
A Causal Relation between Bioluminescence and Oxygen
to Quantify the Cell Niche
Dennis Lambrechts1,2, Maarten Roeffaers3, Karel Goossens4, Johan Hofkens5, Tom Van de Putte6,

Jan Schrooten1,2*, Hans Van Oosterwyck2,7*

1 Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium, 2 Prometheus, Division of Skeletal Tissue Engineering Leuven, KU Leuven, Leuven,

Belgium, 3 Center for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium, 4 Department of Chemistry and Biochemistry, The University of Texas at Austin,

Austin, Texas, United States of America, 5 Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium, 6 TiGenix NV, Leuven, Belgium, 7 Biomechanics Section, KU

Leuven, Leuven, Belgium

Abstract

Bioluminescence imaging assays have become a widely integrated technique to quantify effectiveness of cell-based
therapies by monitoring fate and survival of transplanted cells. To date these assays are still largely qualitative and often
erroneous due to the complexity and dynamics of local micro-environments (niches) in which the cells reside. Here, we
report, using a combined experimental and computational approach, on oxygen that besides being a critical niche
component responsible for cellular energy metabolism and cell-fate commitment, also serves a primary role in regulating
bioluminescent light kinetics. We demonstrate the potential of an oxygen dependent Michaelis-Menten relation in
quantifying intrinsic bioluminescence intensities by resolving cell-associated oxygen gradients from bioluminescent light
that is emitted from three-dimensional (3D) cell-seeded hydrogels. Furthermore, the experimental and computational data
indicate a strong causal relation of oxygen concentration with emitted bioluminescence intensities. Altogether our
approach demonstrates the importance of oxygen to evolve towards quantitative bioluminescence and holds great
potential for future microscale measurement of oxygen tension in an easily accessible manner.
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Introduction

In situ studies on the mechanisms of cell fate regulation in local

microenvironments (niches) has gained considerable interest in the

development of cell based therapies for disease and regeneration.

These studies are very often complemented with bioluminescence

imaging assays that yield valuable information on cell fate and

behavior in a dynamic microenvironment. Likewise, specific niche

components have been screened for their contribution to therapy

outcome, including the matrix elasticity [1], presence of soluble

and matrix-bound chemical agents in biomaterials [2], targeted

and sustained release of cytokines from transplanted cells [3], and

cell-adhesion mediated resistance against therapeutic agents [4].

Bioluminescence imaging relies on the activity of luciferase

enzymes that act as catalyst for the conversion of luciferin to

oxyluciferin, which is accompanied by the release of a photon [5].

Even though bioluminescence reporter imaging is a well-integrat-

ed technique for probing the biological function of living cells

in vitro as well as in small-animal models [6,7], the complexity of

3D cellular microenvironments precludes a quantitative interpre-

tation of bioluminescent light [8]. Here we report on three major

sources for the ambiguity in interpreting bioluminescence data

obtained from cell-seeded hydrogels. At first the availability of

bioluminescence substrate molecules (luciferins) to the luciferase

enzymes which is dependent on active and/or passive transport

from the site of application, secondly the accessibility to oxygen

that is required for substrate oxidation, and finally the need for

dynamic time point measurements of luciferase activity are all

crucial determinants for making robust quantitative analyses.

Although previous studies have elucidated the effects of oxygen

concentration on the emitted bioluminescence intensity [9,10], we

show here how a mathematically validated model aids in resolving

the oxygen dependent influences (changes in intensity, Michaelis-

Menten kinetics, and decay rates) and how this model can be used

to obtain quantitative measurements of the intrinsic biolumines-

cence intensity. Furthermore, we show that by careful analysis of

the bioluminescence signal information can be obtained on local
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oxygen concentrations, evidencing a causal link between biolumi-

nescence and oxygen.

Results and Discussion

Bioluminescence Intensities are Influenced by the
Available Oxygen Concentration

The importance of the oxygen availability for the biolumines-

cence reaction is best illustrated by the light flashing mechanism in

the adult firefly Photinus pyralis. Tracheolar fluid levels in this

system are acting as a diffusive barrier for oxygen supply and

effectively control the light flashes emitted from photocytes in the

firefly’s abdomen [11]. Oxygen-dependent luciferase activity is

also observed in vitro in cell monolayer assays and has been used as

reporter for cellular oxygen availability upon incubation with

nitric oxide [12]. Here, we show that hypoxic conditions applied to

firefly luciferase solutions result in a ,3.4 fold difference in total

photon flux as compared to normoxia (Fig. 1A). With the resolving

power of currently available imaging equipment this fold

difference should enable the quantification of oxygen-dependent

luciferase activity. Conditions of normoxia (21% O2) and hypoxia

(near 0% O2), representing the boundaries of oxygen availability

in the artificial (atmospheric) and physiological (in vivo) cell

environment [13], were applied in our experimental studies.

Intermediate levels of oxygen concentration, which are difficult to

maintain using regular gas exchange setups, were not directly

applied but their influence was adapted from previously reported

relations (which will be described below).

Other cofactors of the bioluminescence reaction (e.g. ATP) also

account for a decrease in measured photon flux, but can often be

directly or indirectly related to the influence of oxygen. Gradual

accumulation of the inactive dehydroluciferyl-adenylate (L-AMP)

complex within the cytoplasm of intact cells results in a lower

photon flux compared to the free luciferase solution [14,15]. The

availability of free diffusing luciferin may be further decreased as

membrane-bound ABC transporters not only control the net influx

of luciferin into the cytoplasm but also require luciferin as a

substrate for their activity [16]. In addition to the lower luciferase

activity, ABC transporter-luciferin binding is also reflected in a

slower apparent diffusivity of luciferin within cell-seeded hydrogels

(Fig. S2). Comparison of photon fluxes from luciferase solutions

relative to intact cells for corresponding luciferase concentrations

yielded a difference of ,3.5 fold under normoxic conditions, while

a much larger difference of ,16.5 fold was observed for the

hypoxic environment (Fig. 1A). This effect mainly originates from

a decrease in intracellular ATP content under hypoxia, concom-

itant with a reduction in mitochondrial membrane potential

[10,17]. We support this reasoning by visualization of mitochon-

dria with a MitoTracker dye, clearly indicating a strong reduction

of stained mitochondria in case of hypoxic incubation (Fig. 1B,C).

Lower intracellular ATP concentrations potentially also influence

the activity of ABC transporters, leading to a reduced influx of

luciferin into the cytoplasm and hence a reduced photon flux [16].

