specific requirement and to which degree. When a platform
does not provide built-in support, we have validated whether it is possible to fulfill
the requirement by means of a custom implementation, and we have assessed how
much effort such custom implementation requires (in terms of lines of code).

Finally, the quality of the tool support associated with each platform has been assessed
based on the hands-on experience with these tools during the entire development
process. Again, scores have been generated for each individual subrequirement.

The details of the different case study implementations and results are discussed for
each requirement separately in Sections 2.4, 2.5, and 2.6. In addition, with each new
release of a platform that has been investigated, the implementations and scores have
been updated (when necessary). These updates were logged to keep track of the
evolution of the platforms. Relevant findings with respect to these new releases are
discussed in Section 2.7.

2.3 Presentation of the PaaS platforms

We distinguished three categories to classify PaaS platforms with respect to their
support of Saa$ application development (Table 2.2). For each category we selected a
mature and representative platform to compare these different categories, in particular
Force.com [182, 219] (Category 3), Google App Engine [77] (Category 2), and Windows
Azure [134] (Category 1). This section summarizes each of the Paa$ platforms that
have been selected. Furthermore, the specific setup and version that we used during
the comparison are specified.

2.3.1 Force.com (Version 19.0 - 25.0) - Category 3

Force.com [182, 219] is a cloud computing platform that makes the core technologies
behind Salesforce CRM [183] available for developing and deploying custom enterprise
applications, and also extensions for the Salesforce CRM application. It provides
a development environment to deliver business applications that run against the
Salesforce.com database (data-centric) [11]. The targeted consumers are private
enterprises and commercial software providers.

The key enabling technologies of the Force.com platform are multi-tenancy and
metadata. Everything exposed to developers and application users is stored internally

PRESENTATION OF THE PAAS PLATFORMS 27

Table 2.2: Classification of the major PaaS platforms into the three categories we
distinguished. The majority of the current PaaS platforms belong to category 1,
because they build on common application servers and middleware platforms and
focus on migration of existing applications to the cloud.

PaaS platforms
Amazon Elastic Beanstalk [5] Oracle PaaS [159]

Cloud Foundry [211] Red Hat OpenShift [175]
Category 1 CloudBees [49] SAP NetWeaver [184]

Heroku [89] Windows Azure [134]

IBM SmartCloud [94] WSO?2 Stratos [17, 222]

AppScale [43] Google App Engine [77]
Category 2 GigaSpaces’ XAP Elastic Application Platform [76]

Cordys PaaS [157] TCS InstantApps [192]
Category 3 Force.com [182, 219] WOLF [221]

Force.com

Polymorphic application

1 Core Resources

Runtime Engine) App Logic

1 App Distribution

Collaboration
Database.com
Security

I Tenant-specific metadata |

I Common metadata |

I Application data |

Figure 2.3: Force.com’s metadata-driven architecture, based on [219]

as metadata. At runtime the required application components are generated by
the runtime engine (kernel), based on these metadata [219]. These application
components are combined into a polymorphic application, fulfilling the individual
expectations of various tenants and their users [219]. As depicted in Fig. 2.3, the
underpinning database clearly separates the metadata describing the base functionality
of an application, the metadata corresponding to tenant-specific customizations, and
the actual application data. Custom business logic and functionality can be written in
Apex, a strongly typed, object-oriented programming language (part of App Logic

28 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

in Fig. 2.3). Other cloud services provided by the Force.com platform, called core
resources, are for instance AppExchange (App Distribution), a marketplace for cloud
applications, and Chatter (Collaboration), a suite of collaboration and social features.

As is typical for PaaS platforms of category 3, Force.com applies a different approach
and programming model compared to the traditonal middleware frameworks because
of the metadata-driven architecture. It takes a more scripting-based approach
using a dynamically interpreted language (i.e. Apex). We used the pure Force.com
platform without third-party extensions for implementing the application case. The
implementation is developed on versions 19.0 (Summer *10) till 25.0 (Summer ’12) of
the Force.com platform.

2.3.2 Google App Engine (Java SDK 1.3.6 - 1.6.0) - Category 2

Google App Engine (GAE) [77] is a PaaS plaform that enables the development and
hosting of web applications on the same systems that power Google applications. It
is targeted at traditional web applications, but it is less suitable for general-purpose
computing [11]. This allows Google to enforce a clean separation between a stateless
computation tier and a stateful storage tier. Furthermore, GAE supports automatic
scaling and load balancing as the needs for traffic and data storage grow. To handle
large and complex requests or to do continuous processing, GAE provides more
powerful backend instances. Backends do not automatically scale based on the load
and can retain the state of the application.

The following programming languages are supported:

« Standard Java technologies, including the JVM, Java servlets and the Java
programming language, or any other language using a JVM-based interpreter or
compiler (e.g. JavaScript, Ruby and Scala).

+ The Python progamming language, including the Python standard library.

The Java and Python runtime environments are implemented as a secure sandbox
where an application can run without interference from other applications, indepen-
dent from the underlying hardware and operating system. In the rest of this paper
the discussion is limited to the GAE’s Java runtime environment.

A simplified overview of the GAE architecture is presented in Fig. 2.4. Incoming
requests are routed to an application server by a load balancer. Clones of the
application are automatically created when needed. The platform provides a variety of
cloud services, such as the users and mail services, to support application development.
At the lowest level a distributed datastore service provides schemaless object storage,
a blobstore serves binary large objects (called blobs), and a memcache service offers a
high performance in-memory key-value cache. The datastore consists of the Megastore

PRESENTATION OF THE PAAS PLATFORMS 29

Google App Engine

1 Load Balancer

Libraries
App Engine Services

Applications

!

— I ——
Blobstore

Figure 2.4: Overview of the Google App Engine architecture

storage system [19], an abstraction layer built on top of Bigtable [40]. It combines
the scalability of a NoSQL datastore with the convenience of a traditional relational
database. The datastore is divided into separately replicated partitions, with full ACID
semantics within these partitions, but limited consistency guarantees across them [19].
In addition, only the scalable traditional relational database features are supported.

For this comparison we used GAE with Guice [78], Google’s dependency injection
framework, to add better modularity and customization capabilities to the platform.
This allows us to develop the price calculation variation as a module that can
dynamically be selected when needed. We used GAE SDKs 1.3.6 till 1.6.0 in this
comparison.

2.3.3 Windows Azure (SDK 1.2 - 1.6, C#) - Category 1

The Windows Azure platform [134] is a cloud computing platform supporting the
development and deployment of Windows applications that provide services to
both businesses and consumers. These applications can be created using the .NET
framework in languages such as C# and Visual Basic, or they can be built without the
NET framework in C++, Java, PHP, Ruby and Python. Windows Azure is originally a
PaaS platform but since November 2010 it is also possible to deploy virtual machine
(VM) images of Windows Server (2008), which is a form of IaaS. Notice that Windows
Azure provides not necessarily an execution environment for all supported languages.
For example, Java APIs are available for the different Azure services, but the developer
has to install a JVM and an application server in an Azure VM himself.

The Windows Azure platform is a group of cloud technologies, each providing a
specific set of services to application developers [41] (see Fig. 2.5):

30 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

[Applications] | Libraries | | Data |

Windows Azure AppFabrlc SQL Azure

Service Access
Bus][Control Cachlng B
SQL Azure
Database
AppFabric Container

Windows Azure

l Compute | Storage

Fabric Controller

Figure 2.5: Overview of the Windows Azure architecture [41]

» Windows Azure: A Windows environment for running applications (Compute) and
storing data (Storage) in the cloud. A Windows Azure application can be created
using three kinds of compute service types, called roles: (i) a Web role for running
web-based applications, (ii) a Worker role for (background) processing, and (iii) a
VM role to run VM images. An application is structured as any combination of role
instances. Web and worker role instances consist of a Windows Server 2008 R2 VM
with the .NET 4.0 framework pre-installed. In a web role, there is also an IIS web
server available.

The storage service consists of blob storage (course-grained, unstructured data),
table storage (set of entities with properties, NoSQL), and queues (asynchronous
communication between different roles). All data is accessible via a REST API and
the OData query language for tables. The Fabric Controller makes abstraction of
the underlying infrastructure and offers a pool of processing power to the compute
and storage services.

o SQL Azure: A cloud-based service for relational data, built on Microsoft SQL Server.

« Windows Azure AppFabric: A middleware platform on top of Windows Azure
that provides a higher level of abstraction and reduces the complexity of cloud
development [135]. The AppFabric Container provides a new programming model
and runtime for cloud application development using .NET core languages [148].
The AppFabric Container itself is not publicly available and therefore not further
discussed in this paper, but Microsoft offers several AppFabric Services on top of
this container, for example caching. Recently, the AppFabric Services have been
renamed to Windows Azure Features.

PORTABILITY 31

The Windows Azure platform provides an environment that strongly corresponds to
a traditional on-premise setup (cf. Category 1), this especially applies to the Windows
Azure Compute service and SQL Azure. In this comparison we focus on Windows
Azure using traditional .NET frameworks in the C# programming language and the
Ninject dependency injection framework [102]. We also include SQL Azure into the
comparison. The case study application is implemented using Azure SDKs 1.2 - 1.6.

2.4 Portability

The main driver behind portability over PaaS platforms is the need (by SaaS
providers) for support to facilitate the transition from on-premise towards the
SaaS-based deployment models. More specifically, we have identified the following
subrequirements: (i) compatibility with the mainstream programming model and
middleware frameworks, and (ii) easy integration with cloud services, platform-
specific as well as external.

The comparison of the portability support is structured as follows. We describe
for each platform first the compatibility of the programming model and then the
integration support. The former subrequirement discusses a) the platform-provided
programming model and middleware, and b) the extensibility of the platform. The
latter consists of integration with platform-specific services, and external (cloud)
services and applications. Finally we give a brief summary of our findings regarding
portability. Table 2.3 presents an overview of the portability support on the three
Paa$ platforms.

2.4.1 Force.com

The programming model of the Force.com platform is incompatible with the on-
premise model of the hotel booking application. However, it provides extensive
integration facilities with external applications and services on different (cloud)
platforms and using other programming languages.

Compatibility with mainstream technology

The metadata-driven architecture and the Salesforce.com-specific Apex language
are incompatible with common programming models and middleware frameworks
and therefore hinder portability across different platforms. Concretely, this means
none of the implementation artifacts of the on-premise versions can be reused. A
full rewrite of the application is required. Due to this lack of compatibility with

COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

32

Table 2.3: Overview of portability support on the three investigated PaaS platforms

Compatibility Integration support
« Apex integration with core resources
Not compatible: (e.g. database)
Force.com + Metadata-driven (e.g. data model) « Web Services & REST API
+ Apex language (Force.com-specific) « Including utilities (e.g. APIs) for different
programming languages and platforms
Limited compatible:
« Datast Bigtabl ia M t
« White list of Java classes (e.g. no EJB or JAX- atastore (Bigtable) via Megastore
WS servers) « Google Apps services
GAE
« JPA: limited + GAE-specific code « URL Fetch (low-level)
« Extensible: REST, Guice... (support limited « Remote API (GAE-specific)
by white list)
Fully compatible: « Platform-provided services via common .NET
frameworks
« Common .NET frameworks (MVC, WCEF,
Azure Unity...) « Azure Table Storage: no support

« Extensible by importing libraries

« ADO.NET EF: only SQL Azure

« Web Services & REST API

« Service Bus (AppFabric)

PORTABILITY 33

traditional programming models, it is also not possible to (re)use existing middleware
frameworks on top of the Force.com platform. Such middleware support should be
provided by the platform itself, or be specifically written for Force.com and made
(publicly) available, for instance via the AppExchange marketplace. First, we describe
the programming model used by Force.com. Next, the Apex language is introduced
and illustrated.

Business objects. Force.com focuses on building data-centric business applications
and this influences the way the application is designed. The developer has to reason
in terms of business objects (BOs). Business objects represent the data that will be
stored in the database. In contrast to for example entities in Java EE, BOs cannot
contain any behavior. Moreover, they are not specified in a programming language
(code), but have to be created via a point-and-click web interface and are stored as
metadata in XML (Listing 2.1).

Relationships [42] between business objects are created by specifying relationship
fields that map records in one object to records in another. Force.com has two types
of relationship fields:

« The Lookup Relationship is used to create one-to-one and one-to-many relationships
between objects, without a direct dependency.

« The Master-Detail Relationship creates a tight parent-child relationship between
two objects. The relationship field is required on all child records and deletes
are cascaded from the parent to the child. This relationship type also enables the
creation of many-to-many relationships through the use of a junction object.

In the case study implementation on top of Force.com we used both relationship types.
When a travel agency removes a hotel from the online hotel booking application,
all rooms and bookings related to that hotel should also be deleted. Therefore the
application needs master-detail relationships: rooms are details of a hotel, while
bookings are details of room. However, the master-detail relationship requires that
all relationship fields are set at the moment of object creation. This prevents creating
tentative bookings that are not yet added to a room. To solve this issue, we had to
extend our data model with an Invoice that manages all tentative bookings of a
specific customer during one session (via a master-detail relationship), and stores the
total price of these bookings in the invoice object. An invoice also has a status field,
and only when the status of the invoice changes to ‘closed’ a booking is considered
finalised. Between a Hotel and an Address we used a lookup relationship, as shown
on lines 31-39 in Listing 2.1.

[B N N O N N

34 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Listing 2.1: A fragment of the raw metadata of a simple business object (BO)
representing the address of a hotel. In total it consists of 100 lines of XML.
Clearly, implementing even a simple BO is not recommended using this metadata
representation.

<?xml version="1.0" encoding="UTF—8"?>
<CustomObject xmlns="http://soap.sforce.com/2006/04/ metadata”>

<label>Address</label>
<pluralLabel>Addresses</pluralLabel>
<description>Address of a hotel.</description>
<fields>
<fullName>City__c</fullName>
<externalld>false</externalld>
<label>City</label>
<length>25</length>
<required>true</required>
<type>Text</type>
<unique>false</unique>
</fields>
<fields>
<fullName>Nb__c</fullName>
<description>House number.</description>

</fields>

<fields>
<fullName>Postal_Code__c</fullName>
<description>Postal code</description>

</fields>

<fields>
<fullName>Street__c</fullName>
<description>Name of the street.</description>

</ fields >

<fields>
<fullName>Hotel__c</fullName>
<externalld>false</externalld>
<label>Hotel</label>
<referenceTo>Hotel _c</referenceTo>
<relationshipLabel>Addresses</relationshipLabel>
<relationshipName>Addresses</relationshipName >
<type>Lookup</type>

</fields>

</CustomObject>

Apex. The Apex language is used to create, persist and update instantiations of
business objects, and to query the database via a built-in query language. When a
business object is materialized in the Apex language, it is called an sObject. sObject
is also the generic abstract type, comparable with Object in Java. Furthermore the
Apex language is used to implement controller classes for the user interface, to invoke
external web services, and to expose operations in a web service.

Queries on the Force.com database are expressed in the Salesforce Object Query

[B N N O

PORTABILITY 35

Language (SOQL). SOQL is an object query language (cf. JPQL for Java Persistence)
that is integrated in the Apex language and uses the abstraction provided by the
business objects and their relationships to navigate through the application data. The
syntax is similar to the one of SQL, but it does not support all advanced features such
as joins, wildcards or calculation expressions. Besides SOQL, Force.com also supports
the Salesforce Object Search Language (SOSL) which enables text searches across all
persisted objects.

Since a business object itself cannot validate input data, validation rules need to be
specified separately. The validation rules consist of mathematical formulas that allow
to compare input data with other data (predefined thresholds or data from other BOs).
For instance, a validation rule checks whether the end date of a booking period is
after the start date. However, these mathematical formulas are not powerful enough
to perform all necessary validation checks. For example, it is not possible to define a
loop that iterates over multiple BOs (in a list). This is required in the case study to
check the availability of a room (by iterating over the different bookings of the room):
a room may only be booked when there is no other booking in the same time period.

To implement more complex business logic and validation rules like checking the
availability of a room, the Apex language needs to be used. By means of database
triggers, pieces of Apex code are executed before or after events occur on an sObject,
for instance the insertion of a BO. Apex triggers enable developers to change BOs
when such events occur, or to perform complex validation checks.

Listing 2.2: Apex trigger to check the booking period of a new Booking. It illustrates
the use of the Apex language and other aspects of the Force.com programming model.
Custom sObjects are represented by their sObject name with ‘__c’ appended to
the end as a suffix, for instance Booking__c. Relationship names in SOQL queries
consist of the related object name followed by *__r’, e.g. Room__r.

trigger CheckBookingPeriod on Booking _c¢ (before insert,
before update) {
for (Booking__c triggeredBooking : Trigger .new) {
// Retrieve all finalized bookings
List <Booking__c> finalizedBookings =
[SELECT b.Id, b.Start__c, b.End__c FROM Booking__c b
WHERE b.Invoice__r.Status__c = ’Closed’
AND b.Room__r.Id = :triggeredBooking.Room__c];

// Check for overlap
for (Booking ¢ b : finalizedBookings) {
if (b.End__c < triggeredBooking.Start__c
|| b.Start__c > triggeredBooking.End__c) {
continue ;
} else {
triggeredBooking . Start__c.addError (
’Room _may _not_be _booked_in_given _period.’);

1

36 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

For example, CheckBookingPeriod (Listing 2.2) is an Apex trigger in our case study
implementation to check the availability of a room. For each newly inserted or
updated booking, this trigger first retrieves via a SOQL query all finalized bookings
for the same room as the triggered booking (lines 4-7). Next, the trigger checks
whether there is an overlap between the booking period of the triggered booking and
the finalized bookings (lines 10-18). An overlap will result in an error (lines 15-16).
When no overlap is detected, the execution of the normal insert (or update) operation
will continue (line 13).

Integration

The Force.com platform provides extensive integration capabilities. First of all, it
offers a tight integration between the Apex language and the core resources (platform-
provided services), for example the database. Apex is used for creating, modifying
and querying database objects (via SOQL) and to write database triggers. Furthermore
the language can be directly applied to implement user interface controllers, unit
tests, and web services. Thanks to this integration with Apex, developers can use
these facilities out of the box without having to write additional (integration) code.

Next, the platform provides support for integration with external applications and
services that use other programming languages and platforms. Developers can create
and expose SOAP-based web services using Apex, or invoke external SOAP- and
REST-based web services from the platform. In addition, the Force.com Web Services
and REST APIs provide direct access to the Force.com data from an external system.
These APIs are fundamental integration points, allowing access via clients on any
platform. To ease the integration with these external (client) applications, software
utilities (called toolkits) are built around these core APIs. There exist toolkits for
(i) programming languages such as Java, .NET and Ruby, (ii) cloud platforms such
as Amazon Web Services [4] (S3 and EC2), Google App Engine [77] and Windows
Azure [134], and (iii) mobile platforms like Android and iOS. Concretely, they support
native development approaches with using the Force.com Web Services and REST
APIs. Furthermore the Force.com database is also available as a standalone service
(Database.com) using the same toolkits. This enhances the reusability of applications,
data and services outside the Force.com environment. For example, a new (version of
a) SaaS application can be developed on a different platform without having to port
all data to the other platform.

Finally, additional integration facilities are available in the AppExchange marketplace,
for instance ERP connectors and data integration solutions.

PORTABILITY 37

2.4.2 Google App Engine

Google App Engine (GAE) supports Java and other JVM-related languages and
is extensible with common middleware frameworks. But this compatibility
has its restrictions, limiting the portability across different Java-based platforms.
Furthermore, the platform-provided cloud services are well supported. Integration
with external services, however, is limited.

Compatibility with mainstream technology

In contrast to Force.com, GAE is compatible with the common programming model
used in the on-premise case study implementation by supporting Java and other
JVM-related languages, which facilitates the portability enormously. However, this
compatibility is limited: to maintain scalability a number of restrictions are imposed,
and some technologies and APIs are completely or partially unsupported by the
underpinning platform. This results in adaptations to the application specifically for
GAE.

In addition, GAE can be extended with other middleware frameworks, for instance
Restlet [152] for RESTful web services. To use these frameworks additional (external)
libraries have to be imported into the application. However, the imposed restrictions
and incompatibilities also limit this extensibility. The result is that many middleware
extensions do not work on top of GAE or require changes to the source code, which
hinders an easy migration. For example, Restlet offers a separate edition, specifically
adapted to fully work with GAE.

Major parts of the data and web tier of the Java EE version could be reused (Table 2.4).
However, the business tier consisting of EJBs is not supported by GAE and therefore
this logic is integrated into the web tier. The other code changes in the data and web
tier are related to persistence. The different restrictions and incompatibilities imposed
by GAE as well as the differences with respect to persistence are discussed in further
detail in the following paragraphs.

Restrictions. A white list defines which Java classes of the JRE are allowed to be
used on the platform [79]. For example, the APIs to write to the filesystem or to
access the network are not available. Applications should use the provided datastore
and URL Fetch services. Also the use of threads or other kinds of system calls are not
allowed. Moreover web requests should be handled (in a single process) within 60
seconds. Processes that take longer to respond are terminated to avoid overloading
of the web server [77]. Actually, GAE is optimized for applications with short-lived
requests that take a few hundred milliseconds. These restrictions limit the options

38 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Table 2.4: Reuse of code (in terms of lines of code) between Java EE version and GAE
implementation. The last column indicates the ratio of the reusable code compared to
the full GAE implementation.

common # common % reuse % LoC

files LoC ofJavaEE of GAE

Data tier 11 555 91.74% 91.43%
Business tier 0 0 0.00% /

Web tier 28 916 90.42% 76.21%

Total 39 1471 78.00% 81.32%

of the developer, but are not insurmountable: the restrictions and their alternatives
need to be taken into account during application design. For example, the execution
of long-running processes can be moved to backend GAE instances.

Unsupported. GAE offers built-in support for only a limited set of technologies.
Among other things, this is due to the imposed restrictions. The web page “Will
it play in Java?” [80] lists the level of compatibility with various Java technologies
and frameworks. GAE’s main focus is on web applications using Java Servlets and
Java Server Pages (JSP), which have not a developer-friendly API to develop against.
Enterprise Java Beans (EJB) and JAX-WS (SOAP Web Services) for servers are examples
of two common technologies for enterprise applications that are not supported. Other
technologies are only partially supported, for example JPA, the persistence API we
used in the Java EE version of the online booking application.

Persistence. As explained in Section 2.3, GAE’s datastore is based on Bigtable [40],
a NoSQL database, while JPA is a standard interface for interacting with relational
databases. To support JPA the Megastore abstraction layer [19] provides an object-
relational mapping from RDBMS to NoSQL, though some features are not supported
by this mapping, such as ‘Join’-queries and aggregation queries. Therefore it is
not possible to perform JPQL queries that use those more advanced features. An
alternative for JPA is the Java Data Objects (JDO) persistence interface. JDO is
independent of the underlying database and therefore a better choice when building
a new GAE application.

However, independently from the used persistence interface, problems remain with
the use of primary keys for entities. In common practice a primary key is a generated
Long integer. Google App Engine, however, requires that in an entity relationship
the children objects have a primary key that represents the parent object. Types that
support such primary keys are a Key class, or a Key value encoded as a string. This

[RN R B N T

PORTABILITY 39

Key class is a Google-specific class, which hinders portability. Listing 2.3 and 2.4
show a small entity representing the address of a hotel (child-parent relationship),
respectively using default JPA and the version in GAE. Because the primary key refers
to the parent object (i.e. the hotel), each child object can have only one parent. This
limits the use of relationships and requires the data model to be structured in an
hierarchical way (e.g. bidirectional bindings are not allowed).

Listing 2.3: Address entity using Listing 2.4: Address entity in GAE
default JPA. (JPA).
1 | import com.google.appengine.
2 api.datastore .Key;
@Entity 3 | @Entity
public class Address { 4 | public class Address {
5
@Id 6 | @Id
@GeneratedValue (strategy= 7 @GeneratedValue (strategy=
GenerationType .AUTO) 8 GenerationType . IDENTITY)
private Long id; 9 private Key id;
private String street; 10 private String street;
private int number; 11 private int number;
private int postalCode; 12 private int postalCode;
private String city; 13 private String city;
private String country; 14 private String country;
15
public Address() { 16 public Address() {
17
} 181}
19 .
} 20 1}

Finally, it is not possible to use the @PersistenceContext annotation to declare
a dependency to an entity manager, which is used to create, remove and query
persistent entity instances. The developer has to manually create an instance of the
EntityManager when needed and close it afterwards, instead of it being managed
by the underpinning middleware.

Integration

While Force.com offers extensive integration support for platform-provided as well
as external (cloud) services, Google App Engine clearly focuses on the integration
of its own cloud services. The main platform-provided cloud services in GAE are
the storage and caching services. Each of these services have an API that supports
the integration with the application, often based on a standard, for example JPA,
JDO, and JCache, a proposed interface standard for memory caches. The Megastore
abstraction layer [19] provides the integration between the Bigtable datastore [40]
and the persistence interfaces by means of an object-relational mapping, though with

40 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

some incompatibilities. Furthermore, several Google Apps services are well integrated
into Google App Engine, for example Google Accounts for authentication via the
User service API and Gmail to send emails via the Mail service APL

Built-in support for integration with external applications or resources, however, is
limited. GAE applications can use the URL Fetch service, allowing HTTP(S) calls to
other services (via low-level connections and streams). In addition, SOAP-based web
services can be accessed by implementing a client using JAX-WS. Except for the Java
Servlet APL, GAE does not offer built-in support to make GAE applications accessible
from external services and applications. To provide or call a RESTful web service,
the SaaS provider has to import additional libraries, for example Jersey [158] and
Restlet [152]. The latter even requires a GAE-specific library with limited features.
Further, to develop a SOAP-based web service on top of GAE, SaaS developers
have to directly use javax.xml and JAX-B, and implement their own handlers for
SOAP messages. Finally, there exists a remote API to access the datastore of a GAE
application remotely, but this requires the installation of the GAE SDK and it offers
no standardized interface.

2.4.3 Windows Azure

Windows Azure is fully compatible with the existing .NET programming model and
frameworks. In addition, many options are available for integration with external
services and local as well as cloud applications. However, extensive support for
integration with the Azure Table Storage is lacking.

Compatibility with mainstream technology

In contrast to the white list of available classes in GAE, Windows Azure provides a
full NET stack, directly supporting commonly used .NET frameworks, such as the
WCF framework [137] and ASP.NET MVC [133]. Thus, the programming model used
for the .NET version of the case study implementation can be reused on Windows
Azure without any compatibility issues, except for persistence in combination with
Azure Table Storage. Also no restrictions like writing to the file system are imposed,
although this should be done with caution in a cloud environment.

Furthermore, the platform can be extended with any third-party .NET framework, as
long as this can be achieved by importing libraries. If an installation is required to
extend the platform, then a VM role should be used, because installing is not allowed
in the web and worker roles. However, in this case the SaaS provider will have to
manage and maintain the whole stack himself.

PORTABILITY 41

When using SQL Azure, 100% of the on-premise .NET implementation could be
reused (Table 2.5). Only some additional configuration files were required to use the
application on top of Azure. In the case that Azure Table Storage is used, less code
of the on-premise application can be reused. The majority of changes are related to
the data tier, where a custom (and probably not reusable) persistence layer had to be
developed to integrate with the Azure Table Storage. This issue with the Azure Table
Storage is explained in depth below.

Table 2.5: Reuse of code (in lines of code) between .NET version and Azure
implementations. The last column indicates the ratio of the reusable code compared
to the full Azure implementations.

common # common % reuse % LoC
files LoC of NET of Azure
SQL Azure
Data tier 23 584 100.00% 100.00%
Business tier 8 292 100.00% 100.00%
Web tier 33 1584 100.00% 94.45%
Total 64 2460 100.00% 96.36%
Azure Table
Data tier 21 512 87.67% 47.50%
Business tier 8 247 84.59% 76.00%
Web tier 33 1572 99.24% 93.96%
Total 62 2331 97.76% 75.78%

Persistence. For persistence the SaaS provider has the choice between the Azure
cloud storage (providing blobs, tables and queues), or SQL Azure (a relational
database deployed in the cloud). The latter option supports a transparent migration:
applications can access data stored in SQL Azure using the ADO.NET Entity
Framework, in the same way as accessing SQL Server locally. The major difference
with the local version is that the SQL Azure database is located outside the SaaS
provider’s boundaries. Therefore we have to change the connection string. In
Listing 2.5 the implementation of an Address entity is presented. While in Force.com
validation rules for BOs are separately defined, the ADO.NET Entity Framework
allows developers to add validation rules as annotations.

On the other hand, the Azure cloud storage provides a schemaless persistence service
with a much higher scalability than SQL Azure (comparable with Google’s Bigtable).
As Google App Engine does inherently, the Azure Table Storage can be used as

0NN U W =

42 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Listing 2.5: Address entity using the ADO.NET Entity Framework.

public class Address
{

[Key, DatabaseGenerated(DatabaseGeneratedOption.Identity)]

public int Id { get; set; }

[StringLength (30, MinimumLength=3)]

public string Street { get; set; }

[Range (1, 9999)]

public int Number { get; set; }

[Range (1, 999999)]

public int PostalCode { get; set; }

[StringLength (25, MinimumLength=3)]

public string City { get; set; }

[StringLength (15, MinimumLength=3)]

public string Country { get; set; }

an alternative for SQL Azure. However, the ADO.NET Entity Framework (EF) is
not compatible with the Azure Table Storage, because it is an object-relational
mapping (ORM) framework. Therefore, there exists no programming support for
domain entities and entity relationships when using the Azure Table Storage. In
our implementation we decided to represent an Address entity the same way as in
Listing 2.5, but without a (generated) identifier (without lines 3-4). The validation
rules can be used by the MVC framework to do input validation.

Integration

Windows Azure offers extensive integration facilities for platform-provided services
as well as external services and applications. The main platform-provided services
are the storage services and the AppFabric services (i.e. service bus, access control
and caching) [135]. The programming model for these services is often based on
common .NET frameworks, such as the ADO.NET Entity Framework (for SQL Azure)
and WCF [137], which enables easy integration. The caching service provides an API
that is comparable to the Memcache service of GAE, and can be used after limited
configuration changes. However, the Azure Table Storage is not well integrated
in the programming model. Integration with external services and applications is
provisioned by the Service Bus by AppFabric and by the use of SOAP- and REST-based
web services. In the following paragraphs we discuss in depth the issues with the
Azure Table Storage, and integration with external services and applications.

Azure Table Storage. GAE hides the complexity of the Bigtable datastore by
providing a mapping from RDBMS (JPA) to NoSQL (Bigtable). Windows Azure,
however, does not offer this integration support for its table storage and this results in

PORTABILITY 43

additional complexity for the developer (cf. Table 2.5). Developers have to manually
map the (self-defined) implementation of domain entities to a model that can be
stored in the Azure Table Storage. This is especially complex when the domain model
contains many entity relationships.

Tables in Azure can contain different types of entities and each entity should have a
unique primary key. This key consists of a partition key and a row key. The former
defines in which partition an entity is stored. Different partitions can be stored on
different servers. The row key should be unique within one partition. However, to
improve searching for specific entities those keys should be built using well-known
information (e.g. non-mutable properties of the entity) instead of generated unique
IDs. The only advantage of this complex interface is that it provides developers more
control to optimize data storage for specific queries.

Another approach to improve searching is the denormalization of data: data can
be stored in multiple tables to facilitate specific search queries. However this
complicates the updating of the data enormously: when updating data in multiple
tables, consistency should be preserved.

For the implementation of our application case on top of Windows Azure using
the table storage, we distinguished two options: (i) store all entities of the same
type in one partition, or (ii) use one partition per hotel (together with its address,
rooms and bookings). The first option is the easiest to implement: the entity type is
used as partition key, and in the row keys of the rooms and bookings we integrate
the hotel name and room number to represent the entity relationships. The second
option offers a better performance to query and update the rooms and bookings of a
particular hotel. These entities are all stored in one partition, and thus require only
one transaction. The choice between these or other options depends on which queries
are most frequently used. In case of a small set of data, all entities can be stored in a
single partition.

We decided to apply the first option for our implementation. Because each hotel has
an address, the Hotel and Address entities are stored in one row of the table for
hotels. This HotelRow (Listing 2.6) inherits from TableServiceEntity to indicate
it is an entity in the Azure Table Storage. For the other domain entities we made
similar Row classes. Based on [136], we developed a custom persistence layer for
the mapping from our domain entities (e.g. the Address in Listing 2.5) and entity
relationships to these lower-level entities in the Azure Table Storage.

External services and applications. Access to and from external services and
applications is possible via SOAP- and REST-based web services. For example,
using the WCF framework the developers are able to expose the SaaS application
to external applications. Furthermore, the Azure cloud storage provides a RESTful

O 0N U AW =

44 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Listing 2.6: Hotel entity in the Azure table storage.

public class HotelRow : TableServiceEntity

{
public string HotelName { get; set; }
public string Street { get; set; }
public int Number { get; set; }
public int PostalCode { get; set; }
public string Place { get; set; }
public string Country { get; set; }

API to enable direct access to data from external systems. As with Force.com, this
enhances reusability of applications, data, and services outside Windows Azure.

In addition, the Service Bus is an AppFabric service that provides secure messaging
and connectivity capabilities, enabling integration between different applications
in the cloud as well as locally. It supports various communication and messaging
protocols as well as patterns, ensuring reliable and scalable message delivery. For
instance, the Service Bus can be used to create an hybrid application, composing Azure
applications with internal components. However, this service is only available at an
additional cost. Other announced AppFabric services that support the integration
requirement are Integration and Composite App [135, 148].

2.4.4 Summary

Compared to Google App Engine and Force.com, Windows Azure offers the best
portability support. It is fully compatible with the .NET programming model and
frameworks, and also offers extensive integration support. Only the support for
the Azure Table Storage is limited. For instance in the case of our hotel booking
application, the use of SQL Azure is certainly recommended, because the domain
model contains too many relationships.

Force.com is incompatible with the mainstream programming models used in the
on-premise implementations of the application case. However, it copes with this issue
by providing a wide set of integration capabilities with other programming languages,
applications and (cloud) platforms. This enables the decomposition of applications:
an application should not be entirely developed on top of Force.com, but it can be
integrated with components on other platforms, locally as well as in the cloud.

While Force.com clearly focuses on business applications with its good built-in
integration support, Google App Engine aims to facilitate development with good
compatibility and to hide complexity. This compatibility, however, has its limitations.
Integration support is especially focused on Google’s own services, and does not

MULTI-TENANCY 45

provide built-in support to create SOAP- or REST-based web services (in contrast to
Force.com and Azure).

2.5 Multi-tenancy

Multi-tenancy is an important enabler for SaaS applications to achieve better
operational efficiency [44, 84]. This section has the following structure for the
discussion of each platform. First we describe the general approach applied by the
platform to provide multi-tenancy support. Next we discuss for each platform how
it addresses the three identified subrequirements, i.e. data isolation, tenant-specific
configuration and customization, and tenant-specific application management. Finally
we summarize the main conclusions regarding multi-tenancy support by the three
investigated PaaS platforms. Table 2.6 gives an overview of the multi-tenancy support
provided by the different investigated PaaS platforms.

2.5.1 Force.com

Force.com offers built-in support for data isolation as well as tenant-specific config-
uration and customization by providing each tenant with a separate environment.
In addition, it supports the tracking of tenant usage via the License Management
Application (LMA).

General approach

Development and deployment (production) on Force.com typically takes place in an
environment or organization, frequently shortened to org [90]. Such an environment
provides a number of features for applications within that environment and ensures
all tenant-specific data (including metadata) are separated from other orgs. The
Force.com platform offers two ways to deliver applications depending on who the
SaaS consumers are:

« Single Org model: the application runs in the org of the SaaS provider. This model
is especially applied by organizations to build applications for internal use, only
accessible by the own employees (i.e. SaaS provider and SaaS consumer are the
same organization).

« Distributed Org model: the application is packaged and installed by SaaS consumers
in their own Force.com environment (or org). This model is suitable for developing,
running and distributing a multi-tenant Saa$ application.

COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

46

Table 2.6: Overview of multi-tenancy support in the three PaaS platforms

Data isolation

Tenant-specific
configuration &
customization

Tenant-specific
application
management

Force.com

GAE

Azure

Every tenant has its own
Force.com environment (org)

« Namespaces API

« Manual mapping of requests
to namespace

No support:
« Manual data isolation
« No built-in tenant context

« Manual mapping of re-
quests to tenant context

« App Distribution
« Extension packages

« Custom objects and code

« Dependency Injection
(Guice Provider)

« Manual configuration
management

« Only if data isolation is
ensured

« Dependency Injection
(Ninject Provider)

+ Manual configuration
management

License Management
Application (LMA)

n/a

n/a

MULTI-TENANCY 47

Since we want to offer the hotel booking application as a multi-tenant SaaS application,
only the distributed org model is relevant for this paper. All components that make
up the application (i.e. application metadata) are bundled together in a package. This
package can be made available to the Force.com market via AppExchange (part of
the App Distribution core resource). This is a central directory service that enables
tenants to find and install applications.

Packages exist in two forms. The unmanaged package form is intended for the
distribution of applications or components, together with the source code. By
installing an unmanaged package the tenant receives its own copy, which can be
modified independently from the creator of the package. Managed packages, however,
obfuscate most of the source code and permit package creators (i.e. SaaS providers) to
offer upgrades.

Dataisolation

By providing each tenant with a separate environment or org, Force.com inherently
supports data isolation. When a tenant installs a reference to an application in its
org (e.g. the hotel booking application), the application metadata is copied into its
org. This application metadata is separately stored in the multi-tenant database,
together with the tenant-specific metadata (configuration and customizations) and
the application data (see Fig. 2.3).

Each org also specifies the different users and user groups of the tenant, as well as their
roles and permissions. Login names of users are automatically mapped to a specific
tenant and org. The creator and owner of the org receives the tenant administrator
role, responsible for the management of the installed applications (e.g. configuration)
and user management.

Tenant-specific configuration & customization

The metadata-driven architecture of the Force.com platform enables tenants to
configure and customize the application to fit their specific requirements. To offer a
customizable SaaS application as described in the case study, the SaaS provider can
provide extension packages. These enable the creation of new functionality on top of
a base managed package. Extension packages can also be managed or unmanaged. By
means of these extension packages SaaS providers are able to offer multiple variants
of their application. In the implementation of our hotel booking application, the price
calculation strategy based on the customer profile can be implemented as an extension
package. The tenant administrator can configure the application by selecting and
installing the necessary extension packages.

48 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

In addition, the tenant administrator can further tailor the application by adding
custom data objects and Apex code (i.e. tenant-specific metadata), or by integrating
the application with other applications installed into his org. As mentioned above,
managed packages obfuscate most of the source code. Therefore tenant-specific
customizations are limited to a class of changes that do not hinder seamless upgrades
(by the SaaS provider) from occuring.

The Force.com platform almost transparently supports the development and deploy-
ment of multi-tenant applications via the App Distribution. However, the SaaS
provider has to take several trade-offs into account. Depending on which features
of the platform are used in the application, tenants should have a specific Force.com
edition. This can be partially solved by offering different versions via extension
packages. In addition, some features cannot be packaged (yet) and require manual
configuration by the tenant administrator.

Tenant-specific application management

The License Management Application (LMA) of Force.com facilitates tracking of
installation and upgrades of the managed packages created by the SaaS provider. The
LMA enables the SaaS provider to apply licensing on managed packages to control
how many end users in a tenant organization can access the package and for how
long. LMA is available as an application in AppExchange. Force.com, however, does
not support tenant-specific performance and resource consumption monitoring,.

2.5.2 Google App Engine

Built-in multi-tenancy support provided by Google App Engine (GAE) is limited
to data isolation. Tenant-specific configuration and customization can be achieved
by using dependency injection (as explained below), but this requires additional
implementation work by the SaaS provider. GAE also lacks support for tenant-specific
application management.

General approach

To support the development of multi-tenant applications, GAE provides the
Namespaces APL. A namespace is set globally for each tenant using the namespace
manager. More specifically, the namespace corresponds to a unique tenant ID and
represents the context containing the information of the tenant linked to the current
request. The GAE APIs that support namespaces will automatically use this current
namespace (e.g. datastore and memcache). However, it is still possible to change

MULTI-TENANCY 49

the current namespace locally while processing a request. Wrong usage can lead to
unintended data leaks between different tenants.

Dataisolation

The Namespaces API automatically supports the partitioning of data across tenants
by specifying a unique namespace for each tenant. Thus, by assigning a unique
namespace to each tenant (e.g. the tenant ID), data isolation is preserved. Internally,
the datastore and memcache store, update and query data based on the current
namespace. Global data, accessible by all tenants, can be stored in a separate
namespace. However, the mapping of an incoming request to a specific namespace
does not occur automatically. A practical solution is presented in the following
paragraph.

In addition, GAE lacks support for proper user management of a multi-tenant
application, for example to assign the tenant administrator role. The Google Accounts
and the Users service are not sufficient to distinguish the tenant administrator from
normal end users. Separate roles only exist for the SaaS provider (administrator and
developer). Therefore SaaS developers should develop their own user management
system (as part of the application) to allow the tenant administrator to configure
the application. This is certainly necessary when access control is an important
requirement.

Mapping to namespace. For each request we have to retrieve the tenant ID and
set the namespace for that request, ensuring that the request will be processed in the
context of that tenant (tenant-specific data and configuration). For the implementation
of the hotel booking application on top of GAE, we determine the tenant ID based on
the used Google Apps domain (URL) to access the SaaS application. Applications can
be deployed to any Internet domain owned by the SaaS provider and registered in his
Google Apps account. Each domain then corresponds to a namespace.

Incoming requests with a specific domain name (i.e. tenant ID) should be mapped
to a namespace. Therefore we use Java Servlet Filters (cf. [77]). A filter dynamically
intercepts requests and responses, enabling the inspection or transformation of the
contained information. For every request our TenantFilter (Listing 2.7) checks
whether the namespace is already set. If not, the tenant ID is retrieved from the
Google Apps domain (line 17). Next, the namespace is set to this tenant ID (line 19).

0NN U W =

50 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Listing 2.7: TenantFilter to set the current namespace.

@Singleton

public final class TenantFilter implements Filter {

// The filter config with initialization data.

private FilterConfig filterConfig = null;

// init method is called by the container when filter is instantiated.
public void init(FilterConfig filterConfig) throws ServletException {
this . filterConfig = filterConfig;

}

public void destroy () {

this . filterConfig = null;

public void doFilter (ServletRequest request, ServletResponse response,
FilterChain chain) throws IOException, ServletException {
// Only when namespace is not set.
if (NamespaceManager.get() == null) {
// retrieve tenant ID (Google Apps domain name)
String tenantID = NamespaceManager.getGoogleAppsNamespace ();
// set namespace
NamespaceManager. set (tenantID);
}
// invoke next filter (if available)
chain. doFilter (request, response);

1}

Tenant-specific configuration & customization

Google App Engine does not support tenant-specific configuration and customization
of applications. In our implementation, we achieved it by using Google’s dependency
injection framework, Guice (v3.0) [78]. We discuss this in depth in the following
paragraph. The tenant-specific configuration settings are stored as part of the tenant
data. However, in contrast to Force.com, there is no support for tenant administrators
to manage this configuration themselves (via a configuration interface). Similarly,
GAE lacks support for the SaaS provider to develop and manage the different features
of an application. Both require additional development by the SaaS provider.

Tenant-aware dependency injection. Dependency injection (DI) is a design pattern
where component dependencies are managed by an injector, rather than relying on
the component itself to fill in the dependency [66]. By using such a DI framework [66]
on top of GAE, we are able to support tenant-specific customization. Instead of
instantiating the feature implementations directly in the application, the flow of
control is inverted: the life cycle management of feature implementations is controlled
by a dependency injector. This injector binds dependencies in the application to a
specific implementation component. In the case study, this means that the dependency
of the hotel booking application on IPriceCalculatorStrategy is bound to

MULTI-TENANCY 51

one of the available feature implementations (cf. DefaultPriceCalculator and
CustomerProfileBasedPriceCalculator in Fig. 2.2).

Originally the configuration of a GAE application is stored in the web . xm1 file, which
is shared by all tenants. By means of Guice, the configuration can be dynamically
loaded. However, the dependency injector is shared by all tenants. This hinders
the isolated execution of tenant-specific customizations: all dependencies are set
globally and any modification would affect all tenants. This is a general problem with
dependency injection because it does not support activation scopes.

To solve this issue, we added an extra level of indirection. Instead of injecting features,
we inject a Provider for that feature. This way the servlets have a dependency to
a provider of a feature instead of to the feature itself. However, the customizations
that can be performed this way are limited to switching between implementations of
an interface or abstract class. Listing 2.8 presents the PriceCalculatorProvider
that decides based on the tenant-specific configuration which feature implementation
of the IPriceCalculatorStrategy feature should be selected: normal price
calculation or with discounts based on the customer profile (lines 19-21). This feature
implementation is then instantiated (line 29). If no tenant-specific configuration
for this feature is set, the default option is retrieved and instantiated (lines 24-27).
The instantiated tenant-specific feature implementation is stored in the (namespace-
enabled) Memcache to improve performance.

Tenant-specific application management

GAE applications can only be monitored on a per application basis, which is too
coarse-grained for multi-tenant SaaS applications. The Java SDK of GAE includes a
suite of tools for measuring the performance of applications, called Appstats. Appstats
integrates with the application using a servlet filter to record events, and provides a
web-based administrative interface for browsing statistics. To enable tenant-specific
monitoring, the SaaS provider will have to manually filter and record the incoming
requests per tenant, as far as this is possible. Additional implementation is also
required to support billing and to track which features are used by the different
tenants.

2.5.3 Windows Azure

Windows Azure offers no support for multi-tenancy. SaaS providers will have to
provide this themselves. If data isolation can be ensured, tenant-specific configuration
and customization can be achieved, for example by using dependency injection
(cf. Google App Engine).

0NN U A W N R

52 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Listing 2.8: Provider to retrieve the tenant-specific IPriceCalculatorStrategy feature
implementation.

import com. google.appengine.api.memcache. MemcacheService;
import com.google.appengine.api.memcache. MemcacheServiceFactory;
import com.google.inject.Provider;

public class PriceCalculatorProvider
implements Provider <IPriceCalculatorStrategy > {

private String bindingType;
private MemcacheService cache;

public PriceCalculatorProvider () {
this.bindingType = IPriceCalculatorStrategy .class.getName ();
this.cache = MemcacheServiceFactory.getMemcacheService ();

}

@Override
public IPriceCalculatorStrategy get() {
if (! cache.contains (bindingType)) {
// Retrieve tenant—specific config for price calculator feature.
Configuration conf =
ConfigurationManager .INSTANCE. getTenantConfiguration (bindingType);
try {
if (conf == null) {
// Tenant—specific configuration not set, retrieve default one.
Class <?> def = ConfigurationManager .INSTANCE.
getDefaultConfiguration (bindingType). getValueAsClass ();
cache.put(bindingType, def.newlnstance ());
} else {
cache.put(bindingType, conf.getValueAsClass (). newlInstance ());
}
} catch (Exception e) {
// Failed to create tenant—specific customization.
}
}
// Retrieve tenant—specific price calculator feature from cache.
return (IPriceCalculatorStrategy) cache.get(bindingType);

1}

General approach

Windows Azure does not provide support for developing multi-tenant applications.
This lack of built-in support complicates the development and forces the SaaS
provider to implement its own multi-tenancy strategy. In [44] and [136] (Part 2,
Chapter “Hosting a Multi-tenant Application on Windows Azure”) different options
for implementing a multi-tenant application are presented, but this is limited to data
isolation.

