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Abstract

Throughout the years, the computing power of industrial controllers has
steadily increased. Together with the development of efficient quadratic pro-
gram (QP) solvers, this raises the question whether these devices can host an
online model predictive controller (MPC). The applicability of online MPC is
investigated using a programmable automation controller (PAC) and a pro-
grammable logic controller (PLC) for the control of an industrially relevant
process, i.e., a pilot scale distillation column. It is demonstrated that both
devices are capable of hosting MPC, however the limitations of the PLC are
reached for the investigated set-up. Finally, guidelines and pitfalls for use in
practice are highlighted.
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1. Introduction

One of the most successful advanced control methodologies in industry is
Model Predictive Control (MPC). It has been a widely applied technique in
process industry over forty years (Qin and Badgwell, 2003; Bauer and Craig,
2008; Mathur et al., 2008). The advantages of MPC over classic control
methodologies, e.g., PID control, are its ability (i) to steer the process in an
optimal way while taking proactively desired future behavior into account,
(ii) to tackle multiple inputs and outputs simultaneously and (iii) to incor-
porate constraints (Maciejowski, 2002; Darby and Nikolaou, 2012).

Although model predictive control originates from the petrochemical in-
dustry (Richalet et al., 1978; Cutler and Ramaker., 1980), it has been suc-
cessfully transferred to many other application areas, e.g., automotive indus-
try (Hrovat et al., 2012), paper and pulp industry (VanAntwerp and Braatz,
2000), power converters (Kouro et al., 2009) and traffic control (Bellemans
et al., 2006).

Current research on MPC focuses on, e.g., fast(er) algorithms (Bemporad
et al., 2002; Ferreau et al., 2008; Wang and Boyd, 2010; Mattingley and Boyd,
2012) to encourage and simplify the use of MPC. Moreover, many of these
algorithms were developed with embedded applications in mind. These are
applications where the control scheme runs on an autonomous platform, often
integrated in a machine. Typical examples are microcontrollers and field-
programmable gate arrays (FPGAs). Due to the technical improvements,
these devices have become readily available at relatively low prices. Nev-
ertheless, as robustness, industry-proven reliability, and long-term support
are important features for the process industry, less powerful programmable
logic controllers (PLCs) are still omnipresent in process plants. These devices
are robust and typically last the lifetime of an installation which eliminates
expensive hardware replacements. However, evolving legislation may force
companies to meet new standards that cannot always be reached by tradi-
tional control schemes. In such cases, an upgrade to, e.g., an MPC running
on installed hardware can be considered. Consequently, it is interesting to
evaluate these devices for the implementation of MPC algorithms.

Bemporad et al. (2002) suggested explicit MPC to solve the MPC prob-
lem. Here, the underlying quadratic program is solved offline and piecewise
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linear solutions are stored in a look-up table. For the online application, the
right piecewise linear solution is rapidly selected based on the measurements
of the current state of the system. This development has been successfully
exploited on PLC hardware by, e.g., Kvasnica et al. (2010); Valencia-Palomo
and Rossiter (2011a,b, 2012). However, this approach is mainly feasible
for small-scale systems and short time horizons as the storage complexity
strongly increases with the size of the MPC problem.

In contrast, results for online MPC hosted by PLCs are scarce (e.g.,
Necoara and Clipici (2013)). Here, the underlying QP has to be solved on-
line in each step. Also in Huyck et al. (2012) a successful illustration on a
small-scale air-heating set-up has been presented. Although the knowledge
gained in this study was substantial, the employed small-scale set-up had
only a limited relevance for (process) industry. To explore the constraints
that will be encountered when using MPC on a PLC in such environments,
an example more relevant to industry, i.e., a pilot-scale distillation column,
will be used in the current paper. As a first step, a programmable automa-
tion controller (PAC) is tested, while in a second step a transfer to a PLC
is made. For the employed PLC hardware, not only memory and speed con-
straints will be evaluated, but also ease of implementation in practice (e.g.,
through the use of ready-to-use code) will be investigated.

The structure of the paper is as follows. Section 2 presents the pilot-
scale distillation column. Section 3 discusses the general approach towards
an implementation of MPC on a PLC. First, a linear model is identified,
which exhibits an acceptable trade-off between model complexity and model
accuracy. Second, the MPC algorithm is implemented and tuned. Section 4
describes the specific hard- and software that are employed, while Section 5
focuses on practical features related to the implementations on the employed
control hardware. Section 6 elaborates on the memory consumption of the
algorithms on the different devices. Next, Section 7 illustrates the iden-
tification results, while Section 8 provides and discusses the actual model
predictive control results. To enable a systematic performance assessment,
a more powerful PAC is first evaluated before the PLC is tested. Section 9
discusses the results obtained in view of practical applications and finally,
Section 10 summarizes the main conclusions.
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2. Pilot-scale distillation column set-up

The pilot-scale experimental set-up involves a packed distillation column
(see Figures 1 and 2 as well as references Logist et al. (2009); Bonilla et al.
(2012)). The column is about 4.5 m high and has an internal diameter of
6 cm. The column works under atmospheric conditions and contains three
sections of about 0.95 m with Sulzer CY packing (Sulzer, Winterthur) respon-
sible for the separation. This packing has a contact surface of 700 m2/m3

and each meter packing is equivalent to approximately 3 theoretical trays.
The feed stream containing a mixture of methanol and isopropanol is fed into
the column between packed sections 2 and 3. The temperature of the feed
can be adjusted by an electric heater which can deliver power up to 250 W.
At the bottom of the column a reboiler is present containing two electric
heaters, each of 3000 W. These can be manipulated to deliver heat to the
reboiler from 0 up to 6 kW. In the reboiler, a part of the liquid is vaporized
while the rest is extracted as the bottom stream. At the top of the column,
a total condenser allows the condensing of the entire overhead vapor stream,
which is then collected in a reflux drum. A part of the condensed liquid is
fed back to the column as reflux, while the remainder leaves the column as
the distillate stream.

