
Verifying TSO programs

Bart Jacobs

Report CW660, May 2014

KU Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)

Verifying TSO programs

Bart Jacobs

Report CW660, May 2014

Department of Computer Science, KU Leuven

Abstract

TSO (Total Store Order) is the memory consistency model imple-
mented by the x86 and x64 architectures. While for data-race-free
programs the stronger SC (Sequential Consistency) memory consis-
tency model can be assumed, some programs escape from the SC
constraints for performance reasons. In this document we propose
an approach for verifying programs under the TSO memory consis-
tency model.

Verifying TSO programs

Bart Jacobs
iMinds-DistriNet, Dept. Comp. Sci., KU Leuven, Belgium

bart.jacobs@cs.kuleuven.be

Abstract

TSO (Total Store Order) is the memory consistency model imple-
mented by the x86 and x64 architectures. While for data-race-free pro-
grams the stronger SC (Sequential Consistency) memory consistency model
can be assumed, some programs escape from the SC constraints for per-
formance reasons. In this document we propose an approach for verifying
programs under the TSO memory consistency model.

1 Introduction

Memory Consistency. In the past, most verification approaches for concur-
rent programs have assumed that memory behaves as if all threads’ memory ac-
cesses are executed in an interleaved fashion directly on a single global memory,
such that there is a total order on all memory accesses and each read operation
on a memory location yields the value of the most recent preceding write op-
eration to that memory location in that total order. This memory consistency
model is known as sequential consistency (SC).

However, real programming platforms (hardware architectures and compiled
or interpreted programming languages) do not offer simple sequential consis-
tency: these platforms’ memory access primitives have weaker memory consis-
tency semantics, in order to allow for important performance optimizations at
the level of the memory hierarchy, the processor, and any compilation steps,
such as caching, pipelining, and common subexpression elimination.

Still, most programming languages guarantee that programs for which all
sequentially consistent executions are data-race-free, in some sense, have only
sequentially consistent executions. Data-race-freedom usually means that all
conflicting memory accesses are ordered by a happens-before relation induced by
program order and by synchronization constructs such as mutual exclusion locks.
As a result, most programmers can indeed safely assume sequential consistency
and use the program verification techniques which assume sequential consistency
and which verify data-race-freedom.

Nonetheless, in some cases it is necessary to consider non-data-race-free code,
in order to avoid the performance overhead of synchronization. For such pro-
grams, reasoning must occur directly in terms of the weaker memory consistency
semantics offered by the platform.

One of the most important programming platforms today is the x86/x64
family of processor architectures. The memory consistency model offered by
these architectures is the x86-TSO (Total Store Order) memory model. In

1

the TSO memory model, each thread has a write buffer. Write operations by
a thread are enqueued at the end of its write buffer; the memory subsystem
decides arbitrarily when to dequeue a write operation from the front of a thread’s
write buffer and apply it to main memory. Main memory itself is sequentially
consistent. Read operations by a thread are satisfied from the thread’s write
buffer, if possible, or else from main memory.

The Approach. In this document, we propose a verification approach for
programs that use memory accesses with TSO semantics. To motivate and il-
lustrate the approach, we will use the running example of a Java virtual machine
implementation for a TSO platform. Such an implementation must implement
Java field accesses efficiently. Assume it implements them as plain TSO read
and write operations. A challenge is the issue of object initialization: threads
may allocate Java objects concurrently, and leak references to those objects into
shared fields without any synchronization. A thread that accesses an object ex-
pects the object to contain a valid pointer to a virtual method dispatch table
(vtable), even if the object was obtained through a race. On a TSO platform,
this is easy to achieve by making sure that an object’s vtable pointer is initial-
ized before references to the object are stored into fields of existing objects in
the heap. The FIFO nature of the write buffers then ensures that if a thread
sees an object reference, it also sees the properly initialized vtable pointer.

Notice that this program is not data-race-free, and therefore program ver-
ification approaches that verify data-race-freedom are not applicable. Instead,
we propose an extension of separation logic with TSO spaces. TSO spaces are
similar to the shared resources of Concurrent Separation Logic (CSL), except
that memory owned by a TSO space may be accessed through TSO operations
(memory accesses with TSO semantics) rather than classical critical sections.
Also, where CSL associates a resource invariant with each resource, we associate
an abstract state space with each TSO space, as well as an abstraction predi-
cate that associates each abstract state with a corresponding separation logic
assertion. The abstract state space is equipped with an abstract reachability
pre-order �.

Knowledge about the state of a TSO space in the proof of a thread is rep-
resented as an abstract state, representing the thread’s view of the state of the
TSO space. A thread’s view is a lower bound (under the abstract reachability
pre-order) on the actual state of the TSO space.

Each TSO write operation is associated with an abstract state transition
function, mapping an abstract pre-state to an abstract post-state. These ab-
stract state transition functions must respect the abstract reachability relation
and properly abstract the concrete behavior of the TSO operation. Also, cru-
cially, to account for TSO’s relaxed behavior, the abstract state transition func-
tions must be monotonic: they must respect reachability and be sound with
respect to concrete behavior not only in the current abstract state, but also
in all reachable future abstract states. In a thread’s proof, when the thread
performs a TSO write operation, its local view of the TSO space is updated per
the abstract state transition function.

Each TSO read operation is associated with a function f mapping result
values to new abstract states. This function must satisfy the property that for
any result value v, and for any future abstract state α′, if the target location

2

may have value v in this abstract state, then f(v) � α′. In a thread’s proof,
when the thread performs a TSO read operation, its local view of the TSO space
is replaced with the (hopefully more precise) lower bound given by function f .

