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Abstract

Shape analysis is a static analysis of the source code of a program
to determine shapes and manipulations of the dynamically allocated
data structures at each point which that program can reach in an
execution. In this report, we give a detailed presentation and sound-
ness proof of a shape analysis method which uses separation logic to
represent program memory.
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1 Introduction
Shape analysis is a static analysis of the source code of a program to determine shapes
and manipulations of the dynamically allocated data structures at each point which that
program can reach in an execution.

To do so, the analysis presented in this report computes (an overapproximation of) the
set of states that the program can possibly be in, at each point in the program. This is
done by computing all possible states that the program can be in, before execution of each
statement of the program, i.e., that statement’s invariant.

Here, we use a denotational style semantics to define semantics of programs. In denota-
tional semantics, we consider a domain set D. The semantics of statements (also that of the
whole program) is then defined as a function on that domain; i.e., the semantics of a state-
ment c is JcK ∶ D → D. Here, we use the power set, 2S, of a set of states, S, as the domain. As
a result, given the invariant of a statement, computing the invariant of the next statement
is straightforward. We simply apply the statement’s semantics to its invariant and get the
invariant of the next statement 1. We assume that the set of all states that the program can
possibly be in before execution of the program begins (program’s precondition) is provided
together with the program being analyzed. The analysis then computes invariants of all
program statements and also the postcondition of the whole program.

As the set of states that the program can be in is generally not computable, accurate
computation of invariants is impossible. Therefore, we compute a sound overapproximation
of them. We compute an overapproximation so that we have a guarantee that whenever a
state is part of an invariant, it is also represented as part of the overapproximation of that
invariant computed by the analysis. Here, the word sound is put to emphasize the fact that
if a program has a reachable faulty state, so does the overapproximation. This assures that
whenever the analysis indicates that a program is free of memory faults it is indeed the
case 2.
∗Based on [DOY06], a paper with the same title by Dino Distefano, Peter W O’Hearn, and Hongseok Yang.

Here, we give a rigorous presentation and soundness proof of the shape analysis approach they presented.
1In case the next statement is a loop, the result is not the invariant of the next statement (the loop) but, as we

shall see, can be used to compute the invariant of that loop
2The other direction, of course, does not hold (the analysis can indicate that a program is unsafe while it is not)

as a sound and complete analysis is non-computable as mentioned above
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The term “program state”, as repeatedly referred to above, is generic and can cover a
wide range of possibilities. The states of a program may simply be representations of its
store (assigning values to program variables) and heap or they can be describing properties
about data structures residing in the heap such as sortedness of a linked list, it being the
reverse of another linked list, etc. In this regard, there are shape analyses that can be
used to obtain a wide range of information about the programs they analyze, e.g., those
presented in [LRS04, OCDY06, CR08, CRN07]. In this report, we consider a very simple
programming language, SimpleLang, in which all program variables are assumed to be
pointers pointing to heap cells. Heap cells, then, are themselves considered as pointers
pointing to other heap cells. In other words, this programming language can be used to
write programs manipulating singly-linked lists where the data field(s) of the linked lists
are abstracted away, i.e., each linked list cell is considered to only point to the next cell in
the linked list.

As we will discuss shortly, we will define three semantics for this language. One is a
low-level semantics considered as the reference semantics. This semantics simply repre-
sents states as stores and heaps, respectively, a mapping from program variables to heap
cells and a partial mapping from heap cells to where they point to (in case allocated). The
other two are high level semantics, representing states with a variant of symbolic heaps.
Symbolic heaps are a special form of separation logic formulas defined for symbolic execu-
tion [BCO05]. This representation uses (separation logic) predicates to indicate fragments
of heap containing acyclic linked list segments of length at least one. Choosing to represent
states in this symbolic way, not only does it allow to confirm lack of memory faults from
a successful analysis but also gives information about different linked lists residing in the
heap and their cyclicities.

In the rest of this report, we describe the syntax of SimpleLang and define three differ-
ent semantics for programs expressed in this language, namely, concrete semantics, sym-
bolic semantics and abstract semantics.

In concrete semantics (Semκ), we use a low level representation of a store and a heap
to describe states. In other words, a state is a pair of a heap and a store, or an error state
representing a state where a memory fault has occurred. Heap cells are represented by
natural numbers, their memory address. A store is represented by a mapping that maps
program variables to heap cells or nil (the null pointer), and a heap is represented by a
partial mapping that maps heap cells to heap cells or nil if they are allocated. Concrete
semantics is the basic semantics defined to correspond to a low level interpretation of the
language.

In symbolic semantics (Semσ), program states are defined with help of symbols. We use
nil and program variables as symbols to stand for themselves, i.e., the null pointer and
where program variables point respectively. We, in addition, introduce primed variables, to
represent heap cells that are (possibly) not pointed to by program variables, or nil. Primed
variables are by definition assumed to be existentially quantified in a state. A symbolic
state then, is either an error state or consists of a pair of a spatial part and a pure part.
The spatial part expresses spatial assertions, e.g., Ls(x, y′), which asserts that there is a
linked list segment starting from the heap cell pointed to by program variable x to some
other heap cell or nil as represented by primed variable y′. The pure part, on the other
hand, expresses equalities between symbols, e.g., asserting y′ equals nil .

In abstract semantics (Semα), on the other hand, we introduce an abstraction that is a
mapping from symbolic states to (abstract) symbolic states. The abstract semantics, then,
is symbolic semantics after which the abstraction is applied to the resulting states.

We will establish a modeling relation between concrete and symbolic states and show
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Semκ Semσ Semα

States pairs of heaps and
stores or error

pairs of spatial and
pure (equality)

assertions or error

Abstracted symbolic
states

Overapproximates – Semκ Semκ

∣ States ∣ Infinite Infinite Finite
Computing
Invariants Non-computational Non-computational Computational

Table 1: Summary of properties of concrete, symbolic and abstract semantics

x ∈ Vars

stm ∶∶= new(x) ∣ free(x) ∣ exp := exp ∣ while(bexp) {stm} ∣ stm; stm
exp-s ∶∶= x ∣ nil

exp ∶∶= exp-s ∣ x.next
bexp ∶∶= exp-s == exp-s ∣ exp-s != exp-s

Figure 1: The grammar of the programming language

that symbolic semantics and abstract semantics are both sound overapproximations of con-
crete semantics. Furthermore, we show that the set of abstract states is finite which means
abstract semantics can be used to compute invariants and ultimately for shape analysis.
Table 1 shows a summary of properties of concrete, symbolic and abstract semantics and
their relation.

In the rest of this report we assume that the reader is familiar with basic notions of
lattice and domain theory, e.g., complete lattices, the fact that the power set of any set with
subset relation forms a complete lattice, (Scott-)continuous functions, etc.

2 The Programming Language
Here, we define the simple language (SimpleLang) that we are going to use throughout
the rest of the report. This language is minimally designed for the purpose of formaliz-
ing concepts presented in this report. SimpleLang can express programs that manipulate
singly-linked lists where data field(s) are abstracted away, i.e., linked lists only have a
“next” field. Here, we give the syntax of SimpleLang and discuss its general semantics.

2.1 Syntax
The BNF grammar of SimpleLang is given in Figure 1. In this figure, the words in bold are
keywords and Vars is the set of program variables. A program is simply a statements (rep-
resented as stm in the grammar). In the sequel, we use x, y, z, . . . to refer to program vari-
ables. In addition, we use e, E, b and c (possibly indexed) to represent simple expressions
(exp-s in grammar), expressions (exp in grammar), boolean expressions (bexp in grammar)
and statements (stm in grammar), respectively.
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while(x != nil) {
y := x.next;
free(x);
x := y

}

Figure 2: Dispose program: a program disposing a list

All program variables are assumed to be pointers that can be nil (the null pointer) or
pointing to some memory location corresponding to a structure (in the sense of C struc-
tures) that has a next field. A program variable can be followed by a dot and the next key-
word which indicates accessing the next field of the structure pointed to by that variable.
Keywords new and free respectively allocate and deallocate memory cells. The new(x)
statement changes the value of variable x so that it points to the newly allocated memory
cell and the free(x) statement requires variable x to be pointing to some allocated memory
cell which will be deallocated after its execution.

Effectively, this language can express programs that represent manipulations of singly
linked data structures, e.g., cyclic or acyclic linked lists. As an example, Figure 2 depicts a
program that disposes a list whose head is pointed to by x.

2.2 General Semantics
Here, we give a general account of semantics, we discuss how a semantics for SimpleLang,
independent of the set of states, is defined. We use denotational semantics to define the
semantics of programs. Assuming S is the set of states, we define the domain of interpre-
tation as 2S (the power set of S). Hence, for a statement c, the semantics of c is a function
JcK ∶ 2S → 2S. In defining the semantics for a basic statement c (allocation, deallocation
and assignment), we define a preliminary semantics JcK† ∶ S → 2S and define the actual
semantics of c based on that.

JcK(S) = ⋃
st∈S

JcK†(st)

The semantics of the composition of statements is then defined as the composition of the
semantics functions of those statements. In other words,

Jc1; c2K = Jc2K ○ Jc1K

Given the semantics of the basic statements and the composition of statements, we de-
fine the semantics of the while loops, independent of the set of states chosen. To do so, we
use the function

filter ∶ bexp →S→S

which, given a boolean expression (bexp) and a set of states, filters out all states that are
not compatible with the given boolean expression.

Assuming S0 ⊆ S is the set of states before a while loop while(b){c}, we define the
function fS0(S) as follows:

fS0(S) = S0 ∪ JcK ○ filter(b)(S)
fS0 , is the function that assuming that states in S are some states that the program can be
in before the while loop (e.g., resulting from previous iterations of the loop), gets the new set
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of states that the program can be in before the loop. In other words, considering S0 as a set
of states that we already know that the program can be in before entering the while loop,
it evaluates the effect of one iteration of the while loop on members of S and considers the
resulting states to also be part of the states that the program can be in before entering the
while loop. In particular, assuming S0 is the set of states that the program can be in before
entering the while loop for the first time, fn+1

S0
(∅) is the set of states that the program can

be in before the while loop assuming the loop has already been evaluated up to n times.
Given the definitions above, we can see that:

fS0
(∅) = S0

f2
S0

(∅) = S0 ∪ JcK ○ filter(b)(S0)
f3
S0

(∅) = S0 ∪ JcK ○ filter(b)(S0) ∪ (JcK ○ filter(b))2(S0)
⋮

Hence, the set of all states that the program can be in before the while loop is:

∅ ∪ fS0
(∅) ∪ f2

S0
(∅) ∪ f3

S0
(∅) ∪ . . . (1)

On the other hand, our domain, 2S, together with ⊆ relation forms a complete lattice. More-
over, it is obvious, according to the definition of semantics as given above, that JcK for any
basic statement c is continuous. For composition of statements, we will shortly discuss
that the semantics defined below for the while loops (Formula 2, below) is also continuous,
which shows continuousness of the semantics of the body of while loops; even if they contain
other while loops. Hence, according to Kleene’s fixpoint theorem, the Formula 1, above, is
the least fixpoint of the function fS0 . Therefore, we define the semantics of while loops as
follows:

Jwhile(b){c}K(S) = filter(¬b)(lfix(λS′.S ∪ JcK ○ filter(b)(S′))) (2)

where, ¬b is simply the negation of b, i.e., the result of swapping “==” and “! =” in b.
Moreover, as alluded to earlier, the semantics definition of the while loops given above,

is continuous. This we can see from the fact that:

∀X ⊆ 2S. Jwhile(b){c}K( ⋃
X∈X

X) = ⋃
X∈X

Jwhile(b){c}K(X)

This means that the definition above for the semantics of the while loops can be used to
give an inductively defined semantics for all of SimpleLang.