In this set-up the following four variables can be manipulated: the re-
boiler power Qr (W), the feed rate Fv (g/min), the power of the feed heater
Qv (W) and the reflux flow rate Fr (g/min). The distillate flow Fd (g/min)
is adjusted to maintain a constant reflux drum level. Measurements are avail-
able for the reflux flow rate Fr, the distillate flow rate Fd, the feed flow rate
Fv and 15 temperatures. The temperature probes are placed at the top of
the column T t and at three places on every packing section (Ts1 to Ts9).
Temperature measurements Tv1 and Tv2 are available between section 1
and 2 and between section 2 and 3 respectively. Finally, the temperature
measurement Tb in the reboiler of the column, and the temperatures of the
feed before and after heating (Tv0 and Tv2, respectively) complete the list
of measured temperatures. All temperatures are measured in degrees Celsius
with a resolution of 0.01oC.

The pilot-scale distillation column is equipped with a Compact FieldPoint
(National Instruments (NI), Austin). This device consists of a NI cFP-2020
Real-Time Controller, a NI cFP-AIO-610 8-Channel Combination Analog

4



Postprint version of paper published in Control Engineering Practice 2014, vol 28, pages 34 - 48. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.journals.elsevier.com/control-engineering-practice/  
Original file available at: http://dx.doi.org/10.1016/j.conengprac.2014.02.016 

 

Input/Output Module, NI cFP-RTD-124 8-Channel 4-Wire RTD Tempera-
ture Module, NI cFP-AI-110 8-Channel Analog Voltage and Current Input
Module and NI cFP-AIO-600 8-Channel Combination Analog Input/Analog
Output Module. This device is only used as a service-hatch to pass the mea-
sured outputs to the controller and desired inputs to the actuators of the
column (Chambel et al., 2011).

There is no on-line measurement of the concentrations in the distillate
and bottom streams although these are very important for the chemical pro-
cess. The concentrations can be measured off-line, e.g., based on a their
refractive index using a refractometer. However, since the concentrations for
the system under study can be easily inferred from the temperatures when
temperature and pressure are known, only a controller for the temperatures
is implemented.

3. Approach

To systematically evaluate the possibilities for running MPC on PLCs, the
following approach has been adopted. First a model is identified. Afterwards
an MPC controller is implemented and tested experimentally. In order to
gradually decrease the computational and memory available in the industrial
control device, a PAC has been studied before moving to a PLC. In the view
of safety, the developed controllers have always been evaluated through a
hardware-in-the-loop (HIL) experiment before the actual test with the pilot-
scale column itself. More detailed information is provided in the following
subsections.

3.1. Identification of a model for control

Distillation columns can be described by linear low order systems (Skoges-
tad, 1997). An ideal model for control has to combine an accurate tracking
of the main column behavior with a low model complexity. Different lin-
ear time-invariant models exist. In this paper, identification based on low
order transfer functions, often also called process models, is employed to
obtain a model for control. This model is identified around a well-known
and safe operating point. The identification of the model is performed using
the Matlab System Identification Toolbox (Ljung, 2009). Only identification
based on the continuous first and second order transfer functions with delay
is considered. A Multiple-Input Multiple-Output (MIMO) process model is
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Figure 1: Diagram of the pilot-scale distillation column. Nominal set-points for iden-
tification experiments are printed in bold and are followed by the maximum employed
deviations during identification experiments.
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Figure 2: Pictures of the pilot-scale distillation column: condenser (left), packed section
and feed introduction (center), and reboiler (right).

constructed based on two identified Multiple-Input Single-Output (MISO)
process models. This model is converted to a state-space formulation for use
in the model predictive controller.

3.2. Model predictive control formulation

In this subsection, the model predictive control formulation is described.
Linear Model Predictive Control is well known in literature (Maciejowski,
2002; Camacho and Bordons, 2003; Rossiter, 2003; Wang, 2009). The basic
formulation for linear MPC used for the practical implementation in this
work is summarized below.

A linear, time-invariant discrete-time model is used:

x(k + 1) = Ax(k) +Bu(k) (1)

y(k) = Cx(k),

with A ∈ R
p×p, B ∈ R

p×m and C ∈ R
q×p. Here, m, p and q are the number

of inputs u(k) ∈ R
m, states x(k) ∈ R

p and outputs y(k) ∈ R
q, respectively.

The cost function to be solved in each MPC step is given in this work:

J =

Hp∑

i=1

‖ŷ(k + i)− yref(k + i)‖2
Wy

(2)

+
Hc−1∑

j=0

‖u(k + j)− uref(k + j)‖2
Wu

.
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with yref the output reference and ŷ the predicted output. uref relates to the
corresponding control reference profile. Hp and Hc (with Hc ≤ Hp) are the
prediction and the control horizon of the controller, respectively. Wy ∈ R

q×q

and Wu ∈ R
m×m are the positive definite weighting matrices. A terminal

constraint ensuring stability can be omitted as long as the prediction horizon
is long enough and the plant is stable (Maciejowski, 2002), which is the case
in this work.

To remove the steady state error, an augmented model is constructed:
[
∆x(k + 1)
y(k + 1)

]

︸ ︷︷ ︸

ξ(k+1)

=

[
A 0

CA I

]

︸ ︷︷ ︸

Ã

[
∆x(k)
y(k)

]

︸ ︷︷ ︸

ξ(k)

+

[
B

CB

]

︸ ︷︷ ︸

B̃

∆u(k) (3)

y(k) =
[
0 I

]

︸ ︷︷ ︸

C̃

[
∆x(k)
y(k)

]

where ∆u(k) = u(k)− u(k − 1) is the difference between two successive
inputs, ∆x(k) = x(k) − x(k − 1) is the difference between two successive
states and ξ(k) is the augmented state:

ξ(k) =

[
∆x(k)
y(k)

]

(4)

The calculation of the future predictions are based on Eq. (3). In a matrix
formulation the future predictions can be written as:

ŷ1...Hp
= Fξ +Φ∆u1...Hc

. (5)

The matrices F and Φ can be found in Maciejowski (2002); Wang (2009).
ŷ1...Hp

∈ R
Hp·q and ∆u1...Hc

∈ R
Hc·m are the arrays into which the different

vectors ŷ(k) and ∆u(k) haven been stacked over the prediction and control
horizon, respectively.