[B S N O

MULTI-TENANCY 53

Data isolation

As part of the requirements of data isolation, we identified that two main components
are required: (i) a tenant context containing the information of the tenant linked to the
current request (via a unique tenant ID) (cf. namespace in GAE), and (ii) multi-tenant
data storage. Neither is provided by Windows Azure. The same applies to tenant-aware
user management (e.g. no tenant administrator role). The AppFabric Access Control
service also does not have built-in support for multi-tenant applications. Like in GAE,
this should be implemented by the SaaS provider. In the following paragraphs we
present our solution to obtain a tenant context and a multi-tenant data storage.

Tenant context. Similar to Google App Engine, a filter is required to intercept
the incoming requests and to set the current tenant context. It is also possible
in Azure to assign a separate domain to each tenant of the SaaS application.
However, custom domains are not supported when using SSL, because the IIS
web server can only have one SSL certificate associated with a port (default port
443). In this case the tenant ID in Windows Azure is determined based on the
context path of the URL: https://<azure-account>.cloudapp.net/<appli-
cation>/<tenant-id>/x*.

For the hotel booking application, we acquire the tenant ID from the context path via
the MvcApplication.RegisterRoutes method provided by the MVC framework
and add it to the request context (see lines 6-10 in Listing 2.9). Each route consists of
a route name, a template URL, and a list of default parameters. The presented route
sends the requests to the BookingController, calling the Index () method. In the
same way as the controller and action parameters are added to the request context,
the tenant ID is passed through with the “tenant” key.

Listing 2.9: RegisterRoutes method to acquire the tenant ID.

public class MvcApplication : System.Web. HttpApplication
{

public static void RegisterRoutes(RouteCollection routes)
{
routes . MapRoute (
”Default”, // Route name
“{controller}/{tenant}/{action}/{id}”, // URL with parameters
new { controller = "Booking”, action = ”"Index”,
id = UrlParameter.Optional }); // Parameter defaults

0NN U W =

54 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

The next step consists of setting the current tenant context. To represent the tenant
context we use TenantController, an abstract MVC controller class with the filter
method OnActionExecuting. All other controllers (e.g. the BookingController)
inherit from this TenantController and therefore have access to the tenant context.
Listing 2.10 shows the TenantController: it retrieves the tenant ID from the
request context by means of the “tenant” key (lines 20-22), verifies the tenant ID
(lines 26-27), and then sets the current tenant (line 25). The TenantStore refers to
the table storage containing information about all tenants. This approach is based
on the Windows Azure Architecture Guide (Part 2) [136], but it is limited to MVC
applications. Alternatively, a similar approach with namespaces like GAE can be used:
an application-wide tenant context manager storing the tenant context of the current
request.

Listing 2.10: TenantController containing the current tenant context.

public abstract class TenantController : Controller

{

private readonly ITenantStore tenantStore;

public TenantController (ITenantStore tenantStore)

{
}

public ITenantStore TenantStore

{

get { return this.tenantStore; }

}

public Tenant Tenant { get; set; }

this.tenantStore = tenantStore;

protected override void OnActionExecuting(
ActionExecutingContext filterContext)
{

string tenantld;

if (filterContext.RouteData.Values[”tenant”] != null)

tenantld = (string) filterContext.RouteData.Values[”tenant”];
else

// throw exception because of missing tenant in request context
if (Tenant == null)
{

Tenant = TenantStore.GetTenant(tenantld);

if (Tenant == null) // or other wvalidation check

// throw exception because of invalid tenant ID

}

base.OnActionExecuting (filterContext);

Multi-tenant data storage. A multi-tenant data storage can be obtained by applying
filters that intercept the calls to the storage API and inject the tenant ID from the

MULTI-TENANCY 55

associated tenant context. In addition, comparable interceptors are necessary for the
caching service (distributed in-memory storage). This forms a tenant-aware layer on
top of the data storage, which makes abstraction of the chosen data isolation strategy.

In [45], three distinct approaches for creating multi-tenant data architectures are
identified. A common solution on Azure to achieve tenant-aware data isolation is
to assign a separate SQL Azure database for each tenant. This is a simple approach
for the SaaS provider, but rather expensive for the tenant. The selection of the right
data isolation strategy also depends on the kind of data (e.g. number of relationships
between the data entities), and the kind of queries on these data. We integrated
tenant-aware data isolation into our implementation of a custom persistence layer
for Azure Table Storage. Isolation is achieved by adding the tenant ID (retrieved from
the tenant context) to the partition key of each entity.

Tenant-specific configuration & customization

Windows Azure offers no support for tenant-specific configuration and customization.
However, if data isolation is ensured and the tenant IDs can be retrieved, for
instance using the approach described above, it is possible to achieve tenant-specific
customization via dependency injection (cf. our approach on GAE). Azure also lacks
support for tenant administrators to manage the tenant-specific configuration and
for SaaS providers to develop and manage the different features. The SaaS provider
should develop and provide this, preferably as a reusable framework. The next
paragraph describes our approach for tenant-specific customization using the Ninject
dependency injection framework (v2.2) [102].

Tenant-aware dependency injection. To achieve tenant-specific customization
using dependency injection, we have applied the same approach as on Google App
Engine. The Ninject dependency injection framework is, like Guice, not tenant-
aware. However, Ninject uses by default a provider, the StandardProvider. Each
dependency is handled by this provider, and therefore there is no direct binding
between a type (i.e. interface) and the injected implementation. A provider can decide
based on a IContext parameter which implementation should be injected. This
offers the perspective to make Ninject tenant-aware by passing the tenant ID via
this context parameter. It requires additional development by the SaaS provider to
ensure (i) the right tenant ID is added to the context parameter, perhaps by means of a
dedicated IContext implementation, and (ii) the tenant ID is used by a tenant-aware
provider to return the right customization based on the tenant-specific configuration.

Listing 2.11 presents our solution for tenant-specific customizations on top of Azure.
We provided a PriceCalculatorModule, which is used to assign PriceCalcula-
torProvider as the custom, tenant-aware provider for injecting the price calculation

0NN A W N =

56 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

feature on a per tenant basis (lines 13-14). This PriceCalculatorProvider first
tries to retrieve the tenant-specific configuration for the price calculation feature, or
when not available, the default one (lines 26-32). Next, it can retrieve and instantiate
the appropriate implementation for the IPriceCalculatorStrategy feature (lines
34-35). Another approach for tenant-specific customizations using MVC and Ninject
is presented in [63], but it is not applied on top of a cloud platform.

Listing 2.11: Structure of the PriceCalculatorModule and the PriceCalculatorProvider
on Azure.

public class PriceCalculatorModule : NinjectModule

{

private readonly ITenantStore tenantStore;

public PriceCalculationModule (ITenantStore tenantStore)

{
this.tenantStore = tenantStore;
}
public override void Load()
{

// Register custom provider for the price calculation feature.
this.Bind<IPriceCalculatorStrategy >().
ToProvider (new PriceCalculatorProvider (tenantStore));
1
public class PriceCalculatorProvider
Provider <IPriceCalculatorStrategy >
{

protected override IPriceCalculatorStrategy
Createlnstance (IContext context)
{

var bindingType = typeof(IPriceCalculatorStrategy).FullName;
var tenantld = GetCurrentTenant(context);
// Retrieve tenant—specific config for price calculator feature.
Configuration conf =

configurationManager. GetConfiguration (tenantld , bindingType);
if (conf == null)
{

// Tenant—specific configuration not set, retrieve default one.
conf = configurationManager.GetDefaultConfiguration (bindingType);
}
// Return tenant—specific instance for price calculator feature.
return Activator.Createlnstance (Type.GetType(conf.BindingValue))

as IPriceCalculatorStrategy;

Tenant-specific application management

Similar to Google App Engine, Windows Azure only supports application-specific
monitoring, which is too coarse-grained. To fullfil the requirement of tenant-

TOOL SUPPORT 57

specific application management, SaaS providers will have to implement this facility
themselves.

2.5.4 Summary

Force.com is the only Paa$ platform that provides built-in support for data isolation
as well as tenant-specific configuration and customization. Concretely, the SaaS
developer does not have to write additional code to support multi-tenancy (Table 2.7).
The only condition is that both the SaaS provider and the tenants have an account
(org) on Force.com. Multi-tenancy support on Google App Engine is limited to data
isolation, while Windows Azure lacks any support for the development of multi-tenant
SaaS applications. If data isolation is ensured (via Namespaces API or manually),
we demonstrated that dependency injection can be used to support tenant-specific
customizations, but in a limited way compared to Force.com (for instance, tenants
cannot add custom code). In addition, the SaaS developers should implement support
for tenant-aware user management (e.g. to assign the tenant administrator role), and
for managing the different features and configurations (i.e. configuration interface).
This development effort is considerable, at least 600 to 750 lines of code to achieve a
minimal support for multi-tenancy (Table 2.7). In the case of GAE, the Namespaces
API enables a rather modularized approach to add multi-tenancy support. On Azure,
however, the additional code for multi-tenancy support is scattered across the different
tiers of the application, adding up to the development and maintenance complexity.
Finally, none of the investigated PaaS platforms fully addresses the tenant-specific
application management requirement.

2.6 Tool support

Tool support plays an important role to achieve smooth adoption of Paa$ platforms.
We discuss for each platform how it tackles the three identified subrequirements
concerning tool support: (i) a development environment, (ii) a local development
server and storage, and (iii) a testing framework. Table 2.8 presents an overview of
the tool support provided by the different investigated PaaS platforms.

2.6.1 Force.com

The main development environment of Force.com is a web interface and it does not
provide a local development server or storage. Unit tests are written in the Apex
language. To develop and test applications on top of Force.com, a (free) Development
Environment (DE) account is required.

COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

58

Table 2.7: Overview of the code size (in lines of code) of the full implementations of the hotel booking application on top of the
different Paa$ platforms. The last column indicates the ratio of the implementation for multi-tenancy support compared to the
full implementation. Note: the code size of the Force.com implementation also includes the metadata that is generated by using

the point-and-click interface.

Type # files # lines of code % multi-tenancy
Apex 8 753
Force.com XML (generated metadata) 24 615 /
VisualForce 6 229
Java 41 1830
JSP 16 616
GAE XML (config) 3 72 +29%
HTML 4 24
SQL Table SQL Table
C# 56 69 1791 2509
Azure ASP.NET Web Page 23 23 919 919 +21%
XML (ASP.NET config) 9 9 197 187

59

TOOL SUPPORT

S[003 1593 OIpN)S JenstA

sonI[In Sur
159} autduy ddy 9[3000)

sI91[30 2 U

P212A00 2q 03 Spaau
o9poo xady [JOo %G/

3593 J1u) xody

12AI9G (ssaxdxy) TOS

I07e]
-nuo 28e103s 29 andwo)) o

UOT)R[NWIIS 2I0)SEIEP
29 ToAIds qam Juawdo[Pad(

9j0WAI SABM[Y

SIS 2INZY SMOPUIAN *

ursnyd orpnjg [ensip o

juy ayoedy
+IJs surduy ddy

urdnd asdroy -
(urdnyd asdroq)
([WOD3DI0]

(ureur) 90RJISIUT O ©

amzy

UI09°3210]

yjromourery wﬁ_uwo,ﬁ

ageI10)s 3 I9AI3S
jyuswdoaaap Ted07

JUIWUOIIAUD
juawrdoyasag

surrofjed geeq pajednsaaur 921y} 3y} 10j 310ddns [00] JO MIIATIAQ :8°C I[qEL

60 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

Development environment

Force.com offers two development environments: an online development environment
inside the browser and an IDE based on Eclipse. The web interface supports SaaS
developers with creating custom objects and workflows, modifying business objects,
and writing Apex code. In addition, tenant administrators are able to administer the
application (e.g. configuration, user management and security controls). Compared
to the web interface the Force.com IDE is not mature yet: the provided functionality
is limited to writing Apex code and Visualforce pages (UI), and some features do
not work well, for instance auto-completion of SOQL statements or Visualforce code
as well as refactoring. Therefore, SaaS developers are often forced to use the web
interface instead of the IDE they are familiarized with.

Local development server & storage

To make the application resources accessible via the web interface, all code and
metadata is synchronized with the Development Environment (DE) account on
the server. The platform does not provide a local development server or storage:
validation and execution only occur at the server side. This has as consequence that
the IDE is less responsive than the web interface (each ‘save’ operation results in a
synchronization) and prevents integration with the Eclipse debugger. In addition, this
constant synchronization with the server complicates collaboration between multiple
developers because there is no versioning support. This issue can be solved by using
a Partner Development Environment which is a master repository environment to
manage all the source code; each developer can check out to his own DE.

Testing framework

Force.com requires the creation and execution of unit tests to deploy Apex code to
a production environment. These test classes and methods are written in the Apex
language and verify whether a particular piece of code is working properly. At
least 75% of the Apex code should be covered before deployment is possible. This
encourages test-driven development and improves correctness of the Apex code.
An example of a test method for the CheckBookingPeriod trigger is presented in
Listing 2.12. Notice that the approach is similar to unit tests in common programming
languages.

0NN U W =

TOOL SUPPORT 61

Listing 2.12: Test class with test method for the CheckBookingPeriod trigger.

@isTest

private class TravelApplicationTest {

static testMethod void testBookingOverlap () {
// Perform preparation of test method:

// 1) Create and store an invoice.

// 2) Create a new invoice with overlapping booking

Invoice__c invoice = new Invoice__c(Status__c = ’Negotiating);
insert invoice;
Booking__c booking = new Booking__c(Invoice__c = invoice.Id,
Start__c = date.newlnstance(2012, 8, 13),
End__c = date.newlnstance (2012, 8, 18), ...);

// Start the test.
// The context changes to that of the CheckBookingPeriod trigger.
Test.startTest ();
try {
// Insert the overlapping booking
insert booking;
} catch(System.DmlException e) {
// Assert that an exception is thrown: insertion of booking failed.
System. assert (true);
}
// Stop the test, this changes the context back to test from trigger.
Test.stopTest ();

1}

2.6.2 Google App Engine

Google App Engine comes with an Eclipse plugin, a local development web server
and datastore simulator, and testing utilities to support the writing of unit tests. A
(free) Google account is only required to deploy the application in the cloud.

Development environment

To ease the development of Java App Engine applications, Google offers a plugin for
Eclipse (Java EE version) to create, test and upload applications from within Eclipse.
In contrast to the Force.com IDE, this plugin works smoothly. There is only a small
issue with the (rather frequent) updates of the GAE libraries: when collaborating
with multiple developers this can lead to inconsistencies.

Local development server & storage

The Google App Engine SDK includes a development web server that simulates the
GAE Java runtime environment and the supporting services such as the datastore and

62 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

the users service. While the Force.com IDE sends all code to an external server, this
development server allows to extensively test GAE applications locally. The server
can be executed in the Eclipse debugger via the Google plugin, or via the command
line (using Apache Ant). However, the behaviour of applications running on the
development server does not always correspond to their behaviour on top of GAE. For
example, objects that are stored using the Memcache service should be serializable,
however this is not required by the development server. Applications that run on the
development server, therefore not necessarily work on top of GAE. Force.com does
not have this problem, because applications are always validated and executed on the
(remote) Force.com platform.

Testing framework

The SDK also contains testing utilities to support the writing of unit tests that have
dependencies on Google App Engine services. The LocalServiceTestHelper
class is a helper class that handles the setup of the environment. To configure
the local GAE services, it requires a LocalServiceTestConfig instance as
argument for each used service. For example, when using the datastore service,
a LocalDatastoreServiceTestConfig instance should be passed as argument
to the constructor. The GAE testing utilities are not tied to any specific testing
framework, so it is possible to use JUnit, a widely used unit testing framework for
Java. In contrast to Force.com, unit tests are not mandatory. Listing 2.13 shows
the outline of a JUnit test case with dependencies on the Datastore and Memcache
services.

2.6.3 Windows Azure

Development for Windows Azure is supported by a Visual Studio plugin and a compute
and storage emulator. Visual Studio provides by default the necessary testing tools to
write unit tests. Deployment of applications on Windows Azure requires an Azure
account.

Development environment

The Windows Azure SDK is available in a standalone version or can be installed
together with the Windows Azure Tools, a plugin for the Visual Studio IDE. These
tools are also available for Eclipse to support Java development for Windows Azure.
Moreover, it is possible to import existing .NET projects into a new Azure project.
This supports the migration from an on-premise implementation to Azure.

0NN U W =

TOOL SUPPORT 63

Listing 2.13: Example of Google App Engine testing utilities.

public class HotelManagementTest {

private final LocalServiceTestHelper helper =
new LocalServiceTestHelper (new LocalDatastoreServiceTestConfig(),

new LocalMemcacheServiceTestConfig ());

@Before

public void setUp () throws Exception {
// Setup configuration of local Datastore and Memcache
helper.setUp ();

}

@After

public void tearDown () throws Exception {
helper.tearDown ();

}

@Test

public void testAddRoom () {
// Perform the AddRoom operation

// Assert the correctness using the Datastore and Memcache services

Local development server & storage

The Windows Azure SDK offers a compute and storage emulator. This enables
Saa$S developers to test their Windows Azure applications locally without an Azure
account. There exists no local SQL Azure database, but applications that access SQL
(Express) Server locally will largely work unchanged with SQL Azure. For example,
distributed transactions across multiple databases are not supported by SQL Azure.
Other differences are less important and only apply in exceptional cases. In contrast
to Force.com and Google, Microsoft does not provide a free developer account to
deploy and test applications in the cloud.

Testing framework

To create unit tests the existing testing tools provided by Visual Studio can be reused.
However, there is no direct support, like GAE provides, to test an application against
the storage tools of the Azure SDK. To effectively write unit tests for classes that
interact with Windows Azure Storage, it should be possible to mockup the calls
to the storage service. This can be achieved by writing a wrapper interface for
WindowsAzure.StorageClient that can be reused by all classes and applications
interacting with the storage service. This has been implemented in the sample
application for part 2 of the Windows Azure Architecture Guide [136]. Another

64 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

option is to setup the emulator with a default test configuration, like the Google App
Engine test utilities do.

2.6.4 Summary

All investigated platforms provide good tool support in the form of a plugin for a
commonly used IDE. However, in the case of Force.com the IDE is not sufficient to
develop an entire application, but only supports Apex and Visualforce development.
Google App Engine and Windows Azure also allow developers to use a standalone
version of the SDK in combination with the command line. Another difference
between Force.com and the two other PaaS platforms is the lack of a local development
server. While GAE and Windows Azure support local testing of cloud applications,
Force.com requires that all code is synchronized on their servers. Both differences are
disadvantages caused by the metadata-driven architecture of the Force.com platform.
Finally, all platforms support unit testing that is similar to the on-premise approach.

2.7 Discussion & challenges

In this section we discuss the different requirements for developing Saa$S applications
in the context of the different PaaS categories and relate these requirements to our
results. Further, we discuss the impact of the specific case study on our findings
and we briefly analyse the impact of our implementation decisions on these results.
Finally, we itemize a set of open challenges that we have identified.

2.7.1 Application of results to PaaS categories

The main challenge for SaaS providers is to select the most appropriate PaaS platform
(or category of PaaS) for their SaaS application. Our comparison has demonstrated
that none of the investigated cloud platforms stands out above the others with respect
to all three requirements concerning support for SaaS development.

Based on the results of this experience report, we can conclude that tool support is not
a key differentiator with respect to SaaS development. Most PaaS platforms already
offer good tool support in the form of a plugin for one of the common IDEs, and
integration support with unit testing frameworks (e.g. JUnit). A point of attention is
that the behaviour of the local development server should correspond with the cloud
environment to enable developers to fully test the SaaS application. For example, we
noticed this is not always the case with GAE.

DISCUSSION & CHALLENGES 65

Consequently, the selection between PaaS platforms can be reduced to the choice
between portability and multi-tenancy support. The three PaaS platforms (of different
categories) that we compared all relate differently to the portability and multi-tenancy
requirements (see Fig. 2.6). The metadata-driven PaaS platforms (e.g. Force.com)
are clearly the winner with respect to multi-tenancy. However, if portability takes
precedence, PaaS category 1 is the best option, with the platforms of category 2 as
runner-up. The following paragraphs discuss portability and multi-tenancy support
for each of the PaaS categories.

How the current Paa$S platforms relate to the ideal case

Ideal case
*
Azure

*
GAE

Portability of SaaS ——— >

*

Force.com

Support for multi-tenant Saas

Figure 2.6: Overview of how the three representative PaaS platforms that we
compared relate to the portability and multi-tenancy requirements. The data points
are based on the different scores as defined in Section 2.2.3. The right top corner
represents the ideal case of a Paa$ platform that fully addresses both requirements.
This figure clearly reveals the gap between the existing platforms and the ideal case.

PaaS category 1. The main goal of PaaS category 1 is clearly to support the
provider’s customers and developers in the migration from the on-premise to the cloud
model. To achieve this goal, these Paa$ providers try to support the standard APIs
that are used in popular enterprise application servers and middleware frameworks.
This is reflected by a high degree of portability, as clearly illustrated by Windows
Azure with its high level of code reuse (Table 2.5 and Fig. 2.6). Typically, using PaaS
platforms of this category results in code reuse of at least 90—95%. Moreover, the use
of standard APIs not only facilitates the migration from on-premise to Paa$, but also
between PaaS platforms of this category. Obviously, the latter is only valid as long as
the same programming language and similar APIs are supported.

Because these PaaS platforms are based on existing solutions with standard APIs,
they are often also available as a private cloud platform. For example, Red Hat
OpenShift [175] (Java EE and JBoss applications) and Cloud Foundry [211] (Spring

66 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

applications) are two open source PaaS platforms with both public and private cloud
offerings. This way, SaaS providers have the option to keep the execution of their
Saa$ applications in-house.

To improve performance and scalability, these PaaS platforms are extended with
typical cloud services, such as scalable storage and distributed caching. However,
support to integrate with these services is limited or lacking, and this requires a
significant amount of additional development by the SaaS provider. For example, we
had to build a custom persistence layer to map our domain model to row entities that
could be stored in the Azure Table Storage (Table 2.5). Some platforms of category 1,
for instance Amazon Elastic Beanstalk [5], provide vendor-specific SDKs to make
abstraction of the lower-level APIs for scalable storage services and to reduce the
development overhead. However, such an approach compromises the portability.

Support for developing multi-tenant applications is completely lacking in PaaS
category 1. The SaaS provider has to build the multi-tenancy support from scratch.
In this regard, we have shown how to achieve data isolation and to enable tenant-
specific customizations. The additional development effort is quite large (Table 2.7)
and therefore not recommended when operational cost benefits are not the priority.
Instead of developing the multi-tenancy support in-house, it can be acquired from
third parties. For example, Apprenda [10] is a private PaaS platform for .NET
web applications on top of SQL server. It supports the execution of multi-tenant
applications: it ensures data isolation and enables simple customizations, for example
in the user interface.

Since the need for support for traditional enterprise applications in the cloud is
increasing, Paa$ category 1 can play a crucial role in facilitating the migration of these
enterprise applications to the cloud. This also explains the high amount of platforms
in this category compared to the other categories (Table 2.2). But SaaS providers
could benefit more from economies of scale, if more development support would be
provided to integrate with scalable cloud solutions as well as to endow applications
with multi-tenancy.

PaaS category 2. 'The focused PaaS platforms are built on top of custom application
servers, aiming for higher elasticity and scalability. However, this high level of
scalability is achieved at the expense of portability. For example, APIs need to
be adapted and optimized. Often these platforms target a specific type of cloud
applications and offer some support for the development of such applications. For
example, both Google App Engine and the XAP Elastic Application Platform by
GigaSpaces [76] provide an abstraction layer on top of their scalable cloud storage
to support JPA, though with limitations. Because of this focus on specific types of
cloud applications, the set of supported technologies is limited, and different results
for portability are obtained depending on which type of application is implemented.

DISCUSSION & CHALLENGES 67

In the case of the hotel booking application on GAE, around 78% of the Java EE code
could be reused, which seems quite acceptable.

With the rise of more established middleware providers in the PaasS field (Table 2.2),
the PaaS platforms of category 2 try to extend their offerings to enhance portability.
For example, we noticed that GAE gradually adds new Java classes to its white list
and recently, Google added a MySQL database service to its offering (i.e. Google
Cloud SQL). In addition, Google released a REST-based cloud storage API to access
the datastore, thus improving integration. Both are still in beta phase. However, for
each of these extensions, they still take non-functional requirements like scalability
into account.

The focused PaaS platforms typically support data isolation for multi-tenant
applications. We consider this to be a first step in the right direction. For example, GAE
offers the Namespaces API to provide a multi-tenant database. However, development
support for tenant-specific configuration and customization is lacking, so is a tenant-
specific application management facility lacking as well. Similar to the platforms
of category 1, the multi-tenancy support has to be custom developed, as illustrated
in Section 2.5. Because a core requirement for multi-tenancy, i.e. data isolation, is
already present, the additional development effort is less complex, but still substantial
(Table 2.7).

PaaS category 3. The metadata-driven PaaS platforms, like Force.com, lack any
compatibility with common programming models. This is mainly because, compared
to PaaS categories 1 and 2, these platforms offer a composition and configuration
interface at a higher abstraction layer. Even non-developers, who do not have any
programming experience, could be able to build cloud applications by using a point-
and-click interface to complete forms and models. Additional business logic and
custom user interfaces are written using platform-specific programming/scripting
languages. In our implementation, the development effort was acceptable (Table 2.7),
because we tried to use the built-in features as much as possible, for example the
standard web pages to access and manage the business objects (e.g. hotels and rooms)
in the Force.com application. Only the booking process required the development of
a custom user interface and corresponding controller (using VisualForce and Apex).

Moreover, this higher abstraction level limits the complexity of the applications and
especially the processing logic that can be implemented. The lack of portability
by the metadata-driven platforms is a core issue of this approach and cannot be
bridged by the SaaS providers themselves. As the migration to PaaS platforms of this
category requires a full rewrite, it inherently means that the application is also not
easily portable to other PaaS platforms (even of the same category). Therefore, these
platforms try to compensate it with extensive integration capabilities. With almost
each new release, Force.com extended its set of toolkits to improve integration.

68 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

The metadata-driven PaaS platforms are the only Paa$S category that offers full-fledged
support for multi-tenancy, enabling tenants to customize SaaS applications to their
preferences, even via custom code. It is remarkable that for example Salesforce.com,
a company that is rather new in the role of middleware (platform) provider, beats the
rest of the field in terms of multi-tenancy support. Yet the support for tenant-specific
application management remains limited. For instance, Force.com does not support
tenant-aware performance and resource consumption monitoring.

2.7.2 Impact of case study application and implementation deci-
sions

The choice of the online hotel booking application as a case study has an influence
on the results of this experience report. So do the implementation decisions for the
on-premise application. We discuss both elements below.

Impact of case study application. The online hotel booking application is a
component-based web application, that does not depend on external web services or
applications. However, as discussed in Section 2.4, we did investigate the integration
support provided by the diffferent PaaS platforms to implement service compositions.
Using another case study, consisting of a typical service composition, would therefore
yield similar conclusions. (Yet it would enable us to illustrate how to solve the detected
integration issues.)

Further, the data model of the hotel booking application contains several relationships
between the different entities. Such a data model complicates the use of NoSQL
datastores, as illustrated by the Windows Azure implementation using the Azure
Table Storage. Also GAE imposes limitations on entity relationships. Blogs and
surveys are typical examples of applications that are suitable for such key-value
datastores, e.g. [136]. These applications have a simple data model with no or a
limited amount of relationships between the entities. In the case of GAE and Azure
Table Storage, we tried to solve this issue by applying a hierarchical data model with
unidirectional relationships. As shown by the GAE implementation, this approach
can work quite well. Therefore we think that the selection of the hotel booking
application with a more complex data model, did not have a major impact on the
results of portability. In addition, this decision resulted in the documentation of GAE
offering better development support on top of the Bigtable datastore compared to
Azure with the Azure Table Storage, as the latter clearly focuses on structured data
without entity relationships.

DISCUSSION & CHALLENGES 69

Impact of implementation decisions. We implemented two on-premise versions
of the case study application (i.e. a Java EE and a .NET version), which we used as
basis for the comparison of the three PaaS platforms with respect to the different
requirements. The implementation decisions have especially impact on the portability
requirement.

In the case of Force.com and other metadata-driven Paa$ platforms, the selection of
specific implementation technologies for the on-premise versions has no impact on
the results. The metadata-driven architecture and the Salesforce.com-specific Apex
language are incompatible with any common programming model or middleware
framework, and therefore different implementation decisions do not improve the
portability of the application.

The decision to use Enterprise JavaBeans (EJB) [210] in the Java version has a negative
impact on the portability to GAE. GAE is focused on web applications and therefore
the more heavy-weight component model of E]Bs is not supported. However, the
use of Java Servlets and JSPs for the front end of the application is in favour of
GAE. For example, a front end consisting of Web Services would have shown worse
results, because additional development is required for the handlers of SOAP messages.
Consequently, we can claim that the mix of supported and unsupported technologies
in the on-premise implementation generates a fair perspective on the portability
support provided by GAE.

Portability is no issue for the platforms of category 1 and therefore our implementation
decisions do not have a major impact on the results. Instead of the MVC framework,
we could have easily used the Windows Communication Foundation (WCF) [137], a
framework providing a unified platform for building service-oriented applications
based on SOAP or the REST approach. The same applies if we had evaluated a
Java-based PaaS from this category, e.g. Red Hat OpenShift [175].

2.7.3 Challenges

The main challenge that we extracted from the results of our work is the need to combine
portability with operational cost efficiency (as shown in Fig. 2.6). None of the three
categories of PaaS platforms sufficiently support both portability and development of
multi-tenant Saa$ applications. Currently, the focus of the existing platforms is on
only one of these requirements. The challenge is to combine the best of two worlds: (i)
maximum operational cost efficiency by supporting application-level multi-tenancy,
as well as (ii) portability across different platforms because of the use of mainstream
programming models and middleware frameworks. We consider opportunities to
address this challenge by architecting a middleware layer for application-level multi-
tenancy and by standardization. We discuss this in depth in the following paragraphs,
and identify several subchallenges concerning the different requirements based on

70 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

the results of this experience report on developing multi-tenant SaaS applications on
top of PaaS.

Middleware for application-level multi-tenancy. By applying multi-tenancy at
the application level, resource sharing between the different tenants and thus
operational efficiency are maximized. However, except for the metadata-driven
platforms, current PaaS platforms hardly provide any support for developing multi-
tenant applications. When needed, this support is currently implemented for each
application separately. Ideally, the multi-tenancy concern is modularized into a reusable
middleware service that can be enabled/disabled when necessary by the SaaS provider
and configured to the application-specific requirements. This way, SaaS providers
are able to easily endow their SaaS applications with multi-tenancy, without much
development overhead.

A first requirement for such a middleware layer is the availability of development
support for data isolation and tenant-specific customizations. We have explained how
this can be achieved on top of GAE and Azure via dependency injection, but this
approach should be generalized to reuse it for every application. A first step to
prototype such a middleware has been achieved in [214]. In addition, more research
is required to support the same level of flexibility in multi-tenant applications as the
metadata-driven platforms (e.g. Force.com) on top of the PaaS platforms of the other
categories.

Besides development support for data isolation and customizable multi-tenant
applications, major challenges still exist in achieving tenant-specific application
management and performance isolation at runtime. None of the Paa$ platforms that
we investigated fully address these two requirements.

Tenant-specific application management requires the administration of SaaS applica-
tions to be isolated between the different tenants, for example to enable SaaS providers
to monitor how many resources are consumed by a specific tenant (for billing and
SLA compliance). In addition, this includes the need for APIs and tools to support
application management, in particular for tenant-aware monitoring. Most of the PaaS
platforms are limited to managing and monitoring complete applications or even
VMs instead of on a per tenant basis. The monitored data is too coarsely-grained and
not suitable for multi-tenant SaaS applications. This is clearly an open challenge that
should be addressed by middleware as well as tool support.

Performance isolation is key to prevent one tenant from adversely affecting the perfor-
mance of other tenants and to ensure that the performance of the different tenants
comply with their service level agreements (SLAs) [84]. Typically, performance
isolation is achieved by using virtualization (e.g. Windows Azure) or at the middleware
level (e.g. GAE and Red Hat OpenShift). However, these approaches restrict resource

DISCUSSION & CHALLENGES 71

sharing between different tenants and have a higher application management and
maintenance cost. At the same time, more sharing complicates isolation between the
tenants. Currently, SaaS providers are unable to guarantee any performance-related
SLAs to their tenants when hosting a multi-tenant Saa$ application, even in the case
of the metadata-driven platforms. Therefore, this complexity to achieve performance
isolation in multi-tenant applications should also be tackled at the middleware level. In
the meantime, SaaS providers have to make a trade-off between operational efficiency
and fairness in the use of resources. This decision depends on the kind of application
and the tenant-specific requirements. Moreover, it is possible to deploy a combination
of multi-tenant and single-tenant applications to address the different requirements.

Standardization. Standardization is an appropriate solution to improve portability
of Saa$S applications across different on-premise and cloud-based platforms (public
as well as private) and to tackle vendor lock-in. Based on our observations in this
experience report, we believe that the need for standardization especially exist in
(i) the use of non-relational storage and typical cloud services like caching, (ii) the
support for multi-tenancy, and (iii) application management and monitoring. The
latter two are strongly related to the challenges of a middleware layer for application-
level multi-tenancy, as mentioned above. Standardization is especially relevant
for the APIs provided by such a middleware layer. The issue with non-relational
storage is illustrated with the Azure Table Storage, where we had to implement an
application-specific persistence layer ourselves. If we decide to replace Azure Table
Storage with an external cloud storage service, we would have to adapt this custom
persistence layer to the new APL Some platforms already offer a persistence layer
for non-relational storage (e.g. GAE and Amazon Elastic Beanstalk), but these are
vendor-specific approaches and compromise the portability.

In this regard, JSR 342, the Java EE 7 Specification [58], aims to enhance the suitability
of the Java EE platform for cloud environments and can therefore be an interesting
contribution to the standardization of Java-based Paa$ platforms. The goal is to extend
the Java EE platform with support for the PaaS model as well as a limited form of the
SaaS model, while preserving as much as possible the current programming model.
Concretely, the JSR proposes a.o. the following: (i) a definition of new platform roles
for the PaaS model, (ii) metadata support for provisioning, QoS, isolation etc., (iii)
potential standard APIs for non-relational databases, caching (JCache - JSR 107),
management and monitoring, and (iv) multi-tenancy support in existing APIs, for
example JPA. The latter is a first step to address the challenge of a middleware layer
for application-level multi-tenancy, although it focuses mainly on data isolation. The
proposed management and monitoring interfaces, however, are still at the granularity
of complete applications (i.e. middleware-level multi-tenancy). The same applies to
the specified isolation and QoS requirements.

72 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

With respect to integration support, standards exist in the form of SOAP- and REST-
based web services, and as we explained, they are already commonly used by the
different PaaS platforms. Only GAE did not have built-in support and required
external libraries or additional development. Furthermore, more effort is required in
providing development support and tools to improve integration with external cloud
services (e.g. datastores) and platforms. This is important to tackle vendor lock-in.
We notice that Force.com (with its toolkits), but especially the open source platforms
are currently the front runners. An example of such a library is jclouds [203], an open
source library that offers several API abstractions for cloud services like Amazon
S3 and Azure Blob Storage. Finally, OCCI [155] comprises a set of specifications
for cloud APIs to support integration, portability and interoperability. However, it
focuses especially on IaaS.

2.8 Related work

This section illustrates the gap in the current state of the art with respect to the
in-depth evaluation of cloud offerings based on practical case studies. The evaluation
of cloud offerings has been limited to general comparisons between the different
delivery models (i.e. IaaS, PaaS and SaaS), or discussions based on high-level concepts
(e.g. computing architecture, storage and load balancing). In the context of IaaS, more
in-depth studies and surveys have been conducted; this paper is to the best of our
knowledge the first of its kind in the growing space of PaaS. Furthermore, this section
discusses related work in the context of the main challenges that we identified based
on our results: support for multi-tenancy in SaaS applications and portability across
cloud platforms.

Surveys on cloud platforms. In the current state of the art, most research has been
done in the context of TaaS with platforms such as Eucalyptus [153], OpenNebula [198],
OpenStack [156] and CloudStack [46]. This results in surveys especially on IaaS
platforms, e.g. [172]. Our work, however, focuses on PaaS platforms, and more
specifically the development support for SaaS applications provided by these PaaS
platforms.

Armbrust et al. [11] distinguish different classes of utility computing based on the
level of abstraction. At one end of the spectrum they classify Amazon EC2 [2], and
at the other extreme of the spectrum application-domain-specific platforms such as
Google App Engine [77]. Windows Azure [134] is an intermediate point on their
spectrum. They compare how these three platforms virtualize computation, storage,
and networking and how scalability and high availability is ensured. Further, the
authors discuss the economics of cloud computing and what the opportunities and

RELATED WORK 73

challenges are for cloud computing in general, including the issue of data lock-in
(i.e. data portability across different platforms). The focus of their work is especially
on runtime properties of cloud computing, while we compare PaaS platforms based on
requirements related to the development of SaaS applications, i.e. portability, support
for multi-tenancy, and tool support.

Other work, such as [177, 178, 191], gives a general overview on cloud computing and
discusses IaaS, Paa$S as well as SaaS, including some examples. They are often limited
to the enumeration of some high-level concepts (e.g. computing architecture, load
balancing and storage), without any hands-on experience with the platforms. For
example, the book “Enterprise Cloud Computing” [191] addresses cloud computing
for enterprise applications, covering the common concepts and technologies like
web services, virtualization and multi-tenancy. In addition, the author introduces
several cloud platforms like Amazon EC2 [2], Google App Engine [77], and Windows
Azure [134]. Furthermore, the work discusses extensively the concept of metadata-
driven PaaS platforms, such as Force.com [182, 219] and InstantApps [192]. These
metadata-driven platforms are called Dev 2.0 platforms [190] by the author. We focus
on an in-depth comparison of PaaS platforms (including the Dev 2.0 platforms) with
respect to support for SaaS application development, on the basis of a case study that
involves the development of multi-tenant SaaS applications on top of different PaaS
platforms. Therefore, our work is complementary.

In [176], Reese explains how to design, build and maintain web applications that can
be deployed into the cloud, including how to move existing web applications to the
cloud. In addition, the book discusses differences between traditional on-premise
deployment and cloud computing in areas such as reliability, security and scalability.
However, the focus is on building applications on top of IaaS with Amazon Web
Services (AWS) [4] as primary example, and the work does not tackle the issue of
multi-tenancy at the application level. We, however, evaluate the development support
for Saa$ applications on top of several PaaS platforms, with support for multi-tenancy
as one of the key criteria to achieve higher cost efficiency.

Support for multi-tenancy in SaaS applications. The state of the art on multi-
tenancy in SaaS applications can be subdivided into multi-tenant data storage
(i.e. multi-tenancy at the data tier), and methodologies and patterns to achieve
multi-tenancy. Notice that multi-tenancy is only one of the requirements that we
investigated with respect to SaaS application development.

A key requirement to support multi-tenancy in SaaS applications is data isolation
between the different tenants. Chong et al. [45] identified three approaches for
managing multi-tenant data and described a number of patterns to realize a multi-
tenant data architecture. In [15], a new schema-mapping technique for multi-
tenant databases, called Chunk Folding, is presented. [16] compares five techniques

74 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

for implementing flexible schemas for multi-tenant SaaS applications. Our work
compares PaaS platforms with respect to development support for multi-tenant SaaS
applications, including data isolation. The schema-mapping techniques in the state of
the art can be applied by PaaS providers to support data isolation in the platforms, or
by Saa$ providers to implement this support themselves when it is absent.

In [44], Chong and Carraro present the four-level SaaS maturity model: (i) single-
tenant, a separate custom application per tenant, (ii) configurable single-tenant, a
separate instance of a configurable application for each tenant, (iii) configurable multi-
tenant, a single instance serving every tenant with configurable metadata, and (iv)
scalable, configurable multi-tenant, a load-balanced pool of identical multi-tenant
instances, which are configurable to the tenant-specific requirements. Furthermore
they describe a high-level architecture of a SaaS application, especially focusing on the
addition of metadata services to manage the tenant-specific application configuration.
Our work investigates the development of multi-tenant Saa$ applications, customized
to the tenant-specific requirements, on top of PaaS platforms. In principle, the PaaS
platforms take care of the scalability concern. Therefore, our goal is to develop
Saa$ applications that correspond to level 4 in the SaaS maturity model (i.e. scalable,
configurable multi-tenant).

Guo et al. [84] discuss the design and implementation principles to support the
development of multi-tenant applications. The focus is on better isolation of security,
performance, availability (i.e. fault isolation) and administration between the different
tenants. Our work, however, focuses on the comparison of PaaS platforms, based
on a practical case study, with respect to the provided development support for
multi-tenant Saa$ applications. The design principles presented by [84] can be applied
in our work when the support for multi-tenancy by the PaaS platforms is inadequate.

Bezemer et al. [25] describe how to enable multi-tenancy in software services.
They report their experiences with transforming an existing single-tenant software
system into a multi-tenant one by means of their reengineering pattern [24]. This
pattern requires three additional components: a multi-tenant database, tenant-specific
authentication and configuration. The resulting Saa$ application is hosted by the SaaS
provider itself and is not deployed on top of a PaaS platform. In this paper, we compare
the support offered by PaaS platforms to develop multi-tenant SaaS applications. One
of our requirements regarding SaaS development is the need for multi-tenancy support.
Therefore, the principles of the reengineering pattern complement our work and are
used as requirements for the multi-tenancy support.

Portability across cloud platforms. Andrikopoulos et al. [7] analyse the migration
of applications to the cloud based on a survey of the state of the art, identifying several
challenges. A complete migration of an application to the cloud using the available
cloud services is considered the most effective solution, however it requires the most

CONCLUSION 75

re-engineering effort, showing the need for portability. In this work, we apply such a
migration scenario and evaluate the support provided by PaaS platforms to develop
Saa$ applications based on a practical case study.

Mietzner et al. [139] propose an extension to the service component architecture
(SCA) standard, adding variability descriptors and multi-tenancy patterns. This way,
they try to combine portability with support for multi-tenancy. Similarly, [161]
applies SCA to deploy applications on top of multiple heterogeneous PaaS and IaaS
environments. Their federated PaaS infrastructure relies on their own FraSCAti
application environment for SCA applications that should be deployed on top of each
PaaS$ platform. In contrast to [139], their work does not offer support for multi-tenancy.
However, SCA focuses on a limited set of application types, and applications can only
be executed in a SCA-aware application environment (e.g. FraSCAti). In addition,
SCA can only ensure portability with respect to computation. For example, it does
not address the differences in the APIs of the different cloud services (e.g. storage,
caching, etc.), which we identified as an important challenge in the current PaaS
offerings.

The European mOSAIC project [166] develops a new platform with an open,
independent API to support heterogeneous hybrid clouds. The goal is to deploy
this platform on top of various existing Paa$ platforms to enable the portability of
component-based applications that are developed for their (new) platform. The latter
requirement, however, hinders the migration of existing, on-premise applications to
this platform. Moreover, support for multi-tenancy is not addressed by this work.

2.9 Conclusion

To benefit from economies of scale, software vendors aim to migrate from an on-
premise deployment model towards a Software-as-a-Service (SaaS) model. PaaS
platforms aim to facilitate the development and deployment of cloud applications by
delivering a computing platform and solution stack as a service. As with any paradigm
shift, many new and somehow competing technologies enter the arena; more and
more PaaS technologies have emerged. This evolution demands for independent
research on the relative value and performance of new types of technologies. Given
the broad spectrum of competing technologies, this paper addresses a selection of
three platforms that each can be considered to be representative for a larger category
of PaaS platforms.

The paper covers an in-depth investigation of the support of Force.com, Google App
Engine and Windows Azure for the development of multi-tenant SaaS applications.
The paper addresses these three representative PaaS platforms based on a practical
application case study. Google App Engine and Windows Azure provide better

76 COMPARING PAAS OFFERINGS IN LIGHT OF SAAS DEVELOPMENT

portability based on their compatibility with the mainstream development model,
but these platforms lack built-in support for multi-tenancy. Force.com introduces
a metadata-driven architecture and an interpreted programming language (Apex)
to support the development of multi-tenant applications that are tailored to tenant-
specific requirements. However, this approach hinders straightforward portability. A
major research and development challenge consists of providing the same level of
flexibility for multi-tenant applications (similar to Force.com), but on Paa$S platforms
that apply a more traditional and therefore portable programming model.

Clearly, application-level multi-tenancy remains an important challenge as PaaS
platforms offer insufficient support. Modularizing all aspects of the multi-tenancy
requirement into a reusable middleware layer is an essential track of ongoing and
future work. Finally, there is a need for standardization to improve portability of SaaS
applications across different (cloud) platforms and to tackle and avoid vendor lock-in.
Standardization is especially relevant for typical cloud services like scalable storage,
and also to support application-level multi-tenancy.

Besides SaaS development on top of PaaS platforms, it is definitely worth and
necessary to consider and evaluate other aspects of current Paa$S offerings, for example
operational aspects (e.g. monitoring, updating and patching), as well as business
aspects (e.g. contracting and pricing). In addition, it will remain important to follow-
up on the evolution and improving quality of existing PaaS offerings, also with respect
to portability, multi-tenancy and tool support. This paper therefore offers but one,
yet important, contribution to the experience reporting and analysis that is required
to guide and support the paradigm shift and transition to SaaS.

Acknowledgements

We thank the anonymous reviewers for their constructive comments to improve this
paper. We also thank Wouter De Borger, Maarten Decat and Dimitri Van Landuyt
for proofreading. This research is partially funded by the Research Fund KU Leuven,
the iMinds CUSTOMSS project and by the EU FP7 project NESSoS. CUSTOMSS is a
project co-funded by iMinds (Interdisciplinary institute for Technology), a research
institute founded by the Flemish Government. Companies and organizations involved
in the project are Agfa Healthcare, Televic Healthcare and UnifiedPost, with project
support of IWT (government agency for Innovation by Science and Technology).

Chapter 3

Middleware framework for
co-existing variants in
multi-tenant SaaS

Current cloud-enabling middleware and PaaS offerings do not sufficiently support the
development and customization of multi-tenant SaaS applications (see Chapter 2). To
address this concern, this chapter presents an advanced middleware framework that
builds upon these existing platforms and that provides the necessary support to realize
the run-time and context-sensitive composition of tenant-specific variants within
the same application instance. It is a framework in the sense that it provides both
a versatile architecture that supports different implementations and deployments,
and a set of reusable, loosely-coupled components that implement key parts of the
architecture [185]. This versatility has been demonstrated in several prototypes, in
the context of different applications and on top of diverse platforms, for example [74,
204, 213, 214]. Chapters 4 and 5 present two such instances of the architecture (each
with a different focus), and as such contribute to the evaluation of this framework.

Section 3.1 defines the scope, requirements and constraints that shape this middleware
framework. Subsequently, the architecture of the framework is presented in
Section 3.2. Finally, Section 3.3 elaborates on the versatility of the presented
middleware framework.

7

78 MIDDLEWARE FRAMEWORK FOR CO-EXISTING VARIANTS IN MULTI-TENANT SAAS

3.1 Architectural drivers

This section discusses the main architectural drivers that shape the middleware
framework for co-existing variants in multi-tenant SaaS applications. Besides the
main functional requirement of enabling tenant-aware customization, the scope of
the middleware and the key non-functional requirements have a major impact on its
architecture and constrain its openness.