It is worth noting that the fnS0
(∅) is increasing with respect to ⊆, i.e.,

∀n ∈N. fnS0
(∅) ⊆ fn+1

S0
(∅)

This can be easily shown with an induction over n. Hence, one can try to compute the
fixpoint of the semantics of the while loop by computing fS0(∅), f2

S0
(∅), . . . until reaching

the least fixpoint, i.e., some n for which fn+1
S0

(∅) = fnS0
(∅). Although, in the general case,

there is no guarantee that there is such a finite n for which fnS0
(∅) is the least fixpoint.

However, for the case of abstract semantics, as we will discuss, since the set of states (and
hence the domain which is its power set) is finite, such a finite n always exists. Throughout
the rest of this report, we show example programs for which we compute the fixpoint using
this approach and also discuss some examples for which no finite n exists such that fnS0

(∅)
is the least fixpoint.
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The way the semantics of the while loops are defined here is not the conventional way
in denotational semantics. There, usually the fixpoint is applied to the semantics function
itself; i.e., a lattice of (partial) semantics functions is defined for the while loop together with
a completion operation on those partial functions (adding to the domain of the definition of
the partial semantics functions). The semantics of the loops, then, is defined as the least
fixpoint of this completion operation over the lattice of partial functions. Here, the choice to
define the semantics of the while loops differently, is so that the fixpoint is applied to sets
of states rather than (partial) semantics functions.

Here, we have shown a way to define the semantics of the language using the prelimi-
nary semantics for basic statements and the filter function, independent of the set of states
chosen. Hence, in the rest of the report, in order to define a semantics, we simply define
the set of states, the preliminary semantics for basic statements and the filter function for
that semantics. Furthermore, to define the preliminary semantics of basic statements, we
define a relation of the form st, c⇒† st′ where c is a basic statement and st, st′ ∈S. We then
derive the preliminary semantics as follows:

JcK(S) = {st′ ∣ st ∈S ∧ st, c⇒† st′}

3 Concrete Semantics
In order to give a basic definition of the behavior of programs written in our simple lan-
guage, we define a denotational semantics called concrete semantics (Semκ). A state of
Semκ is either an error state ⊺κ or a simple representation of program memory, i.e., a map-
ping from program variables to heap cells and a representation of the program heap.

Definition 3.1 (Concrete States). Let Vars be the set of program variables. Then, we define
concrete program heaps, concrete stores and concrete states as follows:

– A heap h ∈ Hκ is a partial function h ∶N⇀ Values

– A store s ∈ STκ is a function s ∶ Vars → Values

– The set of concrete states is Sκ = (Hκ × STκ) ∪ {⊺κ}

Where, Values = N ∪ {nil}. Furthermore, for a heap h ∈ Hκ, we use dom(h) to refer to all
natural numbers for which h is defined. Where a ∈ N is a natural number for which h(a) is
undefined, we write h(a) = �. ∎

Note that, nil and memory location 0 are different; the former is the null pointer while
the latter is a valid memory address that can be allocated to and accessed, just like any
other memory address.

To depict concrete states, we use a table to represent heap and store. As an example, the
following table represents a concrete state (h, s) ∈ Sκ of the program depicted in Figure 2.
In this state, program variables x and y are respectively pointing to heap cell 10 and nil ;
while heap cell 10 points to heap cell 13 which in turn points to nil , i.e., x points to a linked
list of length 2.

h s
address value variable value

10 13 x 10
13 nil y nil
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As we explained earlier, we only need to define the preliminary semantics for basic state-
ments and the filter function and we do this by establishing a relation ⇒†

κ on statements
and states.

In the sequel, we use f[a ↦ b] to denote the result of updating function f such that it
maps a to b. In particular, f[a ↦ �] denotes the updating of partial function f such that it
has no value for a.

f[a↦ b](d) = { b if d = a
f(d) otherwise

Definition 3.2. The rules defining the relation⇒†
κ used to define the preliminary concrete

semantics for basic program statements are as follows:

any basic statement c
⊺κ, c⇒†

κ ⊺κ
l ∈N ∖ dom(h) and n ∈ Values

(h, s),new(x);⇒†
κ (h[l ↦ n], s[x↦ l])

s(x) ∈ dom(h)
(h, s), free(x)⇒†

κ (h[s(x)↦ �], s)
s(x) /∈ dom(h)

(h, s), free(x)⇒†
κ ⊺κ

(h, s), x := e⇒†
κ (h, s[x↦ valκ(s, e)])

s(y) ∈ dom(h)
(h, s), x := y.next⇒†

κ (h, s[x↦ h(s(y))])

s(y) /∈ dom(h)
(h, s), x := y.next⇒†

κ ⊺κ
s(x) ∈ dom(h)

(h, s), x.next := e⇒†
κ (h[s(x)↦ valκ(s, e)], s)

s(x) /∈ dom(h)
(h, s), x.next := e⇒†

κ ⊺κ
s(x), s(y) ∈ dom(h)

(h, s), x.next := y.next⇒†
κ (h[s(x)↦ h(s(y))], s)

s(x) /∈ dom(h) or s(y) /∈ dom(h)
(h, s), x.next := y.next⇒†

κ ⊺κ
∎

Where valκ(s, e) for e, a simple expression, and s ∈ STκ is the concrete valuation of e
under s. It is defined as follows:

valκ(s, e) = { s(e) if e ∈ Vars
nil if e = nil

Definition 3.3. The concrete filter function filterκ is defined as follows:

filterκ(e1 == e2)(S) = {(h, s) ∈ S ∣ valκ(s, e1) = valκ(s, e2)} ∪ {⊺κ ∣ ⊺κ ∈ S}
filterκ(e1 != e2)(S) = {(h, s) ∈ S ∣ valκ(s, e1) ≠ valκ(s, e2)} ∪ {⊺κ ∣ ⊺κ ∈ S}

∎
This concludes the definition of concrete semantics. As an example, Figure 4 depicts

a computation of the least fixpoint for the while loop of the dispose program depicted in
Figure 2 by assuming an initial set S0 of states that the program can be in before entering
the loop. It also shows the result of the semantics of the while loop of this program applied
to S0.

On the other hand, Figure 5 shows that the least fixpoint of the semantics of the while
loop in the program depicted in Figure 3 is not obtainable with iterations of computing
fnS0

(∅).
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while(nil == nil) {
new(x);

}

Figure 3: Infinite allocation: a program that allocates heap cells indefinitely

S0 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

JdisposeKκ(S0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

x nil
y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

n fnS0
(∅)

0 ∅

1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

,

h s
addr. val. var. val.

13 nil x 13
y 13

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

10 13 x 10
13 nil y nil

,

h s
addr. val. var. val.

13 nil x 13
y 13

,

h s
addr. val. var. val.

x nil
y nil

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

Figure 4: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the concrete semantics. In this case, f3

S0
is the least fixpoint. In

addition, JdisposeKκ is the concrete semantics of the whole dispose program (while loop).
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S0 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

x 10

⎫⎪⎪⎪⎬⎪⎪⎪⎭
n fnS0

(∅)
0 ∅

1

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

x 10

⎫⎪⎪⎪⎬⎪⎪⎪⎭

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

h s
addr. val. var. val.

1 nil x 1
,

h s
addr. val. var. val.

1 0 x 1
,

h s
addr. val. var. val.

2 nil x 2
, . . .

⎫⎪⎪⎪⎬⎪⎪⎪⎭

3

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h s
addr. val. var. val.

1 nil x 2
2 0

,

h s
addr. val. var. val.

1 0 x 10
10 nil

,

h s
addr. val. var. val.

2 nil x 10
10 13

, . . .

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⋮ ⋮

Figure 5: Computation of the least fixpoint of the while loop semantics for the infinite
allocation program (Figure 3) in the concrete semantics. In this case, there does not exist
an n ∈N such that fnS0

is the least fixpoint.

4 Symbolic Semantics
In this section we introduce symbolic semantics for programs of SimpleLang. Symbolic
states are high-level representations of program memory where actual addresses of cells
are represented by symbols. Since we are using a symbolic representation of memory, we
do not need stores and need only to represent heaps. To do so, we use a variant of symbolic
heaps. Symbolic heaps are special separation logic formulas presented in [BCO05] to be
used for symbolic execution. A symbolic heap is a separation logic formula consisting of
conjunctions of a spatial formulas and pure assertions (assertions on equalities of symbolic
expressions). Here, we define symbolic states to be pairs of separation logic formulas of
spatial assertions and pure parts which represent equalities by explicit representation of
equivalence classes over symbols.

The spatial assertions we use for the spatial part of symbolic states express facts of the
form x ↦ y which signifies that the memory location indicated by symbol x represents a
heap cell pointing to symbol y or Ls(x, y) which signifies the fact that there is a linked
list segment in the heap starting from memory location represented by symbol x ending in
symbol y. We denote the set of symbols with Sym and it is defined as follows:

Sym = Vars ∪Vars ′ ∪ {nil}

where, Vars is the set of programs, they stand for memory locations pointed to by them,
Vars ′ is a countably infinite set of primed variables x′, y′, . . . that represent some memory
location (potentially) not pointed to by program variables and nil stands for the null pointer.

Definition 4.1 (Symbolic States). Symbolic states are defined as follows:
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– A spatial part Σ ∈ SPσ is a separation logic formula defined below:

ς1, ς2 ∈ Sym

Φ ∶∶= Ls(ς1, ς2) ∣ ς1 ↦ ς2 ∣ Junk ∣ emp ∣ Φ ∗Φ

– A pure part Π ∈ PRσ is a set Π ∶ 22Sym

of equivalence classes of symbols

– The set of symbolic states is Sσ = (SPσ × PRσ) ∪ {⊺σ}

Furthermore, we use ς1 =Π ς2 to stand for the fact that ς1 = ς2 or ς1 and ς2 belong to the
same equivalence class in Π and use ς1 ≠Π ς2 as its negation. In cases where we do not
distinguish between Ls and ↦, we use capital letter P (possibly indexed) to denote them,
i.e., we implicitly assume that P ∈ {Ls,↦}. ∎

We assume that the primed variables that appear in a symbolic state are all existen-
tially quantified. That is to say, by a symbolic state (Σ,Π) ∈ Sσ in which primed variables
x′1, . . . , x

′
n appear, we mean:

∃x′1, . . . , x′n. (Σ,Π)
In the above definition, ∗ is the separating conjunction. We later discuss the relation

between concrete and symbolic semantics and give the exact interpretation of separating
conjunction. For now, suffice it to say that a separation logic formula A ∗B means that the
heap of the program can be divided into two disjoint subheaps (no address is given a value
in both subheaps) such that one is represented by A and the other is represented by B. A
separation logic formula with no separating conjunction (a single instance of a predicate)
is called a (heap or memory) chunk. As the intuitive meaning of separating conjunction
explained here suggests, the separating conjunction (similarly to classical logic’s conjunc-
tion connective) is commutative and associative. Therefore, in the sequel we consider two
spatial parts of symbolic states equal if they only differ in the order of chunks. For further
reading on separation logic, refer to the seminal paper [Rey] by J. C. Reynolds, where he
introduces separation logic.

