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Abstract

Early, accurate diagnosis of disease can dramatically improve prognosis. Clinical
diagnostic model research attempts to optimize early diagnosis by designing
diagnostic models based on variables obtained by the least invasive means.
Diagnostic model research currently involves a complex, multidisciplinary
workflow involving data collection by clinicians on the one hand, and data
preprocessing and machine-learning by machine-learning experts on the other.

Due to the traditional lack of integration between software packages used in this
workflow, preparing data for analysis can require considerable manual effort.
Following data extraction, data have to be inspected for conversion issues.
The absence of information about a Case Report Form (CRF)’s structure in
extracted data further requires manual guidance during preprocessing. As a
result, data analysis is typically only performed once, after the data set reaches a
certain predetermined size, based on rules of thumb or Monte Carlo simulations.

This thesis presents the Clinical Data Miner (CDM) software framework, which
integrates data collection, data preprocessing and machine-learning in a single
platform. This integration eliminates the error-prone, time-consuming steps
of preparing data for analysis, and enables the automation of preprocessing
steps that rely on information about a CRF’s structure. The increased
automation streamlines the diagnostic model research workflow. With its
built-in functionality for generating learning curves, it furthermore provides
study coordinators insight into how predictive performance evolves as patient
set sizes grow. This allows them to make an informed decision about whether
to continue or terminate data collection, thereby respectively avoiding both the
creation of weakly performing models, as well as unnecessary data collection.

Thus, as Electronic Data Capture (EDC) has done for patient data collection,
the CDM software framework’s functionality should improve the efficiency of
diagnostic model studies.
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Beknopte samenvatting

Vroege, correcte diagnose van ziektes kan zorgen voor een sterk verbeterde
prognose. Klinisch diagnostisch modelonderzoek beoogt de optimalisatie van
vroege diagnose door het ontwerp van diagnostische modellen gebaseerd op
variabelen die zo min mogelijk invasief bekomen worden. Zulk onderzoek
vergt momenteel een complex, multidisciplinair proces van verzameling en
voorbewerking van gegevens, en machinaal leren.

Het gebrek aan integratie tussen de in dit proces gebruikte software
pakketten vereist menselijke interventie bij de voorbereiding van data voor
analyse. Geëxtraheerde data moeten gecontroleerd worden op conversiefouten.
Het ontbreken van informatie over de structuur van studievragenlijsten in
geëxtraheerde data vergt manuele sturing bij de voorbewerking van gegevens.
Bijgevolg wordt data analyse typisch slechts eenmalig toegepast, bij het bereiken
van een voorafbepaald patiëntenaantal, berekend op basis van vuistregels of
Monte Carlo simulaties.

Deze thesis stelt het Clinical Data Miner (CDM) programmatuurraamwerk voor,
dat de verzameling en voorbewerking van data, alsook machinaal leren integreert
in één enkel platform. Deze integratie maakt het mogelijk de tijdrovende,
foutgevoelige voorbereiding van data voor analyse te vermijden, en maakt de
automatisatie van voorbewerkingen mogelijk die structurele informatie van
studievragenlijsten vergen, wat het diagnostisch modelonderzoek stroomlijnt.De
ingebouwde functionaliteit om leercurves te genereren biedt studiecoördinatoren
bovendien inzicht in de evolutie van predictieve performantie bij groeiende
patiëntenaantallen, wat hen in staat stelt een weloverwogen keuze te maken over
de verderzetting van dataverzameling, waardoor zowel onnodige dataverzameling
als de creatie van zwakke modellen kunnen worden vermeden.

Bijgevolg, zoals elektronische datacaptatie (EDC) heeft gedaan voor dataver-
zameling, zou de functionaliteit van CDM moeten leiden tot een verhoogde
efficiëntie van diagnostische modelstudies.
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Chapter 1

Introduction

1.1 Clinical diagnostics

Many types of disease can effictively be treated or managed if properly diagnosed.
This is especially important for potentially lethal diseases, such as cancer. For
these, early diagnosis and treatment have a considerable impact on patient
survival. In the U.K. for example, Richards[61] estimates that late diagnosis is
responsible for between 5000 and 10000 deaths, yearly, which could be avoided
with early diagnosis. The impact of early versus late diagnosis on patient
survival can also be observed from comparing endometrial with ovarian cancer:
The former is, with an estimated 40100 new cases in the U.S. in 2008, the
fourth most common cancer diagnosis in women, while ovarian cancer, with
21650 estimated new diagnoses, is only the eigth most common[40]. By contrast,
with an estimated 15520 cancer deaths for 2008, ovarian cancer is the fifth
most common cause of cancer deaths in women, while endometrial cancer
only ranks eighth, with 7470 deaths[40]. The relatively low number of cancer
deaths for endometrial cancer is caused in large part by patients presenting
with symptoms indicative of endometrial cancer at an early stage, facilitating
their early diagnosis. Ovarian cancer, on the other hand, is more difficult to
diagnose timely.

Thus, early diagnosis and treatment can considerably improve patient survival
in lethal diseases such as cancer. Early diagnosis can, however, be hampered by
several factors. Absence of symptoms during the early stage of some diseases, as
in ovarian cancer, is one such factor preventing early diagnosis. The other factor
hindering early diagnosis is the invasive nature of most diagnostic procedures.
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Indeed, most diagnostic procedures involve invasive procedures, such as the
use of surgery for taking biopsies. Due to this invasive nature, patients will
only be submitted through such diagnostic procedures in the presence of strong
indications of disease, causing diseased patients with weaker indications to be
missed. Finally, the cost of diagnostic procedures can be prohibitive, preventing
their use in all but the patients with the strongest indications of disease.

1.2 Clinical diagnostic model research

In order to avoid the impediments to early diagnosis, mentioned in the previous
section, cheap, non-invasive diagnostic procedures must be pursued. These will
lower the barrier for the examination of symptomatic patients with diagnostic
tests. Non-invasive procedures also enable the introduction of screening tests.
In contrast with diagnostic tests, which are applied to symptomatic patients
only, screening tests are applied to an entire population of patients, whether
symptomatic or not. Such a population could for example include all patients
older than a certain minimum age. Obviously, screening tests should avoid
invasive procedures even more than diagnostic tests should,

Diagnostic and screening tests based on variables obtained non-invasively, and at
relatively low cost, thus could help to detect disease at an early stage, improving
patient prognosis, and, in case of lethal disease, patient survival. For internal
diseases, non-invasive variables preclude direct examination of the disease tissue,
so the use of indirect approaches must be sought instead. These may include a
survey of a patient’s demographic data, or features detected from assessment of
imaging-based modalities, such as ultrasound images, radiographies, or Magnetic
Resonance Imaging (MRI) scans. While many variables obtained non-invasively
can be suggestive of disease, they are usually not as unambiguous indicators
as the variables obtained directly from relevant tissue. In order to obtain
non-invasive diagnostic tests with performance comparable to that of invasive
diagnostic procedures, diagnostic models need to be designed combining several
non-invasive variables, indicative of disease, which, together, provide sufficient
assurances for correct diagnosis.

Clinical diagnostic model research aims to design such diagnostic models.
This research is spurred by the availability of sophisticated machine-learning
algorithms, resulting in the publication of diagnostic models for many
pathologies, including ovarian tumours[70, 71, 72], recurrence of prostatic
cancer[43, 32], rheumatoid arthritis[83], epithelial cancer[29], and renal
transplant rejection[47]. Their development follows a standard pattern along the
lines of Figure 1.1. Broadly, one distinguishes five phases in clinical diagnostic



CLINICAL DIAGNOSTIC MODEL RESEARCH 3

Figure 1.1 – The clinical diagnostic model research workflow. Steps enclosed in
green boxes are currently facilitated by the Clinical Data Miner (CDM) software
framework, while steps enclosed in blue will be in the future.
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model research. First, the study’s diagnostic goals are set, and variables that
could be relevant for diagnosis are listed. Possible values for these variables are
defined. For continuous variables, this requires a measurement methodology,
while for categorical variables, the different categories are described. Their
reliability can be analyzed with inter-rater agreement studies. The end result
of this initial phase is the definition of a Case Report Form (CRF), containing
fields for all variables to be investigated in the study. Before starting the next
phase, approval from the ethics committee will have to be obtained.

The second phase in clinical diagnostic model research entails data collection.
Data are entered by study participants, ideally affiliated to diverse, geographi-
cally distributed centres. If sufficient data have been entered, they are collected
in a single file, which is converted to a different format if needed, and curated
to remove conversion errors, in order to prepare for analysis.

Third, curated data are analyzed. This may involve preprocessing, including
data normalization, dealing with missing variables, etc. Since study design in
the first phase often introduces many irrelevant variables, in order to avoid
missing relevant ones, as well as redundant variables, at this point a feature
selection step will attempt to eliminate these, taking into account their relative
“costs”, objective or subjective. Classification algorithms are then applied to
create a diagnostic model.

The fourth phase assesses clinical validity and generalizability of the obtained
model. To that end, additional patient data are collected, ideally from centres
that did not participate in the initial data collection. These data can then be
used to assess validity of the model.

The fifth and final phase aims to valorize the produced model through
dissemination. This may include publishing the model in a peer-reviewed
journal, as well as the creation of a diagnostic tool that can be used in clinical
practice.

1.3 Workflow inefficiencies

Since clinical diagnostic model research has such a large impact on patient
prognosis, many more studies can be expected in future, so that it becomes
worthwhile to examine and optimize the efficiency of its workflow.

One area that currently involves a relatively laborious, time-consuming process
is the preparation of data for analysis, caused by the use of different tools for
data collection and data analysis. Depending on the data collection method
used, this may require copying data from paper Case Report Forms (CRFs) to
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a database, or it may require merging data files from several centres to a single
file. This data file may need conversion to a different format, compatible with
the analysis tool. Most importantly, it demands careful, manual curation of
the data to spot incompatibilities between the file formats used by the data
collection and data analysis software.

Another consequence of the use of disparate tools for data collection and analysis
is the loss of information about CRF fields and structure. As variables are
preprocessed according to their respective types, this loss of information requires
data preprocessing either to be performed manually, or to use heuristics for
inferring field types. Since the latter use the underlying data to guess variable
types, the validity of these guesses will have to be verified manually.

Finally, deciding when to terminate data collection and start data analysis
introduces an inefficiency as well: without knowledge about the quality of
models that can be obtained from the data, sample size estimates have to be
used for assessing when to terminate this data collection. These estimates
can be based on rules, or calculated from power analysis. These may both
underestimate or overestimate the true sample size required for obtaining an
adequate model, leading to inefficiencies in either case.

1.4 Clinical Data Miner

The Clinical Data Miner (CDM) project aims to eliminate the inefficiencies
described in the previous section, by integrating data collection and data analysis
in a single software framework.

1.4.1 Electronic Data Capture

Development of CDM started with a specific requirement for the data collection
software to be used by the International Endometrial Tumour Analysis
(IETA) consortium, described in Chapter 2. Since the variables collected
by the consortium’s different CRFs mostly contain variables obtained from the
evaluation of sonographic images, many of them categorical in nature, and
since, as part of the IETA consensus paper[45], pictograms had been designed to
distinguish the different variables’ categories, the consortium wished to integrate
these pictograms in the software to be used for data collection. Since no such
software existed at the time, I developed CDM’s Electronic Data Capture
(EDC) software component. Its user interface is demonstrated in Figure 1.2.
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Figure 1.2 – CDM’s EDC user interface.

The requirements and process for this development are described in detail in
Chapter 3.

While the inter-rater agreement study described in Chapter 4 was unable to
conclusively determine if the inclusion of pictograms within a CRF improves
inter-rater agreement, a survey about CDM’s EDC user interface clearly
demonstrated users were very enthusiastic about this feature. Also, this first
inter-rater agreement study led to the development of a user interface, derived
from CDM’s EDC component, that has since served to organize several other
inter-rater agreement studies, which are listed in Appendix A.

With its web-based user interface, CDM further simplifies the organization of
multi-centre studies.

1.4.2 Data analysis

Integrating data analysis in the same framework as data collection eliminates
the inefficiencies listed in Section 1.3. It removes the need for the often laborious
curation of data as preparation for analysis. It makes the types of variables, as
well as the CRF structure, available during data analysis, obviating the need
for manual or heuristics-based preprocessing, reducing errors and improving
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Figure 1.3 – Example of a learning curve generated by CDM’s machine-learning
functionality.

efficiency. Finally, the integration of preprocessing and machine-learning in the
CDM software framework permits the generation of learning curves, such as that
of Figure 1.3. These enable straightforward monitoring of study progress, and
allow study coordinators to assess when to terminate data collection, avoiding
under- or overestimation of required sample size.

Data analysis capabilities that I have currently developed within CDM include
Java Application Programming Interfaces (APIs) for preprocessing, classification,
and calculation of κ-coefficients of inter-rater agreement. Their design is
elaborated in Chapter 6. A number of Jython modules provide access to
these Java APIs from within Jython, transforming CDM into an interactive
experimentation platform for measuring the effect of various preprocessing and
machine-learning algorithms on model quality.

1.5 Automating machine-learning

The classification algorithms traditionally used in medicine, such as logistic
regression, require complex, time-consuming preprocessing, in order to obtain
good models. This hampers further automation of the clinical diagnostic
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research workflow. My analysis from Chapter 5 shows that, by using more
sophisticated classification algorithms, such as Least-Squares Support Vector
Machines (LS-SVM)[67], good models can be achieved without preprocessing.

More analysis is required to verify this conclusion extends to machine-learning
workflows which include feature selection. However, this finding encourages
further automation of CDM’s machine-learning workflow, and its eventual
integration in CDM’s user interface. This should ultimately empower clinicians
to manage most of the clinical diagnostic model research workflow by themselves,
diminishing their dependence on machine-learning and Information Technology
(IT) expertise.

1.6 Main contributions

The main contributions of this thesis have already been mentioned in the
previous section. They include software components for data collection and
data analysis, integrated in a single software framework, simplifying diagnostic
model research. The EDC component has been in successful use since 2011, by
the studies organized by the IETA consortium, with several other studies in the
design stage.

A variant of CDM’s EDC component considerably simplifies the organization of
inter-rater agreement studies. This user interface has been used for six such
studies so far.

With the possibility to generate learning curves, CDM’s data analysis capabilities
facilitate evaluation of a study’s progress, enabling study coordinators to assess
whether to terminate data collection. With their accessibility from within an
interactive Jython console, these data analysis capabilities additionally provide
an ideal experimentation platform.

I have further shown that sophisticated machine-learning algorithms, applied
to raw data, match the performance of more traditional algorithms, such as
logistic regression, applied to a data set that has been extensively manually
preprocessed. This observation enables increased automation of the clinical
diagnostic model research workflow.

1.7 Chapter-by-chapter overview

The present manuscript is organized as indicated in Figure 1.4.
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Figure 1.4 – Overview of chapters and their mutual dependence.
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Following this chapter, Chapter 2 describes the IETA consortium, which,
by requiring the integration of pictograms in its data collection software,
initiated development of CDM’s EDC component, and delivered its pilot studies.
Chapter 3 describes development of this EDC component, including requirements
analysis, and development process, as well as results of a survey conducted
amongst its users.

Then follows an analysis in Chapter 4, to analyze if the integration of pictograms
improves data quality, evaluated by using inter-rater agreement as a proxy
measure. This includes a description of the specialized user interface derived
from CDM’s EDC component, for the organization of inter-rater agreement
studies.

Analysis of the learning curves in Chapter 5 shows that sophisticated machine-
learning algorithms, such as LS-SVM[67], applied directly to raw data, match
the performance of logistic regression after extensive manual preprocessing of
this data. This observation allows to considerably simplify automation of the
machine-learning workflow, motivating the integration of data preprocessing
and machine-learning components in CDM. This resulted in the development
of a set of APIs, described in Chapter 6. Future work should integrate these
APIs further in CDM’s user interface, simplifying management of the machine-
learning workflow. In the meantime, these APIs can be used interactively from
within a Jython console, providing an ideal experimentation platform.

Chapter 7 lists some of the achievements in more detail, including examples
of some of the possibilities provided by CDM’s experimentation platform.
Chapter 8 concludes this manuscript with a summary of achievements, and
projections of future work and avenues for dissemination.

Appendix A describes the inter-rater agreement studies that have been organized
using CDM’s modified EDC user interface, described in Chapter 4, while
Appendix B lists the CRFs used for the study described in that same chapter.
And finally, Appendix C presents the results of some experiments with some
feature selection algorithms.



Chapter 2

International Endometrial
Tumour Analysis

The International Endometrial Tumour Analysis (IETA) consortium aims to
analyze the relationship between visual features assessed from ultrasound images
on the one hand, and endometrial pathology on the other. Requiring patient
data for their analysis, the consortium needed an Electronic Data Capture
(EDC) software component, which formed the basis of the Clinical Data Miner
(CDM) software project.

2.1 Introduction

In order to establish the context in which this project was developed, this
chapter introduces the International Endometrial Tumour Analysis (IETA)
consortium. This international consortium studies endometrial pathology with
the aim to improve its diagnosis.

First, some information about endometrial pathology is provided. Second, the
International Endometrial Tumour Analysis (IETA) consortium is described
and its consensus paper mentioned. The ultrasound technologies used by the
consortium to examine endometrial pathology are explained. Next follows a
description of the consortium’s currently defined studies. This is followed by a
description of the IT infrastructure required for organizing these studies, which
formed the starting point for this project. Finally, some concluding remarks are
formulated.

11



12 INTERNATIONAL ENDOMETRIAL TUMOUR ANALYSIS

2.2 Endometrial findings at histopathology

Endometrial findings at histopathology can be subdivided into benign conditions
(atrophy, proliferative endometrium, secretory endometrium, endometrial
hyperplasia without atypia, endometrial polyp, and endometritis), precursors
of malignancy (atypical hyperplasia), and malignant tumours (endometrioid
adenocarcinoma, sarcoma, and other rare malignancies). Of these, endometrial
malignancy being life-threatening, it is the primary research focus of the IETA
consortium.

For the year 2014, the U.S. expect 52639 new endometrial malignancy diagnoses,
and 8590 associated deaths[64]. Both in the U.S. and in Belgium, endometrial
malignancy is the fourth most frequently occurring cancer in women[1, 64].
Fortunately, since it is often accompanied by abnormal uterine bleeding, a
majority of 68% of cases are diagnosed at an early stage. As a result, it
only ranks as seventh most frequent cause of cancer death in the U.S.[64],
and fourteenth in Belgium[1]. This clearly shows the importance of accurate
diagnostic techniques for endometrial cancer.

Currently, gold standard diagnosis for endometrial cancer is obtained by means
of invasive procedures. These include endometrial biopsy, hysteroscopy, and
dilation & curettage (D & C). No non-invasive procedures currently exist
for endometrial cancer diagnosis. Only a minority of women presenting with
abnormal uterine bleeding, however, will eventually be diagnosed as having
endometrial cancer. In UZ Leuven, for example, only around 6% of women
presenting with abnormal uterine bleeding will prove to have malignant disease.
This percentage varies depending on the type of centre: oncological centres will
have a higher incidence of cancer than regional centres. In all centres though,
a considerable proportion of women needlessly undergo invasive diagnostic
procedures, with risk of morbidity or impaired fertility as a result.

2.3 IETA consortium

The IETA consortium is an international consortium of gynaecologists specialized
in ultrasound. The members of the IETA steering committee are listed in
Table 2.1. They collaborate to research endometrial pathology, in order to
improve endometrial pathology diagnostics with models that only rely on
variables obtained by non-invasive means.

Variables that may be of interest for such a diagnostic model include demographic
features, patient history, and, most importantly, features obtained from
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D. Timmerman T. Bourne L. Valentin F.P.G. Leone
E. Epstein B. Van Calster B. De Moor T. Van den Bosch

Table 2.1 – Members of the IETA steering committee.

subjective assessment of ultrasound imaging modalities. These imaging
modalities may be obtained through conventional, unenhanced ultrasound
imaging modalities, or through Gel Instillation Sonohysterography (GIS). Since
the ultrasound variables relevant to endometrial cancer diagnosis are largely
unexplored territory, the members of the IETA consortium have enumerated
all potentially relevant variables, and, for each, have defined how to measure
them, or which categories should be distinguished. Where appropriate, they
created pictograms to clarify definitions. They have published this information
in the consortium’s consensus paper[45], to serve as the basis for studies about
endometrial pathology in general, and the consortium’s own studies in particular.

2.4 Ultrasound imaging technology

Ultrasound imaging is an imaging technique for the visualization of inner organs
and body tissues. It uses sound waves with frequencies above the audible
frequency range, produced by a piezoelectic transducer. The waves transmit
through the body, and scatter at the interface between different body tissues,
as a result of differing acoustic velocities. The transducer registers both the
intensity and the delay of the scattered waves. By sweeping an area with this
technique, an image can be produced.

Gel Instillation Sonohysterography (GIS) is a variant of this technique, in
which a sterile gel is instilled into the uterine cavity, while the latter is being
examined with ultrasound technology. This gel improves visualization of the
cavity, resulting in more detailed images.

2.5 Studies

The IETA consortium has defined a number of studies, all using the terminology
of its consensus paper[45]. They are defined as follows:

• IETA #1 – This study, led by T. Van den Bosch, examines endometrial
pathology in female patients who present with abnormal uterine bleeding.
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The latter being a potential indication of endometrial cancer, these
patients are followed up with invasive diagnostic procedures. These can be
endometrial biopsy, hysteroscopy, or hysterectomy. Patients subjected to
either of these procedures are included in this study, for the development
of a diagnostic model for endometrial cancer. Other endometrial pathology
will be modelled as well.

The IETA #1 study is further subdivided into a number of substudies.
They are the following:

• IETA #1a –This is the “basic” protocol, containing the most
important variables, which should be selected if the clinician has
insufficient time for completing the IETA #1b protocol.
• IETA #1b – This protocol expands on the basic protocol with more
detailed questions about bleeding pattern and medical history.
• IETA #1c – This substudy was defined when the IETA studies had

already started. It should only recruit post-menopausal patients, and
it includes additional questions inquiring about patients’ lifestyle
and anthropometric data.