Reduced Oxygen Concentrations Induce Changes in the
Bioluminescence Reaction Kinetics

Oxygen dependent changes in initial bioluminescence reaction

kinetics were determined from dynamic time point measurements

of luciferase activity with varying luciferin concentrations. As peak

intensities are reached within less than 1 second after reagent

addition, fast operation and manipulation would be required to

monitor initial light emission [18]. To circumvent these practical

issues specifically for cell lysates, and avoid potential signal

interference from measurement equipment, we extrapolated

bioluminescent data that were obtained at later time points

(Fig. 2A,B). Typical exponential decay of luciferase activity was

observed under both normoxic and hypoxic conditions. Initial

reaction velocities were subsequently transformed into Line-

weaver-Burk plots in order to retrieve Michaelis-Menten kinetic

parameters (Fig. 2C). Under normoxic conditions a higher

substrate affinity was found as compared to hypoxia, with

corresponding average Michaelis-Menten parameter values

(Km,21 and Km,0) of 42.6 and 938.4 mM respectively (Table S1).

To estimate initial reaction velocities at intermediate oxygen

tensions a square root dependency was adopted, similar to what

has been reported for ATP-dependent kinetics [19]. This

approach resulted in an oxygen dependent luciferase activity that

matched with data from Moriyama et al. [10]. In this work, a

previously published ordinary differential equation (ODE) model

was extended to describe the average photon flux from cell lysates

or intact human embryonic kidney 293T cells [20]. The extended

model describes the kinetics of luciferin (extracellular as well as

intracellular), firefly luciferase, and emitted photon flux, taking

into account the oxygen dependency of photon generation (see

Text S1 for further details). For intact cells we implemented an

apparent Michaelis-Menten parameter (Km) which is 1.5 fold

higher than in cell lysates. This value was obtained by model

fitting and reflects the influence of a highly crowded cytoplasm on

the luciferase activity [21,22]. These results show great discrep-

ancy with available literature data, where ,7 fold changes in

substrate affinity have been reported for cell lysates versus intact

cells [23]. Most probably this literature data discrepancy can be

attributed to the influence of luciferin membrane transport on the

luciferase activity in living cells. In our analysis this influence was

included explicitly, by introducing an additional transport term in

the model equations (equation (1) and (2) in Text S1).

Bioluminescence Decay Rates are Modified at Reduced
Oxygen Concentrations

Intact cells show a significantly slower bioluminescence signal

decay compared to the decay in luciferase solution, which is

orchestrated by the concentration of cytoplasmic inorganic

pyrophosphate (PPi) [14]. Also coenzyme A (CoA) concentrations

can influence the decay dynamics. CoA stabilizes the photon flux

by thiolysis of L-AMP into dehydroluciferyl-coenzyme A (L-CoA),

which is a less powerful inhibitor than L-AMP on the biolumi-

nescence reaction [24]. Under normoxic conditions the average

exponential decay rates changed from 3948 s21 for firefly

luciferase extracted from cell lysates to 180 s21 for intact cells.

Hypoxic conditions have a remarkable influence on these decay

rates with a decay rate of 1452 s21 for cell lysates and 3 s21 for

intact cells (Fig. 2D). Cells exposed to an initial luciferin substrate

concentration of 470 mM presented a bi-exponential decay in their

luciferase activity (Fig. 2E,F) [23]. A fast initial decay (peak with

decay rate of 180 s21) which takes place in the first few minutes

and which is indicative of a rapid substrate exhaustion, was

followed by a slower decay rate of 27 s21. Hypoxic environments

repressed peak occurrence and transformed the diffusion-limited

bioluminescence reaction into a more transition state-limited

reaction. These changes were explicitly implemented into the

model by a decrease in luciferin substrate affinity under hypoxia

(KM, Table S1) and the introduction of a transition threshold

parameter (k, Text S1).

Bioluminescence and Oxygen Relation
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Substrate Transport can be Monitored by Fluorescence
Recovery after Photobleaching (FRAP)

As indicated before, active cellular membrane transport is not

the sole mechanism which controls the availability of luciferin to

the cytoplasmic luciferase. When cells are embedded in an

extracellular matrix (ECM), luciferin molecules will be transported

through this matrix prior to intracellular uptake (Fig. 3A). This

necessitated the introduction of diffusion in the model and

therefore resulted in a system of partial differential equations

(PDEs). Using fluorescence recovery after photobleaching (FRAP)

[25], we were able to obtain quantitative measures of substrate

diffusion rates at different positions in space and time, in order to

rule out any changes in diffusivity. Measurements were performed

with an optimized concentration of fluorescein tracer (see Fig. S2).

FRAP-based ratios of tracer diffusivity in culture medium versus

agarose hydrogel were validated by comparing diffusion rates

obtained from Fluorescence Correlation Spectroscopy (FCS) (Fig.

S3).

Oxygen independent Bioluminescence Intensities are a
Good Measurement of the Active Bioluminescent Cell
Population

Oxygen- and transport-related parameters influencing luciferase

activity were subsequently implemented into the PDE-based

model. Time-dependent luciferase activity showed a typical

exponential decay which was described mathematically by a first

order chemical kinetic equation (Equation (3) in Text S1) [26].

Substrate diffusion through cell membranes also accounted for the

observed time-dependency of bioluminescent reaction rates, which

by virtue of the induced spatial heterogeneities resembled fractal-

like reaction kinetics [27]. The afore-mentioned model fits the

experimental data points with good accuracy, thereby enabling

reliable quantitative insights into the bioluminescence reaction

kinetics for both cell lysates and intact cells (Fig. 2D,E). The

influence of spatial organization on the emitted bioluminescence

from luciferase reporter cells was validated for a homogeneously

cell-seeded (,16106 cells?ml21) cylindrical agarose hydrogel

(Fig. 3B). Circular glass plates confined the hydrogel in axial

direction, preventing axial diffusion of oxygen and luciferin. This

resulted in an axisymmetric setup which simplified further analysis.