Intuitively, the heap chunk Ls(ς1, ς2) represents (part of) a heap where a non-empty
(i.e., ς1 ≠ ς2) acyclic linked list in the heap starting in the memory location represented by
ς1 ending in the memory location (if ς2 ≠ nil ) represented by ς2. The heap chunk ς1 ↦ ς2
represents (part of) a heap where memory location represented by ς1 points to memory
location (if ς2 ≠ nil ) represented by ς2. The heap chunk Junk , on the other hand, represents
(a part of) heap that contains at least one allocated memory location. This chunk simply
signifies memory leaks. Finally, the emp chunk represents (a part of) heap that is empty,
i.e., no memory location is allocated. As emp chunk represents an empty (part of) heap, in
the sequel, we assume two spatial parts Σ and Σ ∗ emp equal.

As we discussed earlier, all primed variables are implicitly assumed to be existentially
quantified. Therefore, we consider two symbolic states equal if they are equal up to renam-
ing of primed variables. That is, in addition to the fact that spatial parts are equal up to
reordering of their chunks and addition of emp chunks.

Definition 4.2 (Symbolic State Equality). Let st1, st2 ∈ Sσ be two symbolic states. Then,
st1 and st2 are equal (st1 = st2) if and only if

st1 = st2 = ⊺σ
or

st1 = (Σ1,Π1) and st2 = (Σ2,Π2) such that st1 = r̂(st2)
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for some bijection r ∶ Vars ′ → Vars ′. Where r̂(Σ,Π) is the simultaneous renaming of primed
variables in Σ and Π according to r and the equality between spatial parts is considered up
to reordering of their chunks and addition of emp chunks.

In the sequel, we will call such a renaming that makes two symbolic states equal their
equalizer renaming. ∎

Note that the definition above is obviously reflexive, symmetric and transitive, i.e., it is
an equivalence relation.

Definition 4.3 (Consistency of Symbolic States). A non-error symbolic state (Σ,Π) ∈ Sσ is
consistent (written as (Σ,Π) /⊢ false) if none of the following holds:

I. There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ or Σ = ς1 ↦ ς2 ∗Σ′ and ς1 =Π nil

II. There a Σ′ such that Σ = P1(ς1, ς2) ∗ P2(ς3, ς4) ∗Σ′ and ς1 =Π ς3

III. There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ such that ς1 =Π ς2

∎
Moreover, for e1, e2 ∈ Vars ∪ {nil}, we need to be able to determine whether a non-error

symbolic state (Σ,Π) ∈ Sσ entails e1 = e2 or e1 ≠ e2. For the case of equality, e1 = e2, we
simply see if e1 =Π e2. On the other hand, for the case of inequality, the entailment might be
drawn from the spatial part. In particular, we say (Σ,Π) entails e1 ≠ e2 if adding equality
of e1 and e2 to it makes it inconsistent. This is formally defined in the following.

Definition 4.4 (Equalities and Inequalities with Respect to Symbolic States). Let (Σ,Π) ∈
Sσ be a symbolic state and e1, e2 ∈ Vars∪{nil}. Then, the entailment of equality and inequal-
ity of e1 and e2 under (Σ,Π), written as (Σ,Π) ⊢ e1 = e2 and (Σ,Π) ⊢ e1 ≠ e2 respectively, are
defined as follows.

(Σ,Π) ⊢ e1 = e2 if e1 =Π e2

(Σ,Π) ⊢ e1 ≠ e2 if (Σ,Π[e1 ∶=∶ e2]) ⊢ false

where, Π[ς1 ∶=∶ ς2], for two symbols ς1 and ς2, is obtained by uniting the equivalence classes
of ς1 and ς2 if they exist or otherwise adding a new equivalence class {ς1, ς2}. ∎

In order to evaluate statements that access pointers x (e.g., free(x);), we need to explic-
itly have a points-to chunk, x ↦ ς for some symbol ς. Although, this is not always the case
when x represents an allocated heap cell; e.g., we have an Ls(x, ς) chunk instead. Therefore,
we define a rearrangement function which, given a symbolic state, st ∈ Sσ, and a program
variable x, gives a set of symbolic states all of which are of the form (Σ′ ∗x↦ ς,Π′) for some
ς if x represents an allocated heap cell in st or gives {⊺σ}, otherwise. The rearrangement
function is formally defined as follows.

Definition 4.5 (Rearrangement). Let st ∈Sσ be a symbolic heap and x ∈ Vars be a program
variable. Then, the rearrangement of st to reveal x (written as Rearr(st, x)) is defined as
follows:

Rearr(st, x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(Σ ∗ x↦ ς2,Π)} if st = (Σ ∗ ς1 ↦ ς2,Π) for some ς1, ς2 ∈ Sym
and ς1 =Π x

{(Σ ∗ x↦ ς2,Π), if st = (Σ ∗Ls(ς1, ς2),Π) for ς1, ς2 ∈ Sym,
(Σ ∗ x↦ x′ ∗Ls(x′, ς2),Π)} ς1 =Π x and x′ is a fresh primed variable

{⊺σ} otherwise

∎
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Next, we define the preliminary symbolic semantics for basic statements and define the
filter function for symbolic semantics.

Definition 4.6 (Preliminary Symbolic Semantics for Basic Statements). The preliminary
symbolic semantics for basic statements is defined as follows:

any basic statement c
⊺σ, c⇒†

σ ⊺σ
x′, y′ fresh primed variables

(Σ,Π),new(x)⇒†
σ (Σ[x′/x] ∗ x↦ y′,Π[x′/x])

(Σ′ ∗ x↦ ς,Π′) ∈ Rearr((Σ,Π), x)
(Σ,Π), free(x)⇒†

σ (Σ′,Π′)
⊺σ ∈ Rearr((Σ,Π), x)
(Σ,Π), free(x)⇒†

σ ⊺σ
x′ fresh primed variable

(Σ,Π), x := e⇒†
σ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e[x′/x]])

x′ fresh primed variable, (Σ′ ∗ y ↦ ς,Π′) ∈ Rearr((Σ,Π), y)
(Σ,Π), x := y.next⇒†

σ ((Σ′ ∗ y ↦ ς)[x′/x], (Π′[x′/x])[x ∶=∶ ς[x′/x]])
⊺σ ∈ Rearr((Σ,Π), y)

(Σ,Π), x := y.next⇒†
σ ⊺σ

(Σ′ ∗ x↦ ς,Π′) ∈ Rearr((Σ,Π), x)
(Σ,Π), x.next := e⇒†

σ (Σ′ ∗ x↦ e,Π′)
⊺σ ∈ Rearr((Σ,Π), x)

(Σ,Π), x.next := e⇒†
σ ⊺σ

(Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′) ∈ Rearr((Σ,Π), x, y)

(Σ,Π), x.next := y.next⇒†
σ (Σ′ ∗ x↦ ς2 ∗ y ↦ ς2,Π′)

⊺σ ∈ Rearr((Σ,Π), x, y)
(Σ,Π), x.next := y.next⇒†

σ ⊺σ
where A[ς1/ς2] is replacement of ς2 with ς1 in A and Rearr(st, x, y) is short for

⋃
st′∈Rearr(st,x)

Rearr(st′, y)

∎
Definition 4.7 (Symbolic Filter Function). The symbolic filter function is defined as fol-
lows:
filterσ(e1 == e2)(S) = {(Σ,Π[e1 ∶=∶ e2]) ∣ (Σ,Π) ∈ S ∧ (Σ,Π) /⊢ e1 ≠ e2} ∪ {⊺σ ∣ ⊺σ ∈ S}

filterσ(e1 != e2)(S) = {(Σ,Π) ∣ (Σ,Π) ∈ S ∧ (Σ,Π) /⊢ false ∧ (Σ,Π) /⊢ e1 = e2} ∪ {⊺σ ∣ ⊺σ ∈ S}
∎

Figure 6 shows the symbolic computation of the least fixpoint of the semantics of the
while loop of the dispose program, depicted in Figure 2, starting in a set of states consisting
of a single symbolic state where x points to a linked list ending in nil . In this case, there
does not exist an n ∈N such that fnS0

(∅) is the least fixpoint. This is due to the introduction
of new primed variables which causes the pure part to grow indefinitely.

On the other hand, Figure 7 shows the symbolic computation of the least fixpoint of the
semantics of the while loop of the infinite allocation program, depicted in Figure 3, starting
in a set of states consisting of a single symbolic state where the heap is empty and there
are no pure assertions. Evidently, in the case of symbolic semantics, similarly to the case of
concrete semantics, the least fixpoint of the while loop in this program is not obtainable by
iterative computation of fnS0

(∅).
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S0 = {(Ls(l,nil),∅)}

n fnS0
(∅)

0 ∅
1 {(Ls(x,nil),∅)}
2 {(Ls(x,nil),∅), (emp,{{y,nil , x}}), (Ls(x′1,nil),{{y, x′1, x}})}

3
{(Ls(l,nil),∅), (emp,{{n,nil , l}}), (Ls(x′1,nil),{{x,x′1, y}}),
(emp,{{x′3, x′2, x′5},{y,nil , x}}), (Ls(x′4,nil),{{x,x′4, x},{x′3, x′2, x′5}})}

⋮ ⋮

Figure 6: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the symbolic semantics. In this case, there does not exist an n ∈ N
such that fnS0

is the least fixpoint.

S0 = {(emp,∅)}

n fnS0
(∅)

0 ∅
1 {(emp,∅)}
2 {(emp ∗ x↦ x′1,∅)}
3 {(emp ∗ x↦ x′3 ∗ x′2 ↦ x′1,∅)}
4 {(emp ∗ x↦ x′5 ∗ x′4 ↦ x′3 ∗ x′2 ↦ x′1,∅)}
⋮ ⋮

Figure 7: Computation of the least fixpoint of the while loop semantics for the infinite
allocation program (Figure 3) in the symbolic semantics. In this case, there does not exist
an n ∈N such that fnS0

is the least fixpoint.
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5 Overapproximation of Concrete Semantics by Sym-
bolic Semantics

In this section, we show that the symbolic semantics is a sound overapproximation of the
concrete semantics. Before we can establish this result though, we must define what con-
stitutes a symbolic state representing a concrete state.

We say a concrete state (h, s) models a symbolic state (Σ,Π), if there is a s′ ∶ Vars ′ →
Values such that the values assigned by s and s′ are compatible with the equalities of Π and
s and s′ can be used to translate the symbols in Σ such that Σ holds in h.