• IETA #2 – This examined inter-rater agreement for some of the variables
defined by the consortium’s consensus paper[45]. It involved the evaluation
of two sets of 122 video clips, using grayscale and Doppler ultrasound,
respectively. The study was led by L. Valentin, and data collection for
this study took place between July 10, 2012 and January 21, 2013. A
publication of the results will follow.

• IETA #3 – This study, examining endometrial pathology in patients with
no abnormal bleeding, is led by F.P.G. Leone. Data are collected for
women with indications for hysterectomy, laparoscopy or hysteroscopy.
Since the patients are asymptomatic, their data could be used for designing
a screening test, which, contrary to diagnostic tests, are applied broadly,
without any indication of disease.

• IETA #4 – Led by E. Epstein, it examines the relation between ultrasound
findings and patients who have been previously diagnosed with endometrial
cancer, and are scheduled for hysterectomy.

Final approval by the UZ Leuven ethics committee board for the organization
and coordination of the multi-centric IETA studies was granted on April 19, 2011.
Study participants from other centres are responsible for obtaining approval
from their respective centres’ ethics committees.
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Additional studies examining the predictive value of endometrial morphology,
described using the IETA terminology, on fertility and on pregnancies of
unknown location (PULs), are planned.

2.6 Data collection

To enable the creation of diagnostic models, these studies naturally require
data. In order for these models to be internationally valid, the data need to
be collected from different locations around the world. This is facilitated by
involving multiple centres from geographically diverse locations. To support
multi-centric data collection, participants require a user-friendly, efficient means
of collecting data. Web-based EDC software thus constituted a logical choice.

D. Timmerman and T. Van den Bosch wished to integrate the pictograms,
published in the IETA consensus paper, into the EDC software to be used for
the IETA studies, to guide clinicians during data collection. As this did not
exist at the time, D. Timmerman requested me to develop such software.

2.7 Conclusion

In 2009, a group of gynaecologists specialized in ultrasound formed the IETA
consortium, with the aim to examine endometrial pathology in general, and
endometrial cancer in particular. To that end, they organized a number of
studies, each targeting different patient populations. Collecting data from
multiple centres in an efficient manner required the use of EDC software. Since
most of the variables collected are assessed from the interpretation of ultrasound
imaging modalities, the ability to show pictograms, such as those published in
the consortium’s consensus paper[45], was submitted as one of its requirements.
The request to create such software formed the basis of my involvement in the
IETA project.





Chapter 3

Electronic Data Capture

The previous chapter established the need for Electronic Data Capture (EDC)
software, for conducting the International Endometrial Tumour Analysis (IETA)
studies, providing the ability to integrate pictograms. In this chapter, I describe
the requirements and methodology that I used for the development of Clinical
Data Miner (CDM)’s EDC component.

3.1 Introduction

Patient data form the basis of Evidence-Based Medicine. While in the past,
patient data were collected using paper Case Report Forms (CRFs), the use
of EDC software for collecting data has steadily been gaining ground in the
past decades[4, 13]. El Emam et al.[21] estimate that, between 2006 and 2007,
41% of Canadian clinical trials were using an EDC system. EDC adoption in
clinical studies is spurred by the broad availability of generic software such as
REDCap[34], or the open-source OpenClinica®[55] on the one hand, and EDC’s
important advantages over Paper-based Data Collection (PDC) on the other.

One of these advantages are efficiency gains[48], resulting in lower study costs[57].
Indeed, without the need for copying paper CRFs to a spreadsheet, collecting
data using EDC is less resource-intensive. Simulations by Pavlović et al.[57]
estimate the cost savings of EDC with respect to PDC to be between 49%
and 62%, depending on study parameters. One of the most important of these
parameters is study size: the larger the patient cohort, the larger the expected
savings.

17
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Two factors contribute to another important advantage of EDC: both the
elimination of a copying step, as well as the possibility to integrate automatic
validation of data, lead to reduced data errors. In a study by Walther et al.[88],
for example, data error rate for EDC without double data entry, but with
automatic completeness checks, was similar to that of PDC, with double data
entry.

Many recently developed EDC systems are web-based. If these are developed
to support a wide array of web browsers, this reduces infrastructure costs
even further, as it obviates the need for costly, time-consuming installation
and upgrades on individual study participants’ computers, and instead only
requires the central management of a single system. This is especially compelling
for multi-centre studies, which may include centres with widely disparate IT
infrastructure, as is the case for the IETA studies.

Presented in chapter 2, these IETA studies aim to develop models for the
diagnosis of endometrial tumours, based on, amongst other, demographic
data, but primarily on characteristics observed from subjective assessment
of ultrasound images. In order to optimally research endometrial pathology,
the IETA consortium defined terminology and measurements to be used
for the characterization of endometrial features in their consensus paper[45].
Since most of these terms describe visual features of ultrasound images, it is
reasonable to assume that reference pictograms, visualizing a variable’s possible
categories, could aid study participants in selecting the appropriate category
more accurately. Thus, T. Van den Bosch developed pictograms to clarify
the terms described in Leone et al.[45], while D. Timmerman requested me to
develop an EDC platform allowing the integration of pictograms in CRFs.

This chapter describes how this platform was developed. A first subsection
describes my attempt at integrating pictograms in the user interface of existing
software. As this yielded unsatisfying results, I then started development on the
new Clinical Data Miner (CDM) EDC system. The second subsection lists the
results of the requirements analysis we performed for this project. Next follow
descriptions of the software development methodology, the architecture of the
system, and server setup. Section 3.7 discusses some results, including some
source code metrics. Finally, a number of conclusions complete this chapter.

3.2 Existing software

Since the creation of a new EDC system would mean a substantial development
effort, I initially investigated the possibility of extending the user interface of
existing software packages. This necessitated the availability of source code.
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OpenClinica®[55] being the most widely known open-source EDC system, it
appeared to be the best starting point.

OpenClinica® claims to be the world’s first commercial open-source EDC system.
Both community and enterprise editions of OpenClinica® exist. Source code
to its community edition is freely available; the enterprise edition contains
additional features and is commercially supported. Thanks to the open-source
nature of the community edition, it has gained wide adoption in clinical research,
resulting in over 15000 registered users since its initial release nine years ago.
The availability of source code further enables the development of third party
functionality, making it suitable for implementing the extension required for
the IETA studies.

Adding the desired functionality to OpenClinica® involved modifications in
two locations. Changes to the user interface code, on one hand, would enable
displaying pictograms alongside fields in the CRF. These pictograms could
be supplied as separate image files in JPEG or PNG format. On the other
hand, the parsing code would have to be extended to allow the interpretation of
additional columns in the CRF definition files. These additional columns would
describe which pictograms should be displayed, and for which variable choices.

I focused on the latter. All of the parsing code proved to be contained in
a single file. This file was poorly designed, consisting of several 1000’s of
lines of code, and including a high number of branches. Moreover, there were
virtually no automated tests, for verifying correctness of the program. Combined,
the parsing code’s poor structure, and the near absence of automated tests
considerably complicated the implementation of extensions to the parsing code,
as any modification would have to be verified through extensive, time-consuming
manual testing.

Therefore, I abandoned the idea of extending OpenClinica® in favour of creating
a new EDC software project. In doing this, one of the aims was to provide a
better user experience than OpenClinica® does, with a user interface requiring
fewer static page transitions, leveraging a more modern Asynchronous Javascript
and eXtensible Markup Language (XML) (AJAX) approach. Compared with
the extension of an existing software project, the creation of a new software
project provides the additional benefit of simplifying the implementation of
one of this thesis project’s key goals, namely the integration of data analysis
functionality, further described in Chapter 6.
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3.3 Requirements

A requirements analysis was the initial step of the CDM project, for which
D. Timmerman and T. Van den Bosch provided invaluable input. This obviously
included the ability to integrate pictograms into the user interface. I further
opted to implement a web-based user interface, to avoid requiring software
installation on end users’ computers (beyond perhaps the installation of a
sufficiently recent web browser), which brings an important advantage to multi-
centre studies. As an additional requirement, the design had to enable a
potential future conversion to a desktop or smartphone application. For the
definition of CRF questionnaires, I aimed for compatibility with OpenClinica®’s
CRF definition spreadsheet format. While not entirely compatible, this should
facilitate migration from OpenClinica to CDM.

Using an iterative scrum software development approach[63], the project was
organized around fixed time intervals – sprints in scrum terminology – of two
weeks initially, lowered to one week towards the delivery of the EDC component.
Requirements were defined, prioritized, and scheduled during sprint planning
meetings.

The list of requirements, or stories in scrum terminology, were tracked along
with their sequence number, the dates when they were registered, and when
their implementation started and ended. This list allowed to estimate the
amount of stories processed per sprint, defined as the velocity of the project.
Multiplied by the number of unfinished stories, this velocity allowed to estimate
the number of sprints required to finish the project, which enabled progress
reporting to the IETA consortium.

Table 3.1 lists sequence numbers, end dates, and descriptions of all identified
requirements. Some of these will be elaborated further in this section.

Nr. Finished Task
#1 2010/03/03 Extensible architecture for visual elements
#2 2010/03/03 Patient identification form
#3 2010/03/03 Checkbox implementation
#5 2010/03/09 Prototype with dependent entries
#4 2010/03/09 Multiple choice questions with child questions

dependent on state of parent question
#35 2010/03/05 Decouple from OpenClinica®

#36 2010/03/05 Add build target for code coverage report
#8 2010/03/26 Hierarchical object structure for question entry

widgets
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Nr. Finished Task
#34 2010/03/26 Serializable hierarchical object structure for items
#38 2010/04/01 Web service for querying RootItems
#9 2010/04/01 Factory to convert CaseReportForm into EntryForm

objects (requires: #8)
#18 2010/04/01 Interface to commit patient data to database
#22 2010/04/01 Provide a way to select the study sheet to open
#39 2010/04/02 Change EntryForm.process() to take a parameter

Continuation + implement a SafeContinuation
that obsoletes SafeEntryForm

#41 2010/04/08 Implement patient database
#42 2010/04/08 Upon PatientDbService.store(), add to patient

database (requires: #41)
#43 2010/04/13 Implement crf database
#44 2010/04/13 Upon StudyService.store(), add sample to crf

database (requires: #43)
#17 2010/04/13 Collect data results from EntryForm objects and

add to database (requires: #9, #18)
#51 2010/04/15 Split codebase in several parts: common, server,

client, gwt
#7 2010/04/30 Layout data collection page (CSS rules)
#20 2010/05/05 Manage different case report forms at the same time
#21 2010/05/05 Way to compose different case report forms from

studies
#46 2010/05/05 Refactor messaging code:

• create Message class that verifies # of objects
passed

• move Enum<?> out of GeneralException
• make a *Messages class per package contain-
ing an Enum<*Messages> and methods that
allow to easily create the messages

#19 2010/05/10 Convert excel sheet/xml file into CaseReportForm
objects

#53 2010/05/09 Ensure that children of a ParentItem, ChoiceItem,
SectionListItem, Section can’t have the same
identifier

#63 2010/05/10 Create a SafeCrfFactory instance per Crf: it
should be allowed to have different items with same
id in different Crfs. (requires: #53)

#57 2010/05/18 New implementation of GwtDateEntryNode
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Nr. Finished Task
#6 2010/05/22 Multiple choice questions with images
#66 2010/05/22 Prepare for putting application online
#58 2010/05/28 FormNode that displays a header/subheader
#68 2010/06/29 Render subsequent fields in alternating colours.
#69 2010/06/29 Fix tabpanel size.
#67 2010/07/01 Choice field with image (i.e. not for the individual

choices, but for the choice itself.)
#70 2010/07/01 Choice fields with same captions are lumped

together in a single html radio group; fix.
#37 2010/07/04 Increase test coverage.
#24 2010/07/15 Allow registration of constraint validators on

EntryForm objects (validation should be done on
client as well as on server)

#55 2010/07/15 Install continuous integration server
#72 2010/07/27 Save data per tab pane
#12 2010/08/17 Login page
#13 2010/08/17 CapabilityManager - interface to determine if a

user account has certain rights.
#14 2010/08/18 Use CapabilityManager in data collection, account

creation, study creation. Profiles: administrator,
study manager, data entry

#11 2010/08/18 Implement user account code
#81 2010/08/20 [BUG – reported by: Arnaud] ChoiceEntryNode

doesn’t display errors.
#23 2010/08/24 Parse validation constraints from excel sheet
#25 2010/08/24 Construct constraint validators from output of

validation constraint parser (requires: #23)
#26 2010/08/24 Register constraint validators (requires: #24, #25)
#86 2010/09/02 [BUG – reported by: Thierry] Webapp

shuts down because aulne tomcat doesn’t read
applicationContext*.xml from libraries in class-
path.

#82 2010/09/27 [BUG – reported by: Arnaud] When committing
tab pane takes a long time, user clicks to another tab
before committed tab is deactivated, newly selected
tab may become deactivated instead.

#29 2010/09/10 Calculations on <integer>/<float> entry fields.
#80 2010/09/20 Uniform logging (backend: slf4j)
#62 2010/09/10 Add versioning to Crf database record (filled with

number 1 for now)
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Nr. Finished Task
#30 2010/09/18 Node object (UI element) that shows the result of a

calculation
#45 2010/09/18 Support “calculations”, i.e. dependent fields that

are filled in automatically when the field it depends
on is filled in (see also: #32)

#79 2010/09/20 Implement comment boxes
#75 2010/09/20 Horizontal choices
#52 2010/09/21 Menu on top of pages to easily switch between

PageStates – menu should be dependent on current
PageState

#73 2010/10/03 Introduce concept of a Study as a combination of a
number of Crfs

#78 2010/10/04 Simplify patient info entry
#88 2010/10/08 [BUG – reported by: Lil] Pages with calculations

fail validation: value of calculated items are null
#92 2010/10/09 Human-readable error messages
#91 2010/10/09 [BUG – reported by: Arnaud]

1. Select Sonohyst→ optimal→ measurable: yes
⇒ subpanel for measurable appears

2. Select Sonohyst → suboptimal
⇒ subpanel for measurable disappears

#59 2010/11/26 Page where patient can be selected, and samples
taken for that patient for different dates are shown,
where one can be selected.

#49 2010/11/29 Auto-completion for examiner, ultrasound system
#60 2010/12/07 Page where patient and sample are selected, and

where user can select the additional CRFs to
complete.

#61 2010/12/07 Page where patient sample can be completed with
additional CRFs. (Can this reuse the current data
collection page?)

#76 2010/12/07 Spring-ify server code
#94 2010/12/17 [BUG – reported by: Arnaud] On pages with both

vertical & horizontal choices, images displayed for
the vertical options are aligned right of the images
of the horizontal choices. This results in very wide
pages. Solution: horizontal choices should span 2nd
& 3rd columns. Modify Grid such that it doesn’t
allow variadic arguments
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Nr. Finished Task
#27 2010/12/09 Use encrypted communication
#87 2011/01/06 [BUG – reported by: Arnaud] When logging in as

a user who doesn’t have the rights required to some
functionality, AccessDeniedException is shown as
a Window.alert() instead of showing the message:
“User doesn’t have required priviledges. Please login
as a different user”.

Table 3.1 – Story list for CDM’s EDC module.

3.3.1 Visual user interface elements

(Refer to stories #6 and #67 from Table 3.1.)

The evaluation of imaging modalities for classification according to certain
categorical variables can be simplified by illustrating the distinctions between
categories with pictograms. This is especially the case when participants are
still familiarizing themselves with a study’s terminology. Since the IETA studies
require classification of many variables based on ultrasound images, the IETA
consensus paper[45] includes many such pictograms. A common understanding
of the various categories involved could be further improved by integrating
pictograms in the associated CRFs. While this is straightforward for paper-
based CRF, it is not commonly possible in electronics CRFs. Therefore, the
EDC system used in the context of the IETA studies was required to enable
such integration in its user interface.

CDM therefore enables two uses of pictograms. The first allows clarifying
questions in a CRF with a pictogram, as illustrated in Figure 3.1. The second
use involves the clarification of the distinct options of categorical variables. An
example of the latter is shown in Figure 3.2.

Another visual element that generally is more readily added to PDC than
in EDC, are Visual Analogue Scales (VASs). These are line segments, with
minimum and maximum values indicated on either side, allowing the evaluation
of a variable by positioning a mark along the line segment, thereby indicating
its relative value with respect to the line segment’s bounds. Visual Analogue
Scales (VASs) measurements produce continuous values within a certain range.
A VAS is typically used for assessing the level of pain experienced by a patient.
Due to their continuous nature, measurement by a VAS can be more exact than
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Figure 3.1 – The use of pictograms to clarify questions in a CRF. (Screenshot
of the “Myometrium” section, included in the IETA #5 study, as presented by
the CDM user interface.)

Figure 3.2 – CDM allows to visualize the distinct choices of categorical variables
using pictograms. (Screenshot of the “Sonohysterography or Fluid” section,
included in the IETA #1, #2, and #3 studies, as presented by the CDM user
interface.)

measurement by a Likert scale[27], which discretize the possible values to a
number of categories, and requires fewer explanations.

Despite their advantages as measurement devices, they are seldom used: adding
them to paper-based CRFs requires measuring the distances of the marks to
the line segment bounds, for each VAS individually, which can be cumbersome
if there are many. Integrating them in an electronic CRF, however, removes
this obstacle, while retaining their advantages. Since some of the IETA studies
include a VAS, the possibility to integrate such elements into a CRF was
propounded as one of the requirements for the development of CDM. An
example of such functionality is depicted in Figure 3.3.

Figure 3.3 – CDM uses a “slider” element to represent Visual Analogue Scales
(VASs). (Screenshot of the “Validation” section, included in the IETA #1, #3,
and #4 studies, as presented by the CDM user interface.)
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Figure 3.4 – CDM implements the “skip pattern” by showing or hiding variables
in a box positioned below their “parent” variable, depending on the value of
that “parent” variable. (Screenshot of the “Sonohysterography or fluid” section,
included in the IETA #1 and #3 studies, as presented by the CDM user interface.)

Finally, the “skip pattern” is visually presented as a hierarchical tree structure.
The “skip pattern” is commonly applied in data collection, to skip variables that
become irrelevant due to the value filled in for another variable. As an example,
the variable “Years past menopause” becomes irrelevant when “menopausal
status” has the value “pre-menopausal”. In CDM, variables that depend in
this manner on the value of a “parent” variable are only shown if they become
relevant, and are framed in a blue box positioned below the parent variable, as
in Figure 3.4.

3.3.2 Case Report Forms

CRF representation

(Refer to stories #1, #4, #8, #34, #20, and #21 from Table 3.1.)

CRF questionnaires are composed of several sections, shown in CDM’s user
interface as different tabpages, and which themselves are composed of several
fields of different types. Sections and fields are represented by interfaces included
in the class hierarchy derived from the Element interface, shown in Figure 3.5.

In this class hierarchy, SimpleItem objects represent simple fields containing a
value such as a number, a string, or a date. Most of these are shown as text
boxes in CDM’s user interface, except DiscreteStepItem, which is visualized by
a slider. ChoiceItems represent categorical variables, corresponding to multiple-
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Figure 3.5 – This shows the Element class hierarchy for representing sections,
fields, and multiple-choice questions of a questionnaire, as well as the Crf class
containing one or more SectionItems.
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choice questions. Elements can be added to a category of such ChoiceItem
objects, which will then only be activated if that particular category is selected.
Finally, the sections mentioned above correspond to SectionItem objects,
which act as containers for other elements, such as IntegerItem or ChoiceItem
objects.

All interfaces in the Element class hierarchy, as well as the Crf interface,
are serializable, facilitating the implementation of the client-server Remote
Procedure Call (RPC) protocol discussed in Subsection 3.3.3.

CRF processing

(Refer to stories #9 and #17 from Table 3.1.)

Several use cases require the processing of the Element objects contained in a
SectionItem. This occurs for example when user interface widgets need to be
constructed for these elements, in order to assemble a tab page. As another
example, storing the contents of a CRF to database requires collecting the values
of all elements contained in the CRF’s SectionItems. In both these cases, each
element type should be processed differently. To enable this, I implemented a
variant on the Visitor design pattern[28], pictured in Figure 3.6. Compared to
the default Visitor pattern, this implementation allows returning a processing
result, the type of which depends both on the implementing ItemTreeVisitor
class as well as the type of element processed.

Since a section’s elements have a tree structure, they may be processed in several
different orders, and inactive branches may be taken into account or not. The
ItemTreeTraversalStrategy exhibits the Strategy design pattern to provide
different strategies for ordering element processing. Currently, two implemen-
tations exist: DepthFirstItemTreeTraversalStrategy allows a depth-first
traversal of the entire tree, while ActiveItemTreeTraversalStrategy only
processes active items, also in a depth-first order.

3.3.3 Remote Procedure Calls (RPCs)

(Refer to stories #34, #38, #44, #72 from Table 3.1.)

The RPC protocol used between client and server is represented in Figure 3.7.
It allows clients to query the server for a list of available studies, or the structure
of a particular study. Also, clients can request the creation of a new patient
entry. They can request the server to add data to, or return the contents of,
an existing patient entry. Finally, clients can obtain information about patient
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Figure 3.6 – These interfaces are used for processing Crf objects.
Processing order is determined by the choice of ItemTreeTraversalStrategy
implementation.
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Figure 3.7 – The RPC protocol defined between client and server, for supporting
CDM’s EDC functionality.
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entries stored on the server. The latter will be restricted to entries the clients
have access to. Call parameters can restrict the results to a specific study, user,
patient, creation date, or completeness status, or a combination thereof.

By extending StudyService from Google Window Toolkit (GWT)’s RemoteService
interface, the GWT compiler will automatically generate source code
implementing a communication protocol enabling the RPC calls of the
StudyService interface, serializing and deserializing parameters and results
before transmission and after receipt.

3.3.4 Authentication and access control

(Refer to stories #12, #13, #14, #11, #27, #87 from Table 3.1.)

I used the Spring Security framework for handling authentication and
authorization. The general configuration of this framework was performed
through configuration files. This included setup of the authentication mechanism
and annotation-based access control. The latter allowed to control access to
specific server methods by means of Java annotations.

