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Abstract—The use of a Continuous Wave (CW) Doppler radar
is proposed for non-invasive automatic detection of human falls.
This radar technology can be used since fall incidents can be
characterized by changes in speed. In this paper we show that
speed measurements obtained from different activities, using
a radar fixed on the ceiling, can automatically discriminate
between fall incidents and other activities with good accuracy.
The activities we consider are falling, walking, running, and
sitting. Off-the-shelf machine learning techniques are used to
estimate an activity classification model.

Index Terms—Fall detection, activity classification, health mon-
itoring, radar, remote sensing.

I. INTRODUCTION

Statistics show that 30% to 45% of the persons aged 65 or
older living at home and more than 50% of the elderly living in
a nursing home fall at least once a year [1]. These fall incidents
cause severe injuries in 10% to 15% of the cases. The lack of
timely aid can even lead to more severe complications (e.g.
dehydration, pressure ulcers and even death). Although not
all falls lead to physical injuries, psychological consequences
are equally important, leading to fear of falling, losing self-
confidence and fear of losing independence [1]. Taking the
ongoing aging of the population into account, it is evident
that the automatic detection of fall incidents is getting more
and more important.

The existing detectors are mostly based on wearable sensors.
However a market study of SeniorWatch [2] showed that the
sensors are not worn at all times (e.g. at night). Furthermore,
when the device needs to be operated by a button, such as e.g.
a Personal Alarm System, the person is often unable to activate
the alarm system due to the resulting confusion of a fall
incident and the complexity of making the alarm call. A remote
monitoring approach based on radar principles can overcome
these disadvantages. Current systems under investigation for
contactless fall detection are mostly based on video cameras
[3]. In contrast to these systems, the radar based approach
might alleviate some privacy concerns.

Radars are used before for remote health monitoring, e.g.
a CW Doppler radar [4] or UWB IR radar in [5]. These
papers however focus on contactless vital signs detection,
especially heartbeat and respiration rate. Similar work is found
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Figure 1: Radar architecture.

in [6] were falls are detected using a different radar setup and
classification strategy as proposed here.

II. RADAR ARCHITECTURE

In this section we introduce the employed radar architecture.
Since a fall can be considered as a movement with varying
speed, a CW radar exploiting the Doppler effect is adopted.
The block diagram is presented in Fig. 1. We use a Quadrature
CW Doppler radar as having both I and Q signals improves
the accuracy of the measurement. The I and Q samples are
related as C = I + jQ. The architecture consists of two
antennas, a power slitter, an LNA, and the IQ demodulator.
The RF frequency is 1.7 GHz and the power sent to the
transmit antenna is −10dBm.

A set of samples C results in a signal whose frequency is
altered in proportion to the velocity of the target according to
the Doppler effect: fd(t) =

2fv(t)
c where f is the frequency of

the incident signal (1.7GHz), v(t) is the velocity of the moving
object, c is the speed of light, and fd(t) is the resulting shift
in frequency.

In order to demonstrate the functionality of the classification
algorithm, the radar is realized as a board design using off-
the-shelf components (see Fig. 2). A more compact design
adopting a single antenna is under development. Fig. 2 shows
the experimental setup with the antennas mounted on the ceil-
ing. Note that the metal shelves do not influence the signal. In
fact, the received signals are AC coupled and just movements
can be detected. Fig. 3 and Fig. 4 show the measured I and
Q responses during a fall and a walk respectively. The time
variation of the I and Q signals is proportional to the velocity
of the target. In the first case of the fall incident, Fig. 3 clearly
shows how the frequency signal (and thus the speed) increases



Figure 2: Radar setup. The antennas are fixed on the ceiling
while the electronics are positioned on the shelf. The I and Q
signals are acquired by an oscilloscope. The electronic boards
were marked.

Figure 3: Speed signal during a fall. The frequency of the
signal is proportional to the velocity of the person during the
fall.

with time and then abruptly stops when the person hits the
ground. In the second case of the walking activity (Fig. 4),
the frequency of the signal is proportional to the speed and
position of the person. In the middle of Fig. 4 the frequency
is low since the person is passing underneath the radar which
is mounted on the wall. In our lab experiments, we used an
inflatable mattress when performing the fall activity. This can
be seen in Fig. 3, since the signal does not stop suddenly
but there is the effect of the rebounds on the mattress. These
signals are used to detect a fall and to distinguish it from a
normal movement (i.e., walking, sitting, and running) as will
be explained in the next section.

III. AUTOMATIC FALL DETECTOR

In this paper we propose an approach to automatically
classify radar-based data segments into activities. The primary
goal is to discriminate falls from other movements. However,
to show that a more detailed discrimination is possible, we
will employ a model that classifies the radar data into four
different activities: falling, walking, running, and sitting.