Definition 5.1 (Modeling Relation). Let (h, s) and (Σ,Π) be a concrete and symbolic state
respectively. Then, we say (h, s) models (Σ,Π) (written as (h, s) ⊧ (Σ,Π)) if there exists a
s′ ∶ Vars ′ → Values such that:

∀ς1, ς2 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)
and

(h, s)
s′

⊧ Σ

where valσ(s, s′, ς) is defined as follows:

valσ(s, s′, ς) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s(ς) if ς ∈ Vars
s′(ς) if ς ∈ Vars ′

nil if ς = nil

Furthermore, (h, s)
s′

⊧ Σ is defined inductively as follows:

(h, s)
s′

⊧ emp if and only if dom(h) = ∅

(h, s)
s′

⊧ Junk if and only if dom(h) ≠ ∅

(h, s)
s′

⊧ ς1 ↦ ς2 if and only if ς1 ≠ nil ∧ h(a) = { valσ(s, s′, ς2) if a = valσ(s, s′, ς1)
� otherwise

(h, s)
s′

⊧ Ls(ς1, ς2) if and only if ς1 ≠ nil ∧ valσ(s, s′, ς1) ≠ valσ(s, s′, ς2)∧

((h, s)
s′

⊧ ς1 ↦ ς2 ∨ (h, s)
s′′

⊧ (ς1 ↦ z′ ∗Ls(z′, ς2)))
for some fresh z′ and s′′ = s′[z′ ↦ h(valσ(s, s′, ς1))]

(h, s)
s′

⊧ F ∗G if and only if h = h1 ⊎ h2 where (h1, s)
s′

⊧ F ∧ (h2, s)
s′

⊧ G

where, h1 ⊎ h2 is disjoint union of h1 and h2 and is undefined if dom(h1) ∩ dom(h2) ≠ ∅. ∎

Given the modeling relation, we define the the set of concrete states represented by a
set of symbolic states as follows.

Definition 5.2 (Representation Function). The representation function γ ∶ 2Sσ → 2Sκ is
the function that maps a set of symbolic states to the set of concrete states represented by
them.

γ(S) = { {(h, s) ∈Sκ ∣ (Σ,Π) ∈ S ∧ (h, s) ⊧ (Σ,Π)} if ⊺σ /∈ S
Sκ otherwise

∎
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In the following, we show that a symbolic state (Σ,Π) is inconsistent, i.e., (Σ,Π) ⊢ false
if and only if there are no concrete states modeling it. Furthermore, we show that whenever
two symbolic states are equal, a concrete state either models both of them or none of them.
This means that (Σ1,Π1) = (Σ2,Π2) implies, γ({(Σ1,Π1)}) = γ({(Σ2,Π2)}).

Theorem 5.3. Let (Σ,Π) be a symbolic state, then (Σ,Π) ⊢ false if and only if there is no
concrete state (h, s) such that (h, s) ⊧ (Σ,Π). ∎

Proof. We prove each side separately as follows:

⇒ (Σ,Π) ⊢ false, then ∀(h, s) ∈Sκ. (h, s) /⊧ (Σ,Π):
(Σ,Π) ⊢ false if at least one of the conditions I, II or III in 4.3 holds. We show that for
each of these cases, (Σ,Π) has no model.

I: There is a Σ′ such that Σ = Ls(ς1, ς2) ∗ Σ′ or Σ = ς1 ↦ ς2 ∗ Σ′ and we have
ς1 =Π nil . If (h, s) ⊧ (Σ,Π), there must exist an s′ ∶ Vars ′ → Values such that
valσ(s, s′, ς1) = valσ(s, s′,nil) = nil and we should have valσ(s, s′, ς1) = nil ∈ dom(h)
which is impossible as h ∶N⇀ Values.

II: There are two chunks P1(ς1, ς2) and P2(ς3, ς4) such that ς1 =Π ς3. This means, there

must be s′ and a subheap h′ such that dom(h′) ⊆ dom(h) and (h′, s)
s′

⊧ P1(ς1, ς2) ∗
P2(ς3, ς4). Thus, we should have h′ = h′1 ⊎ h′2 such that (h′1, s)

s′

⊧ P1(ς1, ς2) and

(h′2, s)
s′

⊧ P2(ς3, ς4). This can not be as we have

valσ(s, s′, ς1) = valσ(s, s′, ς3) ∈ dom(h′1) ∩ dom(h′2)

which contradicts the fact that h′ = h′1 ⊎ h′2, as it is undefined.
III: There is a chunk Ls(ς1, ς2) such that ς1 =Π ς2. Then, there must be an s′ and

a subheap h′ such that dom(h′) ⊆ dom(h) and (h′, s) ⊧ Ls(ς1, ς2) which in turn
means, we should have valσ(s, s′, ς1) ≠ valσ(s, s′, ς2) which is a contradiction (see
Definition 5.1).

⇐: ∀(h, s) ∈Sσ. (h, s) /⊧ (Σ,Π), then (Σ,Π) ⊢ false:
Instead of a direct proof, we show that the contrapositive holds. Namely, we show
(Σ,Π) /⊢ false → ∃(h, s) ∈Sκ. (h, s) ⊧ (Σ,Π):
As for any heap h, it holds that h = h⊎h� where dom(h�) = ∅, whenever (h, s) ⊧ (Σ,Π),
also (h, s) ⊧ (Σ ∗ emp,Π). Therefore, in the rest of the proof we assume that there are
no emp chunks in the spatial part.
Let Π = {π0, . . . , πn} then, we define s ∶ Vars → Values and s′ ∶ Vars ′ → Values as follows:

s(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if x ∈ πi ∧ nil /∈ πi
nil if {x,nil} ⊆ πi
U(x) otherwise

s′(x′) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

i if x′ ∈ πi ∧ nil /∈ πi
nil if {x′,nil} ⊆ πi
U(x′) otherwise

where U ∶ Vars∪Vars ′ → {n+m+1, n+m+2, . . .} is an injective mapping that maps each
program variable or primed variable to some unique natural number greater than
n+m, where m is the number of Junk chunks in Σ. Furthermore, let h ∶N⇀ Values be
defined as follows:

h(a) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

valσ(s, s′, ς2) if a = valσ(s, s′, ς1) ∧Σ = P (ς1, ς2) ∗Σ′

n + i if a = n + i ∧ 1 ≤ i <m
� otherwise
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It is easy to see that (h, s)
s′

⊧ (Σ,Π), thus, we omit the proof here.

Theorem 5.4. Let (Σ1,Π1) and (Σ2,Π2) be two symbolic states such that (Σ1,Π1) = (Σ2,Π2).
Then a concrete state either models both or neither of them. In other words,

if (Σ1,Π1) = (Σ2,Π2) then (∀(h, s) ∈Sκ. (h, s) ⊧ (Σ1,Π1) if and only if (h, s) ⊧ (Σ2,Π2))

∎

Proof. To prove this theorem, we assume (Σ1,Π1) = (Σ2,Π2) and show that for an arbitrary
concrete state (h, s) ∈Sκ, (h, s) ⊧ (Σ1,Π1) then (h, s) ⊧ (Σ2,Π2). The other side (i.e., (h, s) ⊧
(Σ2,Π2) then (h, s) ⊧ (Σ1,Π1)) follows through a similar reasoning and is therefore omitted.

Let r ∶ Vars ′ → Vars ′ be the equalizer renaming of (Σ1,Π1) and (Σ2,Π2) and s′ ∶ Vars ′ →
Values be such that (h, s)

s′

⊧ (Σ1,Π1). Then, (h, s)
s′○r
⊧ (Σ2,Π2).

This simply follows from the fact that

∀x′ ∈ Vars ′. valσ(s, s′, x′) = valσ(s, s′ ○ r, r(x′))

Which can be easily seen from the definition of valσ(s, s′, ς), for a symbol ς, in Definition 5.1.

In preparation for the main result here, i.e., symbolic semantics being a sound overap-
proximation of concrete semantics, we show that the set of concrete states represented by
a set of symbolic states is preserved under replacement of a symbol with a fresh primed
variable. Furthermore, we show that the rearrangement to reveal a program variable is an
overapproximation, i.e., if (h, s) ⊧ (Σ,Π) then (h, s) ∈ γ(Rearr((Σ,Π), x)) for any x ∈ Vars.

Lemma 5.5. Let (Σ,Π) be a symbolic state, ς ∈ Sym be a symbol and x′ ∈ Vars ′ be a primed
variable that does not appear in (Σ,Π) . Then,

γ({(Σ,Π)}) ⊆ γ({(Σ,Π)[x′/ς]})

∎

Proof. Let s′1 ∶ Vars ′ → Values and s′2 ∶ Vars ′ → Values be two valuation functions for primed
variables such that:

s′2(y′) = { valσ(s, s′1, ς) if y′ = x′
s′1(y′) otherwise

We show that for any (h, s) ∈Sκ,

(h, s)
s′1⊧ (Σ,Π)→ (h, s)

s′2⊧ (Σ,Π)[x′/ς]

To show this, we only need to show that for any symbol ς1 ∈ Sym,

valσ(s, s′1, ς1) = valσ(s, s′2, ς1[x′/ς])

This, on the other hand, is obvious from the definition of s′2 above.

Lemma 5.6. Let st ∈Sσ be a symbolic state and x ∈ Vars be a program variable. Then,

γ({st}) ⊆ γ(Rearr(st, x))

∎
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Proof. If st = ⊺σ, γ(Rearr(⊺σ, x)) = γ({⊺σ}) =Sκ. If st = (Σ,Π), we can have three cases:

– There is a Σ′ such that Σ = ς1 ↦ ς2 ∗ Σ′ for some ς2 and ς1 =Π x. In this case,
Rearr((Σ,Π), x) = {(x ↦ ς2 ∗ Σ′,Π′)}. In addition, if (h, s) ⊧ (Σ,Π), there is an s′,

h1, h2 such that h = h1 ⊎ h2 and (h1, s)
s′

⊧ (ς1 ↦ ς2,Π) and (h2, s)
s′

⊧ (Σ′,Π). On the other

hand, ς1 =Π x and hence valσ(s, s′, x) = valσ(s, s′, ς1). Thus, (h1, s)
s′

⊧ (x ↦ ς2,Π) and as
a result

(h, s) ⊧ (x↦ ς2 ∗Σ′,Π′)

– There is a Σ′ such that Σ = Ls(ς1, ς2) ∗Σ′ for some ς2 and ς1 =Π x. In this case,

Rearr((Σ,Π), x) = {(x↦ ς2 ∗Σ′,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

st1

, (x↦ x′ ∗Ls(x′, ς2) ∗Σ′,Π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

st2

}

According to Definition 5.1 and a reasoning similar to that of the previous case, if
(h, s) ⊧ (Σ,Π), then, either (h, s) ⊧ st1 or (h, s) ⊧ st1.

– None of the above hold. In this case, γ(Rearr((Σ,Π), x)) = γ({⊺σ}) =Sκ.