Verifying the Example. For example, to verify the Java virtual machine
implementation using the proposed logic, we put the heap in a TSO space. As
the abstract state space, we adopt the powerset of addresses in this heap, each
abstract state representing the set of the addresses of the currently allocated
and initialized objects. The subset relation serves as the reachability order.
The abstraction predicate states 1) that allocated objects occupy disjoint heap
space, 2) that they properly point to an existing virtual method dispatch table,
and 3) that their fields point to allocated objects. Each thread is aware of the
addresses of objects it allocated itself, as well as addresses read from fields of
known objects. That is, reading a field updates the thread’s view by inserting
the newly discovered object address into the abstract state. After a thread
allocates an object and initializes its run-time type information, it performs a
no-op operation on the TSO space to update its local view of the set of allocated
objects, inserting the newly allocated object into the abstract state. Writing
the value of a local variable to a field corresponds to the identity function at
the abstract level, since all object references a thread holds in local variables
are already in the thread’s local view.

The remainder of this document is structured as follows. In Section 2, we
present the basic idea of the approach in the context of a simplified program-
ming language without pointers. In Sec 3, we extend the programming language
with locked instructions. In Sections 5 and 6 we integrate our approach into
separation logic. In Section 7 we report on a preliminary encoding of the ap-
proach into the logic of the VeriFast program verifier. We offer a conclusion in
Section 8.

2 The Basic Idea

2.1 Program Syntax

We consider a simple programming language with threads and shared global
variables g ∈ G. There are no local variables.

Heaps = G→ Z
δ ∈ ∆ = Heaps → Heaps

c ∈ Cmds ::= δ; c | c(g) | done | fail
prog ::= c || · · · || c

The heaps h ∈ Heaps are the maps from variable names to values. A com-
mand is either an update δ (a function from heaps to heaps) followed by another
command; or a read operation c(g) consisting of the variable g to be read, and
a function c(·) from values to commands; or the operation done indicating the
end of the thread; or the operation fail indicating a failure. A program is a
parallel composition of commands.

We consider generic updates instead of writes of individual variables, to allow
for the instrumentation of writes with ghost updates.

3

2.2 Small-Step Semantics

The semantics of the programming language is defined as a small-step relation
between machine configurations γ ∈ Configs. A machine configuration consists
of a heap and a multiset of thread configurations θ ∈ ThreadConfigs. (A multiset
over elements of a set X can be modeled as a function that maps each x ∈ X to
the number of times it occurs in the multiset.) A thread configuration consists
of a write buffer (a sequence of updates) and a command.

Buffers = ∆∗

θ ∈ ThreadConfigs = Buffers × Cmds
γ ∈ Configs = Heaps × (ThreadConfigs →fin N)

 ⊆ Configs × Configs

There are only three kinds of steps: an Enqueue step enqueues an update;
a Read step reduces a read operation; and a Dequeue step applies an update
to the heap.

Enqueue

(h, {[(δ, δ; c)]}]Θ) (h, {[(δ · δ, c)]}]Θ)

Read

(h, {[(δ, c(g))]}]Θ) (h, {[(δ, c(δ(h)(g)))]}]Θ)

Dequeue

(h, {[(δ · δ, c)]}]Θ) (δ(h), {[(δ, c)]}]Θ)

Definition 1 (Failing Configuration). We say a machine configuration γ is
failing, denoted γ ∈ Fail , if there exists h, δ,Θ such that γ = (h, {[(δ, fail)]}]Θ).

Definition 2 (Program Safety). A program c1 || · · · || cn is safe when started
from an initial heap h0 if ∀γ′. (h, {[(ε, c1)]}] · · ·] {[(ε, cn)]}) ∗ γ′ ⇒ γ′ /∈ Fail .

2.3 Proof System

We assume a set A ⊆ 2Heap of heap predicates, the abstract state space, to
be chosen by the proof developer. We use α to range over A. We assume an
abstract reachability pre-order � on A.

We assume a partitioning of the variables g ∈ G into the shared variables Gs

and the owned variables of thread i Gi, for each i. We assume that only thread
i updates the variables owned by thread i; however, reading is not restricted.
A heap predicate L ⊆ Heaps is local to thread i if it can be invalidated only by
updates to variables owned by thread i: Local i = {L | ∀h, h′. h ∈ L ∧ h|Gi

=
h′|Gi

⇒ h′ ∈ L}.
We define a validity condition on commands, validi(α,L, c), where α ∈ A is

thread i’s local view of the heap (including the shared variables), L ∈ Local i is
information about thread i’s owned variables, and c ∈ Cmds is the command
being executed by the thread.

4

validi(α,L, δ; c) =
∃f ∈ A→ A,L′ ∈ Local i.

(∀α′ � α. f(α′) � α′) ∧
(∀α′ � α, α′′ � α′. f(α′′) � f(α′)) ∧
(∀α′ � α, h ∈ α′ ∩ L. δ(h) ∈ f(α′) ∩ L′) ∧
validi(f(α), L′, c)

validi(α,L, c(g)) =
∀v. ∃α′.