In the current work only input constraints are taken into account for the
MPC problem:

uMin(k + j) ≤ u(k + j) for j = 1 . . .Hc (6)

uMax(k + j) ≥ u(k + j) for j = 1 . . .Hc. (7)
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At present, no state constraints are included, but the methodology can
be extended.

The optimization problem can be formulated as the minimization of cost
function (2), subject to model equations (3) and input constraints (6) and (7).
To solve the optimization problem, the procedure described in Wang (2009)
is followed. By elimination of the states and using the following recursion for
the inputs:

u(k + j) = u(k − 1) +
Hc−1∑

j=0

∆u(k + j), (8)

a Quadratic Program (QP) is obtained:

min
∆u

1

2
∆uT

1...Hc
H∆u1...Hc

+ g∆u1...Hc
(9)

subject to :

[
−C1

C1

]

∆u1...Hc
≤

[
−u

′

Min

u
′

Max

]

(10)

with ∆u1...Hc
a vector containing the decision variables ∆u(k + j) with

j = 1 . . .Hc. To solve this QP problem, the Hildreth algorithm (Hildreth,
1957; Wang, 2009) and qpOASES (Ferreau et al., 2008) will be used.

The Hessian matrix H in Eq. (9) is a constant matrix as soon as all MPC
parameters have been selected. It can be calculated with:

H = ΦTWybdΦ+Wubd
, (11)

with Wybd and Wubd
block diagonal matrices of Wy and Wu respectively.

The Hessian can be computed offline as no online information is required.
The aim in this work is to minimize the online calculation burden. To this en,
matrices that can be computed in advance, are calculated offline and stored
in the memory.

The gradient vector g in Eq. (9) has to be calculated online. It contains
three parts depending on the current state ξ(k), the reference of the inputs
uref and the reference of the outputs yref. The reference for the inputs uref is
employed in such a way that the calculated inputs will not deviate too much
from a well-known and safe nominal working point of the employed set-up.
So, g has to be calculated according to

g = G1ξ −G2yref,1...Hp
−G3uref,1...Hc

(12)

9
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where G1, G2 and G3 are gradient matrices to be calculated according to
Wang (2009); Maciejowski (2002). The gradient matrices G1, G2 and G3

are constant and are computed offline according to:

G1 = ΦTW T
ybd

F (13)

G2 = ΦTW T
ybd

(14)

G3 = W T
ubd

. (15)

The constraints in Eq. (10), i.e., the minimum and maximum admissible
values u

′

Max and u
′

Min require online information and, hence, are calculated
online. u

′

Max is a column matrix with u
′

Max(k+ j) = uMax(k + j)− u(k − 1),
with j = 1 . . .Hc and similarly is u

′

Min a column matrix u
′

Min(k+j) = uMin(k+
j)− u(k − 1), with j = 1 . . .Hc. The matrix C1 is a lower triangular matrix
build up from identity matrices.

4. Hard- and software

The current section provides details about the control hardware and soft-
ware used. To gradually move towards a PLC device, a PAC has been tested
in an intermediate step. The software includes different algorithms for the
online solution of the QP in each MPC step.

4.1. Programmable Automation Controller

As a PAC, a National Instruments CompactRIO has been used. This PAC
controller consists of a NI cRio–9024 Real-Time Controller (800 MHz CPU,
512 MB of memory) (National Instruments Corporation, 2010), a cRIO–9114
Reconfigurable Chassis, a NI 9265 Analogue Current Output module and a
NI 9217 RTD 24-Bit Analogue Input Module. The real-time controller is
programmed with LabVIEW and is able to run a software library compiled
from C/C++ code via a call library function. The library is compiled for the
VxWorks 6.3 operating system with the GCC-compiler version 3.4.4.

The LabVIEW programming environment has been used to program the
PAC. The LabVIEW programming concept is based on a Virtual Instrument
(VI). A graphical user interface is composed of a front panel on a block dia-
gram. The employed QP solvers are programmed in C and compiled with a

10
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GNU Compiler Collection (GCC), which is a freeware compiler to a library
compatible with the VxWorks operating system. The data between the Lab-
VIEW VIs and the QP solvers, written in C, is exchanged by means of the
LabVIEW call library function.

4.2. Programmable Logic Controller

A Siemens CPU319-3DP/PN PLC is used as PLC. The base memory of
this CPU is increased to the maximum allowed 8 MB. This CPU is the fastest
Siemens S7-300 CPU currently available. It takes 40 ns for one floating-point
operation (Siemens AG, 2011). The Siemens CPU is programmed using the
Step 7 Professional 2010 software. To code the problem, the Structured

Control Language (S7-SCL) is used. This programming language corresponds
to Structured Text (ST) in the standard IEC 61131-3.

4.3. QP algorithms

To solve the QP problem, several algorithms have been used.

Hildreth QP algorithm. The Hildreth algorithm has been chosen for its
limited number of code lines which makes it easy to implement. It has
been written based on (Wang, 2009) in C for the PAC and in S7-SCL for
the PLC. This algorithm calculates the solution in two steps. First, the
unconstrained solution is calculated and if no constraints are violated,
this solution is adopted. If a constraint is violated, a constrained QP
is solved. The solution of the QP is then passed to the inputs of the
set-up. For more information about the solution, see Hildreth (1957);
Luenberger (1997); Wang (2009). If a solution to the QP could not be
found, the unconstrained solution is compared to the constraint. If a
constraint is violated, then that entry of the unconstrained solution is
limited to the constraint.

qpOASES QP algorithm. qpOASES is an open-source C++ implemen-
tation of the recently proposed online active-set strategy (Ferreau et al.,
2008). It builds on the idea that the optimal sets of active constraints
do not differ much from one QP to the next. At each sampling in-
stant, it starts from the optimal solution of the previous QP and follows
a homotopy path towards the solution of the current QP. Along this
path, constraints may become active or inactive as in any active-set QP

11
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solver and the internal matrices factorizations are adapted accordingly.
While moving along the homotopy path, the online active-set strategy
delivers sub-optimal solutions in a transparent way. Therefore, such
sub-optimal feedback can be reasonably offered to the process in case
the maximum number of iterations is reached.