Microscale measurements of oxygen concentration were per-

formed by integration of fluorescent oxygen sensitive microbeads

that we previously developed [28] (Fig. S4). Stable read-outs of

oxygen concentration over a time period of 3 days were obtained

for control gels in which no cells were embedded (Fig. S4F). Radial

oxygen concentration profiles from cell-seeded hydrogels displayed

a gradual decrease towards the center with an averaged

availability of oxygen that increased over time (Fig. 3C). Diffusivity

measurements obtained from FRAP experiments in cell-seeded

hydrogels displayed no significant changes in tracer diffusion rate,

with an average value of ,350 mm2s21 (Fig. 3D). As nearly

Figure 1. The activity of firefly luciferase in free solution or in intact 293T cells is dependent on available oxygen concentration. (A)
Total photon flux at normoxic (21% O2) and hypoxic (0% O2, via addition of 1% Na2SO3) conditions emitted from a luciferase-dependent
bioluminescence reaction in intact cells or from an equal concentration in cell lysates. Error bars, 61 s.d. unit; n $5. (B, C) Confocal fluorescence
imaging of cell mitochondria in cells exposed to (B) normoxic or (C) hypoxic oxygen concentrations. Images are maximum intensity projections of
cell mitochondria stained with MitoTracker Red (red), cell nucleus stained with Hoechst (blue), and GFP signal (green) from stably transduced 293T
cells. Left and right panels show the stained mitochondria with or without the other two channels, to reveal background fluorescence. Scale bar,
10 mm.
doi:10.1371/journal.pone.0097572.g001
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Figure 2. The available oxygen concentration induces changes in luciferase enzyme kinetics. (A, B) Dynamic time point analysis of
luciferase activity with varying luciferin concentrations measured at (A) normoxic and (B) at hypoxic conditions. Measured data points were
extrapolated with exponential functions to resolve the initial enzyme activity. Error bars, 61 s.d. unit; n $3. (C) Lineweaver-Burk plots of initial
luciferase activity show the influence of available oxygen concentration on bioluminescence kinetics-related parameters, at normoxia (R2 = 0.74) and
at hypoxia (R2 = 0.94). Enzyme kinetics for intermediate oxygen levels (solid black lines –5, 10 and 15% O2 from top to bottom) are determined from a

Bioluminescence and Oxygen Relation
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constant values in space and time for the tracer diffusion rate were

measured it can be concluded that the time-dependent increase in

radial oxygen concentration profiles was induced by a decrease in

initial oxygen consumption rate (OCR) by the cells with time (Fig.

S4G). 293T cells are able to respond to reduced oxygen

availability by altering cytochrome c oxidase (COX) subunit

composition via a hypoxia-inducible factor 1 (HIF-1) -dependent

mechanism [17], that results in a decrease of their OCR. We

implemented these time-dependent changes in OCR directly into

the model to accurately match the measured radial oxygen profiles

(Fig. 3C and equation (4) in Text S1).

square root dependent relationship with available oxygen concentration. (D, E) Average photon flux emitted from cell lysates or intact cells at
different oxygen concentrations. Simulation results (dashed lines) are shown for (D) short and (E) long term analyses. Cells incubated in hypoxic
conditions display a delayed bioluminescence peak activity. (F) Bioluminescence microscopy of intact cells imaged at saturated (21% O2) oxygen
concentrations (initial luciferin concentrations, 470 mM). Scale bar, 20 mm.
doi:10.1371/journal.pone.0097572.g002

Figure 3. Overview of the mechanisms involved in bioluminescence photon emission from luciferase reporter cells embedded in a
hydrogel. These mechanisms are implemented in the mathematical bioluminescence-oxygen model to decouple intrinsic bioluminescence
intensities from the cellular oxygen environment. (A) Illustrated overview of the bioluminescence reaction in intact cells. Oxygen (iv) and luciferin (iii)
pass through an extracellular matrix prior to cellular uptake. Diffusion rates are obtained from Fluorescence Recovery After Photobleaching (FRAP).
Luciferin is actively transported across the cell membrane (thickness, lc) and reacts with luciferase (ii) in the cell cytoplasm where this reaction is
accompanied by the release of a photon (i). Oxygen availability in the cytoplasm modulates emitted light intensity and kinetics and is described by
the Michaelis-Menten kinetics. (B) Setup for validation of the bioluminescence-oxygen model. Oxygen Sensing microBeads (i) and 293T cells (ii) are
embedded in an agarose gel that is confined between 2 circular glass plates. Focal volume (v) imaged by combined bioluminescence and
fluorescence microscopy reveals luciferase activity in single intact cells (iii) and local oxygen concentrations based on ratiometric intensities obtained
from oxygen sensitive and insensitive dyes (iv). Scale bar, 1mm. Scale bar figure insets, 10 mm. (C) Radial oxygen concentration profiles in cell-seeded
agarose gels measured by fluorescence intensities from embedded OSB. Colored lines indicate fitted oxygen profiles simulated by the oxygen model.
Empty control gels (Contr) are imaged after 1, 2 and 3 days of incubation. Error bars, 61 s.d. unit; n $3. (D) Polar plot of time-dependent changes in
fluorescein tracer diffusion rates as measured by FRAP. R-axis of polar plot indicates tracer diffusion rate (mm2?s21). FRAP analysis showed no
significant difference in average values (dashed lines) at day 1 (red, top left panel), day 2 (green, top right panel), and day 3 (blue, bottom left panel).
Spatial heterogeneities in diffusion rate within the agarose gel were determined from measurements at various radial (r1 = 1 mm, red; r2 = 2 mm,
green; and r3 = 3 mm, blue) and angular positions in the gel. Empty control gel (black, bottom right panel) is shown as a reference. Measurements are
performed in duplicate with a small shift in spatial position, n $3.
doi:10.1371/journal.pone.0097572.g003
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Dynamic time point measurements of the average photon flux

emitted from the cell-seeded hydrogels revealed the presence of a

fast bioluminescence intensity peak that fades away slowly with a

decaying signal that was detectable for several hours (Fig. 4A).

Peak intensities reached maximum values after 2 days of

cultivation and decreased gently with longer cultivation time

(Fig. 4B). These results did however not entirely correlate to the

quantitative DNA and viability measurements, representing the

active bioluminescent cell population and clearly being oxygen-

independent readouts (Fig. S5). To decouple bioluminescence

signal reshaping caused by oxygen availability from the spatial

distribution of luciferase activity, we removed cell respiration in

our model, hence maintaining a saturated (and uniform, 21%)

oxygen level within the hydrogel and therefore oxygen-indepen-

dent bioluminescence signal intensities. A prominent role for

oxygen in reshaping the bioluminescence signal was clearly

observed (Fig. 4C–E). When saturated oxygen conditions were

simulated the obtained peak signal intensities matched closely the

cell activity measurements (Fig. 4F). Radial profiles of the

bioluminescence signal emitted from encapsulated 293T cells

indicated high activity near the hydrogel edge at early time points

that gradually leveled off towards the center after longer

measurement times (Fig. 4G, Video S1). With increasing

cultivation times the observed effect of high edge activity became

more pronounced and was in good agreement with our simulation

results. Combined, these data show a strong influence of oxygen

availability on the activity of luciferase reporter cells which should

be taken into account when intrinsic (i.e. independent of other

environmental factors) measurements and error-free interpreta-

tions of bioluminescence intensity are pursued.