(∀α′′ � α, h ∈ α′′ ∩ L. h(g) = v ⇒ α′′ � α′) ∧
validi(α

′, L, c(v))
validi(α,L,done) = True
validi(α,L, fail) = ∀α′ � α, h ∈ α′ ∩ L. False

An update is valid if there exists an abstract version f of the update and
a local postcondition L′ such that in all abstract states α′ reachable from the
thread’s view α, f respects abstract reachability (first conjunct), f is mono-
tonic (second conjunct), and f soundly abstracts the update (third conjunct)
given the local precondition L and the local postcondition L′. Furthermore,
the continuation must be valid under the post-abstract state f(α) and the local
postcondition L′.

As will become clear from the soundness proof, the monotonicity requirement
ensures that the current thread’s proof outline remains valid when updates of
other threads are dequeued while the current thread’s write buffer is nonempty.

A read operation is valid if for each possible result of the read operation, there
exists a new view α′ such that all abstract states α′′ reachable from the current
view where the result is possible (given local information L) are reachable from
α′, and furthermore the continuation is valid under this updated view α′.

A done operation is always valid. A fail operation is valid provided no
abstract state reachable from the current view is feasible.

Definition 3 (Program Validity). We say a program c1 || · · · || cn, started from
initial heap h0, is valid if there exists an initial abstract state α ∈ A and local
preconditions Li ∈ Local i such that h ∈ α ∩ L1 ∩ · · · ∩ Ln and validi(α,Li, ci),
for all i.

2.4 Soundness

The target soundness property is that valid programs are safe. In the remainder
of this subsection, we sketch a proof of this property.

We define validity of a thread configuration valid tcfgi(α,L, θ) as follows:

valid tcfgi(α,L, (δ1 · · · δn, c)) = validi(α,L, δ1; · · · ; δn; c)

We define validity of a machine configuration valid cfg(γ) as follows:

valid cfg((h, {[θ1, . . . , θn]})) =
∃α,L1, . . . , Ln. h ∈ α ∩ L1 ∩ · · · ∩ Ln ∧ ∀i. valid tcfgi(α,Li, θi)

where Li ∈ Local i.

Lemma 1. If validi(α,L, c) and α′ � α then validi(α
′, L, c).

5

Proof. By induction on c.

Lemma 2. If valid cfg(γ) and γ γ′, then valid cfg(γ′).

Proof. By case analysis on the step rule.

• Case Enqueue. Trivial.

• Case Read. Assume γ = (h, {[(δ1 · · · · · δm, c(g))]}]Θ) and h′(g) = v with
h′ = (δm ◦ · · · ◦ δ1)(h)(g) = v and γ′ = (h, {[(δ1 · · · · · δm, c(v))]}] Θ). By
the first premise, there exists an α and an L0

i such that h ∈ α ∩ L0
i and

validi(α,L
0
i , δ1; . . . ; δm; c(g)). By definition of validi, there exist fj and Lji ,

for j ∈ {1, . . . ,m}, such that validi(α
′′, Lji , c(g)) with α′′ = (fm ◦ · · · ◦

f1)(α). Note that α′′ � α (by the first conjunct of validity of updates)
and h′ ∈ α′′ (by the third conjunct of validity of updates) and h′′(g) =
v. Therefore, by validity of reads, there exists an α′ � α′′ such that
validi(α

′, Lmi , c(v)), and thus, by Lemma 1, validi(α
′′, Lmi , c(v)).

• Case Dequeue. We need to prove three things: that the new heap
satisfies the new abstract state and all local preconditions; that the new
configuration of the thread whose write was dequeued is valid; and that all
other threads’ configurations remain valid. First of all: we know h ∈ α∩Li
and therefore δ(h) ∈ f(α)∩L′i. It follows directly that the new configura-
tion of the active thread is valid. The other threads’ local preconditions
are preserved, by their locality. The other threads’ configurations remain
valid by Lemma 1.

Lemma 3. If valid cfg(γ) then γ /∈ Fail .

Proof. Assume h ∈ α ∩ L1 ∩ · · · ∩ Ln ∧ ∀i. valid tcfgi(α,Li, θi). Assume θi =
(δ, fail) for some i. Then by valid tcfgi(α,Li, θi) we have ∀α′ � α, h ∈ α′ ∩
Li. False. By taking α′ = α we obtain a contradiction.

2.5 Examples

Virtual Machine. We encode a simplified version of the virtual machine
example into our formal programming language.

Firstly, we encode addressable memory into the language by choosing an
indexed set of variables: let G = {m0, . . . ,m9999}.

We consider “objects” consisting just of a single field; we do not consider
vtable pointers in this example. Each field of each allocated object must point
to an allocated object. In the initial heap, there is a single object at address
0, and its field points to itself. All other memory locations hold the value -1,
which is not an address: h0 = {m0 7→ 0,m1...9999 7→ −1}.

The program consists of two threads. The first thread initializes an object at
location 1, by storing a reference to itself into its field, and then publishes this
object by storing a reference to the object into the field of the initially allocated
object at location 0. The second thread reads the field of the initial object and
asserts that the value is an address. It then reads the field of the object at this
address and asserts that the resulting value is again an address.

6

c1 = 〈m1 := 1〉; 〈m0 := 1〉; done
c2 = `← m0; assert(0 ≤ ` ≤ 9999); `′ ← m`; assert(0 ≤ `′ ≤ 9999); done

Notice that this program relies on the FIFO nature of the write buffers in
the TSO memory model.