Java annotations allow to add metadata in a preamble to syntactic elements
such as classes, methods, variables, etc. The Spring Security framework enables
the use of annotations to control access to methods.

The Spring Security framework allows to move access control out of method
implementations, into configuration files or annotations. This relieves methods
of an additional responsibility, reducing complexity and improving design.
Compared with file-based configuration, annotation-based configuration further
offers the advantage of robustness against refactoring, by keeping access control
configuration in the vicinity of the methods under control.

Annotation-based access control can occur both prior to entering critical server
methods, granting or disallowing access to certain methods, as well as after a
method has returned, to filter out results the user is not allowed access to. Spring
Security provides standard annotation expressions for common access control
patterns, such as limiting access to users of a certain group. It additionally,
however, provides an extensible mechanism, using a PermissionEvaluator
implementation provided by the application, to define project-specific access
control mechanisms. Three parameters are supplied to this custom class
upon which access control decisions can be based: an Authentication object
identifying the user, the object to which access should be controlled, and the type
of permission requested. Leveraging this mechanism, I designed the pluggable
design presented in Figure 3.8.
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Figure 3.8 – CDM’s pluggable access control is governed by means of Permission
objects.
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In the CDM framework, permission types are categorized as read, write,
and delete operations, as well as reading of anonymized data. The latter
will be used in the future to provide study coordinators access to data
included in their study by participants from a different hospital and/or
department. Each class implementing the Permission interface handles a
specific combination of permission and object types. Using Spring’s Dependency
Injection (DI) mechanism, each Permission subclass is instantiated, and
injected into CdmPermissionEvaluator’s constructor. The latter handles
permission requests on behalf of the Spring Security framework, by delegating
them to the appropriate Permission object. This flexible design enables the use
of Spring Security annotations such as listed in Textbox 3.1. For the moment,
these are used to restrict read and write access to patient entries created by
users from the same department.

// Prevents returning a sample the user is not authorized
// to read.
@PostAuthorize (" hasPermission ( returnObject , ’read ’)")
public Sample load( final long sampleId ) {

[...]

// Only call the method if the user is authorized to write
// to the supplied sample parameter .
@PreAuthorize (" hasPermission (# sample , ’write ’)")
public void store ( @NotNull final Sample sample ) {

[...]

// Filter out the samples from the returned collection of
// samples that the user is not authorized to read , and
// return the remaining objects .
@PostFilter (" hasPermission ( filterObject , ’read ’)")
public List <Sample > loadSamples ( final LoadPolicy loadPolicy ) {

[...]

Textbox 3.1 – Examples of the Spring Security annotations that can be handled
by the design from Figure 3.8.

3.3.5 Database structure

(Refer to stories #43, #44, and #62 from Table 3.1.)

Using the Hibernate Object-Relational Mapping (ORM) framework provides an
abstraction layer mapping CDM’s object-oriented domain model to a traditional
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Structured Query Language (SQL) database. Hence, this layer decouples CDM
from the actual database system used, whether it be MySQL®, PostgreSQL, or
Microsoft® SQL Server.

In order to support generic studies, rather than creating a database table per
study, in which columns represent fields from the study, I created the database
schema displayed in Figure 3.9. It contains the tables samples, sampleSections,
and sampledata, corresponding to patient entries, sections of patient entries,
and fields in a patient entry, respectively. Tables with a grey background in
Figure 3.9 establish 1:n relationships between these tables, linking a set of
sections to a patient entry, and a set of fields to a section. This database schema
enables recording of patient entries for different studies by including a study
identification field in the samples table.

The database further stores user information, using tables centres, correspond-
ing to hospital centres, realms, representing hospital departments, and finally
users, containing information about study participants. While a primary realm
is associated to each user, users can be a member of multiple realms. These
latter associations are encoded in the realms_users table. This grouping of
users in realms supports CDM’s access control, by providing users only access
to entries from the samples table which have a realm_id of a department they
are affiliated with.

3.4 Software development methodology

In this section, I discuss the software development process used in developing
CDM. A first subsection explains the choice of programming language and
frameworks. Next follows a discussion of the quality assurance process. The
section ends with a description of the software configuration management applied
to the CDM project.

3.4.1 Programming language & frameworks

In order to simplify deployment across multiple centres, I chose to develop
the primary user interface of CDM’s EDC module as a web-based application.
Desktop applications require installation and regular upgrading of software on
individual participants’ computers, leading to a relatively high IT cost and
barrier to entry. By contrast, web-based applications only require administration
of a single system. Participants only need to point a compatible web browser
to the web application’s Uniform Resource Locator (URL).
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Figure 3.9 – CDM’s database schema. Tables corresponding with business
classes have a white background. Tables with a grey background are responsible
for establishing a 1:n relationship between business classes.

Modern web applications, however, not only run server code on a centrally
located web server, but also run client code on end users’ web browsers. The
aim of software running on the latter is to improve interactivity and response
times. While web servers can be programmed in a variety of languages, such as
PHP, python, perl, or Java[31], client code is programmed in ECMAScript,
which is universally recognized by current web browsers. Using different
programming languages for client and server, however, would complicate the
software development process, maintenance, and testing. Software development
would require different tool sets for different languages; code refactorings would
not propagate changes to source code written in a different language; and
verification of the software would require testing at a considerably higher level,
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causing test development to become both more complex and less effective. More
importantly, by using ECMAScript for client code, its usage would be restricted
to web applications, preventing reuse in desktop applications.

The Google Window Toolkit (GWT)[30] provides a solution, allowing the use of
the Java programming language for both client and server code. GWT combines
a user interface widget library, for programming user interface elements, as
well as a compiler transforming Java client code to ECMAScript, enabling
client-side execution. Adopting GWT for developing CDM’s EDC component
allowed to write the entire source code in a single language, namely Java. By
further separating the client code into presentation and business logic layers, as
described in Section 3.5, the latter could potentially be reused for future user
interfaces, such as desktop or mobile applications.

Apart from the GWT toolkit, CDM makes use of Inversion of Control (IoC)
containers[24]. IoC is a programming technique in which objects are not coupled
to specific implementations of other objects during compile time, but to the
interfaces of those objects. At runtime, specific implementations for these
interfaces are selected by an IoC container, which can be configured using XML
files or annotations. Such a setup offers flexibility advantages, because the
specific implementation of an interface can be changed by reconfiguring the IoC
container. More importantly, it enables loose coupling between objects, thereby
improving software design. The loose coupling of objects in turn facilitates unit
testing, which will be discussed in the next section.

Initially, only CDM’s server code made use of such an IoC container, provided by
the Spring framework, because integration of the GWT and Spring frameworks
is relatively difficult. Later, I modified the client code to use the Gin &
Guice frameworks, which are intended specifically for projects using the GWT
framework.

By relying on the Hibernate ORM library for database access, CDM can make
abstraction of the specific database technology, instead relying on Hibernate
for mapping the domain object model to SQL server commands. Finally, the
project leverages the Spring Security framework for web server authentication
and authorization, as already mentioned in Subsection 3.3.4.

3.4.2 Quality assurance

In order to ensure software quality, while avoiding spending excessive time
on manual testing, I developed CDM using a Test-Driven Development
(TDD)[6] approach, one of the elements of the eXtreme Programming (XP)
methodology[7].



SOFTWARE DEVELOPMENT METHODOLOGY 37

Figure 3.10 – The Test-Driven Development workflow.

The TDD workflow is depicted in Figure 3.10. Rather than starting the process
with the writing of production code, first one of the requirements is selected and
transcribed into an automated test. Requirements should be granular enough,
so that their functionality can be verified by a single test. If they are not,
they should be split into multiple requirements. Tests typically pertain to a
single unit of code only, corresponding to a single class in an Object-Oriented
Programming (OOP) environment. At this point, while the other tests should
succeed, the new test should fail, since its associated functionality has not
been implemented yet. Second, production code is modified until the new test
succeeds as well. A third “refactoring” step improves the software’s design and
eliminates any redundancy. No functionality is altered, which is reflected by all
tests remaining successful through this step. This process is repeated with the
next requirement to be implemented.

Likewise, when software errors are discovered, a very similar three step process
is applied to fixing them, with the requirement being to fix the error:

1. Implement a test verifying expected operation, which, at this point, should
fail, since the software behaves incorrectly;

2. Fix the erratic code, by implementing the expected behaviour. Observe
that the newly written test now does succeeed;

3. Improve software design by refactoring.

Adhering to this process will avoid the recurrence of failures that have been
encountered before.

The TDD workflow provides many benefits. As Malaiya et al.[51] have shown,
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higher test coverage is associated with lower software defect rate. Hence, projects
using a TDD approach will have fewer defects than projects that do not. Indeed,
TDD catches most errors during the development phase, rather than relying on
a manual, post-development quality assurance phase. The latter does not enable
the same fine-grained testing as TDD does, leaving more errors undetected. By
contrast, the TDD approach to developing CDM has enabled mostly error-free
upgrade deployments, despite very low degrees of prior manual testing.

Another, equally important, advantage of TDD is the fact that it encourages
better design and loose coupling[5, 65]: writing tests first forces one to think
about how code will be used by clients, hence about its interface, rather than
how it should be implemented.

Also, development on a TDD project rarely requires the use of a debugger, since
the sequences of steps executed by production code have already been verified
by unit tests[49]. This observation is corroborated by my experience with the
CDM project. Whenever errors do occur, they usually trigger a failing unit test,
localizing the problem to the unit verified by the failed test.

Another important advantage, and in fact perhaps one of the most important
ones, is that, by being backed by an entire test suite verifying correctness of the
software project, developers can confidently effect changes, as errors introduced
by these changes will be detected by the test suite. By contrast, in software
projects lacking such a test suite, any errors introduced by modifications to the
code must be captured in the quality assurance phase. As the latter typically
fails to attain the test coverage of TDD processes, this will cause more errors
to pass undetected. As a result, developers in such projects are more cautious
to introduce changes, and avoid improving software design by refactoring. The
end result of the lack of a comprehensive test suite in a project therefore is
unmaintainable code in which much needed changes are avoided.

Finally, by translating requirements into unit tests, a project’s test suite
effectively provides documentation for the classes under test, which, contrary
to comments or design documents, will never go stale, as in order to compile
and pass, the test suite will have to evolve along with the production code.

CDM makes use of the combination of the JUnit testing framework and
the EasyMock library for writing unit tests. Since higher test coverage has
been associated with lower software defect rates[51, 46], the build process
automatically tracks the project’s test coverage using the Cobertura tool.
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3.4.3 Software configuration management

Software configuration management is the process of tracking and managing
changes in software throughout its lifecycle. This entails a broad array of
processes, the most important of which are detailed in this subsection. First,
Version Control Systems (VCSs) are discussed. This is followed by build
automation, which is required to obtain reproducible builds. Finally, continuous
integration is explained.

Version Control System

VCSs are software systems that track and manage changes in a project over
time. This allows viewing and restoring the state of a software project at a
certain time in the past, or comparing its current state with its state in the
past. Such functionality is useful to revert to a known good state of the project,
after a software failure is introduced. Or it can be used to perform root cause
analysis for a problem reported for an earlier release of the software.

Many VCS systems exist. A primary distinguishing feature is whether atomic
transactions occur on individual files, or on the entire project at once. If
the former, problems may arise if the operations of different developers are
interleaved, thus recording inconsistent states. This is solved by implementing
a locking mechanism, preventing interleaved operation. Most modern VCS
systems avoid this problem altogether by effecting transactions on an entire
project at once.

Another important distinction should be made between traditional client-server
systems and Distributed Version Control Systems (DVCSs). In the former, a
centrally managed server stores the complete history of files in a project, called
a repository. Client applications on developers’ workstations then interrogate
the server for requesting specific versions of files. Client workstations, in this
model, only maintain a single version of the files in a project. By contrast,
DVCSs do not operate according to a client-server model, but take a peer-to-peer
approach instead. In this approach, every peer maintains a copy of the entire
software repository. Thus, technically, no single “reference” repository exists,
though projects may assign reference status to a repository by convention. Also,
apart from synchronization operations between repositories, all operations are
performed locally, resulting in fast operation. More importantly, it enables
operation while disconnected from the network.

The CDM project makes use of git, an open-source DVCS which commits
changes to an entire project tree, rather than on individual files.
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Build automation

Build automation entails the scripting of the process of creating deliverables
derived from source code. Deliverables can include binaries, shared libraries,
documentation, test results, test coverage analysis, and possibly even deployment
to production systems, amongst others. Build automation will prevent errors
arising from the manual creation of deliverables.

If done correctly, the automatic build process starts with the installation of
all required modules, such as compilers, linkers, and libraries, using versions
specified by the build script. By tracking build scripts in a VCS system, this
allows the creation of reproducible builds[25], which, in case errors are reported
for earlier releases, allow to recreate the exact same environment used by that
release.

Several tools exist for simplifying build automation. Most notable are make,
ant, ivy and maven, all of which are open-source. CDM utilizes the latter for
build automation.

Continuous integration

Continuous Integration (CI) is one of the techniques practised in XP[7]. It
refers to the process of frequently committing small, incremental changes, which
have been verified to pass all unit tests, to a reference repository. Typically,
a build server automatically runs the build process to create deliverables and
collect test results and source code metrics, either at regular intervals, or for
every committed change, and presents the results in a very visible manner.

Through the visibility of up-to-date test results and source code metrics, CI
offers the advantage of providing immediate feedback to developers on the
quality, functionality and system-wide impact of their changes.

In the context of CDM, I use the open-source Jenkins CI server.

3.5 Architecture

At a high level, CDM’s architecture consists of a number of modules, organized
in layers, as shown in Figure 3.11.

At the lowest layer, cdm-common groups common functionality needed by both
client and server code. Apart from some helper classes, this mainly includes
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Figure 3.11 – CDM’s high-level architecture consists of a set of separate modules.

the representation of CRF metadata and structure, which are transmitted in
RPC calls between client and server, hence are required by both.

The cdm-server module, which depends on cdm-common, is responsible for
handling server-side communications and database management.

The cdm-client module handles client-side communications, user interface
and user interaction handling. It makes abstraction of the specific user
interface widgets used, handling only user interface logic, with cdm-client-gwt
attaching specific GWT widgets to cdm-client’s user interface logic. This
decoupling between user interface logic and widgets is achieved through the
use of the AbstractFactory design pattern[28], illustrated by Figure 3.12. In
this design, the NodeFactory interface forms the AbstractFactory pattern,
together with the interfaces derived from EntryNode. These reside in the
cdm-client module. Their implementations, namely the GwtNodeFactory class
and classes such as GwtTextEntryNode, GwtDateEntryNode, etc., are located
in the cdm-client-gwt module. Thus, in this design, module cdm-client-gwt
depends on module cdm-client. The organization of user interface code in
this manner, facilitates potential future implementation of other user interfaces,
such as desktop or tablet user interfaces, or integration in hospital IT systems,
such as UZ-Leuven’s Klinisch Werkstation (KWS). Indeed, a new user interface
would only require the implementation of an additional module, parallel to
cdm-client-gwt, using different widgets for implementing user interface logic.

Finally, module cdm-webapp provides an entrypoint to the application, and binds
module cdm-client’s AbstractFactory interface to its specific implementation
in cdm-client-gwt.

At an intermediate level, the software is designed around components, grouping
classes that cooperate to provide conceptually related functionality. Components
use other components’ functionality through special classes exhibiting the Facade
design pattern[28], and providing central access to the respective components’
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Figure 3.12 – CDM’s user interface logic and presentation are decoupled by
means of the AbstractFactory design pattern represented here. The NodeFactory
interface is an AbstractFactory, implemented by the GwtNodeFactory class.

functionality. At the class level, design patterns from Gamma et al.[28] are used
extensively to organize interaction between classes.

3.6 Server setup

The primary CDM server is hosted on a virtual private server operated by
Infrastructure as a Service (IaaS) provider Linode (http://www.linode.com),
who are responsible for monitoring hardware and handling related issues. The
operating system installed is Debian GNU/Linux v6.0.8, which I configured
to install security updates automatically. CDM runs within an open-source
Apache Tomcat servlet container. An SSL certificate, issued by TERENA SSL
Certificate Authority (CA), and expiring every three years, provides encrypted
communication between clients and server.

http://www.linode.com
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Figure 3.13 – CDM’s user interface. (Screenshot of the “Sonohysterography or
fluid” section, included in the IETA #1, #2, and #3 studies, as presented by
the CDM user interface.)

The virtual server additionally runs the MySQL Relational Database Manage-
ment System (RDBMS). Shell access is provided by OpenSSH, which provides
both secure and private communications.

A simple shell script, leveraging both the GNU Privacy Guard encryption
software and OpenSSH, creates daily backups and transfers them to a server
in a different geographical location, hosted at the KU Leuven Department of
Electrical Engineering (ESAT). Another shell script automates the deployment
of new CDM releases, keeping backups of previous, known good, releases, for
disaster recovery.

3.7 Results

I have developed a generic EDC software framework with a client-server
architecture, including a user-friendly web-based interface. This user interface
is available at https://cdm.esat.kuleuven.be and is shown in Figure 3.13.

https://cdm.esat.kuleuven.be
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D. Van Schoubroeck K. Van Tornout B. Virgilio

A. Votino L. Zannoni R. Zlotorowicz-Grochowska

Table 3.2 – Clinicians selected for participation in CDM survey. Of 42
participants, 28 responded, resulting in a 66.7% response rate.

Survey

In order to obtain user feedback about CDM’s EDC interface, I sent a request
for participation in an anonymous survey to the clinicians listed in Table 3.2.
This list includes any clinician who contributed at least 10 patient entries to
the IETA studies, or participated in an inter-rater agreement study using the
CDM-based interface described in Subsection 4.2.2. These selection criteria
should ensure participants have sufficient experience with CDM’s user interface
to be able to provide relevant feedback. Of these 42 clinicians, 28 responded,
for a response ratio of 66.7%.

The survey consisted of three parts, arranged on as many pages. In the first
part, survey participants indicated their level of agreement with a number of
statements, to enable a quantitative assessment of user satisfaction. I copied
these questions from an older survey I conducted among the participants of the
first CDM-based inter-rater agreement study, listed in Table 4.1. The second
part aimed to estimate how often and which problems users encounter. Finally,
using open-ended questions, the third part sollicited users’ feedback, about what
they do or do not like about CDM, and what could be improved, providing
useful information for prioritizing further CDM development.

Table 3.3 presents quantitative results of the multiple-choice questions present
in the first and second parts of the survey. As these results show, CDM users
are quite satisfied with CDM’s user-friendliness, and its capability to include
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VASs, as in Figure 3.3. Additionally, they were very enthusiastic about the
possibility to include pictograms. All would consider using CDM for their own
studies. A large majority of 78.6% of participants experienced problems for less
than 5% of their interactions with CDM.

Table 3.4 enumerates the survey’s open-ended questions, as well as some of their
most relevant answers. As this table shows, most frequently requested is the
ability to view and print information about patient entries that are complete.
Comprehensive survey results are available at https://www.surveymonkey.
com/results/SM-QDYK9B7/.

Software metrics

The size of the CDM project is examined in Table 3.5, for the different
modules separately. Note that, apart from data collection functionality, module
cdm-server includes data analysis functionality as well, adding to the module’s
size. The latter functionality will be discussed in detail in Chapter 6.

Analyzing test coverage results listed in Table 3.6 shows relatively low test
coverage for the cdm-client-gwt module, responsible for binding widgets
to the user interface logic, and the cdm-webapp module, which provides the
application’s entry point. The functionality of these modules cannot be verified
in isolation, by unit tests, explaining the low test coverage. As these modules
are of low complexity, and change very rarely, this does not negatively impact
software quality.

Modules cdm-common, cdm-server, and cdm-client, which do change
frequently, and do contain a lot of complexity, all have around 90% line and
branch coverage, guaranteeing excellent software quality.

Average line and branch coverages for the entire project, weighted to the number
of lines of production code, are 85% and 84%, respectively, providing good
overall test coverage.

The framework’s design and modularity ensure future extensibility. The
separation between user interface logic and widgets, for example, enables the
implementation of alternative user interfaces, such as desktop or tablet interfaces.

3.8 Conclusion

In this chapter, I have discussed several aspects of the EDC software component
I developed. While its development occurred in the context of the IETA studies,

https://www.surveymonkey.com/results/SM-QDYK9B7/
https://www.surveymonkey.com/results/SM-QDYK9B7/
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Question Score
1. Evaluation
1a. Please indicate your level of agreement with the following
statements (0 = no agreement; 5 = neutral; 10 = complete
agreement; N/A = unknown).
• CDM is user-friendly. 8.6
• The layout of studies is clear. 8.6
• The VAS is user-friendly. 8.1
• CDM’s VAS is a good alternative to a paper VAS. 8.2
• Pictograms help to clarify questions. 9.4
• Pictograms help to differentiate multiple-choice options. 9.2
• Pictograms next to multiple-choice options will improve
reliability.

9.3

Question Percentage
1b. Would you consider using CDM for your own studies?
• no 0%
• yes 100%

2. Software problems
2a. How frequently do you create a (new) patient entry with
CDM?
• < 1 per month 32.1%
• 1− 2 per month 35.7%
• 2− 10 per month 21.4%
• > 10 per month 10.7%
2b. Have you participated in an inter-rater agreement study?
• no 60.7%
• yes 39.3%
2c. Please estimate how often you encounter software
problems with CDM, expressed as a percentage of your
interactions with CDM.
• < 5% – less than 1 out of 20 78.6%
• 5− 10% – between 1 and 2 out of 20 14.3%
• 10− 30% – between 1 and 3 out of 10 7.1%
• > 30% – more than 3 out of 10 0%

Table 3.3 – Quantitative results from the multiple-choice questions in the CDM
survey.
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2. Software problems
2d. Please describe any problems you have encountered in CDM.