A simplified version of qpOASES has been translated to S7-SCL. Note
that the simplified implementation does not allow for hot starting of
the QP solution and is not fully optimized for speed. On the PAC, the
plain ANSI C implementation of qpOASES has been used. Although
the full version of qpOASES is perfectly suited for hot starting, this
feature is not used. Furthermore, the algorithm is only used with cold
starts as a solution can be found in one step when no constraints are
active. This makes it possible to start the search for a solution with
offline, previously computed matrices.

5. Controller implementation features

Every industrial control device has its own characteristics. This section
presents how the QP solvers have been implemented and what the conse-
quences are of the typical features of the employed PAC and PLC devices.

5.1. Model predictive controller implementation

To compute a new input for the process, the sequence of actions presented
in Algorithm 1 are followed. In advance, constant matrices are precomputed
and the reference trajectory for the output is selected. This sequence of steps
to solve the MPC problem has been used for both controller devices and the
employed QP algorithms.

5.2. Features of the implementation on the PAC

The practical limitations while using PAC and PLC controllers is differ-
ent. Programmable automation controllers employ a Real-Time Operations
System (RTOS). It is an extra layer between the user code and hardware.
Consequently, more resources are required to run both this RTOS and the
user code. On the other hand, the operating system handles all basic tasks
in a more user-friendly way, e.g., file system operations, parallelization of
user programs and memory management. The CompactRIO runs VxWorks

12
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Offline: Calculate H, G1, G2 and G3.
Online: Start PLC or PAC.
Store all precomputed matrices in working memory, together with the reference for
inputs and output.
while CPU is running do

if controller interval passed since last call then
Scale the in- and outputs.
Calculate current state.
Calculate g, u

′

Min
and u

′

Max
.

case Hildreth algorithm
Calculate the unconstrained inputs of the process.
if unconstrained inputs violate constraints then

while maximum number of iterations is not reached and solution
not found do

Solve one iteration of the QP.
end

if maximum number of iterations is reached then
Use unconstrained solution, but inputs violating a constraint
are limited to that constraint.

end

end

end

case qpOASES
while maximum number of iterations is not reached and solution not
found do

Solve one iteration of the QP.
end

if maximum number of iterations is reached then
Use last sub-optimal solution.

end

end

Scale and apply the calculated inputs to the system
end

end

Algorithm 1: Steps to compute the inputs on the experimental set-up for
the PAC and PLC.
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as its RTOS. A compiler exists to convert (existing) C/C++ code. All im-
plemented QP solvers are originally written in C or C++ and are converted
into a library, supported by the RTOS.

During run-time, two programs run in parallel to control the distillation
column set-up. The first LabVIEW program, further called the Human Ma-

chine Interface Virtual Instrument or HMI VI, performs the data exchange
between the program and the in- and output cards of the Compact Field-
point, the scaling of the in- and outputs, the visualization of the process
variables and logging of the data. The PI-controllers are also part of this
program. A second LabVIEW program, further called the Model Predictive

Control Virtual Instrument or MPC VI, performs the preparative calcula-
tions for the QP, e.g., the estimation of the state and selection of the current
reference. Instead of using the built-in MPC controller (Balbis et al., 2005),
the currently employed QP algorithms are programmed in C. The approach
is similar to Canale et al. (2012), who implemented a QP solver on a Na-
tional Instruments eXtensions for Instrumentation (PXI) system. However
the employed QP solvers, the target system and the employed C-compiler
are different. The QP algorithm is located in a separated library, called from
within the MPC VI. The HMI VI runs at a rate of 10 Hz. The MPC VI is
called every minute.

5.3. Features of the implementation on the PLC

No compiler exists to transform C/C++ source code to a running binary
on a Siemens PLC. Therefore, the C/C++ code has to be translated into
S7-SCL (ST). For this paper, the time consuming step has been taken to
translate the qpOASES and Hildreth solvers to S7-SCL, the Siemens dialect
of the ST language according to IEC 61131-3. The qpOASES solver is trans-
lated without the hot starting possibilities.

To calculate the appropriate inputs of the system and solve the QP, a
number of built-in function blocks (FB) and organization blocks (OB) are
programmed. Organization blocks are built-in functions called as hardware
interrupts. Function blocks are user-defined functions with corresponding
data stored in a data block (DB) with the same number. Fig. 3 depicts the
order in which these blocks are called.
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Figure 3: Schematic overview of the different employed organization and function blocks
in the PLC.

Every function block has a corresponding data block. A data block can-
not exceed 64 kB on the Siemens S7-319 CPU. The editor and the compiler
impose some additional limitations. Initialization of a variable must be on
a line not exceeding 255 characters. This is not a big issue, but only awk-
ward when initializing matrices. More important is the limitation that an
array initialized with unique elements cannot exceed 255 elements. Strangely
enough, an array can be as large as desired as long as it fits into the 64 kB of
available memory. To overcome this limitation, each array containing more
than 255 elements has to be filled during runtime (e.g., in OB100 at the
start) by arrays of maximum 255 elements. As can easily be understood,
this situation is very unpractical. Linked with this situation is the need for
absolute addressing if a function needs data in a data block different from its
own data block. For example, to initialize matrices containing more than 255
elements, OB100 writes data to DB2. This operation requires fault-sensitive
absolute addressing. The most important employed FBs and OBs to code
the program are presented below. A graphical representation of the order of
calling is given in Fig. 3.

OB100 - Cold Start. This block is called once when the controller is started.
It is employed to initialize matrices containing more than 255 differ-
ent elements. This procedure is followed to overcome the limitation an
array cannot exceed 255 elements at compilation time. In the case a
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matrix of more than 255 different elements is to be initialized, several
arrays are combined in this block at runtime into a combined array.
For the distillation column, the Hessian H and matrices G1, G2 and
G3 are initialized in OB100.