Oxygen Concentrations within Cell-seeded Hydrogels
can be Derived from Bioluminescence Signal Analysis

With longer cultivation times peak bioluminescence also

occurred faster after luciferin substrate addition, in conjunction

with a reduced full width at half maximum (FWHM) and a faster

decay rate of the bioluminescence signal (Fig. 4B and Fig. S6A–C).

Bioluminescence microscopy of cell activity at the hydrogel center

revealed comparable parameter trends, though the change in

signal decay rate with culture time was more pronounced

(Fig. 4H,I and Fig. S6E–G). Strong discrepancy with the simulated

decay rate was observed at 3 days of cultivation. This difference

could therefore indicate that a luciferin concentration dependent

decay would be required to accurately fit the experimental data,

which is supported by a strongly reduced substrate availability in

the hydrogel center (Fig. S7) and maintenance of a concentration

dependent substrate gradient (partitioning) across the cell mem-

brane (Fig. S8) [14]. A good correspondence in the evolution of

bioluminescence peak parameters and available oxygen concen-

tration was clearly observed, evidencing the causal link (Fig.

S6D,H). These results hence show great promise towards

quantifying averaged or localized oxygen concentrations in cell-

based systems that are based on univocal relations between

bioluminescence and oxygen.

Oxygen is a critical component of the cell microenvironment,

such as for the determination of cell fate in stem cell niches

[29,30]. As such, new non-invasive technologies and methodolo-

gies should be developed that are capable of oxygen measurement

and control in 3D environments in space and time. In this respect,

the methodology as stated above holds great potential as a tool for

easily-accessible measurements of oxygen concentration directly

from the time-dependent bioluminescence signal emitted within a

dynamic microenvironment. Further validation is required to

assess practical use of the identified bioluminescence peak

parameters in determining oxygen for other experimental setups.

Materials and Methods

293T Cell Culture and Transduction
Human embryonic kidney 293T cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM) with Glutamax

(Invitrogen, Merelbeke, Belgium) supplemented with 10% irradi-

ated fetal bovine serum (Gibco), and 1% antibiotic-antimycotic

(A/A) solution (100 units?ml21 penicillin, 100 mg/ml streptomy-

cin, and 0.25 mg/ml amphotericin B; Invitrogen). Cells were

cultured at 37uC in a humidified atmosphere containing 5% CO2.

Medium was refreshed every 2–3 days and cells passaged when

sub-confluent.

293T cells were transduced with a lentiviral vector (pCH-EF1a-

3flag-fLuc-T2A-eGFP-Ires-Bsd, 3.16108 TU?ml21) which was a

kind donation from Dr. Greetje Vande Velde (MoSAIC, KU

Leuven). The day before transduction, cells were seeded in a 96-

well plate at 16104 cells per well. On the day of transduction,

medium was replaced by DMEM containing serial dilutions of the

vector and incubated for 24 hours. After 24 hours, medium was

replaced with DMEM containing 1 mg?ml21 blastidicin for

antibiotic selection of the stably transduced cell population, and

was continued for 2–3 weeks. Transduction efficiencies were

analyzed by flow cytometric analysis (FACS). Luciferase expres-

sion levels of the transduced cells were stable over time (Fig. S1).

In vitro Luciferase Activity Assay
Stable read-outs of luciferase activity were obtained by

thoroughly mixing 5 ml solutions of recombinant luciferase

(QuantiLum, Promega), firefly luciferase extracted from 293T cells

or intact luciferase-reporting 293T cells in suspension in 45 ml of

Luciferase Assay Reagent (Promega). Incubation resulted in a glow-

type reaction that lasted longer than ,1 min and total photon fluxes

were measured using black-walled 96 well plates in the IVIS 100

imaging system (PerkinElmer) with 1 s acquisition time. Image

processing and analysis were performed in IGOR Pro software

(WaveMetrics). Final concentrations of recombinant luciferase

solutions were obtained upon dilution of stock solutions with

purified water from a Milli-Q system (Millipore) (Fig. S1).

Measurements on cell lysates were performed by lysing 293T cells

in Cell Culture Lysis Reagent (Promega) with a final concentration

of 16105 cells?ml21 and were compared to an equal concentration

of 293T cells in DMEM (Fig. S1). Hypoxic conditions were induced

by addition and incubation (.15 min) of 1% Na2SO3 in luciferase

solution and assay reagent before mixing. All bioluminescence

measurements were performed at 37uC incubation temperature.

Dynamic Time Point Analysis of Free Luciferase Activity
Flash-type bioluminescence reactions were provoked by mixing

10 ml solutions of recombinant luciferase (0.1 nM) with 100 ml

luciferin solutions (Beetle luciferin potassium salt (Promega) in

10 mM tricine, 1.07 mM magnesium carbonate pentahydrate,

2.67 mM magnesium sulfate, 0.1 mM ethylenediaminetetraacetic

acid (EDTA), 0.5 mM ATP sodium salt, 0.27 mM coenzyme A

sodium salt and 33.3 mM dithiothreitol (DTT)). Initial reaction

velocities were obtained by fitting exponential decay functions

through the measured data points and by extrapolation of the

luciferase activity to the initial time point. The initial time point

was found by application of a ratiometric criterion between total

emitted photon fluxes at normoxia and hypoxia, that we measured

via a stable glow-type reaction. This ratio indicated ,3.37 fold

difference in initial reaction velocities. Photon fluxes were

Bioluminescence and Oxygen Relation
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measured using black-walled 96 well plates in the IVIS 100

imaging system (PerkinElmer) with 1 s acquisition time.