3.1.1 Scope

The scope of the middleware is defined by (i) the stakeholders relevant to SaaS
application development, management and customization, (ii) the supported types of
Saa$S applications, (iii) the customization goals and mechanisms.

Stakeholders. The focus is on two types of stakeholders: Saa$ providers and tenants.
SaaS providers design, develop and host SaaS applications on top of an existing PaaS
offering or using cloud-enabling middleware. For these activities, the SaaS architect,
developer and operator are the relevant employees of the SaaS provider.

As the different tenants have different and varying requirements, they want to be
able to subscribe to a SaaS offering and to tailor the application to their specific
requirements and preferences. In general, the task of managing the SaaS application
on behalf of the tenant (e.g. user management, access control, configuration) is
assigned to the tenant administrator. In the context of this dissertation and in line
with the self-service characteristic of cloud computing, this specific role belongs to
an internal user of the tenant organization.

Application constraints. This dissertation focuses on distributed enterprise SaaS
applications, without putting any constraints on the types of applications that are
supported. As explained in Section 1.3, two common types of enterprise SaaS
applications have been used throughout this work, i.e. a request-driven, component-
based multi-tier (web) application and a batch-driven, workflow-based service
composition. Therefore, the middleware framework should support at least both
types of applications (see Chapters 4 and 5). As these two types of applications are
quite diverse, we expect the middleware framework to be sufficiently versatile.

A key constraint with respect to the supported SaaS applications is defined by
the feature-oriented application model. More specifically, applications should be
decomposable into features. These features consist of a set of modular software

ARCHITECTURAL DRIVERS 79

artifacts that can be easily composed to create tenant-specific variants of the
application.

Customization goals. The middleware framework is open with respect to the
customization types that are supported. Although different types of customization
exist at different levels in the software stack, the scope is limited to application
middleware. Thus, the focus of the middleware architecture is on enabling
tenant-specific customizations (tailored to both the functional and non-functional
requirements of the different tenants), which should be (fully) realized by or within
the application middleware. However, this should not prevent the middleware from
addressing concerns that are (mainly) tackled by the underpinning platform, such as
availability and scalability: the middleware architecture should define interfaces that
allow to control and direct the underpinning platform.

To validate the openness of the middleware framework, the following two chapters
address two different types of customization. We applied a demand-driven approach
to select these two customization types. The main customization requirement of
tenants is related to the business logic, for example to tailor the functionality of
the application to their specific business needs. Therefore, Chapter 4 focuses on
middleware support to enable tenant-specific software variations in the core of the
Saa$ application and the middleware. A second important concern for tenants are
the different requirements with respect to the expected performance (throughput
as well as latency), as specified in service level agreements (SLAs). Chapter 5 aims
to ensure compliance to these different tenant-specific SLAs while preventing that
the behaviour of one tenant adversely affects the performance of the other tenants
(i.e. performance isolation). As indicated by the gap analysis in Chapter 2, these two
intended types of customization are not supported by the current PaaS offerings.

Furthermore, the middleware framework is open for existing customization mecha-
nisms, if only the customizations are performed at run time. Moreover, SaaS architects
and developers should be able to combine multiple mechanisms to support different
types and levels of customization simultaneously.

3.1.2 Non-functional requirements

The proposed middleware solution for co-existing variants in SaaS applications should
address the following non-functional requirements:

+ Low operational costs are important for the SaaS provider in order to make a SaaS
offering profitable (see Section 1.2). In this dissertation, we aim to achieve cost
efficiency by supporting application-level multi-tenancy.

80 MIDDLEWARE FRAMEWORK FOR CO-EXISTING VARIANTS IN MULTI-TENANT SAAS

+ The additional middleware layer should not introduce a high performance overhead.
Thus, performance (i.e. throughput and latency) is key during the execution as well
as the customization of the SaaS applications.

« As scalability is a core characteristic of cloud computing, it is key that the
middleware does not compromise this scalability, at the operational as well as
the management level.

+ One of the benefits of the high degree of distribution is high availability. Therefore,
distribution and replication of the middleware over multiple nodes (possibly at
multiple geographically locations) should be feasible. Furthermore, the failure of
some of the middleware components may not hinder its operation or that of the
application (i.e. fault tolerance).

Because of its openness and versatility, the middleware framework does not (fully)
tackle all these non-functional concerns. Different design decisions have to be made
to address these requirements when creating a concrete instance of the middleware,
for example depending on the selected application type(s), customization goal(s) and
composition mechanism(s). Specific examples of such instances are presented in
Chapters 4 and 5.

3.2 Architecture of the middleware framework for cus-
tomizable multi-tenant Saa$S

To enable the customization of multi-tenant SaaS applications, we introduce a
framework for an application middleware layer between the underpinning base
platform (i.e. a PaaS offering or existing cloud-enabling middleware) and the SaaS
application (see Fig. 3.1). The requirements of the different tenants are specified
in configurations. Driven by these tenant-specific configurations, the appropriate
software variants are dynamically selected and composed into the SaaS application
(cf. core customization mechanism in Fig. 3.1). In addition, the middleware layer
continuously monitors the application as well as the execution environment, and
verifies the results with the different co-existing configurations. If necessary, it
responds by reconfiguring the application and/or the execution environment. This
control loop (see Fig. 3.1) is necessary, for example, to ensure performance isolation
in compliance to tenant-specific SLAs. Decoupling the control loop from the critical
execution path is key for the performance and availability of the middleware.

This section presents the architecture of this middleware framework (see Fig. 3.2).
The middleware serves as an extension to the underpinning cloud platform. First, we
specify the assumptions and requirements with respect to this base platform. Then,
we focus on the design of this middleware layer for co-existing variants.

ARCHITECTURE OF THE MIDDLEWARE FRAMEWORK FOR CUSTOMIZABLE MULTI-TENANTSAAS 81

| Multi-tenant Saa$S application |
i
Monitoring L
Composmon Application
% ? middleware
Tenant-specific II > Reconflguratlon Schedullng
configurations

Base platform

Infrastructure

Legend:

Core mechanism (cf. Chapter 4) [Control loop (cf. Chapter 5)]

Figure 3.1: High-level overview of the customization process, consisting of a core
customization mechanism and a control loop, in the middleware for co-existing
variants in multi-tenant SaaS applications.

3.2.1 Base platform

The middleware framework for co-existing variants relies on a base cloud platform
(see bottom of Fig. 3.2) (i) to support distributed and scalable execution, possibly in an
asynchronous way, and (ii) for easy and rapid access to application and configuration
data across the distributed environment. Thus, the base platform should support
(geo-)distribution and replication of application logic and data, as well as load
balancing and dynamic resource provisioning in order to ensure high availability and
scalability. Furthermore, it should provide (access to) common cloud (middleware)
services such as distributed storage, caching and message queues.

Based on our hands-on experience and the analysis of the state of practice (see
Chapter 2), we can state that existing Paa$ offerings, or aaS offerings in combination
with cloud-enabling middleware, can be used as the underpinning base platform.
The majority of these existing platforms fulfill the requirements of a distributed and
scalable computing platform and storage service.

Furthermore, a multi-tenancy enablement layer offers basic multi-tenancy support by
managing the current tenant context and by facilitating the tenant-aware isolation of
data and configuration data. As indicated by the gap analysis in Chapter 2, current
offerings hardly provide any support for multi-tenancy. Because from the point of
view of the middleware framework we assume the presence of such a layer, we discuss
in more detail the design of a basic multi-tenancy enablement layer in Chapter 4.
However, some existing platforms do offer built-in support for tenant-aware data
isolation, e.g. Google App Engine (GAE) [77].

82 MIDDLEWARE FRAMEWORK FOR CO-EXISTING VARIANTS IN MULTI-TENANT SAAS

Application Layer
comply to

ication . "7 7° <<component>> g
Application ! ent>
Model O jmm——— Saas application

|

T

!

| '

T

— ,

Y
(2) Tenant-aware Application Execution

Middleware for Co-existifig Variants in Multi-tenant SaaS

(3) Tenant-aware Middleware Services

<<component>> gl
Application Execution invbke <<component>> E r

<comoren>] Q \

Monitoring Agent _O i g itgringData System

execute d) Monitoring

\[/

mponer

<<component>>

ant-aw:

[— 4 Composition Controller <<component>> a
SLA-aware e
: Scheduling Ny
y J | System
! .
: conﬁg/ure c
|
|

Tenant Conﬂg\ -ation Retrieval

(1) Configuration Management Layer
<<component>>
Application Management

|
|

'

'

'

'

I

I

'

I

I

'

'

'

'

'

' 5
| c
1 O_ <<component>> <<component>>
I

I

'

'

'

'

'

'

'

'

'

I

I

I

'

'

'

|

P Configuration Tenant Configuration
Application Mapping ' Management —O
Metadata Tenant
Configuration
Multi-tenancy Enablement Layer getTenant
<<component>> <<component>> <<component>>
“““““ 3 '>{ TenantContext gl}_@ I antFil EII Tenant Management El
Tenant
setCurrentTenant getTenant

Base

Platform

Cloud Platform

Queuing Service

Legend:

<<component>>

<<component>> a
Control Loop (Chapter 5)

Figure 3.2: Architecture of the middleware framework for co-existing variants in
multi-tenant SaaS applications. The middleware layer serves as an extension to the
underpinning base platform. This base platform (bottom layers) consists of a cloud
platform that provides distribution and typical cloud services, and a multi-tenancy
enablement layer.

Core Mechanism (Chapter 4)

3.2.2 A middleware layer for co-existing variants

The logical view of the middleware layer for co-existing variants consists of the
following subsystems:

ARCHITECTURE OF THE MIDDLEWARE FRAMEWORK FOR CUSTOMIZABLE MULTI-TENANTSAAS 83

« the configuration management facility provides SaaS providers and tenants with
APIs to manage the variability of the application as well as to manage and retrieve
tenant-specific configurations,

« the tenant-aware application execution environment ensures the actual execution
and composition of the multi-tenant SaaS application driven by the tenant-specific
configurations,

« a set of tenant-aware middleware services monitor the SaaS application on a per-
tenant basis and respond in an appropriate way, for example by (re)configuring the
application and/or the execution environment.

Configuration management. The configuration management facility is a common
layer in the middleware to facilitate the management and configuration of customiz-
able Saa$ applications. It offers several interfaces to the different stakeholders and to
the other middleware components.

The Application Management component enables SaaS providers (the SaaS
architect and developer) to manage the overall configuration and variability
of the SaaS application. More specificially, via the Application Metadata
Management interface, the SaaS provider can specify and update the metadata of the
different features in the SaaS application, including how each feature maps to the
implementation level, e.g. to specific software artifacts.

The Tenant Configuration interface provides tenant administrators with a service
to customize the SaaS application to their preferences. This customization process
is based on the selection and parameterization of features, resulting in a feature
configuration. This feature configuration can be updated at any time by the tenant
administrator. The Configuration Mapping component automatically translates
these tenant-specific feature configurations into software-level configurations based
on the mappings specified in the Application Management component. A version
number is associated to these configurations to ensure consistency across the
distributed Saa$ application (cf. [121]): during the execution of a particular invocation
on the application, the same version of the tenant-specific configuration is used
throughout the (distributed) application.

Both the feature and the software configurations are managed by the Tenant
Configuration Management component. This component also offers the Tenant
Configuration Retrieval interface to the other middleware components.

This common middleware layer is further refined in Chapters 4 and 5, although
with different focus and thus different names for the components, but with the same
responsibilities. Chapter 4 achieves tenant-specific customization via variability in
the business logic of the application (i.e. features map to software variants), while in
Chapter 5 the focus is on the enforcement of performance SLAs (a non-functional

84 MIDDLEWARE FRAMEWORK FOR CO-EXISTING VARIANTS IN MULTI-TENANT SAAS

feature). Chapter 6 describes how this layer supports the configuration process of
the service line engineering method as well as the automated mapping of features to
software configurations.

Tenant-aware application execution. The core of the middleware layer consists of
the environment for tenant-aware execution and customization of the SaaS application.
In addition, it also provides the feature-oriented application model that the SaaS
developer has to use for implementing the application and its features. As explained
in Section 3.1, the specific application model depends on the type of application, for
example a component-based versus a workflow-based application.

Every application service or workflow relies on the Application Execution
component for its execution. This execution is monitored by a Monitoring
Agent. Furthermore, the Tenant-aware Composition component is responsible
for deciding which software variants should be active during particular invocations.
This component composes the application at run time based on the tenant-specific
configurations and the current context, and ensures isolation between the different
tenant-specific customizations. Chapter 4 elaborates on this mechanism for tenant-
aware composition of software variants.

The Controller component controls the order in which invocations are processed.
Often this is (or is based on) a load balancer that is part of the underpinning cloud
platform. However, to ensure performance isolation (cf. Chapter 5), the middleware
should be able to configure this component in order to manage the execution order.

Tenant-aware middleware services. The middleware layer requires an additional
set of loosely-coupled middleware services to monitor the application on a per-tenant
basis as well as to process the tenant-specific SLAs based on the monitored data.
These two components are part of the cross-layer monitoring and cloud management
services in Fig. 1.1.

More details on these services are provided in Chapter 5. More specifically, the focus
of Chapter 5 is on performance isolation, thus the Monitoring and SLA-aware
Scheduling components are used to determine whether the delivered performance is
in compliance to the tenant-specific performance SLAs. If necessary, the SLA-aware
Scheduling component reacts by (re)configuring the Controller.

However, in extension to the work in Chapter 5, the middleware framework allows
using the same components to monitor and manage other non-functional concerns,
for example availability and scalability. Evidently, this will require additional
interfaces and support from the underpinning cloud platform, for example the System
Monitoring and System Configuration interfaces in Fig. 3.2.

VERSATILITY 85

3.3 \Versatility

This chapter has presented the overall architecture of the middleware framework for
co-existing variants in multi-tenant SaaS applications. This is an open and versatile
architecture, as it supports different implementations and deployments. The targeted
application type(s), customization type(s), and software qualities introduce constraints
on these implementation and deployment options, resulting into specific instances of
the middleware (see Table 3.1). For example in Chapter 5, a centralized approach to
control the workflow execution is recommended for performance reasons, while a
distributed controller typically results in higher availability and scalability.

In the course of this doctoral program, the versatility of this middleware framework
has been illustrated in the implementation of different middleware prototypes as well
as by the use and extension of these prototypes by several MSc and PhD students in
the context of research projects, master theses and courses (see Table 3.2). Moreover,
the entire customization process by the middleware framework, consisting of the core
customization mechanism as well as the control loop, have been validated in both
application cases presented in Section 1.3.

Chapter 4 elaborates on the run-time composition of software variants tailored to the
tenant-specific (functional) requirements in the context of multi-tier component-based
SaaS$ applications (e.g. the hotel booking application). A prototype has been built on
top of GAE and the run-time composition is achieved using dependency injection
(DI) [66]. In addition to DI, we used context-oriented programming (COP) [92] as
composition mechanism, and compared both approaches in terms of customizability
and performance [204]. A similar comparison has been done by students. They
added several new features (of different complexity) to the hotel booking application
using one of these two composition mechanisms, and afterwards they filled in a
questionnaire to evaluate the composition mechanism as well as the middleware.
Furthermore, three students implemented different prototypes on top of JBoss AS [143],
Windows Azure [23], and GAE [207], using DI and aspect-oriented programming
(AOP). Finally, an implementation of the architecture has been developed by Gey et
al. [74] to support customization of both the workflow and the individual services of
the document processing application. This prototype runs on top of JBoss AS, and
uses jBPM and Drools to enable customization at the workflow level.

Chapter 5 builds further on this by extending the middleware with a control loop
to monitor and react on changing context parameters. More specifially, we added
support for the enforcement of tenant-specific SLAs to ensure performance isolation in
service-oriented (workflow-based) SaaS applications, such as the document processing
application. In [213], we developed a middleware instance to support performance
isolation in interactive component-based applications. Both solutions run on top of
JBoss AS, but implement the Controller component differently (cf. Fig. 3.2).

MIDDLEWARE FRAMEWORK FOR CO-EXISTING VARIANTS IN MULTI-TENANT SAAS

86

Table 3.1: Overview of the key design decisions and principles (i) for the middleware framework, and (ii) for the two instances
of this framework in Chapters 4 and 5.

Design decisions & principles

>_..o~=82=~.m_ Middleware framework Chapter 4 Chapter 5

drivers

Functional

Application fvbe Component-based Workflow
PP YP Request-driven Batch-driven

Customization Modularization Run-time composition Control loop

Non-functional
Applicability

Availability
Cost efficiency

Fault tolerance

Performance

Scalability

Extension to existing cloud platforms

Distribution and replication
via the base platform

Application-level multi-tenancy

Loose coupling
Stateless components

Distributed cache

Distributed and scalable base platform
Load balancer
Stateless components

Message-based comm.
Centralized workflow engine

Lightweight processes
Message-based comm.

Task queue

87

VERSATILITY

G 1dey)
[sF1] stsays 1a3se ‘[£12]

[£5] SSWOLSND “[¥4]

Io1pd3RdSIp MSe) eIA SV ssog[
Id0ouE[Rq PEO[BIA SV Ssog[

sjoo1q pue Wdgdl Sursn ssog[

Burssaooid jusumoo

sunjooq 2104

Burssaooid jusumoo(

dooj jo43u0D)

[ep1]stsay) 1015BN 1 Sursn ssog(gunjooq 9304

[¢2] stsayy 1o3sBN I Suisn ainzy Sunjooq 9304
[L0Z] s1sot3 1915RN dOV Sursn gyo gunjooq 9104 WISTUDYIIUL 2400

asmo) ‘[30z] dOD Sursn gy gunjooq 12304

[L0gZ] stsayy 1935RN
Sursn gunjooq 1230

AQWHSOQ «_HwﬁNw ¢ HDHQ@QU HQ B m<n(.v .v~ @~ H HIH

JX31U0) ASo1ound9) 3 uLIofIeId uonedrddy uonnqrIuo))

MIOMAUTEI] 2TEMI[PPIL 3} JO AJ[IJESIoA
a1} d1eIISN[[T PUE dJePI[EA 0] PIsn PUE PIPU)Xd ‘pado[pasp usaq aaey] Jey} sad£30j01d JUSISYIP o} JO MITATIAQ :Z°€ d[qEL

Chapter 4

A middleware layer for flexible
and cost-efficient multi-tenant
applications *

Preamble

Chapter 3 has presented the middleware framework to support co-existing variants
in multi-tenant SaaS applications. This chapter discusses this framework in more
detail by focusing on the middleware support to enable the run-time and cost-
efficient composition of software variants in multi-tier component-based applications.
However, the general approach can also be applied to customize multi-tenant
workflows, as shown by [73, 74]. The main contributions of this work are (i) the design
and development of a middleware layer to improve the flexibility of multi-tenant
Saa$ applications (see Section 4.3), and (ii) the evaluation of this middleware layer
showing minimal impact on the operational costs and engineering complexity (see
Section 4.4). This evaluation has been performed on top of Google App Engine (GAE)
using a prototype implementation of the hotel booking application that is presented
in Section 1.3.

*The content of this chapter has been published in the proceedings of the 12" ACM/IFIP/USENIX
International Conference on Middleware (Middleware 2011) [214].

89

A middleware layer for flexible
and cost-efficient multi-tenant
applications

Abstract

Application-level multi-tenancy is an architectural design principle for Software-as-
a-Service applications to enable the hosting of multiple customers (or tenants) by a
single application instance. Despite the operational cost and maintenance benefits of
application-level multi-tenancy, the current middleware component models for multi-
tenant application design are inflexible with respect to providing different software
variations to different customers.

In this paper we show that this limitation can be solved by a multi-tenancy support
layer that combines dependency injection with middleware support for tenant data
isolation. Dependency injection enables injecting different software variations on
a per tenant basis, while dedicated middleware support facilitates the separation
of data and configuration metadata between tenants. We implemented a prototype
on top of Google App Engine and we evaluated by means of a case study that the
improved flexibility of our approach has little impact on operational costs and upfront
application engineering costs.

4.1 Introduction

Context. An important trend in the landscape of service-oriented software has been
the rise of the “Software-as-a-Service” (SaaS) delivery model [202] where software
applications are created and sold as highly configurable web services. A well-known

90

INTRODUCTION 91

Saa$ provider delivers for instance a Customer Relationship Management (CRM)
application [183] as a configurable service to a variety of customers that each have
their specific preferences and required configurations.

Saa$S applications differ from traditional application service provisioning (ASP) in
the sense that economies of scale play a much more important role. A traditional
application service provider typically manages one dedicated application instance per
customer. In contrast, SaaS providers typically adopt a multi-tenant architecture [44],
meaning that a shared application instance hosts multiple customers, which are called
tenants. The primary benefit of this approach is that the operational costs can be
significantly reduced: (i) hardware and software resources can be more cost-efficiently
divided and multiplexed across customers, and (ii) the overall maintenance effort is
seriously simplified because upgrading the application software can be performed for
all tenants at once.

Problem. Application-level multi-tenancy comes however also with a number of
disadvantages. More specifically, in this paper we focus on two challenges when
implementing multi-tenancy at the application level. First application engineering
complexity is increased. The engineering of multi-tenant application software is
more complex than traditional single-tenant applications that are deployed per
individual tenant. The primary cause is that the application developer should take
measures to ensure isolation between different tenants with respect to the application
configuration and data of each tenant [84]. Moreover, a tenant-specific management
facility needs to be created such that application configuration management per
tenant is separated from the core application management by the SaaS provider.

Secondly, in order to meet the unique requirements of the different tenants, the
application must be highly configurable and customizable. The current state of practice
in SaaS development is that configuration [44, 84] is preferred over customization
which is considered too complex [201]. Configuration usually supports variance
through setting pre-defined parameters for the data model, user interface and business
rules of the application. Customization on the other hand involves software variations
in the core of the SaaS application in order to address tenant-specific requirements
that cannot be solved by means of configuration. Compared with configuration,
customization is currently a much more costly approach for SaaS vendors because it
introduces an additional layer of application engineering complexity and additional
maintenance overhead.

Approach & contribution. This paper presents a software development and exe-
cution platform' for building and deploying customizable multi-tenant applications,
narrowing down the gap between configuration and customization. More specifically,
we present a multi-tenant middleware layer on top of Platform-as-a-Service (PaaS)

1Other aspects of SaaS applications such as SLA management, metering and billing are out of the scope
of this paper.

92 A MIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

platforms that (i) supports improved customization flexibility, (ii) preserves the
operational cost benefits of the application-level multi-tenancy principle, and (iii)
frees the application developer from a lot of initial application engineering costs for
multi-tenancy.

We implement our middleware layer on top of Google App Engine (GAE) [77]. We
extend the Guice dependency injection framework [78] with support for tenant-
specific activation of software variations and use the scalable and high-performance
datastore of GAE for storing and isolating tenant-specific application metadata. We
evaluate the feasibility of our middleware layer by comparing a standard single-
tenant and multi-tenant application with a flexible version that is developed using our
middleware layer. This shows that the impact of our middleware layer on operational
costs and additional application engineering complexity is minimal.

Structure of the paper. The remainder of this paper is structured as follows.
Section 4.2 introduces the case study and motivates the need for a middleware that
supports true application-level multi-tenancy with improved customization flexibility.
Subsequently, Section 4.3 presents the architecture of our middleware layer and its
implementation on top of Google App Engine. Section 4.4 presents the evaluation
of our middleware architecture in the three dimensions of customization flexibility,
operational costs, and initial engineering costs. Section 4.5 elaborates on related work
and Section 4.6 concludes the paper.

4.2 Problem elaboration & motivation

This section first explores the design space of multi-tenant applications and positions
our intended middleware architecture in this space. Subsequently our work is
motivated by means of an application case. Finally, the main requirements for our
middleware layer are derived from a customization scenario in this application case.

4.2.1 Multi-tenancy architectural strategies

Multi-tenancy aims to maximize resource sharing among customers of a SaaS
application and to reduce operational costs. However different architectural strategies
can be applied to achieve multi-tenancy. As shown in Fig. 4.1, multi-tenancy can
be realized at the application level, middleware level or virtualized infrastructure
level. Each approach makes a different trade-off between (i) minimizing operational
costs (including infrastructural resources as well as maintenance cost), (ii) minimizing
upfront application (re-)engineering costs, and (iii) maximizing flexibility to meet
different customer requirements.

PROBLEM ELABORATION & MOTIVATION 93

(1) Shared Virtual Infrastructure (2) Shared Middleware (3) Shared application
Tenant 1 Tenant n Tenant 1 Tenant n Tenant 1 Tenant n
App+ Appn App+ Appn App
MW, MWn MW MW
0os oS (o) (o)
< Lower engineering costs and higher customizability |
[Improved scalability and lower operational costs >

| App = Application instance | MW = Middleware Instance | OS = Operating System instance |

Figure 4.1: Different architectural approaches to achieve multi-tenancy.

As stated in the introduction, application-level multi-tenancy maximizes the level
of resource sharing but is also the least flexible choice with additional engineering
overhead. At the other end of the spectrum, virtualization technology can be used to
run multiple operating system partitions with dedicated application and middleware
instances for each tenant on shared servers. The advantage of this approach is its
increased flexibility and low upfront application engineering cost. However, fewer
tenants can be hosted on a single server and maintaining separate application instances
per tenant also has a much higher cost than with application-level multi-tenancy.

Middleware-level multi-tenancy [17, 34] uses a separate middleware platform that
is able to host multiple tenants on top of a shared operating system, which may
be either placed on a physical or virtualized hardware. In this way, the initial
engineering complexity for multi-tenancy is shifted from the application level to
a reusable middleware layer that also offers basic support for isolation of tenants.
However, the component and deployment model of these middleware architectures
still require that a separate application instance is deployed for each tenant which
again implies a higher maintenance cost.

Our proposal is to create middleware support for building true multi-tenant
applications with the flexibility to adapt to tenant-specific requirements. Because all
tenants are served by the same instance of the application, this means that there is need
for tenant-specific software variability in the application components. We assume
that such multi-tenant application components do not maintain tenant-specific state,
but that all tenant-specific state is stored in a (separate) database. To ensure scalability

94 A MIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

users belonging to tenant =
employees/customers of travel agency
1 1 n n
E)t é % tenants =travel agencies

n

SaaS Application for on-line hotel booking SaaS provider
Client Presentation Business Data
Tier Tier Tier Tier

Figure 4.2: Saa$S application for online hotel booking.

when user load increases, a pool of identical application instances with our middleware
layer have to be created. Existing PaaS$ platforms already take care of this scalability
requirement in a transparent way. For example, Google App Engine automatically
scales up (and down) by creating extra instances as the load increases. We therefore
propose to incept our middleware layer as an extension for PaaS platforms.

4.2.2 Motivating example

Consider the example of a SaaS provider for online hotel booking (see Fig. 4.2). The
SaaS provider offers a highly configurable web service that travel agencies can use
for booking hotels and flights on behalf of their customers. Travel agencies play in
this example the role of tenant whereas employees and customers of a travel agency
are considered the users that belong to a tenant. Employees are offered a customized
user interface and customers of the travel agency can login to check the status of the
travel items through a URL with a custom-made domain-name that corresponds with
the travel agency. A special ‘tenant administrator’ role is assigned to someone who
is responsible for configuring the SaaS application, setting up the application data
and monitoring the overall service. This role can be played by an internal or external
client of the SaaS provider or even resellers who are an intermediate business proxy.
In the context of this simple example, the tenant administrator belongs to the ICT
staff of a travel agency company.

4.2.3 Requirements derived from a customization scenario

Suppose that a particular travel agency wants to be able to offer price reductions to
their returning customers. As such, the online hotel booking application should be
extended with an additional service for managing customer profiles and a service
for calculating price reductions. We assume that SaaS providers employ a business

MIDDLEWARE SUPPORT FOR TENANT-SPECIFIC CUSTOMIZATION 95

model where the base application is offered to tenants at no or low cost, but tenants
incur an additional price for additional services. Based on this simple scenario, we
can derive requirements with respect to core development, service customization and
runtime support.

With respect to development, the application development team of the SaaS provider
should be offered a simple way to manage the different tenant-specific variations as
separate units of deployment that can be selectively bound to the core architecture
of the application. Moreover, the overall ‘multi-tenancy concern’ should be well
separated from the application layer.

With respect to customization, tenant administrators should be offered a configuration
facility to select what software variations should be enabled for them (e.g. the price
reduction service). In addition, this facility should also allow to specify specific
configuration parameters (e.g. business rules for the price reduction service). This
configuration data should be stored in the datastore of the SaaS provider in an isolated
way under a specific tenant ID.

The runtime support of the middleware layer must provide support for injecting
software variations on a per tenant basis. When a user (either customer or employee)
logs in, the tenant to which the user belongs should be determined. Based on the
acquired tenant ID, the multi-tenant middleware should then activate the appropriate
software components to process the requests of the user. Another key requirement
of the execution platform is that the tenant-specific software variations should be
applied in an isolated way without affecting the service behavior that is delivered to
other tenants.

4.3 Middleware support for tenant-specific customiza-
tion

This section presents the overall architecture of our middleware layer to support
tenant-specific customization of SaaS applications. The component model of our
middleware layer targets multi-tier applications and structures the application into a
core architecture with declared variability points for multi-tenant software variations.
Building on top of this component model, the middleware layer consists of a support
layer for tenant administrators and run-time support for injecting software variations
on a per tenant basis.

In this paper we focus on the customization of component-based multi-tier
applications, rather than business processes (e.g. BPEL). The latter requires a different
approach where software variations are deployed as separate services, and per tenant
a separate business process is responsible for the coarse-grained composition of the

96 A MIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

Presentation Tier Business Tier Data Tier
ra.oS-sT === el ey bl
Base Variation Variation Variation |
: . : Point Point Point 1
Application | 1
a

1
Feature 1

1

I

Figure 4.3: llustration of the feature-based approach.

appropriate services. In the context of component-based applications, dependency
injection (DI) [66] is a common composition mechanism. With standard DI however,
separate object hierarchies are maintained per tenant in a shared address space which
increases heap memory storage and supports only static binding of software variations.
Therefore, we prefer a composition mechanism that allows in situ run-time rebinding
of variations. This requires an extension to the DI mechanism.

This section is structured as follows. We first propose an extension to the multi-tier
component model to make it tenant-aware. Next we describe in depth the architecture
of our multi-tenancy support layer. Finally, the prototype implementation of this
middleware layer on top of Google App Engine [77] is presented.

4.3.1 Tenant-aware component model

To cope with the different and varying tenant requirements, we apply a feature-based
approach. Software variations are then expressed in terms of features. A feature is
a distinctive functionality, service, quality or characteristic of a software system or
systems in a domain [100]. Ideally these features are modular software units that
can be easily composed into the base application. As illustrated in Fig. 4.3, variation
points are specified in the base application, representing the locations where features
should be composed. A feature can have several alternative implementations (e.g. I1
and I2 in the figure). Based on the tenant-specific configuration, one of the feature
implementations is bound to the variation points across the different tiers.

Our extension to the component model supports the application developers of the
Saa$ provider to develop features as software modules. For each feature different
implementations can be registered. A feature implementation consists of a set of
software components (possibly at different tiers) and specifies how these components
are bound to the base application. The concept of features is necessary to enable

MIDDLEWARE SUPPORT FOR TENANT-SPECIFIC CUSTOMIZATION 97

Listing 4.1: Annotation of a variation point for price calculations.

@MultiTenant
private IPriceCalculatorStrategy priceCalculatorStrategy;

the SaaS provider to easily ensure the consistency of software variations across the
different tiers of the SaaS application.

In addition, the developers need to be able to tag the locations in the base application
where tenant-specific variation is allowed. To annotate these variation points, we
introduce a new annotation: @MultiTenant. Listing 4.1 shows the annotation of
a field with the price calculation service interface. This variation point initiates
customization of the online hotel booking application based on the currently applicable
tenant-specific configuration, for example price calculation with price reduction.
Because a variation point can be bound by different features, the annotation has an
optional parameter specifying the feature it belongs to. This enables developers to
limit the variation point to a specific feature.

4.3.2 Architecture of the multi-tenancy support layer

The architecture of our middleware layer supporting flexible multi-tenant applications
is presented in Fig. 4.4. This support layer consists of a flexible middleware
extension framework to manage features, specify tenant-specific configurations and
to dynamically activate the required variations on a per tenant basis via dependency
injection. This approach relies on a multi-tenancy enablement layer, offering basic
multi-tenancy support and facilitating the separation of data and configuration
metadata. Our multi-tenancy support layer serves as an extension to middleware
platforms, but especially to Platform-as-a-Service (PaaS) solutions. Possibly such a
PaaS already offers built-in support for tenant data isolation.

Multi-tenancy enablement layer

The base for application-level multi-tenancy is isolation between the different
tenants, such as isolation of data, performance and faults. To achieve tenant-
specific customization the main requirement is isolation of data, more specifically
configuration metadata. With the default single-tenant approach, the configuration
of an application is specified in a global configuration file. In a multi-tenant context a
global configuration file results in a uniform application for all tenants, preventing

98 A MIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

Multi-tenancy Support Layer

]

Feature Management

<<component>> El <manages> <<component>> E
Feature —[N" 777777 Featur
Saas$ Provider
1 Tenant-aware
. 1.4 Component
Tenant-aware Feature Injector ﬂ Model
<<component>> El 1 <<component>> E
1 Featurelmpl 0. Binding
<<component>>
Featurelnjector U :
1
\
1 |Configuration Management :
\
T X <<component>> E' <<component>> 'B:[
: Configuration ST Configurati :
| T Tenant Tenant
v } } Configuration
| \/ Interface
Multi-tenancy Enablement Layer
<<component>> <<component>>
TenantFilter — [""" 7°7 > TenantContext

Paas

Cloud Storage Caching Service

Figure 4.4: Overview of the multi-tenancy support layer.

tenant-specific customization. Any change to the configuration would affect all
tenants. Therefore tenant-specific configurations have to be stored separately and
applied within the scope of a tenant, instead of globally.

To achieve tenant data isolation three main components are required: (i) the tenant
context containing the information of the tenant linked to the current request (via
a unique tenant ID), (ii) tenant-specific authentication to identify the tenant, and
(iii) multi-tenant data storage. Incoming requests are filtered to retrieve the tenant
ID (e.g. based on the request URL) and to set the current tenant context. Multi-
tenant data storage can be obtained by applying filters that intercept the calls to the
storage API and inject the tenant ID from the associated tenant context. In addition,
comparable interceptors are necessary for the caching service (distributed in-memory
storage). This allows to rapidly retrieve tenant-specific configurations, without large
I/O performance overhead.

Flexible middleware extension framework

The flexible middleware extension layer provides the following functionality:

MIDDLEWARE SUPPORT FOR TENANT-SPECIFIC CUSTOMIZATION 99

1. a feature management facility providing an API to manage the variability of the
application and the available feature implementations,

2. a configuration management facility to manage the default and tenant-specific
configurations,

3. a feature injector to dynamically inject the required software variations conforming
the tenant-specific configurations.

Feature management. The FeatureManager manages the set of available features
and their different implementations. A Feature specifies at least the following
information: a unique identifier (e.g. feature name) and description for the feature,
and the set of registered implementations for that feature.

A FeatureImpl contains the description of the feature implementation, a set of
bindings, and a reference to the configuration interface of this implementation.
Each Binding specifies the mapping from a variation point to a specific software
component. This metadata about the features is globally accessible by both the SaaS
provider and the tenants, and therefore should not be isolated. The FeatureManager
offers a development API to enable the SaaS provider to create and register features and
feature implementations, while the tenants are able to inspect the different features
via the tenant configuration interface.

Configuration management. Since a feature can have multiple implementations,
each tenant can specify its preference for a specific feature implementation via
the tenant configuration interface. Such a Configuration description defines the
mapping from a feature to a specific feature implementation, more specifically from a
feature ID to a FeatureImpl. The different tenant-specific configurations are then
managed by the ConfigurationManager. In contrast to the feature descriptions,
the tenant-specific configurations are stored on a per tenant basis.

Furthermore, the SaaS provider has to specify a configuration containing for each
feature the mapping to a default feature implementation. If a tenant does not specify
his tenant-specific configuration, this default configuration will be automatically
selected.

Tenant-aware feature injection. Based on the features registered in the Feature-
Manager and the default as well as tenant-specific configurations, our multi-tenancy
support layer has to activate the appropriate feature implementations when required.
To achieve this we apply the dependency injection (DI) pattern [66]. Instead of
instantiating the feature implementations directly in the application, the flow of
control is inverted: the life cycle management of feature implementations is controlled

100 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

by a dependency injector or provider. This injector binds dependencies in the
application to an implementation file. Such a binding is traditionally but not
necessarily a mapping between a type (generally an interface or abstract class) and
an implementation type (a class or component). This concept of a binding between a
dependency and an implementation corresponds to our Binding between a variation
point and a software component, as specified in the FeatureImpls. As a result, in
the above ConfigurationManager a tenant-specific configuration corresponds to a
specific configuration of the DI framework.

For each variation point in the application the tenant-aware FeatureInjector
decides at runtime which implementation needs to be used, based on the configuration
that applies. First, the FeatureInjector intercepts the requests to a dependency
and consults the ConfigurationManager. The latter queries the multi-tenant data
storage using the tenant ID to retrieve the tenant-specific configuration. Subsequently,
the right binding is obtained from the Configuration, specifying the mapping
between the variation point and a specific software component. This software
component is instantiated and injected in the application to further handle the request.
If the appropriate binding is not available in the tenant-specific configuration, the
default configuration is used. In case the feature ID parameter was given, the search
to the appropriate binding can be narrowed down to the bindings of a specific feature
implementation.

Finally the injected instance is stored in the cache in an isolated way using the tenant
ID. For the following requests by this tenant that involve the same variation point,
the FeatureInjector queries the cache. Using this tenant-aware caching service
enables us to support flexible multi-tenant customization of a shared instance without
the associated performance overhead.

4.3.3 Implementation

We implemented a prototype of our multi-tenancy support layer on top of Google
App Engine (GAE) [77] (SDK 1.5.0), using the Java programming language and the
Guice dependency injection framework [78] (v3.0). Google App Engine is a PaaS
plaform to build and host traditional web applications developed with Java Servlets
and Java Server Pages (JSP). GAE has built-in support for tenant data isolation via
the Namespaces API. A separate namespace is assigned to each tenant. We only had
to implement a TenantFilter to map incoming requests to a specific namespace
and to configure that all requests have to go through this filter. For caching we use
the Memcache service.

We chose Guice as DI framework because it is type-safe and compatible with
GAE. However, it does not support the execution of tenant-specific injections: all
dependencies are set globally. Any modification would affect all tenants. This is a

EVALUATION 101

general problem with dependency injection because it does not support activation
scopes.

To solve this issue, we added an extra level of indirection. Instead of injecting features,
we inject a Provider for that feature. This way the servlets have a dependency to a
provider of a feature instead of to the feature itself. This generic FeatureProvider
decides based on the tenant-specific configuration which feature implementation
should be selected. However, the customizations that can be performed this way are
limited to switching between implementations of an interface or abstract class.

4.4 Evaluation

The evaluation of our approach consists of several measurements of the operational
and reengineering costs for our multi-tenancy support layer. In particular we want to
measure the overhead introduced by the multi-tenancy support layer. We compare
the results of our multi-tenancy support layer with a multi-instance, single-tenant
approach and the default multi-tenant solution without flexibility.

We first describe the general methodology we applied. Next, a general cost model
for the operational and reengineering costs of SaaS applications is specified. Finally
we present the measurements we performed and compare the results with our cost
model.

4.4.1 Methodology

In this evaluation we measure and compare the operational and engineering costs
between a default and flexible single-tenant version, a default multi-tenant version
(without flexibility), and a multi-tenant version using our multi-tenancy support
layer. For these measurements we use the hotel booking application described in
the case study. The source code of these four versions including our multi-tenancy
support layer, is available on http://distrinet.cs.kuleuven.be/projects/
CUSTOMSS.

To determine the operational costs the diferent versions of the application are deployed
on top of Google App Engine (SDK 1.5.0), using the high replication datastore (default
option). In the case of the single-tenant application, we deploy a separate application
for each tenant, while both multi-tenant versions only need one application each.
Each tenant is represented by 200 users who each execute a booking scenario. This
booking scenario consists of 10 requests to the application: first several requests to
search for hotels with free rooms in a given period, then creating a tentative booking
in one hotel and finally the confirmation of the booking. The different users of one

http://distrinet.cs.kuleuven.be/projects/CUSTOMSS
http://distrinet.cs.kuleuven.be/projects/CUSTOMSS

102 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

tenant execute the booking scenario sequentially, while the tenants run concurrently.
Notice that it is not our goal to create a representative load for this application, but
to compare the operational costs of the different versions under the same load. We
retrieve the information about the execution cost via the GAE Administration Console.
It provides a dashboard displaying the resource usage by the application. The focus
of this comparison is on the relative differences between the execution costs, since
the absolute numbers depend on the current (global) load on the GAE platform.

The reengineering costs are compared based on the quantity of source code used to
develop the case study application for the different versions. We make a distinction
between Java code, JSP pages (for the user interface), and configuration files (XML).
The number of source lines of code are determined using David A. Wheeler’s
‘SLOCCount’ application.

4.4.2 Costmodel

The goal of the cost model is to define the metrics for our measurements, and to
represent our hypothesis about the operational and reengineering costs associated
with single-tenant and multi-tenant applications. In addition, it enables us to analyse
the impact of customization flexibility on these costs.

Operational costs

The operational cost can be subdivided in (i) the application’s execution cost (resource
usage), (ii) the costs to maintain the application such as performing upgrades, and
(iii) the administration cost, i.e. the cost to provision a new customer (tenant) with an
application.

Execution cost. We use CPU time, memory and storage usage as the main execution
cost drivers. Another important resource is network bandwidth. However, the
introduction of multi-tenancy has no effect on the required bandwidth.

Let t be the number of tenants, u the number of active users per tenant, and Cpu(t, u),
Mem(t,u) and Sto(t, u) the total usage of respectively CPU, memory and storage.
Then, in the case of a single-tenant application (ST),

Cpusr(t,u) =t * fopust(u)
Memgr(t,u) =t + (Mo + faremst(u)) (4.1)

Stogr(t,u) =t * (So + fstosT (1))

EVALUATION 103

where fopusT (W), faremsT(w) and fsiosr(u) are functions of u, representing the
usage of CPU, memory and storage by one single-tenant application instance. My
and Sy are constants for the memory and storage usage by an idle instance.

In the multi-tenant case (MT) we introduce an extra parameter i, i.e. the number of
identical multi-tenant instances managed by a load balancer (see SaaS maturity level
4 in [44]). Then,

Cpunr(t,u,i) =t * (fopusr () + fopurrr(u))
Mempr(t,u, i) =i % Mo+t * faremst (W) + faremarr(t) (4.2)
Stonrr(t,u,i) = So 4+t * fsiosT(4) + fstomr(t)

where fopunrr(u) is a function of u, representing the additional CPU necessary for
tenant-specific authentication and isolation of the incoming requests. faemnrr(t)
and fsionrr(t) are functions of ¢ for the additional memory and storage required to
store (global) data about the tenants, for instance the tenant’s name and address.

Since the number of multi-tenant instances is limited compared to the number of
tenants and the additional amount of memory and storage for multi-tenancy support
is relatively small compared to the shared amount of memory and storage (M, and
Sp), this results in:

1<t
fMemMT(t) < (t - 7/) * MO (43)
fstomr(t) K t* Sy

Thus from Equations (4.1), (4.2) and (4.3), we can compare the execution costs of the
single-tenant and multi-tenant versions:

Cpugr(t,u) < Cpupr(t,u,1)
Memgr(t,u) > Mempr(t, u,i) (4.4)
StOST(t, u) > StOJV[T(t, u, Z)

As a result a multi-tenant application consumes less storage and memory than a
single-tenant application, but requires more CPU. However, the latter is limited to
authenticating the tenant and ensuring isolation.

Maintenance cost. The maintenance cost largely consists of the cost to develop and
deploy upgrades to the application. Let f be the upgrade frequency, i the number of

104 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

instances to upgrade, and Upg(f, i) the total upgrade cost, then:
Upgst(f,t) = fpevst(f) +t* [DepsT(f)

UngT(fvi) = fDevST(f) +ix fD€PST(f)

(4.5)

where fpeysr(f) and fpepsr(f) are functions of f; representing the development
and deployment cost of one single-tenant application instance. The number of single-
tenant instances equals the number of tenants t. Often there is only one multi-tenant
application instance that is automatically cloned to spread the load over multiple
identical instances, resulting in i being equal to 1. Besides the application, the multi-
tenancy support should also be upgraded, but since this is part of the middleware it
should not be taken into account here.

Administration cost. For the SaaS provider the administration cost consists of two
constant costs: (i) creating and configuring a new application instance (Ag), and (ii)
provisioning a new tenant with an application (7p), for instance by registering the
tenant ID in the application and providing a URL to access the application. Let t be
the number of tenants, then:

AdeT(t) =tx (AQ =+ To)
(4.6)
Admpyr(t) = Ag + t T

Reengineering costs

When migrating an application to the cloud, reengineering is required to make use of
the available cloud services, for example storage. In addition, making an application
multi-tenant results in an additional reengineering cost. The latter is the difference in
reengineering costs between a single-tenant and a multi-tenant application, and is
dependent on the middleware platform that is used. For example, when an API for
multi-tenancy is provided, this reengineering cost stays limited. Without this support,
additional development is required to provide tenant-specific authentication and to
ensure isolation between the different tenants.

Impact of flexibility

Our multi-tenancy support layer provides multi-tenant SaaS applications with the
flexibility to adapt to the different and varying requirements of the tenants. However,
this also has an effect on the operational and reengineering costs.

EVALUATION 105

Operational costs. The tenant-specific configuration of single-tenant applications
can be set at deployment time. Therefore the effect of tenant-specific variations
have a negligible effect on the execution cost of single-tenant applications. Only the
base storage Sy will increase with the core application and its features. In the case
of the flexible multi-tenant application, CPU usage fcpunr(u) (see Eq. (4.2)) will
increase because the tenant-specific configuration should be retrieved and activated
by the FeatureInjector. Further, additional memory (faremarr(t)) and storage
(fstom(t)) is required to store this tenant-specific configuration and the different
feature implementations. Though, these differences are not in such quantity that they
will affect Eq. (4.4).

The impact of adding flexibility on the maintenance cost will be especially noticeable
in the upgrade frequency f, because the features also have to be maintained. Since the
tenant-specific configuration of a single-tenant application is set at deployment time,
changes to this configuration will require additional work for the SaaS provider (C).
We add an extra parameter c, the (average) number of tenant-specific configuration
changes which cannot be done by the tenant. Tenants of a multi-tenant application
can set their tenant-specific configuration themselves. This results in no maintenance
overhead for the SaaS provider.

UpgST(f,t,C) =1tx (fUpgST(f) +C*CO) (4.7)

For the administration cost, flexibility only affects the initial configuration of the
application (A in Eq. (4.6)) for both versions. In the single-tenant case this consists
of setting the tenant-specific configuration, while the SaaS provider needs to specify
the default configuration for the multi-tenant application.

Reengineering costs. To add the necessary flexibility, multi-tenant applications
require development support for the application developers, support to retrieve and
activate the tenant-specific configurations when needed, and a configuration interface
to let tenants specify their configuration based on the set of available features. Our
multi-tenancy support layer provides this support: multi-tenant applications only
have to interact with it. This still results in additional but limited reengineering cost,
for example to define the variation points, register the features and specify the default
configuration. In a single-tenant application additional reengineering is only needed
to facilitate the instantiation of a tenant-specific configuration.