We can verify this program in the approach of this section as follows. As
the abstract state space, we take the predicates αΛ where Λ is a set of integers,
and αΛ is satisfied by a heap h if each value in Λ is an address that is mapped
by h to a value in Λ:

A = {αΛ | αΛ = αΛ = {h | ∀` ∈ Λ. ` ∈ Addresses ∧ h(m`) ∈ Λ}}

where Addresses = {0, . . . , 9999}.
Abstract reachability corresponds to the subset relation on the indices: αΛ �

αΛ′ ⇔ Λ ⊆ Λ′.
In this proof, we do not use the local predicates. That is, we take L = Heaps

for all local preconditions and postconditions L.
Our initial abstract state is α{0}.
The proof outline for c1 is as follows:1

α{0}
〈m1 := 1〉; f(αΛ) = αΛ∪{1}
α{0,1}
〈m0 := 1〉; f(αΛ) = αΛ

α{0,1}
done

That is, the first update is associated with a function that adds the value 1 to
Λ. The second update is associated with the identity function. It’s easy to see
that this proof outline is valid.

The proof outline for c2 is as follows. (Notice that Λ * Addresses ⇒ αΛ = ∅;
i.e., if an abstract state’s index contains values that are not addresses, the
abstract state is infeasible.)

α{0}
`← m0; α′ = α{0,`}
α{0,`}
assert(0 ≤ ` ≤ 9999);
α{0,`}
`′ ← m`; α′ = α{0,`,`′}
α{0,`,`′}
assert(0 ≤ `′ ≤ 9999);
α{0,`,`′}
done

1In these proof outlines, we specify the abstract state before and after each program com-
mand; furthermore, we annotate each update with abstract version (the f function), and each
read operation with its new abstract state α′ (which may depend on the result of the read
operation).

7

Producer-Consumer. For this example, consider two threads that commu-
nicate via a single shared variable b. This variable (the buffer) is either empty,
if its value is 0, or full otherwise. The producer thread puts the integers from
k down to 1 into the buffer. Putting a value into the buffer means writing it
into the buffer and then waiting for the buffer to become empty. The consumer
thread repeatedly takes a value from the buffer and asserts that it is the next
lower integer. Taking a value from the buffer means reading the buffer until a
nonzero value is read, and then writing zero.

prod0 = done
prodk+1 = 〈b := k + 1〉; v ← b; if v = 0 then prodk else done
cons0 = done
consk+1 = v ← b; if v = 0 then done else (assert v = k + 1; 〈b := 0〉; consk)

Our verification goal is to prove that ∀k. prodk || consk is safe when started
in heap {b 7→ 0}.

We introduce two ghost variables: p and c, both initially equal to k + 1. p
is owned by the producer, and c is owned by the consumer.

We instrument the program with ghost updates:

prod′0 = done
prod′k+1 = 〈b := k + 1; p := k + 1〉; v ← b; if v = 0 then prod′k else done
cons′0 = done
cons′k+1 =
v ← b;
if v = 0 then done else (assert v = k + 1; 〈b := 0; c := k + 1〉; cons′k)

For the proof, we define the abstract state space as A = {αp,c | αp,c = {{p 7→
p, c 7→ c, b 7→ b | p = c ∧ b = 0 ∨ p = c − 1 ∧ b = p}}}. That is, each abstract
state αp,c is either a singleton (if p ≤ c ≤ p+ 1) or the empty set (otherwise).

We define the abstract reachability relation αp,c � αp′,c′ as p > p′ ∨ p =
p′ ∧ c ≥ c′.

The initial abstract state is αk+1,k+1.
We use the local predicates Pk = {h | h(p) = k} and Ck = {h | h(c) = h}.
We prove by induction on k that valid1(αk+1,k+1, Pk+1, prodk). Case k = 0

is trivial. Assume k > 0.

αk+1,k+1, Pk+1

〈b := k; p := k〉; f(αp,c) = αp−1,c

αk,k+1, Pk
v ← b; α′ = (v = 0 ? αk,k : αk,k+1)
v = 0 ? αk,k, Pk : αk,k+1, Pk
if v = 0 then prod′k−1 else done

We prove by induction on k that valid2(αk+1,k+1, Ck+1, consk). Case k = 0

8

is trivial. Assume k > 0.

αk+1,k+1, Ck+1

v ← b; α′ = (v = 0 ? αk+1,k+1 : αk,k+1)
v = 0 ? αk+1,k+1, Ck+1 : αv,v+1, Ck+1

if v = 0 then done else (
αv,v+1, Ck+1

assert v = k;
αk,k+1, Ck+1

〈b := 0; c := k〉; f(αp,c) = αp,c−1

αk,k, Ck
cons′k−1

)

3 Locked Instructions

The x86 architecture supports locked instructions, i.e. machine instructions
prefixed by the LOCK prefix. The semantics of the LOCK prefix is that during ex-
ecution of the prefixed instruction, main memory is locked, so no other threads’
write operations are dequeued from their write buffers; furthermore, after the
instruction is finished but before the lock is released, the current thread’s write
buffer is flushed.

We extend our programming language with locked operations:

c ::= · · · | locked δ; c(heap)

A locked operation consists of an update δ and a continuation c parameter-
ized by a heap (i.e. a function from heaps to commands).

We extend the program semantics with a single step rule:

Locked

(h, {[(ε, locked δ; c(heap))]}]Θ) (δ(h), {[(ε, c(h))]}]Θ)

We define validity of a locked operation:

validi(α,L, locked δ; c(heap)) =
∀α′ � α, h ∈ α′ ∩ L. ∃α′′ � α′, L′ ∈ Local i.
δ(h) ∈ α′′ ∩ L′ ∧ validi(α

′′, L′, c(h))

We extend the soundness proof.