OB1 - Main loop. This loop is started as soon as OB100 is finished. When
this function finishes, it restarts. This loop is used to program standard
tasks of the PLC. During the experiments, it is not used. It will run
during the idle time of the CPU between two OB35 calls.

OB35 - Timed loop. This timed organization block is called every minute.
It contains the necessary code to read the current inputs. This infor-
mation is scaled and employed to calculate the current state (FB3).
Together with the reference for the in- and outputs, the state is used to
update vector g (FB2). Now, the QP is solved and the scaled solution
will be passed to the outputs of the PLC.

FB2 - Main program. This function scales the in- and outputs, calls the
estimator block, calls the QP solver itself and finally presents the cal-
culated inputs to the system.

FB3 - State estimator. This block estimates the current state to be used
to calculate the current gradient g in Eq. (9) for the QP solver.

FB6 - Column model. For hardware-in-the-loop experiments on the PLC,
the state-space model of the column is implemented in this block.

FB4 - QP solver. This block calculates the input of the system. For the
Hildreth algorithm, all code is written in this function block. For the
qpOASES algorithm, a number of additional function blocks are called:
FB28, FB29 and FB30. The block FB29 requires the most memory and,
hence, determines the practical limits for using qpOASES on a PLC
(see Section 6).

FB28 - Calculate relative distance. This function is only needed for the
qpOASES algorithm and calculates the relative distance to the final
solution (Ferreau et al., 2008).

FB29 - QR and Cholesky decomposition. This function is only needed
for the qpOASES algorithm and calculates the QR decomposition based
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on Givens rotations and the Cholesky decomposition (Golub and Van Loan,
1996).

FB30 - Matrix inversion. This function is only needed for the qpOASES
algorithm. This block calculates the inverse of a lower triangular matrix
by substitution.

Practical experiments on the pilot-scale column are performed in the follow-
ing way. The LabVIEW Human Machine Interface Virtual Instrument runs
on a PC which is connected to the PLC and the column by an ethernet con-
nection. The QP solver is running on the PLC. An OPC server (NI OPC
server 2012, OPC is OLE for Process Control where OLE is an acronym for
Object Linking and Embedding) is responsible for the data exchange between
the PC and the PLC.

6. Memory use and constraints

To get insight in the memory consumption of the applied algorithms on
the PAC and PLC devices, the memory consumption is presented in this
section. For the PAC, memory sizes are obtained by the built-in performance

and memory profiler.

6.1. PAC

To get an idea of the required memory on the PAC device, two differ-
ent methodologies are followed. First the built-in profiler is used to provide
an idea of the memory consumption of the running VIs. Second, the total
amount of used memory is verified when downloading the files to the device
with LabVIEW. The latter is about 70 MB. According to the profiler, the
memory requirements for the Virtual Instrument running the controller (i.e.,
MPC VI) are 102.7 kB for qpOASES and 98.9 kB for Hildreth.

Together with the HMI VI, which requires approximately 2795 KB and
some additional general VIs, e.g. for error checking, the memory footprint
is nearly 3500 kB. Compared to the total required memory on the device of
approximately 70 MB, the memory needed for the VIs of the MPC controller
is limited. The difference with the 70 MB used is mainly related to the
overhead of the RTOS and additional general features.
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6.2. PLC

For the PLC, the function blocks containing the QP solvers can be re-
garded as the bottlenecks for memory use. Hence, figures given are relate to
these blocks only.

6.2.1. Hildreth Algorithm

For the Hildreth algorithm, FB4 is the function block with the highest
memory consumption and is populated with the matrices to solve the QP.
For a Hessian of size 40×40, the total required memory is 8 matrices of 1600
real elements, plus 7 real numbers, two vectors of 40 and two vectors of 80
real numbers. This results in 53124 bytes needed. Increasing to a Hessian of
44×44 elements exceeds the 64 kB limit of the FB. It has to be noted that
based on symmetry 4 matrices can be eliminated. This makes it possible to
increase the size of the Hessian to 64×64 elements which can be considered
as the maximum practical limit for using the Hildreth algorithm in a PLC.
Overcoming this limit is possible by storing matrices in different function
blocks, but since absolute addressing is required, this is very fault sensitive
and has to be avoided if possible.

6.2.2. qpOASES

For qpOASES, the QR and the Cholesky decomposition calculated in
FB29 require the most memory. The calculation of these decompositions
needs 11 matrices of the size of the Hessian. For the pilot-scale distillation
column, a Hessian with 1600 elements is constructed. 11 matrices of 1600
elements violate the 64 kB limit. However, reusing temporary matrices em-
ployed in the QR decomposition for the Cholesky decomposition reduces the
number of required matrices from 11 to 8 so that experiments can be per-
formed. This limitation poses a strong practical constraint on using MPC
based on qpOASES on a PLC. The total required memory in the employed
formulation for hardware-in-the-loop experiments is 8 matrices of 1600 real
elements plus 1 vector of 40 real elements and 15 real numbers which makes
in total 51420 required bytes. Increasing the size of the Hessian to 44×44
results in 62188 bytes. This is the absolute maximum to fit the QR and
the Cholesky decomposition into one function block. Separating both QR
and Cholesky decomposition is not worthwhile, as the latter needs no extra
memory to be allocated in the current implementation.

18



Postprint version of paper published in Control Engineering Practice 2014, vol 28, pages 34 - 48. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.journals.elsevier.com/control-engineering-practice/  
Original file available at: http://dx.doi.org/10.1016/j.conengprac.2014.02.016 

 

7. Identification results

In this section, the results are summarized to obtain a suitable model for
control of the column.