Providing tenants with the flexibility to customize the application, also requires the
development of the different software variations. However, this is part of the core
application development cost and therefore is not taken into account as reengineering
cost.

106 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

6.00 -| Y

5.00 +

4.00

———— Single-tenant
—&— Multi-tenant
—=X— Flexible multi-tenant

3.00

CPU Hours (h)

2.00

1.00 +

0.00 ; ; ;
0 10 20 30 40

Number of tenants (t)

Figure 4.5: Overview of the CPU usage by the different versions.

4.4.3 Measurements

We focus on the execution cost of running the different versions on top of Google
App Engine, and the reengineering cost. Since the maintenance and administration
costs are hard to measure, we refer to our cost model for more details.

Execution cost. To determine the execution cost we run the four different versions
of our case study application on top of GAE: a single-tenant version, a multi-tenant
version, a single-tenant version with variability, and a multi-tenant version using
our multi-tenancy support layer. However, we noticed that there is no difference
in execution cost between the two single-tenant versions, since all variability is
hard-coded. Therefore we only show the results of the default single-tenant version.
Furthermore, the storage cost is not measured. Because the case study is not a data
intensive application, data usage is too limited to make any conclusions about the
storage cost.

In Fig. 4.5 we present the evolution of the average CPU usage with an increasing
number of tenants. The CPU usage by the single-tenant version is linearly proportional
to the number of tenants, as in Eq. (4.1). We also notice that the CPU usage by
both multi-tenant versions is also rather linear, but lower than the single-tenant
application, which differs with our cost model (see Eq. (4.2)). However, our cost model
represents the usage of CPU by the application, while on GAE the CPU time for
the runtime environment is included. This is an additional cost per application and
therefore has more influence on the single-tenant version. We can conclude that the

EVALUATION 107

40

301

20 Lt . Single-tenant
‘ m Multi-tenant
X Flexible multi-tenant

Number of instances (i)

104

L L}

-1 W

10 20 30 40
Number of tenants (t)

Figure 4.6: Overview of the number of instances used by the different versions.

multi-tenant versions require less CPU time than the single-tenant application, and
that our multi-tenancy support layer shows limited overhead compared to the default
multi-tenant version.

The total memory usage cannot be measured precisely, because several other factors
despite the application binaries add or reduce memory consumption: a rising number
of requests triggers an increase in memory because a new instance (i.e. process
required to handle the incoming requests) is started to provide better load balancing,
and once the requests decline, instances become idle and are removed to release
memory (M in Eq. (4.1) and (4.2) is 0). Therefore, we use the average number
of instances to represent the maximal possible memory usage. Figure 4.6 shows
the evolution of the average number of application instances when increasing the
number of tenants. As can be seen, the difference between the single-tenant and
multi-tenant versions is significant. The number of instances for both multi-tenant
versions increases only slightly with the number of tenants.

Reengineering cost. Table 4.1 shows the quantity of source code used to develop
the case study application. The engineering cost to develop multi-tenancy support
is not taken into account, because this is part of the middleware. The differences
in lines of source code between the single-tenant and multi-tenant versions is the
reengineering cost required to let the application use the multi-tenancy support.

In the default multi-tenant version without flexibility, the developer only has to write
8 extra lines of configuration compared to the single-tenant version. This is to specify
that the TenantFilter should be used, which uses the Namespaces API of Google

108 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

Table 4.1: Overview of the source lines of code (sloc) of the different versions

Java JSP XML (config)

Default single-tenant 915 514 131
Default multi-tenant 915 514 139
Flexible single-tenant 1016 514 131
Flexible multi-tenant 1090 514 74

App Engine to ensure data isolation.

When using our multi-tenancy support layer, the difference with the flexible single-
tenant application is bigger. However, the majority of these 74 extra lines of Java code
are required to use Guice, and not to use our layer. Moreover, the use of Guice resulted
in a decrease of configuration lines. Furthermore, in the flexible single-tenant version
the configuration is hardcoded and not user friendly. Making this more accessible
for the developers to configure will result in more reengineering cost. Finally, we
can conclude that adding flexibility to multi-tenant applications by means of our
multi-tenancy support layer requires a limited reengineering cost. This cost consists
of creating and registering features and their feature implementations, and defining
the default configuration.

4.5 Related work

Related work can be divided into three domains: a) middleware support for developing
multi-tenant applications, b) work on customization of multi-tenant Saa$ applications,
and c) adaptive middleware.

Middleware support for multi-tenancy. Multi-tenancy is a key enabler to deliver
SaaS applications with high cost effectiveness. The current state of the art especially
focuses on approaches to support isolation in multi-tenant software applications [34,
84]. For instance, Guo et al. [84] discuss design and implementation principles for
application-level multi-tenancy, exploring different approaches to achieve better
isolation of security, performance, availability and administration among tenants.

Only a few Platform-as-a-Service (PaaS) solutions offer support to build multi-tenant
applications. Google App Engine (GAE) [77] facilitates the development of multi-
tenant applications via the Namespaces API. Application data is partitioned across
tenants by specifying a unique namespace string for each tenant (the tenant ID). These
namespaces are supported by several GAE services, such as the datastore and the
caching service, enabling tenant data isolation in a transparent way. The Namespaces

RELATED WORK 109

API is also supported by GAE’s open-source implementation AppScale [43]. Other
PaaS platforms supporting tenant data isolation are Apprenda SaaSGrid [10] and
GigaSpaces SaaS-Enablement platform [76]. None of these platforms directly support
tenant-specific customizations and therefore do not offer the same flexibility as our
solution. Note that these platforms can also be used as underpinning Paa$S for our
approach.

In the traditional middleware space JSR 342, the Java EE 7 Specification [58],
aims to enhance the suitability of the Java EE platform for cloud environments,
including support for multi-tenancy. A descriptor for application metadata will
enable developers to describe certain cloud-related characteristics of applications, for
example by tagging them as multi-tenant or by specifying the sharing of resources.
This extension of the component model with cloud-specific application metadata
focuses on persistence and security. Our multi-tenancy support layer, however, offers
a way to annotate points of tenant-specific variation, increasing the flexibility of
multi-tenant applications, and thus is complementary.

Customization of multi-tenant SaaS applications. Although tenant-specific cus-
tomizations are an important requirement [25, 44, 201], it is not trival to adapt the
business logic and data to the requirements of the different tenants [84], especially in
Java or .NET, the programming languages commonly used for enterprise applications.

Bezemer et al. [25] applied their multi-tenancy reengineering pattern to enable multi-
tenancy in software services. This pattern requires three additional components: a
multi-tenant database, tenant-specific authentication and configuration. Configura-
tion is however limited to the look-and-feel and workflows.

In [141] variability modeling techniques from software product line engineering
(SPLE) [168] are applied to support the management of variability in service-oriented
SaaS applications. Application templates describe the variability via variability
descriptors. Our work focuses on the realization of tenant-specific customizations in
SaaS$ applications, which is not covered by this work.

Existing approaches for dynamic customization of multi-tenant SaaS applications
utilize dynamic interpreted languages [147, 183]. However, we focus on customization
of enterprise multi-tier applications, which are commonly written in statically typed
languages such as Java or C#. In this context, a dynamic software adaptation approach
such as dynamic aspect weaving or dynamic component reconfiguration is preferred.

Adaptive middleware. The state of the art in adaptive middleware [31, 52, 103, 111,
180] has mostly focused on adapting applications to one usage context at a time. This
means that application software is adapted by replacing an old configuration to a
new configuration. In other words, the existing configuration interfaces of adaptive

110 AMIDDLEWARE LAYER FOR FLEXIBLE AND COST-EFFICIENT MULTI-TENANT APPLICATIONS

middleware are inherently oriented towards the dimension of the application owner or
end user, but have no good ways of managing software variations on behalf of tenants.
Adaptive middleware techniques include reflection and aspect-oriented development.
The following paragraphs more closely relate our work to these two techniques.

Reflective middleware platforms, such as DynamicTAO [104] and OpenORB [52],
provide a configuration interface to inspect and adapt the structure of applications
and middleware at runtime. However, these adaptations are based on a global
configuration and result in the replacement of components, thus affecting all tenants.
They do not allow adaptations scoped to a specific tenant.

Aspect-oriented frameworks such as JAC [165], JBoss AOP [96] and Spring AOP [199],
have improved the modularization and customization capabilities of middleware
platforms and applications. By means of a declarative configuration application-
specific or user-specific extensions can be weaved in where necessary. Currently also
dynamic and distributed aspect weaving are supported [111, 165, 179], including in a
reliable and atomic manner [151, 205]. These AO-techniques are therefore suitable
for usage in a multi-tenant context. Lasagne is an aspect-oriented middleware [206]
that supports concurrent, co-existing configurations of the same application instance.
This approach is however limited to traditional client-server architectures and does
not support customization of multi-tenant software. Still, aspect-oriented software
development (AOSD) [65] looks a promising alternative for dependency injection to
support tenant-specific injections of crosscutting feature implementations.

4.6 Conclusion

This paper presented a reusable middleware layer on top of an existing Paa$ platform to
support customizable multi-tenant applications while maintaining the operational cost
benefits of true application-level multi-tenancy. We have implemented a prototype on
top of Google App Engine and extended the Guice dependency injection framework
to achieve activation of software variations on a per tenant basis. This prototype
shows improved flexibility with a minimal impact on operational costs for the SaaS
provider.

Dependency injection proved to be useful to support the customization of multi-
tenant applications. However, adding new features requires the introduction of new
variations points in the core application. In addition, for each variation point only
one software variation can be injected at a time. This complicates more advanced
customizations, such as feature combinations. In this respect, AOSD is a more
powerful alternative which we will investigate in the future.

A future research challenge with respect to application-level multi-tenancy is adding

CONCLUSION 111

support for tenant-specific monitoring and ensuring performance isolation between
different tenants. When performing our measurements we experienced that GAE
lacks performance isolation between the different tenants. Especially when a number
of tenants heavily uses the shared application, this results in a denial of service
for the end users of certain tenants. Additional support from the operating system
and middleware layers is needed to ensure this performance isolation. Furthermore,
tenant-specific monitoring enables SaaS providers to better check and guarantee the
necessary SLAs.

Acknowledgements

We thank the reviewers for their helpful comments to improve this paper. This research
is partially funded by the Interuniversity Attraction Poles Programme Belgian State,
Belgian Science Policy, and by the Research Fund KU Leuven.

Chapter 5

Middleware for performance
isolation in application-level
multi-tenancy *

Preamble

This chapter builds further upon Chapter 4 in the sense that it extends the
middleware with support for performance isolation in service-oriented multi-tenant
SaaS$ applications in compliance to tenant-specific service level agreements (SLAs).
Thus, it realizes the control loop that has been presented in the overall architecture of
the middleware framework (cf. Chapter 3), in order to monitor the performance of the
application and the execution environment, and to reconfigure these appropriately if
necessary. The main contributions of this reusable middleware architecture for run-
time SLA enforcement (see Section 5.3) are (i) its support for co-existing performance
requirements of the different tenants, (ii) its focus on multi-tenant Saa$S applications
providing high performance, cost efficiency, scalability and fault tolerance, and (iii)
its openness for different algorithms to support different types of applications. A
prototype of this middleware layer has been implemented on top of a private cloud
platform, based on a JBoss AS cluster. The evaluation in the context of the document
processing SaaS application (as introduced in Section 1.3) shows limited performance
overhead (see Section 5.4). A preliminary version of this work [213] has been evaluated
using the hotel booking application (cf. Section 1.3).

*The content of this chapter has been bundled in a paper draft, which has been submitted to the
International Conference on Middleware (2014).

113

Middleware for performance
isolation in application-level
multi-tenancy

Abstract

SaaS$ providers typically adopt a multi-tenant architecture to leverage economies of
scale: by maximizing the sharing of resources among multiple customer organizations,
called tenants, operational costs are reduced, and application management and
maintenance can be simplified. Application-level multi-tenancy maximizes the level of
resource sharing but complicates performance isolation between tenants. Supporting
different tenant-specific variants and, in particular, ensuring compliance with co-
existing performance requirements both remain a challenge.

This paper presents a middleware architecture that enables SaaS providers to efficiently
address co-existing performance requirements in service-oriented multi-tenant SaaS
applications. It can manage a combination of performance SLAs in terms of latency,
throughput and deadlines, and enables rapid response on changing circumstances,
while preserving the resource usage efficiency of application-level multi-tenancy.
Furthermore, it is open to specific policies and (scheduling) algorithms. We have
implemented a prototype on top of a private cloud platform, based on OpenStack and
JBoss. The evaluation shows the effectiveness of our solution in the context of an
industry-relevant Saa$S case study, with a very small performance overhead.

114

INTRODUCTION 115

5.1 Introduction

Software as a Service (SaaS) is a software deployment model that delivers software
applications as online, on-demand services. The obvious driver is leveraging
economies of scale by maximizing resource utilization through sharing. Typically,
SaaS providers adopt a multi-tenant architecture to achieve these economies of
scale [44, 84]. Multi-tenancy is an architectural design principle that enables SaaS
providers to achieve high operational cost efficiency by sharing hardware and software
resources among multiple customer organizations, called tenants, and by simplifying
the maintenance and management effort of the software system.

Multi-tenancy can be realized at different levels: (i) at infrastructure level via
virtualization, (ii) at the middleware level by sharing the operating system and
middleware, and (iii) at the application level. Maximum cost efficiency is achieved in
principle in the case of application-level multi-tenancy [44, 214]: the underpinning
infrastructure, operating system, middleware, and the application are shared between
the different tenants. End users from different tenants are simultaneously served
by a single application instance on top of shared infrastructure [84]. Moreover,
updates only have to be applied to the shared application instance, giving all tenants
automatically access to the most recent version of the application.

However, this high degree of resource sharing complicates performance isolation
between the different tenants. The objective of performance isolation includes
ensuring fairness when distributing resources among the different tenants, i.e. the
behaviour of one tenant cannot adversely affect the performance of the other
tenants [84, 107]. In addition, the SaaS provider must ensure compliance with the
different, tenant-specific (performance-related) service level agreement (SLA). These
SLAs can differ depending on the tenants’ requirements, typically resulting in a variety
of price settings. Our work addresses the creation of an open, efficient middleware
framework that extends the stack of system-level support software and that facilitates
this type of enforcement by offering all the necessary mechanisms, while being open
to strategies by plugging in scheduling algorithms that can be specific for a particular
Saa$ application setting.

This type of enforcement is typically not supported in standard middleware
platforms (being Platform as a Service (PaaS) or more general-purpose cloud-enabling
middleware technology). Yet it is unrealistic to expect SaaS providers re-engineering
a specific solution in each new application type. Furthermore, current solutions for
performance management in Saa$S are based on load prediction, workload planning,
resource provisioning, etc., typically in terms of lower-level system parameters. Such
approaches are not sufficient to support performance isolation in multi-tenant SaaS
applications, as resources are shared (and thus cannot be allocated to specific tenants)
and the process of workload planning and dynamic resource provisioning is not

116 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

responsive enough to address unexpected high-priority requests (possibly resulting
in SLA violations).

This paper presents a middleware architecture to support SaaS providers to build
and deploy multi-tenant Saa$ applications, endowed with SLA-driven performance
isolation. More specifically, we provide an architecture for a middleware layer
that complements PaaS platforms and that (i) enables the run-time enforcement
of tenant-specific SLAs over distributed environments for multi-tenant SaaS, while (ii)
preserving high performance as well as the operational cost benefits of application-
level multi-tenancy , and that (iii) can be reused, thus assisting the SaaS provider
when developing SLA-aware multi-tenant SaaS applications. This middleware is an
enabling technology for performance isolation in that it offers a framework with
application-level monitoring and management facilities, while being open to specific
policies and (scheduling) algorithms. We have implemented this middleware on top
of a private PaaS platform that has been built using OpenStack, a JBoss AS cluster
and an Apache Cassandra database cluster. We evaluate the effectiveness of our
solution by comparing our SLA-aware approach with a default system implementing
a FIFO strategy, and with an approach implementing fair distribution. In addition,
we measure the performance overhead to show that the impact of our middleware
architecture is small and acceptable.

The remainder of this paper is structured as follows. Section 5.2 presents a case
study that motivates the importance of SLA-driven performance isolation in multi-
tenant SaaS applications and defines the requirements for a middleware solution.
Section 5.3 presents the architecture of the proposed middleware layer. In Section 5.4,
our middleware is evaluated with respect to its effectiveness and to the additional
performance overhead. Section 5.5 discusses related work and Section 5.6 concludes
the paper.

5.2 Case study & challenges

This section elaborates on a multi-tenant SaaS application in the domain of online
business document processing, and identifies the main challenges for this paper driven
by a set of scenarios that illustrate the requirements for performance isolation.

5.2.1 Business document processing as an online service

A SaaS provider offers B2B document processing facilities to a wide range of companies.
This multi-tenant SaaS application supports the creation, the business-specific
processing, the archival and the delivery of various types of business documents, such

CASE STUDY & CHALLENGES 117

as invoices, payslips and leaflets. In addition, members of the customer organizations
(i-e. the tenants and their respective end users) can view and manage documents via
a web-based interface, and download these documents from a storage service. This
Saa$ application is deployed on top of a private cloud platform that is managed by
the SaaS provider.

Application model. The Saa$ application implements a service-oriented architec-
ture, consisting of several software services that can execute the different steps of a
document processing application. These so-called subservices are distributed over
multiple nodes to enable scaling. The core abstraction in the application architecture
is the concept of a task. Many cloud applications are modelled as a collection of
interdependent tasks that synchronize indirectly via a workflow engine, and/or via
a common data structure containing intermediate results (Fig. 5.1). Many examples
show that asynchronous application models enable scalability (e.g. [3, 115, 120, 126,
134]). Each step in the application corresponds to a task type, for example document
generation and archival. The sequence of task types is described by a workflow.
Different workflows exist to address the different tenant-specific requirements. A job
is an instance of a workflow, containing the full description of work that is assigned
to the SaaS application by a particular tenant. It consists of one or more tasks to be
executed. Each task refers to a specific task type and contains a set of input parameters
(e.g. input file and output format). A software subservice of the application (called
worker) is responsible for executing tasks of a particular type. When an end user of a
tenant submits a job to the application, the different tasks of the job are placed into a
queue. The workers asynchronously retrieve tasks (of a specific task type) from the
queue and execute these tasks. Workers can transparently be added or removed at
run time for up- and downscaling.

Workfon <

consists of

consists of

' t
= 2SS worker

Figure 5.1: Application model of the document processing application.

Workflow example. A basic workflow of document processing consists of the
following tasks (as depicted in Fig. 5.2). First, an end user of a tenant starts a
new job by submitting a batch of raw input data via the portal of the document
processing application. Upon reception, the BatchPreprocessing subservice parses

118 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

and subdivides the input data into multiple raw data records with associated metadata.
The latter contains information about the expected output document and the intended
recipient(s) (e.g. name and address). In the document generation phase, each data
record is separately transformed into the correct output format(s) by first applying
a template and then rendering the document. The final steps of the basic workflow
consist of packaging and digitally archiving the output documents. More sophisticated
workflows include document signing and distribution via the appropriate delivery
channel (e.g. printing, fax or email). Notice that multiple jobs of different tenants
are processed concurrently by the shared, multi-tenant subservices of this SaaS
application.

e) D
(Preparation (Rendering)
e D
Preparation Rendering
e D
Preparation Rendering

—

. > Batch
Preprocessing

Job Submission

Figure 5.2: Example of a basic document processing flow (consisting of five task
types) for a single job. In a multi-tenant SaaS application, multiple jobs of different
tenants are processed concurrently.

5.2.2 Illustration: Scenarios for SLA-driven performance isolation

The document processing application processes different types of workflows for
different tenants. Each of the workflows may impose different performance
requirements (deadlines, throughput, specific response times for specific jobs, etc.).
The following scenarios illustrate the need for performance isolation in multi-tenant
Saa$ applications.

Scenario #1: Minimum throughput per tenant. A common scenario consists of
multiple tenants submitting jobs of different sizes simultaneously, which should be
processed as fast as possible (e.g. generating invoices, leaflets, or other administrative
documents). In a multi-tenant application, the tasks of these jobs are typically placed
in a queue and processed sequentially by the different workers (i.e. FIFO). Although
multiple jobs and tasks can be processed concurrently, it basically means that each
tenant has to wait until the tasks of previously submitted jobs are processed (or
at least are being processed). Especially in the case of large jobs, the impact on
the other (waiting) tenants is large and can thus cause SLA violation. Therefore,

CASE STUDY & CHALLENGES 119

to ensure compliance with the different SLAs, the SaaS provider should be able to
let his application monitor the throughput of the diferent tenants and dynamically
decide which tasks should be processed next. For example, a tenant with a premium
throughput SLA should be able to consume a bigger share of the available resources
to process his jobs.

Scenario #2: Deadlines for specific jobs. Besides the just-in-time submission, jobs
can be of a recurring nature, e.g. processing payslips and invoices at the end of the
month, typically in the form of large document batches. The SLAs related to these
jobs define a (soft) deadline. Therefore, the load caused by these jobs can be predicted
to a certain level, enabling the SaaS provider to plan the necessary capacity upfront.
However, in a multi-tenant application the different workers are shared by all tenants
and thus additional (unexpected) jobs can be submitted any time. In addition, the
exact load is hard to predict and depends on many parameters (e.g. varying amounts
of documents to process). Therefore, the progress should be monitored at run time to
ensure that the different deadlines are met. In case SLA compliance is in danger, the
application should be able to immediately react by dynamically re-prioritizing jobs
and/or individual tasks.

Scenario #3: Minimal response time. Sometimes smaller jobs, consisting of only
a few input documents, require a guaranteed response time (almost comparable to
interactive applications). For example, premium tenants may have a special SLA
for a limited number of emergency cases that may occur (e.g. per month) and that
should get a prioritized treatment. This scenario can materialize at any time, even
during moments of peak loads. Again, the application should be able to prioritize the
processing of such a small job across all its workers. Evidently, such an SLA is also
associated with a high penalty in case of violation.

5.2.3 Challenges

The different scenarios presented above occur simultaneously, resulting in many
co-existing SLAs. The SaaS provider aims to ensure these different SLAs, while
minimizing the resource cost and the penalties. We have identified the following
challenges to achieve SLA-driven performance isolation in distributed multi-tenant
Saa$ applications:

« Support for co-existing performance requirements: Tenants can impose performance
requirements concerning response time, throughput, deadlines, or a combination
of these elements. Therefore, there should be support to simultaneously manage
and enforce multiple tenant-specific SLAs.

120 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

« The need for a reusable middleware framework for run-time SLA enforcement:
By providing a reusable middleware framework, SaaS providers are able to
(relatively) easily endow their multi-tenant SaaS application(s) with support for
SLA enforcement. This middleware takes care of the monitoring of the different
(distributed) subservices of the application, and the verification as well as the actual
run-time enforcement of the SLAs throughout the SaaS application. In addition, the
middleware framework should be open for different algorithms to support different
kinds of applications.

+ High performance and cost efficiency: The middleware solution for SLA-driven
performance isolation should select the next job/task to execute rapidly, without
having to wait until sufficient resources become idle and without the overhead
of workload planning or dynamic resource provisioning. This is critical to enable
the enforcement of premium throughput or low response time. Furthermore, the
preservation of the cost efficiency (i.e. maximum resource sharing) and scalability
benefits of application-level multi-tenancy is also an important non-functional
concern. The middleware should have minimal impact on these benefits. Finally,
measures should be taken against failures.

In reality, SaaS applications often do not have (immediate) access to unlimited
resources. It takes a significant amount of time to allocate extra resources [6, 125],
and private cloud environments offer an inherently limited capacity. Sometimes
the SaaS provider does not even have sufficient control over the total amount of
resources (e.g. on top of a Paa$ platform that promises automatic scaling). Under all
circumstances, even for very small low-latency jobs and unexpected high-throughput
jobs during peak loads, SaaS applications should try to deliver their SLAs, if necessary
by taking into account the different penalties that may apply.

5.3 A middleware architecture for tenant-aware SLA
enforcement

The proposed middleware solution operates as an indirection between the application
logic and the underpinning cloud platform. The concept diagram of this solution
is sketched in Fig. 5.3. The middleware for performance isolation services the SaaS
application that consists of a workflow description and multiple multi-tenant workers.
Furthermore, it relies on distributed storage to ensure availability of data, and on
a distributed execution platform, which may be extended with basic support for
application-level multi-tenancy. Such a multi-tenancy enablement layer facilitates at
least the isolation of tenant-specific data and configuration metadata (cf. [34, 214]).
Existing PaaS offerings can be used as underpinning cloud platform, because they

AMIDDLEWARE ARCHITECTURE FOR TENANT-AWARE SLA ENFORCEMENT 121

fulfill the requirements of a scalable computing platform and storage service, and
sometimes also of tenant-aware data isolation (e.g. Google App Engine [77]).

) describes Multi-tenant
. - SaaS
Multi-tenant Workers Application

VAN [
|_| tasks V
Job & Task Execution Management |:> Monitoring

Gmonitoring data
priorities
<:| Prioritization Performance

Isolation
Middleware
Tenant SLA Management
jobs, SLAs
Jobs |I SLAs
Multi-tenancy Enablement Layer
Underpinning
Cluster of Application Servers - Cloud
Platform
Distributed Storage Layer

Figure 5.3: Concept diagram of the proposed middleware solution.

The middleware for enforcing performance SLAs is decomposed in 4 elements, that
each fulfill an essential role in achieving the objective of servicing multiple tenants in
a fair and SLA-compliant way, while preserving high performance and cost efficiency:

« Decisions are made by the Prioritization service. These decisions are based on
the jobs and tasks that must be delivered, on the agreements (SLAs) with the
corresponding tenants, and on observations of the application and the actual
workload. The three remaining elements actually deliver and manage this
information:

« The Tenant SLA Management layer maintains an overview of the various jobs and
the corresponding SLAs that must be delivered for each of the tenants that the SaaS
provider is servicing at a particular moment in time. This layer obviously offers
external interfaces to inspect and update these configurations and SLAs.

« The Monitoring service collects data from the present jobs (workflow instances) and
tasks (workers), as well as from the system to assess the workload.

122 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

« The Job and Task Execution Management layer collects all jobs and therefore also
all tasks that must be allocated to the workers in the cloud environment. This
layer embeds a centralized, in-memory queue of tasks that must be executed.
Selection of tasks occurs by applying the priorities assigned by the above mentioned
Prioritization service.

The basic operation of the proposed middleware layer is based on a relatively simple
concept with various workers (subservices) that retrieve tasks from the Job and Task
Execution Management layer. These tasks have been prioritized by the Prioritization
service, which in its turn consults the Monitoring Service and the Tenant SLA
Management layer to make the appropriate decisions. Notice that the Prioritization
service relies on a scheduling algorithm that can be provided and/or customized
by the party that instantiates our middleware solution for a specific SaaS context.
Communication between these 4 elements occurs in an asynchronous way via a
messaging system (pub/sub) or via the distributed storage to minimize coupling and
to improve fault tolerance.

In the next subsections, we elaborate on each of the elements introduced above.

5.3.1 Tenant SLA management

The base layer of the SLA enforcement middleware (see (1) in Fig. 5.4) is deployed
on every node and consists of a set of facilities to manage the core attributes of our
task-driven application model, i.e. workflows, jobs, tasks and tenant-specific SLAs.
These attributes are stored and sufficiently replicated in the distributed storage to
ensure availability.

The ConfigurationManager enables the SaaS provider to manage the configuration
of the SaaS application. Such a configuration specifies the different workflows and the
various task types, the mapping of task types to service implementations (i.e. workers),
the way to access the different middleware services, and the algorithms (and their
implementations) for prioritizing tasks.

All jobs (submitted, on-going and finalized) are managed by the JobManager. A
Job specifies at least the following information: a unique identifier, its workflow
definition, the tenant owning it, and its creation time. Optionally, tenants can specify
input parameters for the execution process (e.g. localizing where raw input data is
stored), a start time for the job execution, and they can associate SLAs to the specific

job (e.g. a deadline).

The SLAManager component is responsible for managing the different SLAs. Every
SLA specifies its unique identifier, the workflow it applies to, and its type. The
middleware supports multiple types of performance SLAs: response time, throughput

AMIDDLEWARE ARCHITECTURE FOR TENANT-AWARE SLA ENFORCEMENT

123

7

<<component>> El

Multi-tenant SaaS Application |
£
<<component>> g] A 1l
ApplicationFrontEnd _<<component>>
ApplicationBackEndService
| :
'
) !
./ managejobs Performance Isolation Middleware :
!
| |
(2) Job and Task Execution Management \"/
<<component>> <<component>> a <<component>> gl
WorkflowEngine TaskDispatcher Worker

getNéxtTask

<<component>> El
() PriorityQueue

addFirstTask

;2‘ <<component>>
getTask MonitoringAgent gl
1
|

@ (4) Prioritization
submitMonitoringData @ <<component>> E
jorities TaskPrioritization
(3) Tenant-aware Monitoring
N <<component>> EI N\ <<component>> {I é notify
J | MonitoringService | O TenantStatus
iforingData
v e
ing
cR
getSLAs
|(1) Tenant SLA Management |
I <<component>> <<component>> <<component>>
O |C i E]‘ JobManager il (() SLAManager @ O
L JobSLAs SLA

C ation

<<component>>
Tenant E ______

Tenant

Multi-tenancy Enablement Layer
<<compon

El <<component>> El
<. TenantContext
setTenant

Storage Service

Caching Service

Cloud Platform

Messaging System

TenantFilter

Figure 5.4: Overview of the performance management middleware for multi-tenant
Saa$ applications. The middleware layer serves as an extension to PaaS offerings.
Tenants submit new jobs (e.g. via a front end), which are then executed by the different
back-end services of the SaaS application. The middleware decides which tasks may

execute.

and deadline, which require different input parameters. Furthermore, these SLAs can
apply to a specific job (e.g. a deadline), to all jobs of a particular tenant (e.g. premium

throughput), or to an entire applicat

ion. Optionally, an SLA can define the penalty for

the Saa$S provider in case of violation, and a limit defining the minimum percentage
of jobs the SLA applies to (e.g. “minimum response time for 90% of the jobs”).

124 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

5.3.2 High-performance job and task execution

The core of the middleware architecture (see (2) in Fig. 5.4) consists of three
components that ensure the execution of jobs and their associated tasks: a
WorkflowEngine, a TaskDispatcher, and multiple Workers.

Stateless workflow engine. The workflow engine is responsible for the creation
and proper execution of workflow instances (i.e. jobs). Therefore, it provides an
interface to the application(s) to create and submit jobs, optionally with job-specific
SLAs. When a job is submitted, it is persisted using the JobManager and a notification
is sent using the underpinning pub/sub infrastructure. Other components, internal as
well as external, can subscribe for these notifications, for example to schedule jobs
with a specified start time.

The decision to actually start the execution of a job can be taken by the workflow
engine itself when the (optional) start time of the job has passed, by the tenant (via
the application), or by an external component (e.g. at the scheduled point of time).
In Scenarios #1 and #2 (see Section 5.2.2), jobs are typically started immediately
after submission. When a job is allowed to start, the workflow engine sents out a
notification, creates an instance of the first task type in the job’s workflow, and submits
it to the task dispatcher (together with its input parameters). In our middleware, the
Prioritization service is subscribed for this event to keep track of the active jobs.

Furthermore, the workflow engine manages the execution flow of the different
workflows. When a task is finished, it determines the following task in the workflow
for the particular job using the appropriate workflow definition. The available
workflow definitions are cached in memory to improve the performance of this
workflow execution.

Priority-driven task dispatcher. The task dispatcher manages all tasks that are
allowed to execute (waiting) and those that are in progress. Concretely, these tasks
are stored in an in-memory PriorityQueue. By means of such a queue, the task
dispatcher controls which of the waiting tasks should execute next. We apply a
centralized and in-memory approach because it simplifies the design and because
of performance reasons. An alternative consists of a distributed queue (e.g. using
distributed caching or storage), however this requires strong consistency across the
different nodes to ensure tasks are executed only once. Our experiments with the
latter approach resulted in poor performance.

Concretely, the PriorityQueue offers a getter operation to return tasks based on
the priorities (i.e. weights) assigned to the different tasks by the Prioritization service.
The higher the priority, the more chance a task will be selected and executed first

0NN U A W N =

AMIDDLEWARE ARCHITECTURE FOR TENANT-AWARE SLA ENFORCEMENT 125

(cf. weighted round robin). It is critical for the performance and efficient resource
usage that the task selection procedure occurs without interruption or waiting: the
next task is selected immediately to keep the available workers busy. Notice that this
approach is open for extension, allowing the task dispatcher to use queues that take
additional constraints into account, such as security policies, cost, and data as well as
worker location.

When a task is finished, the task dispatcher retrieves the following task for the
particular job from the workflow engine and adds it to the queue. Possible return
values of a finished task are added as input for the next task (e.g. (location of)
intermediate results). This process is repeated until the whole job is finished; the
latter triggers again an event for external subscribers, for example the Prioritization
service.

Multi-tenant workers. The actual execution of tasks is performed by Workers.
These workers can be task-specific (cf. the document processing case study), or
uniform (in which case they can execute any task type). The performance isolation
middleware provides an API to support the SaaS developer with the development
of the workers: each back-end subservice in the SaaS application should extend the
existing Worker component (see Listing 5.1), and provide the work method with an
application-specific implementation, for example the generation of documents from
raw input data.

Listing 5.1: Template for the implementation of a worker. The SaaS developer should
provide a proper implementation for the work method. Optionally, the worker can
be made task-specific, by assigning a specific task type in the constructor.

public class <Worker Name> extends Worker {
public <Worker Name>(String taskType) {
super (taskType);

}

@Override

public TaskResult work(Task task) {
TaskResult result = new TaskResult(task);
// add application—specific implementation

result.addReturnValue (...);
return result;
}
}

To provide more flexibility with respect to elastic scaling and maintenance, the workers
have to request a new task themselves: the task dispatcher should not manage the list
of workers that are available for work or that should not receive new tasks (e.g. because

126 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

they are terminating). When a Worker is started, it automatically sends a request
for an executable task (of a specific type) to the dispatcher, and when the execution
is finished, it returns the result and requests a new task. In case there is no waiting
task, the worker will wait for a limited time and send a new request. This is fully
managed by our middleware. Notice that the Worker component is tenant-aware:
the associated tenant ID is passed with every task throughout the application. Using
the underpinning multi-tenancy enablement layer, data isolation is ensured during
the execution of a particular tenant’s task.

In the case of the document processing application, the batch of raw input data is
split up in several chunks of data that need to be further processed into separate
documents (see Fig. 5.2). With our approach, this means that the workflow engine
spawns multiple tasks after the BatchPreprocessing task, which can be processed
in parallel. In addition, the middleware provides a JoinWorker that is able to join
the results of multiple tasks into a single result, for example to package multiple sets
of newly generated documents.

5.3.3 Tenant-aware monitoring

To enable SLA enforcement in multi-tenant SaaS applications, the middleware keeps
track of the performance level delivered to the different tenants. Each Worker
has a built-in MonitoringAgent (see (2) in Fig. 5.4) to observe the execution of
tasks. This modular extension does not require any changes to the application code
itself. For each task, the tenant ID, job ID and task ID associated with the task are
retrieved and different performance metrics can be monitored, for example processing
time. Furthermore, a monitoring agent is integrated into the WorkflowEngine. The
workflow engine is the proper location to measure the end-to-end response time for
each job. The monitoring data gathered by the different monitoring agents is stored
into the distributed storage (or caching) service of the underpinning platform.

Since the monitoring agents already gather all execution information on the various
jobs and their associated tasks, they are the appropriate components to manage
the execution log. The execution log contains a record of the start and end times of
the different jobs and tasks, as well as the current status of the jobs (e.g. waiting
for execution, in progress, finalized, failed, etc.). This log is stored and replicated
in the distributed storage service. Each log line is stored in a separate row (i) to
enable concurrent write access by the different monitoring agents, and (ii) to support
querying, for example for recovery or to retrieve failed jobs.

The MonitoringService (see (3) in Fig. 5.4) retrieves, via the distributed storage,
the monitoring data and aggregates this information to provide an overview of the
global resource usage and performance level per tenant and per job. In addition, it can
process the historical data on task execution times to calculate the average execution

AMIDDLEWARE ARCHITECTURE FOR TENANT-AWARE SLA ENFORCEMENT 127

time per task type (e.g. to support the enforcement of deadline SLAs). This aggregated
information is persisted into the storage service and can be used to evaluate SLA
compliance.

5.3.4 Prioritization

The middleware part responsible for SLA-driven prioritization (see (4) in Fig. 5.4)
consists of two components: (i) the TenantStatus service that verifies whether the
performance level delivered to the different tenants complies with their SLAs, and
(ii) the TaskPrioritization service that updates the priorities assigned to each
tenant, job and task.

TenantStatus uses as input the different tenant-specific SLAs as well as the
aggregated monitoring data. It continuously analyses the monitoring data to
determine for each tenant whether the delivered performance level is in compliance
with the applicable SLA(s). Based on the results of this analysis, tenants are assigned
the appropriate behavioural status, for example aggressive (i.e. tenant consuming
much more resources than specified in its SLA(s)), normal, borderline (i.e. SLA(s)
almost violated), or penalized (i.e. SLA(s) violated).

If a tenant is classified as aggressive but the performance delivered to the other tenants
is not affected by this aggressive behaviour (i.e. no SLAs are violated), this means
that the aggressive tenant is using spare resources and no action should be taken.
However, if some SLAs are (almost) violated, e.g. because of aggressive tenants or
limited resources, the TenantStatus service notifies the TaskPrioritization
service that action should be taken.

The TaskPrioritization service determines the priorities of each tenant, job
and task, based on the different SLAs, the status labels that are assigned to tenants,
and the current set of active jobs (i.e. these jobs have tasks in the queue). The
latter is kept up-to-date via the notifications from the workflow engine. Priorities
are then translated into weights, which are used by the TaskDispatcher and its
PriorityQueue to decide which task should execute next. We use the underpinning
asynchronous messaging infrastructure to send these priorities to the task dispatcher.
This avoids unnecessary communication overhead (e.g. because of polling), and the
task dispatcher is only interrupted when there is an actual update.

The use of a specific algorithm to assign priorities based on SLAs depends heavily
on the kind of application. Therefore, different algorithms for prioritization can be
plugged in into our middleware using the strategy design pattern [69]. Developers who
select (or designers of) such algorithms are offered APIs to access the information that
is offered by the MonitoringService and by the SLAManager. Furthermore, they
can subscribe for notifications from the WorkflowEngine and the TenantStatus.

128 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

As output, they have to provide a mapping from tenants, jobs and tasks to weights,
and deliver it to the TaskDispatcher.

5.3.5 Deployment aspects

This subsection explains how the different components of the middleware architecture
are deployed on different nodes or as separate processes in a distributed environment.
We focus especially on the aspects that affect scalability and fault tolerance. Typically,
a node consists of a virtual machine (VM) running an application server as part
of a cluster or it is an instance of a Platform as a Service (PaaS). Furthermore, a
monitoring infrastructure and a (dynamic) resource management system (outside of
our middleware) are needed to detect failing nodes or processes and to restart them,
possibly elsewhere.

One or more Workers can be deployed per node, depending on the complexity of the
task or whether a task requires specific hardware (e.g. for encryption). Our approach
does not affect the scalability of the workers, so multiple instances of the same worker
can be deployed to balance the load.

The TaskD1ispatcher and the WorkflowEngine components are typically deployed
together on a single node to limit the cost of remote communication. This setup
creates a single point of failure and possibly also a performance bottleneck. However,
these are lightweight processes that can restart almost instantly in case of failure.
Furthermore, a new workflow engine process can be started elsewhere, because the
list of available workflows is replicated. The same applies to the task dispatcher:
the state of its queue can almost completely be rebuilt based on the execution log
(i.e. all unfinished tasks and jobs). Only tasks that are still being executed, cannot
be determined. Therefore, the task dispatcher has two options: (i) add all unfinished
tasks immediately to the queue and perform some tasks twice, or (ii) wait for a limited
time and collect the results of tasks that were still executing. The last option is only
recommended for long-running or expensive tasks.

Our architecture offers the opportunity to replicate the workflow engine: it is a
stateless component that caches a copy of the workflows in memory, while workflows
are only seldomly updated. In contrast, preserving the consistency of the priority
queue of the task dispatcher is crucial and therefore hinders scaling. However, separate
queues can be created per task type, which enables the SaaS provider to spread the
load and improve the performance of each queue.

Finally, the monitoring and prioritization components are deployed on separate
nodes. In this case, active replication is not recommended: both components need
all available data to perform their work, which hinders the distribution of the load.
However, these components cannot become a performance bottleneck, because the

EVALUATION 129

task dispatcher and the workers can operate independently from these components.
Furthermore, the operational results of both components (i.e. monitoring data and
priorities) are persisted in the distributed datastore, allowing a backup service to
immediately continue the work in case of failure.

5.4 Evaluation

The evaluation of our middleware architecture for performance isolation includes (i)
the demonstration of its SLA enforcement capabilities, and (ii) the measurement of
the performance overhead that the middleware introduces. We compare the results of
our SLA-aware solution with a default system that implements a FIFO (First In, First
Out) strategy without any sophistication, and with an approach that implements a
straightforward, fair distribution of resources over the different tenants.

This section first presents the prototype implementation. Next the setup and the
evaluation scenario that are used for demonstration and further evaluation are
described. Subsequently, the results of this demonstration (i.e. actual tenant-specific
SLA enforcement) and the performance evaluation are presented. Finally, a discussion
section addresses the general applicability and the limitations of our middleware
solution.

5.4.1 Prototype implementation

We have developed a Java-based prototype of our middleware architecture. JBoss AS
is used as application container; RabbitMQ as pub/sub infrastructure. The different
components of the middleware are implemented as RESTful web services using
the JBoss RESTEasy framework. For the distributed storage we selected Apache
Cassandra [112], because it was designed for high write throughput, availability (via
replication) and scalability. Furthermore the consistency level is tunable: strong
consistency can be achieved when necessary, but comes at the expense of availability.
The communication with this database occurs in our prototype via Astyanax, a
Java-based client library for Cassandra.

The order of tasks (or messages) cannot be changed in a standard queue. Therefore, the
implementation of the PriorityQueue should offer support to query tasks based on
task type, on tenant ID, and on job ID. In addition, it should ensure consistency, even
in the context of distributed joins. For example the document processing application
may only create a zip file when all documents of a specific batch have been generated.
Existing queuing services ensure consistency, however they often offer no or only
limited filtering support (e.g. based on a single parameter). Using such services would

130 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

inherently require the deployment of multiple queues, for example one queue per
task type. We therefore have provided our own implementation for the prototype.

For evaluation purposes, we have developed two (relatively simple) prioritization
algorithms for our middleware: (i) a strategy that ensures fair distribution over all
tenants without taking SLAs or monitoring data into account, and (ii) an SLA-aware
strategy, that makes decisions based on the different tenant-specific SLAs and on the
available monitoring data.

Furthermore, we have implemented the document processing application, as described
in the case study, on top of our middleware prototype. The workflow combines six
different task types, each task implemented by a different worker: the five activities
that have been introduced in the example workflow (see Fig. 5.2) and a JoinTask
that is responsible for the join operation. In this instance of the document processing
application, CSV data is used as input to generate PDF documents (via XSL-FO),
which are then aggregated into a zip file. The web front end of the multi-tenant SaaS
application is developed with Java Servlets and Java Server Pages (JSP). This front
end is used to manage the application configuration and to submit new jobs.

5.4.2 Evaluation scenario & setup

This part presents an evaluation scenario to demonstrate the operational capability and
the effectiveness of our performance isolation middleware (see Table 5.1). The scenario
must contain a realistic mixture of different tenant-specific SLAs (e.g. some addressing
throughput, some other imposing deadlines) and tenant behaviours (average resource
needs versus very high, up to excessive needs!). We composed this scenario in
order to maximally utilize the available throughput. Such a scenario is well-suited
to demonstrate and verify the ability of the middleware solution to fairly distribute
the platform capacity despite different tenant behaviours, and to ensure compliance
with the different tenant-specific SLAs. The different tenants that contribute to the
scenario are specified in Table 5.1.

We have executed this scenario in three deployment contexts, i.e. in a configuraton of
the performance isolation middleware that implements (i) FIFO, (ii) fair share, and
(iii) SLA-awareness. The former only uses the task and job execution manager of our
middleware and a basic FIFO queue that retrieves the first task in the queue (i.e. no
monitoring and prioritization), while the other two use the full middleware but with
different prioritization algorithms (as sketched above).

1A tenant that imposes excessive needs for resources is said to expose aggressive behaviour, as opposed
to normal behaviour. In our scenario, aggressive behaviour of a tenant is represented by the submission of
multiple jobs at the same time, thus Tenants 1, 7 and 8.

EVALUATION 131

Table 5.1: Overview of the evaluation scenario. All jobs have the same size and
contain raw input data for the generation of 800 PDF documents. Tenants with high
resource needs, which corresponds to aggressive behaviour, submit multiple jobs at
the same time. The default SLA specifies a minimum throughput of 1 document per
second per tenant.

Jobs Start SLA

Tenant 1 Jobs 1,2,3 at Os Minimum throughput:
1 document/s

Tenant 2 Job 4 at5s Premium throughput:
4 documents/s

Tenant 3 Job 5 at5s Deadline: at 2700s

Tenant 4 Job 6 at5s Deadline: at 1150s

Tenant 5 Job 7 at5s Minimum throughput:
1 document/s

Tenant 6 Job 8 at5s Minimum throughput:

1 document/s

Tenant 7 Jobs 9, 10, 11, 12 at 300s Minimum throughput:
1 document/s

Tenant 8 Jobs 13, 14, 15, 16,17 at500s Premium throughput:
4 document/s

The evaluation environment is set up as follows. The prototype of the middleware and
the document processing application are deployed on a private PaaS platform using a
JBoss AS 7.1.1 cluster and an Apache Cassandra 1.2 database cluster. The underpinning
infrastructure consists of three servers, each based on two Intel Xeon 6- to 8-core
processors and 64 GB of memory. This infrastructure is virtualized using OpenStack
(Folsom release). We have created one instance per worker of the application and we
have deployed these on separate virtual machines. Two additional virtual machines
are allocated, a first one to the task dispatcher and the workflow engine, and the
second one to the monitoring service and the SLA-driven prioritization services. Thus,
8 different virtual machines are used in total.

5.4.3 Demonstration of SLA enforcement

The execution of the evaluation scenario for the three different cases clearly shows the
effectiveness of our SLA enforcement middleware (see Fig. 5.5). In the FIFO case, the
job that is started as first, completely runs through the workflow first (see Fig. 5.5(a)).
All jobs are completed one by one, resulting in several SLA violations. For example,
the aggressive behaviour of Tenant 1 has an impact on the performance of the service

132 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

that has been delivered to the other tenants, i.e. the tasks of other tenants have to
wait for Tenant 1’s tasks to finish. The same effect is visible when observing the
impact of Tenant 7 on the execution of the jobs that are generated by Tenant 8. The
lack of performance isolation thus causes the SLAs of Tenants 2 and 8 to be violated,
although these tenants pay for premium throughput. In addition, the application was
also not able to deliver the minimum throughput to Tenant 6.