Dynamic Time Point Analysis of Luciferase Activity in
Intact Cells

Cell densities (1.096105 cells?ml21) used for dynamic time point

analysis were calculated from the average intracellular luciferase

concentration (0.92 amol?cell21) as the equivalence of a 0.1 nM

free recombinant luciferase solution. Cells were suspended in

DMEM and at ,20 min before signal measurement, and cells

used for the hypoxic condition were resuspended in DMEM

containing 1% Na2SO3. Longer hypoxic incubation times resulted

in a modest decrease in luciferase activity. Luciferase activity was

measured after mixing 10 ml of cell suspension with 100 ml of

luciferin solution (Beetle luciferin potassium salt in DMEM).

Photon fluxes were measured using black-walled 96 well plates in

the IVIS 100 imaging system (PerkinElmer) with 1 s acquisition

time. The stability of luciferase expression levels for stably

transduced cells that are exposed to different oxygen concentra-

tions has been shown elsewhere [10].

Single-cell Bioluminescence Microscopy
Glass coverslips were coated with 500 ml Poly-L-Lysine (PLL,

Sigma) solution (0.1%, 5 min), rinsed with Milli-Q water and dried

overnight. We plated 16105 293T cells on PLL-coated coverslips.

After overnight cell attachment these plates were placed on the

stage of a luminescence microscope (LuminoView 200, Olympus).

Cells were incubated with a 470 mM luciferin solution at 37uC
(Solent Scientific). Bioluminescence was imaged with a UPLSAPO

606water objective (NA: 1.2) and transmitted to a cooled CCD

camera (ImagEM512, Hamamatsu Photonics) mounted on the

bottom port of the microscope. Time-lapse images were collected

with 5 s acquisition times and EM gain was set at 12006 (photon

imaging mode, Hamamatsu) (Fig. 2F).

Fluorescence Recovery after Photobleaching (FRAP)
Analysis of Self-diffusivity

Low melting point agarose gels (Invitrogen) with a final

concentration of 2% were prepared on glass coverslips (thickness,

2 mm and diameter, 8 mm). Gels were incubated with DMEM

containing various concentrations of fluorescein (Sigma). After

overnight incubation slides and gels were transferred to the stage

of a confocal fluorescence microscope (FluoView 1000, Olympus)

equipped with a UPLSAPO 106air objective (NA: 0.40) used for

observation. Measurements were performed at 37uC. Fluorescence

images were collected with the systems PMT. A 488 nm Ar laser

was used to bleach and also monitor the recovery of fluorescein

tracer molecules. The pinhole size was set to 50 mm. Images were

Figure 4. Validation of the bioluminescence-oxygen model for quantitative interpretation and analysis of bioluminescent light
emitted from cell-seeded hydrogels. (A) Average photon flux measured for luciferase reporter 293T cells embedded in agarose gels that are
axially confined by circular glass plates. Dynamic time point measurements were performed during 12 hour periods. (initial luciferin concentration,
47 mM) Error bars, 61 s.d. unit; n $3 (B) Emission peak intensities were fitted by Gaussian functions. Time-lapse measurements of the average
emitted photon flux were compared with simulation results from the bioluminescence-oxygen model in presence or absence of oxygen gradients at
day 1 (C), day 2 (D), and day 3 (E). (F) Comparison of simulated peak emission intensities in presence (blue) or absence (orange) of oxygen gradients,
with average viable cell densities obtained from quantitative DNA analyses (gray). Error bars, 61 s.d. unit; n = 6. (G) 2D bioluminescence profiles of
cell-seeded agarose gels imaged from top position (hydrogel diameter, 8 mm). Profiles above the dashed lines are measured with the IVIS 100, and
profiles below are simulated from the bioluminescence-oxygen model. The left column shows activity at the peak position and the right column
shows activity after 6 h (steady-state condition) (H) Bioluminescence microscopy of 293T cells embedded in agarose at the central hydrogel position
and (I) comparison with the simulated activity in the hydrogel center.
doi:10.1371/journal.pone.0097572.g004
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acquired with 72 ms intervals during a 3 s scanning period, and

consisted of 2566256 pixels with a pixel size of 0.49760.497 mm

(zoom factor: 106). Prebleaching images were acquired to

compensate for non-uniform light illumination. Circular regions

(radius, 10 mm) were bleached (total bleaching time, 13 ms) with

the laser in tornado-scan mode (SIM Scanner, Olympus) to obtain

centered, fast, and uniformly bleached spots with an approximate

Gaussian shape. Image analysis was performed with a program

written in MATLAB (The MathWorks, Natick, MA). The method

implemented into this program is based on a spatial frequency

analysis of circularly averaged radial intensities of each image [25].

In brief, the recovery of fluorescent tracer was modeled according

to Fick’s second law. An analytical solution to this equation was

obtained via the Hankel transform. Circular averaging on the

radial intensities was performed to reduce the noise in the intensity

profiles. Finally the analytical solution was fitted to the experi-

mental curves using a nonlinear curve fitting algorithm in

MATLAB. We also verified the independence of diffusion rates

on spatial frequency, as our setup is characterized by Brownian

diffusion. Analysis was performed for a single diffusing component

with the fraction of immobile molecules set to zero. The

fluorescein tracer concentration was optimized to detect changes

in fluorescein diffusivity, caused by local matrix degradation, with

maximal sensitivity (Fig. S2B). A fluorescein concentration of

25 mM was found to be optimal. Spatial heterogeneities in tracer

diffusivity were detected by FRAP imaging at different circumfer-

ential positions along 3 radial positions in the gel (imaging depth,

150 mm). Measurements were performed in duplicate on each gel

with a small shift in spatial position.

Fluorescence Correlation Spectroscopy (FCS)
Agarose gels (2% in DMEM supplemented with various

concentrations of Rhodamine B) were prepared between two

glass coverslips separated by ,450 mm thick spacers. FCS

measurements were performed on a custom-built fluorescence

spectro/microscopy setup using a 532 nm laser line (Spectra-

Physics CW DPSS Excelsior laser; the maximal laser power of

500 mW was attenuated by means of neutral density filters (New

Focus)) for fluorophore excitation. The excitation light was

circularly polarized by means of a l/4 waveplate (Thorlabs),

expanded using a telescope arrangement (to a collimated beam of

about 7 mm diameter (1/e2 intensity), and directed via a dichroic

beamsplitter (z532rdc, Chroma Technology, Rochingham, USA)

into the oil-immersion objective (UPLSAPO 1006, NA = 1.4) of

an inverted optical microscope (Olympus IX71). The center of the

confocal volume was positioned 5 mm above the coverslip surface.