7.1. Excitation signals

In order to generate estimation and validation data for the system iden-
tification, two experiments are performed. The excitation signal is built up
with Pseudo Random Binary (PRB) signals for the different manipulated
variables. Before the excitation signals are applied, the column is kept at a
constant operating point for two hours to ensure that the column is in steady-
state. The nominal steady-state values of the different manipulated variables
are: a reflux flow rate Fr of 65 g/min, a feed flow rate Fv of 150 g/min, a
feed heater duty Qv of 152 W to maintain a feed temperature Tv2 of 40oC
and a reboiler power Qr of 4100 W. These nominal values are known to
yield an appropriate operating point for the column (Logist et al., 2009). All
manipulated variables are controlled by PI controllers except for the heating
duties which are controlled directly. When the column has reached steady-
state the experiment is started.

When the excitation signals are applied, all manipulated variables switch
between two values. The reflux flow rate Fr fluctuates between 40 and
90 g/min, while the feed flow rate Fv changes between 120 and 180 g/min.
The feed heater duty Qv is manipulated between 0 and 250 W and the
reboiler power Qr switches between 3500 and 4700 W. These values are dis-
played in Fig. 1. The distillate flow rate Fd is manipulated in order to keep
the content of the reflux drum at 40% of its maximum volume. All data are
recorded with a sampling period of 100 ms.

The first PRB input signal is constructed in the following manner. The
reboiler duty Qr is a repeated periodic signal of 6000 s. The clock period,
i.e., the minimum time before the signal is allowed to switch, is 300 s. From
previous experiments (Logist et al., 2009), it is known that the dynamics of
the system are faster at the top of the column. Therefore, the clock period
of the other inputs is slightly smaller. For the feed flow rate Fv and feed
temperature Tv2 a clock period of 120 s is taken with a period of length
3720 s and for the reflux flow rate Fr, the clock period is 20 s with a period
length of 5100 s. These input signals are combined into one experiment with a
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time span of 25000 s. The second experiment is slightly slower. The periodic
signal has a length of 8000 s for all manipulated variables and the clock
period for Qr, Fv, Tv2 and Fr is 500 s, 120 s, 120 s and 60 s, respectively.
The duration of the experiment is also 25000 s in total.

7.2. Data preparation

The sampling period of the three recorded data sets is reduced to 60 s.
Therefore, for every 60 s a sample is taken from the original recorded data
that is first filtered with zero-phase digital filter (-3dB frequency = 0.3 Hz).
Next, an identification and a validation data set have been created. The first
PRB data set described in the former section is selected to be the estimation
data set, the second is the validation data set.

7.3. Model identification and validation

Here different quality indexes are calculated to assess the model quality,
e.g., the FIT value as defined in the Matlab Identification Toolbox (Ljung,
2009) and the mean Squared errors (MSE). The model selection is based on
model selection criteria as, e.g., the Akaike Information Criterion (AIC) (Akaike,
1974). However, operator experience is also taken into account.

For each output, a MISO model consisting of low order transfer functions,
is fitted. After initial identifications with each of the four transfer functions
of an identical structure, an attempt has been made to create a model with a
lower AIC and a lower MSE/higher FIT. Therefore each of the input-output
transfer functions pairs is exchanged with a different model structure. If
re-identification resulted in lower AIC and MSE, and if the structure could
be reasonably accepted based on operator expertise, then the new structure,
called PMIX, will be adopted. In Table 1 the MSE, FIT and AIC are indi-
cated for the final identified model.

From physical insight, one can assume that all subsystems have a time
delay. This is not the case in the PMIX models, as several second order mod-
els appear without a time delay. In these cases, the second order pole masks
the time delay. Re-estimation based on a first order transfer function with
time delay resulted often in a worse AIC or FIT value. In such a case, the
second-order subsystem has been preserved. The two selected PMIX models
have been merged into one MIMO transfer function presented in Eq. (16)
and converted to state-space.
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Figure 4: Validation of the top and reboiler temperature. Each figure depicts the simula-
tion for the reduced state-space model and the identified PMIX model.
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Table 1: The FIT and MSE values for the reduced state-space model and identified PMIX
models for both the reboiler and top temperature.

Models FIT MSE AIC
- Top temperature -

Reduced State-Space 53.1% 0.2608
PMIX transfer function 56.3% 0.2261 -3.83

- Reboiler temperature -
Reduced State-Space 76.8% 0.0810
PMIX transfer function 80.5% 0.0566 -1.66

[

Tt

Tb

]
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(16)

Conversion to discrete state-space is required for the model predictive
control formulation. The selected discretization interval is one minute. This
interval has been selected based on a trade-off between a sufficiently small
model size on the one hand and a sufficient capability to represent the dy-
namics in the process on the other hand. The resulting model is of order 20.
After plotting the Hankel singular values, no clear jump can be noted, but
there is a significant reduction in state energy by a factor of 500 between
the state with the highest energy and state 13. Therefore, the number of
states to be left in the controller model, is selected to be 13. The reduced
state-space model has been checked to be observable and controllable by a
rank test following the standard procedure implemented in Matlab Control
System Toolbox (MathWorks, 2009). In Fig. 4 two plots are depicted. The
first one presents the simulation of the reduced state-space and original se-
lected transfer function model for the top temperature, the second one does
the same for the reboiler temperature. For the top temperature, both models
follow the trend of the measured temperature well, although some peaks are
not captured. Especially, sharp peaks and fast variations are not covered
by the models. The fast varying peaks are believed not to disturb the con-
trol action of the controller due to the long time constants of the model. For
the reboiler temperature, the measured temperatures are followed accurately.
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Table 1 presents the FIT and MSE values for the plotted models. Con-
version to state-space and model reduction results in only a small loss of
accuracy of the model. As a result, the reduced state-space model is selected
to be the controller model.

8. Model predictive control results

In this section, the observations when implementing and using an MPC
on low level hardware to control the distillation column, are described. First,
the results for the more powerful PAC are presented, while afterwards the
observations for the PLC are provided.