The fair share case shows that our middleware is able to enforce fair distribution
over the different tenants (see Fig. 5.5(b)). Although Tenant 1 submits three jobs at
the same time, its total share of resource consumption is equal to the one of other
tenants that have a job running. In addition, the resources available to Tenant 1 are
also fairly distributed over the jobs of Tenant 1. Consequently, the jobs of Tenants 2
to 6 finish at about the same time, and the Tenants 1, 7 and 8 do not benefit from
their aggressive behaviour. At the end of the scenario more resources are available
because less tenants have a running job, which allows Tenants 7 and 8 to consume
more resources. However, fair distribution is not sufficient to ensure SLA compliance:
the application does not deliver the required throughput to comply with the SLAs
of Tenants 2 and 8. In case one additional tenant would have submitted a job, then
the fair share approach would also not have been sufficient to deliver the minimal
throughput to Tenants 5 and 6.

Finally, in the SLA-aware case, our middleware ensures compliance with the different
tenant-specific SLAs as defined in the scenario (see Fig. 5.5(c)). In contrast to the
previous cases, Tenant 2 receives a higher share of the resources in accordance to
the SLA that offers premium throughput. Consequently, this job is finished first. In
addition, our middleware ensures a minimal throughput for Tenants 1, 5 and 6, while
the deadlines specified in the SLAs of Tenants 3 and 4 are met. Notice the rather
large differences between the results of the SLA-aware approach and the other cases:
because of the premium throughput, the jobs of Tenant 8 finish sooner than the jobs of
Tenant 7, and the execution of the job for Tenant 3 has been spread over a much longer
period compared to the other cases (because his SLA allows it). Again, aggressive
tenants cannot adversely affect the performance delivered to the other tenants.

To demonstrate that our middleware can also address jobs with very low response
times, we added an extra job to the basic scenario: Job 18 by Tenant 9, containing 2
documents, starting after 25s (i.e. a period of heavy load) with a required response
time of 10 seconds. Fig. 5.6 shows that our middleware effectively is able to support
low response times, even when the application is under heavy load.

5.4.4 Performance overhead

We evaluated the performance overhead by measuring the global throughput during
the execution of the entire evaluation scenario (see row 1 in Table 5.2). Obviously,

EVALUATION 133

(a) FIFO
Job 17
Job 16
Job 15
Job 14
Job 13
Job 12
Job 11 4 Tenant 1
Job 10 - Tenant 2
Job9 | — Tenant 3
7 - Tenant 4
Job8 1 Tenant 5
Job 7 ¢ Tenant 6
Y e e —+—-.= Tenant 7
i A —
Job s x Tenant 8
Job 4
Job 3
Job 2
Job 1 e
560 IObD 15b0
Time (in seconds)
(b) Fair Share
Job 17]
Job 16
Job 15
Job 14
Job 13
Job 12
Job11 | Tenant 1
Job 10 e e - Tenant 2
Job9 | e e —x— Tenant 3
7 - Tenant 4
Job & § bl Tenant 5
Job7 e e - Tenant 6
JOD6 e = = e = — - - Tenant 7
Jobs———_____x — — Tenant 8
Job 4
Job 3
Job 2
Job 1
T T T
500 1000 1500
Time (in seconds)
(c) SLA-aware
Job17 |
Job 16
Job 15
Job 14
Job 13
Job 12
Job11 | Tenant 1
Job 10 - Tenant 2
Job9 | —>x— Tenant 3
7 —--—Tenant 4
Job8 1 +— Tenant 5
Job 7 ¢ -- Tenant 6
Job 6 —:—-:=Tenant 7
Jubsi —& — Tenant 8
JOb 4 feeuseruscnnn
Job 3
Job 2
Job 1
560 10b0 15‘00

Time (in seconds)

Figure 5.5: Graphs presenting the execution of the tenant-specific jobs according
to the evaluation scenario, respectively applying a FIFO approach (Fig. 5.5(a)),
fair distribution of resources per tenant (Fig. 5.5(b)), and SLA-driven prioritization
(Fig. 5.5(c)). SLA violations are highlighted in grey.

134 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

SLA-aware: low-response time job

Job18 |X
Job 17 A A
Job 16 A A
Job 15 A e
Job 14 A A
Job 13 A A
Job 12 e e Tenant 1
Job 11] m—m———— e — = Tenant 2
Job10 | 0 e ————— i ——— —x— Tenant 3
J0b9_ — - —. — — — — — — — — — — — - — - - —=--—Tenant 4

E —-.-— Tenant 5
Job8 pmmmm - m - --4-- Tenant 6
JOD 7 vt —— e — —.—.=Tenant 7
Job6 fmmm e m e —& — Tenant 8
Jobs Yo o X —=%—— Tenant 9
Job4_
Job 3
Job 2
Job 1

T T T
0 500 1000 1500

Time (in seconds)

Figure 5.6: Graph presenting the execution of the evaluation scenario, including an
additional job with low response time (by Tenant 9).

the FIFO version has the highest throughput, because it has no overhead caused by
monitoring and prioritization and it has a basic FIFO queue. However, our performance
isolation middleware introduces only a limited overhead of about 2%. Moreover, there
is no difference in performance between the fair share and the SLA-aware algorithm.
The main causes of the performance overhead are the selection of the next task based
on priorities and the additional remote communication with the messaging system,
which are similar for the fair share and the SLA-aware versions. The impact of the
monitoring service is minimal.

Table 5.2: Overview of the average global throughput over 15 runs each (in terms
of documents per second) by the FIFO version, and by the two versions using our
middleware. The first row corresponds to the default setup for the evaluation scenario,
while the second row presents the results for the upscaled version with two workers
for document rendering.

FIFO Fair share SLA-aware

Default 7.56 (0 0.08) 7.40 (0 0.15) 7.41 (0 0.09)
Upscaled 19.56 (¢ 0.05) 19.37 (0 0.15) 19.46 (0 0.13)

These results also confirm that the evaluation scenario completely consumes the
available throughput: the SLAs of Tenants 1, 2, 5 and 6 already require a throughput

EVALUATION 135

of at least 7 documents per second. Combined with the jobs of Tenants 3 and 4, the
scenario reaches the average of 7.5 documents per second.

The bottleneck in the evaluation setup is the worker for rendering PDF documents
using XSL-FO. Therefore, we deployed an additional worker for this task. As a result,
the SLAs were easily delivered (see Fig. 5.7), but the average throughput of this
upscaled version more than doubled (see row 2 in Table 5.2), which is theoretically
impossible. However, we consequently came to these results, also when alternating
with the default evaluation setup and the different cases. This effect is caused by the
underpinning cloud platform, probably because multiple task workers are deployed
on the same physical machine and influence each other. Furthermore, these results
indicate that the relative performance overhead of our middleware decreases with
an increasing throughput. This means that it is a rather static cost for our scenario,
independent from the throughput.

SLA-aware: 2 workers for document rendering

Job 17 | — —
Job 16 —_—
Job 15 —_—
Job 14 A s e
Job 13 — A
Job 12 — i ——— —
Job11 | T T T Tenant 1
JDb 10 — — — — — e, Tenantz
Job9 | ——— e —— Ienant?1

R — - —— Tenant
JObBﬁ" ___________ * —...— Tenant 5
J0b7ﬁ_..._..._..._. ——-e-- Tenant 6
JOD6 | = e e e e e — —-—-=Tenant 7
Jobsﬁ————————x — — Tenant 8
JOb 4 [eeeeessrnnnnenes
Job 3
Job 2
Job 1

T T T T T T T
0 100 200 300 400 500 600 700

Time (in seconds)

Figure 5.7: Graph presenting the execution of the upscaled version of the evaluation
scenario, i.e. with two workers deployed for document rendering.

Finally, to evaluate the scalability of the task dispatcher and the priority queue, we
deployed 22 simple workers running sleep 0 on 11 virtual machines (one worker per
CPU). In this configuration, the rate of tasks processed by the middleware reached
up to 300 tasks per second in average (over 100 runs with each 25000 concurrent
tasks submitted). Furthermore, it receives updates from the prioritization service and
polling requests from idle workers. The task dispatcher can easily keep up with this
workload. Moreover, the throughput can be further increased by bundling tasks.

136 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

5.4.5 Discussion

In this section, we further analyse the results of the evaluation, and discuss the
limitations of our approach and the lessons learnt.

Analysis of results. The evaluation shows promising results with respect to the
architecture of our middleware solution: it enables SaaS providers to enforce different
tenant-specific SLAs, while only a limited performance overhead is introduced. As
explained above, this performance overhead is mainly caused (i) by the task selection
in the PriorityQueue, and (ii) by the additional remote communication with the
messaging system. The performance overhead introduced by the latter depends on
the frequency of changes in the workload that is presented to the SaaS application,
i.e. when the number of tenants changes, when new jobs arrive, etc. Few changes
and longer-running tasks will cause lower overhead, but often do not require rapid
response to changing requirements to ensure performance isolation. Therefore, we
do believe that our evaluation scenario is a representative sample to demonstrate the
feasibility of our solution: 17 jobs spawning many tasks of a small size, and this under
high workload and with different tenant-specific SLAs that must be respected within
a single, limited time frame.

It remains possible however, that the performance isolation middleware can be further
optimized by limiting the frequency of its interventions: in other words, should
workload changes occur at a very high frequency, then it may be better to schedule
the middleware activities periodically. This is a topic of further research.

The results also show that the implementation of our SLA-aware prioritization
algorithm is conservative. For example, the jobs with a deadline are finished too
soon, which prevents other jobs from finishing earlier. However, the design of a
prioritization algorithm is not the focus of this work. In the state of the art, many
algorithms are available that can be plugged into our middleware to improve the
prioritization process, e.g. [107, 142, 218].

General applicability. In this paper, we focused on service-oriented multi-tenant
Saa$ applications that execute a workflow consisting of different subservices (workers).
More specifically, we aimed at SaaS applications that process a mixture of small
and medium-sized batches with different performance SLAs in terms of latency,
throughput and deadlines. Document processing is a typical example of such an
application, as illustrated in Section 5.2.2. Such applications require a rapid response
from the performance isolation middleware to ensure the different SLAs, even under
changing circumstances.

EVALUATION 137

However, our architecture can also be used in a simplified form for interactive SaaS
applications, as shown in previous work [213]. In this case, there is no need for a job
manager and a workflow engine. Requests are directly sent to the task dispatcher.
Obviously, the prioritization component should be adapted to this type of applications,
for example with a different prioritization algorithm and update frequency. Evidently,
for (very) long-running workflow processes, e.g. e-science applications, the more
typical approaches of resource provisioning and workload planning offer the most
suitable solution.

Another limitation of the current architecture is that the performance isolation is
limited to the actual execution of the tasks. However, workers can depend on other
services provided by the cloud platform or third parties, for example the distributed
storage service. Although there exist solutions for performance isolation in multi-
tenant storage (e.g. [193]), it is definitely worth to analyse the impact of this limitation,
in particular when the application depends on services that cannot be controlled by
the Saa$ provider, for example as part of a public PaaS offering. This is an avenue of
future work.

Scalability. In this work, we assume that the Saa$S provider predefines a set of SLAs
that he is able to support and that tenants can select when consuming the service.
Custom SLAs are possible, but only after negotiation with the SaaS provider and
typically at a high price. This approach enables the SaaS provider to stay in control
and to ensure that sufficient resources are available. By applying application-level
multi-tenancy, these resources can be maximally shared among the different tenants,
resulting in a reduction of the operational costs.

However, the SaaS application should be able to scale with an increasing number
of tenants in order to deliver the different SLAs. Our middleware aims to enforce
the tenant-specific SLAs, while maximally utilizing the available resources, but it
does not automatically provision additional resources when necessary. In case of
insufficient resources, SLAs will be violated. As a consequence, the functioning of
the middleware will be limited to minimizing the penalties for the SaaS provider.
Therefore, it is crucial to also deploy an (external) resource management system and
monitoring infrastructure to dynamically add and remove resources when necessary.
Optionally, these systems can integrate with our middleware to better estimate the
needs, for example by subscribing for the different notifications that are generated
during execution.

Furthermore, as we explained above, we experienced that a resource management
system not necessarily provides the optimal deployment of the different components
and workers in a virtualized environment, and thus can have an impact on the
scalability of the application.

138 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

5.5 Related work

We discuss related work by addressing three important subdomains: (i) performance
isolation in multi-tenant Saa$ applications, (ii) resource provisioning, scheduling and
cloud auto-scaling, and (iii) QoS-aware service composition.

Performance isolation in multi-tenant SaaS. Typically, performance isolation in
SaaS$ applications is achieved by assigning separate virtual machines to the different
tenants [85, 197]. However, this approach restricts resource sharing (only hardware is
shared) and has a higher application management and maintenance cost [44, 84, 214].

SPIN [117] uses an anomaly detection model to predict an instable status in the
execution environment of a multi-tenant application. When an anomaly report is
triggered, aggressive tenants are identified based on their resource consumption. The
focus of this work is the algorithm for the identification of aggressive tenants to ensure
fair distribution of resources over the tenants. Tenant-specific SLAs are not taken into
account. Our work, however, focuses on the development of a middleware architecture
to enforce tenant-specific SLAs in distributed multi-tenant SaaS applications. Different
algorithms can be plugged in, for example to improve the detection of aggressive
tenants.

In previous work [213], we identified and illustrated the challenges of performance
isolation in the context of interactive, multi-tenant web applications, and proposes
a middleware architecture to enforce fair distribution of resources. In contrast, our
work focuses on multi-tenant Saa$ applications with a service-oriented architecture
and a task-driven application model. Moreover, we take tenant-specific SLAs into
account.

Pisces [193] provides performance isolation and fairness in multi-tenant cloud storage.
An important difference with multi-tenant SaaS applications is that requests are
scheduled driven by the partitioning and replication of the data across the different
nodes. In addition, the approach does not take tenant-specific SLAs into account.
Related to this work, [39] presents a QoS architecture to manage performance in
NoSQL distributed storage systems. While our work focuses on application-level
multi-tenancy, the integration with such approaches for multi-tenant storage seems
appealing in light of ensuring system-wide performance isolation.

CPI? [225] is a system to detect and handle CPU performance isolation faults in shared
compute clusters. Concretely, it tackles the problem of performance interference
between different applications that share resources (i.e. CPU cycles). Our work
focuses on multi-tenant SaaS applications, thus on sharing the same application
among multiple customer organizations. Furthermore, our middleware enforces
performance isolation at the application level, while CPI?> works at the CPU level.

RELATED WORK 139

However, CPI? is still relevant as the different subservices of a distributed multi-tenant
SaaS application can share resources (deployment on the same physical machine) and
thus interfere.

Resource provisioning, scheduling & cloud auto-scaling. A considerable amount
of research has been done with respect to dynamic resource provisioning in virtualized
environments, workload scheduling with deadline and cost constraints, and cloud
auto-scaling [27, 28, 33, 36, 110, 115, 126, 160, 189, 218]. Typically, these approaches
aim to meet job-specific deadlines (cf. Scenario #2 in Section 5.2.2). The majority of
these approaches consider a public or hybrid cloud environment and try to handle
increasing workload by acquiring resources in the (unlimited) cloud, while minimizing
the costs. Often this auto-scaling is driven by load prediction mechanisms. Other
approaches focus on environments with limited capacity and schedule the workload
after a reservation of capacity, which is not suitable to handle jobs that require low
response times (cf. Scenario #1) and not applicable in the context of application-level
multi-tenancy.

Our work is complementary to these approaches as our performance isolation
middleware focuses on cloud environments that are fully shared by the different
tenants (application-level multi-tenancy), while taking into account different tenant-
specific SLAs, characterized by response time, throughput or deadlines. Our
middleware cannot acquire additional resources itself, but it does support the scaling
of the Saa$ application and its workers driven by an external auto-scaling or resource
management system. Thus, the integration of these existing approaches for auto-
scaling and task scheduling with our work offers SaaS providers the mechanisms to
enforce different tenant-specific SLAs (for the long and the short term), while being
able to scale in a cost-efficient way.

QoS-aware service composition. In the domain of service composition, automated
composition of Web services is often based upon QoS properties of the different
services [122, 220, 223]. Non-functional properties such as security, reliability, and
performance are used by a matchmaking algorithm to select the most appropriate
(third-party) service. In contrast, we consider a multi-tenant context where all services
are shared by the different tenants. Instead of dynamically adapting the service
composition by selecting different services to ensure SLA compliance, SLAs have to
be enforced on the (limited set of) subservices of the multi-tenant SaaS application.

Furthermore, several approaches exist for dynamically predicting SLA violations in
service-oriented applications, for example [116, 119], which is complementary to our
tenant status service. However, notice that such approaches are not tenant-aware.

140 MIDDLEWARE FOR PERFORMANCE ISOLATION IN APPLICATION-LEVEL MULTI-TENANCY

5.6 Conclusion

This paper presents the architecture and evaluation of a performance isolation
middleware that enables SaaS providers to manage and enforce co-existing SLAs
of the different tenants in service-oriented multi-tenant SaaS applications. Driven by
the monitoring data from the different application services and the different SLAs, the
middleware embeds the mechanism to dynamically prioritize tasks, and to enforce
timely execution while servicing multiple tenants. Our solution does not promote
any particular algorithm, it is a framework that enables plugging in the necessary
algorithms.

We have implemented a prototype on top of a private cloud platform, built using
OpenStack, a JBoss AS cluster and an Apache Cassandra database cluster. We
have evaluated the effectiveness of our solution by means of a case study, showing
promising results in ensuring compliance with the different tenant-specific SLAs.
Moreover, the prototype shows that our middleware introduces only a limited and
acceptable performance overhead, and thus preserves the cost-efficiency benefits of
application-level multi-tenancy.

Chapter 6

Efficient customization of
multi-tenant Software-
as-a-Service applications with
service lines *

Preamble

In the previous three chapters, we have presented a middleware framework to enable
and realize the tenant-specific customization of SaaS applications. However, the SaaS
model as well as leveraging this advanced middleware for hosting a customizable SaaS
application have an impact on the applied software engineering method. Therefore,
this chapter focuses on the necessary engineering support for SaaS architects and
developers. Because of the customization needs, we have proposed a method similar
to SPLE, called service line engineering (SLE), for the efficient development, operation
and management of customizable SaaS applications. More specifically, it addresses
the management complexity of co-existing tenant-specific configurations and reduces
the effort to provision tenants significantly. Section 6.3 introduces the SLE concepts
and method, while Section 6.4 briefly describes the validation of this method in the
context of the document processing SaaS application (cf. Section 1.3). [216] provides
more details on the practical application of this method. Section 6.5 evaluates the
efficiency benefits in the form of a comparative cost analysis of the required effort,
and discusses the strengths and limitations of the presented method.

*The content of this chapter has been published in the 91" volume of the Journal of Systems and
Software [217].

141

Efficient customization of
multi-tenant Software-
as-a-Service applications with
service lines

Abstract

Application-level multi-tenancy is an architectural approach for Software-as-a-
Service (SaaS) applications which enables high operational cost efficiency by sharing
one application instance among multiple customer organizations (the so-called
tenants). However, the focus on increased resource sharing typically results in a
one-size-fits-all approach. In principle, the shared application instance satisfies only
the requirements common to all tenants, without supporting potentially different
and varying requirements of these tenants. As a consequence, multi-tenant SaaS
applications are inherently limited in terms of flexibility and variability.

This paper presents an integrated service engineering method, called service
line engineering, that supports co-existing tenant-specific configurations and that
facilitates the development and management of customizable, multi-tenant SaaS
applications, without compromising scalability. Specifically, the method spans the
design, implementation, configuration, composition, operations and maintenance of
a Saa$ application that bundles all variations that are based on a common core.

We validate this work by illustrating the benefits of our method in the development
of a real-world Saa$ offering for document processing. We explicitly show that the
effort to configure and compose an application variant for each individual tenant is
significantly reduced, though at the expense of a higher initial development effort.

142

INTRODUCTION 143

6.1 Introduction

Software as a Service (SaaS) has become a common software delivery model. It is a
form of cloud computing that involves offering software services in an online and
on-demand fashion (with the Internet as the main delivery mechanism). One of the
key enablers in cloud computing to achieve economies of scale is multi-tenancy [44,
84]: the sharing of resources among a large group of customer organizations, called
tenants. This architectural concept can be applied at various levels of the software
stack: at the infrastructure level (i.e. virtualization), at the OS and middleware level,
and even at the application level. Each approach makes a different trade-off between
(i) maximizing scalability and operational cost benefits (including hardware and
software resource usage as well as maintenance effort), and (ii) maximizing flexibility
to meet the potentially different and varying tenant-specific requirements [214].

This paper focuses on application-level multi-tenancy. Application-level multi-
tenancy achieves the highest degree of resource sharing between tenants [44, 214].
End users from different tenants are simultaneously served by a single application
instance on top of shared infrastructure. However, when compared to infrastructure-
level and middleware-level multi-tenancy, the inherent limitations in variability form
a crucial disadvantage. The high degree of resource sharing typically results in a
one-size-fits-all approach: the multi-tenant application only satisfies the requirements
that are common to all tenants. Support for different and varying requirements of the
different tenants is lacking.

To shorten the time-to-market, the initial development and release cycles of a SaaS
application are typically focused on the needs of the first customer organizations
(tenants). As the SaaS offering becomes more successful, an increasing amount of
variations (ranging from minimal to substantial) is implemented to service new tenants
and an increasing amount of tenant-specific configurations therefore have to co-exist
at run time. This easily leads to an explosion of relatively small variations in the
implementation as well as in the different configurations. This real-world scenario is
experienced in many specific business cases; we have identified a lack in methodical
support for the development and customization of multi-tenant applications. This lack
of support can be characterized by two essential challenges:

First, SaaS providers need to be able to manage and reuse the different configurations
and software variations in an efficient way, without compromising scalability; e.g. by
avoiding additional overhead when provisioning new tenants.

Secondly, part of realizing the scalability benefits of SaaS is achieved by self-
service: shifting some of the configuration efforts to the tenant side, e.g. by allowing
the tenant to manage his tenant-specific requirements and by automating the run-time
configuration process. Therefore, tenants require additional support to manage the
configuration in a tenant-driven customization approach.

144 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

In the state of the art, some work has been performed to combine the benefits of
software product line engineering (SPLE) [48, 168] with those of multi-tenancy
to facilitate the customization of SaaS applications tailored to the tenant-specific
needs [138, 141, 186, 214]. We define a service line as a specific concept that leverages
on the notion of software product lines by offering a shared application instance that
still is dynamically customizable to different tenant-specific requirements. However,
none of the current service engineering approaches offer a complete customization
process for multi-tenant applications. Moreover, customization is often limited to
specific technologies or to specific types of applications.

Our solution is a feature-oriented method that is highly integrated, in the sense that
the feature-level variability that is introduced in the early development stages is
consistently and explicitly supported in each of the subsequent development stages,
also in the run-time environment. This is a key difference with respect to traditional
SPLE. Instead of delivering a dedicated, separate application product for each tenant
(cf. the application engineering phase in SPLE), the entire service line (including all
variations) is instantiated and deployed only once and simultaneously shared by all
tenants. Specific software variants are activated at run time within one single SaaS
application instance.

The main contribution of this paper is an integrated service line engineering method
that focuses on addressing variability up front without compromising the scalability
of SaaS applications. This method starts with the initial development phases
(requirements engineering, architectural design and implementation) of the service
line, but also focuses on the deployment, run-time configuration and composition,
the operations and maintenance. The method is generic in the sense that each stage
is open for existing work in the state of the art to be leveraged upon, yet it imposes
some specific constraints (e.g. composability and traceability of features) and requires
some enablers (e.g. multi-tenancy, feature-level versioning, tenant-level configuration
interfaces) for service line variability.

We have validated this method in the development of an industry-level SaaS
application in the domain of online B2B document processing. To this end, we
closely collaborated with an industrial SaaS provider in the context of a collaborative
research project [53]. Our evaluation focuses on illustrating (i) the efficiency benefits
with respect to addressing the management complexity of many co-existing tenant-
specific configurations, and (ii) the trade-off between the early effort required to
design and implement the initial service line, and the late effort required to configure
and compose application variants, to provision new tenants as well as to update and
maintain the service line as a whole.

The structure of this paper is as follows. Section 6.2 motivates this work and elaborates
on the problem statement. Section 6.3 articulates the concept of a service line and
describes the service line engineering method. In Section 6.4, this method is applied

PROBLEM ELABORATION 145

on a Saa$ application in the domain of document processing. We evaluate and discuss
our work in terms of the efficiency benefits associated with service lines in this
specific SaaS application in Section 6.5. In Section 6.6, related work is discussed and
Section 6.7 concludes the paper.

6.2 Problem elaboration

The motivation for this paper is based on our extensive insight into the current state
of practice of a number of industrial SaaS providers (which was obtained in the
context of several applied research projects, e.g. [53]). In this section, we first present
our characterization of this current state of practice of developing, operating, and
maintaining multi-tenant SaaS applications. Then, we list the main challenges that
are addressed in this paper.

6.2.1 State of the practice

We present a number of development and management activities that occur in the
lifecycle of a multi-tenant SaaS application. Specifically, we focus on the customization
and management challenges that SaaS providers face to efficiently offer and manage
their offerings.

The following stakeholders are involved in these scenarios. The SaaS architect,
Saa$ developer and Saa$ operator are employees of the SaaS provider. In addition,
each tenant should assign a tenant administrator role to the person responsible for
managing the SaaS application on behalf of the tenant organization (e.g. for user and
configuration management). In theory, this role can be assigned to an internal user of
the tenant or to the SaaS provider, or even to value-added resellers who are a business
channel between tenants and the Saa$S provider. In practice, the tenant administrator
is often an employee of the SaaS provider, as detailed technical knowledge of the SaaS
application is required.

Scenario #1: Initial development of the SaaS application. This scenario entails
the initial design and development of a multi-tenant Saa$S application by the SaaS
architect and the SaaS developers. The SaaS operator is responsible for deploying and
managing the (running) implementation of this SaaS application.

To shorten the initial time-to-market, the first development cycles of a SaaS application
are typically focused strongly on the needs of the first customer organizations (tenants).
As a result, the Saa$ application typically supports limited variability beyond the
scope of the initial tenants.

146 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

Scenario #2: Provision a new tenant. In this scenario, a new tenant wants to use
the SaaS application and customize it to its requirements. We assume that the SaaS
application already covers the requirements of the new tenant, e.g. because these
requirements are very similar to those of already provisioned tenants. (Scenario #4
covers the case where new requirements have to be supported.)

Based on his (technical) knowledge about the application, the tenant administrator
has to manually translate the tenant’s requirements into a software configuration for
the multi-tenant Saa$ application. Obviously when certain requirements of the new
tenant are similar to those of other tenants, parts of the existing configuration can
be reused. In practice, this is done in a weakly controlled and error-prone manner
(e.g. by copy-pasting configuration fragments). As a consequence, validation and
testing of the newly-created configuration is of high importance. With an increasing
number of tenants, this manual approach easily leads to an explosion of relatively
small variations in the tenant-specific configurations.

Scenario #3: Update tenant-specific configuration. The requirements of a tenant
can change over time. To satisfy these varying requirements, the tenant-specific
configurations have to be updated.

Every time the requirements of a tenant change, the tenant administrator has to update
the configuration to fit the new requirements and to ensure correct behaviour. Again,
this is an error-prone manual task, and it might lead to divergence of configuration
fragments that were initially equal (e.g. by copy-pasting), resulting into even less
reuse and manageability of configurations.

Scenario #4: Support new requirements. In this scenario, some requirements of
existing or new tenants are not yet covered by the current SaaS application. Therefore,
the Saa$S architect and developers have to add support for new requirements. This
implies that new variations are introduced into the SaaS application.

Adding support for new requirements can have an impact on the existing workflows,
services, components and interactions of the SaaS application. Such changes will
ripple to the tenant-specific configurations, even to the configurations of tenants
whose requirements did not change. The SaaS provider has no view on configurations
that are affected, and the SaaS operator will have to verify the configurations
of all tenants, while the tenant administrator will have to double-check specific
configurations. This manual task obviously does not scale well with the large amount
of tenants.

PROBLEM ELABORATION 147

Scenario #5: Update and maintain Saa$S application. The SaaS operator is also
responsible for the maintenance of the SaaS application as well as the underpinning
platform, and for keeping these up-to-date. For example, the current implementation
might have to be upgraded to a new version of the platform or libraries, bugs have to
be fixed, or performance improvements have to be introduced. It is a key advantage
of Saa$ applications that these updates can be performed more frequently than in an
on-premise setting, i.e. maintenance happens continuously. On the one hand, such
changes can be limited to the internals of a single software component, but on the
other hand they can also affect the complete architecture of the Saa$S application and
even conflict with the requirements of some tenants. Similarly to the previous scenario,
the SaaS operator and tenant administrator will have to verify the configurations and
correct them if needed.

In the case that the updates conflict with the current preferences of some tenants,
the tenant administrator cannot solve the issue by updating the configuration. A
solution for this issue is to support both the older and the latest version of the changed
software artifacts simultaneously, possibly for a limited time only (transition period).
However, this implies that the SaaS operator should maintain different versions, and
this easily leads to a rapidly growing number of relatively small variations in the
implementation as well as in the different tenant configurations.

6.2.2 Challenges

Based on the above characterization of the current state of practice, and based on
the state of the art (which is presented in Section 6.6), we have identified two key
challenges to support tenant-specific customization in multi-tenant SaaS applications:

1. Efficient development, management and reuse of software variations in a SaaS
offering. Asillustrated above, variability in multi-tenant SaaS applications may have
fundamentally different sources (tenant’s requirements, evolution, maintenance,
etc.), but is inherently present. Currently, software variations and tenant-specific
requirements are introduced and managed in an ad-hoc, often manual and error-
prone fashion, and we have shown above that this has some obvious disadvantages.
For example, whenever a tenant’s requirement changes, the development process
has to be re-executed for this tenant, and the ensuing changes might cause ripple
effects that affect potentially all tenants. Especially when the SaaS offering evolves
and the amount of supported variations grows, the cost of variability (expressed in
terms of development, maintenance, and configuration effort) grows accordingly.

Because of the high impact of variability on the SaaS application, it cannot be
realized as an afterthought in the development process. Essential qualities such as
maintainability and evolvability of the SaaS application, as well as the reusability
and modularity of specific software variants must be taken into account throughout

148 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

the entire development life-cycle of the SaaS application (in accordance with design
principles such as attribute-driven design [22]).

2. Efficient, tenant-driven customization of the multi-tenant SaaS application. In the
current state of practice, the tenant administrator has to analyse the tenant’s
requirements, create technical configurations, validate, test and activate these
configurations manually in the SaaS application. One of the main advantages of
the SaaS paradigm however is related to the fact that some of the configuration
complexity can be outsourced to the tenant himself (typically called self-
service [201]). This is essential to allow the SaaS provider to benefit from cloud
scalability benefits; i.e. by reducing the time to provision new tenants.

Specifically, dedicated configuration interfaces must be offered to the tenant
that (i) are sufficiently expressive to allow him to create valid configurations
of the SaaS application that meet his requirements (i.e. expressed in terms of the
variations supported by the SaaS provider), but (ii) that hide the technical inner
workings of the SaaS application from the tenant (i.e. provide abstraction). In
addition, some of the activities of the tenant customization process (generation of
technical configurations, validation, run-time activation of configurations) have to
be automated to achieve this level of self-service.

In this paper, we address these challenges by introducing an integrated service line
engineering method which is presented in the next section.

6.3 Service line engineering: Concepts & method

This section presents our service line engineering (SLE) method that supports tenant-
level variability in multi-tenant Saa$ applications without compromising the essential
benefits of scale associated with cloud computing. We define a service line as a
Saa$ application that is built as a software product line consisting of customizable
services that can be dynamically selected and configured based on the tenant-specific
requirements, with the major difference that one single instance is supporting the
different application variants.

The SLE method is feature-oriented and highly integrated, in the sense that the feature-
level variability that is introduced in the early development stages is consistently
and explicitly supported in each of the subsequent development stages, also in the
run-time environment. Fig. 6.1 presents the individual development and management
activities and their input and output artifacts of relevance to the presented method.

The initial investment is in Service Line Development and Deployment, which consists
of the following activities:

SERVICE LINE ENGINEERING: CONCEPTS & METHOD 149

4 Service Line Development (Service Line
CTTTTTTTTTTTTmme e . e R | "”) Deployment
H ' ' Architecture- ' ploy
' level '
v L v Compositions L
. Variability Service Line Feature-to- Service Line
Domain (Feature) Architecture composition Deployment &
Analysis Model Design & Mappings Operation
Implementation
Composable
4 Variants
_ ‘
H \
(s \

Tenant Tenant-specific <<aut‘omatefi>> Tenant-specific <<aUt‘°mate.d>> Shared
Requirements Feature Conﬁgulfatlon Software Conﬁ_gur_atlon Semvice Line
Analysis Configuration Mapping Configuration Activation vice Li
I\ Service Line Configuration Service Line\Composition /

Legend:
Process |:| Activity g Artifact
Process Input/Output (I/0) = ==== > Feedback for updating the Service Line —_ Dependency
Figure 6.1: Service Line Engineering Method.
1. Domain Analysis is quite similar to SPLE, yet it introduces a feature-based

variability model that includes SLAs and supports versioning of the feature model
itself, both of which are key requirements for service lines.

. During Service Line Architecture Design & Implementation, variability is

made explicit at the level of the service line architecture by creating separate
and explicit variability-supporting views. Abstraction is made of (i) the level of
granularity of the service line compositions supported in the architecture and
(ii) the underpinning SaaS middleware and dynamic composition technologies
that will be used. Additionally, the traceability and composability of features and
their corresponding software variants are taken into account as key architectural
requirements for the service line. The implementation support is based on feature-
to-software-composition mapping specifications that describe the mapping between
feature models and the selected features, and specific components in the full
architecture of the service line. These mappings are the basis for automation.

Service Line Deployment involves the instantiation of the service line on a
powerful platform, so that the impact of technical developments to complement
and extend PaaS, IaaS and middleware technology can be limited. We present some
key requirements and criteria for these types of platforms, without going into the
details of comparing a snapshot of some popular, contemporary technologies. After
initial service line development and deployment, the focus shifts towards Service
Line Operation. To avoid service disruption while conducting essential evolution
and maintenance activities, the service line and the underpinning middleware
should support non-trivial dynamic adaptations far beyond the classical upscaling

150 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

or downscaling of resources typically cited in a SaaS context, e.g. updating the
underpinning platform or supporting new features.

Subsequently, Service Line Configuration and Composition become relatively
straightforward by leveraging on the investment of service line development and
deployment.

1. Tenant Requirements Analysis leverages on the feature model (defined during
domain analysis): a feature-oriented configuration interface is offered to the tenants,
and verification of the selected set of features is done by validating the constraints
of the feature model.

2. Configuration Mapping generates an application variant, in fact a tenant-specific
configuration that extends the service line implementation, on the basis of the
mapping specifications that have been defined in the service line architecture.

3. Finally, Configuration Activation occurs at run time. When requests arrive
that can be attributed to a specific tenant, the running service line is dynamically
adapted to match the tenant-specific configuration. This becomes feasible because
of (i) the composability and traceability of variants, (ii) the modularity of tenant-
specific configurations that co-exist in the service line, and (iii) the capabilities of
the underpinning platform.

As with many software engineering approaches that deal with evolving require-
ments [64, 154], it is an essential property of the presented SLE method that it is
iterative. This is represented by the multiple feedback loops in Fig. 6.1. Many of these
feedback loops are driven by the scenarios presented in Section 6.2.1, for example
new requirements that are discovered during the tenant requirements analysis often
lead to a re-iteration over the previous activities. These loops and the activities they
pertain to, are discussed below.

6.3.1 Domain analysis

Next to regular requirements elicitation and analysis techniques (obtaining functional
and non-functional requirements), engineering a service line starts with the activity
of domain analysis to obtain the essential characteristics of SaaS applications in a
particular domain (e.g. document processing). Variability analysis is a part of domain
analysis that focuses on eliciting the typical commonalities and variabilities within
the service line. We focus on tenant-level variability in this activity, i.e. differences in
tenant requirements (sometimes also called external variability [168]). A key output of
this activity is the variability model that represents the domain-specific commonalities
and variabilities in a service line.

SERVICE LINE ENGINEERING: CONCEPTS & METHOD 151

In this paper (and in alignment with traditional SPLE), we apply a feature-based
approach [99, 100] to model variability, and therefore the relevant output variability
models we discuss in this paper are feature models. The state of the art covers several
approaches for feature modeling and feature models can be represented in different
ways, from text-based (e.g. FDL [60] and TVL [47]) to graphical in the form of feature
diagrams (e.g. FeatureIDE [101] and S.P.L.O.T. [131]). Furthermore, CVL [88] is a
language for variability modeling that is submitted for standardization.

This activity does not differ substantially from domain analysis in traditional SPLE
approaches. To build the initial feature model, requirements are gathered from
(internal) domain experts, as well as representative tenants. Often these tenants can
be divided into groups with similar requirements. The resulting features are specified
in terms of domain-specific functionality and business rules at the abstraction level
of the tenants.

However, two essential differences (relative to SPLE) must be highlighted that can
be attributed to the multi-tenant SaaS context in which the feature models will be
embedded:

1. The context of multi-tenancy and Saa$ introduces additional variability, especially
driven by non-functional requirements. Because there is a single deployment of the
service line that is shared by all tenants and fully managed by the SaaS provider,
tenants want to impose additional availability and performance requirements
to gain more control over the delivered service. Furthermore, some tenants
may require strict isolation of their data for security reasons, for instance in
a separate database (or even a separate execution environment). This additional
variability, which does not exist in traditional deployments, also needs to be
explicitly represented in the feature model, more specifically in the form of service
level agreements (SLAs).

2. Also, as an operational service line typically services many tenants simultaneously,
actual down-time should be minimized. In the context of evolution, instead of
undeploying (taking off-line) the service line or its features, a more preferred tactic
is to deploy the updated features and reconfigure individual tenants to make use
of these updated features. An essential enabler for this is versioning support in the
feature model.

6.3.2 Service line architecture design & implementation

The next activities in the service line development process are the design of the
service line architecture by the Saa$S architect and the actual implementation of this
architecture, including all variations, by the SaaS developers. During these activities,
a number of important aspects have to be considered by the Saa$ architect: (i) the

152 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

use of architectural formalisms that support variability and variability management,
and (ii) composability and traceability of individual features and their corresponding
software variants in the service line architecture. These aspects constrain the architect
in the following ways.

Architectural support for variability

The design of the service line architecture results in the typical architectural
views (cf. [108]), showing the building blocks of the service line (structural view),
the deployment of the service line (deployment view), processes and component
behaviours (process view), etc. The service line architecture describes all possible
variations in the multi-tenant SaaS application.

Specific variations are seldomly contained within one architectural view, especially
when it comes to non-functional features (e.g. performance SLAs). For example,
to realize performance-level variability, the architect has to introduce performance
monitoring components in the structural view, model different resource allocations
(e.g. nodes, CPU percentages, physical connections, etc.) in the deployment view, and
introduce additional behaviour in the process view, e.g. to document the protocol
to dynamically upscale. It is clear that when the amount of features increases
drastically, documenting these variations in the complete architecture, in and across
these architectural views will lead to complex, composed models in which it is hard
to distinguish the base architecture from specific, individual variations.

Therefore, it is an essential decision in the creation of our method to express service
line variations in separate variability-supporting views. These views enable the SaaS
architect to manage and design different variations and versions in the service line
separately. To realize this, the variation points in the service line as well as the
binding between these and actual variants (i.e. alternative implementation artifacts)
are therefore made explicit in the architectural description.

The current state of the art presents several (meta-models for) variability views that
can be used in our method by the SaaS architect, for example [68] and [82]. However,
these solutions lack support for a multi-tenant SaaS context, i.e. they do not offer
support for (i) co-existing configurations that are activated on a per-tenant basis, and
(ii) versioning to enable service line evolution.

Composability and traceability of features

At the level of the architecture, a feature is represented by a set of (architectural)
components. Depending on the selection of middleware technology, such a component
can be implemented by different implementation-level artifacts, such as classes,

SERVICE LINE ENGINEERING: CONCEPTS & METHOD 153

software components, web services and workflows, etc. It is an important concern
during the development of service lines to ensure the composability of features and
their corresponding software variants; i.e. to make sure that separately developed
feature implementations remain compatible (syntactically and semantically), so that
they can later be composed to a working system. To support this concern, the
base architecture has to be built around stable interfaces [208], and components
should be self-contained (modular) and preferably be stateless. The latter is especially
relevant in a multi-tenant context because it simplifies dynamic customization (no
need for quiescence) and thus limits the performance overhead. Modularity makes
components interchangeable and enables SaaS developers to reuse components in
different compositions and thus in the implementation of different features.

Furthermore, the SaaS provider should be able to associate the different variants in
the service line architecture with the features in the feature model resulting from the
domain analysis, but also with particular software artifacts in the implementation, and
even at run time with the tenant-specific configurations and the dynamic compositions
in the deployed service line. Maintaining these traceability links is thus crucial to
combine the different activities of our method in an integrated process. Furthermore,
rigorously documenting the traceability links between different artifacts will enable
the creation of advanced management and development tools, for example to signal
inconsistencies to the developer (e.g. when certain features exist in the feature
model, but no implementation is available). In general, these concrete associations
between features, architectural components and software artifacts enable the SaaS
provider (i) to ensure consistency across the service line and to analyse the impact of
changes (cf. Scenarios #1, #4, and #5), and (ii) to support self-service by automating
the configuration of the service line based on the tenant-specific requirements
(cf. Scenarios #2 and #3).

To achieve traceability, the SaaS architect has to explicitly define feature-to-software-
composition mapping specifications for each feature in the feature model. In the state
of the art, several approaches exist to support variability and traceability in software
architectures [82] and throughout the process of software product line engineering [18,
38]. However, these approaches require some modifications to enable integration
with our method, e.g. versioning support.

Notice that non-functional requirements do not necessarily map on particular software
artifacts. For example, performance SLAs can provide input for a monitoring service,
and availability SLAs can be translated to a replication strategy. Although these
features depend on the presence of particular middleware services, they do not
necessarily have an impact on the service line implementation itself. In contrast,
security is an example of a non-functional requirement that typically maps on
particular components (e.g. for encryption, authentication or authorization).

154 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

6.3.3 Service line deployment & operation

After developing the service line, the SaaS operator creates an instance of the service
line and deploys it on top of the cloud infrastructure of the SaaS provider. After this
deployment process, the service line is accessible by the tenants (typically via the
Internet) as a customizable, multi-tenant SaaS application.

The SaaS$ provider has to decide which environment is most appropriate to host the
service line. For example, the SaaS provider can choose to deploy the service line on
top of an existing PaaS or Iaa$ platform, or to set up his own cloud infrastructure. The
former option requires no initial investment (i.e. infrastructure acquirement) and less
maintenance, but the SaaS provider has less control over the cloud platform and thus
needs to take these limitations into account. In addition, the necessary middleware
support should be available or installed by the operator.

This process also includes operating the service line: aspects related to monitoring
the running service line (e.g. to verify SLA compliance, to optimize resource usage
across tenants, etc.), as well as managing and maintaining the different co-existing
versions of the components, for example upgrading features, disabling certain variants,
etc. (cf. Scenarios #4 and #5). Specific management tools can be envisioned to operate
a running service line.

This selection of a suitable SaaS middleware platform that underpins the service
line has a major impact on the architectural design, the implementation, as well as
the deployment and operation process. We therefore have defined a feedback loop
to the development process of our method (see Fig. 6.1). The middleware platform
typically provides a number of enabling services for the development (e.g. component
technology, libraries, etc.), deployment, management and operation of service lines.
We require at least the following elements of the SaaS middleware:

1. Support for versioning of features and feature implementations. Versioning
functionalities enable different versions of service line artifacts (e.g. modules,
libraries, workflows, etc.) to co-exist. This is essential to realize, test and manage
partial upgrades in service lines that potentially service a wide range of tenants.
In addition, it supports the traceability concern. Furthermore, a common practice
in cloud computing to reduce the risk of failure during upgrades, is to perform
rolling upgrades [61]. The SaaS middleware should offer the necessary support to
enable such a gradual roll-out of upgrades.

2. Basic support for multi-tenancy. Multi-tenancy is a core characteristic of a service
line. [84] and [25] discuss guidelines and approaches to develop a multi-tenancy
enablement layer for multi-tenant SaaS applications. Such a middleware layer offers
the necessary support for application-level multi-tenancy, for example to ensure
data isolation between the different tenants. Each incoming request is associated

SERVICE LINE ENGINEERING: CONCEPTS & METHOD 155

with the corresponding tenant, and this context information is processed with the
request throughout the Saa$ application and the middleware platform (e.g. storage
service). Some existing PaaS platforms (e.g. Google App Engine) already offer
built-in support for tenant data isolation.

3. Support for dynamic (run-time) composition. Because a service line is inherently
multi-tenant and thus shared by all tenants, the appropriate variants are activated at
run time. Therefore, the implementation of the service line should support run-time
(re-)composition. Our method is open for existing composition mechanisms, as the
service line architecture makes abstraction of the heterogeneity of (composition)
technologies provided by the underpinning platform. More specifically, SaaS
developers should be able to combine multiple composition mechanisms in the
service line implementation (e.g. both service and component composition). In the
domain of adaptive and reconfigurable middleware, several technologies exist to
support dynamic composition, for example using reflection and dynamic aspect-
oriented programming (AOP) [165, 169, 199, 206]. However, these dynamic
composition mechanisms should also be tenant-aware. For example, [214]
supports tenant-aware customization using dependency injection [66], and [138]
focuses on the customization of (BPEL-based) workflows based on tenant-specific
requirements.

6.3.4 Tenantrequirements analysis

During the activity of tenant requirements analysis, the tenant administrator is offered
a configuration interface that enables the expression of the tenant’s preferences
and requirements. This configuration interface is based on the feature model that
was created during the domain analysis activity (cf. Section 6.3.1). By selecting
the appropriate features and configuring specific feature attributes, a tenant-specific
feature configuration is created for each tenant. Because the feature model is specified
in terms of domain-specific functionality and business rules, the tenant administrator
does not need any technical knowledge and can thus be an employee of the tenant
(thus enabling self-service). Existing tools for feature modeling often also support
feature-based configuration (e.g. [101, 131]). Basically, such a configuration contains
the IDs of the selected features.

The feature configuration meta-model describes the different concepts and their
relations with respect to the tenant-specific configuration of service lines in terms
of features (see Fig. 6.2). For each Service Line, a Tenant can specify a Feature
Configuration. A Feature Configuration is derived from a feature model (not
depicted in Fig. 6.2). It contains the set of features selected by the tenant administrator
and, when applicable, specifies the value for a feature attribute to parameterize it.
Similar to features, feature configurations are also versioned. This allows tenants to
revert to earlier configurations when desired.

156 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

Service Line

7
belongs |to»
Tenant *

+id 1 has» 0. .+ | Feature Configuration .
+name " - 1 specifies»
+address version
1
selectp»
0..* 0..*%
Feature Attribute
- 0..*
+id <> +key
+version +value
+description +description

Figure 6.2: Meta-model for tenant-specific feature configurations.

Finally, the feature selection process is subject to the constraints and dependencies as
defined in the feature model. After the tenant administrator has specified the feature
configuration, the relations between the different selected features are verified to
ensure that no conflicts exist (e.g. using Binary Decision Diagrams like [200]). Next,
the feature configuration is used as input for the next activity of the service line
configuration process.