Such a model can for example be constructed by making a
list of rules guided by human intuition (e.g. during a fall, the

Figure 4: Speed signal during a walk. The frequency of the
signal is proportional to the velocity and position of the person
during the walk.

speed continuously increases until the floor is hit). However,
compiling a set of rules can be difficult and time consuming.
We therefore opt to explore the use of an off-the-shelf machine
learning technique which automatically discovers structure
(rules) by inspecting example data. A common approach is
to learn this structure in a supervised manner meaning that
annotated examples need to be presented to the learning
algorithm [7].

Note that in this work we assume that segments, containing
radar measurements of a single activity, are available. Making
the system work in this situation is considered as a first test
before making the extension to recognize activities from a
continuous stream of radar data.

A. Supervised activity classification

The machine learning community exhibits a large set of
methods for supervised learning. We have chosen to use a
specific framework out of the family of kernel methods named
Least Squares Support Vector Machines (LS-SVM) [8]. This
framework has shown to give good results on a wide range
of applications ([9]) and has the advantage that it can be
altered easily to be used on different kinds of data (static reals,
timeseries, ...).

To illustrate this activity classification, consider a binary
classification task where the goal is to find a suitable decision
line between two activities. With suitable it is meant that
the learning algorithm needs to obtain models with adequate
generalization abilities so that it performs well on predicting
class labels for unseen examples, i.e. new measurements. To
learn a classification model, a set of N observations D =
{(xi, yi)}Ni=1 of measurements xi ∈ RD and the corresponding
observed output values yi ∈ {−1, 1} is used. When using
D = 2, i.e. the measurement are represented as xi ∈ R2, the
learning problem can be visualized as shown in the left plot
of Fig. 51. Each class is represented by a specific marker. All
the examples of the star class could be assigned 1 as a class
label while the examples of the other class can be assigned the

1For instance, a radar segment can be represented by two features using
the average frequency and energy of the signal.



label −1. As a second step a function f(x) is estimated which
maps the measurement xi to the corresponding numeric labels
yi. Having such a function, one could predict the label of an
unseen sample by ŷ∗ = sign(f(x∗)) where sign(·) returns +1
for positive values of f(·) and −1 for negative values.

In the LS-SVM framework the mapping function is defined
as f(x) = wTϕ(x)+ b. This function is linear in the parame-
ters w ∈ RϕD and b ∈ R. These parameters are then optimized
according to a convex optimization criterion meaning that the
global optimum solution can always be found. Given a set
of examples (called training set) the following convex primal
objective can be formulated

min
w,ei,b

1

2
wTw +

γ

2

N∑
i=1

e2i , (1)

where ei = yi − f(xi), and γ ∈ R+ \ {0}. In this objective,
it is clear that minimizing the second term corresponds to
making as few errors as possible. The first term controls
the flexibility of the solution, e.g. large values in vector w
may as a consequence give large shifts in f(x) for small
changes in x. The opposite is true for small values in w. This
is related to the generalization ability of the solution, a too
flexible solution might have a bad generalization performance
(e.g. small changes due to measurement noise might give
large unwanted changes in f(x)). Hence minimizing the first
term in (1) requires a decrease in flexibility of the solution.
Determining which term of the two is more important is prob-
lem dependent. Therefore a trade-off parameter (also called
regularization parameter) γ is introduced. A large value for
γ means that during the optimization process more attention
is given to finding a parameter configuration that makes less
errors at the cost of a more flexible, possibly less general,
solution. On the other hand for small values of γ a less flexible
solution is considered better at a cost of a higher error rate.
Since this so called hyperparameter γ is application specific,
it needs to be tuned for every application.

The above explained binary classification framework has
many alternative multi-class extensions [8] where the classifier
discriminates between multiple labels instead of only two
different labels.

B. Kernel function

In the mapping function a feature map ϕ(·) is used. Such a
feature map is visualized in Fig. 5. Data samples x in the input
space are embedded into a vector space, called the feature
space, as ϕ(x). Then linear relations are sought, using well-
known and stable methods, among the images of the data in
the feature space.

Since finding and computing an appropriate ϕ(·) can be
difficult, equation (1) is reformulated as a dual objective
where the function ϕ(·) appears only in an inner product
ϕ(x)Tϕ(x′). This product can be replaced by a so called
kernel function which computes inner products in the fea-
ture space directly from the inputs. Hence, the feature map
is only implicitly defined. Any valid kernel function K :

input space feature space

Figure 5: The function ϕ(·) embeds the data into a feature
space where the non-linear decision line now appears linear.
The kernel computes inner products in the feature space
directly from the inputs.