Theorem 1. The extended system is sound.

Proof. Lemma 1 is preserved trivially. For Lemma 2, the proof is analogous to
case Dequeue.

Example: Mutex. Consider a program that protects a shared resource using
a mutual exclusion lock implemented using a Compare-And-Set (CAS) instruc-
tion. The mutex is implemented as a shared variable m whose value is zero when
the mutex is not held, and one when the mutex is held. The shared resource is
a shared variable r whose value should always be 0 except during an operation
on the resource.

9

Each thread attempts to acquire the resource by performing a CAS instruc-
tion on m, attempting to set it from 0 to 1. If successful, it asserts that r equals
0, then sets it to 1, then resets it to 0, and finally releases the mutex by setting
m to 0.

The command executed by each thread is as follows:

threadi =
h← locked 〈if m = 0 then m := 1〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1〉; 〈r := 0〉;
〈m := 0〉

The initial heap h0 is {m 7→ 0, r 7→ 0}.
We introduce one shared ghost variable u0, and one ghost variable ui for

each thread i, owned by thread i, with i > 0. Initially u0 has value 1 and all
other ui have value 0.

We instrument the program with ghost updates as follows:

thread′i =
h← locked 〈if m = 0 then (m := 1; ui, u0 := u0, 0)〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1; ui++〉; 〈r := 0; ui++〉;
〈m := 0; u0, ui := ui, 0〉

We take as the abstract state space the set A = {αu,r | αu,r = {h | h(r) =
r∧∃i. (i 6= 0∧h(m) = 1∨ i = 0∧ r = 0∧h(m) = 0)∧∀j. j = i∧h(uj) = u∨ j 6=
i ∧ h(uj) = 0}}. In each abstract state, the current update count u is stored
either in u0, indicating that the mutex is not held by any thread, or in ui with
i > 0, indicating that the mutex is held by thread i.

We define the abstract reachability relation αu,r � αu′,r′ as u < u′∨ (u, r) =
(u′, r′).

We define local predicates Li,u = {h | h(ui) = u} and L> = Heaps.
The initial abstract state is α1,0.
Proof outline:

α1,0, L>
h← locked 〈if m = 0 then (m := 1; ui, u0 := u0, 0)〉;
h(m) = 0 ? αh(u0),0, Li,h(u0) : α1,0

assume h(m) = 0;
αh(u0),0, Li,h(u0)

r ← r; α′ = (r = 0 ? αh(u0),0 : αh(u0)+1,r)
assert r = 0;
αh(u0),0, Li,h(u0)

〈r := 1; ui++〉; f(αu,r) = αu+1,1

αh(u0)+1,1, Li,h(u0)+1

〈r := 0; ui++〉; f(αu,r) = αu+1,0

αh(u0)+2,0, Li,h(u0)+2

〈m := 0; u0, ui := ui, 0〉 f(αu,r) = αu,r
αh(u0)+2,0, L>

10

4 Marriage of TSO and Separation Logic

In the next two sections, we will marry our approach with ownership and the
assertion logic of separation logic on the one hand, and with the Hoare logic-style
proofs approach on the other hand.

5 Marriage of TSO, Ownership, and Separation
Assertions

In the preceding sections, we assumed a static partitioning of the set of vari-
ables into shared variables and variables owned by particular threads. In this
section, we adopt a more dynamic approach by considering fractional heaps.
The fractional heaps H ∈ FracHeaps are defined as follows:

FracHeaps = G ⇀ Z× (0, 1]

For H,H1, H2 ∈ FracHeaps, we say H = H1 •H2 iff

∀g, v. H(g, v) = H1(g, v) +H2(g, v)

where

H(g, v) =

{
π if H(g) = (v, π)
0 if 6 ∃π. H(g) = (v, π)

We reinterpret updates of the programming language as follows:

δ(H) = H ′ ⇔ ∀H0, h. H •H0 = h⇒ δ(h) = H ′ •H0

We now pick both the abstract states and the local predicates from the
powerset of fractional heaps: A ⊆ 2FracHeaps , Li ⊆ FracHeaps.

Validity of commands is updated as follows:

valid(α,L, δ; c) =
∃f ∈ A→ A,L′ ⊆ FracHeaps.

(∀α′ � α. f(α′) � α′) ∧
(∀α′ � α, α′′ � α′. f(α′′) � f(α′)) ∧
(∀α′ � α,H ∈ α′ • L. δ(H) ∈ f(α′) • L′) ∧
valid(f(α), L′, c)

valid(α,L, c(g)) =
(∀v,H ∈ L. g ∈ dom(H) ∧ (H(g) = (v,)⇒ valid(α,L, c(v)))) ∨
∀v. ∃α′.
∀α′′ � α,H ∈ α′′ • L. g ∈ dom(H) ∧ (H(g) = (v,)⇒ α′′ � α′) ∧
valid(α′, L, c(v))

valid(α,L,done) = True
valid(α,L, fail) = ∀α′ � α, h ∈ α′ • L. False
valid(α,L, locked δ; c(heap)) =
∀α′ � α,H ∈ α′ • L. ∃α′′ � α′, L′.
δ(H) ∈ α′′ • L′ ∧ ∀H0, h. h = H •H0 ⇒ valid(α′′, L′, c(h))

Notice that mostly we simply replaced occurrences of α ∩ L by α • L to reflect
the fact that α and L are now predicates over fractional heaps. We also added

11

an alternative clause for validity of read operations, allowing for slightly simpler
proofs in the case where certain result values can be excluded based on local
knowledge and no refinement of the abstract state is required.