When the tenant has new requirements (i.e. not yet supported by the service line
(cf. Scenario #4 of Section 6.2.1)), a new development iteration of the service line
might be started, potentially including updates to the feature model, the service line
architecture and implementation, and finally updates to the service line deployment.
Throughout the method, a number of software engineering principles have been
applied to limit the potential impact of new requirements: (i) abstraction: because a
feature model is hierarchical, lower-level details are typically handled near its leaves,
and the coarse-grained structure of the feature model is expected to remain relatively
stable, (ii) similarly, the base architecture is defined once and expected to remain stable
over the life-time of the service line, while variations are described in separation
of the architectural views describing the base architecture (cf. variability views),
and (iii) fine-grained variations can lead to small version increments of individual
components, and these can be activated at run time and on a per-tenant basis.

Evidently, the impact of new requirements will depend highly on the nature of the
new requirements. In Section 6.5.2, we further discuss how new requirements can be
dealt with in the context of service lines.

SERVICE LINE ENGINEERING: CONCEPTS & METHOD 157

6.3.5 Configuration mapping

In traditional SPLE, a feature configuration leads to the instantiation of a specific
product instance from the product family. Although the feature configuration is a key
artifact in the process to instantiation of a single product, it is not visible in the end
result (i.e. it has been compiled away during the process). In the context of multi-tenant
Saa$ applications however, a tenant-specific feature configuration (cf. Fig. 6.2) has
to be translated to an actual software configuration that specifies the composition of
architectural components in the service line (as expressed in the variability views).
These tenant-specific software configurations co-exist in the running service line. Not
only will different tenants have different software configurations, but also different
configurations of a single tenant may co-exist to reflect e.g. different versions, or
different choices for different end users. Maintaining these co-existing configurations
introduces substantial management overhead.

The next activity in the configuration process therefore entails the automated
transformation of a tenant-specific feature configuration to a software configuration.
A software configuration defines for a particular tenant which specific variants
should be bound to the different variation points. Features are thus translated into
a corresponding configuration of software artifacts. Automation of this activity is
possible by applying the mapping specifications as defined during the design of the
service line architecture (see Section 6.3.2). This automation is essential to preserve
cloud scalability and to ensure consistency.

Before activating the automatically generated software configuration, an optimization
step might be required. Architectural components can have multiple variation points,
which can be fulfilled by different features (i.e. by specifying bindings). Therefore,
multiple occurrences of the same architectural component in a software configuration
have to be eliminated by integrating and combining the different bindings. This
optimization step can be incorporated as part of the automated transformation.

6.3.6 Configuration activation

While in the application engineering phase of the SPLE method a dedicated product
instance is delivered and deployed for each tenant, the service line composition activity
involves adapting the service line at run time to match the tenant-specific software
configuration. Concretely, after the tenant administrator has specified a feature
configuration, the automatically generated software configurations are immediately
effective and the end users associated with that tenant can start using the service line
application.

At run time, it is decided on a per-request basis which software variants should be

158 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

activated, depending on the configuration of the tenant associated with the current
request. As mentioned in Section 6.3.3, the service line (or the middleware on top of
which it is built) should offer both explicit support for multi-tenancy and dynamic
composition to realize this.

In a typical implementation strategy for tenant-aware dynamic composition (e.g. [214]),
the service line middleware intercepts each incoming request and links it to the
appropriate tenant (via the associated context information). Next, the corresponding
software configuration is fetched. Each time a variation point is reached during
the execution of a request, the appropriate variant, and thus software artifacts, are
dynamically composed into the service line.

6.4 Service line engineering in practice

The service line engineering (SLE) method presented in this paper has been realized in
the context of a collaborative research project with industry, called CUSTOMSS [53].
The consortium of this project comprises of three European B2B SaaS providers, active
in the domains of healthcare, medical image processing and document processing.
Although we applied the SLE method and its principles in all three SaaS applications,
the main validation was conducted in the context of document processing in close
collaboration with the SaaS provider. We introduce this application in Section 6.4.1.

We adopted a prototype-driven validation approach, in the sense that we applied our
SLE method to develop a prototype (that represents a significant subset of the entire
document processing SaaS application), and we leveraged the resulting prototype to
validate the practical feasibility and applicability (in this section), and to evaluate the
benefits of SLE (in Section 6.5).

Sections 6.4.2 to 6.4.5 present an activity-per-activity account of how we applied the
SLE method to develop the prototype. For each activity, we provide the relevant
artifacts, and briefly discuss the key design decisions. During development, we had to
bridge some gaps by complementing our generic method with some auxiliary elements
to make it effective in practice: (i) a variability meta-model that supports co-existing
configurations, (ii) an approach to define reusable feature-to-software-composition
mappings, and (iii) a basic set of middleware services to facilitate the development and
management of service lines. Throughout this section, we highlight these auxiliary
elements.

SERVICE LINE ENGINEERING IN PRACTICE 159

6.4.1 Document processing Saa$ application

UnifiedPost! is a European SaaS provider that offers B2B document processing
facilities to a wide range of companies in very different application domains. This
multi-tenant SaaS application supports the creation and generation, the business-
specific processing and the storage of millions of business documents per day, such as
invoices and payslips, even up to printing and distributing. This is a fairly large-scale
and complex SaaS application, that currently services around 150 different tenant
organizations. In the current operation, UnifiedPost distinguishes between roughly
25 clusters of tenants, grouping companies that have reasonably similar requirements.
These clusters all represent different high-level and parameterizable variations of the
application.

The prototype focuses on servicing one of these tenant clusters and in the next
paragraph, we present two examples of tenant companies? in that cluster that have
different document processing requirements. For readability, we elaborate on a
limited part of the UnifiedPost application, and we show only a fraction of the existing
variations. Nonetheless, these are sufficiently representative examples of realistic
variations within one cluster of tenants of the document processing SaaS application.

Due to space limitations, this section only presents a strongly summarized account of
the entire validation effort. Please refer to [216] for a detailed account of applying our
method to develop the document processing SaaS application, as well as for further
details on the auxiliary solutions that we developed. The source code of the prototype,
including all feature mapping specifications, and the supporting middleware services
is publicly available.

Running example. Tenant A is a temporary employment agency that uses Unified-
Post’s document processing application to process the payslips of all its employees.
On a regular basis, Tenant A provides a set of payslip documents, along with some
metadata, and requires the SaaS application to print the payslips and distribute them
among the different employees based on the associated metadata. Since Tenant A
has a large amount of employees, it has strict demands in terms of the guaranteed
throughput of the document processing application, and it is prepared to pay premium
fees to obtain a specific SLA in terms of throughput and deadlines.

Tenant B is active on the financial services market and uses the SaaS application
for processing its invoices and distributing these to corporate customers. Tenant
B only provides raw data (i.e. document data and metadata) as input, for example
in a spreadsheet or in CSV format, and thus requires the generation of the invoices
(based on a custom layout). The generated documents should be delivered to the

thttp://www.unifiedpost.com/
2For non-disclosure reasons, we anonymized the names of the tenant companies.

http://www.unifiedpost.com/en/

160 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

customers (i.e. end users) of Tenant B, depending on their preference: via email or
on paper (printed mail). In the case of email delivery, a link to the document is
provided, which enables the customer, after authenticating, to view and download
the document. However, if after 48 hours the document has not been retrieved, the
particular document should still be printed and sent via printed mail. In addition, all
generated documents should be signed and archived securely for a legally defined
period (e.g. 24 months). Tenant B does not want to pay an extra charge for a guaranteed
throughput level.

6.4.2 Domain analysis

Fig. 6.3 presents a subset of the feature model that is the main result of the domain
analysis activity. This is a simplified feature diagram that covers the subset of the
UnifiedPost application that matches the running example.

At the top level, the service line offers features related to Processing, Distribu-
tion and Archival. Processing groups the following sub-features: (i) different
alternatives to acquire metadata from the raw input data (under Metadata_Acquire-
ment), (ii) an optional feature for document generation based on different templates
(under Document_Generation), (iii) an optional feature named S+ gning for signing
documents using the SaaS provider’s or tenant’s certificate, and (iv) performance
SLAs (Throughput) that offer different performance levels.

In terms of Distribution, the tenant can select from several (single) delivery
channels (i.e. email or printed mail), or he can opt for a cascaded delivery. In the latter
case, first an email is sent out, and if the document is not retrieved after a certain
period, then the document is printed and sent on paper.

Finally, the optional Archival feature enables tenants to archive documents conform
legislation. The logical expression at the bottom of the figure (—Archival vV Signing)
represents a dependency between features: documents can only be archived if they
are signed. So, selecting the Archival feature implies that the Signing sub-feature
must be selected as well.

We used FeatureIDE [101] as modeling tool to create this feature diagram, which
does not support all required model elements for our method (e.g. attributes and
versioning). However, these elements do exist in the underlying model specification
in our prototype.

SERVICE LINE ENGINEERING IN PRACTICE 161

UnifiedPost Legend:
—————
- & Mandatory
— O Optional
ution | | Archival Cr
. A Alternative
~ . Abstract
Concrete

Distri

—p ——u - =
- Generation | Signing | Throughput | | Paper | | Email | | Cascaded_Delivery
S

A~ 5
P \\\ —.‘._,_/ _:\\ B

= = S O
Separate File | Extract from_Data | Custom | Payslip_Template Standard | | Premium Email_and_Paper_after Deadline

Metadata_Acquirement Document

—Archival v Signing

Figure 6.3: Feature diagram showing a simplified subset of the variations in the
document processing case study. Specifically, only the relevant features for the
two tenants presented in Section 6.4.1 are depicted. The diagram is created using
FeatureIDE [101].

6.4.3 Service line architecture design & implementation

Below, we discuss how we designed and implemented the document processing
service line. More specifically, we focus on illustrating how we realized variability in
the architecture (modeling specific variations) on the one hand, and the composability
and traceability of features in the design and implementation of the service line on
the other hand.

Variability meta-model. We designed the document processing application as a
customizable workflow (i.e. a service orchestration) expressed in the Business Process
Modeling Notation (BPMN). The workflow is triggered when raw data is uploaded by
the tenant. In the first step of this workflow, metadata is acquired from this raw input
data. Subsequently, the output documents are (optionally) generated based on this
metadata and according to the template selected by the tenant. Then, the generated
documents are delivered to the appropriate recipients, using the selected delivery
mechanism.

Variability is required in the application at two different levels of abstraction. At
the workflow level, the abstract service types (e.g. delivery channel for documents)
represent the variation points, and each service implementation (e.g. email delivery
service) represents a specific variant. Thus, the composition type is a regular service
composition. Variability is also required at a more fine-grained level, i.e. at the level
of individual service implementations. For example, the document generation service
offers several strategies for document generation, and in this case, we use dependency
injection as composition type.

In its architectural design, the document processing workflow thus comprises a basic
flow (the mandatory features) and a set of extensions, which are developed as separate,
modular entities. To realize this separation, the workflow complies to the generic

162 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

variability meta-model presented in Fig. 6.4. This meta-model stipulates that (i) the
service line is described as a set of compositions (Composition), and (ii) there is no
fixed level of granularity at which variability can be supported (represented by the
composite structure around Component and Composition which allows the service
line to be structured hierarchically). By specifying explicit Variation Points for
a Composition, the architect can indicate whether that particular composition is
customizable.

i *
Service Line |- consists ofy L "I composition
+name +type
1
belongs to» *
!> [variation Point
* +name
Software Configuration Binding 1 ¥
+tenantId .—*+id are bound to» 0. .
+version — Component
+checksum 1..* L|id
1 Variant L. implementation
+name
+version
0..*
0..* "
Attribute
+key
+value

Figure 6.4: Meta-model for variability in service line architectures.

A Service Line is a set of compositions, some of which are customizable. The
meta-model therefore allows variations to be introduced at different levels of
abstraction: from the top level of coarse-grained system-level components, down to the
level of fine-grained compositions. Furthermore, the meta-model makes abstraction
of the specific composition mechanisms and technologies (cf. the type attribute) that
will be used to compose these variations at run time.

This degree of openness is an essential requirement to support customization of multi-
tenant Saa$ applications. Variability in multi-tenant SaaS applications is typically not
limited to one specific level of granularity, and SaaS middleware commonly provides
a range of complementary run-time composition and adaptation mechanisms.

Furthermore, the support for co-existing configurations across the different tenants
is an important requirement to enable the customization of multi-tenant SaaS
applications. Therefore, the meta-model supports multiple co-existing Software
Configurations, which define for a particular tenant (cf. the tenantId attribute)
which specific variants should be dynamically bound to the different variation points.
Such a software configuration represents the result of the automatic transformation
of tenant-specific feature configurations (cf. Section 6.3.5). Since a tenant can have

SERVICE LINE ENGINEERING IN PRACTICE 163

multiple versions of his feature configuration, software configurations also have to be
versioned to enable the tenant to easily compare with an earlier version.

The openness of the proposed variability meta-model with respect to (i) the
level of granularity of software variants and (ii) the technology that is used to
realize the corresponding compositions, as well as (iii) the support for co-existing
configurations, reaches beyond the state of the art in architecture-level variability
views (cf. Section 6.6.3).

Mapping features to variants. In order to enable the automated and dynamic
composition of specific variants, machine-interpretable mappings between the
features and the software variants have to be defined. In addition to enforcing a
hierarchical design structure, the meta-model of Fig. 6.4 allows the Saa$S architect to
define feature-to-software-composition mappings. These mappingsbinda Variation
Point to a specific Variant. To realize a Binding, in some cases specific attributes
(Attribute) have to be filled in.

We have specified a mapping for each feature in the document processing application
(i.e. those defined in Fig. 6.3) to components and compositions defined in the
service line architecture, using a custom grammer as presented in [216]. For
example, Listing 6.1 shows a feature-to-software-configuration mapping that specifies
which variants to use in case the Email_and_Paper_after_Deadline feature
(line 2) has been selected by the tenant. The workflow for the document
processing application is defined as the DocumentProcessing composition. A
relevant variation point for the running example is the delivery channel (line 5),
and the CascadedDeliveryWorkflow (using multiple delivery channels) is the
corresponding variant for this feature (line 6). This variant, however, consists
of another (customizable) composition, called CascadedDelivery. Therefore a
dependency is added to this composition via its ID (line 8). The latter composition
has two variation points for the two possible delivery channels (lines 11-18), and a
variation point for the algorithm that decides when to use the second delivery channel.
For this feature, the timeout-based decision algorithm is selected (lines 19-23). In
addition, the timeout attribute in the Email_and_Paper_after_Deadline feature
is passed through as input for the decision algorithm via the ‘timeout’ attribute in the
mapping (line 22).

The proposed approach to define reusable feature-to-software-composition mappings
that can be applied to automatically (re)configure the multi-tenant SaaS application
at run time is an important new element in our solution (cf. Section 6.6.3).

(o B R A

164 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

Listing 6.1: Example of a feature mapping for the Cascaded Delivery feature.

featuremapping CascadedDelivery —Email—Paper—Deadline {
feature Email_and_Paper_after_Deadline—v1;
composition DocumentProcessing {
binding {
variationPoint: DeliveryChannel;
variant: CascadedDeliveryWorkflow—v1;

}

composition: CascadedDelivery;
}
composition CascadedDelivery {
binding {
variationPoint: FirstChannel;
variant: EmailService—vl;
}
binding {
variationPoint: SecondChannel;
variant: PostalService—vl;
}
binding {
variationPoint: DecisionAlgorithm
variant: TimeoutBasedDecisionAlgorithm—v1;
attribute: timeout;

6.4.4 Service line deployment & operation

Our prototype implementation is a layered solution. In a first step, we developed
a reusable middleware layer to support the management of service lines, on top of
which we implemented the application-specific document processing services.

Service line management support layer. In addition to the enabling middleware
services that address the core requirements of (i) versioning support, (ii) application-
level multi-tenancy and (iii) dynamic composition (cf. Section 6.3.3), we have
developed a generic support layer to facilitate the development and management of
service lines [216].

This layer offers several service interfaces to the different stakeholders and to
the application layer. The IFeatureManagement interface provides the SaaS
architect/developer with a service to manage the feature model and the feature
mapping specifications. Tenant administrators, which are (in the context of service
lines) employees of the tenant organization (cf. self-service in Section 6.3), have access

SERVICE LINE ENGINEERING IN PRACTICE 165

to the ITenantManagement interface. This interface enables the registration of new
tenants to the service line as well as the tenant-specific customization by selecting
features based on the tenant’s preferences and by parameterizing these features. The
internal ConfigurationMapping service ensures that feature configurations are
automatically transformed into tenant-specific software configurations by means of
the feature mapping specifications. Finally, the ITenantConfigurationRetrieval
interface is offered to the multi-tenant application, more specifically to allow the look-
up of tenant-specific software configurations and to enable the run-time composition
of the Saa$ application (cf. Section 6.3.6).

We have implemented these services as a reusable middleware layer using Java
EE. The front-ends are realized with Java Servlets, JSPs, and RESTful services; the
business logic is implemented using session beans; for persistence we used entities
that are stored into a MySQL database. Furthermore, the custom grammar to express
the feature-to-software-composition mappings is developed using ANTLR. This
middleware layer is designed for reuse across different service lines.

Prototype implementation. The document processing prototype is built on top
of JBoss Application Server 7, which is Java EE 6-compliant. It uses jBPM and
Drools for customizable document processing workflows, and MySQL for persistence.
To achieve application-level multi-tenancy and tenant-aware dynamic composition
within services, we rely on the modular middleware layer that we presented in
previous work [214]. To realize the throughput SLAs in the running example, we
have provided alternative service implementations that each guarantee a certain
throughput (premium versus normal).

6.4.5 Tenant provisioning

As indicated in Section 6.3, the actual provisioning of (new) tenants becomes relatively
straightforward by leveraging on the investment of service line development and
deployment. During the Tenant Requirements Analysis activity, tenant administrators
use the ITenantManagement configuration interfaces presented above, to select and
parameterize features based on their requirements. For Tenant A and Tenant B of the
running example, this configuration activity has resulted in the following two feature
configurations:

Tenant A: Tenant B:
Separate_File Extract_from_Data
Premium Custom
Paper Signing

Standard

Email_and_Paper_after_Deadline timeout:48
Archival duration:24

166 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

These feature configurations specify the set of selected features, and optionally the
associated attributes and their values. The validity of these configurations are checked
by looking at the constraints (mandatory features, dependencies, etc.) defined in the
feature model (cf. Section 6.4.2). This way, errors and invalid configurations can be
avoided before activation.

Subsequently, these feature configurations are automatically transformed into tenant-
specific software configurations (cf. Configuration Mapping activity). Because of
the automation, the effort associated with this activity is minimal and the updated
configurations are thus immediately effective for the end users of the tenants.

Finally, the composition of particular services into the document processing workflow
occurs at run time based on the tenant-specific software configuration that is
applicable to the incoming request (cf. Configuration Activation activity). For
example, when a document processed for Tenant A is ready to be delivered to the
appropriate recipient, the service line will activate the PostalService variant for
the DeliveryChannel variation point (corresponding to the Paper feature). The
document is first sent to the printing service and next the printed document is delivered
via the postal service to the appropriate recipient’s address. In comparison, a delivery
workflow that is started for Tenant B (cf. Listing 6.1) sends the output documents via
email to the recipients. When a particular document has not been fetched after a
timeout period of 48 hours, it is also printed and delivered via the postal service.

These two different tenant-specific configurations of the document processing
service line regarding document delivery are activated at run time and can execute
simultaneously. Further details about the run-time customization of the document
processing service line can be found in [74].

6.5 Evaluation

This section evaluates our service line engineering (SLE) method as follows. We
perform a comparative cost analysis of the required effort in each of the scenarios of
Section 6.2.1 and substantiate the claimed efficiency benefits in Section 6.5.1. This
section ends with a discussion of the strengths and limitations of the presented method
in Section 6.5.2.

6.5.1 Service line efficiency

In Section 6.2.1, we presented five key development and management scenarios
that occur in the life-cycle of a multi-tenant SaaS application. In this subsection,
we re-evaluate these scenarios in the context of our SLE method. Specifically, we

EVALUATION 167

compare the current state of practice (discussed in Section 6.2.1) with our SLE method
by analysing the cost for the SaaS provider (in terms of required effort) to perform these
scenarios. We leverage on this cost analysis to substantiate the claimed efficiency
benefits. The main cost variables that affect the required effort are ¢ (the number of
tenants), f (the number of features), and v (the average number of variation points
per feature). The different costs are functions of these variables and they grow with
an increasing value of these variables.

First, we look at the cost to provision (new) tenants with a configuration (cf. Scenarios
#1 to #3). Next, we discuss the cost related to evolving and updating the service line
itself (cf. Scenarios #4 and #5).

Provisioning new tenants

The cost to provision (new) tenants with a configuration has a major impact on Saa$S
scalability: if the provisioning cost grows significantly with an increasing number of
tenants, then this hinders scalability of the SaaS offering. We discuss for each relevant
scenario the associated cost for the SaaS provider.

Scenario #1: Initial development of Saa$S application. Our SLE method clearly
requires more effort in the initial development phases: variability analysis has to
be performed, leading to the creation of an initial feature model. In addition, the
feature-to-software-composition mappings between features and software artifacts
have to be specified explicitly. This extra cost compared to the current state of practice
thus mainly depends on the number of features f and variation points per feature v.

Scenario #2: Provision a new tenant. In the current state of practice (see
Section 6.2.1), the SaaS provider has to (manually) specify and test a tenant-specific
software configuration for f features and an average of v variation points per feature
that have to be bound to a particular variant.

With the SLE method however, once the service line is up and running, we can rely
on self-service and automation and so provisioning new tenants does not require
any intervention from the SaaS provider. Specifically, the tenant administrator
(i.e. employee of the tenant) can now customize the SaaS application by selecting
and configuring the desired features via a management interface. Subsequently, a
tenant-specific software configuration is generated in a consistent way and —given
that the feature mapping specifications themselves are well-tested and correct— free
of errors. Thus, with respect to provisioning new tenants, the SLE method results in
a constant cost for each tenant and no extra cost in terms of required effort for the
Saa$ provider.

168 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

Scenario #3: Update tenant-specific configuration. A service line allows the
tenant administrator to update the tenant’s feature configuration via the management
interface. Based on this updated feature configuration, a new tenant-specific software
configuration is generated, which is immediately effective for the service line,
without any (human) intervention. Essentially, the cost of updating a tenant-specific
configuration is equal to the cost of provisioning a new tenant (see Scenario #2).

Conclusion. This cost analysis indicates the trade-off between spending effort
on early development of the service line versus the costs and effort to configure
and compose the running service line after deployment. The efficiency benefits are
realized by leveraging service line design elements (feature mappings, composability
of features, feature traceability, modularity of feature implementations, etc.) that have
been created (and thus incurred an extra cost) during the initial development of the
service line.

In the current state of practice, the effort to manage the running SaaS application will
grow drastically with an increasing number of tenants ¢, which hinders the scalability
of the Saa$ offering. In comparison, because of the automation of most activities
in the configuration and composition processes, the increase of effort in the service
line engineering method will largely depend on the number of features f and not
the number of tenants. Since the number of tenants is typically a magnitude larger
than the number of features and the cost to specify a feature mapping is generally
smaller than the cost to create an entire software configuration®, the higher initial
effort required by our method to develop the service line is rapidly reversed and more
importantly will enable the SaaS provider to realize the benefits of scale required to
run a profitable Saa$S offering.

Especially the required effort to realize Scenario #2 (i.e. provisioning new tenants) is
an important metric, as it expresses the time to service and provision new tenants. A
faster time-to-provision will provide the SaaS provider with a real business advantage
over its competitors.

Maintenance and evolution

Evolution entails introducing new requirements as well as updating and maintaining
multi-tenant SaaS applications. Moreover, in SaaS applications updates can be
performed more frequently, requiring the SaaS provider to adopt a smoother, more
gradual strategy of continuous evolution. Because of this continuous flow of updates,

3This is confirmed in our prototype: the average size of a mapping specification is around 12 lines,
while the average size of the generated software configurations is around 44 lines.

EVALUATION 169

the cost of evolution also has an important impact on Saa$ scalability and profitability.
We discuss the initial analysis of the cost of evolution based on Scenarios #4 and #5.

Scenario #4: Support new requirements. In the current state of practice, new
requirements incur a heavy cost for verifying and (manually) updating each tenant-
specific software configuration with f features and an average of v variation points
per feature (see Section 6.2.1).

In a service line, new and unforeseen requirements will affect the feature model (cf. the
feedback loop in Fig. 6.1). For example, a new top-level feature could be introduced
or an existing feature could be further decomposed into one or more sub-features.
Adding a feature requires extending the feature model and the service line architecture,
as well as specifying a feature mapping for the new feature. This will not (or hardly)
affect existing features, mapping specifications and feature implementations thanks to
the composability of the software variants and the reusability of the feature mappings.
However, when adding new features, the existing tenant-specific configurations must
be verified and potentially updated to fix compatibility issues.

In summary, the cost to add a new feature includes the effort to create a new
feature mapping that defines v variation points, and a constant cost per tenant
to verify his feature configuration and to handle issues. We consider it to be a
constant because a service line offers automated support for verifying whether existing
feature configurations comply to the constraints of the updated feature model and
for localizing issues. This enables the SaaS provider to quickly detect any issues
and handle them (e.g. by setting a default feature for a new variation point, or by
supporting multiple co-existing versions of the service line), independently of the
size or complexity of the feature configuration.

In general however, the effort to support new requirements can be significantly higher,
especially when these involve major changes in the feature model and the service
line architecture. However, the traceability links between features, architectural
components and software artifacts enable the SaaS provider to quickly identify
and manage these interactions, and the modularity of the architectural components
will limit the extent of ripple effects throughout the service line architecture and
implementation (cf. Section 6.3.4).

Scenario #5: Update and maintain SaaS application. Using our SLE method, this
scenario only involves updating the feature mapping specifications instead of the
entire configuration of all tenants (cf. Section 6.2.1). Because of the traceability
support in the service line architecture, the SaaS provider can easily identify which
specific feature mappings have to be updated, and a smaller amount of mappings
have to be updated instead of all of them (i.e. f).

170 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

In case the updates conflict with existing tenant-specific requirements, this problem
will be detected during the update process of the mapping specifications. The tenants
to which such conflicts apply can easily be identified, i.e. these are the tenants who
selected this particular feature in their configuration. In this case, the Saa$ operator
can decide to perform a gradual roll-out of the updates, temporarily hosting the
old as well as the new versions of the features and software variants. Based on the
version information in the tenant-specific configurations and the feature mapping
specifications, the appropriate version will be activated in the service line at run time.

Conclusion. We have shown that the use of a feature model and feature mappings
is also beneficial to evolving and updating the service line itself. Many changes can
be encapsulated within the feature model and the feature mappings, while the current
state of practice requires the SaaS provider to verify and update all configurations
(because of the ripple effects). Similar to the proportion between the effort required for
creating a feature mapping and for creating a tenant-specific software configuration,
the effort for updating a feature mapping is in general also smaller than the effort for
updating an entire software configuration. As a consequence, the higher initial effort
during development also enables the SaaS provider to realize benefits of scale while
evolving and maintaining the running service line.

Moreover, the SaaS paradigm enables SaaS providers to update their application
continuously and rapidly. Consequently, the initial development effort is a one-time
(or infrequent) investment cost compared to the continuous updates (“develop once,
adapt/evolve forever”), which results in major cost benefits in the long term w.r.t. the
management and customization of multi-tenant Saa$S applications.

6.5.2 Discussion

This section provides an open-ended discussion on the strengths and limitations of
the service line engineering method presented in this paper. In parallel, we discuss
future work.

Non-functional tenant requirements. As indicated in Section 6.3.1, the context
of multi-tenant SaaS introduces additional variability, especially driven by non-
functional requirements (or quality attributes) such as availability, performance and
security. These requirements are represented as SLAs in the feature model. In the other
activities of our method however, these non-functional requirements also have to be
taken into account: quality attributes are often important architectural drivers and
put constraints on the deployment environment. For example, a monitoring service
is necessary to monitor the resource usage on a per-tenant basis, while a policy

EVALUATION 171

enforcement engine has to ensure that the delivered performance is in compliance
with the tenant-specific SLAs. These enabling middleware services are identified
during the design of the architecture and should be provided by the underpinning
platform.

Furthermore, a SaaS application can depend on third-party services. For example, in
the document processing application, the SaaS provider could decide to outsource the
distribution of printed documents. Even in such a cross-organizational context, the
different SLAs still have to be ensured. In the state of the art, several solutions exist
for service-oriented product lines to negotiate with third-party services to provide
quality-of-service (QoS) guarantees, e.g. [105] and [114]. It is worth to investigate the
applicablity of these approaches in a multi-tenant SaaS context.

Our mapping specification (see Section 6.4.3) focuses on features (and SLAs) that can
be mapped to a set of architectural components (and their corresponding software
artifacts). With availability and performance SLAs this is often not the case. These
features (and their attributes) provide input for the underpinning middleware services
or a broker. In future work, we will extend our middleware support to include these
SLAs in the automated configuration mapping activity.

Support for evolution and maintenance. Although our method covers the evolu-
tion and maintenance aspects of service lines, we did not provide specific service
management functionalities to support the SaaS provider with the evolution and
maintenance of service lines. For example, additional tool support is required to enable
the SaaS provider to analyse the impact of an update on the service line architecture
and the different tenant-specific configurations. In addition, since multiple versions
of the features, configurations and software artifacts can co-exist, the SaaS provider
requires explicit support to monitor and manage (i.e. upgrade, disable, make obsolete,
etc.) these versions within the running service line. This middleware support is
currently lacking in our implementation. In fact, most of these issues are open
challenges for SaaS applications. In future work, we will further investigate these
issues to support effective operation of service lines.

Besides the impact analysis of an update based on the service line architecture and the
different configurations, updates have to be tested and validated thoroughly before
they are rolled out. This is especially relevant in a multi-tenant SaaS context, because
conflicts or errors (e.g. caused by updates) potentially affect all tenants and thus
the availability of the Saa$ application. To realize continuous and seamless updates
to service lines (part of service line operation), there is a need for integration with
frameworks for automated testing and gradual roll-out of updates. These requirements
are out of scope for this paper, but are relevant for a service line engineering method
to be investigated in future work.

172 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

Finally, it is possible that during the tenant requirements analysis new requirements
are discovered that cannot be addressed. For example, the new variations that have
to be introduced cannot be implemented without run-time conficts. Note that this
issue is not limited to service lines, as it can also occur in traditional software product
lines. However, multi-tenant Saa$ applications have the additional constraint that
these different requirements should be addressed by a single application instance
and customization should be achieved by means of dynamic composition. When the
requirements cannot be met because of this multi-tenant context, the SaaS provider
could decide to deploy and operate a second (different) instance of the service line.
However, this requires the SaaS architect to make a distinction between deploy-time
and run-time variability (e.g. by using variability types [67]), and multiple deployments
evidently result in higher resource usage. Therefore, the SaaS provider has to make
a comparative assessment (ability to address more requirements versus increasing
management complexity and resource usage).

6.6 Related work

This section discusses three categories of related work: (a) dynamic and service-
oriented product lines, (b) customization of multi-tenant SaaS applications, and (c)
variability management in software architecture.

6.6.1 Dynamic and service-oriented product lines

The work on service-oriented product line engineering (SOPL) [50, 83, 128] tries to
combine the benefits of the open-ended model with late-bound variability in service
engineering (SE) with the closed world of managed variability and planned reuse in
SPLE. The fundamental building block of a service-oriented architecture (SOA) is a
service; the application (i.e. the product instance of a SOPL) is thus an orchestration
of services. However, in the case of SaaS, the application itself is a service. The
key difference however remains that a SOPL creates different product instances
per customer that have to be deployed separately by the customer (possibly in an
automated way). Although a (multi-tenant) SaaS application can be developed based
on a SOA, a service line results in a single, multi-tenant product instance (deployed
and managed by the SaaS provider) that is dynamically customized based on the
tenant-specific configurations.

[149] tries to increase the cost efficiency of customizing web services: their work
keeps track of which service variants are already deployed to ensure only one
instance is deployed per variant. When compared to application-level multi-tenancy,
this approach is less efficient in terms of operational costs (resource usage and

RELATED WORK 173

maintenance effort), especially when many variants exist (i.e. high amount of features).
Therefore it is not suitable for the development and customization of multi-tenant
Saa$ applications.

Furthermore, the concept of SOPL is often combined with dynamic software product
lines (DSPL) [21, 86] because of the open-ended model of services: services can be
discovered and consumed at run time [87, 105, 114]. In addition, a software system
can use a DSPL to cope with changes in the current context or environment, or
with unforeseen situations (e.g. [21, 164]). Although these approaches cope better
with run-time variability, these dynamic adaptations are applicable to all users of the
product instance (instead of on a per-tenant basis). There is no support for co-existing
(tenant-specific) configurations. Moreover, a DSPL is still limited to the features that
were included during feature selection.

Clearly, the current SOPL approaches are based on traditional, static SPLE approaches,
which are not suited for multi-tenant applications. Our service line engineering
method, however, focuses on the development and customization of multi-tenant
Saa$ applications to efficiently manage and reuse the different software variations
and configurations, even at run time.

6.6.2 Customization of multi-tenant SaaS

Mietzner et al. [138, 141] have extensively studied the customization of multi-
tenant SaaS applications. They apply variability modeling techniques from the
SPLE domain to support the management of variability in service-oriented SaaS
applications, more specifically BPEL processes in the cloud. The variability is realized
by defining variability descriptors that create application templates. Tenants fill in
these application templates to create tenant-specific BPEL processes, which have to
be deployed separately. Our work, however, introduces an integrated method for the
development and customization of multi-tenant SaaS applications, independent from
the underpinning technologies. In addition, we provide support for the management
of the different software variations and tenant-specific configurations. The solutions
presented by Mietzner et al. can be integrated in our work as a possible tenant-
aware customization technique for workflows (instead of the current solution in our
prototype using jBPM and Drools).

In previous work [214], we have developed a middleware layer for PaaS platforms to
enable tenant-specific customizations, while limiting the performance overhead and
preserving the operational cost benefits. It focuses on Saa$ applications consisting of
a single service and dynamic composition is supported via dependency injection. As
it provides a tenant-aware customization technique, this middleware layer could be
one way to realize the service line composition activity of our method (as illustrated
by our prototype).

174 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

[186] identifies requirements for a variable architecture for multi-tenant SaaS
applications and describes how their existing architecture for self-adaptive systems
can be extended to support multi-tenancy. In contrast, the focus of our work is
on providing an integrated method for efficient customization of multi-tenant SaaS
applications and is to a large degree independent from any specific system or platform.

In [187], the authors propose a concept for dynamic configuration management, with
different stages [55] and stakeholder views in the configuration phase. Their work
is limited to the problem space and covers only one activity of our method, i.e. the
tenant requirements analysis. In this paper, we focus on the tenant and the SaaS
provider, but our approach does not exclude more stakeholders and stages and is thus
complementary.

Furthermore, work has been performed in the context of architectural patterns for
developing and deploying customizable multi-tenant applications. [140] presents
several multi-tenancy patterns and describes how services in a service-oriented
SaaS$ application can be composed and deployed using these different multi-tenancy
patterns. In this paper we focus on customization in application-level multi-tenancy,
which maps to their single configurable instance pattern. Kabbedijk et al. [97, 98]
present architectural patterns to realize run-time variability in multi-tenant SaaS
applications. These patterns are relevant during the service line development process
(Activity 2) to implement composable variants. For example, our dynamic composition
technology [214] corresponds to the Component Interceptor Pattern.

6.6.3 Variability management in software architecture

Several solutions exist for the representation and management of variability in service
compositions, mainly limited to providing extensions to the BPEL language [150].
[1] introduces a multiple-view modeling approach for variability in service-oriented
architectures (SOA) in a platform-independent way. However, their approach focuses
on a SOA context with views for business processes and service interfaces, and it
does not support dynamic composition. Therefore, it is not directly applicable in a
multi-tenant SaaS context.

[67] suggests a more generic approach for representing variability in SOA. However,
their meta-model inherently assumes multiple instantiations of a SOPL, and thus not
supports co-existing configurations. In addition, it does not associate variation points
and variants with software artifacts. A more extended meta-model of an architectural
viewpoint for variability is proposed by [68]. Such a variability viewpoint facilitates
the representation and analysis of variability in software architectures. The proposed
variability viewpoint is complementary to our method and could be integrated in the
service line architecture, but this requires adapting our feature mapping specification.

CONCLUSION 175

In addition, the meta-model of [68] would have to be extended with versioning support
and with the concept of (tenant-specific) configurations.

[82] integrates variability management support into an existing approach for
describing and analysing software architectures. This results in one consistent model
which links architectural artifacts (e.g. requirements, features, components) with the
variability models to support full traceability. Our work is complementary, as we
defined an integrated method for service line engineering that depends on variability
management and traceability to support efficient reuse of software variations and
configurations. Therefore, provided some modifications, the solution by [82] could be
a suitable enabler to implement our method. Again, their solution would have to be
modified to support versioning, and thus to support co-existing configurations and
evolution of service lines.

Furthermore, [18] and [38] present meta-models to support variability and traceability
throughout the process of software product line engineering (SPLE). As above, this
work is complementary to our method, more specifically the service line development
process, provided some modifications regarding the multi-tenant SaaS context.

Finally, [93] supports multiple perspectives in feature-based configuration. Config-
uration views are tailored to the profiles of the various stakeholders. In this paper,
we have considered a limited number of stakeholders (employees of the tenant and
the SaaS provider). However, other stakeholders could be involved in the tenant
requirements analysis, for example a service reseller. Therefore, this approach of
multi-view feature-based configuration is complementary and can be plugged into
our service line method, more specifically as part of the tenant requirements analysis
activity (see Section 6.3.4).

6.7 Conclusion

This paper presents an integrated service line engineering method for multi-
tenant SaaS applications. This feature-oriented method supports co-existing tenant-
specific configurations, and facilitates the development, deployment, run-time
configuration and composition, operation and maintenance of SaaS applications,
without compromising the scalability. The method is generic in the sense that
each activity is open for existing work to be leveraged upon, yet it imposes some
specific constraints (e.g. composability and traceability of features) and some enablers
(e.g. multi-tenancy, versioning support, dynamic composition) to obtain the desired
variability in the service line.

We have validated this method in the development of a service line for a real-world
industrial SaaS application in the domain of document processing, and performed

176 EFFICIENT CUSTOMIZATION OF MULTI-TENANT SAAS APPLICATIONS WITH SERVICE LINES

a comparative cost assessment with respect to the current state of practice. These
results clearly show that this work presents a better, more efficient trade-off between
the design-time effort required to develop the initial service line, and the run-time
effort required to operate, evolve and maintain the service line as a whole.

A body of knowledge about a computing paradigm typically establishes itself after
years of practical application and experience (e.g. the documentation of the GoF design
patterns after the wide-spread adoption of object orientation). Cloud computing, and
more specifically multi-tenancy at the application level (SaaS), is an increasingly
prominent and important software delivery model, which also has a profound impact
on how the software is developed and maintained. However, these trends are currently
underinvestigated from a software engineering perspective.

The work presented in this paper represents an initial exploration and consolidation
of how to develop and build qualitative SaaS applications. More specifically, the
presented method focuses on realizing efficiency improvements in terms of reuse and
modularity of service variations, as well as on maintenance and evolution aspects of
the entire service line.

Acknowledgements

We would like to thank Awais Rashid for the fruitful discussions on the concept of
service lines. We also thank the reviewers for their helpful comments to improve
this paper. This research is partially funded by the Research Fund KU Leuven
(project GOA/14/003 - ADDIS) and by the CUSTOMSS project, which is co-funded by
iMinds (Interdisciplinary institute for Technology), a research institute founded by
the Flemish Government. Companies and organizations involved in the project are
Agfa Healthcare, Televic Healthcare and UnifiedPost, with project support of IWT.

Chapter 7

Conclusion

This chapter concludes the dissertation. Section 7.1 summarizes the contributions and
the evaluation efforts. Furthermore, Section 7.2 discusses its limitations and directions
to future research, while Section 7.3 discusses the relevance and applicability of this
work. Finally, Section 7.4 presents a long-term vision and identifies major open
research challenges.

7.1 Contributions and evaluation

The main goal put forward in this dissertation is to introduce the necessary flexibility
into multi-tenant Saa$S applications without compromising the key benefits of cloud
computing, such as cost efficiency and scalability. More specifically, this dissertation
addresses the following challenges: (i) the actual realization of the different tenant-
specific customizations in a concurrent and isolated way, and (ii) the management
of the many application and configuration variations in a scalable way, while (iii)
limiting the performance overhead and the additional engineering complexity.

Contributions. As the first contribution of this dissertation, we have investigated
three different and representative Paa$S offerings and have performed a gap analysis
with respect to the requirements stated above (see Chapter 2). This analysis clearly
identified a lack of support for application-level multi-tenancy in all its aspects as
well as for the migration of SaaS applications (i.e. limited portability) [215]. In order
to improve the applicability of this work, the following contributions leverage these
existing Paa$ offerings as base platform to build further upon.

177

178 CONCLUSION

The feature-based approach presented in this dissertation to address these challenges is
twofold and maps directly to the two core contributions of this work: (i) a middleware
framework to support co-existing variants in multi-tenant SaaS applications (see
Chapters 3, 4 and 5), and (ii) a software engineering method, called service line
engineering (SLE), to introduce and manage variability throughout the entire lifecycle
of multi-tenant Saa$ applications (see Chapter 6).

The middleware framework enables the customization of multi-tenant SaaS applica-
tions driven by the tenant-specific configurations, while preserving the operational
cost benefits and limiting the unavoidable increase in application engineering
complexity [214]. More specifically, it offers support for the run-time composition
of software variants as well as the run-time enforcement of performance isolation
in compliance with tenant-specific SLAs. We have achieved this flexibility without
compromising the performance and scalability of the applications.

Further building on our experience with this middleware framework, we have
developed a generic feature-based method to develop and manage a customizable,
multi-tenant SaaS application. Just as the software product line engineering (SPLE)
method aims to exploit commonalities and to improve variability management in
traditional software products, the SLE method focuses on managing variability in
multi-tenant SaaS applications in a cost-efficient and scalable manner [217]. It provides
a better, more efficient trade-off between the design-time effort required to build
and construct a customizable SaaS application, and the run-time effort required to
provision tenants and to update and maintain the application [216, 217]. This has
been achieved by means of the end-to-end feature-based approach, self-service and
automation.

Evaluation. Based on the goals of this dissertation, the main evaluation criteria
are (i) high cost efficiency, in particular low operational costs and low application
engineering cost, (ii) higher flexibility, (iii) low performance overhead and high
scalability, and (iv) versatility of the middleware framework and the SLE method.
Several of these criteria cannot be translated into specific metrics, and are thus hard to
evaluate. Therefore, the evaluation approach in this dissertation consists of validation
via several prototypes and two application cases, the development of cost models, and
measurements of performance and resource usage.

As part of the validation strategy, the different middleware platforms, concepts,
methods and techniques have been implemented in the realization of different
prototypes (see https://distrinet.cs.kuleuven.be/projects/CUSTOMSS/).
These prototypes are based on industry-relevant application cases, namely the
component-based, multi-tier hotel booking application and the batch-driven document
processing application consisting of several services that cooperate in a workflow.

https://distrinet.cs.kuleuven.be/projects/CUSTOMSS/

CONTRIBUTIONS AND EVALUATION 179

With respect to the middleware framework for co-existing variants, this dissertation
focused on run-time composition of software variants and on performance isolation.
Both middleware contributions have been validated using the two application cases
and different customization techniques, on top of several existing cloud platforms (see
Chapter 3). Chapters 4 and 5 each focus on one specific instance of the middleware
framework. These validations demonstrated that our approach introduced the
necessary flexibility into multi-tenant applications. In addition, the implementation
and use of these prototypes illustrate the versatility of the middleware framework.

The validation of the SLE method has been mainly conducted in the development
of a service line for the document processing application, in the context of the
CUSTOMSS project [53] and in close collaboration with an actual European SaaS
provider (see Chapter 6 and [216]). Moreover, the SLE method and its principles have
been conceptually validated in two other SaaS application cases in the healthcare
domain (also in the context of the CUSTOMSS project [53]). In particular, we compared
the state of practice with the proposed SLE method in terms of the required effort
for the SaaS provider. This assessment indicated that the effort to provision tenants
and to maintain service lines is independent of the (growing) number of tenants,
and thus results in more scalable variability management, despite the higher (initial)
development cost.

Furthermore, we have developed a cost model to compare the operational and re-
engineering costs between a single-tenant and multi-tenant application (see Chapter 4).
We also included the cost of flexibility into this model. Moreover, we have measured
the resource usage of these approaches, focusing on two commonly used parameters
for billing, in order to evaluate the cost model. The cost model as well as these
measurements clearly indicated that application-level multi-tenancy leads to major
operational cost savings, which is also confirmed by [35, 110]. The other chapters
built further on these results. With respect to the re-engineering cost, we used lines
of source code to analyse the impact of the use of our middleware on application
development.

Finally, the impact of the middleware framework and the introduced flexibility on the
performance and scalability has been evaluated. More specifically, we measured the
performance overhead of our prototypes compared to the default, state-of-practice
approach. The results show that we were able to minimize this performance overhead.
The scalability of the middleware framework has been tested within the capabilities
(and restrictions) of the underpinning platform. For example, on top of Google App
Engine (GAE) [77], we were able to scale out to 40 application instances, while on
our private cloud we used up to 22 worker threads spread over 11 virtual machines.
In both cases our prototype was not the limiting factor.

180 CONCLUSION

7.2 Limitations and future work

This section discusses the limitations of the work presented in this dissertation as well
as directions for future research. More specifically, we focus on (i) further evaluation
of the middleware architecture and the SLE method, (ii) complementary research
with respect to performance isolation algorithms, evolution, and integration with the
underpinning cloud platform, and (iii) customizable SaaS applications in a multi-cloud
and cross-organizational context.

7.2.1 Further evaluation

Although the middleware framework and SLE method have been validated and
evaluated in different prototypes using two different types of SaaS applications,
further evaluation is always useful to endorse and improve our contributions.

Cost. Cost efficiency is a major motivational factor for this dissertation. It is
commonly accepted in the state of the art that application-level multi-tenancy
maximizes resource sharing and thus leads to major operational cost benefits. This
is also confirmed by our cost model and our experiments (cf. Chapter 4). However,
it is definitely worth to further investigate these operational cost benefits as well as
the impact of our middleware and flexibility by (i) extending and improving the cost
model, (ii) measuring all relevant parameters in a more accessible and controllable
environment (e.g. a private cloud platform), and (iii) effectively associating the cost
model and the measurements with actual costs.

Furthermore, the comparative cost analysis to evaluate the SLE method can be further
extended and formalised in a cost model, similar to Chapter 4. Currently, the cost
analysis is limited to the required effort for the Saa$S provider based on three main cost
variables: the number of tenants, the number of features, and the average number
of variation points per feature. Additionally, the effort for the tenants, the average
update and evolution frequency, as well as a more detailed development cost can be
taken into account to substantiate the efficiency benefits. This is currently work in
progress.

Finally, it is relevant to quantify the effort of (re-)engineering a Saa$S application in
order to fit the feature-based application model and to use the presented middleware
framework. However, such an evaluation of the applicability and (re)usability of the
proposed solution is hard to perform. We already gained some knowledge from the use
of the middleware framework by several MSc and PhD students, and from measuring
the code changes (cf. Chapters 3 and 4). But a more systematic approach, for example

LIMITATIONS AND FUTURE WORK 181

empirical evaluation, is required to draw more evidence-based conclusions. This
(re-)engineering effort is also related to the versatility of the middleware framework.