RD × RD → R corresponds with an inner product in a
corresponding feature space as long as the function K is
positive semi-definite. Popular choices are the linear kernel
K(x, x′) = xTx′, and the Radial Basis Function (RBF) kernel
K(x, x′) = exp

(
−||x− x′||22/σ2

)
with kernel bandwidth σ

strictly positive. This σ is another hyperparameter which needs
to be tuned.

The previous ’static’ kernels are appropriate when each ex-
ample (e.g. activity) can be represented by a vector. However,
when the observations consist of sequences of vectors and
activity labels {(Xi, yi)}

N
i=1 where Xi denotes a sequence

of feature vectors, a different semi-positive definite kernel
is needed which can handle sequences of vectors. One such
example is the Global Alignment (GA) kernel developed in
[10]. Using this kernel furthermore requires the tuning of a
kernel bandwidth σ. The latter indicates the power of the
considered learning framework. The classification model can
be tailored easily to a specified application by choosing an
appropriate kernel function.

IV. EXPERIMENTAL RESULTS

Using the setup described in Section II a data set was built
containing 60 examples measured from 2 different persons
each doing 4 predefined activities i.e. falling, walking, running
and sitting at different locations in the recording room.

Before learning a model, the raw radar data is preprocessed.
For each activity a radar segment of 2 seconds, meaning 768
samples since the downconverted waveform is sampled at a
frequency of 384Hz, was selected. For this data, 2 seconds
was found to be sufficient to cover the details of the activities.

Given such segments, the data is then transformed using
a Fast Fourier Transform (FFT) from which only the mag-
nitude spectrum is retained. We considered two alternatives:
a) compute a 1024 FFT directly on the complete segment
and b) use a Short Time FFT (STFT). In case of the latter
the segment is first chopped into 50% overlapping frames
which are each multiplied with a Hamming window after
which a 64 point FFT is computed on each of these frames.
Opposed to the FFT, the STFT can represent time dependent
structures. This can be important since e.g. the activity sitting
is characterized by a gradual increase in velocity followed by a
gradual decrease. For the first option LS-SVM in combination



with a linear and RBF kernel is used. When the STFT is used,
per activity a sequence of vectors Xi exists. To be able to
handle the latter, LS-SVM is combined with the GA kernel. An
alternative method called Dynamic Time Warping (DTW)[11]
combined with a Euclidean distance measure is frequently
used to classify sequences of vectors. In order to compare
the LS-SVM with GA solution to this standard method an
additional experiment was included. Prior to the learning phase
the data was standardized such that each dimension has zero
mean and unit standard deviation.

In order to validate the classification models an independent
test set (with data not used to learn the classification model)
is needed. For this purpose the available data was split up
into two parts. Each part contains the data of a single person.
Next, a LS-SVM model was trained on a single partition and
validated on the other. This process was repeated two times
since the data of two test persons was available. In each run
the hyperparameters were determined using a cross validation
scheme [8]. The resulting classification accuracies are shown
in Table I. It can be noticed that the GA kernel which
incorporates time dependent information is outperforming the
static kernels. This is as expected since the activities falling
and sitting clearly exhibit a time dependent structure (e.g.
in case of falling an increase of velocity is followed by a
sudden stop). Moreover the GA kernel variant outperforms the
DTW alternative. Due to the type of validation strategy we
can conclude that for this experiment a classification model
estimated on the data of one person is generalizable to be
used on data of another person. The confusion matrix of the
GA kernel in Table II presents the confusions between the
different activities. Note that the predictions of the two LS-
SVM models were combined. First, activities were predicted
for the first person given a model estimated with data of
the second person. Next, predictions for the second person
computed using a model trained with data of the first person
only were added. In the confusion matrix it is for instance seen
that running is perfectly discriminated from the other activities
and that a falling segment was only misclassified twice, once
as walking and once as sitting.

Method Accuracy

LS-SVM, Linear kernel 86.7%
LS-SVM, RBF kernel 85.0%
DTW 90%
LS-SVM, GA kernel 95.0%

Table I: Accuracy of correctly classified activity labels using
different classification models.

V. CONCLUSION AND FUTURE WORK

This paper shows the feasibility of using CW radar for
remote automatic fall detection. On the acquired measurements
an activity model is learned that can discriminate 4 activities
(i.e. falling, walking, running, and sitting) with an accuracy
of 95% in terms of correct classifications. The evaluation was

falling walking running sitting

falling 13 1 0 1
walking 0 18 0 1
running 0 0 6 0
sitting 0 0 0 20

Table II: The confusionmatrix represents per cell the count of
instances for which the row indicates the known activity and
the column the predicted activity using the GA kernel.

carried out on measured data generated by a person of which
the data was not used to learn the activity classification model.
Future research will focus on testing this framework on a larger
set of examples and persons.
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