Fluorescence light was collected by the same objective and was

guided, after passing through the dichroic, through a 50 mm

pinhole (Linos/Qioptic) in order to reject light from out-of-focus

regions. The emitted light was filtered by a longpass filter

(HQ545LP, Chroma Technology, Rockingham, USA) focused

on a t-SPAD photon counting module (PicoQuant, active area

150 mm in diameter), connected to a HydraHarp 400 TC-SPC

module. Measurements were performed until at least 3 million

photon-detection events had been recorded, typically requiring a

few minutes. Calibration of the one-focus FCS setup was

performed using a solution of Rhodamine 6G in Milli-Q water

(D < 372 mm2 s21) [31] using the same excitation laser power as

for the samples under investigation (1.69 kW cm22 at the sample).

Temporal autocorrelation curves were calculated from the

measured fluorescence intensity fluctuations (photon count time

traces) within the SymPhoTime software (PicoQuant). These

autocorrelation curves were fitted in IGOR Pro (WaveMetrics) to

an expression for autocorrelation decay due to anomalous

diffusion [32],

G tð Þ~ 1

SNT
: 1

1z t=tDð Þa
: 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1z t= v2tDð Þð Þa
p ð1Þ

In this expression, ÆNæ is the average number of fluorescent dye

molecules in the confocal volume element, tD is the diffusive time

of dye molecules, a is the degree of anomalous subdiffusion, and v
considers the extension of the confocal volume along the optical

axis ( = Æwzæ/Æwxyæ). The diffusive time is related to the translational

diffusion coefficient D as tD~Sw2
xyT
.

4D for a = 1. Anomalous

subdiffusion can occur due to macromolecular crowding [32]. As

fluorescent tracer molecules applied in this study are small, we did

not expect strong deviations in the anomality parameter, which is

supported by Figure S3. All FCS measurements were performed at

RT (21uC).

Time-lapse Diffusion Measurements
Intrinsic diffusion rates were measured with an optically

transparent diffusion setup in which fluorescent tracer movement

was imaged using a confocal fluorescence microscope (FV1000,

Olympus). Beetle luciferin (MW: 318 g?mol21, Promega) was used

as a tracer molecule. Luciferin is fluorescent with an emission

maximum at 537 nm and absorption maximum near 328 nm in

acidic solutions and near 384 nm in basic solutions [33]. The

emission maximum of the oxyluciferin complex is 523 nm [33,34].

Tracers were excited with a 375 nm laser line. Imaging was

performed with a DM375-405/515/635 primary beam splitter in

combination with a BA535-565 emission filter for visualization of

luciferin diffusion and a BA505-540 emission filter for detection of

accumulated oxyluciferin complex. Tracer motion was dependent

on a concentration gradient induced between a saturated tracer

concentration (100 mM) in DMEM and a tracer-free 2% agarose

gel. Agarose gels were produced in glass Pasteur pipette tips (ID,

1.05 mm; OD, 1.7 mm) and at the onset of the diffusion

experiment were connected to transparent silicon tubing (ID,

1.57 mm; Cole-Parmer) containing the saturated tracer solution.

Image sequences were acquired with 5 min intervals during a 3

hour scanning period. An area of 19206640 pixels was visualized

with a pixel size of 1.4261.42 mm. Imaging was performed with a

UPLSAPO 106 air objective (NA: 0.40), focused on the middle

plane of the agarose gel, and with a pinhole size of 400 mm.

Measurements were performed at 37uC. Empty agarose gels were

imaged to correct for background intensities. Intensity profiles

acquired during the tracer diffusion experiment were normalized

to the average intensity measurements obtained from a tracer-

saturated agarose gel. Image sequences were processed in Fiji

(NIH, Bethesda, MD, USA). Luciferin diffusion rates were

obtained by least squares fitting an analytical solution of Fick’s

second diffusion law (diffusion in semi-infinite media [35]) to the

resulting averaged axial intensity profiles,

C

C0

~erfc
x

2
ffiffiffiffiffiffi
Dt
p

� �
ð2Þ

Where, C is the concentration of tracer diffusing into the agarose

gel, C0 is the initial tracer concentration in the tracer-saturated

agarose gel, and D is the diffusion coefficient obtained by profile

fitting. The profile fitting algorithm was implemented in

MATLAB. The initial saturated tracer concentration (in DMEM)

contained in the silicon tubing was assumed to remain constant
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during the diffusion experiment. Validity of this assumption was

verified by comparing the analytical solution of luciferin diffusion

with a numerical solution of the diffusion problem implemented in

COMSOL (COMSOL Multiphysics, Burlington, MA, USA).

OSB Production and Calibration
OSB are microscale oxygen sensors that consist of a core

material, on which an oxygen sensitive and an oxygen insensitive

dye are deposited, and a shell material, that prevents the dyes from

leaching and protects the cells against potential dye toxicity. The

protocol for OSB production is based on a strategy we previously

developed to produce avidin-coated OSB [28] and is composed of

two steps.

The core material of the OSB consists of silica gel (spherical

silica gel, 45809, Alfa Aesar) and has a diameter of 5 mm. An initial

amount of 50 mg silica gel spheres were brought into suspension

with a 1 ml aqueous NaOH (0.01 N) solution and were

mechanically stirred at 250 rpm for 30 min. Oxygen measure-

ments relied on the incorporation of two fluorescent dyes; an

oxygen sensitive Tris (4,7-diphenyl-1,10-phenanthroline) rutheni-

um (II) dichloride (76886, Sigma) and an oxygen insensitive

reference fluorophore, Rhodamine 6G (56226, Fluka). Two 250 ml

solutions were prepared containing these molecules in concentra-

tions of 500 and 50 mM, respectively. These solutions were poured

into the silica gel solutions and mechanically stirred (1 hour,

250 rpm). Afterwards the beads were diluted with 4 ml Milli-Q

water and washed and centrifuged (13006g, 20 min) three times

with Milli-Q water and once in ethanol. Beads were resuspended

in 6.5 ml ethanol. Coating of silica gel spheres was performed via a

Stöber seed growth method of silica shells described by the van

Blaaderen group [36]. In brief, a solution of ammonia in water

(25 w/v % NH4OH in Milli-Q water, 250 ml) and tetraethyl

orthosilicate (99% TEOS, 32.5 ml, 86578, Sigma) was added to the

silica spheres suspended in ethanol. Next this solution was

mechanically stirred (250 rpm) for 18 hours. Suspended beads

were collected by centrifugation (13006g, 20 min) and washed

three times in PBS solution (5 ml). The bead solution was

autoclaved and supernatant removed after centrifugation

(13006g, 10 min). Beads were incubated at low temperature

(4uC) in 2 ml DMEM and stored in the dark at a density of

,36108 beads?ml21. The amount TEOS solution to be added to

the Stöber seed growth reaction, was determined from the relation

[37,38]:

Lf

Ls

� �3

~kr
WszW

Ws

ð3Þ

where Ls is the initial size of particles before shell growth, Lf is the

final size after shell growth (to obtain ,400 nm silica shell

thickness), Ws is the weight of SiO2 initially present as seeds, W is

the amount of SiO2 added to the reaction mixture in the form of

TEOS, and kr = (r0/r)1/3 is a correction factor accounting for the

differences in density between seed and final particles [39], with r0

the density of the initial particle and r the density of the final

particle.