Versatility and flexibility. The versatility property of the middleware framework
and the SLE method refers to their general applicability as well as to their openness
and extensibility. In order to further validate and improve the applicability, the SLE
method and the middleware framework have to be applied to more different (types of)
applications and domains. For example, in our ongoing research, we are effectively
applying these concepts, methods and platforms in the domain of healthcare [127]
and payment [167]. Such an extensive validation also enables us to determine the
required level of flexibility and variability in multi-tenant SaaS applications.

Furthermore, it is relevant to investigate how well different composition mechanisms
and performance isolation algorithms can be integrated into the middleware, as well
as other customization types can be supported. For example, dependency injection
(DI) [66] is limited in terms of extensibility of variations points and amount of variants
per variation point [204]. Therefore, a SaaS provider can opt to use a more powerful
composition mechanism, such as dynamic aspect-oriented programming (AOP) [165,
169, 206], context-oriented programming (COP) [92], and reflection [123]. The same
applies to the mechanism to customize workflows. Moreover, this allows us to compare
and analyse these customization mechanisms, and to identify the limitations of the
framework in terms of customizability and flexibility. Similarly, the openness of the
SLE method with respect to existing work in the state of the art can be evaluated.

Furthermore, additional implementations of the middleware architecture can be
developed on top of different PaaS offerings and cloud-enabling middleware platforms,
for example Red Hat OpenShift [175] and Cloud Foundry [211].

Scalability. The scalability of the middleware framework has to be evaluated more
extensively. As the architecture supports multiple implementation and deployment
strategies, it is definitely worth to analyse which strategies are more suitable at a
particular scale, and to evaluate and compare the different implementations. This
is especially relevant for the workflow-based applications. For example, we expect
that the centralized, in-memory task queue (cf. Chapter 5) will scale less with a high
amount of workers. In this case, a distributed queue could be a more appropriate
solution, despite the performance overhead to keep it consistent.

7.2.2 Complementary research and extension

Besides the need for a more extensive evaluation, there is a need for complementary
research which was not in the scope of this dissertation. To ensure performance

182 CONCLUSION

isolation, the middleware depends on an algorithm to assign priorities based on the
monitoring data and the different tenant-specific service level agreements (SLAs).
In the state of the art, several algorithms exist to predict potential violations of
performance SLAs and to enforce performance isolation and fairness, for example [117,
193], but these algorithms are not necessarily applicable to multi-tenant SaaS
applications. Moreover, the characteristics of an application have a major impact on
the selection of an appropriate algorithm. The middleware framework can therefore
provide an execution environment to compare alternative algorithms, instead of or in
addition to simulation.

Furthermore, the SLE method covers the evolution and maintenance aspects of
customizable SaaS applications, but the necessary middleware support for this was
out of scope of this dissertation. For example, the SaaS provider requires supporting
middleware to manage different versions of features, components and software
artifacts, to perform an impact analysis of changes, as well as to automatically test
and gradually roll-out updates. A future research challenge is extending the SLE
method and the underpinning middleware platform to realize the main assumptions
defined by the SLE method.

Finally, with respect to non-functional requirements (e.g. availability, performance and
scalability), integration is required of the presented middleware framework with the
underpinning platform as well as with the monitoring and cloud management services
(cf. Fig. 1.1). As explained in Chapters 5 and 6, the non-functional requirements are
specified in tenant-specific SLAs that are taken into account by the middleware.
However, the enforcement of these SLAs cannot fully occur at the application layer.
For example, the dynamic resource management system is responsible for scaling out
and to respond to failures, while the end-to-end performance also depends on the cloud
services provided by the underpinning platform. In future work, we will investigate
the extension and integration of this work with cloud management systems, as well
as the impact of the platform-provided cloud services on performance isolation.

7.2.3 Multi-cloud and cross-organizational context

With the advance of cloud computing, cloud consumers and providers gain more
experience with the advantages and disadvantages of current public and private cloud
solutions. This results in a growing interest in (i) multi-cloud environments in general
to improve availability and to address vendor lock-in, (ii) hybrid clouds to combine
high scalability with increased control, and (iii) cross-organizational applications
and systems to compose and integrate cloud services from different providers. Our
ongoing and future work focuses on several challenges that SaaS providers face when
adopting these approaches.

LIMITATIONS AND FUTURE WORK 183

Portability and interoperability of SaaS applications are major challenges, especially in
amulti-cloud setting [166]. These challenges refer to the migration of SaaS applications
from on-premise to the (public) cloud and across different cloud offerings, as well as
the cooperation between these diverse and distributed applications and systems. Thus,
the goal is to avoid vendor lock-in and to improve availability. For example, portability
should be improved with respect to typical cloud services such as scalable storage and
caching, multi-tenancy, application management and monitoring, as we identified
in Chapter 2. As part of our ongoing research, we have developed the PaaSHopper
middleware for multi-cloud Saa$ applications. The core of this middleware consists of
an initial abstraction layer that enables portability over multiple cloud services across
various Paa$ platforms [173]. A more long-term solution to improve portability is
standardization, which by nature happens at a late stage of technology maturation.

Other important properties in the context of hybrid cloud applications are flexibility
and control. Tenant organizations want to maintain control over the execution of
their application and the processing of their data (public cloud versus private data
center). The PaaSHopper middleware provides tenants the flexibility to control the
execution in a fine-grained way via application-specific policies [59]. Driven by these
policies, the middleware decides at run time in which part of the hybrid cloud a
particular request or task should be executed. However, more expressive policies are
required, for example to take into account the cost and monitoring information of
different public clouds. In addition, to achieve run-time deployment of the PaaSHopper
middleware and the application components, we have to integrate this work with
dynamic resource management systems.

Furthermore, a Saa$ application can in its turn consume other, external software
services (i.e. across corporate boundaries). This is particularly relevant in the context
of Business Process as a Service (BPaaS) [8]. However, tenant-specific customizations
have to be activated and propagated across this distributed, cross-organizational and
definitely heterogeneous context. This is strongly related to the interoperability
challenge. In previous work, we have developed a coordination middleware to enable
cross-organizational customization in distributed service systems [212]. To address
the heterogeneity a feature ontology is introduced as additional abstraction layer,
which specifies the different high-level features in a particular domain or service
network. However, this approach has not been evaluated in a multi-tenant context.
Since ontologies are also employed in other work to support interoperability in
heterogeneous distributed systems [30, 174] as well as in combination with feature
models [54], this is certainly a track for future research.

184 CONCLUSION

7.3 Relevance and applicability

Cloud providers inherently aim for growth. Therefore, economies of scale are key for
a profitable cloud offering: the offering should scale with the increasing number
of consumers without the operational costs skyrocketing. This results into the
requirements of efficient utilization and management of resources, which will be
reflected in both the profit margins and the pricing strategy. This cost efficiency as well
as differentiation (e.g. via customization) enable a cloud provider to achieve a competitive
advantage relative to its rivals [170]. This dissertation aims to combine both, and is
thus directly relevant for the competitiveness of Saa$ offerings.

As discussed in Chapter 1, multi-tenancy (at any level of the stack) is a key
characteristic of cloud computing to leverage economies of scale by lowering the
operational costs and by improving scalability. Moreover, with the growing awareness
of the high power consumption by the many data centers, multi-tenancy can also
play a role in the trend of green computing [109] by multiplexing resources among
multiple tenants and thus by limiting the total resource usage [20, 71].

The leading technology research and advisory companies, such as Gartner and IDC,
predict worldwide spendings on cloud services in the tens of billions of dollars [72, 95].
The majority of these spendings go to SaaS offerings, as these are spread over many
diverse application domains, which results into a much larger market. In comparison,
TaaS and PaaS are more generic services that require large investments in infrastructure
and extensive knowledge on complex system software (e.g. virtualization, application
servers). Therefore, we expect further consolidation to only a few big players in the
IaaS and PaaS market (both public and private offerings), such as Amazon, Google,
Oracle and Microsoft.

Often SaaS providers will rely on these (external) cloud providers to deliver the
necessary infrastructure and platform, allowing them to focus on application
development without having to make huge infrastructure investments. In this context,
SaaS providers have less or even no control over the underpinning platform and
its resource usage. Application-level multi-tenancy is then an effective approach
to employ the available resources in a cost-efficient way and thus to run a more
profitable SaaS offering.

However, customizability is also relevant to achieve a competitive advantage [170],
especially in an enterprise or B2B context (probably less for consumer-oriented web
applications): each tenant organization is unique with its own business requirements
that evolve over time. Therefore, a one-size-fits-all approach is not suitable and
SaaS applications should satisfy these tenant-specific requirements, possibly at an
additional price. With an increasing number of tenants, cost efficiency, and more
specifically efficient mass customization, becomes even more important.

UTILITY COMPUTING AND BEYOND 185

The work presented in this dissertation can be a useful asset for SaaS providers
to support the tenant-specific customization of their SaaS offerings in an efficient
way. More specifically, the middleware framework can be used as an extension
to the underpinning cloud platform, for example in the form of a library. It was
a key decision in our approach to build upon existing PaaS offerings and cloud-
enabling middleware platforms in order to improve the applicability of our middleware
solution, instead of developing a completely new platform. In addition, we decided to
comply with the common programming model in contrast to the metadata-driven
PaaS platforms (e.g. Force.com [182]), again to improve applicability and to limit
portability issues [215]. Therefore, we also used a common composition mechanism,
i.e. dependency injection, in our prototype.

Secondly, the SLE method provides the SaaS provider with methodical support in the
different stages to develop, deploy and manage a customizable, multi-tenant SaaS
application, with an inherent focus on efficiency and scalability. Moreover, this does
not exclude other existing software engineering methods or frameworks to be used
during or across these different stages.

A good indication of the relevance of this work for SaaS providers is the adoption
of our approach and concepts by an industrial partner in the CUSTOMSS project.
However, to improve further adoption, a more extensive cost analysis (cf. Section 7.2)
is key in order to determine the total cost of ownership (TCO) of using both the
presented middleware framework and SLE method. Furthermore, the applicability
highly depends on the availability of full-fledged implementations of the middleware
framework, including support for evolution, maintenance, and interoperability with
different cloud platforms.

Finally, this work is also relevant for PaaS providers. More specifically, PaaS providers
can extend their offerings with middleware support to develop, run and manage
customizable, multi-tenant SaaS applications. By providing support to facilitate the
development of customizable, multi-tenant SaaS applications, a PaaS provider can
become more attractive for SaaS providers in comparison to its competitors.

7.4 Utility computing and beyond

Cloud computing aims to enable the flexible and on-demand consumption of resources
and applications. Despite the many promises, the previous sections have indicated that
anumber of open challenges remain to obtain the key characteristics and thus benefits
of cloud computing. However, to realize the promise of utility computing [162], even

http://www.iminds.be/userfiles/files/persberi chten/2013/eng/Press%
20Announcement%20-%20Strategic%20Partnerships%20-%2004%2012%202013.pdf

http://www.iminds.be/userfiles/files/persberichten/2013/eng/Press%20Announcement%20-%20Strategic%20Partnerships%20-%2004%2012%202013.pdf
http://www.iminds.be/userfiles/files/persberichten/2013/eng/Press%20Announcement%20-%20Strategic%20Partnerships%20-%2004%2012%202013.pdf

186 CONCLUSION

more flexibility and cost efficiency are required in order to really deliver computing
resources and storage as a utility like electricity.

For example, the Internet of Things (IoT) [13, 14] will surround us as a ubiquitous
computing infrastructure. As these surrounding devices will often be idling, smart
buildings and cities should offer the opportunity to spontaneously consume these
available resources offered by the environment. Evidently, each device has different
properties (e.g. server versus sensor), and thus the selection of these resources depends
on the targeted purpose as well as the current load. Moreover, billing will also be
affected by these properties.

Similarly, the software components and services running on these devices (as part of
IoT applications) can be consumed on demand and combined into a new composition
or application, even for a limited period (e.g. as long as the user is in the environment).
Furthermore, tenants and end users have different preferences, which results into
different short-lived compositions and configurations of these components and
services.

Flexibility and lifecycle management are key to realize such complex distributed
systems: flexibility to adapt and evolve towards different and changing contexts
and environments, and lifecycle management to keep an overview on the different
applications and services, including the many co-existing variants. Similar to the work
presented in this dissertation, both an appropriate software engineering method and an
advanced adaptive middleware platform is required to tackle these challenges, without
neglecting important non-functional concerns such as availability, cost, performance
and security. In China, researchers have proposed the name “Internetware” for such
a software paradigm that provides technologies to develop applications and services
for such open, dynamic and constantly changing environments [129].

From this perspective, the work presented in this dissertation represents a step towards
this long-term goal. Concurrent and context-sensitive adaptation and composition
remain crucial to achieve the necessary flexibility. In comparison to this work, not only
the current tenant and the state and behaviour of the application define the context
that drives the run-time adaptations and compositions, but also the purpose and
application type, the location, and the available services provided by the surrounding
environment. In addition, the middleware platform should be able to cope with
larger as well as more diverse and heterogeneous environments. Interoperability
thus remains and even becomes a more critical factor in order to support this level of
flexibility. New concepts such as emergent middleware [29] could offer an adequate
solution to overcome this heterogeneity.

Furthermore, the SLE method already provides variability management across the
different stages of the development and exploitation lifecyle of long-running SaaS
applications. However, in future open and dynamic environments, all variability

UTILITY COMPUTING AND BEYOND 187

cannot be determined in advance: applications and services are used in varying and
unpredictable compositions during their entire lifecyle. Therefore, future research
should focus on the extension of the SLE method with lifecycle management as
well as on the development of middleware support for run-time evolution. The
feature-based approach remains relevant, as it provides an appropriate abstraction
level to communicate about variability towards the different stakeholders exposed
to it (in our case, the Saa$ architects, developers and operators, as well as the tenant
administrators). However, the feature model should also be able to adapt and evolve
dynamically as the context changes, thus representing a high-level, run-time model
of the SaaS application.

In summary, we observe an increasing trend towards large, distributed and
heterogeneous systems, consisting of long-running, shared services that will be
used in different and varying compositions and contexts during their lifecycle. In this
evolution, the importance of cost efficiency and flexibility will only grow. Indeed,
future systems will have a longer (operational) lifecyle and will be deployed on a
combination of different heterogeneous environments across different organizations.
This puts the emphasis on requirements such as portability and interoperability,
adaptability and evolution, and quality of service (QoS) concerning availability, cost,
performance and security. Currently, this trend is already visible going from single
cloud environments to federated architectures and multi-cloud applications, but
becomes even more important in systems of systems (SoS) [37, 106, 124, 181], the
IoT [13, 14], and utility computing [12, 162].

This dissertation fits nicely in this overall trend as it addresses the trade-off between
flexibility and cost efficiency. Although this work stays within the scope of
customizing multi-tenant SaaS applications within a single (cloud) environment,
its twofold approach is generally applicable: the creation of (i) adaptive middleware
to realize concurrent and context-sensitive adaptation and composition in an
efficient way, even throughout heterogeneous environments and across organization
boundaries, and (ii) a software engineering approach for shared applications and
services to deal with evolution and lifecycle management, as well as to manage
heterogeneity and variability not as an afterthought.

Bibliography

(10]

M. Abu-Matar and H. Gomaa. “Variability modeling for service oriented
product line architectures”. In: SPLC ’11: 15th International Software Product
Line Conference. 2011, pp. 110-119. po1: 10.1109/SPLC.2011.26 (p. 174).

Amazon Web Services LLC. Amazon Elastic Compute Cloud (Amazon EC2).
http://aws.amazon.com/ec2/. [Last visited on April 1, 2014] (pp. 4, 15,
72, 73).

Amazon Web Services LLC. Amazon Simple Workflow Service (SWF). http:
//aws.amazon.com/swf/. [Last visited on April 1, 2014] (p. 117).

Amazon Web Services LLC. Amazon Web Services (AWS). http: / / aws .
amazon.com/. [Last visited on April 1, 2014] (pp. 36, 73).

Amazon Web Services LLC. AWS Elastic Beanstalk. http://aws.amazon.
com/elasticbeanstalk/. [Last visited on April 1, 2014] (pp. 27, 66).

Amazon Web Services LLC. How quickly can I scale my capacity both up and
down? http://aws.amazon.com/ec2/faqs/#How_quickly_can_I_
scale_my_capacity_both_up_and_down. [Last visited on April 1, 2014]
(p. 120).

V. Andrikopoulos, T. Binz, F. Leymann, and S. Strauch. “How to adapt applica-
tions for the cloud environment”. In: Computing 95.6 (2013), pp. 493-535. por:
10.1007/s00607-012-0248-2 (p. 74).

T. Anstett, F. Leymann, R. Mietzner, and S. Strauch. “Towards BPEL in the cloud:
Exploiting different delivery models for the execution of business processes”.
In: Services ’09: World Conference on Services - I. IEEE, July 2009, pp. 670-677.
por: 10.1109/SERVICES-I.2009.32 (p. 183).

S. Apel, T. Leich, and G. Saake. “Aspectual Feature Modules”. In: IEEE
Transactions on Software Engineering 34.2 (Mar. 2008), pp. 162-180. por1: 10.
1109/TSE.2007.70770 (p. 10).

Apprenda, Inc. Apprenda - Enterprise PaaS leader. http://apprenda.com/
platform/. [Last visited on April 1, 2014] (pp. 66, 109).

189

http://dx.doi.org/10.1109/SPLC.2011.26
http://aws.amazon.com/ec2/
http://aws.amazon.com/swf/
http://aws.amazon.com/swf/
http://aws.amazon.com/
http://aws.amazon.com/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/elasticbeanstalk/
http://aws.amazon.com/ec2/faqs/#How_quickly_can_I_scale_my_capacity_both_up_and_down
http://aws.amazon.com/ec2/faqs/#How_quickly_can_I_scale_my_capacity_both_up_and_down
http://dx.doi.org/10.1007/s00607-012-0248-2
http://dx.doi.org/10.1109/SERVICES-I.2009.32
http://dx.doi.org/10.1109/TSE.2007.70770
http://dx.doi.org/10.1109/TSE.2007.70770
http://apprenda.com/platform/
http://apprenda.com/platform/

190

BIBLIOGRAPHY

(11]

[16]

(17]

[20]

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G.
Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the clouds: A
berkeley view of cloud computing. Tech. Rep. UCB/EECS 28. EECS Department,
University of California, Berkeley, 2009 (pp. 26, 28, 72).

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. “A view of cloud computing”.
In: Commun. ACM 53.4 (2010), pp. 50-58. DOI: 10.1145/1721654.1721672
(pp- 1-5, 187).

K. Ashton. “That ’Internet of Things’ thing”. In: RFiD Journal (2009) (pp. 186,
187).

L. Atzori, A. lera, and G. Morabito. “The Internet of Things: A survey”. In:
Computer Networks 54.15 (2010), pp. 2787-2805. po1: 10.1016/j .comnet.
2010.05.010 (pp. 186, 187).

S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and]. Rittinger. “Multi-tenant
databases for Software as a Service: Schema-mapping techniques”. In: SSIGMOD
’08: Proceedings of the ACM SIGMOD international conference on Management
of Data. ACM, 2008, pp. 1195-1206. po1: 10.1145/1376616.1376736 (p. 73).

S. Aulbach, D. Jacobs, A. Kemper, and M. Seibold. “A comparison of flexible
schemas for Software as a Service”. In: SIGMOD °09: Proceedings of the ACM
SIGMOD International Conference on Management of Data. ACM, 2009, pp. 881—
888. DOI: 10.1145/1559845.1559941 (p. 73).

A. Azeez, S. Perera, D. Gamage, R. Linton, P. Siriwardana, D. Leelaratne, S.
Weerawarana, and P. Fremantle. “Multi-tenant SOA middleware for cloud
computing”. In: CLOUD ’10: IEEE International Conference on Cloud Computing.
IEEE Computer Society, 2010, pp. 458-465. DOI: 10.1109/CLOUD.2010.50
(pp- 27, 93).

F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A. Vilbig.
“A meta-model for representing variability in product family development”.
In: PFE °04: Software Product-Family Engineering. Springer Berlin / Heidelberg,
2004, pp. 66-80. DOL: 10.1007/978-3-540-24667-1_6 (pp. 153, 175).

J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J. Larson, J. M. Léon, Y.
Li, A. Lloyd, and V. Yushprakh. “Megastore: Providing scalable, highly available
storage for interactive services”. In: CIDR ’11: Proceedings on Conference on
Innovative Data Systems Research. 2011 (pp. 29, 38, 39).

J. Baliga, R. W. A. Ayre, K. Hinton, and R. Tucker. “Green cloud computing:
Balancing energy in processing, storage, and transport”. In: Proceedings of the
IEEE 99.1 (Jan. 2011), pp. 149-167. por: 10 . 1109/ JPROC . 2010 . 2060451

(p. 184).

http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1145/1376616.1376736
http://dx.doi.org/10.1145/1559845.1559941
http://dx.doi.org/10.1109/CLOUD.2010.50
http://dx.doi.org/10.1007/978-3-540-24667-1_6
http://dx.doi.org/10.1109/JPROC.2010.2060451

BIBLIOGRAPHY 191

[21]

[22]

(23]

[24]

(28]

[29]

(30]

(31]

L. Baresi, S. Guinea, and L. Pasquale. “Service-oriented dynamic software
product lines”. In: Computer 45.10 (2012), pp. 42-48. pol: 10.1109/MC.2012.
289 (p. 173).

L. Bass, P. Clements, and R. Kazman. Software architecture in practice. 2nd.
Addison-Wesley Professional, 2003 (p. 148).

F. Bergmans. “Middleware support for product line development of multi-
tenant SaaS applications”. MA thesis. Department of Computer Science, KU
Leuven, 2012 (pp. 85, 87).

C.-P. Bezemer and A. Zaidman. Challenges of reengineering into multi-tenant
SaaS applications. Software Engineering Research Group (SERG) 12. TU Delft,
2010 (p. 74).

C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. Hart.
“Enabling multi-tenancy: An industrial experience report”. In: ICSM ’10:
Proceedings of the 26th International Conference on Software Maintenance. 2010,
pp. 1-8. DOI: 10.1109/ICSM.2010.5609735 (pp. 20, 74, 109, 154).

L. N. Bhuyan and D. P. Agrawal. “Generalized hypercube and hyperbus
structures for a computer network”. In: IEEE Transactions on Computers C-33.4
(1984), pp. 323-333. DOL: 10.1109/TC.1984.1676437 (p. 16).

L. F. Bittencourt and E. R. M. Madeira. “HCOC: A cost optimization algorithm
for workflow scheduling in hybrid clouds”. In: Journal of Internet Services and
Applications 2.3 (2011), pp. 207-227. por: 10.1007/s13174-011-0032-0

(p- 139).

M. Bjorkqvist, L. Y. Chen, and W. Binder. “Cost-driven service provisioning
in hybrid clouds”. In: SOCA °12: 5th IEEE International Conference on service-
oriented computing and applications. 2012, pp. 1-8. Do1: 10.1109/S0CA.2012.
6449447 (p. 139).

G. Blair and P. Grace. “Emergent middleware: Tackling the interoperability
problem”. In: IEEE Internet Computing 16.1 (Jan. 2012), pp. 78-82. poI: 10.
1109/MIC.2012.7 (p. 186).

G. S. Blair, A. Bennaceur, N. Georgantas, P. Grace, V. Issarny, V. Nundloll, and
M. Paolucci. “The role of ontologies in emergent middleware: Supporting in-
teroperability in complex distributed systems”. In: Middleware ’11: Proceedings
of the 12th International Middleware Conference. Springer Berlin / Heidelberg,
Dec. 2011, pp. 410-430. por: 10.1007/978-3-642-25821-3_21 (p. 183).

G. S. Blair, G. Coulson, P. Robin, and M. Papathomas. “An architecture for next
generation middleware”. In: Middleware *98: Proceedings of the IFIP International
Conference on Distributed Systems Platforms and Open Distributed Processing.
Springer-Verlag, 1998, pp. 191-206 (pp. 9, 109).

http://dx.doi.org/10.1109/MC.2012.289
http://dx.doi.org/10.1109/MC.2012.289
http://dx.doi.org/10.1109/ICSM.2010.5609735
http://dx.doi.org/10.1109/TC.1984.1676437
http://dx.doi.org/10.1007/s13174-011-0032-0
http://dx.doi.org/10.1109/SOCA.2012.6449447
http://dx.doi.org/10.1109/SOCA.2012.6449447
http://dx.doi.org/10.1109/MIC.2012.7
http://dx.doi.org/10.1109/MIC.2012.7
http://dx.doi.org/10.1007/978-3-642-25821-3_21

192

BIBLIOGRAPHY

(32]

(33]

(39]

[40]

[41]

J. Bozman and G. Chen. “Cloud computing: The need for portability and
interoperability”. In: IDC Analyze the Future (Aug. 2010). Sponsored by Red
Hat, Inc. (pp. 17, 19).

R. Buyya, S. K. Garg, and R. N. Calheiros. “SLA-oriented resource provisioning
for cloud computing: Challenges, architecture, and solutions”. In: CSC ’11:
International Conference on Cloud and Service Computing. 2011, pp. 1-10. poI:
10.1109/CSC.2011.6138522 (p. 139).

H. Cai, N. Wang, and M. J. Zhou. “A transparent approach of enabling SaaS
multi-tenancy in the cloud”. In: SERVICES-1 ’10: 6th World Congress on Services.
July 2010, pp. 40-47. por: 10.1109/SERVICES.2010.48 (pp. 93, 108, 120).

H. Cai, K. Zhang, M. J. Zhou, W. Gong, J. J. Cai, and X. S. Mao. “An End-to-End
Methodology and Toolkit for Fine Granularity SaaS-ization”. In: CLOUD ’09:
IEEE International Conference on Cloud Computing. 2009, pp. 101-108. DOTI:
10.1109/CLOUD.2009.63 (p. 179).

R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya. “The Aneka
platform and QoS-driven resource provisioning for elastic applications on
hybrid clouds”. In: Future Generation Computer Systems 28.6 (2012), pp. 861-870.
DOI: 10.1016/j.future.2011.07.005 (p. 139).

P. G. Carlock and R. E. Fenton. “System of Systems (SoS) enterprise systems
engineering for information-intensive organizations”. In: Systems Engineering
4.4 (2001), pp. 242-261. DOI: 10.1002/sys. 1021 (p. 187).

Y. C. Cavalcanti, I. do Carmo Machado, P. A. da Mota, S. Neto, L. L. Lobato,
E.S. de Almeida, and S. R. de Lemos Meira. “Towards metamodel support
for variability and traceability in software product lines”. In: VaMoS ’11:
Proceedings of the 5th Workshop on Variability Modeling of Software-Intensive
Systems. ACM, 2011, pp. 49-57. po1: 10.1145/1944892.1944898 (pp. 153,
175).

M. Chalkiadaki and K. Magoutis. “Managing service performance in NoSQL
distributed storage systems”. In: MW4NG ’12: Proceedings of the 7th Workshop
on Middleware for Next Generation Internet Computing. ACM, 2012, pp. 5-1.
pOI: 10.1145/2405178.2405183 (p. 138).

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber. “Bigtable: A distributed storage system
for structured data”. In: ACM Trans. Comput. Syst. 26.2 (2008), pp. 4-1. DOI:
10.1145/1365815.1365816 (pp. 29, 38, 39).

D. Chappell. Introducing the Windows Azure platform. http : / / www .
davidchappell. com/writing/white_papers/Introducing_the_
Windows _Azure _Platform, _vl.4--Chappell. pdf. Sponsored by
Microsoft Corporation. Oct. 2010 (pp. 29, 30).

http://dx.doi.org/10.1109/CSC.2011.6138522
http://dx.doi.org/10.1109/SERVICES.2010.48
http://dx.doi.org/10.1109/CLOUD.2009.63
http://dx.doi.org/10.1016/j.future.2011.07.005
http://dx.doi.org/10.1002/sys.1021
http://dx.doi.org/10.1145/1944892.1944898
http://dx.doi.org/10.1145/2405178.2405183
http://dx.doi.org/10.1145/1365815.1365816
http://www.davidchappell.com/writing/white_papers/Introducing_the_Windows_Azure_Platform,_v1.4--Chappell.pdf
http://www.davidchappell.com/writing/white_papers/Introducing_the_Windows_Azure_Platform,_v1.4--Chappell.pdf
http://www.davidchappell.com/writing/white_papers/Introducing_the_Windows_Azure_Platform,_v1.4--Chappell.pdf

BIBLIOGRAPHY 193

[42]

(43]

(44]

[52]

(53]

P. P.-S. Chen. “The entity-relationship model - Toward a unified view of data”.
In: ACM Trans. Database Syst. 1.1 (Mar. 1976), pp. 9-36. DOI: 10.1145/320434.
320440 (p. 33).

N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa, S. Soman, and R.
Wolski. “AppScale: Scalable and open AppEngine application development
and deployment”. In: CloudComp °09: First International Conference on Cloud
Computing. Springer Berlin / Heidelberg, 2010, pp. 57-70. po1: 10.1007/978~
3-642-12636-9_4 (pp. 27, 109).

F. Chong and G. Carraro. Architecture strategies for catching the long tail.
http://msdn.microsoft.com/en-us/library/aa479069 . aspx.
Microsoft Corporation. Apr. 2006 (pp. 1, 3, 7, 15, 17, 20, 45, 52, 74, 91, 103, 109,
115, 138, 143).

F. Chong, G. Carraro, and R. Wolter. Multi-tenant data architecture. http :
//msdn.microsoft.com/en-us/library/aa479086.aspx. Microsoft
Corporation. June 2006 (pp. 55, 73).

Citrix Systems, Inc. CloudStack - Open source cloud computing project. http:
//cloudstack.org. [Last visited on April 1, 2014] (p. 72).

A. Classen, Q. Boucher, and P. Heymans. “A text-based approach to feature
modelling: Syntax and semantics of TVL”. In: Science of Computer Programming
76.12 (2011). Special Issue on Software Evolution, Adaptability and Variability,
pp- 1130-1143. por: 10.1016/j.sc7c0.2010.10.005 (p. 151).

P. Clements and L. M. Northrop. Software product lines: Practices and patterns.
3rd. Addison-Wesley Professional, 2001 (pp. 9, 144).

CloudBees, Inc. CloudBees: The Java PaaS company. http://www.cloudbees.
com. [Last visited on April 1, 2014] (p. 27).

S. Cohen and R. Krut, eds. Proceedings of the 1st Workshop on Service-oriented
Architectures and Software Product Lines (SOAPL). Carnegie Mellon University
- Software Engineering Institute, May 2008 (p. 172).

P. Costanza, R. Hirschfeld, and W. Meuter. “Efficient layer activation for
switching context-dependent behavior”. In: JMLC °06: Proceedings of the
7th Joint Modular Languages Conference. Springer Berlin / Heidelberg, 2006,
pp- 84-103. po1: 10.1007/11860990_7 (p. 10).

G. Coulson, G. S. Blair, M. Clarke, and N. Parlavantzas. “The design of
a configurable and reconfigurable middleware platform”. In: Distributed
Computing 15.2 (2002), pp. 109-126. poI: 10.1007 /5004460100064 (pp. 9,
109, 110).

CUSTOMSS. CUSTOMization of Software Services in the cloud (iMinds ICON
project). http://www.iminds.be/en/research/overview-projects/

p/detail/customss. [Last visited on April 1, 2014]. 2011 (pp. 87, 144, 145,
158, 179).

http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1007/978-3-642-12636-9_4
http://dx.doi.org/10.1007/978-3-642-12636-9_4
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://cloudstack.org
http://cloudstack.org
http://dx.doi.org/10.1016/j.scico.2010.10.005
http://www.cloudbees.com
http://www.cloudbees.com
http://dx.doi.org/10.1007/11860990_7
http://dx.doi.org/10.1007/s004460100064
http://www.iminds.be/en/research/overview-projects/p/detail/customss
http://www.iminds.be/en/research/overview-projects/p/detail/customss

194

BIBLIOGRAPHY

[54]

[55]

[56]

(57]

[60]

[61]

[64]

[65]

K. Czarnecki, C. Hwan, P. Kim, and K. T. Kalleberg. “Feature models are views
on ontologies”. In: SPLC "06: 10th International Software Product Line Conference.
2006, pp. 41-51 (p. 183).

K. Czarnecki, S. Helsen, and U. Eisenecker. “Staged configuration through
specialization and multilevel configuration of feature models”. In: Software
Process: Improvement and Practice 10.2 (2005), pp. 143-169. po1: 10.1002/
spip.225 (p. 174).

S. M. Davis. “From “future perfect”: Mass customizing”. In: Strategy &
Leadership 17.2 (1989), pp. 16—-21. Do1: 10.1108/eb054249 (p. 7).

L. DeMichiel. JSR 317: Java™ Persistence 2.0. http://www.jcp.org/en/
jsr/detail?id=317. [Last visited on April 1, 2014]. Dec. 2009 (p. 24).

L. DeMichiel and B. Shannon. JSR 342: Java™™ Platform, Enterprise Edition 7
(Java EE 7) Specification. http://www.jcp.org/en/jsr/detail?id=342.
[Last visited on April 1, 2014]. May 2013 (pp. 71, 109).

T. Desair, W. Joosen, B. Lagaisse, A. Rafique, and S. Walraven. “Policy-
driven middleware for heterogeneous, hybrid cloud platforms”. In: ARM ’13:
Proceedings of the 12th International Workshop on Adaptive and Reflective
Middleware. ACM, Dec. 2013, pp. 7-12. po1: 10.1145/2541583.2541585

(p. 183).

A.vanDeursen and P. Klint. “Domain-specific language design requires feature
descriptions”. In: Journal of Computing and Information Technology 10.1 (2002),
pp- 1-17 (p. 151).

T. Dumitrag and P. Narasimhan. “Why do upgrades fail and what can we do
about it?” In: Middleware ’09: 10th ACM/IFIP/USENIX International Conference
on Middleware. Springer Berlin / Heidelberg, 2009, pp. 349-372. po1: 10.1007/
978-3-642-10445-9_18 (p. 154).

L. Ellison. What the hell Is cloud computing? https://www.youtube.com/
watch?v=0FacYAI6DYO. [Last visited on April 1, 2014]. Sept. 2008 (p. 2).

N. Engelsen. Multi-tenant architecture via dependency injection. http: //
blog.tallan.com/2010/07/11/multi-tenant-architecture-via-
dependency-injection-part-1/. [Last visited on April 1, 2014]. July
2010 (p. 56).

A. Etien and C. Salinesi. “Managing requirements in a co-evolution context”.

In: Proceedings of the 13th IEEE International Conference on Requirements
Engineering. IEEE, 2005, pp. 125-134. po1: 10.1109/RE.2005.37 (p. 150).

R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-oriented software
development. 1st. Addison-Wesley Professional, 2004 (p. 110).

http://dx.doi.org/10.1002/spip.225
http://dx.doi.org/10.1002/spip.225
http://dx.doi.org/10.1108/eb054249
http://www.jcp.org/en/jsr/detail?id=317
http://www.jcp.org/en/jsr/detail?id=317
http://www.jcp.org/en/jsr/detail?id=342
http://dx.doi.org/10.1145/2541583.2541585
http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://dx.doi.org/10.1007/978-3-642-10445-9_18
https://www.youtube.com/watch?v=0FacYAI6DY0
https://www.youtube.com/watch?v=0FacYAI6DY0
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://blog.tallan.com/2010/07/11/multi-tenant-architecture-via-dependency-injection-part-1/
http://dx.doi.org/10.1109/RE.2005.37

BIBLIOGRAPHY 195

[66]

[67]

[68]

[69]

(70]

[72]

(73]

[75]

(76]

M. Fowler. Inversion of control containers and the dependency injection pattern.
http://martinfowler.com/articles/injection. html. Jan. 2004
(pp. 50, 85, 96, 99, 155, 181).

M. Galster. “Describing variability in service-oriented software product
lines”. In: ECSA ’10: Proceedings of the 4th European Conference on Software
Architecture: Companion Volume. ACM, 2010, pp. 344-350. po1: 10 . 1145/
1842752.1842815 (pp. 172, 174).

M. Galster and P. Avgeriou. “A variability viewpoint for enterprise software
systems”. In: WICSA/ECSA ’12: Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture. IEEE, 2012,
pp. 267-271. pOL: 10.1109/WICSA-ECSA.212.43 (pp. 152, 174, 175).

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements of
reusable object-oriented software. 1st. Addison-Wesley, 1994 (p. 127).

K. Garen. “Software portability: Weighing options, making choices”. In: The
CPA Journal 77.11 (2007), pp. 10-12 (p. 19).

S. K. Garg and R. Buyya. “Harnessing green IT: Principles and practices”. In:
ed. by S. Murugesan and G. R. Gangadharan. 1st ed. Wiley - IEEE Press, 2012.
Chap. Green cloud computing and environmental sustainability, pp. 315-339.
DOI: 10.1002/9781118305393.ch16 (p. 184).

Gartner, Inc. Gartner says worldwide public cloud services market to total $131
billion. http://www. gartner.com/newsroom/id/2352816. Feb. 2013

(p. 184).

K. Geebelen, S. Walraven, E. Truyen, S. Michiels, H. Moens, F. De Turck, B.
Dhoedt, and W. Joosen. “An open middleware for proactive QoS-aware service
composition in a multi-tenant SaaS environment”. In: ICOMP ’12: Proceedings
of the 2012 International Conference on Internet Computing. CSREA Press, July
2012 (p. 89).

F. Gey, S. Walraven, D. Landuyt, and W. Joosen. “Building a customizable
Business-Process-as-a-Service application with current state-of-practice”. In:
SC ’13: 12th International Conference on Software Composition. Springer Berlin /
Heidelberg, June 2013, pp. 113-127. por: 10.1007/978-3-642-39614-4_8
(pp. 77, 85, 87, 89, 166).

A. Giessmann and K. Stanoevska-Slabeva. “Platform as a Service : A conjoint
study on consumers’ preferences”. In: ICIS ’12: 33rd International Conference on
Information Systems. Association for Information Systems (AIS), 2012 (pp. 17,
21).

GigaSpaces Technologies, Inc. XAP - In-memory computing platform. http:
//www . gigaspaces.com/xap/. [Last visited on April 1, 2014] (pp. 17, 27,
66, 109).

http://martinfowler.com/articles/injection.html
http://dx.doi.org/10.1145/1842752.1842815
http://dx.doi.org/10.1145/1842752.1842815
http://dx.doi.org/10.1109/WICSA-ECSA.212.43
http://dx.doi.org/10.1002/9781118305393.ch16
http://www.gartner.com/newsroom/id/2352816
http://dx.doi.org/10.1007/978-3-642-39614-4_8
http://www.gigaspaces.com/xap/
http://www.gigaspaces.com/xap/

196

BIBLIOGRAPHY

(77]

(87]

(88]

Google, Inc. Google App Engine. http : / / developers . google . com/
appengine/. [Last visited on April 1, 2014] (pp. 5, 15, 17, 26-28, 36, 37, 49,
72,73, 81, 92, 96, 100, 108, 121, 179).

Google, Inc. Guice. http://code.google.com/p/google-guice/. [Last
visited on April 1, 2014] (pp. 29, 50, 92, 100).

Google, Inc. The JRE class white list. http://developers. google.com/
appengine/docs/java/jrewhitelist. html. [Last visited on April 1,
2014] (p. 37).

Google, Inc. Will it play in Java. http : / / code . google . com / p /
googleappengine /wiki /WillItPlayInJava. [Last visited on April 1,
2014] (p. 38).

T. B. Gooley. “Mass customization: How logistics makes it happen”. In: Logistics
Management & Distribution Report 37.4 (1998), pp. 49-52 (p. 7).

L. Groher and R. Weinreich. “Integrating variability management and software
architecture”. In: WICSA/ECSA ’12: Joint Working IEEE/IFIP Conference on
Software Architecture and European Conference on Software Architecture. IEEE,
2012, pp. 262—-266. DOI: 10.1109 /WICSA-ECSA.212.42 (pp. 152, 153, 175).

S. Giinther and T. Berger. “Service-oriented product lines: Towards a
development process and feature management model for web services”. In:
SOAPL °08: Workhop on Service-oriented Architectures and Software Product
Lines. 2008, pp. 131-136 (p. 172).

C.J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. “A framework for native
multi-tenancy application development and management”. In: CEC/EEE ’07:
9th IEEE International Conference on E-Commerce Technology and 4th IEEE
International Conference on Enterprise Computing, E-Commerce, and E-Services.
July 2007, pp. 551-558. pOL: 10.1109/CEC-EEE.2007.4 (pp. 3,7, 8, 15, 17,
20, 45, 70, 74, 91, 108, 109, 115, 138, 143, 154).

D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. “Enforcing performance
isolation across virtual machines in Xen”. In: Middleware °06: Proceedings of
the ACM/IFIP/USENIX International Conference on Middleware. Springer Berlin
/ Heidelberg, 2006, pp. 342-362. poI: 10.1007/11925071_18 (p. 138).

S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid. “Dynamic software
product lines”. In: Computer 41.4 (Apr. 2008), pp. 93-95. por: 10 . 1109/
MC.2008.123 (p. 173).

S. Hallsteinsen, S. Jiang, and R. Sanders. “Dynamic software product lines in
service oriented computing”. In: DSPL °09: Proceedings of the 3rd International
Workshop on Dynamic Software Product Lines. 2009, pp. 28—34 (p. 173).

@. Haugen and et al. Common Variability Language (CVL). http: //www .
omgwiki.org/variability/. OMG Revised Submission. Aug. 2012 (p. 151).

http://developers.google.com/appengine/
http://developers.google.com/appengine/
http://code.google.com/p/google-guice/
http://developers.google.com/appengine/docs/java/jrewhitelist.html
http://developers.google.com/appengine/docs/java/jrewhitelist.html
http://code.google.com/p/googleappengine/wiki/WillItPlayInJava
http://code.google.com/p/googleappengine/wiki/WillItPlayInJava
http://dx.doi.org/10.1109/WICSA-ECSA.212.42
http://dx.doi.org/10.1109/CEC-EEE.2007.4
http://dx.doi.org/10.1007/11925071_18
http://dx.doi.org/10.1109/MC.2008.123
http://dx.doi.org/10.1109/MC.2008.123
http://www.omgwiki.org/variability/
http://www.omgwiki.org/variability/

BIBLIOGRAPHY 197

(89]

[90]

[91]

(98]

[99]

[100]

Heroku, Inc. Heroku cloud application platform. http://www.heroku.com/.
[Last visited on April 1, 2014] (p. 27).

S. Hillyer. An introduction to environments. http://wiki.developerforce.
com/index.php/An_Introduction_to_Environments. [Last visited on
April 1, 2014] (p. 45).

S. Hiranandani, K. Kennedy, and C.-W. Tseng. “Compiling Fortran D for MIMD
distributed-memory machines”. In: Commun. ACM 35.8 (1992), pp. 66—80. DOTI:
10.1145/135226.135230 (p. 16).

R. Hirschfeld, P. Costanza, and O. Nierstrasz. “Context-oriented programming”.
In: Journal of Object Technology 7.3 (Mar. 2008), pp. 125-151. por: 10.5381/
jot.2008.7.3.a4 (pp. 85, 181).

A. Hubaux, P. Heymans, P.-Y. Schobbens, D. Deridder, and E. Abbasi.
“Supporting multiple perspectives in feature-based configuration”. In: Software
and Systems Modeling (2011), pp. 1-23. por: 10.1007/s10270-011-0220-1
(p. 175).

IBM Corporation. IBM SmartCloud application services. http://www. ibm.
com/cloud-computing/us/en/paas.html. [Last visited on April 1, 2014]

(p. 27).

IDC. IDC forecasts worldwide public IT cloud services spending to reach nearly
$108 billion by 2017 as focus shifts from savings to innovation. http://www.
jdc.com/getdoc.jsp?containerId=prus24298013. Sept. 2013 (p. 184).

JBoss Community. JBoss AOP. http://www.jboss.org/jbossaop/. [Last
visited on April 1, 2014] (p. 110).

J. Kabbedijk and S. Jansen. “Variability in multi-tenant environments: Archi-
tectural design patterns from industry”. In: Advances in Conceptual Modeling.
Recent Developments and New Directions. Springer Berlin / Heidelberg, 2011,
pp. 151-160. po1: 10.1007/978-3-642-24574-9_20 (p. 174).

J. Kabbedijk, T. Salfischberger, and S. Jansen. “Comparing two architectural
patterns for dynamically adapting functionality in online software products”.
In: PATTERNS ’13: 5th International Conferences on Pervasive Patterns and
Applications. 2013, pp. 20-25 (p. 174).

K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. “FORM: A feature-
oriented reuse method with domain-specific reference architectures”. In:
Annals of Software Engineering 5.1 (1998), pp. 143-168 (p. 151).

K. C.Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep. 21. Software
Engineering Institute, Carnegie Mellon University, 1990 (pp. 10, 96, 151).

http://www.heroku.com/
http://wiki.developerforce.com/index.php/An_Introduction_to_Environments
http://wiki.developerforce.com/index.php/An_Introduction_to_Environments
http://dx.doi.org/10.1145/135226.135230
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.5381/jot.2008.7.3.a4
http://dx.doi.org/10.1007/s10270-011-0220-1
http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.ibm.com/cloud-computing/us/en/paas.html
http://www.idc.com/getdoc.jsp?containerId=prUS24298013
http://www.idc.com/getdoc.jsp?containerId=prUS24298013
http://www.jboss.org/jbossaop/
http://dx.doi.org/10.1007/978-3-642-24574-9_20

198

BIBLIOGRAPHY

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

C. Kastner, T. Thum, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and S. Apel.
“FeaturelDE: A tool framework for feature-oriented software development”.
In: ICSE °09: 31st IEEE International Conference on Software Engineering. May
2009, pp. 611-614. por: 10.1109/ICSE.2009.5070568 (pp. 151, 155, 160,
161).

N. Kohari. Ninject! - Open source dependency injector for NET. http: //www.
ninject.org/. [Last visited on April 1, 2014] (pp. 31, 55).

F. Kon, F. Costa, G. Blair, and R. H. Campbell. “The case for reflective
middleware”. In: Commun. ACM 45.6 (2002), pp. 33-38. DO1: 10.1145/508448.
508470 (pp. 9, 109).

F. Kon, M. Romaén, P. Liu, J. Mao, T. Yamane, C. Magalhies, and R. H. Campbell.
“Monitoring, security, and dynamic configuration with the dynamicTAO
reflective ORB”. In: Middleware °00: IFIP/ACM International Conference
on Distributed systems platforms. Springer-Verlag New York, Inc., 2000,
pp- 121-143 (pp. 9, 110).

G.Kotonya, J. Lee, and D. Robinson. “A consumer-centred approach for service-
oriented product line development”. In: WICSA/ECSA °09: Joint Working
IEEE/IFIP Conference on Software Architecture and European Conference on
Software Architecture. IEEE, 2009, pp. 211-220. DoI: 10.1109/WICSA.2009.
5290807 (pp. 171, 173).

V. Kotov. Systems of Systems as communicating structures. HPL 124. Hewlett
Packard Computer Systems Laboratory, Oct. 1997 (p. 187).

R. Krebs, C. Momm, and S. Kounev. “Metrics and techniques for quantifying
performance isolation in cloud environments”. In: QoSA ’12: Proceedings of the
8th international ACM SIGSOFT conference on Quality of Software Architectures.
ACM, 2012, pp. 91-100. DOI: 10.1145/2304696.2304713 (pp. 115, 136).