The program marks a question as unanswered when it has been
answered. Sometimes very slow, but this is probably dependent on
the internet browser

3. Good and bad
3a. Please describe what you like about CDM.

Data collection on an internet based database allow to use any
computer in my institution and even at home. In particular CDM is
very clear and simple
I can avoid use of paper
Most features, pictograms

3b. Please describe what you dislike about CDM.
Sometimes it is uncomfortable that we can not see the information
about our patients we have filled.
Too slow for many browsers, marks answered questions as unanswere
quite often

3c. Please describe three or more changes you would like to see in CDM.
These can be both changes to existing functionality or new features.
1. To see how many patiens I have filled. 2. To have some feedback -
is everything OK, maybe I am doing some mistakes when entering
patients data, maybe the study is finished and it is late to enter new
data.
[...] It should be possible to go back and retrieve the infroamtion
about each patient at any time (but not to change data of course) it
should be possible to print the full report including the histology I
did not understand the questions about MCQ: is there an MCQ test
in the clinical data miner?
More clarity about optional or not sections
Printing functionality. Intuitive screen for variable entry. Audit tools
for commercial studies

Table 3.4 – Open-ended questions listed in CDM survey, along with a selection
of the most relevant answers.
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Module Production code Test code
(SLOC) (SLOC)

cdm-common 5862 7023
cdm-server 15260 28109
cdm-client 3595 7607

cdm-client-gwt 4090 5123
cdm-webapp 321 177

Total 29128 48039

Table 3.5 – Source Lines of Code (SLOC) per module. Note that these numbers
include the line counts from the APIs which will be elaborated on in Chapter 6.

Module Line coverage Branch coverage
(%) (%)

cdm-common 91 94
cdm-server 92 90
cdm-client 88 91

cdm-client-gwt 53 42
cdm-webapp 34 100

Weighted average 85 84

Table 3.6 – Test coverage for the different modules, as ratios of lines and
branches covered, respectively. Averages are weighted according to the modules’
production code sizes from Table 3.5.

I designed it as a generic component for data collection in CRF-driven clinical
studies, with questionnaires defined by means of spreadsheets.

It has been well received for its user friendliness, and its web-based interface
considerably simplifies the organization of multi-centre studies, compared to
traditional client-server approaches. The integration of pictograms in the user
interface assists clinicians with the correct classification of patients.

Several factors contribute to CDM’s excellent maintainability. Both the TDD
approach and the extensive use of design patterns have promoted a loosely
coupled design, simplifying maintenance. Additionally, the extensive test suite,
resulting from the TDD approach, allowed to confidently apply changes. Without
it, the time spent on manually testing upgrades would have been prohibitive
for a project with a single developer.

CDM’s architecture, built around a set of modules, provides future extensibility:
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modules can be exchanged for other modules, allowing the implementation
of other user interfaces, enabling integration in hospital systems such as UZ-
Leuven’s KWS, or allowing to repurpose CDM for other uses. An example of
the latter will be presented in Chapter 4.





Chapter 4

Influence of pictograms on
data quality

Clinical studies require reliable data for drawing correct conclusions. In the
case of imaging-based modalities, however, data are subject to a sonologist’s
interpretation, leading to variability in the results. With Clinical Data Miner
(CDM)’s ability to integrate pictograms in its user interface, this chapter analyzes
if and how these pictograms influence data quality.

4.1 Introduction

In order for clinical studies to produce meaningful results, the collected data
have to be reliable. For variables such as patient age, weight, concentration of
substances in a blood sample, this can be easily attained. For other variables,
this may not be as straightforward.

When analyzing imaging modalities such as ultrasound images, for instance,
a sonologist will look for the absence or presence of certain characteristics, or
attempt to measure certain features in the image. Here, the quality of the
obtained data is influenced on four different levels:

• First, due to the nature of ultrasonography itself, the quality of the image,
from which the data are obtained, depends on various parameters, such as
the position of the ultrasound probe, its frequency, its angle, the pressure
applied, whether or not sonohysterography is used, the Body Mass Index

51
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(BMI) of the patient, the presence of acoustic shadows, etc. Finding the
optimal parameters for visualizing an image depends both on experience
of the sonologist as well as knowledge of the latest recommendations
regarding technologies to be used.

• Second, correctly recognizing patterns in ultrasound images can be
challenging. Often, widely differing pathologies may present with
virtually identical ultrasound images. Invasive endometrial cancer in
the myometrium and adenomyosis, for example, can produce very similar
ultrasound images. A correct interpretation of such images depends on
the experience and the ability of a sonologist.

• Third, a poorly designed Case Report Form (CRF) can prevent correct
reporting of patient data. Examples are categorical variables for which
categories are missing, or unclear instructions in the CRF. Some of
these design mistakes can be fixed after the study started. However,
an inadequate structure in the hierarchy of questions is very difficult to
mend after the fact. Such problems can be avoided by careful consideration
during the design stage of the study.

• Finally, a study participant may misinterpret a CRF’s question, or the
different categories of a categorical variable, due to lack of familiarity
with its terminology. In exploratory research aiming to find a diagnostic
model for a hitherto unmodelled disease, an important initial step is
to identify variables that may influence a diagnosis, and, if needed, to
define new terminology describing those variables and their possible values.
Hence, many researchers may initially be unfamiliar with the project’s
terminology.

The publication of consensus papers, such as Timmerman et al.[69], Condous
et al.[12], and Leone et al.[45], alleviates the latter problem to a certain extent.
However, in developing the CDM software framework, we aimed to improve it
even further, by enabling the integration of pictograms in CRFs. This allows
to clarify questions and/or the differences between the possible answers to a
question. In this chapter, I describe how we verified if the addition of pictograms
indeed improves data quality. This discussion starts in Section 4.2 with a
description of study set-up, the user interface developed for this study, and the
method of analysis. Results are presented in Section 4.3, for variables from the
“unenhanced ultrasound” and “sonohysterography” sections of the International
Endometrial Tumour Analysis (IETA) studies, respectively. Finally, conclusions
are listed in Section 4.4.
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D. Van Schoubroeck
P. Sladkevicius
J. Heymans

L. Jokubkiene
L. Zannoni

Table 4.1 – List of study participants.

4.2 Methods

This section starts with an explanation of how this study was conceived. Then
follows a discussion of the Electronic Data Capture (EDC) user interface that I
developed for this study, as well as a more general one derived from it. It ends
with a description of the method used to analyze the collected data.

4.2.1 Study design

In order to examine how adding pictograms to a CRF affects data quality,
I organized a study that required the evaluation of a set of one hundred
anonymized ultrasound images. This set comprised fifty images obtained by
means of unenhanced ultrasound technology, and fifty using sonohysterography,
all supplied by T. Van den Bosch. D. Timmerman contacted five clinicians,
listed in Table 4.1, all specialized in gynaecological ultrasound, who agreed to
participate in the study.

Unenhanced ultrasound and sonohysterographic images were evaluated according
to different questionnaires, listed in subsections B.1.1 and B.1.2, respectively.
These were derived from questionnaires used in the IETA studies. Both
questionnaires were combined into a single CRF, with the top question allowing
study participants to select between either.

During the first phase, for each ultrasound image, participants were requested
to fill in a CRF without pictograms, while during the second phase, pictograms
were added to some of the variables in the CRF.

In order to minimize potential learning effects, we observed a minimum interval
of two weeks between both phases. Additionally, the user interface that I
developed for this study randomizes the order in which images are presented to
study participants.

Inter-rater agreement changes for variables that gained pictograms in the second
phase of the study resulted not only from the addition of pictograms, but
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also from a learning effect caused by seeing the same set of images twice. By
randomizing the image order, this latter effect should be reduced. By comparing
these changes with those experienced by variables with no pictograms in either
phase of the study, it should be possible to estimate the magnitude of the two
effects.

4.2.2 ImgStudy user interface

Rather than providing the raters with a set of ultrasound images and a
questionnaire to fill in for each ultrasound image, I developed a custom user
interface for conducting inter-rater agreement studies, starting from the EDC
software component described in Chapter 3. While the normal EDC user
interface displays a field for patient identification on top of a questionnaire, the
custom user interface shows an image next to a questionnaire containing the
variables to be evaluated. The image is selected randomly from a study specific
directory containing the images to be evaluated. This random order in which
images are shown aims to reduce the learning effect between different phases of
a same study. Finally, for usability, the interface shows the remaining number of
images to be evaluated. The resulting user interface is demonstrated in figures
4.1 and 4.2, for the study phases without and with pictograms, respectively.

Development of this user interface occurred in the ImgStudy software
project, separate from the CDM software framework. Reusing the latter’s
cdm-common, cdm-client, cdm-client-gwt, and cdm-server components
drastically reduced the extra development, leaving only the following to be
implemented:

• A new RPC call, modelled in Figure 4.3, allowing clients to request a list of
images that still need to be evaluated. This list contains the images from
the study specific image directory, excluding images that were already
evaluated by the rater;

• A different Model-View-Controller (MVC) software pattern implemen-
tation, including a different layout view and controller, adapted to the
needs of inter-rater agreement studies;

• A new application entrypoint, calling into the new MVC pattern.

Through extensive reuse of the CDM software components, the implementation
of this user interface only required 782 new lines of Java code.
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https://aulne8.esat.kuleuven.be/imgStudy-0.0.1-SNAPSHOT/

Figure 4.1 – CRF without pictograms for the first phase of the study. (Screenshot
of the “Observer variability without images” section, included in the study
investigating the influence of pictograms on inter-rater agreement, as presented
by the CDM user interface.)

4.2.3 MediaStudy user interface

The ImgStudy user interface described in subsection 4.2.2 has proven very useful
for determining inter-rater agreement of the subjective assessment of features
in imaging modalities. It has enabled the organization of a number of such
studies, which are listed in more detail in Appendix A. It is, however, limited to
the evaluation of images, and does not support other media types, whereas the
IETA #2 study required assessment not of ultrasound images, but of ultrasound
video clips. I created the MediaStudy prototype, based on the user interface
from the previous subsection, in order to support the latter.

Since the HTML5 standard for embedding video clips in web pages had only
just been published[15], support by the major browsers for this standard was
still very limited at the time. Some of the most recent browsers had some
support, but no single video codec was supported by all of them. As CDM
avoids imposing browser requirements, it was preferrable to avoid imposing any
for this user interface, so another solution was needed.

Developing a custom solution for viewing video clips, based on Adobe® Flag®

technology, would require a substantial time investment. Instead, the established
solution at the time was to use a video website such as YouTube™. This site
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https://aulne8.esat.kuleuven.be/imgStudy-0.0.1-SNAPSHOT/

Figure 4.2 – CRF with pictograms for the second phase of the study. Except
for the added pictograms, the questionnaire is identical to that of Figure 4.1.
(Screenshot of the “Observer variability with images” section, included in the
study investigating the influence of pictograms on inter-rater agreement, as
presented by the CDM user interface.)

Figure 4.3 – Unified Modelling Language (UML) diagram of the RPC call
introduced in the inter-rater agreement study user interface. With this call, a
user’s client can obtain a list of images that remain to be evaluated.
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returns a Uniform Resource Identifier (URI) for each uploaded video clip, which
can be embedded in other web pages. Since these URIs end with an opaque
string, consisting of random sequences of letters, digits, and punctuation, and
by keeping them unlisted on YouTube™, these videos are only accessible to
study participants.

An extension to the CRF parsing code in the cdm-server module provided
a mechanism to supply a list of URIs, through the parsing of an extra page
in the study definition spreadsheet. Rather than creating separate software
projects for handling the different supported media types, however, and with
the eventual aim to reintegrate this specialized user interface in the main CDM
software project, I generalized the server-side changes as indicated in Figure 4.4
to handle different types of study. The type of study is specified in the study
definition file, and can currently be either “consult”, “image”, or “youtube”.
These respectively handle patient visits, inter-rater agreement studies based on
imaging modalities, and inter-rater agreement studies using video clips. For each
study type, a specific StudyTypeServerSupport object is registered at startup.
These StudyTypeServerSupport objects are responsible for constructing study
type specific Study objects. The MediaTypeServerSupport class, for example,
will not only parse the study’s CRF structure, but will additionally parse
a list of media URIs, which is supplied to the MediaStudy object. The
StudyTypeServerSupport objects are registered at runtime by automatically
loaded plugin classes.

As was the case for the user interface from Subsection 4.2.2, an RPC protocol
was needed to enable querying which media objects still need to be evaluated.
This protocol is represented in Figure 4.5.

So far, only the server code has a plugin mechanism for supporting different
study types. I intend to implement similar functionality on the client side
though. When completed, this will enable the integration of the user interface
for inter-rater agreement studies with that for regular patient data collection.

4.2.4 Analysis

Data quality requires high inter-rater agreement levels. To measure this inter-
rater agreement, the analysis makes use of Fleiss’ κ coefficient[23]. The jackknife
sampling technique[19] provided sample distributions for these κ-coefficients.
These allowed to calculate inter-rater agreement estimates and their variance.

Due to the CRF’s hierarchical structure, participants could only enter certain
combinations of variables for the evaluation of images, with other variables
structurally missing. For calculating inter-rater agreement of a certain variable,
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Figure 4.4 – Main server classes responsible for handling of generic study types.

Figure 4.5 – Representation of the RPC call implemented by the generalized
inter-rater agreement study user interface. This RPC mechanism allows to obtain
a list of Media objects that a user still needs to evaluate.
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I only considered those images for which all raters evaluated that variable.
Notably, this excluded eight sonohysterography images that any of the raters
misinterpreted as unenhanced ultrasound images. No inter-rater agreement was
calculated for the variable “colour score” recorded as a continuous variable on
a VAS, as most techniques for evaluating inter-rater agreement of continuous
variables require conversion to an ordinal variable, which was, for “colour score”,
already present in the study’s CRF as a separate variable.

4.3 Results

This section discusses results from our study for “unenhanced ultrasound” and
“sonohysterography” variables in the following subsections, respectively.

4.3.1 Unenhanced ultrasound

Fleiss’ κ coefficients for the unenhanced ultrasound variables are listed in
Table 4.2 and depicted in Figure 4.6. Variable “echogenicity”, indicated in
dark grey, did not have pictograms in either phase. Contrary to what I had
expected, the κ coefficient difference between the two phases of the study was
not negligible, with an improvement of 4.7% in the second phase. This suggests
a modest learning effect occurred, possibly due to the relatively small time
interval of two weeks between phases.

The other variables, which did obtain pictograms in the second phase, also
experienced substantial differences in inter-rater agreement between phases.
Except for variable “vascular pattern”, their inter-rater agreements improved
considerably more than for the “echogenicity” variable, with improvements
between 20.4% and 66.5%, suggesting that at least part of these improvements
should be attributed to the addition of pictograms. Variable “vascular pattern”
exhibited deteriorated inter-rater agreement, with a decrease of −12.4%,
suggesting that its pictograms confused participants rather than helped them.

4.3.2 Sonohysterography

Results for sonohysterography are shown in Table 4.3 and Figure 4.7. As in
Subsection 4.3.1, dark grey rows represent variables for which no pictograms
were available in either phase of the study. The other variables did receive
pictograms in the second phase.
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Figure 4.6 – Boxplot comparing inter-rater agreement between phases 1 and 2
for the different unenhanced ultrasound variables. Variables marked with (*) did
not have pictograms in either phase of the study.

Inter-rater agreement for the variables without additional pictograms in the
second phase differed considerably between phases, except for variable “lesion
vascular pattern”. Moreover, percentage differences varied widely between these
variables, ranging from a deterioration of −60.8% to an improvement of +19.5%.
Thus, contrary to what I had expected, the learning effect for these variables
did not result in comparable improvements for these variables.

For the variables that did obtain pictograms, percentage differences exhibited a
similar range, between −65.9% and +16.2%. Hence, no clear conclusions can
be drawn from these results.
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Figure 4.7 – Boxplot comparing inter-rater agreement between phases 1 and 2
for the different sonohysterography variables. Variables marked with (*) did not
have pictograms in either phase of the study.

4.4 Conclusion

From the results for the sonohysterography variables clearly follows that the
assumption that variables with no pictograms in either phase of the study
would not experience a learning effect, or even that the learning effect would be
comparable for these variables, was invalid. Consequently, using these variables
as controls for the variables that did obtain pictograms in the second phase,
did not provide an optimal study set-up for analyzing the effect of pictograms
on inter-rater agreement. In hindsight, a better set-up would have provided a
control value for each variable separately, by including more participants in the
study, and having half of them evaluate exactly the same questionnaire twice,
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while the other half would be shown pictograms during the second phase.

For the unenhanced ultrasound variables, results do seem to suggest that the
addition of pictograms does influence Fleiss’ κ coefficient, in all cases but one
leading to improved inter-rater agreement.

The user interface I implemented for this study, and the later variant for IETA
#2 have proven very effective for organizing inter-rater agreement studies. They
have since been used in the context of several other such studies, discussed in
further detail in Appendix A. Though the integration of ultrasound images
in a web browser, rather than displaying them on the high-resolution screens
of ultrasound machines, decreases the image quality, likely biasing the results
somewhat, it has proven to deliver useful results, especially in comparing data
quality provided by different technologies. Moreover, its ease of use considerably
simplifies both the organization of and participation in inter-rater agreement
studies. This has often resulted in very positive feedback about the user
interface.

With the important role the reliability of clinical variables plays in the quality
of diagnostic models, this software can be an invaluable tool for clinical research.
Using it to conduct an inter-rater agreement study, prior to starting diagnostic
model research, can provide an interesting insight in the reliability of the
recorded variables and the effectiveness of added pictograms.



Chapter 5

Feasibility of automating
machine-learning

Logistic regression is a commonly used machine-learning algorithm in diagnostic
modelling. In order for it to produce models with good predictive performance,
however, it requires a complex, time-consuming process, holding back
automation.

This chapter examines if more sophisticated algorithms, such as Least-Squares
Support Vector Machines (LS-SVM), necessitate the same preprocessing steps,
or if they are able to produce good models directly from raw data. The latter
would enable more extensive automation of the machine-learning workflow,
which could considerably accelerate diagnostic model research.

5.1 Introduction

Deriving diagnostic models from patient data using machine-learning techniques
typically involves a complex, time-consuming process of linearization of variables,
analysis of second-order effects, and removal of redundant variables, in order
to optimize the data format for subsequent processing by machine-learning
algorithms. Using logistic regression, a commonly used classification algorithm
for medical diagnostics, such preprocessing steps are required to obtain models
that are able to make predictions sufficiently accurately. The complexity of
these preprocessing steps limits the options for automation of the machine-

65
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learning workflow, however, with time-consuming, largely manual preprocessing
procedures as a result.

The results from this chapter show that, for the case of the International Ovarian
Tumour Analysis (IOTA) data set, sophisticated, non-linear classifiers perform
as well on raw data as more traditional classifiers on preprocessed data. This
observation paves the way for more integral automation of the machine-learning
workflow, which could therefore be integrated in Electronic Data Capture (EDC)
software components.

This chapter starts with a description of the International Ovarian Tumour
Analysis (IOTA) data set, which is used for the present analysis. Following that,
the applied machine-learning algorithms are briefly introduced. Next, I define
some common predictive performance measures, and explain the workflow used
for calculating learning curves. The chapter concludes with an analysis of the
results, and the conclusions drawn from this analysis.

5.2 Data set

I based the following analysis on data collected by the multi-centric IOTA
consortium – an international collaboration of gynaecologists aiming to
improve ovarian tumour diagnosis, in order to positively affect patient survival.
Their consensus paper[69] standardizes terms and definitions for describing
sonographic features of ovarian tumours, including ovarian cancer, which is the
most important gynaecologic cause of cancer deaths among women[22, 41]. The
IOTA consortium based the Case Report Form (CRF) utilized during patient
data collection on these terms and definitions, resulting in a data set from
which several diagnostic models[70, 72, 73] have been derived since. As shown
in Lu et al.[50] and Van Holsbeke et al.[77], the predictive performances of
these models outperform the Risk of Malignancy Index (RMI)[39], the current
standard model used for diagnosing ovarian tumours in UK hospitals.

The patient data used in the present analysis, consist of information from
phases 1, 1b and 2 of the IOTA database, for a total of N = 3511 data
points. These were collected between the years 1999 and 2007 by gynaecological
sonologists from 21 different centres. The data were curated and collected
in a spreadsheet containing 70 features, two of which describe multi-class
(Outcome) and binary (outcome1) target variables. The latter, distinguishing
between malignancy and benignity, was withheld as output variable. Features
not relevant to the learning problem (patientid, Set), containing text
(Diagnosis, Presumed diagnosis), or with missing values (FIGO stage,
FIGO a, CA125, PMB, prev_oopherectomy, ratiopaples, papbase1, papbase2,
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Phase Center centertype1 centertype2
Age famhistovca famhistbrca pershistovca

pershistbrca menoyn Parity nullipara
hysterectomy hormtherapy bilateral Side

lesiond1 lesiond2 lesiond3 ovaryd1
ovaryd2 ovaryd3 pain locularity

nrloculescat solidd1 solidd2 solidd3
papillation papnr papheight papflow
papsmooth wallreg incomplseptum Shadows

Echogenicity colscore venous PSV
TAMXV RI PI Ascites

Free_fluid fluid

Table 5.1 – Input features of the “raw” IOTA data set.

acoustic_streaming, septum, Metastases, Crescent_sign) were discarded,
as well as clinicians’ subjective assessments regarding patient outcomes (subjass,
subjprob, Origin1).

The data further include “derived” features, some of which were introduced
because they make intuitive sense, while others were obtained through a
complex, manual preprocessing process[3], involving feature linearization, and
introduction of second-order effects. The variables derived intuitively include
lesdmax, soldmaxorig, lesvol, solvol, while the variables obtained through
complex preprocessing comprise soldmax, and ratiosolles. Table 5.3 shows
their respective definitions. Neither the addition of intuitively derived variables,
nor the complex preprocessing are easily automated.

In the present discussion, I consider two data sets: one that does not include
these derived variables, called the “raw data set”, consisting of 46 variables,
and another that does include them, the “preprocessed data set”, with 52
variables. The features included in both sets are listed in Table 5.1 and
Table 5.2, respectively.