Lemma 5.7 (Symbolic Semantics of Basic Statements Overapproximates Concrete Seman-
tics). Let c be a basic statement. Then,

∀S ⊆Sσ. JcKκ(γ(S)) ⊆ γ(JcKσ(S))

∎

Proof. Since semantics functions and representation function, γ, are both continuous, we
simply need to show that

∀st ∈Sσ. JcKκ(γ({st})) ⊆ γ(JcKσ({st}))

If st = ⊺σ,
γ(JcKσ({⊺σ})) = γ(⊺σ) =Sκ

If st = (Σ,Π),

– c = new(x);

For st ∈ JcKσ({(Σ,Π)}), we have st = (x↦ y′∗Σ[x′/x],Π[x′/x]) where x′ and y′ are some
fresh primed variables.
On the other hand, if (h, s) ⊧ (Σ,Π), i.e., (h, s) ∈ γ({(Σ,Π)}), then, for any st′ ∈
JcKκ(h, s), we have,

st′ = (h[m↦ n], s[x↦m])
for some m /∈ dom(h) and n ∈N. Furthermore, h[m↦ n] = h ⊎ h′ where,

h′(x) = { n if x =m
� otherwise

According to Lemma 5.5, (h, s) ⊧ (Σ[x′/x],Π[x′/x]). On the other hand, since x does
not appear in (Σ[x′/x],Π[x′/x]), we have

(h, s[x↦m]) ⊧ (Σ[x′/x],Π[x′/x])
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In addition,
(h′, s[x↦m]) ⊧ (x↦ y′,Π[x′/x])

Thus,
(h[m↦ n], s[x↦m]) ⊧ (x↦ y′ ∗Σ[x′/x],Π[x′/x])

Consequently,
(h[m↦ n], s[x↦m]) ∈ γ(JcKσ({(Σ,Π)}))

– c = free(x);

If Rearr((Σ,Π), x) = {⊺σ}, it trivially holds.
Otherwise, for (h, s) ⊧ (Σ,Π), According to Lemma 5.6, (h, s) ∈ γ(Rearr((Σ,Π), x)).
Hence, there is a (Σ′ ∗ x↦ ς,Π) ∈ Rearr((Σ,Π), x) such that

(h, s) ⊧ (x↦ ς ∗Σ′,Π)

Therefore, h = h1 ⊎ h2 such that (h1, s) ⊧ (x ↦ ς,Π) and (h2, s) ⊧ (Σ′ ∗ Π). Thus, for
(h[s(x)↦ �], s) ∈ JcKκ(h, s),

(h[s(x)↦ �], s) = (h2, s) ∈ γ(Σ′ ∗Π)

Consequently,
(h[s(x)↦ �], s) ∈ γ(JcKσ({(Σ,Π)}))

– c = x := e;

Let x′ be a fresh primed variable and (h, s) be a concrete state such that (h, s) ⊧ (Σ,Π).
According to Lemma 5.5, we have (h, s) ⊧ (Σ[x′/x],Π[x′/x]). Here, we consider two
cases, first if x and e are the same (an assignment of x to itself!) and second if x and e
are two different simple expressions.
If x and e are the same variables, then we have s[x↦ valκ(s, e)]) = s and

(Σ[x′/x], (Π[x′/x])[x ∶=∶ (y[x′/x])]) = (Σ[x′/x],Π[x′/x])

If x and e are two different symbols, we have (e[x′/x]) = e and thus, we have to show

(h, (s[x↦ valκ(s, e)])) ⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e])

To see this, observe that

(h, (s[x↦ valκ(s, e)])) ⊧ (Σ[x′/x],Π[x′/x])

Notice that x does not appear in (Σ[x′/x],Π[x′/x]) and hence the value of s(x) is
irrelevant. Thus, there is an s′ such that

(h, (s[x↦ valκ(s, e)]))
s′

⊧ (Σ[x′/x],Π[x′/x])

On the other hand, since

∀ς1, ς1 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)

we have
(h, (s[x↦ valκ(s, e)]))

s′

⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ e])
Consequently,

(h, (s[x↦ valκ(s, e)])) ∈ γ(JcKσ({(Σ,Π)}))
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– c = x.next := e;

If Rearr((Σ,Π), x) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, there is a (Σ′ ∗ x ↦ ς,Π) ∈
Rearr((Σ,Π), x), such that

(h, s) ⊧ (Σ′ ∗ x↦ ς,Π)

On the other hand, since (h, s) ⊧ (Σ′ ∗x↦ ς,Π), we have h = h1 ⊎h2, such that (h1, s) ⊧
(Σ′,Π) and (h2, s) ⊧ (x ↦ ς,Π). Therefore, since (h2[x ↦ valκ(e)], s) ⊧ (x ↦ e,Π), we
have

(h[x↦ valκ(s, e)], s) ⊧ (Σ′ ∗ x↦ e,Π) ∈ JcKσ({(Σ,Π)})
Consequently,

(h[x↦ valκ(s, e)], s) ∈ γ(JcKσ({(Σ,Π)}))

– c = x := y.next;

If Rearr((Σ,Π), y) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, we have

(h, s) ∈ γ(Rearr((Σ,Π), y))

Hence, there is a (Σ′ ∗ y ↦ ς,Π) ∈ Rearr((Σ,Π), y) such that

(h, s) ⊧ (Σ′ ∗ y ↦ ς,Π)

Now, let x′ be a fresh primed variable. Then, according to Lemma 5.5, (h, s) ⊧ ((Σ′∗y ↦
ς)[x′/x],Π[x′/x]).
Here, we should consider two cases, first if ς and x are the same (y’s next cell is x) and
second if ς and x are two different symbols.
If x and ς are the same variables, then, since h(s(y)) = s(x), we have

s[x↦ h(s(y))] = s

and

((Σ′′ ∗ y ↦ ς)[x′/x], ((Π[x′/x])[x ∶=∶ (ς[x′/x])])) = ((Σ′′ ∗ y ↦ ς)[x′/x],Π[x′/x])

Thus,
(h, s[x↦ h(s(y))]) ∈ γ(JcKσ({(Σ,Π)}))

On the other hand, if x and ς are two different symbols, since (h, s) ⊧ ((Σ′ ∗ y ↦
ς)[x′/x],Π[x′/x]), we have

(h, s[x↦ h(s(y))]) ⊧ ((Σ′ ∗ y ↦ ς)[x′/x],Π[x′/x])

Notice that x does not appear in ((Σ′ ∗y ↦ ς)[x′/x],Π[x′/x]) and thus the value of s(x)
is irrelevant. Thus, there is a s′ such that

(h, (s[x↦ h(s(y))]))
s′

⊧ (Σ[x′/x],Π[x′/x])
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On the other hand, since

∀ς1, ς2 ∈ Sym. ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)

we have,

∀ς1, ς2 ∈ Sym. ς1 =(Π[x′/x])[x∶=∶ς] ς2 → valσ((s[x↦ s(y)]), s′, ς1) = valσ((s[x↦ s(y)]), s′, ς2)

and as a result,

(h, (s[x↦ s(y)]))
s′

⊧ (Σ[x′/x], (Π[x′/x])[x ∶=∶ ς])

Consequently,
(h, (s[x↦ s(y)])) ∈ γ(JcKσ({(Σ,Π)}))

– c = x.next := y.next;

If Rearr((Σ,Π), x, y) = {⊺σ}, it trivially holds.
Otherwise, for any (h, s) ⊧ (Σ,Π), according to Lemma 5.6, there is

(Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′) ∈ Rearr((Σ,Π), x, y)

such that (h, s) ⊧ (Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π
′).

On the other hand, since (h, s) ⊧ (Σ′ ∗ x↦ ς1 ∗ y ↦ ς2,Π), we have h = h1 ⊎ h2 ⊎ h3, such
that

(h1, s) ⊧ (Σ′,Π), (h2, s) ⊧ (x↦ ς1,Π) and (h3, s) ⊧ (y ↦ ς2,Π)
Therefore, we have

(h[x↦ h(s(y))], s) ⊧ (Σ′ ∗ x↦ ς2 ∗ y ↦ ς2,Π)

Consequently,
(h[x↦ h(s(y)))], s) ∈ γ(JcKσ({(Σ,Π)}))

After proving overapproximation results for basic statements, we show overapproxima-
tion of the filter function before proving the final result, i.e., overapproximation for the
whole of SimpleLang.

Lemma 5.8. Let S ⊆Sσ be a set of symbolic states and cond be a loop condition of the form
e1 == e1 or e1 != e2 for some simple expressions e1 and e2. Then,

filterκ(cond)(γ(S)) ⊆ γ(filterσ(cond)(S))

∎
Proof. Since the representation function, γ, and both filter functions are continuous, the
results for singletons naturally extend to all sets. In other words, we only need to show
that,

∀st ∈Sσ. filterκ(cond)(γ({st})) ⊆ γ(filterσ(cond)({st}))
If st = ⊺σ, γ(filterσ(cond)({st})) =Sκ. On the other hand, if st = (Σ,Π) and (Σ,Π) ⊢ false,

according to Theorem 5.3 and Definition 5.2, γ({(Σ,Π)}) = ∅ and thus,

filterκ(cond)(γ({(Σ,Π)})) = ∅

Therefore, in the rest of the proof we consider st = (Σ,Π) such that (Σ,Π) /⊢ false. We
proceed by case analysis on cond.
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Case: cond = ‘e1 == e2’

If (h, s) ∈ filterκ(cond)(γ({(Σ,Π)})), we have (h, s) ⊧ (Σ,Π) and valκ(s, e1) = valκ(s, e2).
As a result, (h, s) ⊧ (Σ,Π[e1 ∶=∶ e2]). This, according to Theorem 5.3 and Defini-
tion 4.4, shows that (Σ,Π) /⊢ e1 ≠ e2. Hence,

(Σ,Π[e1 ∶=∶ e2]) ∈ filterσ(cond)(Σ,Π)

Consequently,
(h, s) ∈ γ(filterσ(cond)({st}))

Case: cond = ‘e1 != e2’
If (h, s) ∈ filterκ(cond)(γ({(Σ,Π)})), we have (h, s) ⊧ (Σ,Π) and valκ(s, e1) ≠ valκ(s, e2).
According to Definition 4.4, we have (Σ,Π) /⊢ e1 = e2. Hence,

(Σ,Π) ∈ filterσ(cond)(Σ,Π)

Consequently,
(h, s) ∈ γ(filterσ(cond)({st}))

Finally, we can state and prove the main theorem of this section, i.e., the correspondence
of semantics.

Theorem 5.9 (Symbolic Semantics Overapproximates Concrete Semantics). Let c be any
statement or block of statements. Then,

∀S ⊆Sσ. JcKκ(γ(S)) ⊆ γ(JcKσ(S))

∎

Proof. We prove this theorem by structural induction on the structure of statements:

Base Case: The statement c is a basic statement. This is already proven in Lemma 5.7.