OSB were calibrated by exposure to hypoxic (0% O2 via mixing

with 1% Na2SO3) and normoxic (21% O2) oxygen conditions in

DMEM. Microbeads were imaged on an inverted confocal laser

scanning microscope (FV1000, Olympus) with a UPLSAPO 206
air objective (NA: 0.75). Excitation of the fluorescent beads was

performed with a 488 nm Ar laser. Fluorescence emission was

detected with a DM405/488 primary beam splitter in combina-

tion with a BA505-540 emission filter for detection of the

Rhodamine 6G and a BA575-675 emission filter for detection of

the ruthenium complex. Image stacks were acquired along the

radial direction and consisted of 6406640 pixels with a pixel size

of 0.16560.165 mm and images (n = 5) acquired in z-direction

were separated by a distance of 50 mm. Experiments were

performed at 37uC incubation temperature (Solent Scientific).

Regions of interest (ROI) were defined around individual beads

for calibration and measurement of OSB. Images were processed

in Fiji with a threshold macro. Average signal intensities were

subsequently inserted into the Stern-Volmer equation. Further

details on the calibration procedure can be found elsewhere [28].

Focused Ion Beam Milling and Scanning Electron
Microscopy

OSB were placed on SEM specimen holders and coated with a

thin conducting platinum layer by a sputter coater system

(Quorum Q150 TS, Quorum Technologies Ltd, Laughton,

UK). FIB ablation and SEM imaging were performed on a Nova

600 Nanolab dual-beam system (DualBeamTM-SEM/FIB, FEI,

Hillsboro, USA). Beams are separated from each other by an angle

of 52u. Therefore, vertical cutting of the OSB with the FIB

proceeded by tilting the stage with this angle and vertical cross-

sections with the electron beam were also observed at this angular

position. The SEM images were generated in high vacuum mode

using an acceleration voltage of 5 keV and an Everhart Thornley

detector.

Assembly of Setup for Validation of PDE-based Model
Low melting point agarose gels (2% in DMEM, Invitrogen)

containing 16106 cells?ml21 and supplemented with 2.56106

OSB?ml21, were prepared between two glass coverslips. The slides

were separated by a 2 mm thick Teflon spacer, which consisted of

two parts and at the central position contained a cylindrical hole

(diameter, 8 mm) that served as a mold for the gel production.

After the gel was poured into this hole, the second coverslip was

quickly placed on top of the spacer and gelation was continued for

5 min. Upon completion of the gelation process, both parts of the

mold were carefully removed and the cell-seeded hydrogel was

transferred to a tissue culture dish (diameter, 35 mm, Greiner).

Hydrogels were submerged in 2 ml DMEM and incubated at

37uC in a humidified atmosphere containing 5% CO2.

Bioluminescence intensity measurements. Cultivation

media were replaced with DMEM supplemented with 47 mM

luciferin. The validation setup was transferred to the imaging

platform of an in vivo imaging system (IVIS 100, Perkin-Elmer,

USA). Images were taken with a 1-inch CCD camera cooled to

2105uC. The field of view (FOV) was set to 10610 cm. Image

sequences (acquisition time, 1 min) were acquired with 5 min

intervals during a scanning period of 3 hours, 10 min intervals

during 5 hours, and 30 min intervals during 4 hours. Images were

processed in the LivingImage software (Perkin-Elmer) and

radiance units refer to the number of photons per second that

are leaving a square centimeter of the h and radiating into a solid

angle of one steradian (V, fraction of the isotropic radiation field

which can be thought of as a 3D cone of light emitted from the

surface). Measurements were performed at 37uC.

Single-cell bioluminescence microscopy. After luciferin

substrate addition, the validation setup was transferred to the stage

of luminescence microscope (LV 200, Olympus). Bioluminescence

was imaged with a UPLSAPO 606 oil objective (NA: 1.35) and

transmitted to a cooled CCD camera. Time-lapse images were

collected with 5 s acquisition times and EM gain was set at 12006
(photon imaging mode, Hamamatsu) Active cells were imaged at
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the central hydrogel position within a confocal volume at the

maximal working distance (i.e. 150 mm) from the glass coverslip.

Quantification of Active Cell Numbers in Agarose Gels
Viable cell numbers were quantified using the Live/Dead

viability/cytotoxicity kit (Invitrogen). Agarose hydrogels were

rinsed with PBS solution, covered with Live/Dead staining

solution containing 2 mM calcein AM and 4 mM ethidium

homodimer-1 in PBS, and incubated for 1 hour in the dark.

The dye solution was discarded afterwards and background due to

residual stain was washed away with PBS. Live and dead cell

numbers were counted via a sphere fitting algorithm in Imaris

Bitplane (Zurich, Switzerland). DNA content was evaluated

according to a protocol described by Grayson et al. [40] Briefly,

agarose hydrogels were washed in PBS, transferred to 400 ml of

digestion buffer (10 mM Tris, 1 mM EDTA, and 0.1% Triton X-

100) with 0.1 mg/ml proteinase K in centrifugation tubes, and

incubated at 56uC for 3 hours. Supernatant was collected after

removal of debris by centrifugation (13,000 rpm, 1 min) and

measured with a Qubit system (Invitrogen).

Visualization of Cell Mitochondria
293T cells were seeded on PLL coated glass coverslips (200,000

cells per slide). Cells were incubated overnight prior to staining.

Cell mitochondria were stained with a 200 nM MitoTracker dye

concentration (MitoTracker Red CM-H2Xros, Invitrogen) in

DMEM for 20 min in the dark. The staining solution was

supplemented with Na2SO3 (1%) to expose the cells to hypoxia.