5.3 Classification

This section introduces the classification algorithms used in this chapter.
They include both logistic regression and LS-SVM classifiers. For better
understanding, a description of Support Vector Machines (SVMs) precedes
that of LS-SVM.
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Phase Center centertype1 centertype2
Age famhistovca famhistbrca pershistovca

pershistbrca menoyn Parity nullipara
hysterectomy hormtherapy bilateral Side

lesiond1 lesiond2 lesiond3 lesvol
lesdmax ovaryd1 ovaryd2 ovaryd3

pain locularity nrloculescat solidd1
solidd2 solidd3 solvol soldmax

soldmaxorig ratiosolles papillation papnr
papheight papflow papsmooth wallreg

incomplseptum Shadows Echogenicity colscore
venous PSV TAMXV RI

PI Ascites Free_fluid fluid

Table 5.2 – Input features of the “preprocessed” IOTA data set. Derived features,
obtained intuitively or by preprocessing, are enclosed in a black box.

Variable Definition
lesdmax max(lesiond1, lesiond2, lesiond3)
soldmaxorig max(solidd1, solidd2, solidd3)
lesvol π

6000 · lesiond1 · lesiond2 · lesiond3
solvol π

6000 · sold1 · sold2 · sold3
soldmax min(soldmaxorig, 50)
ratiosolles solvol

lesvol

Table 5.3 – Definition of “derived” variables used in the generation of the IOTA
model. While the introduction of the first four makes intuitive sense, the latter
two require an elaborate, time-consuming analysis, described in Ameye[3].

5.3.1 Logistic regression

Logistic regression[36, 2] belongs to the family of Generalized Linear Models
(GLMs). These model an outcome variable as the output of a link function
applied to a linear combination of input variables. In the case of logistic
regression, this link function is the logistic function P (t) = 1

1+exp(−t) . Hence,
logistic regression models have the following general form, with x an n-
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dimensional input vector:

π(x) = 1
1+exp(−βT x′)

with: x = [x1 x2 . . . xn]T

x′ =
[
1 xT]T .

The outcome variable y is dichotomous, with values encoded as 0 or 1. The
result of π(x) lies between 0 and 1, and should be interpreted as the probability
that the outcome has value 1, given input vector x:

Pr(y = 1|x) = π(x).

Logistic regression models aim to maximize the logarithm of the model’s
likelihood function, which is solved using gradient descent methods. Given
input vectors xi ∈ Rn and corresponding binary outcomes yi, encoded as 0 or
1, the optimization problem becomes:

max
β

N∑
i=1

yi ln[π(xi)] + (1− yi) ln[1− π(xi)].

Their popularity in medical diagnostic models can partly be attributed to
tradition. Additionally, however, their intuitive interpretability can be an
important advantage in medical contexts, as they can provide an insight into
which input parameters primarily influence outcome. Moreover, since they
produce probability estimates of the outcome, they lead to more informed
risk assessments than would be possible with models delivering only binary
predictions.

5.3.2 Support Vector Machines

Though SVM are not used in this chapter’s analysis, LS-SVM are. In order to
put the latter in their historical perspective, I briefly describe the evolution of
SVM here.

Original Support Vector Machines formulation

While they have been extended to more complex learning problems since, in their
original formulation by Vapnik and Lerner[80], SVM aim to find a hyperplane
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x2

A

B

x1
Figure 5.1 – In their most basic form, SVM find a hyperplane separating the
two classes of a linearly separable data set. As this figure intuitively shows,
hyperplanes with a wider margin devoid of data points around them, will tend
to exhibit better generalization. (© Fabian Buërger / Wikimedia commons /
CC-BY-SA-3.0 / GFDL)

separating the data points belonging to two distinct, strictly linearly separable
classes in a training set.

More formally, given a training set {(xi, yi) ∈ Rn × {−1,+1}}Ni=1 of N data
points, with n-dimensional input vectors xi, and binary outcome variables
yi ∈ {−1,+1}, strict linear separability implies that a function exists of the
form:

f(x) = wTx + b,

such that f(xi) > 0 for yi = +1, and f(xi) < 0 for yi = −1, or, more generally:

yi f(xi) > 0, i = 1, . . . , N.

The hyperplane defined by f(x) = 0 thus separates the data points from both
classes perfectly. This strict separation implies that a value ε > 0 exists,
such that yif(xi) ≥ ε, i = 1, . . . , N , defining a margin around the separating
hyperplane devoid of data points. Thus, without loss of generality, we can
rescale w and b by 1

ε , such that:

yi f(xi) = yi
(
wTxi + b

)
≥ 1, i = 1, . . . , N.

As demonstrated in Figure 5.1, intuitively, good generalization requires
maximizing the width of this margin around the separating hyperplane. This

http://creativecommons.org/licenses/by-sa/3.0/
http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
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corresponds to minimizing ‖w‖. Mathematically, these conditions are expressed
as a Quadratic Programming (QP) optimization problem as follows:

min
w,b

1
2wTw

subject to yi
(
wTxi + b

)
≥ 1, i = 1, . . . , N.

(5.1)

This corresponds to the original SVM formulation as described in Vapnik and
Lerner[80]. Because they aim to maximize the width of the margin around the
separating hyperplane, SVM are called “maximal margin classifiers”.

Extension to non-separable data sets

Since few data sets are linearly separable, Cortes and Vapnik[14] generalized
the formulation of (5.1), with the introduction of a “soft margin”, to:

min
w,b

1
2wTw + C

N∑
i=1

ξi

subject to yi
(
wTxi + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , N.

This introduces “slack variables” ξi into the optimization problem, allowing a
limited amount of overlap between data classes. As a result, it is able to provide
solutions in situations for which the original formulation from (5.1) would be
unable to provide one.

This formulation introduces a hyperparameter C, which allows to make the
following trade-off: If C is low, the optimization problem’s objective function will
be dominated by its first term, 1

2 wTw, and will therefore favour solutions with
a large margin, potentially at the expense of misclassifications in the training set.
If, on the other hand, C is high, solutions will tend to avoid misclassification
of training data, sacrificing margin width. A good model will strike a balance
between maximizing margin width on the one hand, and minimizing training
data misclassifications on the other, by tuning the hyperparameter C.

Extension to non-linear models

The aforementioned SVM formulations are only capable of modelling data if
their underlying model behaves in a linear way. This can be alleviated by
introducing a feature map ϕ : Rn → Rm : xi 7→ ϕ(xi), mapping the input space
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to a feature space, in which the transformed data can be separated linearly. The
SVM formulation will therefore be applied to the data mapped to the feature
space, resulting in the following problem:

min
w,b

1
2wTw + C

N∑
i=1

ξi

subject to yi
(
wTϕ(xi) + b

)
≥ 1− ξi

ξi ≥ 0, i = 1, . . . , N.

(5.2)

The problem is that usually this ϕ(xi) mapping between input space and
feature space is unknown, and may map to an infinite-dimensional feature space,
precluding use of the above formulation. To solve this, one formulates the
Lagrangian dual problem[8] of (5.2) as follows:

max
α
−1

2

N∑
i=1

N∑
j=1

yiyjϕ(xi)Tϕ(xj)αiαj +
N∑
i=1

αi

subject to
∑N
i=1 αiyi = 0

αi ≥ 0, i = 1, . . . , N.

(5.3)

Since in this equation, the mapping function ϕ(xi) only appears in the inner
product ϕ(xi)Tϕ(xj) of pairs of data points mapped into feature space, the
kernel trick may be applied, replacing this inner product by the kernel function
defined as follows:

K : Rn × Rn → R : (xi,xj) 7→ ϕ(xi)Tϕ(xj), (5.4)

so that, by substituting (5.4) into (5.3), the dual of the SVM formulation
becomes the following QP optimization problem:

max
α
−1

2

N∑
i=1

N∑
j=1

yiyjK(xi,xj)αiαj +
N∑
i=1

αj

subject to
∑N
i=1 αiyi = 0

αi ≥ 0, i = 1, . . . , N.

(5.5)

Thus, the kernel trick enables reformulating the dual SVM problem, without
using the mapping function ϕ(xi) explicitly, utilizing the kernel function
K(xi,xj) instead, thereby solving the aforementioned issues.



CLASSIFICATION 73

5.3.3 Kernel functions

Kernel functions are defined as the inner product of pairs of mapped data points,
which can be interpreted as a measure of similarity between these mapped points.
Thus, when using the kernel trick to design kernel functions K(xi, xj) directly,
avoiding the definition of a mapping function ϕ(xi, xj), they should express
a measure of similarity between data points in feature space. Constructing
a kernel function thus is usually easier than it is to define a corresponding,
potentially infinite-dimensional, mapping function ϕ(xi). Care needs to be
taken, however, to construct kernel functions that can be decomposed as an
inner product of mapping functions, as specified in (5.4). Mercer’s theorem[52]
provides a sufficient condition for this to be the case, namely that K(xi,xj)
be positive semi-definite. By requiring the kernel function to be positive semi-
definite, (5.5) additionally becomes a convex optimization problem, for which
efficient solving techniques exist.

The kernel functions used in the remainder of this chapter are:

• The linear kernel, which is defined as:

Klinear(xi,xj) = xT
i xj = xi · xj,

which is the inner product of its inputs. The corresponding mapping ϕ(xi)
is the identity function. Using this kernel, the SVM problem reduces to
the linearly separable case. This kernel will only provide good results if
the process generating the data behaves linearly.

• The formula for the Radial Basis Function (RBF) kernel is provided by:

Krbf (xi,xj) = exp
(
−‖xi − xj‖

2σ2

)
.

RBF kernels are universal kernels[53], meaning that, with proper
regularization and sufficient training data, they can be made to
approximate any arbitrary function. Thus, for data sets generated by an
unknown non-linear process, the RBF kernel constitutes an appropriate
choice.

5.3.4 Least-Squares Support Vector Machines

LS-SVM are a relatively recent development, derived from SVM. They were
developed by Suykens and Vandewalle[67], and saw their initial publication in
1999. By modifying the formulation of the error terms, instead of the dual
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problem being a QP problem, as is the case for standard SVM, it becomes an
elegant matrix equation, for which efficient solvers are readily available.

Assume a training set {(xi, yi) ∈ Rn × {−1,+1}}Ni=1. Starting from the non-
linear SVM formulation of (5.2), the error terms are squared, and the inequalities
are replaced by equalities, resulting in the following primal problem:

min
w,b,e

1
2wTw + γ

N∑
i=1

e2
i

subject to yi
(
wTϕ(xi) + b

)
= 1− ei, i = 1, . . . , N.

(5.6)

As for regular SVM, this can be converted to a dual problem, which, in the case
of LS-SVM, reduces to the following:[

0 yT

y Ω + I/γ

] [
b
α

]
=
[

0
1v

]
with Ω = [yiyjK(xi,xj)].

(5.7)

Thus, while regular SVM requires solving a QP optimization problem, LS-
SVM’s dual problem produces a matrix equation, which is computationally
considerably less intensive, and for which efficient solvers exist. This results
in shorter training times for LS-SVM compared to SVM. On the other hand,
LS-SVM models lack the sparsity of SVM models. Using LS-SVM models
instead of SVM models may therefore slightly increase the time required for
making predictions.

5.4 Model evaluation

Classification models can only be used as diagnostic models if they have sufficient
predictive performance. In other words, they should be sufficiently able to
correctly predict the outcomes for previously unseen input data. Given a
test data set, separate from the training data, for which both input data and
outcomes are known, several measures exist to evaluate a model’s predictive
performance[56]. This subsection defines some of these.

In case of a binary classifier, both the actual and predicted outcomes take on
two possible values, which, in the case of diagnostic models, usually correspond
with presence or absence of disease. To keep the discussion general, These
will be labelled “positive” and “negative”, respectively. A classifier may
predict outcomes correctly or incorrectly, corresponding with “true” and “false”
outcomes. For any particular input data point, four combinations are thus
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Actual outcome
positive negative

Predicted
outcome

positive true positive
(TP)

false positive
(FP)

negative false negative
(FN)

true negative
(TN)

Table 5.4 – Contingency table of actual versus predicted outcome.

possible, as indicated in the contingency table from Table 5.4: a positive
outcome predicted as positive (TP), a positive outcome predicted as negative
(FN), a negative outcome predicted as positive (FP), or a negative outcome
predicted as negative (TN). By counting the number of occurrences of each
such combination in the predictions, made by a model for a test data set, the
following performance measures can be defined:

accuracy = TP + TN
TP + FN + FP + TN

sensitivity = TP
TP + FN

false negative rate (FNR) = FN
TP + FN

specificity = TN
TN + FP

false positive rate (FPR) = FP
TN + FP

Of these measures, accuracy is the most intuitive one, as it simply represents
the ratio of correctly predicted data points. This metric has several drawbacks,
however[60, 37, 44]. For highly unbalanced data sets, for example, it is not very
informative. Sensitivity expresses the ratio of positive data points correctly
identified as such, whereas specificity constitutes the ratio of negative data
points correctly predicted. Thus, diagnostic tests, which are used in cases of
suspected, life-threatening disease, require high sensitivity to avoid missing
affected patients (type II error). By contrast, for a screening test, to be applied
to the general population, high specificity is of prime importance, to avoid
too many interventions based on false alarms (type I error). For a specific
application, ideally, the relative risks associated with type I and type II errors
are known, enabling the optimization of models based on measures that assign
different costs to these risks[35, 82, 18, 56].
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Figure 5.2 – General form of ROC curves. The closer they reach 100% sensitivity
and specificity, corresponding with the (0, 1) coordinate in the figure, the better
the models.

For a general performance evaluation of classification algorithms, no assumptions
about the values of these relative risks are possible, thus requiring different
performance measures. Neither sensitivity nor specificity are sufficient by
themselves. Moreover, they suffer from the fact that their value depends on the
threshold used to distinguish positive from negative predictions. This can be
seen by plotting sensitivity and specificity as the model’s classification threshold
is varied. Graphed in a plane formed by axes representing FPR = 1− specificity
and sensitivity, respectively, this produces a Receiver Operating Characteristic
(ROC) curve, such as in Figure 5.2. ROC curves of better models will approach
the (0, 1) coordinate closer. The latter corresponds with higher Area under
the ROC curve (AUC), which will therefore be used as a measure of predictive
performance. Since it is calculated from various sensitivity-specificity trade-offs,
resulting from different classification thresholds, the Area under the ROC curve
(AUC) will provide a summary measure of a model’s behaviour, independent of
the classification threshold used, and is therefore commonly used for comparing
predictive performance of classification algorithms.

5.5 Learning curves

Apart from the classification algorithm used, sample size is one of the primary
factors influencing a model’s predictive performance. In order to obtain a better
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Figure 5.3 – Workflow used for obtaining learning curves, graphing AUC,
sensitivity, specificity, and accuracy with regard to sample size.

understanding of the relative behaviours of different classifiers, it is interesting
to measure their predictive performance with respect to sample size, using
learning curves. Additionally, since classifiers exhibit a certain variability in
their results, for a comparison of classifiers to be valid, one should take this
variability into account.

These two considerations led to the machine-learning workflow from Figure 5.3.
Starting from the full set of N = 3511 data points, I generated fifty splits, each
consisting of 70% training and 30% test data, randomly stratified to the binary
outcome variable. For each such split, I drew samples from the training set, of
sizes increasing by 50 data points, which served to generate models. Testing
these models against the corresponding test data set then allowed to produce
learning curves for accuracy, sensitivity, specificity, and AUC. Combining results
from the 50 training-test splits allowed to obtain median values and interquartile
range (IQR) for these respective learning curves, providing a more complete
insight in the relative performances of different algorithms.

5.6 Analysis

I generated learning curves, as described in the previous section, for different
combinations of classification algorithms, applied to the data set described
in Section 5.2, both using raw features, as well as derived features, obtained
intuitively or through preprocessing. The classification algorithms were logistic
regression and LS-SVM, the latter both with linear and RBF kernels. For
each combination, I calculated accuracy, sensitivity, specificity, and AUC.
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For brevity, I only present results for AUC in this chapter, which, as stated
in Section 5.4, provide a useful summary result of a classifier’s predictive
performance, independent of the classification threshold used. I list the main
results in this section.

First, comparing performance of the three different classifiers, as applied to the
raw IOTA data, Figure 5.4 clearly shows LS-SVM’s considerable superiority
at low sample sizes, using either linear or RBF kernels, compared to logistic
regression. At these sample sizes, both linear and RBF kernels perform similarly.
LS-SVM’s superiority is likely due to its built-in regularization mechanism,
which counteracts overfitting when samples are small with respect to the
number of variables. As sample sizes grow, and performance improvements
for growing sample sizes become more modest, the performance gap between
logistic regression and LS-SVM with linear kernel diminishes, as both essentially
behave linearly. Under these conditions, LS-SVM with RBF kernel outperforms
the other two classifiers, since, given sufficient data points, it is able to capture
the data’s non-linearity, which linear models cannot. The learning curves from
Figure 5.4 thus convey a comprehensive picture of the relative performances of
LS-SVM and logistic regression for a range of sample sizes, explaining reports
both of similar performance for large samples[76, 72, 74, 77], as well as of
LS-SVM outperforming logistic regression for low sample sizes[59, 50]. In either
case, without additional knowledge about which part of the learning curve a
certain sample size belongs to, LS-SVM generally provides performance as good
as, or better than, logistic regression, if used in conjunction with an RBF kernel.

The second plot, from Figure 5.5, clearly answers the main question of
this chapter. It compares performance of logistic regression, applied to the
preprocessed data set, with that of LS-SVM, applied to the raw data, with
both linear and RBF kernels. Here, at low sample sizes, LS-SVM with linear
kernel, applied to the raw IOTA data without derived features, exhibits similar
performance as logistic regression, applied to the preprocessed data with the
derived features. LS-SVM with RBF kernel, applied to the raw data, meanwhile,
outperforms both. At low sample sizes, the use of LS-SVM thus obviates the
need for the time-consuming, manual analysis for defining the derived variables
from Table 5.3. At high sample sizes, however, logistic regression is able to take
advantage of these derived variables, surpassing performance of LS-SVM with
linear kernel, applied to a data set without these extra variables. However, it is
not able to surpass LS-SVM’s performance on raw data when an RBF kernel is
used.

Figure 5.6 shows some of these same comparisons for training sample sizes
of 250 and 2450 patient entries. This shows that, when applied to 250 raw
data points, both LS-SVM with linear and RBF kernels outperform logistic
regression, whether the latter be applied to the raw or preprocessed data sets.
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Figure 5.4 – AUC learning curves obtained from applying logistic regression,
LS-SVM using a linear kernel, and LS-SVM using an RBF kernel, to the raw
IOTA variables listed in Table 5.1. Thick lines indicate median values, with the
region around them showing IQR.

At a sample size of 2450 data points, when applied to the raw IOTA data, both
generalized linear models – logistic regression and LS-SVM with a linear kernel
– get similar performance, with both outperformed by LS-SVM with RBF kernel.
By contrast, when applying logistic regression to the preprocessed data, it takes
advantage of the derived variables to reach similar performance as LS-SVM
with RBF kernel applied to the raw data set.

Finally, the similarity of the two curves in Figure 5.7, of LS-SVM with an
RBF kernel applied to the raw and preprocessed data, respectively, shows that
LS-SVM is well capable of modelling the data’s non-linearity, requiring neither
the addition of intuitively derived variables, nor complex prior preprocessing
involving linearization and introduction of second-order effects.

Thus, when aiming for maximum AUC, without additional prior knowledge,
LS-SVM with an RBF kernel constitutes a safe choice in all situations. It
provides the added advantage of not requiring any preprocessing to obtain this
performance, which can otherwise be a complex, time-consuming, and in large
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Figure 5.5 – AUC learning curves obtained from logistic regression applied to
the preprocessed IOTA variables from Table 5.2, and from LS-SVM using linear
and RBF kernels applied to the raw IOTA variables listed in Table 5.1. Thick
lines indicate median values, with the region around them showing IQR.

part manual process.

5.7 Conclusion

The addition of derived variables, obtained either intuitively or by complex
data preprocessing, are difficult to automate, but they are necessary steps for
obtaining high-quality predictive models when using logistic regression.

The results of this chapter, however, show that, for the IOTA data set, more
sophisticated classification algorithms, such as LS-SVM, which is capable of
modelling non-linear effects, can produce high-quality models directly from
raw data, without the need for complex preprocessing or addition of intuitively
derived variables. This considerably simplifies the machine-learning workflow.

More research is needed to confirm that these results generalize to other data sets
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Figure 5.6 – AUC values for several combinations of classifiers and feature sets,
for different training set sizes.



82 FEASIBILITY OF AUTOMATING MACHINE-LEARNING

0 500 1000 1500 2000 2500
0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

sample size

A
U

C

 

 

LS−SVM using RBF kernel, applied to raw data
LS−SVM using RBF kernel, applied to preprocessed data

Figure 5.7 – The two learning curves in this plot show the AUC attained by
LS-SVM with an RBF kernel applied to the raw and preprocessed data sets,
respectively. The similarity of the results indicates that LS-SVM with an RBF
kernel is sufficiently capable of modelling any non-linearities, so that it does not
require any additional preprocessing step.

and to other machine-learning algorithms capable of modelling non-linearities.
Therefore, I plan similar analyses using the International Endometrial Tumour
Analysis (IETA) data set, and other sophisticated classifiers. However, given
the nature of the machine-learning algorithms involved, I expect these results
to generalize to other data sets.

Benchmarks comparing performance of classification algorithms typically focus
on a single sample size, thereby leading to conflicting reports caused by different
sample size choices. By contrast, learning curves and their interquartile range
(IQR) provide a more comprehensive overview of the relative strengths and
weaknesses of algorithms. Moreover, they enable study coordinators to assess
when data collection should be terminated. For these reasons, the components
developed in Chapter 6 include methods that simplify the generation of such
learning curves.

I have omitted feature selection from this discussion. In order to be usable in
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clinical practice, however, diagnostic models need to use as few variables as
possible. Full automation of the machine-learning workflow used in medical
diagnostic modelling thus requires the automation of feature selection as well.
Appendix C lists the results of a few initial experiments with common feature
selection algorithms, which a priori assign equal cost to all variables. For
diagnostic models, however, this automated feature selection requires feature
selection techniques that take into account variables’ costs, whether they be
objective, financial costs, or subjective, relating for example to the level of
discomfort for the patient. While I plan more research into such techniques in
the future, I concentrated solely on the predictive performance attained by the
classification algorithms themselves for this analysis.