8.1. Model predictive control settings

The different MPC horizons are determined in trial-and-error simulations
and are set to Hc = 10 steps for the control horizon and Hp = 50 steps for
the prediction horizon. Every step takes one minute. This leads to a Hes-
sian of size 40×40 in Eq. (9). The weight matrix Wy is a diagonal matrix
with elements Wy11 = 1 and Wy22 = 0.9. This punishes each deviation
from the top temperature reference slightly more than a deviation from the
reboiler temperature. The weight matrix Wu has four elements on the diag-
onal Wu11 = 0.8, Wu22 = 1, Wu33 = 0.8 and Wu44 = 1 for the feed flow rate,
the feed duty, the reboiler duty and the reflux flow rate, respectively. This
choice has been made to encourage the use of the flow rates, which are the
fastest varying control variables. All of the off-diagonal elements are taken
equal to 0.

As a reference trajectory for both the top and reboiler temperature, a
sequence of steps is applied. The sizes of these steps for the top temperature
are 0.88 and 0.62oC. For the reboiler the large and small steps are 0.44 and
0.31oC, respectively. The length of the steps is between 50 and 60 minutes for
both the top and the reboiler temperature. Note, the shift of approximately
30 minutes between jumps in both reference values. As the outputs are highly
correlated (Huyck et al., 2013), each change in reference trajectory for one
of the two temperatures will also affect the other temperature.

8.2. Model predictive control on a PAC

8.2.1. Hardware-in-the-loop experiments

To make sure that the controlling LabVIEW VI and corresponding C-
libraries for the MPC controller are implemented correctly, hardware-in-the-
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loop experiments are performed. The VI running the MPC controller is
connected to a linear plant model of the pilot-scale distillation column. The
employed linear plant model is the discrete state-space representation of the
MIMO transfer function in Eq. (16) obtained before model reduction. The
number of states of this model is 20. The HIL simulations are plotted together
with the experiments on the column in Fig. 5. Both the Hildreth and the
qpOASES algorithm have been employed for HIL experiments. Given the
identical result and correspondingly indistinguishable plots, only one HIL
experiment is plotted. The overall shape of the reference is followed well,
but it is clear that the column will never reach a steady-state situation for
this experiment. After the HIL experiments, it can now be expected that the
LabVIEW VI is working properly and, hence, it is employed on the pilot-scale
set-up.

8.2.2. Experiments on the pilot-scale set-up

The top plot in Fig. 5 depicts the measured top and the reboiler tem-
perature during the experiment. Both controlled variables follow the same
reference trajectory as during the HIL experiment. The numerous changes
yield a challenging reference path to be tracked. As mentioned earlier, the
time constants of the different subsystems are longer than half an hour, caus-
ing the system to never reach steady-state. These references are selected in
order to combine the safety regulations of the column with a sufficient num-
ber of set-point changes in the time slot available for experiments.

Two experiments are recorded: one experiment with the Hildreth algo-
rithm and one with qpOASES. Unfortunately, the environmental conditions
were different. This is of major importance as the pilot-scale distillation
set-up is not thermally insulated from its environment. As a consequence
heat loses depend largely on the environmental conditions. For the Hildreth
experiment the ambient temperature was 17oC at noon. At night the temper-
ature was not lower than 14oC. For the second experiment, the temperature
at noon was 10oC and close to zero at night.

In the first two hours of the experiment, both the top and reboiler tem-
peratures are followed quite accurately. The plotted temperature obtained
from hardware-in-the-loop experiments can be considered as the temperature
to be tracked. The differences between the HIL experiments and the experi-
ments on the set-up are limited for both QP solvers. The inputs, presented
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Figure 5: Measured outputs (top) and inputs (bottom) for experiments on the distillation
column and HIL experiments tracking the desired reference temperature profile with an
MPC controller running on the PAC.
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in the bottom plot in Fig. 5, also differ only slightly form the HIL experiment.

However, between the second and fourth hour, both temperatures have to
follow a step down in the temperature. As soon as the top temperature ref-
erence starts decreasing, both the top and the reboiler temperature decrease.
For the experiments with the Hildreth solver, corresponding to an ambient
temperature of 17oC at noon, the top temperature only decreases half the
applied temperature step for the top temperature. This temperature stays
constant for half an hour and increases slightly to 3h40. This is the moment
where both the top and reboiler reference are back at the nominal temper-
atures. The top temperature evolves now quickly to this temperature. The
measured reboiler temperature is 0.25oC below the reference in the interval
2h20 to 3h15. From 3h25 this temperature is close to the nominal reboiler
temperature. For the experiments with the qpOASES solver, the top tem-
perature hardly leaves the nominal temperature, the reboiler temperature is
even further from the reference.

It is clear from the plot in the top plot of Fig. 5 that the top and the
reboiler temperature do not follow their references accurately in this interval.
From the input plots presented in the bottom plot of Fig. 5, one can see that
two constraints are reached for Hildreth and three for qpOASES. This, to-
gether with an ambient temperature below the excitation experiment, causes
the inaccurate control. Nevertheless, this difficult control is interesting to
investigate the behavior of the different QP solvers. The latter part of the
experiment from 4h on, is a repetition of the first 4 hours, but speeded up
with a factor 2.

In Table 2 the mean cost J̄ , which is the cost J divided by the length of
an experiment, has been adopted because not all experiments have exactly
the same duration. The mean cost values corroborate the visual observations
that the experiment with the Hildreth algorithm as QP solver is much closer
to the reference than the experiment with qpOASES as solver.

Based on these two control experiments, it can be concluded that for this
pilot-scale set-up the ambient temperature is of high importance. Although
difficult to incorporate in the model, except if a (large) sequence of exper-
iments throughout the year can be set-up, the quality of control can only
be considered good when the ambient temperature differs only at most 3oC
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Table 2: The mean cost J̄ calculated for hardware-in-the-loop (HIL) experiments and
experiments (EXP) on the set-up using the PAC.

J̄

Hildreth (EXP) 2.7255
qpOASES (EXP) 5.0153
qpOASES (HIL) 0.8337

Table 3: The total run time as well as the mean, minimum and maximum run times for
one MPC iteration are presented to indicate the speed of the algorithms on the PAC.

run-time (ms)
total mean min. max.