Inductive Case1: The statement c is of the form c1; c2 and, as induction hypothesis, we have:

∀S ⊆Sσ. Jc1Kκ(γ(S)) ⊆ γ(Jc1Kσ(S)) and ∀S ⊆Sσ. Jc2Kκ(γ(S)) ⊆ γ(Jc2Kσ(S))

From the definition of semantics of composition of statements, Jc1; c2K = Jc2K ○ Jc1K, it
follows that:

∀S ⊆Sσ. Jc1; c2Kκ(γ(S)) ⊆ γ(Jc1; c2Kσ(S))

Inductive Case2: The statement c is of the form while(b){c′} and, as induction hypothesis, we have:

∀S ⊆Sσ. Jc′Kκ(γ(S)) ⊆ γ(Jc′Kσ(S))

Assuming S ⊆Sσ is a set of symbolic states, we show that:

Jwhile(b){c′}Kκ(γ(S)) ⊆ γ(Jwhile(b){c′}Kσ(S))

Assuming that fκ,γ(S) and fσ,S are as defined for general semantics of the while loops,
respectively for concrete and symbolic semantics, we have:

Jwhile(b){c′}Kκ(γ(S)) = filterκ(¬b)(⋃
n∈N

fnκ,γ(S))
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and
Jwhile(b){c′}Kσ(S) = filterσ(¬b)(⋃

n∈N
fnσ,S)

By a simple induction on n, using induction hypothesis and Lemma 5.8, we can see
that:

∀n ∈ . fnκ,γ(S) ⊆ fnσ,S
Thus,

⋃
n∈N

fnκ,γ(S) ⊆ ⋃
n∈N

fnσ,S

On the other hand, according to Lemma 5.8, we have:

filterσ(¬b)(⋃
n∈N

fnσ,S) ⊆ filterκ(¬b)(⋃
n∈N

fnκ,γ(S))

Consequently,
Jwhile(b){c′}Kσ(S) ⊆ Jwhile(b){c′}Kκ(γ(S))

As a corollary, we get that whenever the concrete execution of the program, starting
in the empty memory, indicates an error in the program, so does the symbolic execution,
starting in the empty memory.

Corollary 5.10. For a statement (program) c,

if ⊺κ ∈ JcKκ(hε, sε) then ⊺σ ∈ JcKσ(emp,∅)

where,
hε(a) = � and sε(x) = nil

∎

6 Abstract Semantics
In this section we discuss an abstraction that maps symbolic states to abstract symbolic
states. Abstract semantics then is simply symbolic semantics having abstraction applied to
their results.

We define the abstraction in two phases; in the first phase, we remove all primed vari-
ables from the pure part and in the second phase, we contract the spatial part by collapsing
consecutive chains of linked list segments (if possible) and gathering all memory leaks into
a single Junk predicate.

Definition 6.1 (Removing Primed Variables from Pure Part). Let (Σ,Π) be a symbolic
state and π ∈ Π be an equivalence class in the pure part. The removal of primed variables
appearing in π, denoted as rpπ(Σ,Π) is defined as follows:

rpπ(Σ,Π) = (Σ[rep(π), . . . , rep(π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

/x′1, . . . , x′n], (Π ∖ {π}) ∪ ξ(π))

where

rep(π) = { x ∈ π ∖ {x′1, . . . , x′n} if π ∖ {x′1, . . . , x′n} ≠ ∅
x′i for some 1 ≤ i ≤ n
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and

ξ(π) = { {π ∖ {x′1, . . . , x′n}} if ∣π ∖ {x′1, . . . , x′n}∣ ≥ 1
∅ otherwise

and {x′1, . . . , x′n} ⊆ π is the set of all primed variables in π and [b1, . . . , bn/a1, . . . , an] denotes
simultaneous replacement of a1 by b1, . . . , an by bn.

In the sequel we will use rpΠ(Σ,Π) defined as

rpΠ(Σ,Π) = rpπ1(. . . (rpπm(Σ,Π)) . . . ) where Π = {π1, . . . , πm}

to be the result of removal of all primed variables from the pure part of a symbolic heap. ∎

Definition 6.2 (Spatial Abstraction Rules). The following are the rules for the abstraction
of the spatial part of a symbolic state.

x′ /∈ Vars ′(Σ,Π) ς ∈ Sym
(Σ ∗ P (x′, ς),Π) A↝ (Σ ∪ Junk ,Π)

(Garbage1)

x′, y′ /∈ Vars ′(Σ,Π)
(Σ ∗ P1(x′, y′) ∗ P2(y′, x′),Π) A↝ (Σ ∪ Junk ,Π)

(Garbage2)

y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2} ς1, ς2 ∈ Sym ς2 =Π nil

(Σ ∗ P1(ς1, y′) ∗ P2(y′, ς2),Π) A↝ (Σ ∗Ls(ς1,nil),Π)
(Abs1)

y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2, ς3, ς4} ς1, ς2, ς3, ς4 ∈ Sym ς2 =Π ς3

(Σ ∗ P1(ς1, y′) ∗ P2(y′, ς2) ∗ P3(ς3, ς4),Π) A↝ (Σ ∗Ls(ς1, ς2) ∗ P3(ς3, ς4),Π)
(Abs2)

Where,

Σ ∪ Junk = { Σ if Σ has a Junk chunk
Σ ∗ Junk otherwise

and Vars ′(Σ,Π) is the set of all primed variables that appear in Σ or Π. ∎

The rule Garbage1 simply collects all memory chunks that are not pointed to by any
program variables directly or indirectly – as x′ does not appear in Σ or Π. The rule Garbage2
handles the cases where there is a cycle that is not reachable directly or indirectly from
program variables (cyclic memory leak).

The rule Abs1 and Abs2 both merge linked list segments (or direct links) that form a
continuous linked list. The fact that we require the end of the contracting linked list to be
nil or already allocated in a separate portion of the heap is to make sure that the segments
being merged don’t form a cyclic linked list. Indeed if the end of the linked list segments
is allocated in another separate portion of the memory or is nil , it can’t be pointing to the
middle or beginning of that linked list segment and it is thus safe to merge them to a single
acyclic linked list segment.

Before we formally define the abstraction operation, we show that the set of rules for
abstraction of the spatial part are strongly normalizing, i.e., there are no infinite chains of
reduction.
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Lemma 6.3 (Strong Normalization of Spatial Abstraction). Let (Σ0,Π0) be a symbolic
state, then, there does not exist an infinite sequence (Σ0,Π0), (Σ1,Π1), . . . such that ∀i ∈
N. (Σi,Πi)

A↝ (Σi+1,Πi+1). ∎
Proof. It suffices to note that any of these rules decreases the collective number of Ls and
↦ chunks in the spatial part of the given symbolic states.

In the sequel, we use A↝ ∗ to denote the reflexive transitive closure of A↝ and we use

(Σ,Π)
A
/↝ to indicate that (Σ,Π) is a normal form, i.e., none of the rules of spatial abstraction

are applicable to (Σ,Π).
Before, defining the abstraction operation, we define the set of abstract states. That is,

the set of all consistent symbolic states that have no primed variables in their pure part
and none of the abstraction rules are applicable to them, together with the symbolic error
state, ⊺σ.

Definition 6.4 (Abstract States). The set of abstract states Sα is defined as follows:

Sα = {(Σ,Π) ∈Sσ ∣ (Σ,Π) /⊢ false ∧ (rpΠ(Σ,Π)) = (Σ,Π) ∧ (Σ,Π)
A
/↝} ∪ {⊺σ}

∎

The rewriting rules of Definition 6.2 form a rewriting relation, A↝. Since this rewrite sys-
tem is terminating, we can extract a function out of this relation that maps each symbolic
state to one of its normal forms. This can simply be done by fixing an order on applica-
tions of the rules. In our implementation, we simply go through abstraction rules from top
to bottom and for each of them keep reapplying them until they are no longer applicable.
This process is repeated until none of the rules are applicable. In the sequel, we assume
redA ∶Sσ →Sσ is such a function.

Definition 6.5 (Abstraction). The abstraction function, denoted by Abs ∶ 2Sσ → 2Sα is
defined as follows:

Abs(S) = {(Σ′,Π′) ∣ (Σ,Π) ∈ S ∧ redA(rpΠ(Σ,Π)) = (Σ′,Π′) ∧ (Σ′,Π′) /⊢ false} ∪ {⊺σ ∣ ⊺σ ∈ S}

∎
Abstract semantics is simply symbolic semantics where abstraction is applied to its re-

sult.

Definition 6.6 (Abstract Semantics). Let c be a basic statement, then the abstract seman-
tics of c denoted by JcKα ∶ 2Sα → 2Sα is defined as follows:

JcKα(S) = Abs(JcKσS)

∎
Figure 8 shows the abstract computation of the least fixpoint of the semantics of the

while loop of the dispose program, depicted in Figure 2, starting in a set of states consisting
of a single abstract state where x points to a linked list ending in nil .

Figure 9 shows the abstract computation of the least fixpoint of the semantics of the
while loop for the infinite allocation program, depicted in Figure 3, starting in a set of
states consisting of a single abstract state where the heap is empty and there are no pure
assertions. Contrary to the case of symbolic semantics and concrete semantics, the least
fixpoint of the while loop in this program, in abstract semantics, is obtainable by iterative
computation of fnS0

(∅).
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S0 = {(Ls(x,nil),∅)} JdisposeKα(S0) = {(emp,{y,nil , x})}

n fnS0
(∅)

0 ∅
1 {(Ls(x,nil),∅)}
2 {(Ls(x,nil),∅), (emp,{y,nil , x}), (Ls(y,nil),{y, x})}

Figure 8: Computation of the least fixpoint of the while loop semantics for the dispose
program (Figure 2) in the abstract semantics. In this case, f2

S0
is the least fixpoint. In

addition, JdisposeKα is the abstract semantics of the whole dispose program (while loop).

S0 = {(emp,∅)} JinfallocKα(S0) = ∅

n fnS0
(∅)

0 ∅
1 {(emp,∅)}
2 {(emp ∗ x↦ x′1,∅)}
3 {(emp ∗ x↦ x′3 ∗ Junk ,∅)}

Figure 9: Computation of the least fixpoint of the while loop semantics for the infinite allo-
cation program (Figure 3) in the abstract semantics. In this case, f3

S0
is the least fixpoint.

In addition, JinfallocKα is the abstract semantics of the whole dispose program (while loop).

7 Overapproximation of Concrete Semantics by Abstract
Semantics

To show that abstract semantics is a sound overapproximation of concrete semantics, we
first show that abstraction is an overapproximation.

Lemma 7.1 (Overapproximation of Removal of Primed Variables). Let (Σ,Π) be a symbolic
state. Then,

∀(h, s) ∈Sσ. (h, s) ⊧ (Σ,Π)→ (h, s) ⊧ prΠ(Σ,Π)
∎

Proof. Assume that prπ(Σ,Π) = (Σ′,Π′) for some π ∈ Π. We show that if (h, s) ⊧ (Σ,Π), then
(h, s) ⊧ (Σ′,Π′). Assume that {x′1, . . . , x′n} ⊆ π is the set of all primed variables in π and
rep(π) is as in Definition 6.1. In addition, let ren ∶ Sym→ Sym be as follows:

ren(ς) = { rep(π) if ς = x′i for some 1 ≤ i ≤ n
ς otherwise

We show that, for any s′ ∶ Vars ′ → Values,

(h, s)
s′

⊧ (Σ,Π)→ (h, s)
s′

⊧ prπ(Σ,Π)

First, note that for all ς1, ς2 ∈ Sym,

ς1 =Π′ ς2 → ς1 =Π ς2 → valσ(s, s′, ς1) = valσ(s, s′, ς2)
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Second, for any chunk A of Σ, A′ = A[rep(π), . . . , rep(π)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

/x′1, . . . , x′n] and subheap h′ of h, we

have,

(h, s)
s′

⊧ (A,Π)→ (h, s)
s′

⊧ (A′,Π′)
There are four possibilities forA; Junk , emp, ς1 ↦ ς2 and Ls(ς1, ς2). In the first two cases, A′ =
A. According to Definition 5.1, the the case for Ls, follows form the case for ↦. Therefore,

we consider the case where A = ς1 ↦ ς2. Due to Definition 5.1, (h, s)
s′

⊧ (ς1 ↦ ς2,Π), then,

h(a) = { valσ(s, s′, ς2) if a = valσ(s, s′, ς1)
� otherwise

On the one hand, A′ = ren(ς1)↦ ren(ς2). Thus, since ∀ς ∈ Sym. ς =π ren(ς), we have

∀ς ∈ Sym. valσ(s, s′, ς) = valσ(s, s′, ren(ς))

Therefore, (h, s)
s′

⊧ (A′,Π′).