Obviously, classifiers capable of modelling non-linear effects produce models
that cannot be interpreted as readily as logistic regression models. Therefore,
and in order to avoid costly preprocessing, I propose to always generate two
models, derived directly from raw data: one with lower predictive performance,
generated by an algorithm such as logistic regression, providing insight into the
primary features influencing diagnosis; and another, generated by a sophisticated
algorithm producing complex non-linear models, such as LS-SVM combined
with an RBF kernel, to be used for predicting diagnoses for incoming patients.

In conclusion, the elimination of the need for complex preprocessing and addition
of intuitively derived variables thus opens up the possibility of extensive
automation of the machine-learning workflow, paving the way for highly
integrated software frameworks that include components both for data collection
and machine-learning modelling. I will discuss the building blocks for such a
tightly integrated software framework in the next chapter.





Chapter 6

Data analysis integration

Electronic Data Capture (EDC) has considerably improved efficiency of data
collection in the context of clinical studies, with fewer errors, shorter delay
between start and end of studies, and lower costs as a result. I believe clinical
studies will benefit further from the integration of EDC and data analysis into
a single software framework, such as Clinical Data Miner (CDM).

The previous chapter showed that sophisticated machine-learning algorithms can
be applied without a prior complex preprocessing step, simplifying automation
of the machine-learning workflow. Therefore, the CDM framework integrates
several APIs for implementing this machine-learning workflow. This chapter
describes the design of these APIs, and how they can be used interactively
from within the Jython programming language interpreter to provide a powerful
experimentation platform.

6.1 Introduction

Figure 6.1 lists the steps of a typical machine-learning workflow, as used in
clinical diagnostic modelling. Currently, most steps are performed manually,
resulting in an error-prone, time-consuming process.

The identification and removal of redundant or non-informative variables, as well
as the linearization of non-linear features, form the biggest hurdles to automation
of this workflow. An example of this can be observed from [3], which describes
this process as applied to data from the International Ovarian Tumour Analysis
(IOTA) consortium. Such steps contribute considerably to the complexity of

85
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Figure 6.1 – Typical machine-learning workflow for clinical diagnostic modelling.

the machine-learning workflow, which can therefore not readily be automated.
They are nevertheless required for obtaining acceptable predictive performance
from traditional machine-learning algorithms such as logistic regression.

Chapter 5, however, has demonstrated that more sophisticated classification
algorithms, such as Least-Squares Support Vector Machines (LS-SVM), are
capable of attaining comparable performance directly from raw, unpreprocessed
data. Thus, these more sophisticated algorithms enable the implementation of
drastically simplified workflows, opening up the possibility of automation.

The goal of the CDM project therefore is to integrate patient data collection
and machine-learning into a single software framework, in order to simplify data
analysis. This chapter describes the software components that I have developed
towards furthering this goal.

The organization of this chapter is as follows: The first sections describe CDM’s
APIs for data access, data preprocessing, and machine-learning, enabling the
steps listed in Figure 6.1. This is followed by a chapter describing an API
implementing some basic statistical functionality, for use in inter-rater agreement
studies. As for the development of the EDC component, these APIs were
developed in a TDD fashion, ensuring software quality. The chapter continues
with a description of a few Jython modules, which enable interactive use of
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CDM’s APIs. This interactivity facilitates very flexible experimentation. The
chapter ends with a few conclusions.

6.2 Data access

Background

Typical machine-learning workflows use separate software packages for data
collection and data analysis. This requires a means to extract data from the
data collection software and feed them into the data analysis software. To that
end, data are exported in an intermediary format. Often used are Microsoft®

Excel® or Comma-Separated Values (CSV) formats. This conversion, however,
can introduce errors. Dates may be incorrectly converted to numbers, text
containing three separate numbers may be interpreted as dates, etc. This leads
to the need for manual verification of the exported data, making this step
potentially very time-consuming.

By contrast, CDM’s integration of EDC and machine-learning components
obviates the need for exporting data to files, enabling direct communication
between these two components instead, using a data access API accepting data
queries.

Design

The classes involved in this representation are shown in the UML diagram
from Figure 6.2. A call to DataManager.newDescriptor(), shown in Figure 6.3,
produces a DataDescriptor object, which, instead of containing the data
itself, holds the necessary information for loading it at a later time, by means
of the DataDescriptor.load() method. As will be elaborated in the next
section, by allowing a number of manipulations to this data loading strategy,
many preprocessing steps can operate on such DataDescriptor objects without
requiring any database access or data copying.

When their DataDescriptor.load() method is called, a Data object is returned.
This object provides a means of iterating over DataPoint objects, which
represent individual patient entries. These entries can be queried for the
values of various fields, with Data.getFields() providing a collection of fields
contained in the DataPoint objects.

The interfaces DataDescriptor, Data, and DataPoint, representing unla-
belled data, are further extended by interfaces LabelledDataDescriptor,
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Figure 6.2 – Simplified uml representation of the classes involved in CDM’s
internal representation of study data.
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LabelledData, and LabelledDataPoint, respectively. The latter represent
labelled data and are intended for use by supervised learning methods.

6.3 Data preprocessing

Background

Generally, data have to undergo some basic preparatory steps prior to their
analysis by machine-learning algorithms. This can include removal of fields,
such as optional or free text fields, which only provide useful information for
large samples, and after specific preprocessing. Or it can include the conversion
of nominal and/or ordinal variables to dummy variables.

Many preprocessing steps apply to all variables of a particular type. This
preprocessing can be performed either manually, which is time-consuming, or
automatically, based on heuristics. The R language, for example, when loading
a CSV-formatted file, will analyze the values of a column to determine their
type. Both manual and heuristics-based approaches, however, are error-prone:
the former may lead to human error, while in the second, heuristics may lead to
incorrect guesses, interpreting numeric variables as ordinal ones or vice-versa,
for example.

Moreover, without close integration between the EDC and data analysis
components, the data analysis cannot possibly take into account the data’s
structure. As has been mentioned in Subsection 3.3.1, CDM enables conditional
inclusion of questions in Case Report Forms (CRFs). The inclusion of such
questions depends on the answer to the questions they depend on, leading to a
hierarchical questionnaire structure, such as in Figure 6.8. Such a structure will
inevitably produce data points with structurally missing variables. Without
integration between data collection and data analysis components, the latter
will have no information about a CRF’s hierarchical nature, hence will not be
able to treat structurally missing variables specially.

By contrast, CDM’s machine-learning component, thanks to its integration with
the EDC component, has full access to a CRF’s metadata. It therefore can
avoid error-prone manual or heuristics-based preprocessing, and instead rely on
accurate knowledge of both the types of variables, as well as the questionnaire’s
structure.
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Figure 6.3 – The DataManager interface provides access to data and enables
preprocessing, by including methods for the creation and manipulation of
DataDescriptor and Data objects.

Data presentation transformation

Most of CDM’s preprocessors operate on DataDescriptor objects. They are
applied by invoking methods of the DataManager interface, which exhibits a
Facade design pattern[28]. This interface is presented in Figure 6.3.

Several preprocessors remove features that would otherwise complicate
subsequent application of machine-learning algorithms. Method stripText(),
for example, removes any feature that consists of free form text. While machine-
learning techniques exist for processing free text[26, 11, 17], they are likely of
little use for the clinical studies handled by CDM, in which sample sizes are
typically limited, and in which free text is generally only used to describe patient
situations which cannot adequately be captured by other questions present in
the CRF.

Features that are optional likely include missing values, which many machine-
learning algorithms cannot readily handle. This can be handled by case deletion,
in which data points with missing values are deleted list-wise. An alternative
is to use imputation[62], in which missing values are replaced with substituted
values. The approach of CDM’s preprocessor is to delete the optional variable,
column-wise, and is implemented by stripOptional().

The method stripDates() removes date features. Date values of themselves
are not informative: only values calculated from dates, such as time durations
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may provide insight. Since CDM does not currently support date calculus, it
provides a stripDates() method, removing any date fields.

Another class of preprocessors allow to select or deselect variables, which can
either target specific variables, or use patterns to respectively include or exclude
entire sections of variables. The select() method keeps the variable(s) specified
by the supplied parameter, and discards the others, while deselect() discards
the specified features and keeps the rest. The label() method combines the
functionality of both, by discarding the specified variables from the input data,
and using them as output data instead.

In order to be able to combine the data from several studies that contain some
overlapping sections, merge() will combine data points from these studies, only
keeping fields from sections present in all the provided studies. This can be used,
for example, to combine International Endometrial Tumour Analysis (IETA)
#1a, #1b and #1c, which are essentially the same studies, but for which some
participants completed a more elaborate questionnaire than others.

Since numeric machine-learning algorithms cannot handle categorical variables
directly, CDM’s preprocessing API provides the createFactorProxies()
method to convert a categorical variable into a set of dummy variables.

Further, since most classifiers use some distance measure to calculate
(dis)similarity between data points, having features with a larger range than
the others would cause them to dominate a classifier’s objective function. In
order to avoid this, data are typically normalized prior to the application
of machine-learning algorithms. In CDM, the normalize() implements this
functionality.

Finally, flatten() deals with the hierarchical structure of CRFs and associated
structurally missing data. Its approach is to provide default values for
structurally missing values. These default values depend on the variable type,
as indicated in Table 6.1. In the future, I will implement similar methods that
use more sophisticated approaches for determining these default values.

Data point reordering & selection

Apart from preprocessors operating on DataDescriptor objects, Figure 6.3
additionally lists preprocessors operating on Data objects. The former are used
for transformations that modify the data’s presentation, and may be part of
a chain of transformations, the intermediate results of which will not be used.
Therefore, they avoid loading data into memory. By contrast, the preprocessors
mentioned in this section are used for transformations that do not modify how
the data are presented, but re-arrange the data instead.
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Feature type Default value
free text “”
number −1
date Unix epoch

ordinal variable −1
nominal variable “_NA_”

Table 6.1 – Default values used by DataManager.flatten() for the different
feature types.

They consist of the methods subset(), shuffle(), and stratify(). As the name
implies, subset() returns a subset of the input data starting and ending at the
specified indices. The second method, shuffle(), returns a random permutation
of the original data. Its second parameter enables supplying a random number
generator, which may be initialized with a specific number for reproducibility
purposes. Finally, stratify() is trivially implemented by combining the
functionality of the first two methods, and split the input data set in several
distinct sets, the relative sizes of which are supplied by the relativeSizes
array input parameter. If the parameter relativeSizes is set to [70, 30], the
method produces training and validation sets, with 70% and 30% of data points,
respectively. For relativeSizes = [10, 10, 10, 10, 10, 10, 10, 10, 10, 10], data sets
for 10-fold cross-validation can be created.

Design

One of the design considerations was to avoid unnecessary memory copies for
chained data transformations. To that end, transformations do not operate on
objects containing the data themselves, but instead they operate on objects
keeping track of which data should be loaded and how.

These objects are of class DataDescriptor, and are presented in Figure 6.4.
They keep track of which data to load by means of a SampleIterable object,
while a SectionInfoMap registers how data should be transformed. Additionally,
a DataPointFilter object determines which data points should be filtered out.

In this design, preprocessors correspond with DataTransformStrategy ob-
jects. These objects transform how data are formatted, by modifying a
DataDescriptor’s SectionInfoMap. The latter contains a FieldInfo object for
each question, of each of a study’s sections. These FieldInfo objects determine
how a CRF question maps to fields, through their toFields() method. When
a descriptor is created using DataManager.newDescriptor(), the FieldInfo
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Figure 6.4 – Most preprocessors operate on DataDescriptor objects, which
do not contain the data themselves, but instead hold SampleIterable,
DataPointFilter, and SectionInfoMap objects, which respectively describe
which data should be loaded, which should be filtered out, and how they should
be presented.

objects initially created are FieldInfoImpl objects, initially establishing a one-
to-one mapping between CRF questions and fields. The relationship between
SectionInfoMap and the different possible implementations of the FieldInfo
interface is shown in Figure 6.5.

Preprocessors first clone the SectionInfoMap, to ensure that the original
DataDescriptor object remains unchanged and can still be used for other
purposes. They then remove individual FieldInfo objects, to discard certain
fields, or replace them with other implementations of the FieldInfo interface, to
modify the mapping between CRF questions and data fields. These FieldInfo
objects use a Decorator design pattern[28], keeping a reference to the original
FieldInfo object. When their toFields() method is invoked, they delegate
this call to the original object, and manipulate the result before returning it.
As an example, DesignVariablesFieldInfo.toFields(), calls its delegate’s
toFields() method, and replaces any ordinal fields in the return value with
dummy fields. This design allows preprocessors to be applied sequentially,
progressively modifying how data are represented, without the need for actually
loading data.

DataPointFilter objects specify which data points should be accepted, and
which should be filtered out. The design of these objects follows the Composite
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Figure 6.5 – Representation of the relationship between SectionInfoMap and
the different implementations of the FieldInfo interface. For clarity, FieldInfo’s
template arguments, as well as some methods, are omitted.

design pattern[28] presented in Figure 6.6, allowing to combine filters using
“and”, “or”, and “not” operators.

Finally, the SampleIterable interface exhibits a Composite design pattern[28]
as well, demonstrated in Figure 6.7. DataManager.newDescriptor() creates
a StudySampleIterable object, which, using lazy initialization, defers the
loading of the study data sample to when it is needed. DataManager.merge()
constructs a CombinedSampleIterable object, which delegates as necessary to
the SampleIterable objects from the DataDescriptor objects that need to be
merged.

When their load() method is called, DataDescriptor objects produce Data
objects. The SampleIterable queries the database; the DataPointFilter
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Figure 6.6 – The DataPointFilter leverages the Composite design pattern[28]
to enable combining basic filters to more complex filters using “and”, “or”, and
“not” operators.

Figure 6.7 – The SampleIterable interface provides a means to iterate
over patient entries stored in the database. Its default implementation,
StudySampleIterable, only loads data upon invocation of its iterator() method,
using a handle to the database and a study identifier. Using the Composite
design pattern, CombinedSampleIterable accepts a list of StudySampleIterable
objects, enabling iteration over several different studies at once.
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decides which data points are included. The SectionInfoMap determines which
CRF fields to load in the Data object, and how they are transformed to Field
objects.

Advantages

Architecturally, the described design, involving DataDescriptor objects, and
preprocessors modifying the DataDescriptor’s components, provides several
advantages. First, it can be easily extended with new preprocessors, possibly
implemented by third parties, making the design flexible. Second, preprocessors
can be applied sequentially, allowing to combine them to construct complex
transformations. Further, by effecting data presentation changes on a cloned
version of the supplied DataDescriptor’s SectionInfoMap, rather than on the
original one itself, the original DataDescriptor object can still be used. Finally,
the design around DataDescriptor objects, that do not hold data themselves,
enables their manipulation, avoiding the creation of modified copies of the data
for each successively applied preprocessor, which could otherwise potentially
become very memory-intensive.

Further, the integration of EDC and data preprocessing provides the advantage
of enabling automation. Without this integration, the selection of which variables
a particular preprocessor should be applied to, either occurs manually, which
is cumbersome, or automatically, using a heuristic to determine the types
of variables. The type of variable then determines which preprocessors to
apply. Both the manual and heuristic-based approaches are prone to errors. By
integrating EDC and data preprocessing, on the other hand, CRF metadata,
which includes information about variables’ types, becomes available during
preprocessing, avoiding the need for guessing them.

The availability of CRF metadata during preprocessing additionally enables
transformations that would otherwise be impossible, such as that implemented
by DataManager.flatten(), which converts the hierarchical CRF structure into
vectors. For categorical variables that are “children” of a “parent” categorical
variable, knowledge about the CRF structure, enables the sequential conversion
from hierarchical data into vector data, by means of the flatten() method,
followed by creation of dummy variables, using createFactorProxies(),
without the creation of redundant dummy variables. Consider, for example,
the questionnaire structure from Figure 6.8. In the absence of information
about a questionnaire’s structure, automatic, heuristic-based creation of dummy
variables will generate six dummy variables, as demonstrated in Table 6.2, two
of which are redundant, whereas CDM’s preprocessors will correctly identify
four dummy variables.
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Figure 6.8 – Example of the hierarchical structure of questionnaires. Except for
questions at the top of the hierarchy, questions only apply for certain values of
their “parent” questions, and will be structurally missing otherwise. (Screenshot
of the “Ovaries” section, included in the IETA #1, #3, #4 studies, as presented
by the CDM user interface.)

Question Possible values Dummy variables
no structure structure

Was ovary seen? no, yes yes yes
Was ovary normal? s.m., normal, pathology normal, pathology pathology
Pathologies s.m., PCO, cyst, other PCO, cyst, other cyst, other

Specify s.m., free text free text free text

# dummy variables 6 4

Table 6.2 – The questions from the hierarchical structure depicted in Figure 6.8
have several possible values. Except for the top question, they can be structurally
missing, depending on the value of their parent question. Using automated
methods for generating dummy variables, this table shows how many such
dummy variables would be introduced, respectively in the absence or presence of
structural information about the CRF.

For the example presented here, the amount of redundant variables introduced
by a heuristic-based approach is relatively limited. For real-world CRFs, such
as from the IETA studies, this number would be much larger, and would not
be identified so quickly manually. Obviously, using heuristics, the creation
of redundant dummy variables can be avoided by using a non-hierarchical
questionnaire instead. However, this would result in very long questionnaires,
with many non-applicable questions, considerably complicating data collection.

Apart from enabling the transformation of hierarchical data into vector data, the
availability of information about a CRF’s structure could enable the definition
of kernel functions taking this structure into account, allowing the use of kernel
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methods.

In conclusion, the integration of EDC with data access and preprocessing
provides many advantages, thereby streamlining the machine-learning process.

6.4 Machine-learning

Background

Several excellent software libraries exist that implement machine-learning algo-
rithms. Some of these implement a wealth of machine-learning algorithms, such
as the Waikato Environment for Knowledge Analysis (WEKA) workbench[89, 33]
and SHOGUN library[66], while others specialize in a particular algorithm or
class of algorithms, such as the LSSVMLab toolbox[16] or LibSVM[9]. The
data produced by CDM’s data preprocessing API could therefore be perfectly
fed to any of these software packages to obtain prediction models, as long as
care is taken not to introduce any conversion issues.

However, further integrating machine-learning functionality into CDM opens
up new possibilities. Machine-learning models could automatically be updated
as new patient entries are registered. Learning curves could be integrated in the
framework’s user interface, enabling study coordinators to monitor a study’s
progress. The latter would allow them to make an informed decision when to
terminate data collection.

As an initial step towards this goal, I integrated a machine-learning API into
CDM.

Design

CDM’s machine-learning API consists of a set of interfaces, provided by CDM
to interact with classification algorithms and the models they produce, as well
as some convenience methods for producing learning curves from a patient data
set.

The interfaces for interacting with classifiers are presented in Figure 6.9. For the
moment, CDM takes advantage of the abundance of existing machine-learning
libraries to avoid the need for implementing its own. More specifically, CDM
leverages the existing WEKA library to gain access to a wealth of classification
algorithms.
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Figure 6.9 – Set of interfaces defined by the CDM software framework
for interaction with machine-learning algorithms, and their current only
implementation, utilizing the WEKA library. The machine-learning algorithm
used can be chosen by supplying WekaClassifier’s constructor with a subclass
of WEKA’s Classifier class.

Using the Adapter design pattern[28], classes WekaClassifier and WekaModel
implement the CDM Classifier and Model interfaces respectively, by
delegating calls to a particular instance of the WEKA class Classifier, as
shown in Figure 6.9. Other implementations of the Classifier and Model
interfaces may be added in the future.

CDM’s machine-learning API is accessed through the ClassifierFacade
interface. This interface exposes CDM’s machine-learning capabilities using
the Facade design pattern[28], and is displayed in Figure 6.10. It includes
the newWekaClassifier() method, for constructing a Classifier, using the
WEKA machine-learning algorithm implementation specified by the classifier
parameter. Its sweep() method calculates predictive performance on a test set,
for each of the data set sizes provided, for a number of different training-test
splits, using the same workflow as that depicted in Figure 5.3. Performance
measures currently calculated are accuracy, sensitivity, specificity, as well as
AUC, but could easily be extended with performance measures that optimize
the tradeoff of risks associated with type I and type II errors[35, 82, 18, 56].
The sweep() method returns performance data that can be supplied to method
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Figure 6.10 – Facade interface exposing CDM’s machine-learning capabilities.

createPlots() for generating learning curves, which can be displayed on screen
using show(), or written to disk using the write() or save() methods.

While Monte Carlo simulations, or rules of thumb advising a minimum of ten
events per variable[58], provide a guess of the amount of patient data required for
obtaining meaningful models, both rely on assumptions: the former assume the
model used in the simulation resembles the actual model, while the latter assume
all collected variables are relevant. By offering the sweep() method to generate
learning curves, CDM enables study coordinators to visualize how predictive
performance evolves with respect to patient set size. Such plots show if sample
size is such that a small increase results in relatively large performance gains,
encouraging additional collection of patient data, or, on the contrary, whether
large sample size increases are required for barely obtaining modest performance
gains, providing an indication for terminating data collection. Due to the
difficulty of a priori estimation of required sample size, CDM’s functionality
for generating learning curves thus provides an important advantage for study
coordinators.

6.5 Statistical analysis

The user interface, described in Subsection 4.2.2, which I derived from the
CDM framework for supporting inter-rater agreement studies, has been used
for six such studies so far. Therefore, I implemented an API for facilitating the
analysis of such studies.

As for the machine-learning API, data are prepared using CDM’s data access
and preprocessing APIs before they are processed by CDM’s statistical analysis
API. This API enables the calculation of κ coefficients of inter- and intra-rater
agreement. For comparing measurements from two raters, or for comparing
two measurements from a single rater, Cohen’s κ coefficient[10] can be used,
while Fleiss’ κ coefficient[23] is available for studies with more than two raters.
Apart from κ coefficients, percentage agreements can be calculated as well.
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CDM’s API further provides the jackknife sampling technique[20] for generating
samples from the application of a measure to a data set. This enables the
calculation of estimates and their variance, as well as the use of statistical
tests for comparing inter-rater agreement samples. The latter can for example
be used to compare the inter-rater agreement of two sets of images obtained
through different ultrasound technologies over the same patient sets.