Validity of a configuration is now defined as:

valid cfg((h, {[θ1, . . . , θn]})) =
∃α,L1, . . . , Ln, h ∈ α • L1 • · · · • Ln. ∀i. valid(α,Li, θi)

where P •Q = {H | ∃H1 ∈ P,H2 ∈ Q. H = H1 •H2}.
Theorem 2. This approach is sound.

Proof. Monotonicity is preserved. Preservation of configuration validity under
the step relation is entirely analogous; the only difference now is that, when an
update of thread i is dequeued, preservation of Lj for j 6= i is argued based on
the fact that δ(H) is well-defined and therefore δ(H • HL) = δ(H) • HL. The
case where the step is a read operation and the new clause for validity of read
operations is used, is discharged easily.

Example. Exploiting separation logic, we can simplify the proof of the mutex
example of the preceding section.

We recall that the command executed by each thread is as follows:

threadi =
h← locked 〈if m = 0 then m := 1〉;
assume h(m) = 0;
r ← r; assert r = 0;
〈r := 1〉; 〈r := 0〉;
〈m := 0〉

For this version of the proof, we do not need to introduce any ghost variables.
Indeed, in this version the permissions play the corresponding role.

The abstract state space is a singleton: A = {α}; α = {H | H � m 7→ 0∗ r 7→
0 ∨m 7→ 1}.

For the local predicates, we use separation logic assertions.
Proof outline:

α, emp
h← locked 〈if m = 0 then m := 1〉;
h(m) = 0 ? α, r 7→ 0 : α, emp
assume h(m) = 0;
α, r 7→ 0
r ← r;
α, r 7→ 0 ∧ r = 0
assert r = 0;
α, r 7→ 0
〈r := 1〉; f(α) = α
α, r 7→ 1
〈r := 0〉; f(α) = α
α, r 7→ 0
〈m := 0〉 f(α) = α
α, emp

12

6 A Hoare Logic for TSO

In this section we adopt a more realistic programming language, and we define
a Hoare logic for it, based on separation logic.

6.1 Syntax and Semantics of Programs

The syntax of the programming language is as follows:

e ::= x | z | e+ e | e− e
b ::= e = e | e < e | ¬b
u ::= x := [e] | [e] := e′ | if b then u else u | u;u
c ::= x := e | c; c | if b then c else c | while b do c

| x := [e] | 〈u〉 | locked u | fork c | fail

The semantics of updates u is as follows:

(h, s, x := [e]) ⇓ (h, s[x := h(s(e))]) (h, s, [e] := e′) ⇓ (h[s(e) := s(e′)], s)

s(b) (h, s, u) ⇓ (h′, s′)

(h, s, if b then u else u′) ⇓ (h′, s′)

¬s(b) (h, s, u′) ⇓ (h′, s′)

(h, s, if b then u else u′) ⇓ (h′, s′)

(h, s, u) ⇓ (h′, s′) (h′, s′, u′) ⇓ (h′′, s′′)

(h, s, u;u′) ⇓ (h′′, s′′)

We define JuK(s)(h) = h′ ⇔ ∃s′. (h, s, u) ⇓ (h′, s′).
The small-step relation on machine configurations is defined in Figure 1.

6.2 Proof System

In this logic, we support multiple TSO regions, and we allow abstract states to
talk about TSO regions. Let A be a set of abstract state space names. For each
A ∈ A, let St(A) be a set of abstract state names, with an abstract reachability
order �A defined on it.

Let R be a set of TSO region names. An abstract superstate α̃ ∈ Ã is a
finite partial function from R to

⋃
A∈A St(A). It specifies the set of allocated

TSO region names, and their current abstract state. We define α̃ � α̃′ as
∀(r, α) ∈ α̃. ∃α′ � α. (r, α′) ∈ α̃′. Let satA be a function from St(A) to semantic
assertions, i.e. sets of pairs of fractional heaps and abstract superstates. We
require that all semantic assertions X be upward-closed : (H, α̃) ∈ X ∧ α̃′ �
α̃⇒ (H, α̃′) ∈ X.

The syntax of assertions P is separation logic with fractional permissions,
plus the tsoAr (α) assertion which states that the TSO region r has been allocated
with abstract state space A and its abstract state is at least α. tso assertions
may appear only in positive positions. Assertion expressions E are like program
expressions e, except that they may mention logical variables X.

E ::= z | x | X | E + E | E − E
P ::= E = E | E < E | E π7→ E | ∃X. P | P ⇒ P | P ∗ P | emp | tsoAr (α)

13

Assign

(h, (δ, s, x := e;κ) ·Θ) (h, (δ, s[x := s(e)], κ) ·Θ)

Seq

(h, (δ, s, (c; c′);κ) ·Θ) (h, (δ, s, c; c′;κ) ·Θ)

IfTrue
s(b)

(h, (δ, s, if b then c else c′;κ) ·Θ) (h, (δ, s, c;κ) ·Θ)

IfFalse
¬s(b)

(h, (δ, s, if b then c else c′;κ) ·Θ) (h, (δ, s, c′;κ) ·Θ)

WhileTrue
s(b)

(h, (δ, s,while b do c;κ) ·Θ) (h, (δ, s, c; while b do c;κ) ·Θ)

WhileFalse
¬s(b)