Lemma 7.2 (Overapproximation of Spatial Abstraction). Let (Σ,Π) and (Σ′,Π′) be two
symbolic states such that (Σ,Π) A↝ (Σ′,Π′), then,

∀(h, s) ∈Sκ. (h, s) ⊧ (Σ,Π)→ (h, s) ⊧ (Σ′,Π′)

∎

Proof. We consider all the four cases. In what follows, we assume (h, s)
s′

⊧ (Σ,Π).
Garbage1. This can be if Σ = Σ1 ∗ P (x′, ς) for x′ not appearing in Σ1. In this case, there must be

two concrete heaps h′ and h′′ such that h = h′ ⊎ h′′ and (h′, s)
s′

⊧ (Σ1,Π) and (h′′, s)
s′

⊧
(P (x′, ς),Π) which means dom(h′′) ≠ ∅.
Here, there are two cases to consider Σ1 = Σ2 ∗ Junk or Σ1 has no Junk chunk. let
h′ = h′1 ⊎ h′2 such that in the first case (h′1, s) ⊧ (Σ2,Π) and dom(h′2) ≠ ∅ and in the
second case, h′1 = h′ and dom(h′2) = ∅.
In both cases, dom(h′2 ⊎ h′′) ≠ ∅ and thus, we have (h, s) ⊧ (Σ1 ∪ Junk ,Π). Note that
since h = (h′1 ⊎ h′2) ⊎ h′′, dom(h′2) ∩ dom(h′′) = ∅ and thus h′2 ⊎ h′′ is not undefined.

Garbage2. Proof is very similar to the previous case and is thus omitted.

Abs1. This can be if Σ = Σ1 ∗ P1(ς1, y′) ∗ P2(y′, ς2) for ς1, ς2 ∈ Sym and y′ neither appear in Σ1

nor in Π nor is it equal to ς1 or ς2 and we have ς2 =Π nil . We prove that if (h, s) ⊧ (Σ,Π)
then (h, s) ⊧ (Σ1 ∗Ls(ς1,nil),Π).
Since ς1 is allocated in (Σ,Π) and valσ(s, s′, ς2) = nil , valσ(s, s′, ς2) ≠ valσ(s, s′, ς1). On

the other hand, h = h1 ⊎ h2 ⊎ h3 such that (h1, s)
s′

⊧ (Σ1,Π), (h2, s)
s′

⊧ (P1(ς1, y′),Π)
and (h3, s)

s′

⊧ (P2(y′, ς2),Π). Therefore, (h2 ⊎ h3, s)
s′

⊧ (Ls(ς1, ς2),Π) and hence (h, s)
s′

⊧
(Σ1 ∗Ls(ς1,nil),Π).

Abs2. This case follows from a reasoning very similar to the previous case. The only thing to
note is that the reason for having valσ(s, s′, ς2) ≠ valσ(s, s′, ς1) is different. Namely, it is
due to the fact that ς2 =Π ς3 and therefore valσ(s, s′, ς2) = valσ(s, s′, ς3) and since ς1 and
ς3 are allocated in disjoint parts of the heap, we know they can not be corresponding
to the same address and thus valσ(s, s′, ς2) ≠ valσ(s, s′, ς1).
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Theorem 7.3 (Abstraction Overapproximates). Let S ⊆Sσ be a set of symbolic states, then:

γ(S) ⊆ γ(Abs(S))

∎

Proof. Since Abs is a continuous function, we need only to show:

∀st ∈S. γ({st}) ⊆ γ(Abs({st}))

If st = ⊺σ, γ(Abs({st})) =Sκ. Otherwise, if st = (Σ,Π), let’s assume

redA(rpΠ(Σ,Π)) = (Σ′,Π′)

In this case, according to Lemma 7.1 and Lemma 7.2,

γ({(Σ,Π)}) ⊆ γ({(Σ′,Π′)})

Therefore, according to Theorem 5.3, (Σ′,Π′) ⊢ false, only if (Σ,Π) ⊢ false. Hence,

γ({st}) ⊆ γ(Abs({st}))

Finally, the main result of this section, the overapproximation of concrete semantics by
symbolic semantics, is given below.

Theorem 7.4 (Abstract Semantics Overapproximates Concrete Semantics). Let c be any
statement or block of statements. Then,

∀S ⊆Sα. JcKκ(γ(S)) ⊆ γ(JcKα(S))

∎

Proof. This follows using a similar reasoning as in the proof of Theorem 5.9. The only
difference being the proof of the base case, i.e., the case of basic statements, follows from
Lemma 5.7 together with Theorem 7.3.

As an important corollary, we get that whenever the concrete execution of the program,
starting in the empty memory, indicates an error in the program, so does the abstract
execution, starting in the empty memory.

Corollary 7.5. For a statement (program) c,

if ⊺κ ∈ JcKκ(hε, sε) then ⊺σ ∈ JcKα(emp,∅)

where,
hε(a) = � and sε(x) = nil

∎
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8 Termination of Analysis with Abstract Semantics
In order to show termination of fixpoint computation – as fixpoints are used for the com-
putation of semantics of while loops –, we show that the set of abstract states is finite. We
define a notion of reduced-ness and show that a symbolic state is reduced if and only if it
is not changed under abstraction. Then, we show that the set of reduced symbolic states is
finite.

In order to formalize the concept of reduced-ness, we first define paths in symbolic states
and define some properties of symbols in symbolic states.

Definition 8.1 (Paths, Cycles, Length and Reachability). Let (Σ,Π) be a symbolic state,
then, a path in (Σ,Π) is a sequence ς0, ς1, . . . , ςn−1, ςn such that

∀0 ≤ i ≤ n. ςi ∈ Sym

∀1 ≤ i ≤ n. ∃ς ′, ς ′′ ∈ Sym. ςi−1 =Π ς ′ ∧ ςi =Π ς ′′ ∧Σς ′, ς ′′)
A cycle is a path ς0, . . . , ςn if ς0 =Π ςn.

In addition, the length of a path (or cycle) ς0, . . . , ςn, n here, is the syntactical length of a
path (or cycle), i.e., we don’t distinguish ↦ and Ls.

For ς0, ςn ∈ Sym, we say ςn is reachable from ς0 in (Σ,Π), if there is a path ς0, ς1, . . . , ςn−1, ςn
in (Σ,Π). ∎

Definition 8.2 (Shared, Internal, Possibly Dangling and Pointing to Possibly Dangling
Symbols). Let (Σ,Π) be a symbolic state, then,

Shared Symbols: A symbol ς is a shared symbol, if Σ = Σ′ ∗ P1(ς1, ς2) ∗ P2(ς3, ς4) such
that ς =Π ς2 =Π ς4.

Internal Symbols: A symbol ς is an internal node of a cycle in (Σ,Π) if and only if it is
not shared.

Possibly Dangling Symbols: A symbol ς is a possibly dangling symbol if ς ≠Π nil and

∃ς1, ς2 ∈ Sym. Σ = Σ′ ∗ P (ς1, ς2) ∧ ς2 =Π ς

and
/∃ ς3, ς4 ∈ Sym. Σ′ = Σ′′ ∗ P ′(ς3, ς4) ∧ ς3 =Π ς

Pointing to Possibly Dangling Symbols: A symbol ς points to a possibly dangling sym-
bol if Σ = Σ′∗P (ς1, ς2) for some ς1, ς2 ∈ Sym such that ς =Π ς1 and ς2 is a possibly dangling
symbol.

∎

Definition 8.3 (Reduced Symbolic States). Let (Σ,Π) be a symbolic state, then, (Σ,Π) is
reduced if and only if

1. There are no primed variables appearing in Π.

2. Every primed variable appearing in Σ is reachable from some program variable.

3. If a primed variable x′ appears in Σ, then, at least one of the followings hold

(a) x′ is shared
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(b) x′ is the internal node of a cycle of length exactly 2
(c) x′ is pointing to a possibly dangling variable
(d) x′ is possibly dangling

∎

Lemma 8.4. Let (Σ,Π) be a symbolic state such that (Σ,Π) /⊢ false. Then, (Σ,Π) is reduced

if and only if (Σ,Π)
A
/↝. ∎

Proof. We prove ‘if ’ and ‘only if ’ parts as follows:

⇒ . If (Σ,Π) is a reduced, we show that (Σ,Π)
A
/↝. As (Σ,Π) is reduced, there are no

primed variables in Π and thus, rpΠ(Σ,Π) = (Σ,Π). Furthermore, we show that if
any of the spatial abstraction rules is applicable in (Σ,Π), (Σ,Π) is not reduced which
contradicts our assumption.

Garbage1 ∶ If Garbage1 is applicable in (Σ,Π), we should have Σ = Σ′∗P (x′, ς) for some ς ∈ Sym
such that x′ /∈ Vars ′(Σ′,Π). In such a case, x′ is a primed variable not reachable
from any program variable which contradicts condition 2 of Definition 8.3.

Garbage2 ∶ If Garbage2 is applicable in (Σ,Π), we should have Σ = Σ′ ∗ P1(x′, y′) ∗ P2(y′, x′)
for some x′, y′ ∈ Vars ′ such that x′, y′ /∈ Vars ′(Σ′,Π). In such a case, x′ and y′

are primed variables not reachable from any program variable which contradicts
condition 2 of Definition 8.3.

Abs1 ∶ If Abs1 applies in (Σ,Π), we should have Σ = Σ′ ∗P1(ς1, y′)∗P2(y′, ς2) for ς1, y′, ς2 ∈
Sym such that y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2} and ς2 =Π nil .
Since y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2}, y′ is not shared. In addition, y′ can not be on a
cycle since there should be path from ς2 to ς1 which is impossible as ς2 =Π nil and
thus we would have (Σ,Π) ⊢ false which contradicts our assumption.
On the other hand, since ς2 =Π nil , ς2 can not be a dangling symbol and thus y′
can not be pointing to a dangling symbol. Moreover, y′ can not itself be possibly
dangling as it is appearing on the left hand side of P2(y′, ς2).