P. B. Kruchten. “The 4+1 view model of architecture”. In: IEEE Software 12.6
(1995), pp. 42—50. DOI: 10.1109/52.469759 (p. 152).

P. Kurp. “Green computing”. In: Commun. ACM 51.10 (Oct. 2008), pp. 11-13.
DOL: 10.1145/1400181.1400186 (p. 184).

T. Kwok and A. Mohindra. “Resource calculations with constraints, and
placement of tenants and instances for multi-tenant SaaS applications”. In:
ICSOC °08: 6th International Conference on Service-oriented Computing. Springer
Berlin / Heidelberg, 2008, pp. 633-648. por: 10.1007/978-3-540-89652~
4_57 (pp. 139, 179).

B. Lagaisse and W. Joosen. “True and transparent distributed composi-
tion of aspect-components”. In: Middleware ’06: Proceedings of the 7th
ACM/IFIP/USENIX International Conference on Middleware. Springer Berlin /
Heidelberg, Nov. 2006, pp. 41-62. po1: 10.1007/11925071_3 (pp. 109, 110).

http://dx.doi.org/10.1109/ICSE.2009.5070568
http://www.ninject.org/
http://www.ninject.org/
http://dx.doi.org/10.1145/508448.508470
http://dx.doi.org/10.1145/508448.508470
http://dx.doi.org/10.1109/WICSA.2009.5290807
http://dx.doi.org/10.1109/WICSA.2009.5290807
http://dx.doi.org/10.1145/2304696.2304713
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1145/1400181.1400186
http://dx.doi.org/10.1007/978-3-540-89652-4_57
http://dx.doi.org/10.1007/978-3-540-89652-4_57
http://dx.doi.org/10.1007/11925071_3

BIBLIOGRAPHY 199

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

A. Lakshman and P. Malik. “Cassandra: A decentralized structured storage
system”. In: SIGOPS Oper. Syst. Rev. 44.2 (2010), pp. 35-40. por1: 10.1145/
1773912.1773922 (p. 129).

N. Leavitt. “Hybrid clouds move to the forefront”. In: Computer 46.5 (2013),
pp. 15-18. DOI: 10.1109/MC.2013.168 (p. 6).

J. Lee and G. Kotonya. “Combining service-orientation with product line
engineering”. In: IEEE Software 27.3 (2010), pp. 35-41. poI: 10.1109/MS.
2010.30 (pp. 171, 173).

P. Leitner, B. Satzger, W. Hummer, C. Inzinger, and S. Dustdar. “CloudScale: A
novel middleware for building transparently scaling cloud applications”. In:
SAC ’12: Proceedings of the 27th Annual ACM Symposium on Applied Computing.
ACM, 2012, pp. 434-440. por: 10.1145/2245276.2245360 (pp. 117, 139).

P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and F.
Leymann. “Runtime prediction of service level agreement violations for
composite services”. In: ICSOC/ServiceWave *09: Service-oriented Computing
Workshops. Springer Berlin / Heidelberg, 2010, pp. 176-186. po1: 10.1007/
978-3-642-16132-2_17 (p. 139).

X. Li, T. Liu, Y. Li, and Y. Chen. “SPIN: Service performance isolation
infrastructure in multi-tenancy environment”. In: ICSOC ’08: Service-oriented
Computing. Springer Berlin / Heidelberg, 2008, pp. 649-663. po1: 10.1007/
978-3-540-89652-4_58 (pp. 138, 182).

R. E. Lopez-Herrejon, D. Batory, and W. Cook. “Evaluating support for features
in advanced modularization technologies”. In: ECOOP °05: Proceedings of the
19th European Conference on Object-Oriented Programming. Springer Berlin /
Heidelberg, 2005, pp. 169-194. po1: 10.1007/11531142_8 (p. 10).

D. Lorenzoli and G. Spanoudakis. “EVEREST+: Run-time SLA violations
prediction”. In: MW4SOC ’10: Proceedings of the 5th International Workshop
on Middleware for Service Oriented Computing. ACM, 2010, pp. 13-18. por:
10.1145/1890912.1890915 (p. 139).

W. Lu, J. Jackson, and R. Barga. “AzureBlast: A case study of developing
science applications on the cloud”. In: HPDC ’10: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing. ACM,
2010, pp. 413-420. po1: 10.1145/1851476.1851537 (p. 117).

X. Ma, L. Baresi, C. Ghezzi, V. Panzica La Manna, and J. Lu. “Version-consistent
Dynamic Reconfiguration of Component-based Distributed Systems”. In:
ESEC/FSE ’11: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. ACM, 2011,
pp. 245-255. DOI: 10.1145/2025113.2025148 (p. 83).

http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1109/MC.2013.168
http://dx.doi.org/10.1109/MS.2010.30
http://dx.doi.org/10.1109/MS.2010.30
http://dx.doi.org/10.1145/2245276.2245360
http://dx.doi.org/10.1007/978-3-642-16132-2_17
http://dx.doi.org/10.1007/978-3-642-16132-2_17
http://dx.doi.org/10.1007/978-3-540-89652-4_58
http://dx.doi.org/10.1007/978-3-540-89652-4_58
http://dx.doi.org/10.1007/11531142_8
http://dx.doi.org/10.1145/1890912.1890915
http://dx.doi.org/10.1145/1851476.1851537
http://dx.doi.org/10.1145/2025113.2025148

200

BIBLIOGRAPHY

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V. Issarny.
“QoS-aware service composition in dynamic service oriented environments”.
In: Middleware °09: Proceedings of the 10th ACM/IFIP/USENIX International
Conference on Middleware. Springer-Verlag New York, Inc., 2009, pp. 123-142
(p. 139).

P. Maes. “Concepts and experiments in computational reflection”. In: OOPSLA
’87: Conference Proceedings on Object-oriented Programming Systems, Languages
and Applications. ACM, 1987, pp. 147-155. po1: 10 . 1145 /38765 . 38821
(p. 181).

M. W. Maier. “Architecting principles for systems-of-systems”. In: Systems
Engineering 1.4 (1998), pp. 267-284. por: 10 . 1002 / (SICI) 1520 -
6858(1998)1:4<267: :AID-SYS3>3.0.C0;2-D (p. 187).

M. Mao and M. Humphrey. “A performance study on the VM startup time in the
cloud”. In: CLOUD ’12: IEEE 5th International Conference on Cloud Computing.
2012, pp. 423-430. poI: 10.1109/CLOUD.2012.103 (p. 120).

M. Mao and M. Humphrey. “Auto-scaling to minimize cost and meet
application deadlines in cloud workflows”. In: SC ’11: International Conference
for High Performance Computing, Networking, Storage and Analysis. 2011,
pp. 1-12 (pp. 117, 139).

MAPC. A next generation multi-party solution for Medical APplications in the
Cloud (IWT project). https://distrinet.cs.kuleuven.be/research/
projects/showProject.do?projectID=MAPC. [Last visited on April 1,
2014]. 2013 (p. 181).

F. M. Medeiros, E. S. de Almeida, and S. R. de Lemos Meira. “Towards an
approach for service-oriented product line architectures”. In: SOAPL ’09:
Proceedings of the 3rd Workshop on Service-Oriented Architectures and Software
Product Lines. 2009, pp. 151-164 (p. 172).

H. Mei, G. Huang, and T. Xie. “Internetware: A software paradigm for Internet
computing”. In: Computer 45.6 (2012), pp. 26-31. Do1: 10.1109/MC.2012.189
(p. 186).

P. Mell and T. Grance. The NIST definition of cloud computing. Special
Publication 800-145. http : / / csrc . nist . gov / publications /
nistpubs /800 -145/SP800 - 145 . pdf. National Institute of Standards
and Technology (NIST), Sept. 2011 (pp. 2, 4, 5, 15, 16).

M. Mendonca, M. Branco, and D. Cowan. “S.P.L.O.T.: Software product lines
online tools”. In: OOPSLA °09: Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications.
ACM, 2009, pp. 761-762. DoI: 10.1145/1639950. 1640002 (pp. 151, 155).
Microsoft Corp. ADO.NET Entity Framework. http: //msdn.microsoft.
com/en-us/data/aa937723. [Last visited on April 1, 2014] (p. 24).

http://dx.doi.org/10.1145/38765.38821
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
http://dx.doi.org/10.1109/CLOUD.2012.103
https://distrinet.cs.kuleuven.be/research/projects/showProject.do?projectID=MAPC
https://distrinet.cs.kuleuven.be/research/projects/showProject.do?projectID=MAPC
http://dx.doi.org/10.1109/MC.2012.189
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://dx.doi.org/10.1145/1639950.1640002
http://msdn.microsoft.com/en-us/data/aa937723
http://msdn.microsoft.com/en-us/data/aa937723

BIBLIOGRAPHY 201

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

Microsoft Corp. ASPNET MVC. http://www.asp.net/mvc. [Last visited on
April 1, 2014] (pp. 24, 40).

Microsoft Corp. Windows Azure. http://www.windowsazure.com/. [Last
visited on Aprﬂ 1, 2014] (pp. 5,17, 26, 27, 29, 36, 72, 73, 117).

Microsoft Corp. Windows Azure AppFabric. http://www.microsoft.com/
windowsazure/AppFabric. [Last visited on April 1, 2014] (pp. 30, 42, 44).

Microsoft Corp. Windows Azure Architecture Guide. http://wag.codeplex.
com/. [Last visited on April 1, 2014] (pp. 43, 52, 54, 63, 68).

Microsoft Corp. Windows Communication Foundation (WCF). http://msdn.
microsoft.com/en-us/library/dd456779%28v=vs.110%29 . aspx.
[Last visited on April 1, 2014] (pp. 40, 42, 69).

R. Mietzner and F. Leymann. “Generation of BPEL customization processes for
SaaS applications from variability descriptors™ In: SCC ’08: IEEE International
Conference on Services Computing. Vol. 2. 2008, pp. 359-366. DOI: 10.1109/
SCC.2008.85 (pp. 144, 155, 173).

R. Mietzner, F. Leymann, and M. P. Papazoglou. “Defining composite
configurable SaaS application packages using SCA, variability descriptors
and multi-tenancy patterns”. In: ICIW ’08: 3rd International Conference on
Internet and Web Applications and Services. June 2008, pp. 156-161. por: 10.
1109/ICIW.2008.68 (p. 75).

R. Mietzner, F. Leymann, and T. Unger. “Horizontal and vertical combination
of multi-tenancy patterns in service-oriented applications”. In: Enterprise
Information Systems 5.1 (2011), pp. 59-77. boIL: 10.1080/17517575.2010.
492950 (p. 174).

R. Mietzner, A. Metzger, F. Leymann, and K. Pohl. “Variability modeling to
support customization and deployment of multi-tenant-aware Software as a
Service applications”. In: PESOS °09: ICSE Workshop on Principles of Engineering
Service Oriented Systems. IEEE Computer Society, 2009, pp. 18-25. por: 10.
1109/PES0S.2009.5068815 (pp. 109, 144, 173).

C. Momm and W. Theilmann. “A combined workload planning approach for
multi-tenant business applications”. In: COMPSACW ’11: IEEE 35th Annual
Computer Software and Applications Conference Workshops. IEEE, July 2011,
Pp. 255-260. DOI: 10.1109/COMPSACW. 2011 .96 (p. 136).

T. Monheim. “Middleware support for performance isolation in multi-tenant
Saa$ applications”. MA thesis. Departement of Computer Science, KU Leuven,
2012 (pp. 85, 87).

J. D. Mooney. “Strategies for supporting application portability”. In: Computer
23.11 (Nov. 1990), pp. 59-70. DOI: 10.1109/2.60881 (p. 19).

http://www.asp.net/mvc
http://www.windowsazure.com/
http://www.microsoft.com/windowsazure/AppFabric
http://www.microsoft.com/windowsazure/AppFabric
http://wag.codeplex.com/
http://wag.codeplex.com/
http://msdn.microsoft.com/en-us/library/dd456779%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/dd456779%28v=vs.110%29.aspx
http://dx.doi.org/10.1109/SCC.2008.85
http://dx.doi.org/10.1109/SCC.2008.85
http://dx.doi.org/10.1109/ICIW.2008.68
http://dx.doi.org/10.1109/ICIW.2008.68
http://dx.doi.org/10.1080/17517575.2010.492950
http://dx.doi.org/10.1080/17517575.2010.492950
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1109/PESOS.2009.5068815
http://dx.doi.org/10.1109/COMPSACW.2011.96
http://dx.doi.org/10.1109/2.60881

202

BIBLIOGRAPHY

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

R. Mordani. JSR 315: Java™™ Servlet 3.0 Specification. http: //www.jcp.
org/en/jsr/detail?id=315. [Last visited on April 1, 2014]. 2011 (p. 24).

D. Mueller. It’s 2014 and PaasS is eating the world. https://www.openshift.
com/blogs/its-2014-and-paas-is-eating-the-world. Feb. 2014

(p. 13).

J. Miiller, J. Kriger, S. Enderlein, M. Helmich, and A. Zeier. “Customizing
enterprise Software as a Service applications: Back-end extension in a multi-
tenancy environment”. In: ICEIS °09: 11th International Conference on Enterprise
Information Systems. Springer Berlin / Heidelberg, May 2009, pp. 66—77. DOI:
10.1007/978-3-642-01347-8_6 (p. 109).

Y. V. Natis, D. M. Smith, and D. W. Cearley. Windows Azure AppFabric: A
strategic core of Microsoft’s cloud platform. http://www.gartner.com/id=
1469531. Nov. 2010 (pp. 30, 44).

T. Nguyen, A. Colman, and J. Han. “Enabling the delivery of customizable
web services”. In: ICWS ’12: 19th IEEE International Conference on Web Services.
2012, pp. 138-145. por: 10.1109/ICWS.2012.23 (p. 172).

T. Nguyen, A. Colman, M. A. Talib, and J. Han. “Managing service variability:
State of the art and open issues”. In: VaMoS ’11: Proceedings of the 5th Workshop
on Variability Modeling of Software-Intensive Systems. ACM, 2011, pp. 165-173.
DOI: 10.1145/1944892.1944913 (p. 174).

A. Nicoara and G. Alonso. “Dynamic AOP with PROSE”. In: ASMEA 05:
Proceedings of 1st International Workshop on Adaptive and Self-Managing
Enterprise Applications. 2005, pp. 125-138 (p. 110).

Noelios Technologies. Restlet framework. http: //www.restlet.org/. [Last
visited on April 1, 2014] (pp. 37, 40).

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. “The Eucalyptus open-source cloud-computing system”. In:
CCGRID °09: Proceedings of the 9th IEEE/ACM International Symposium on
Cluster Computing and the Grid. IEEE Computer Society, 2009, pp. 124-131.
DOI: 10.1109/CCGRID.2009.93 (pp. 16, 72).

B. Nuseibeh. “Weaving together requirements and architectures”. In: Computer
34.3 (2001), pp. 115-119. por: 10.1109/2.910904 (p. 150).

Open Grid Forum (OGF). Occi: Open cloud computing interface. http: //occi-
wg.org/. [Last visited on April 1, 2014] (p. 72).

OpenStack, LLC. OpenStack - Open source software for building private and
public clouds. http://www.openstack.org/. [Last visited on April 1, 2014]
(pp- 7, 72).

OpenText Corp. OpenText Cordys. http://www.cordys.com/platform-
as-a-service. [Last visited on April 1, 2014] (p. 27).

http://www.jcp.org/en/jsr/detail?id=315
http://www.jcp.org/en/jsr/detail?id=315
https://www.openshift.com/blogs/its-2014-and-paas-is-eating-the-world
https://www.openshift.com/blogs/its-2014-and-paas-is-eating-the-world
http://dx.doi.org/10.1007/978-3-642-01347-8_6
http://www.gartner.com/id=1469531
http://www.gartner.com/id=1469531
http://dx.doi.org/10.1109/ICWS.2012.23
http://dx.doi.org/10.1145/1944892.1944913
http://www.restlet.org/
http://dx.doi.org/10.1109/CCGRID.2009.93
http://dx.doi.org/10.1109/2.910904
http://occi-wg.org/
http://occi-wg.org/
http://www.openstack.org/
http://www.cordys.com/platform-as-a-service
http://www.cordys.com/platform-as-a-service

BIBLIOGRAPHY 203

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

Oracle Corporation. Jersey - RESTful web services in Java. http://jersey.
java.net/. [Last visited on April 1, 2014] (p. 40).

Oracle Corporation. Oracle Cloud Platform as a Service (PaaS). https: //
cloud.oracle.com/build_apps. [Last visited on April 1, 2014] (pp. 17,
27).

P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem. “Adaptive control of virtualized resources in utility computing
environments”. In: EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems. ACM, 2007, pp. 289-302. por:
10.1145/1272996.1273026 (p. 139).

F. Paraiso, N. Haderer, P. Merle, R. Rouvoy, and L. Seinturier. “A federated multi-
cloud PaaS infrastructure”. In: CLOUD ’12: IEEE 5th International Conference
on Cloud Computing. June 2012, pp. 392-399. po1: 10.1109/CLOUD.2012.79

(p- 75).
D. F. Parkhill. The challenge of the computer utility. Vol. 2. Addison-Wesley
Publishing Company Reading, 1966 (pp. 1, 185, 187).

D. L. Parnas. “On the criteria to be used in decomposing systems into modules”.
In: Communications of the ACM 15.12 (Dec. 1972), pp. 1053-1058. por: 10.
1145/361598.361623 (p. 10).

C. Parra, X. Blanc, and L. Duchien. “Context awareness for dynamic service-
oriented product lines”. In: SPLC °09: 13th International Software Product Line
Conference. 2009, pp. 131-140 (p. 173).

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. “JAC: A flexible solution
for aspect-oriented programming in Java”. In: REFLECTION ’01: Proceedings of
the 3rd International Conference on Metalevel Architectures and Separation of
Crosscutting Concerns. Springer-Verlag, 2001, pp. 1-24 (pp. 110, 155, 181).

D. Petcu. “Portability and interoperability between clouds: Challenges and
case study”. In: ServiceWave ’11: Towards a Service-Based Internet. Springer
Berlin / Heidelberg, 2011, pp. 62-74. po1: 10.1007/978-3-642-24755-2_6
(pp. 17, 19, 75, 183).

PLOPSA. Product Line Oriented Payment Software Architecture (IWT project).
https : / / distrinet . cs . kuleuven . be / research / projects /
showProject . do ? projectID=PLOPSA. [Last visited on April 1, 2014].
2012 (p. 181).

K. Pohl, G. Bockle, and F. Van Der Linden. Software product line engineering:
Foundations, principles, and techniques. Springer-Verlag New York Inc., 2005
(pp. 9, 109, 144, 150).

http://jersey.java.net/
http://jersey.java.net/
https://cloud.oracle.com/build_apps
https://cloud.oracle.com/build_apps
http://dx.doi.org/10.1145/1272996.1273026
http://dx.doi.org/10.1109/CLOUD.2012.79
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1145/361598.361623
http://dx.doi.org/10.1007/978-3-642-24755-2_6
https://distrinet.cs.kuleuven.be/research/projects/showProject.do?projectID=PLOPSA
https://distrinet.cs.kuleuven.be/research/projects/showProject.do?projectID=PLOPSA

204

BIBLIOGRAPHY

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

A. Popovici, G. Alonso, and T. Gross. “Just-in-time aspects: Efficient dynamic
weaving for Java”. In: AOSD °03: Proceedings of the 2nd International Conference
on Aspect-oriented Software Development. ACM, 2003, pp. 100-109. por: 10.
1145/643603.643614 (pp. 155, 181).

M. E. Porter. Competitive advantage: Creating and sustaining superior perfor-
mance. New edition. Free Press, July 2004 (p. 184).

C. Prehofer. “Feature-oriented programming: A fresh look at objects”. In:
ECOOP °97: Proceedings of the 11th European Conference on Object-Oriented
Programming. Springer Berlin / Heidelberg, 1997, pp. 419-443. por: 10.1007/
BFb0053389 (p. 10).

R. Prodan and S. Ostermann. “A survey and taxonomy of Infrastructure as
a Service and web hosting cloud providers”. In: GRID ’09: 10th IEEE/ACM
International Conference on Grid Computing. Oct. 2009, pp. 17-25. poI: 10.
1109/GRID.2009.5353074 (p. 72).

A. Rafique, S. Walraven, B. Lagaisse, T. Desair, and W. Joosen. “Towards
portability and interoperability support in middleware for hybrid clouds”. In:
CrossCloud ’14: Proceedings of the 1st IEEE INFOCOM CrossCloud Workshop.
IEEE, 2014 (p. 183).

A. Ranganathan and R. H. Campbell. “A middleware for context-aware agents
in ubiquitous computing environments”. In: Middleware *03: Proceedings of the
4th ACM/IFIP/USENIX International Middleware Conference. Springer Berlin /
Heidelberg, 2003, pp. 143-161. po1: 10.1007/3-540-44892-6_8 (p. 183).

Red Hat, Inc. Red Hat OpenShift. https: //www.openshift.com/. [Last
visited on April 1, 2014] (pp. 5,7,17, 27, 65, 69, 181).

G. Reese. Cloud application architectures. Theory in Practice. O’'Reilly, 2009
(p- 73).

B. P. Rimal, E. Choi, and I. Lumb. “A taxonomy and survey of cloud computing
systems”. In: NCM °09: 5th International Joint Conference on INC, IMS and IDC.
Aug. 2009, pp. 44-51. DOI: 10.1109/NCM.2009.218 (p. 73).

J. Rosenberg and A. Mateos. The cloud at your service. Manning Pubs Co Series.
Manning Publications, 2010 (p. 73).

R. Rouvoy, F. Eliassen, and M. Beauvois. “Dynamic planning and weaving
of dependability concerns for self-adaptive ubiquitous services”. In: SAC
’09: Proceedings of the ACM symposium on Applied Computing. ACM, 2009,
pp- 1021-1028. por1: 10.1145/1529282.1529507 (p. 110).

R. Rouvoy, F. Eliassen, J. Floch, S. Hallsteinsen, and E. Stav. “Composing
components and services using a planning-based adaptation middleware”. In:
SC °08: Proceedings of the 7th International Symposium on Software Composition.
Springer, 2008, pp. 52-67. DOI: 10.1007/978-3-540-78789-1_4 (p. 109).

http://dx.doi.org/10.1145/643603.643614
http://dx.doi.org/10.1145/643603.643614
http://dx.doi.org/10.1007/BFb0053389
http://dx.doi.org/10.1007/BFb0053389
http://dx.doi.org/10.1109/GRID.2009.5353074
http://dx.doi.org/10.1109/GRID.2009.5353074
http://dx.doi.org/10.1007/3-540-44892-6_8
https://www.openshift.com/
http://dx.doi.org/10.1109/NCM.2009.218
http://dx.doi.org/10.1145/1529282.1529507
http://dx.doi.org/10.1007/978-3-540-78789-1_4

BIBLIOGRAPHY 205

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

A.P.Sage and C. D. Cuppan. “On the systems engineering and management of
Systems of Systems and Federations of Systems”. In: Information, Knowledge,
Systems Management 2.4 (2001), pp. 325-345 (p. 187).

Salesforce.com, Inc. Force.com. http://www.salesforce.com/platform/.
[Last visited on April 1, 2014] (pp. 15, 17, 26, 27, 73, 185).

Salesforce.com, Inc. Salesforce CRM. http://www.salesforce.com/. [Last
visited on April 1, 2014] (pp. 5, 15, 26, 91, 109).

SAP AG. SAP cloud platform solutions. http://www.sap.com/pc/tech/
cloud/software/cloud-platform/index.html. [Last visited on April
1,2014] (p. 27).

D. C. Schmidt and F. Buschmann. “Patterns, frameworks, and middleware:
Their synergistic relationships”. In: ICSE °03: 25th International Conference
on Software Engineering. IEEE, May 2003, pp. 694-704. por: 10.1109/ICSE.
2003.1201256 (p. 77).

J. Schroeter, S. Cech, S. Gétz, C. Wilke, and U. Amann. “Towards modeling
a variable architecture for multi-tenant SaaS-applications”. In: VaMoS ’12:
Proceedings of the 6th International Workshop on Variability Modeling of
Software-Intensive Systems. ACM, 2012, pp. 111-120. po1: 10.1145/2110147.
2110160 (pp. 144, 174).

J. Schroeter, P. Mucha, M. Muth, K. Jugel, and M. Lochau. “Dynamic configu-
ration management of cloud-based applications”. In: SPLC ’12: Proceedings of
the 16th International Software Product Line Conference - Volume 2. ACM, 2012,
pp. 171-178. DOL: 10.1145/2364412.2364441 (p. 174).

L. Schubert, K. Jeffery, and B. Neidecker-Lutz. The Future of cloud computing:
Opportunities for European cloud computing beyond 2010. Expert Group Report,
Public Version 1.0. European Commission, Information Society and Media,
Jan. 2010 (p. 16).

Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. “CloudScale: Elastic resource scaling
for multi-tenant cloud systems”. In: SOCC °11: Proceedings of the 2nd ACM
Symposium on Cloud Computing. ACM, 2011, pp. 1-14. por: 10 . 1145/
2038916.2038921 (p. 139).

G. Shroff. “Dev 2.0: Model driven development in the cloud”. In: SIGSOFT
"08/FSE-16: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering. ACM, 2008, pp. 283-283. po1: 10.1145/
1453101.1453139 (p. 73).

G. Shroff. Enterprise cloud computing: Technology, architecture, applications.
Cambridge University Press, 2010 (p. 73).

http://www.salesforce.com/platform/
http://www.salesforce.com/
http://www.sap.com/pc/tech/cloud/software/cloud-platform/index.html
http://www.sap.com/pc/tech/cloud/software/cloud-platform/index.html
http://dx.doi.org/10.1109/ICSE.2003.1201256
http://dx.doi.org/10.1109/ICSE.2003.1201256
http://dx.doi.org/10.1145/2110147.2110160
http://dx.doi.org/10.1145/2110147.2110160
http://dx.doi.org/10.1145/2364412.2364441
http://dx.doi.org/10.1145/2038916.2038921
http://dx.doi.org/10.1145/2038916.2038921
http://dx.doi.org/10.1145/1453101.1453139
http://dx.doi.org/10.1145/1453101.1453139

206

BIBLIOGRAPHY

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

G. Shroff, P. Agarwal, and P. Devanbu. “InstantApps: A WYSIWYG model
driven interpreter for web applications” In: ICSE-Companion °09: 31st
International Conference on Software Engineering - Companion Volume. May
2009, pp. 417-418. por: 10.1109/ICSE-COMPANION.2009.5071040 (pp. 17,
27, 73).

D. Shue, M. J. Freedman, and A. Shaikh. “Performance isolation and fairness
for multi-tenant cloud storage”. In: OSDI ’12: 10th USENIX Symposium on
Operating Systems Design and Implementation. 2012 (pp. 137, 138, 182).

H. J. Siegel. “Interconnection networks for SIMD machines”. In: Computer 12.6
(1979), pp. 57-65. DOL: 10.1109/MC.1979.1658780 (p. 16).

J. P. Singh, W.-D. Weber, and A. Gupta. “SPLASH: Stanford parallel applications
for shared-memory”. In: SIGARCH Comput. Archit. News 20.1 (1992), pp. 5-44.
poL: 10.1145/130823.130824 (p. 16).

M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman. MPI:
The complete reference. MIT Press, 1995 (p. 16).

G. Somani and S. Chaudhary. “Application performance isolation in virtual-
ization”. In: CLOUD ’09: IEEE International Conference on Cloud Computing.
IEEE, 2009, pp. 41-48. por: 10.1109/CLOUD.2009. 78 (p. 138).

B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster. “Virtual infrastructure
management in private and hybrid clouds”. In: IEEE Internet Computing 13.5
(Sept. 2009), pp. 14-22. po1: 16.1109/MIC.2009.119 (pp. 16, 72).

SpringSource. Aspect oriented programming with Spring. http://static.
springsource . org/spring/docs /4.0 .x/spring- framework -
reference/html/aop.html. [Last visited on April 1, 2014]. 2013 (pp. 110,
155).

T. van der Storm. “Generic feature-based software composition”. In: SC *07:
International Conference on Software Composition. Springer Berlin / Heidelberg,
2007, pp. 66—80. DOL: 10.1007/978-3-540-77351-1_6 (p. 156).

W. Sun, X. Zhang, C. J. Guo, P. Sun, and H. Su. “Software as a Service:
Configuration and customization perspectives”. In: SERVICES-2 ’08: IEEE
Congress on Services Part II. Sept. 2008, pp. 18-25. pDOI: 10.1109/SERVICES-
2.2008.29 (pp. 7, 8, 16, 20, 91, 109, 148).

L. Tao. “Shifting paradigms with the application service provider model”. In:
Computer 34.10 (Oct. 2001), pp. 32-39. DoI: 10.1109/2.955095 (p. 90).

The Apache Software Foundation. Apache jclouds. http://jclouds.apache.
org/. [Last visited on April 1, 2014] (p. 72).

http://dx.doi.org/10.1109/ICSE-COMPANION.2009.5071040
http://dx.doi.org/10.1109/MC.1979.1658780
http://dx.doi.org/10.1145/130823.130824
http://dx.doi.org/10.1109/CLOUD.2009.78
http://dx.doi.org/10.1109/MIC.2009.119
http://static.springsource.org/spring/docs/4.0.x/spring-framework-reference/html/aop.html
http://static.springsource.org/spring/docs/4.0.x/spring-framework-reference/html/aop.html
http://static.springsource.org/spring/docs/4.0.x/spring-framework-reference/html/aop.html
http://dx.doi.org/10.1007/978-3-540-77351-1_6
http://dx.doi.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/10.1109/2.955095
http://jclouds.apache.org/
http://jclouds.apache.org/

BIBLIOGRAPHY 207

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

E. Truyen, N. Cardozo, S. Walraven, J. Vallejos, E. Bainomugisha, S. Guinther,
T. D’Hondt, and W. Joosen. “Context-oriented programming for customizable
SaaS applications”. In: SAC ’12: Proceedings of the 27th Annual ACM Symposium
on Applied Computing. ACM, Mar. 2012, pp. 418-425. DoI: 10.1145/2245276.
2245358 (pp. 77, 85, 87, 181).

E. Truyen, N. Janssens, F. Sanen, and W. Joosen. “Support for distributed
adaptations in aspect-oriented middleware”. In: AOSD ’08: Proceedings of the
7th international conference on Aspect-oriented software development. ACM,
2008, pp. 120-131. por: 10.1145/1353482.1353497 (p. 110).

E. Truyen, B. Vanhaute, B. N. Jorgensen, W. Joosen, and P. Verbaeten. “Dynamic
and selective combination of extensions in component-based applications”.
In: ICSE °01: Proceedings of the 23rd International Conference on Software
Engineering. IEEE Computer Society, 2001, pp. 233-242 (pp. 9, 110, 155, 181).

N. Tuts. “Support for implementing portable applications on top of PaaS
platforms: A case study with Google App Engine”. MA thesis. Department of
Computer Science, KU Leuven, 2013 (pp. 85, 87).

D. Van Landuyt, S. Op de beeck, E. Truyen, and W. Joosen. “Domain-
driven discovery of stable abstractions for pointcut interfaces”. In: AOSD ’09:
Proceedings of the 8th ACM International Conference on Aspect-oriented Software
Development. ACM, 2009, pp. 75-86. po1: 10 . 1145 /1509239 . 1509251
(p. 153).

L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. “A break in the
clouds: Towards a cloud definition”. In: SSGCOMM Comput. Commun. Rev. 39.1
(Jan. 2009), pp. 50-55. DOI: 10.1145/1496091.1496100 (p. 15).

M. Vatkina. JSR 318: Enterprise JavaBeans'™ 3.1. http://jcp.org/en/
jsr/detail?id=318. [Last visited on April 1, 2014]. June 2013 (pp. 24, 69).

VMware, Inc. Cloud Foundry. http: //www . cloudfoundry .org/. [Last
visited on April 1, 2014] (pp. 17, 27, 65, 181).

S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen. “Policy-driven cus-
tomization of cross-organizational features in distributed service systems”. In:
Software: Practice & Experience 43.10 (Oct. 2013 [Oct. 13, 2011]), pp. 1145-1163.
DOI: 10.1002/spe.1128 (p. 183).

S. Walraven, T. Monheim, E. Truyen, and W. Joosen. “Towards performance
isolation in multi-tenant Saa$S applications”. In: MW4NG ’12: Proceedings of the
7th Workshop on Middleware for Next Generation Internet Computing. ACM,
Dec. 2012, pp. 1-6. DOIL: 10.1145/2405178. 2405184 (pp. 77, 85, 87, 113, 137,
138).

http://dx.doi.org/10.1145/2245276.2245358
http://dx.doi.org/10.1145/2245276.2245358
http://dx.doi.org/10.1145/1353482.1353497
http://dx.doi.org/10.1145/1509239.1509251
http://dx.doi.org/10.1145/1496091.1496100
http://jcp.org/en/jsr/detail?id=318
http://jcp.org/en/jsr/detail?id=318
http://www.cloudfoundry.org/
http://dx.doi.org/10.1002/spe.1128
http://dx.doi.org/10.1145/2405178.2405184

208

BIBLIOGRAPHY

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

S. Walraven, E. Truyen, and W. Joosen. “A middleware layer for flexible and
cost-efficient multi-tenant applications”. In: Middleware ’11: Proceedings of
the 12th ACM/IFIP/USENIX International Conference on Middleware. Springer
Berlin / Heidelberg, Dec. 2011, pp. 370-389. por: 10. 1007 /978-3-642~
25821-3_19 (pp. 12, 15, 20, 70, 77, 87, 89, 115, 120, 138, 143, 144, 155, 158, 165,
173, 174, 178).

S. Walraven, E. Truyen, and W. Joosen. “Comparing Paa$ offerings in light of
SaaS development. A comparison of Paa$S platforms based on a practical case
study”. In: Computing (Oct. 2013), pp. 1-56. DOI: 10.1007 /s00607-013~
0346-9. Pre-published (pp. 12, 13, 177, 185).

S. Walraven, D. Van Landuyt, F. Gey, and W. Joosen. Service line engineering
in practice: Developing an integrated document processing SaaS application.
CW Reports 652 (2nd revised). https://lirias.kuleuven.be/handle/
123456789/428855. Department of Computer Science, KU Leuven, Feb. 2014
(Nov. 2013) (pp. 141, 159, 163, 164, 178, 179).

S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and W. Joosen. “Efficient
customization of multi-tenant Software-as-a-Service applications with service
lines”. In: Journal of Systems and Software 91 (May 2014 [Jan. 22, 2014]),
pp- 48-62. pOI: 10.1016/7.js5.2014.01.021 (pp. 12, 141, 178).

W.-]. Wang, Y.-S. Chang, W.-T. Lo, and Y.-K. Lee. “Adaptive scheduling for
parallel tasks with QoS satisfaction for hybrid cloud environments”. In: The
Journal of Supercomputing (2013), pp. 1-29. por: 10. 1607 /s11227-013~
0890-2 (pp. 136, 139).

C. D. Weissman and S. Bobrowski. “The design of the force.com multitenant
internet application development platform”. In: SIGMOD ’09: Proceedings of
the 35th SIGMOD international conference on Management of data. ACM, 2009,
pp- 889-896. pO1: 10.1145/1559845.1559942 (pp. 15, 17, 26, 27, 73).

E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. Devanbu. “GlueQoS:
Middleware to sweeten quality-of-service policy interactions”. In: ICSE ’04:
Proceedings of the 26th International Conference on Software Engineering. IEEE
Computer Society, 2004, pp. 189-199 (p. 139).

Wolf Frameworks India Pvt. Ltd. WOLF. http: //www.wolfframeworks.
com/. [Last visited on April 1, 2014] (pp. 17, 27).

WSO, Inc. WSO2 Stratos. http: / /wso2.com/cloud/stratos/. [Last
visited on April 1, 2014] (p. 27).

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang.
“QoS-aware middleware for web services composition”. In: IEEE Transactions
on Software Engineering 30.5 (2004), pp. 311-327. po1: 10.1109/TSE.2004.
11 (p. 139).

http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/s00607-013-0346-9
http://dx.doi.org/10.1007/s00607-013-0346-9
https://lirias.kuleuven.be/handle/123456789/428855
https://lirias.kuleuven.be/handle/123456789/428855
http://dx.doi.org/10.1016/j.jss.2014.01.021
http://dx.doi.org/10.1007/s11227-013-0890-2
http://dx.doi.org/10.1007/s11227-013-0890-2
http://dx.doi.org/10.1145/1559845.1559942
http://www.wolfframeworks.com/
http://www.wolfframeworks.com/
http://wso2.com/cloud/stratos/
http://dx.doi.org/10.1109/TSE.2004.11
http://dx.doi.org/10.1109/TSE.2004.11

BIBLIOGRAPHY 209

[224] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: State-of-the-art and
research challenges”. In: Journal of Internet Services and Applications 1.1 (2010),
pp- 7-18. pOI: 10.1007/s13174-010-0007-6 (pp. 2-5).

[225] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes. “CPI2:
CPU performance isolation for shared compute clusters”. In: EuroSys ’13:
Proceedings of the 8th ACM European Conference on Computer Systems. ACM,
2013, pp. 379-391. DOL: 10.1145/2465351.2465388 (p. 138).

http://dx.doi.org/10.1007/s13174-010-0007-6
http://dx.doi.org/10.1145/2465351.2465388

List of publications

Journal articles

S. Walraven, D. Van Landuyt, E. Truyen, K. Handekyn, and W. Joosen. “Efficient
customization of multi-tenant Software-as-a-Service applications with service lines”.
In: Journal of Systems and Software 91 (May 2014 [Jan. 22, 2014]), pp. 48—62. por:
10.1016/j.jss.2014.01.021.

« S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen. “Policy-driven customization of
cross-organizational features in distributed service systems”. In: Software: Practice
& Experience 43.10 (Oct. 2013 [Oct. 13, 2011]), pp. 1145-1163. DOI: 10.1002/spe.
1128.

« S. Walraven, E. Truyen, and W. Joosen. “Comparing Paa$ offerings in light of SaaS
development. A comparison of PaaS platforms based on a practical case study”.
In: Computing (Oct. 2013), pp. 1-56. DOI: 10.1007/s00607-013-0346-9. Pre-
published.

« H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck. “Cost-
effective feature placement of customizable multi-tenant applications in the cloud”.
In: Journal of Network and Systems Management (Feb. 2013), pp. 1-42. por1: 10.
1007/s10922-013-9265-5. Pre-published.

International conference papers

« F. Gey, S. Walraven, D. Landuyt, and W. Joosen. “Building a customizable Business-
Process-as-a-Service application with current state of practice”. In: SC ’13: 12th
International Conference on Software Composition. Springer Berlin / Heidelberg, June
2013, pp. 113-127. pOI: 10.1007/978-3-642-39614-4_8.

211

http://dx.doi.org/10.1016/j.jss.2014.01.021
http://dx.doi.org/10.1002/spe.1128
http://dx.doi.org/10.1002/spe.1128
http://dx.doi.org/10.1007/s00607-013-0346-9
http://dx.doi.org/10.1007/s10922-013-9265-5
http://dx.doi.org/10.1007/s10922-013-9265-5
http://dx.doi.org/10.1007/978-3-642-39614-4_8

212 LIST OF PUBLICATIONS

« P. J. Maenhaut, H. Moens, M. Verheye, P. Verhoeve, S. Walraven, E. Truyen, W.
Joosen, V. Ongenae, and F. De Turck. “Migrating medical communications software
to a multi-tenant cloud environment”. In: IM ’13: IFIP/IEEE International Symposium
on Integrated Network Management. IEEE, May 2013, pp. 900-903.

H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck. “Network-
aware impact determination algorithms for service workflow deployment in hybrid
clouds”. In: CNSM ’12: Proceedings of the 8th International Conference on Network
and Service Management. IFIP, Oct. 2012, pp. 28-36.

K. Geebelen, S. Walraven, E. Truyen, S. Michiels, H. Moens, F. De Turck, B.
Dhoedt, and W. Joosen. “An open middleware for proactive QoS-aware service
composition in a multi-tenant SaaS environment”. In: ICOMP ’12: Proceedings of the
2012 International Conference on Internet Computing. CSREA Press, July 2012.

H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck. “Feature
placement algorithms for high-variability applications in cloud environments”.
In: NOMS ’12: Network Operations and Management Symposium. IEEE, Apr. 2012,
pp. 17-24. por: 10.1109/NOMS.2012.6211878.

E. Truyen, N. Cardozo, S. Walraven,]J. Vallejos, E. Bainomugisha, S. Giinther, T.
D’Hondt, and W. Joosen. “Context-oriented programming for customizable SaaS
applications”. In: SAC ’12: Proceedings of the 27th Annual ACM Symposium on Applied
Computing. ACM, Mar. 2012, pp. 418-425. poI: 10.1145/2245276.2245358.

S. Walraven, E. Truyen, and W. Joosen. “A middleware layer for flexible and
cost-efficient multi-tenant applications”. In: Middleware ’11: Proceedings of the
12th ACM/IFIP/USENIX International Conference on Middleware. Springer Berlin
/ Heidelberg, Dec. 2011, pp. 370-389. po1: 10.1007/978-3-642-25821-3_19.

S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen. “Dynamic composition of cross-
organizational features in distributed software systems”. In: DAIS ’10: Distributed
Applications and Interoperable Systems. Springer Berlin / Heidelberg, June 2010,
pp- 183-197.

International workshop papers

« A.Rafique, S. Walraven, B. Lagaisse, T. Desair, and W. Joosen. “Towards portability
and interoperability support in middleware for hybrid clouds”. In: CrossCloud ’14:
Proceedings of the 1st IEEE INFOCOM CrossCloud Workshop. IEEE, 2014.

« T. Desair, W. Joosen, B. Lagaisse, A. Rafique, and S. Walraven. “Policy-driven
middleware for heterogeneous, hybrid cloud platforms”. In: ARM ’13: Proceedings of
the 12th International Workshop on Adaptive and Reflective Middleware. ACM, Dec.
2013, pp. 7-12. DOI: 10.1145/2541583.2541585.

http://dx.doi.org/10.1109/NOMS.2012.6211878
http://dx.doi.org/10.1145/2245276.2245358
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1145/2541583.2541585

TECHNICAL REPORTS 213

« S. Walraven, T. Monheim, E. Truyen, and W. Joosen. “Towards performance isolation
in multi-tenant SaaS applications”. In: MW4NG ’12: Proceedings of the 7th Workshop
on Middleware for Next Generation Internet Computing. ACM, Dec. 2012, pp. 1-6.
DOI: 10.1145/2405178.2405184.

« H. Moens, E. Truyen, S. Walraven, W. Joosen, B. Dhoedt, and F. De Turck.
“Developing and managing customizable Software as a Service using feature model
conversion”. In: CloudMan ’12: 3rd International Workshop on Cloud Management.
IEEE, Apr. 2012, pp. 1295-1302. DOI: 10.1109/NOMS.2012.6212066.

« S. Walraven, B. Lagaisse, E. Truyen, and W. Joosen. “Aspect-based variability model
for cross-organizational features in service networks”. In: Composition & Variability
’10: Proceedings of the 1st International Workshop on Composition: Objects, Aspects,
Components, Services and Product Lines. CEUR-WS.org, Mar. 2010, pp. 57-63. URL:
https://lirias.kuleuven.be/handle/123456789/261950.

« S. Walraven and P. Verbaeten. “AO middleware supporting variability and dynamic
customization of security extensions in the ORB layer”. In: Companion ’08:
Proceedings of the ACM/IFIP/USENLX Middleware *08 Conference Companion. ACM,
Dec. 2008, pp. 121-123. po1: 10.1145/1462735.1462771.

Technical reports

« S. Walraven, D. Van Landuyt, F. Gey, and W. Joosen. Service line engineering in
practice: Developing an integrated document processing SaaS application. CW Reports
652 (2nd revised). https: //lirias . kuleuven. be /handle /123456789 /
428855. Department of Computer Science, KU Leuven, Feb. 2014 (Nov. 2013).

http://dx.doi.org/10.1145/2405178.2405184
http://dx.doi.org/10.1109/NOMS.2012.6212066
https://lirias.kuleuven.be/handle/123456789/261950
http://dx.doi.org/10.1145/1462735.1462771
https://lirias.kuleuven.be/handle/123456789/428855
https://lirias.kuleuven.be/handle/123456789/428855

FACULTY OF ENGINEERING
DEPARTMENT OF COMPUTER SCIENCE
IMINDS-DISTRINET

Celestijnenlaan 200A box 2402

B-3001 Heverlee
stefan.walraven@cs.kuleuven.be
http://www.cs.kuleuven.be

	Abstract
	Contents
	Introduction
	Cloud computing
	Characteristics and benefits
	Cloud computing architecture

	Challenges for the customization of SaaS
	Goals and approach
	Contributions
	Structure of the dissertation

	Comparing PaaS offerings in light of SaaS development
	Introduction
	Requirements & illustration
	Requirements
	Case study
	Approach

	Presentation of the PaaS platforms
	Force.com - Category 3
	Google App Engine - Category 2
	Windows Azure - Category 1

	Portability
	Force.com
	Google App Engine
	Windows Azure
	Summary

	Multi-tenancy
	Force.com
	Google App Engine
	Windows Azure
	Summary

	Tool support
	Force.com
	Google App Engine
	Windows Azure
	Summary

	Discussion & challenges
	Application of results to PaaS categories
	Impact of case study application and implementation decisions
	Challenges

	Related work
	Conclusion

	Middleware framework for co-existing variants in multi-tenant SaaS
	Architectural drivers
	Scope
	Non-functional requirements

	Architecture of the middleware framework for customizable multi-tenant SaaS
	Base platform
	A middleware layer for co-existing variants

	Versatility

	A middleware layer for flexible and cost-efficient multi-tenant applications
	Introduction
	Problem elaboration & motivation
	Multi-tenancy architectural strategies
	Motivating example
	Requirements derived from a customization scenario

	Middleware support for tenant-specific customization
	Tenant-aware component model
	Architecture of the multi-tenancy support layer
	Implementation

	Evaluation
	Methodology
	Cost model
	Measurements

	Related work
	Conclusion

	Middleware for performance isolation in application-level multi-tenancy
	Introduction
	Case study & challenges
	Business document processing as an online service
	Illustration: Scenarios for SLA-driven performance isolation
	Challenges

	A middleware architecture for tenant-aware SLA enforcement
	Tenant SLA management
	High-performance job and task execution
	Tenant-aware monitoring
	Prioritization
	Deployment aspects

	Evaluation
	Prototype implementation
	Evaluation scenario & setup
	Demonstration of SLA enforcement
	Performance overhead
	Discussion

	Related work
	Conclusion

	Efficient customization of multi-tenant SaaS applications with service lines
	Introduction
	Problem elaboration
	State of the practice
	Challenges

	Service line engineering: Concepts & method
	Domain analysis
	Service line architecture design & implementation
	Service line deployment & operation
	Tenant requirements analysis
	Configuration mapping
	Configuration activation

	Service line engineering in practice
	Document processing SaaS application
	Domain analysis
	Service line architecture design & implementation
	Service line deployment & operation
	Tenant provisioning

	Evaluation
	Service line efficiency
	Discussion

	Related work
	Dynamic and service-oriented product lines
	Customization of multi-tenant SaaS
	Variability management in software architecture

	Conclusion

	Conclusion
	Contributions and evaluation
	Limitations and future work
	Further evaluation
	Complementary research and extension
	Multi-cloud and cross-organizational context

	Relevance and applicability
	Utility computing and beyond

	Bibliography
	List of publications