(h, (δ, s,while b do c;κ) ·Θ) (h, (δ, s, κ) ·Θ)

Read

(h, (δ, s, x := [e];κ) ·Θ) (h, (δ, s[x := δ(h)(s(e))], κ) ·Θ)

Enqueue

(h, (δ, s, 〈u〉;κ) ·Θ) (h, (δ · JuK(s), s, κ) ·Θ)

Locked
(h, s, u) ⇓ (h′, s′)

(h, (ε, s, locked u;κ) ·Θ) (h′, (ε, s′, κ) ·Θ)

Fork

(h, (ε, s, fork c;κ) ·Θ) (h, (ε, s, κ) · (ε, s, c; done) ·Θ)

Dequeue

(h, (δ · δ, s, κ) ·Θ) (δ(h), (δ, s, κ) ·Θ)

Figure 1: Operational semantics of the realistic programming language

14

The proof rules are the standard rules of separation logic (where heap mu-
tation is encoded as a simple update 〈[e] := e′〉), except that we add some rules
and we remove some rules.

We add the following additional rules for updates and reads; these are useful
for the case where insufficient permission is available locally, so a TSO space
must be accessed.

Update
∀α′ � α. f(α) � α ∀α′ � α, α′′ � α′. f(α′′) � f(α′)

∀α′ � α,H, α̃, s. H, α̃ ∈ L(s) • satA(α′)⇒ u(H, s), α̃ ∈ L′(s) • satA(f(α′))

{L ∧ tsoAr (α)} 〈u〉 {L′ ∧ tsoAr (f(α))}

Read
∀α′′ � α, s,H, α̃. H, α̃ ∈ L(s) • satA(α′′)⇒ s(e) ∈ dom(H) ∧ ∀v. H(s(e)) = (v,)⇒ α′′ � α′(v)

{L ∧ x = v0 ∧ tsoAr (α)} x := [e] {L[v0/x] ∧ tsoAr (α′(x))}

We remove the disjunction rule and, correspondingly, the rule for existential
quantification. However, we include restricted versions of these rules that allow
case splitting on the value of a local variable.

6.3 Unsoundness of the disjunction rule

Including these rules would be unsound, since they would allow associating dif-
ferent abstract operations and different local postconditions with an update
and different lower bounds with a read operation depending on the value of
a ghost variable. That would allow one to prove that the program 〈[30] :=
2〉; fork (〈[10] := 1〉; r1 := [20]; 〈[30] := r1〉); 〈[20] := 1〉; r2 := [10]; r3 :=
[30]; assert ¬(r3 = 0 ∧ r2 = 0) (an encoding of the classic ((x := 1; r1 :=
y) || (y := 1; r2 := x)); assert ¬(r1 = 0 ∧ r2 = 0) program) is safe, which is
false. Indeed, introduce a ghost variable [40] owned by the forked thread that
records the value of [20] at the time of the update of [10], and a ghost variable
[50] owned by the main thread that records the value of [10] at the time of the
update of [20], both initially 2. We have two abstract states: a state α1 that
states the invariant ([40] 6= 2 ⇒ [10] = 1) ∧ ([50] 6= 2 ⇒ [20] = 1) ∧ ¬([40] =
0 ∧ [50] = 0) ∧ ([30] = 0 ⇒ [40] = 0), and a state α2 that is absurd, with
α1 � α2. For the read of [20], we pick the lower bound α2 if [40] = 1 and the
result of the read operation is 0, and α1 otherwise. Therefore, after the read
operation we have that r1 = 0 ⇒ [40] = 0, which allows us to prove that the
update of [30] preserves the invariant. Similarly, in the main thread, for the
read of [10], we pick the lower bound α2 if [50] = 1 and the result of the read
operation is 0, and α1 otherwise. Therefore, after the read operation we have
that r2 = 0 ⇒ [50] = 0. Finally, for the read of [30], we pick the lower bound
α2 if r2 = 0 and the result of the read operation is 0, and α1 otherwise.

This shows that it is unsound to allow the lower bound of a read operation
to depend on ghost variables. Similarly, it is unsound to allow the abstract
update or the local postcondition of an update to depend on ghost variables.
To show this, introduce the additional abstract states α3 = (α1 ∧ [40] = 0) and
α4 = (α1 ∧ [50] = 0), with α1 � α3 � α2 and α1 � α4 � α2. The abstract
update for the update of [10] and [20] remains the identity function. However,
after the update of [10], insert a no-op update that updates the abstract state
to α3 if [40] = 0 and α1 otherwise. For the read of [20], pick lower bound α3

15

for result 0, and α1 otherwise. Similarly, after the update of [20], insert a no-op
update that updates the abstract state to α4 if [50] = 0 and α1 otherwise. For
the read of [10], pick lower bound α4 if the result is zero, and α1 otherwise. For
the write of [30], the case of [40] = 1∧ r1 = 0 is contradictory and therefore can
be ignored. For the read of [30], pick lower bound α2 if r2 = 0∧ r3 = 0, and α1

otherwise.
The restricted rules that allow case splitting on a local variable do not suffer

from this issue since local variables do not depend on ghost variables. (To
understand this, note that the only way for information to flow from the heap
to the store is through read operations, and read operations read only real
variables.)

6.4 Soundness

First, an auxiliary definition: a fractional heap H and abstract superstate α̃′

satisfy an abstract superstate α̃ if they satisfy the separating conjunction of the
abstract states of the allocated regions.