Abs2 ∶ If Abs2 applies in (Σ,Π), we should have Σ = Σ′ ∗ P1(ς1, y′) ∗ P2(y′, ς2) ∗ P3(ς3, ς4)
for ς1, y′, ς2, ς3, ς4 ∈ Sym such that y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2, ς3, ς4} and ς2 =Π ς3.
Since y′ /∈ Vars ′(Σ,Π) ∪ {ς1, ς2, ς3, ς4} holds, y′ is not shared. Moreover, since ς2 =Π

ς3, ς2 can not be a dangling symbol and thus y′ can not be pointing to a dangling
symbol. On the other hand, y′ can not itself be possibly dangling as it is appearing
on the left hand side of P2(y′, ς2).
In addition, y′ can not be on a cycle of length exactly two. There are three ways
that can result in y′ to be part of a cycle of length two and we show that all three
of these cases are impossible.
1. We have ς2 =Π ς1 which is impossible given (Σ,Π) /⊢ false as ς2 =Π ς3 and ς3 is

allocated in a portion of the heap that is disjoined from the portion where ς1
is allocated.

2. We have Σ′ = Σ′′ ∗ P0(ς5, ς6) for ς6 =Π y′ and ς5 =Π ς2. This is impossible as
ς5 =Π ς5 would result in (Σ,Π) ⊢ false which contradicts our assumption.

3. We have y′ =Π ς4. This is impossible as ς4 =Π y′ would require y′ appearing
in Π which contradicts condition 1 of Definition 8.3 or have ς4 = y′ which
contradicts y′ /∈ Vars ′(Σ′,Π) ∪ {ς1, ς2, ς3, ς4}.
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⇐ . We assume that (Σ,Π)
A
/↝ and show that (Σ,Π) is reduced. First, we observe that since

no spatial abstraction rule changes Π, we have rpΠ(Σ,Π) = (Σ,Π) which means there
are no primed variables in Π. This justifies the first condition of Definition 8.3.
Let x′ be a primed variable in Σ not reachable from any program variable. We show
that at least one of the abstraction rules will apply which contradicts our assumption.
We consider the following cases. In the following, we use left occurrence and right
occurrence for referring to a symbol appearing in the first or second argument of a P
chunk, respectively.

– The primed variable x′ can not be only appearing in the left hand side of a P
chunk. If there is only one such chunk, Garbage1 would be applicable. If there
are more than one such chunks, (Σ,Π) would be inconsistent. Therefore, there
always exists a chunk P (ς, x′) in Σ for some ς ∈ Sym.

– We have x′ is not part of any cycles. Let’s assume that ρ = x′1, . . . , x
′
n, x

′ is a
maximal path ending in x′, i.e., there does not exist y′ such that there is a path
from y′ to x′1. Then, rule Garbage1 would be applicable as x′1 can not be appearing
in any chunk other that the one being part of ρ, otherwise, either consistency of
(Σ,Π) or maximality of ρ is violated.

– We have x′ is part of a cycle ρ. First note that ρ can not have any program
variables or nil as it would contradict x′ not being reachable by any program
variables or consistency of (Σ,Π).
Second, let us note that no symbol can be part of two different cycles in a consis-
tent symbolic state. Therefore, if any of the primed variables y′ of ρ is shared, it
can only be pointed to by some primed variable (as otherwise, it would violate x′
not being reachable by any program variables or consistency of (Σ,Π)). In such a
case, a reasoning like that of the previous case can show that Garbage1 would be
applicable to the beginning of such a path ending in y′.
In addition, note that the length of the cycle must be at least 2. If the cycle is of
length 1, i.e., we have P (x′, x′), if x′ is shared, we know that the beginning of the
path pointing to it has Garbage1 applicable to it. If x′ is not shared, since (Σ,Π)
is consistent, rule Garbage1 would be applicable to P (x′, x′).
Hence, we assume that all primed variables of ρ are not shared and the length of
the cycle is at least 2. As a result, no primed variable y′ in ρ can be appearing in
any chunk except for the chunks P1(x′1, y′) and P2(y′, x′2) such that x′1, y′, x′2 is part
of cycle ρ. Consequently, rule Abs2 would be applicable to P1(x′1, y′)∗P2(y′, x′2) as
x′2 is part of the cycle ρ and is hence equal to some allocated symbol under Π.

Now we consider the cases where Σ = Σ′ ∗ P (x′, ς) for some ς ∈ Sym or there is no such
chunk P (x′, y) in Σ. We consider these two cases respectively as follows:

Case 1: Σ = Σ′ ∗ P (x′, ς). If x′ is shared, the condition 3.a of Definition 8.3 is satisfied. So
in the rest of this case, we assume that x′ is not shared.
If x′ is part of a cycle, as mentioned earlier, the length of such a cycle must be at
least 2. If x′ is on a cycle of length 2, then the the condition 3.b of Definition 8.3
holds. If x′ is on a cycle of length greater than 2, then Abs2 would be applicable
which contradicts our assumption. Thus, in the rest of this case, we assume that
x′ is not part of any cycles.
Since x′ is not part of any cycles, and x′ is reachable from some program variable,
we know that there must be a path x, ς1, . . . , ςn, x′, ς, for some program variable x.

32



If the length of this path is greater than 2, (n ≥ 1), as x′ is assumed not be shared,
the rule Abs2 would be applicable which is contradictory. Therefore, we assume
that Σ = Σ′∗P1(x,x′)∗P2(x′, ς). In such a case, if ς =Π nil , Abs1 would be applicable
which is contradictory. If ς =Π ς2 for some symbol ς2 and ς2 occurs on the left hand
side of a P chunk, Abs2 would be applicable which is again contradictory. Thus, ς
must be a dangling symbol, which implies that x′ is pointing to a dangling symbol
which is the condition 3.c of Definition 8.3.

Case 2: There is no Σ′ such that Σ = Σ′∗P (x′, ς). In this case, x′ only appears as the second
argument of some P chunk. So let’s assume Σ = Σ′∗P (ς1, x′) for some ς1 ∈ Sym. As
x′ does not appear at the left hand side of any P chunk, and there are no primed
variables appearing in Π, nothing equal to it based on Π can be appearing as the
left hand side of a P chunk. Consequently, x′ must be a dangling symbol which
is condition 3.d of Definition 8.3.

Now, in order to show that the set of consistent reduced symbolic states (which we just
proved is the same as the set of abstract symbolic states) is finite, we show that if a con-
sistent symbolic state is reduced, then, there is an upper bound on the number of primed
variables that can be appearing in it.

Lemma 8.5 (Partitioning of Primed Variables). Let (Σ,Π) be a consistent reduced symbolic
state. Then, the set {Xs, (Xc∖Xs), (Xp∖Xs), (Xd∖Xs)} whereXs,Xc,Xp andXd are defined
below, is a partitioning of primed variables appearing in Σ.

• x′ ∈Xs if x′ is shared

• x′ ∈Xc if s′ is the internal node of a cycle of length exactly 2

• x′ ∈Xp if x′ is pointing to a possibly dangling variable

• x′ ∈Xd if x′ is possibly dangling

∎

Proof. Since (Σ,Π) is reduced, we obviously have Vars ′(Σ) = Xs ∪ (Xc ∖Xs) ∪ (Xp ∖Xs) ∪
(Xd ∖Xs). The only thing that remains to be shown is that these sets are pairwise disjoint.

Obviously,
Xs ∩ (Xc ∖Xs) =Xs ∩ (Xp ∖Xs) =Xs ∩ (Xd ∖Xs) = ∅

If any primed variable is part of a cycle, it can neither be dangling nor can it be pointing
to a dangling symbol. Hence,

(Xc ∖Xs) ∩ (Xp ∖Xs) = (Xc ∖Xs) ∩ (Xd ∖Xs) = ∅

On the other hand, if a symbol is dangling, it can not be pointing to any (dangling)
symbol. As a result,

(Xc ∖Xs) ∩ (Xd ∖Xs) = ∅

Lemma 8.6 (Bound on Primed Variables of Consistent Reduced Symbolic States). Let
(Σ,Π) be a reduced symbolic state such that (Σ,Π) /⊢ false, then the number of primed
variables appearing in Σ is bound by 3n + 2, where n is the number of program variables. ∎
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Proof. Let Xs,Xc,Xp and Xd be as defined in Lemma 8.5. Furthermore, let ms,mc,mp and
md be respectively the cardinalities of sets Xs, (Xc ∖Xs), (Xp ∖Xs) and (Xd ∖Xs).

Since, symbols appearing on the left hand sides of Ls and ↦ predicates must be unique
(as (Σ,Π) /⊢ false) and considering that members of md can not appear as the left hand side
of any predicate, we have that

∣Σ∣ ≤ n +ms +mc +mp + 1

where ∣Σ∣ is the number of conjuncts of Σ. The 1 at the end is added for the sake of Junk
predicate. Furthermore, we do not consider emp chunks.

On the other hand, since all primed variables are reachable from some program variable,
they must all be appearing on the right hand side of some Ls or ↦. Particularly members
of ms must appear at least twice (as they are shared). Hence,

2ms +mc +mp +md ≤ ∣Σ∣

Altogether,
2ms +mc +mp +md ≤ n +ms +mc +mp + 1

From which we can draw the conclusion that

ms +md ≤ n + 1 (3)

For the upper bound of mc +mp, we can see that if x′ ∈ mc ∪mp, there must be a chunk
P (ς, x′) in Σ for ς ∈ Sym. In such a case, ς can not be in mc, mp and md. If ς ∈mc, then, ς is a
primed variable and together with x′ form a cycle of length 2 and are both not shared which
means rule Garbage2 should be applicable which, according to Lemma 8.4, is a contradiction
to the fact that (Σ,Π) is reduced. If ς ∈mp, then ς should be pointing to a possibly dangling
symbol but x′ is already allocated (as it is part of a cycle or is pointing to a possibly dangling
symbol) and can not be a possibly dangling symbol. If ς ∈md, then ς must be a possibly dan-
gling symbol which means it can not appear on the left hand side of any Ls or ↦ predicate
which contradicts our initial assumption that P (ς, x′) is a chunk of Σ. Consequently, ς can
only be a shared primed variable or a program variable. Hence,

mc +mp ≤ n +ms

From Equation 3, we get that ms ≤ n + 1 which means:

mc +mp ≤ 2n + 1 (4)

From Equation 3 and Equation 4, we have that

ms +mc +mp +md ≤ 3n + 2 (5)

Which means that a consistent reduced symbolic state can have at most 3n + 2 primed
variables appearing in it.

Theorem 8.7 (Finiteness of Abstract States). Let n be the number of program variables,
then, the number of reduced states is bounded by 2(2n+1)(16n2+20n+7).

Proof. Since there are no primed variables in the pure part of a reduced symbolic state,
there can be at most n + 1 elements in each equivalence class. This means that we can get
a very coarse bound of 22n+1 equivalence relations (pure parts).
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On the other hand, from Lemma 8.6, we have that there can be at most 4n + 2 symbols
(primed and program variables) appearing on the left hand side of a Ls or ↦ predicate
and at most 4n + 3 symbols (primed and program variables together with nil ) appearing
on the right hand side. Therefore, there can be at most 16n2 + 20n + 6 + 1 chunks (one for
Junk predicate) that can possibly appear in spatial part. Therefore, there can be at most
216n2+20n+7 different spatial parts.

This means that in total there can be at most 2(2n+1)(16n2+20n+7) different reduced sym-
bolic states. Hence, Sα is finite.
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