Cell nuclei were stained by addition of the cell permeable nucleic

acid stain, Hoechst (Invitrogen). After the staining was completed,

adherent cells were washed with pre-warmed DMEM. Cells were

subsequently fixed by medium replacement with DMEM

containing 2% formaldehyde at 37uC (30 min). After fixation,

the cells were rinsed with PBS and stored in PBS for visualization.

Cell mitochondria were visualized on an inverted confocal

microscope (FV1000, Olympus) with a UPLSAPO 1006 oil

objective (NA: 1.4). Image stacks were acquired with a pixel size of

73673 nm and consisted of 102461024 pixels.

Supporting Information

Figure S1 293T cells contain an average firefly lucifer-
ase concentration of 0.917 amol cell21 that is constitu-
tively expressed during cultivation. (A) Total emitted photon

flux from recombinant luciferase (Rluc, R2 = 0.99) and from firefly

luciferase extracted from 293T cells (fLuc, R2 = 1) were used to obtain

a standard curve of luciferase concentration versus active cell

number. Luciferase activity was measured in Luciferase Assay

Reagent (Promega). (B) Time-dependent stability of cellular luciferase

concentration during cell culture. Error bars, 61 s.d. unit; n $3.

(TIF)

Figure S2 (A) Intrinsic diffusion rates of D-luciferin through 2%

agarose gels in absence or presence of cells (16106 cells ml21)

obtained from concentration gradient dependent diffusion mea-

surements. (B) Fluorescein tracer self-diffusion rates in Dulbecco’s

Modified Eagle Medium (DMEM) or in 2% agarose gels measured

by Fluorescence Recovery After Photobleaching (FRAP). All

measurements were performed at 37uC incubation temperature.

Error bars, 61 s.d. unit; n $4. Results were declared significant

(indicated by an asterisk) if the p-value was less than 0.05.

(TIF)

Figure S3 (A) Diffusion rates of Rhodamine B fluorescent tracer

molecules in 2% agarose gels at various tracer concentrations with

an average diffusion rate of 338 mm2 s21 (dotted line) determined

by Fluorescence Correlation Spectroscopy (FCS). Reference values

for Rhodamine 6G tracer diffusion in DMEM are also shown. The

experimentally obtained autocorrelation curves were best fitted

with a function that accounts for anomalous subdiffusion,

presumably induced by macromolecular crowding [32,48]. (B)

Anomality parameter for tracer diffusion in agarose or in DMEM.

As expected from the small size of fluorescent tracer molecules and

the low agarose concentration, we did not observe significant

changes in anomality. All measurements were performed at RT

(21uC). Error bars, 61 s.d. unit; n = 5.

(TIF)

Figure S4 Fluorescent oxygen sensitive microbeads
(OSB) were integrated in agarose gels to measure radial
gradients in oxygen concentration. Scanning electron

microscopy (SEM) of OSB before (A,B) and after (C,D) coating

with a silica shell. Cross-sections of the silica beads were obtained

by Focused Ion Beam (FIB) ablation. (C) Imaging of OSB after

mechanical grinding reveals presence of silica shell. Scale bar,

5 mm. (E) Calibration of OSB in DMEM at saturated or hypoxic

oxygen conditions. (F) Radial oxygen profiles from oxygen

saturated agarose gels measured with OSB (56106 beads ml21)

obtained after different incubation periods. Error bars, 61 s.d.

unit; n = 3. (G) Evolution of time-dependent oxygen consumption

rates (OCR) of 293T cells embedded in 2% agarose gels. Cell

OCR are obtained from profile fitting of the oxygen model

simulations to the radial oxygen profiles measured with OSB.

(TIF)

Figure S5 Measurement of active cell numbers present in
agarose hydrogels. (A) Cell densities obtained from DNA

measurements on extracted cell lysate solutions. (B) Spatial distri-

bution of cell viability quantified by the Live/Dead viability assay.

Radial positions are representative for the regions identified in (C).

Gels are imaged with an inverted microscope from bottom position,

along the radial direction at day 1 (C), day 2 (D), and day 3 (E). For

all cultivation times, a peripheral region is visible with decreased cell

viability (region 4). Images show a z-stack projection of live (green)

and dead (red) cells. Error bars, 61 s.d. unit; n $4. Scale bar, 1 mm.

(TIF)

Figure S6 Quantitative analysis of bioluminescence
signal peak behavior and correlation with available
oxygen concentration. Analyses were performed on signals

obtained from entire gels (A–D) or from local measurements in the

hydrogel center (E–H). Initial peak behavior was described by the

peak position (A,E) and FHWM (B,F). (C,G) Decay rates of

bioluminescent light emission were obtained from exponential

curve fitting. (D,H) Time-dependent evolution of oxygen concen-

tration described by the mathematical bioluminescence-oxygen

model (solid line) with minimum and maximum values (dotted

lines), and average oxygen concentrations measured with OSB

(grey dots). Error bars, 61 s.d. unit; n $3.

(TIF)

Figure S7 2D profiles of luciferin spatial distribution in
cell-seeded agarose gels. Distribution profiles are obtained

from the bioluminescence-oxygen model and indicate luciferin

concentration gradients at the bioluminescence peak positions.

Profiles at the left side from the dashed lines represent intracellular

luciferin concentrations at the experimentally defined peak

position and profiles at the right side show intracellular luciferin

concentrations at the model peak positions. (Initial extracellular

luciferin concentration, 47 mM).

(TIF)
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Figure S8 (A) Fluorescence imaging of a luciferin concentration

gradient established between a saturated solution (left) and a

tracer-free 293T cell-seeded agarose gel (right). Positions occupied

by the cells appear as dark spots (red arrowheads). (B)

Multichannel fluorescence image shows cells embedded in the

agarose (green) in combination with diffusing luciferin (red) and

reacted oxyluciferin (blue). Scale bar, 400 mm.

(TIF)

Table S1 Overview of the parameter values implement-
ed in the bioluminescence-oxygen model.

(DOCX)

Text S1 Implementation of the mathematical biolumi-
nescence-oxygen model.

(DOCX)

Video S1 2D bioluminescence profiles of cell-seeded
agarose gels imaged from top position (hydrogel

diameter, 8 mm). Profiles are imaged with an IVIS 100

imaging system. Radiance units are in p s21 cm22.

(AVI)
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