H, α̃′ ∈ α̃⇔ H, α̃′ ∈ Πr∈dom(α̃). sat(α̃(r))

We prove soundness via the intermediary of a notion of validity of a machine
configuration, defined analogously to Sec 5 as follows:

valid cfg((h,Θ1..n))⇔ ∃α̃, L1..n. (h, α̃) ∈ α̃ •ΠiLi ∧ valid tcfg(α̃, Li,Θi)

valid tcfg(α̃, L, δ · δ, s, κ) =

∃f : Ã→ Ã, L′.
(∀α̃′ � α̃. f(α̃′) � α̃′) ∧
(∀α̃′ � α̃, α̃′′ � α̃′. f(α̃′′) � f(α̃′)) ∧
(∀α̃′ � α̃,H. (H, α̃′) ∈ α̃′ • L⇒ (δ(H), f(α̃′)) ∈ f(α̃′) • L′) ∧
valid updates(f(α̃), L′, δ, s, κ)

valid tcfg(α̃, L, ε, s, 〈u〉;κ) = valid tcfg(α̃, L, JuK(s), s, κ)
valid tcfg(α̃, L, ε, s, x := [e];κ) =
∀v.

(∀α̃′′ � α̃,H. (α̃′′, H) ∈ α̃′′ • L⇒
s(e) ∈ dom(H) ∧ (H(s(e)) = (v,)⇒ valid tcfg(α̃, L, ε, s[x := v], κ))) ∨
∃α̃′.

(∀α̃′′ � α̃,H. (H, α̃′′) ∈ α̃′′ • L⇒ s(e) ∈ dom(H) ∧ (H(s(e)) = (v,)⇒ α̃′′ � α̃′)) ∧
valid tcfg(α̃′, L, ε, s[x := v], κ)

This notion of validity is sound. The proofs are analogous to those of Sec-
tion 5.

Lemma 4. If γ γ′ and valid cfg(γ) then valid cfg(γ′).

Lemma 5. If valid cfg(γ) then γ 6 ∗ Fail .

We prove a correspondence between the Hoare rules and the notion of va-
lidity.

Lemma 6. If ` {P} c {Q} and ∀s′. ∃α̃′. (∀(H, α̃′′) ∈ JQKI,s′ . α̃′′ � α̃′) ∧
valid(α̃′, JQKI,s′ , s′, κ) and ∀(H, α̃′) ∈ L. α̃′ � α̃ ⇒ (H, α̃′) ∈ JP KI,s then
valid(α̃, L, s, c;κ).

16

Proof. By induction on the derivation of the Hoare triple.

• Case Assign. OK.

• Case Mutate. Take f = λα̃. α̃.

• Case Lookup. OK.

• Case Update. OK.

• Case Read. OK.

• Case Seq. OK.

• Case Conseq. OK.

We can now prove the soundness of our Hoare logic with respect to the
operational semantics of the programming language.

Theorem 3. If {emp} c {true} then (∅, {[(ε, ∅, c; done)]}) 6 ∗ Fail .

Proof. Apply Lemma 6 with α̃ = α̃′ = ∅ and L = {(∅,)} to obtain valid(∅, L, ∅, c; done)
and therefore valid cfg(∅, {[(ε, ∅, c; done)]}). We obtain the goal by Lemma 5.

7 Tool support

We developed a preliminary encoding of the proof rules for TSO memory ac-
cesses of the preceding section into our VeriFast sound modular static veri-
fication tool for C programs, and we checked versions of the examples (VM,
lock, producer-consumer) in the C programming language using this encoding.
These examples are included with the latest VeriFast distribution in the direc-
tory examples/tso.

In the development of our encoding, we needed to take special care to make
sure that the abstract updates associated with TSO updates and the abstract
lower bounds associated with TSO reads do not depend on ghost variables.
Indeed, the naive approach of specifying the abstract updates and abstract lower
bounds as ghost arguments of the TSO operations is unsound, since VeriFast
allows ghost arguments to depend on ghost variables.

In our current encoding, we work around this issue by requiring the list of
all abstract updates and abstract lower bounds to be used by operations on a
given TSO space to be specified when the TSO space is created. The specific
abstract update or lower bound for a particular operation is then selected by
passing an index into this list as a non-ghost argument to the TSO operation
(which appears in the program as a C function call). Furthermore, to allow the
abstract updates and lower bounds to depend on the (non-ghost) state of the
thread, we allow a variable number of additional non-ghost arguments to be
passed to the TSO operations. These are passed on as extra arguments to the
abstract updates and lower bounds.

This encoding is sound but it has the downside that it requires modifications
to the C program: extra arguments to the TSO operations, and extra variables
to track the thread state.

17

A better approach which we envision for future work is to extend VeriFast
with support for additional ghost-levels of code and variables, beyond the level
of reality (the lowest ghost-level) and the single existing ghost- level. Infor-
mation flow from higher to lower ghost-levels would be disallowed. For the
TSO encoding, we would use three ghost-levels: the real level, the semi-ghost
level, and the full ghost level. Full ghost variables can be modified as part of
TSO updates; abstract updates and lower bounds are specified as semi-ghost
arguments.

8 Conclusion

We presented an approach for the modular formal verification of programs that
use memory accesses with x86-TSO semantics.

A comparison with related work is future work.

Acknowledgments

The author thanks Ernie Cohen for very helpful comments and discussions.
This work was partially funded by EU FP7 FET-Open project ADVENT (grant
number 308830).

18