CDM’s API for statistical analysis has been used in the context of several
studies, amongst which the IETA #2 study, primarily for comparing the effect
of different technologies on data quality.

6.6 Jython interface

Background

CDM’s machine-learning capabilities are not accessible through its user interface
yet. I therefore developed a set of Jython modules to enable the use of CDM’s
data analysis capabilities, for interactive rapid prototyping and experimentation.

Jython[42] is an interpreter for the Python[54] language, running on the Java
Virtual Machine (JVM)[81]. By running on the JVM, it can provide direct
access to Java libraries from within the Jython language. As with most
interpreters, Jython cannot only be used for running scripts, but it can also
be used interactively. This combination of direct access to Java libraries and
interactivity make the language ideally suited for experimenting with CDM’s
data preprocessing and machine-learning APIs.

Design

The infrastructure to provide Jython scripts access to CDM’s APIs consists of
three elements, depicted in Figure 6.11:

• The Java class JythonSupport, contained in the cdm-server module,
which uses Spring[87] framework functionality to obtain handles to CDM’s
different Facades, such as DataManager or ClassifierFacade;

• The Jython cdm.py module, which creates an instance of the JythonSupport
class, and uses it to implement a function that enables retrieving CDM’s
Facades from within Jython, facilitating access to CDM’s API from within
Jython.
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Figure 6.11 – The classes from this UML diagram provide access to CDM’s data
analysis APIs, from within the Jython interpreter. To this end, they leverage
Spring’s IoC container to provide access to Spring components.

• The Bash shell script startJython.sh, which initializes the CLASSPATH
environment variable to ensure Jython loads all relevant Java libraries.

Jython modules further provide convenience interfaces for interacting with
CDM’s different Facade objects, making CDM’s data preprocessing and machine-
learning APIs more easily accessible from within Jython. These modules can be
leveraged from within Jython scripts, or they can be used interactively, for rapid
prototyping and experimentation. The latter can be very useful for quickly
gaining an insight into the effect that certain choices of pre-processors and
machine-learning algorithms have on predictive performance of the resulting
models.

6.7 Development methodology

As for CDM’s EDC component discussed in Chapter 3, I developed CDM’s
data preprocessing and machine-learning APIs following a TDD development
methodology. Since these APIs are part of the cdm-server module, which also
includes CDM’s web server code, test coverage cannot be reported separately
from the latter. As reported in Table 3.6 though, the automated test suite for
web server code and data analysis APIs combined covers around 92% of source
lines, and 90% of branches. These numbers ensure high software quality.
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Figure 6.12 – The UML diagrams above list the Jython modules providing
access to CDM’s data analysis facilities. The dm module enables the use of
data access and data preprocessing capabilities; ml provides access to CDM’s
machine-learning API; while stats can be used for calculating some common
statistical measures.
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6.8 Conclusion

Today, machine-learning workflows in clinical diagnostic research employ
separate software packages for data collection and data analysis processes. While
such set-ups have well served the medical research community, the separation
between these processes requires the use of error-prone processes, requiring
manual, time-consuming verification. They include the transfer of data between
EDC and data analysis software packages, potentially using incompatible data
file formats, and manual or heuristics-based data preprocessing.

In order to provide an answer to these drawbacks, I developed CDM, integrating
EDC and data analysis APIs into a single software framework. To the best of my
knowledge, CDM is the first framework providing such integration, enabling the
machine-learning workflow to be much more automated, using CRF metadata
instead of error-prone heuristics. Moreover, the availability of information about
a CRF’s hierarchical structure, enables the implementation of preprocessors
that take this structure into account, for which no heuristics-based alternative
exists.

Through its Jython interface, CDM enables interactive use of its data analysis
APIs, greatly facilitating experimenting with the effect of decisions made in the
machine-learning workflow, about choices of preprocessors and machine-learning
algorithms. Its built-in functionality for generating learning curves empowers
study coordinators to easily monitor their study’s progress, enabling them to
make an informed decision about when to terminate data collection. This
helps prevent the creation of underpowered diagnostic models, as well as the
collection of unnecessary data, which is incapable of further improving predictive
performance.

Hence, CDM’s integration of EDC and machine-learning facilitates streamlining
the machine-learning workflow. Equally important though, is that its extensive
test suite and sound architecture form a solid basis for further development.

In this further development, these data analysis APIs will be integrated into
CDM’s user interface, enabling study coordinators to monitor study performance
as patient data accumulate. To this end, background processes will update
machine-learning models, and store the results, as patient data come in. This will
empower clinicians to handle more of the machine-learning workflow themselves,
decreasing their reliance on consultancy from machine-learning experts.

Further future work will enable derived machine-learning models to be integrated
in CRFs, for use in a prediction component. This will allow CDM to be used for
the entire machine-learning worfklow, from data collection, machine-learning,
to prediction. While today, published diagnostic models often fail to be used in
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clinical practice, due to model complexity and the unavailability of prediction
tools, the integration of such functionality into CDM would considerably simplify
dissemination of derived diagnostic models. Whereas currently the medical
community prefers the use of simple models, based on logistic regression, the
availability of a prediction tool would enable the use of more sophisticated,
better performing machine-learning algorithms.

Summarizing, CDM’s current capabilities considerably simplify the workflow
from data to model for the machine-learning expert, and the convenience method
for easily generating learning curves provides study coordinators an invaluable
tool for determining when data collection can be terminated. Future work
should see the development of additional functionality for increasingly assisting
clinicians in the management of the clinical diagnostic model research workflow.
It should further allow the creation of a user interface using the derived models
for diagnosing new patients, simplifying the dissemination of models.





Chapter 7

Clinical Data Miner results

In this chapter, I present the progress made on patient data collection with
Clinical Data Miner (CDM), as well as a few examples of the use of CDM’s
data analysis APIs.

7.1 Introduction

A software framework is only useful if it is used. In this chapter, I show that
since May 2011, when it was first put into production, CDM has been used
extensively for collecting patient data in the context of clinical diagnostic model
research, as well as for inter-rater agreement studies. I further demonstrate how
CDM’s APIs can be used to perform data analysis.

7.2 International Endometrial Tumour Analysis

As mentioned in Section 2.5, the study organized by the International
Endometrial Tumour Analysis (IETA) consortium is further subdivided in
a number of studies. One of these, namely International Endometrial Tumour
Analysis (IETA) #2, evaluates inter-rater agreement of some of the variables
used in the IETA studies. The other phases, #1, #3, and #4, involve the
collection of data gathered during patient consultations, and aim to model
the diagnosis of endometrial pathology based on the evaluation of ultrasound
imaging modalities, described using the IETA terminology.

107
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T. Van den Bosch M.A. Pascual L.P.G. Francesco
R. Fruscio E. Epstein D. Fischerova
J.L. Alcazar D. Franchi C. Lanzani
A. Rossi L. Haakova S. Guerriero

C. Van Holsbeke L. Valentin A. Votino
F. Mascilini A.C. Testa A. Dilegge
G. Opolskiene A. Jakab P. Sladkevicius
R. Zlotorowicz B. Virgilio M. Ludovisi

C. Van Pachterbeke V. Chiappa C. Penati
D. Dordoni I. Tsikhanenka M. Signorelli
P. Capmas F. Rizzello M. Szajnik

K. Van Tornout M. Kudla M. Baumgarten
D. Rysak-Luberowicz R. Di Pace J. Kaijser

Table 7.1 – List of active participants in the studies organized by the IETA
consortium.

In this section, I present the progress that the IETA consortium have made
with respect to data collection, since the start of the studies. The subsections
list active participants and inclusion numbers, respectively.

7.2.1 Participants

Since the start of the studies, the IETA consortium has recruited the 39
participants listed in Table 7.1. They are geographically distributed across
diverse centres in Europe, as indicated on the map of Figure 7.1. Most patient
entries originated from Western, Northern, and Southern Europe, with a
relatively small contribution from countries in Eastern Europe. The centres
include regional hospitals as well as referral centres. They include both general
hospitals and centres specialized in oncology. Different countries use different
referral approaches, leading to different patient mixes. All these factors should
ensure the studies form a relatively heterogeneous group, resulting in patient
data that can be used to model the relationship between the IETA terminology
and endometrial pathology, not just of a single country, or of a particular
composition, but instead should be sufficiently general to derive a universal
model.
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Figure 7.1 – Geographical distribution of centres participating in the IETA
studies. Centres that contributed fewer than 50 total patient entries are marked
in blue, while the others are marked in red.
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Figure 7.2 – Evolution of patient inclusions over time, for the different phases
of the IETA study.

Study Complete Incomplete Total
IETA #1a 590 139 729
IETA #1b 661 182 843
IETA #1c 154 66 220
IETA #3 510 128 638
IETA #4 591 421 1012
Total 2506 936 3442

Table 7.2 – Number of inclusions for the different IETA studies, as of April 10,
2014.

7.2.2 Inclusions

Patient inclusions for the different IETA studies have mostly increased linearly
since the CDM server was taken into production, in May 2011. Figure 7.2
illustrates this for each of the different IETA studies. On April 10, 2014, patient
inclusion levels had attained the levels from Table 7.2. In total, 3442 patient
entries were collected, 2506 of which include a gold standard diagnosis.
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7.3 Other studies

In CDM, the Case Report Forms (CRFs) used to compose a study are
conveniently defined by means of spreadsheets. CDM’s Electronic Data Capture
(EDC) component can thus be straightforwardly applied to other studies than
those of the IETA consortium.

Several such studies involving the collection of patient consultation data are
planned. Apart from the IETA studies, the International Pregnancy of Unknown
Location Analysis (IPULA) study, led by T. Bourne and G. Condous[12], is now
online. Other studies about robotic surgery, in collaboration with I. Vergote,
and about optimal cytoreduction, in collaboration with A.C. Testa et al., are
currently in the design stage.

Additionally, several inter-rater agreement studies have been conducted
leveraging the specialized user interface created for organizing this type of study.
The first examined the influence of pictograms on data quality, and is described
in more detail in Chapter 4. Another study examined the inter-rater agreement
of some of the variables included in the IETA consensus paper[45] (IETA #2,
led by L. Valentin). Yet another sought technological recommendations for
ultrasound settings during examination of the endomyometrial junction (in
collaboration with A. Votino et al.[85, 84, 86]). For an extensive list of the
inter-rater agreement studies organized using the CDM software framework,
refer to Appendix A.

7.4 Data analysis example scripts

In this section, I demonstrate how CDM’s data preprocessing and machine-
learning APIs can be leveraged from within a Jython console for data analysis.
I do this using a few example scripts, along with the output they produce.

The first example shows how the distribution of the different categories of a
certain variable can be computed. A second example shows how to determine
contingency tables. The third example demonstrates the use of the machine-
learning API for calculating learning curves. The section concludes with an
example of how to generate a model and use it for calculating predictions.
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7.4.1 Class distribution

The class distribution of a variable can be trivially calculated using the dm
Jython module. Textbox 7.1 shows an example script for listing the distribution
of the possible outcomes, for the data of all the IETA studies combined. The
first lines specify which data should be loaded. The next few lines select the
field of interest, and obtain its list of possible categories. Then, the occurrence
of each of these categories is counted, discarding patient entries for which this
variable was not filled in, and finally the results are printed as the ratio of the
number of occurrences of each category divided by the amount of times the
field was filled in. Results of this script are listed in Textbox 7.2.

import dm

# 1. Load combined data of all IETA studies .
study_ids = [ ’ieta_1a ’, ’ieta_1b ’, ’ieta_1c ’,

’ieta_3 ’, ’ieta_4 ’ ]
descriptor = dm. merge (*[ dm. study (id) for id in study_ids ])
data = descriptor .load ()

# 2. Determine field and its associated categories .
field = dm. findField (data. getFields () , ’ieta_outcome . endometrium ’)
categories = field .type (). getValues ()

# 3. Count occurrence of each category .
results = dict ([ (category , 0) for category in categories ])

for p in data:
value = p. getValue ( field )
if value != None:

results [ value ] += 1

# 4. Print distribution
total = float (sum( results . values ()))
for category in categories :

print category , results [ category ] / total

Textbox 7.1 – This script loads the data from all IETA studies, merges them,
and prints out a class distribution of the variable ieta_outcome.endometrium.

The distribution for the outcome and menopausal status variables can be
obtained similarly, producing the results from Table 7.3 and Table 7.4,
respectively. They present class distribution for each phase of the IETA study
separately, as well as for all phases combined.
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atrophy 0.112632508834
proliferative_endometrium 0.108215547703
secretory_endometrium 0.083480565371
endometrial_hyperplasia_without_atypia 0.0446113074205
atypical_hyperplasia 0.00706713780919
malignancy 0.278268551237
endometrial_polyp 0.27871024735
intracavitary_myoma 0.0521201413428
endometritis 0.00353356890459
other 0.0313604240283

Textbox 7.2 – Results generated by the script listed in Textbox 7.1.

Outcome IETA 1 IETA 3 IETA 4 Overall
atrophy 11.4 26.1 0.2 11.3
proliferative endometrium 16.0 9.4 0.5 10.8
secretory endometrium 13.9 2.6 0.2 8.3
hyperplasia without atypia 6.6 2.9 0.9 4.5
atypical hyperplasia 0.7 0.0 1.2 0.7
malignancy 5.6 2.2 95.3 27.8
endometrial polyp 32.6 50.6 1.0 27.9
intracavitary myoma 8.2 3.4 0.0 5.2
endometritis 0.6 0.2 0.0 0.4
other 4.4 2.6 0.7 3.1

Table 7.3 – Outcome distribution for the different IETA studies.

7.4.2 Contingency tables

For contingency tables as well, the dm module provides all necessary
functionality. An example script for determining such tables is demonstrated in
Textbox 7.3. Again, first, the data are loaded. Second, the fields of interest,
ieta_hist.menopausal_status and ieta_outcome.endometrium are queried,
and their possible categories are obtained. Third, occurrences for each possible
combination of the two fields are counted. And finally, the results are printed

Menopausal status IETA 1 IETA 3 IETA 4 Overall
pre-menopausal 63.9 46.3 11.4 48.0
post-menopausal 36.1 53.7 88.6 52.0

Table 7.4 – Distribution of menopausal status for the different IETA studies.
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out as percentages. The output of this script is presented in Table 7.5.

import copy
import dm

# 1. Load combined data of all IETA studies .
study_ids = [ ’ieta_1a ’, ’ieta_1b ’, ’ieta_1c ’,

’ieta_3 ’, ’ieta_4 ’ ]
descs = [ dm. study (id) for id in study_ids ]
descriptor = dm. merge (*[ dm. study (id) for id in study_ids ])
data = descriptor .load ()

# 2. Determine fields and their associated categories .
field1 = dm. findField (data. getFields () ,

’ieta_hist . menopausal_status ’)
field2 = dm. findField (data. getFields () ,

’ieta_outcome . endometrium ’)
categories1 = field1 .type (). getValues ()
categories2 = field2 .type (). getValues () + [ ’N/A’ ]

# 3. Count occurrence of each category .
inner = dict ([ (c, 0) for c in categories1 ])
outer = dict ([ (c, copy.copy( inner )) for c in categories2 ])

for p in data:
v1 = p. getValue ( field1 )
v2 = p. getValue ( field2 )

if v2 != None:
outer [v2 ][ v1] += 1

else:
outer [’N/A’][ v1] += 1

# 4. Print distribution
total = float (data.size ())
print ’outcome ,’, ’, ’.join ([ d for d in categories1 ])

print
for c in categories2 :

print c,
for d in categories1 :

print ’, %.1f’ % ( outer [c][d] * 100 / total ),
print

Textbox 7.3 – This script loads the IETA data, counts the number of occurrences
for each possible combination of the variables menopausal_status and outcome,
and prints the frequency for each.
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Outcome Pre-menopausal Post-menopausal
(%) (%)

atrophy 1.3 9.1
proliferative endometrium 8.0 1.9
secretory endometrium 7.0 0.6
hyperplasia without atypia 2.8 1.3
atypical hyperplasia 0.3 0.3
malignancy 2.6 22.9
endometrial polyp 14.1 11.5
intracavitary myoma 4.1 0.6
endometritis 0.3 0.0
other 1.8 1.1
N/A 5.7 2.6

Table 7.5 – Contingency table tabulating the frequency distribution of
menopausal status versus outcome. This table’s contents are produced by the
script from Textbox 7.3.

7.4.3 Learning curves

Generating learning curves requires both the dm and ml modules. Textbox 7.4
lists the steps involved in generating such learning curves. The first step specifies
which data should be loaded. Next, the data are preprocessed in order to prepare
them for the application of a classification algorithm. Then, the classification
algorithm is selected, and the output field specified. The method ml.sweep()
splits the data into training and test sets containing 70% and 30% of data
points, respectively, then generates models for subsets of the training data
sets, with sizes specified by the ml.sweep() method’s corresponding parameter,
and calculates predictive performance measures for each model. These include
accuracy, sensitivity, specificity, and AUC. The resulting performance data are
converted to learning curves, plotting performance with respect to sample size,
by the method ml.create_plots(). These are then finally saved to files by
means of the ml.savePlot() method. Examples of learning curves generated by
CDM are visualized in Figure 7.3, showing AUC of the different IETA studies
separately, and in Figure 7.4, which shows AUC for the combined IETA data
set.



116 CLINICAL DATA MINER RESULTS

import dm

# 1. Specify data to load
study_ids = [ ’ieta_1a ’, ’ieta_1b ’, ’ieta_1c ’,

’ieta_3 ’, ’ieta_4 ’ ]

desc_1 = dm. merge (*[ dm. study (id) for id in study_ids ])

# 2. Preprocess data
desc_2 = dm. stripOptional (dm. stripText (dm. stripDates ( desc_1 )))
desc_3 = dm. label (desc_2 , ’ieta_outcome .* ’)
desc_4 = dm. createFactorProxies (dm. flatten (dm. normalize ( desc_3 )))
data = desc_4 .load ()

# 3. Calculation of learning curves
import weka. classifiers . functions . Logistic as Logistic
import ml

classifier = ml. newWekaClassifier ( Logistic ())
output_field = dm. findField (data. getOutputFields () ,

’ieta_outcome . endometrium . malignancy ’)
perf_map = ml. sweep ( classifier , data , output_field ,

’yes ’, 50, range (50 , data.size () , 50))

# 4. Generate and save plots
plots = ml. create_plots ([ perf_map ], [ ’IETA ’ ])

for plot in plots :
ml. savePlot (plot , plot. getTitle () + ’.pdf ’)

Textbox 7.4 – Script for generating and saving learning curves, leveraging
CDM’s dm and ml modules.

7.4.4 Model predictions

Using CDM’s machine-learning interfaces to generate models, predictions are
readily obtained. The script from Textbox 7.5 first defines which data to load,
and prepares them for logistic regression analysis. Next, the data are split
into training and test data sets. Using WEKA’s implementation of logistic
regression, a model based on the training data is created. Finally, the model
is applied to the test data to print out the expected probability of malignant
disease. Since the outcome is known for the test data, these probabilities are
compared to the actual outcome.
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Figure 7.3 – Learning curves showing AUC with respect to sample size for models
predicting endometrial malignancy derived from the data sets of the different
IETA studies. Variability of the results is assessed by creating several training-test
splits, and generating learning curves for each. The thick lines indicate median
values, while the region around these lines represent the interquartile range (IQR)
of the results.

7.5 Conclusion

Since CDM went into production in May 2011, it has been collecting data for
the IETA studies, as well as for several inter-rater agreement studies. Moreover,
several other studies are currently in the design stage.

In this chapter, I have further shown a few examples of how CDM’s data analysis
APIs can be applied to perform certain analyses. While such analyses currently
require local access to the CDM server, in future work I will enable secure
remote data access, enabling others to use CDM’s data analysis capabilities,
which, compared to traditional workflows, considerably simplify data analysis.
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Figure 7.4 – AUC with respect to sample size, for models predicting endometrial
malignancy, obtained from the merged data of all IETA studies combined.
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import dm

# 1. Specify data to load
study_ids = [ ’ieta_1a ’, ’ieta_1b ’, ’ieta_1c ’,

’ieta_3 ’, ’ieta_4 ’ ]

desc_1 = dm. merge (*[ dm. study (id) for id in study_ids ])

# 2. Preprocess data
desc_2 = dm. stripOptional (dm. stripText (dm. stripDates ( desc_1 )))
desc_3 = dm. label (desc_2 , ’ieta_outcome .* ’)
desc_4 = dm. createFactorProxies (dm. flatten (dm. normalize ( desc_3 )))
data = dm. shuffle ( desc_4 .load ())

# 3. Create training and test set
output_field = dm. findField (data. getOutputFields () ,

’ieta_outcome . endometrium . malignancy ’)
data_sets = dm. stratify (data , output_field , 70, 30)
training_data = data_sets [0]
test_data = data_sets [1]

# 4. Create model for training data
import weka. classifiers . functions . Logistic as Logistic
import ml

classifier = ml. newWekaClassifier ( Logistic ())
model = classifier . model ( training_data , output_field )

# 5. Print predictions for test data
for p in test_data :

prob_cancer = model . predict (p). getLikelihood (’yes ’)
print p. getPatientId () , ’:’, ’%.1f%% ’ % (100 * prob_cancer ),
print ’- actual outcome :’, p. getOutputValue ( output_field )

Textbox 7.5 – Script for calculating a model on training data, subsequently
used for computing predictions on test data.
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XXXXXXXX : 20.2% - actual outcome : yes
XXXXXXXX : 10.8% - actual outcome : no
XXXXXXXX : 81.4% - actual outcome : yes
XXXXXXXX : 0.3% - actual outcome : no
XXXXXXXX : 20.2% - actual outcome : no
XXXXXXXX : 1.1% - actual outcome : no
XXXXXXXX : 1.6% - actual outcome : no
XXXXXXXX : 5.4% - actual outcome : no
XXXXXXXX : 73.5% - actual outcome : yes
XXXXXXXX : 95.3% - actual outcome : yes
XXXXXXXX : 80.7% - actual outcome : yes
XXXXXXXX : 0.4% - actual outcome : no
XXXXXXXX : 46.6% - actual outcome : yes

Textbox 7.6 – Excerpt of output generated by the script from Textbox 7.5. In
order to respect patient privacy, I substituted patient identifiers with fixed text.



Chapter 8

Conclusions and future
research

8.1 Achievements

As the pace of medical research is ever accelerating, it drives not only an
increasing need for data collection, but also for more efficient data analysis.
The Clinical Data Miner (CDM) project discussed in this thesis therefore aims
to support medical research by simplifying the workflow from data to model.
To that end, it integrates data collection and data analysis in a single software
framework.

I have implemented user interfaces both for the collection of data in the context
of patient consultations, as well as for organizing inter-rater agreement studies.
In order to accomodate the collection of variables obtained through assessment
of imaging-based modalities, these user interfaces enable the integration of
visual cues, by means of pictograms, for clarifying questions. A survey about
their use has shown high user satisfaction levels, and users are especially pleased
about the user interface integration of pictograms.

For Clinical Data Miner (CDM)’s data analysis capabilities, the focus has
so far mostly been on diagnostic model research. The availability of good
diagnostic models can have a considerable impact on disease management. For
many diseases, treatment and/or management options are available, as long
as the disease is diagnosed sufficiently early. Endometrial cancer, for example,
causes relatively fewer deaths than many other types of cancer, thanks to
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many being diagnosed at an early stage, clearly demonstrating the impact
diagnostic procedures can have on patient survival. On the other hand, many
diagnostic techniques require invasive procedures, potentially causing patients
to avert diagnosis. These two factors combined explain the rising interest in
diagnostic model research, which, using machine-learning techniques, aims to
create diagnostic models that rely as much as possible solely on features that
can be obtained using non-invasive means. Apart from leading to less risk and
discomfort for the patient, such non-invasive diagnostic models could lead to
higher compliance with diagnostic follow-up, improving patient survival.

Traditional machine-learning algorithms applied in clinical diagnostic model
research, such as logistic regression, require complex, time-consuming preprocess-
ing, in order to obtain sufficient predictive performance, impeding automation
of the machine-learning workflow. For the data set of the International Ovarian
Tumour Analysis (IOTA) consortium, I have shown that this performance can
be exceeded or matched by more sophisticated machine-learning algorithms,
such as Least-Squares Support Vector Machines (LS-SVM), applied directly to
raw data. This provides the possibility of automating clinical diagnostic model
research.

As an initial step towards the goal of full automation, CDM considerably
simplifies the clinical diagnostic model workflow by integrating data collection,
data preprocessing, and machine-learning capabilities in a single software
framework. Currently, CDM provides a convenient experimentation platform
for interactively exploring predictive performance of various machine-learning
workflows.

I have developed all components of the CDM software framework, including
Electronic Data Capture (EDC), preprocessing and machine-learning compo-
nents, using a Test-Driven Development approach, simplifying development,
deployment and maintenance. This should further facilitate potential future
expansion of the team working on CDM’s development.

In future work, to further support the growing interest in diagnostic model
research, CDM’s data analysis capabilities will be integrated in its user interface,
enabling straightforward follow-up by study coordinators.

8.2 Future work

While I have made considerable progress on CDM, it is by no means finished.
More work is needed, on several levels. This involves additional methodological
research, software development, and diagnostic model research.
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Methodologically, I have shown that, for the International Ovarian Tumour
Analysis (IOTA) data set, LS-SVM applied directly to the raw data provides at
least the same performance as logistic regression after elaborate preprocessing
of the data. I plan similar analyses on other data sets, such as that of the
International Endometrial Tumour Analysis (IETA) consortium, in order to
further support the generality of this conclusion.

Methods such as logistic regression provide some important advantages over LS-
SVM, especially in a clinical context. One advantage is that logistic regression
provides probability estimates rather than binary outcomes. This allows to
better assess the risk associated with a certain outcome. Another advantage is
that logistic regression models are better interpretable than LS-SVM models,
especially if the latter use non-linear kernel functions. Additional investigation
is required to adapt LS-SVM to provide these same benefits.

More importantly, since high-dimensional diagnostic models are of little practical
use, I will research to what extent feature selection can be automated. One
aspect that cannot be automated, and will require the input of medical experts,
is the estimation of the relative “costs” of variables. These include both the
objective, financial costs of obtaining certain features, as well as subjective
costs, relating to the level of discomfort to the patient of obtaining the variable,
the health risk involved, or the need for surgery. Given a labelled data set,
and given these relative feature costs, can feature selection be fully automated?
This will be an important factor determining the feasibility of the aims of the
CDM project, which I intend to investigate.

Further work is also needed to design efficient methods for handling the skip
pattern commonly present in Case Report Forms (CRFs). While CDM already
implements such a method, other, more sophisticated methods would likely lead
to improved predictive performance.

Considering software development challenges, I plan to leverage CDM’s data
preprocessing and machine-learning Application Programming Interfaces (APIs)
to provide study coordinators with a user interface that allows them to manage
the machine-learning workflow without assistance from Information Technology
(IT) or machine-learning experts. This requires the implementation of several
new features in CDM. First, it requires automation of the entire machine-learning
workflow, including feature selection. Second, study coordinators will need a
user interface for monitoring the evolution of a study’s predictive performance.
When they deem predictive performance to be sufficient, they should be able
to “freeze” a model and store it. And finally, I will extend CDM with a user
interface for predicting a patient’s diagnosis, based on the value of a number of
input variables provided by the clinician.
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Another potentially useful software development avenue would involve extending
CDM’s user interface to serve as a teaching tool, for assessing a clinician’s ability
to correctly measure relevant clinical variables. A correct assessment of study
variables is a prerequisite for the creation of valid diagnostic models. Correct
assessment by clinicians is equally required for reliable prediction of patient
outcomes. Such a teaching tool could require a minimum score, in order to
guarantee study participants, or clinicians using a diagnostic model, have a
sufficient level of experience.

Apart from these methodological and software challenges, the objectives stated
in the project entitled “Endometrial cancer diagnosis based on predictive
computer models within an International Endometrial Tumour Analysis (IETA)
collaboration” will have to be pursued. This project, in which I participate, is led
by D. Timmerman and B. De Moor, and is funded by Agenschap voor Innovatie
door Wetenschap & Technologie (IWT) - Toegepast Biomedisch Onderzoek met
een primair maatschappelijke finaliteit (TBM) (IWT-TBM). Its primary goal
involves the design of a clinical diagnostic model for endometrial cancer. As its
secondary goal, this model will be integrated in CDM’s user interface, enabling
the calculation of predictions for patients presenting with symptoms indicative
of endometrial cancer. Finally, the project’s stretch goal entails the creation
of a model that can be used as a screening test, which could be deployed to a
wide population of asymptomatic women.

Clearly, many of the IWT-TBM’s project’s objectives overlap to a large extent
the methodoligical and software engineering challenges previously discussed.
Results of analyses carried out while researching the optimal diagnostic model
for endometrial cancer will guide the implementation of an automated machine-
learning workflow. Work on a general user interface for calculating predictions
based on a stored model can be used directly for the IWT-TBM project’s
secondary goal.

8.3 Dissemination

Several avenues are possible with regard to dissemination of this work. Some of
these could be implemented now, while others will be enabled by future work.

The organization of more studies with CDM is one possible approach to further
dissemination. These can be diagnostic model studies or inter-rater agreement
studies. As already stated, several studies are currently in the design stage, and
this dissemination path will certainly be explored further.

Also, as a diagnostic model is derived from the IETA data collected by CDM, it
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will be published by the IETA consortium, for wider adoption by the gynaecologic
community. A user interface using this model to predict risk of endometrial
cancer for new patients should support this adoption.

Concerning dissemination of the CDM software framework itself, several options
are available. The software framework as a whole, or its data collection
component separately, could be licensed to a third party, who could then
commercialize it. Since in this scenario, the intellectual property (IP) rights
remain with KU Leuven, this would enable further research, especially on
CDM’s data analysis components.

Another possibility would be to start a new company for commercializing CDM.
Several business models are possible. Charging a fixed price for the entire
software or its components is one possibility. Alternatively, one could collect
micro-payments for each use of CDM’s individual components, namely its
EDC, machine-learning, and prediction components. Care should be taken,
however, not to discourage the collection of large data sets, as doing so might
be detrimental to predictive performance of calculated models.

Using a different business model, one could provide open-source access to
the software, while offering support contracts as well as certified releases to
paying customers. While this would lead to a substantial amount of non-paying
customers, it would lead to higher visibility, which could eventually lead to
more paying customers.

Finally, one could opt for societal instead of financial valorization, by further
developing CDM within KU Leuven. This could also serve as a driver for
international research collaboration on various medical studies.

8.4 Conclusion

Since diagnostic models can improve patient comfort and survival, many other
such studies can be expected.

Observing examples from the IOTA and IETA studies, such research starts with
identification of (potentially) relevant variables, and definition of terms used to
describe them. Inter-rater agreement studies, facilitated by CDM, help assess
the reliability of these variables. CDM’s EDC software component enables the
collection of data. Its machine-learning capabilities simplify the determination
of diagnostic models. Future work will promote dissemination of models by
providing a user interface enabling the calculation of predictions. A future
teaching tool could examine users’ proficiency with certain terminology prior to
accepting their patient submissions.
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In short, CDM presently enables automating many steps in the workflow of
clinical diagnostic model research, and will expand this automation further in
the future, to simplify this research. As EDC has done for collection of patient
data before, this will deliver efficiency gains, which ultimately could accelerate
clinical diagnostic model research.



Appendix A

Inter-rater agreement studies

This appendix details some aspects of the inter-rater agreement studies organized
using Clinical Data Miner (CDM)’s Electronic Data Capture (EDC) user
interface, introduced in Subsection 4.2.2, which was modified for facilitating
the organization of such studies.

A.1 Influence of pictograms

This inter-rater agreement study is described in detail in Chapter 4. Results
were presented at the 21st World Congress on Ultrasound in Obstetrics and
Gynaecology in 2011[38].

A.2 Polycystic Ovaries (PCOs)

These studies, organized in collaboration with D. Van Schoubroeck, investigated
inter-rater agreement for the diagnosis of PCO, as well as for the evaluation
of certain of their aspects. Five study participants evaluated 40 ultrasound
images for this study. Results were presented at the 22nd World Congress on
Ultrasound in Obstetrics and Gynaecology in 2012[79].
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A.3 Uterine anomalies

Also organized in collaboration with D. Van Schoubroeck, this study examined
inter-rater agreement for the diagnosis of uterine anomalies, and their expected
influence on fertility. It involved the evaluation of 60 ultrasound images by
five study participants. Results were presented at the 22nd World Congress on
Ultrasound in Obstetrics and Gynaecology in 2012[78].

A.4 Endomyometrial junction

Organized in collaboration with A. Votino, these studies compared inter-
rater agreement of images obtained by different ultrasound technologies. Five
clinicians participated in this study, one of whom evaluated the first study twice,
enabling evaluation not only of inter-rater agreement, but also of intra-rater
agreement.

In the first study, technologies included were Volume Contrast Imaging (VCI)
2mm, VCI 4mm, and 2D. Inter-rater agreement calculation was based on 80
ultrasound images for each technology. The second study compared render and
2D technologies, with and without hystero-salpingography. Each technology
was again evaluated using 80 images.

Results of these studies were presented at the 22nd World Congress on Ultrasound
in Obstetrics and Gynaecology in 2012[85, 84].

A.5 International Endometrial Tumour Analysis #2

This study by the International Endometrial Tumour Analysis (IETA)
consortium evaluates some of the terminology introduced by the IETA consensus
paper[45]. It involved the evaluation of 112 grayscale and 112 Doppler ultrasound
images. Eight clinicians participated in this study, stratified to experience level
into two groups, to enable evaluation of the images in two phases, with a two
month time lapse. One group evaluated grayscale images during the first phase,
and Doppler during the second; the other inverted this order, first evaluating
Doppler images, with grayscale images evaluated in the second phase.

This study was performed in collaboration with L. Valentin. Analysis of the
results is ongoing.



IMAGE ENHANCEMENT 129

A.6 Image enhancement

For this study, I collaborated with T. Bourne. Its aim was to examine if adding
a contrast enhanced version to a regular ultrasound image improves inter-rater
agreement. This study involved the evaluation of 100 images without, and 100
images with contrast enhanced version. The ten participants were split in two
groups, stratified to experience level, evaluating the two image sets in opposite
order, with a time interval of two months between image sets. Analysis of the
results is ongoing.





Appendix B

Case Report Forms

This appendix shows the structure of some Case Report Forms (CRFs) that have
been used in studies organized using Clinical Data Miner (CDM)’s Electronic
Data Capture (EDC) component.

B.1 Effect of pictograms on data quality

The CRFs described in this section were used for the analysis of the effect of
pictograms on data quality, described in Chapter 4.

In the study, both these CRFs were combined in a single CRF, with the top
question allowing participants to choose between either one. In very few cases,
this led to erroneous identification of image type, and thus CRF selection, which
were therefore excluded from analysis.

B.1.1 Unenhanced ultrasound

The CRF used for the evaluation of unenhanced ultrasound images includes
many of the same variables as the “Unenhanced ultrasound” section included
in the CRFs of International Endometrial Tumour Analysis (IETA) #1, #3,
and #4.

• Endometrial echogenicity and pattern
• uniform

• 3-layer pattern
• hyper-echoic
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• hypo-echoic
• iso-echoic

• non-uniform
• regular cystic areas
• irregular cystic areas
• heterogeneous without cysts
• heterogeneous with regular cysts
• heterogeneous with irregular cysts

• Endometrial midline
• linear
• non-linear
• irregular
• not defined

• Presence of bright edge
• Endo-myometrial junction

• regular
• irregular
• interrupted
• not defined

• Colour score, as a value between 0 and 100 (when applicable)
• Colour score, as an ordinal variable (when applicable)

1. no flow
2. minimal flow
3. moderate flow
4. abundant flow

• Vascular pattern, in case of minimal, moderate, or abundant flow:
(a) single “dominant” vessel without branching
(b) single “dominant” vessel with branching
(c) multiple “dominant” vessels – focal origin
(d) multiple “dominant” vessels – multifocal origin
(e) scattered vessels
(f) circular flow

B.1.2 Sonohysterography

The CRF used for the evaluation of sonohysterographies concurs in large part
with the “Sonohysterography” section of the CRFs used for IETA #1 and #3.

• Outline of background endometrium
• smooth
• endometrial folds
• polypoids
• irregular

• Echogenicity of background endometrium
• uniform

• hyper-echoic
• hypo-echoic
• iso-echoic

• non-uniform
• regular cystic areas
• irregular cystic areas
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• heterogeneous without cysts
• heterogeneous with regular cysts
• heterogeneous with irregular cysts

• Colour score, as a value between 0 and 100 (when applicable)
• Colour score, as an ordinal variable (when applicable)

1. no flow
2. minimal flow
3. moderate flow
4. abundant flow

• Presence of intracavity lesion
• no
• yes

• Lesion type
• endometrial lesion

• extent
• localized (< 25%)
• extended (≥ 25%)
• not assessable

• type of localized lesion
• pedunculated
• sessile
• not applicable
• not assessable

• echogenicity
• uniform

• hyper-echoic
• hypo-echoic
• iso-echoic

• non-uniform
• without cystic areas
• with regular cystic areas
• with irregular cystic areas

• outline
• regular
• irregular

• lesion arising from the myometrium
• echogenicity

• uniform
• non-uniform

• grading
• G0 (within the cavity)
• G1 (endocavitary part ≥ 50%
• G2 (endocavitary part < 50%

• colour score, as a value between 0 and 100
• colour score, as an ordinal variable

1. no flow
2. minimal flow
3. moderate flow
4. abundant flow

• Vascular pattern, in case of minimal, moderate, or abundant flow:
(a) single “dominant” vessel without branching
(b) single “dominant” vessel with branching
(c) multiple “dominant” vessels – focal origin
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(d) multiple “dominant” vessels – multifocal origin
(e) scattered vessels
(f) circular flow



Appendix C

Feature selection experiments

This appendix shows results of a number of experiments obtained from applying
both feature selection and classification algorithms to data sets obtained from the
International Ovarian Tumour Analysis (IOTA) data described in Section 5.2.

C.1 Algorithms

This analysis used two classification algorithms, namely logistic regression
and Least-Squares Support Vector Machines (LS-SVM). The first, logistic
regression[36, 2], is described in detail in Subsection 5.3.1, while LS-SVM[67, 68],
as well as how it evolved from Support Vector Machines (SVM)[80, 14], are
explained in Subsection 5.3.2. LS-SVM was combined both with linear and
Radial Basis Function (RBF) kernels.

Feature selection algorithms used were Stepwise Logistic Regression (SLR)[36]
and Automatic Relevance Determination (ARD)[75, 68], the latter using LS-
SVM within a Bayesian evidence framework.

C.2 Learning curves

This first analysis compares learning curves obtained from different data sets,
processed by either logistic regression or LS-SVM. All data sets are derived
from the IOTA data described in Section 5.2. Using the workflow depicted
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Figure C.1 – Learning curves showing evolution of AUC with respect to sample
size, for logistic regression and LS-SVM, applied to the variables from the IOTA
data set listed in Table 5.2.

in Figure 5.3, and described in Section 5.5, allowed the generation of learning
curves and their interquartile range (IQR).

C.2.1 Performance on the full data set

The learning curves from Figure C.1 plot performance results obtained on the
IOTA data in the absence of feature selection. They show Area under the
Receiver Operating Characteristic (ROC) curve (AUC) values with respect to
sample size, of logistic regression and LS-SVM, with linear and RBF kernels,
applied to the variables listed in Table 5.2. As explained in Section 5.2, apart
from variables collected directly by IOTA study participants, these include a few
variables derived either intuitively, or by preprocessing. As in Chapter 5, the
learning curves from Figure C.1 show LS-SVM to outperform logistic regression
considerably at low sample sizes, while for large samples performance differences
become insignificant.
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Age Ascites papflow
soldmax wallreg Shadows

Table C.1 – Input features of the [LR2] data set. Derived features are enclosed
in a black box.

soldmax colscore Ascites
wallreg Shadows ovaryd2

Table C.2 – Input features of the [SLR6] data set. Derived features are enclosed
in a black box.

C.2.2 Performance on reduced data sets

Figure C.2 graphs the learning curves obtained from applying logistic regression
and LS-SVM to three data sets derived from the IOTA data by feature selection.

The first of these data sets was obtained by a complex process involving the
first 754 data points collected by the IOTA consortium. This process included
the introduction of derived variables, followed by the application of SLR[36] for
feature selection, This process is described in detail by Ameye[3], and resulted
in a model based on twelve variables[70]. In order to obtain a more concise
diagnostic model, which can be more easily deployed in clinical practice, this
model was further restricted to the six most important variables, listed in
Table C.1. This model was published by Timmerman et al.[70], and will be
referred to as [LR2].

The second data set consists of the variables obtained by applying SLR to a
subsample of the IOTA data set, and choosing the six most important of the
variables obtained. In order to create circumstances comparable to those used
for determining the variables from the [LR2] data set, the subsample from
which these variables were determined, contained 754 data points randomly
drawn from the IOTA data without replacement. Table C.2 lists the variables
retained by this procedure, referred to as the variables from the [SLR6] data
set.

Finally, the third data set includes the variables obtained by applying ARD,
using LS-SVM within the Bayesian evidence framework, to a subsample of the
IOTA data set, constructed similarly as that used in determining the [SLR6]
data set. Table C.3 lists the selected variables, forming the [ARD6] data set.

Note that the [SLR6] data set includes the ovaryd2 variable, while the [ARD6]
data set includes solidd3, which are the second diameter of the ovary and
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lesdmax solidd3 Shadows
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Table C.3 – Input features of the [ARD6] data set. Derived features are enclosed
in a black box.
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Figure C.2 – AUC learning curves for logistic regression and LS-SVM, applied to
different subsets of variables from the IOTA data, obtained by feature selection.

the third diameter of the solid mass, respectively. While these variables have
no physical meaning, in practice, clinicians typically enter length dimensions
starting with the largest, and ending with the smallest. These variables can thus
be interpreted as the intermediate ovarian diameter and the minimum diameter
of the solid component, respectively. This demonstrates the importance of
careful interpretation of feature sets obtained by automatic feature selection.

The curves from Figure C.2 present performance evolution of logistic regression
applied to the [LR2] data set, of LS-SVM with a linear kernel applied to the
[SLR6] data set, and of LS-SVM in conjunction with an RBF kernel applied to
the [ARD6] data set. They show very similar performance for the two former
workflows, while ARD offers lower performance.
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C.3 Feature selection performance robustness

The experiment in this section evaluates robustness of predictive performance
obtained from applying SLR and ARD to the IOTA data, followed by an
appropriate classifier. Due to its linear behaviour, SLR is combined with either
logistic regression or LS-SVM with a linear kernel, while ARD’s non-linear
properties are matched to LS-SVM with an RBF kernel.

For each combination, fifty samples, containing 754 data points each, were
randomly drawn from the IOTA data, without replacement. Feature selection
and classification were subsequently applied to each of the fifty samples.

Figure C.3 shows boxplots for the AUC values obtained. SLR combined with
either logistic regression or LS-SVM with a linear kernel exhibit very similar
results, with little variance. ARD followed by LS-SVM with an RBF kernel
has lower median performance, and larger variance. Thus, for the data from
the IOTA studies, feature sets obtained by SLR resulted in both higher and
more robust performance than ARD. This is in contrast to LS-SVM with an
RBF kernel performing equally or better than logistic regression on the full
IOTA data set, as shown in Figure C.1. A possible reason for this is the
specific approaches adopted by the used feature selection algorithms: while the
SLR implementation used a combination of forward selection and backward
elimination, LS-SVMLab’s[16] ARD used backward elimination.
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Figure C.3 – Performance comparison of SLR followed by either logistic
regression or LS-SVM with a linear kernel, and ARD followed by LS-SVM
with an RBF kernel.
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