Hildreth (EXP) 1655 4.58 0.28 67.59
qpOASES (EXP) 333 1.33 0.84 3.11
qpOASES (HIL) 314 0.89 0.83 1.69

from from the value of 20.6oC measured during the identification experiment.

The bottom plot in Fig. 5 depicts the four inputs of the distillation col-
umn. The two heating powers do not reach the constraints for the Hildreth
experiment. Both flow rates touch the constraints. For the qpOASES exper-
iment, all controller variables hit the constraints except the reboiler duty.

The bottom plot in Fig. 6 depicts the number of iterations required to
solve the QP problem for both the Hildreth and qpOASES experiment to-
gether with the HIL experiment. All algorithms require between 10 and 15
iterations to solve the MPC problem around 30 minutes after the start. One
active constraint on the reflux flow rate is responsible for this peak in the
number of iterations. For the HIL experiment, no more than one iteration is
required to present a solution, demonstrating no constraints are hit anymore.
For the two experiments on the real set-up, the number of iterations increases
fast as soon as two or more constraints are hit in the interval 2h15 to 3h10.
The maximum number of iterations for Hildreth is 70 and for qpOASES is
30. The number of iterations for qpOASES is lower to solve the same prob-
lem. For practical use, the required time is more critical. Based on the two
plots displaying the required time, the upper left plot in Fig. 6 presents the
required time for each calculation of an optimal input, the upper right is an
extract of the left plot, but limited to 4 ms. As can be seen, the Hildreth
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Figure 6: Calculation time and number of iterations for the employed QP algorithms on
the PAC.

algorithm requires more time than the qpOASES algorithm if the number
of iterations is above 20. qpOASES requires maximum 3.2 ms to solve the
problem. Hildreth multiplies this value at some iterations with a factor of
nearly 10. This confirms the suggestion made by Huyck et al. (2012). Large
systems, and this column can be considered between small and average scales
on an industrial level, can benefit from this new state-of-the-art solver on in-
dustrial devices.

Table 3 presents the mean time for one iteration and total runtime for the
experiment. The mean time for one iteration for Hildreth is higher than that
for the qpOASES algorithm. This demonstrates that the increased complex-
ity for qpOASES leads to a decrease in computation time, but the system
has to be sufficiently large. The cause for the peaks seen in the calculation
time (upper left plot in Fig. 6) is not clear, but most likely a hardware inter-
rupt for communication or module detection causes the algorithm to pause
for some time. This phenomenon is not seen for the qpOASES algorithm
as these modules were removed from the CompactRIO device. Table 3 also
indicates the minimum and the maximum required calculation times for the
QP solvers. It is clear that the Hildreth algorithm requires significantly more
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time to solve the QP. Note that the maximum time required for Hildreth is
more than 20 times higher than the maximum required time for qpOASES.

The PAC has clearly sufficient computation power to run the MPC con-
troller and the PI controllers together with the data logging routines on this
set-up. Whichever QP solver used, the computation time is below 5 ms. To-
gether with the approximately 30 ms for the MPC VI, this is far below the
one minute update interval between two MPC inputs. The employed working
memory is around 70 MB. Be aware that this value contains the controller
programs and the operation system memory demands. In summary, the ques-
tion of whether MPC can be applied on a PAC for this pilot-scale distillation
column, can be answered positively.

8.3. Model predictive control on a PLC

This section presents the results of the final aim of this work, i.e., run-
ning an MPC on a PLC to control the pilot-scale distillation column. First,
hardware-in-the-loop experiments are carried out.

8.3.1. Hardware-in-the-loop experiments

In Fig. 7, the in- and outputs are plotted for the HIL experiments on
PLC. The settings for the MPC are taken identical to those for the PAC
device. A shift of plus 0.3 and minus 0.3oC for the top and reboiler references
respectively is applied to make the control a little bit more challenging such
that the input constraints are touched during the HIL experiments.

For the Hildreth algorithm, the number of iterations is presented in Fig. 8.
The required time to solve the QP is plotted in the upper plot of Fig. 8. The
maximum required time is around 556 ms for 35 iterations (Table 5). The
minimum value for the run times of 14 ms is the required time to present a
solution if a QP has to be solved.

Worthwhile to mention is that in trials previous to this experiment, small
mistakes caused the QP solver to reach its maximum number of iterations.
For the pilot-scale distillation column HIL experiments on PLC, this max-
imum is set to 250 iterations. This corresponds to a calculation time of
3970 ms. With a cycle time of 4 seconds for the organization block initiat-
ing the MPC solver, this is the absolute maximum allowed calculation time
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Figure 7: Measured outputs (top) and inputs (bottom) for the top- and reboiler tem-
perature for an experiment tracking a desired reference temperature profile with a MPC
controller running on the PLC.
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Figure 8: Calculation time and number of iterations for the used QP algorithm on the
PLC.

Table 4: The mean cost J̄ calculated for hardware-in-the-loop (HIL) experiments and
experiments (EXP) on the set-up using the PLC.

J̄

Hildreth (HIL) 0.7668
qpOASES (HIL) Failed
Hildreth (EXP) 1.6622

for the maximum number of iterations. On the pilot-scale set-up, an MPC
update cycle of 1 minute is selected. The calculation times to solve the QP
are far below this cycle time. The calculation time of the QP is therefore not
considered to be a bottleneck for the implementation of MPC on a PLC for
the pilot-scale set-up.

As already mentioned in Section 5.3, the other programming issues, e.g.,
maximum amount of 64 kB for each function block and the difficult initializa-
tion of array larger than 255 elements are much harder to take into account.
Based on the latter issues, a practical limit for a QP to be solved with the
Hildreth algorithm is a Hessian with 64×64 elements. It is possible to in-
crease that size, but then you have to spread the matrix data in different
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Table 5: The total, mean, minimum and maximum run times for one MPC iteration is
presented to indicate the speed of the algorithms on the PLC.

run-time (ms)
total mean min. max.

Hildreth (HIL) 70956 212.4 15 556
qpOASES (HIL) 11780 1308.8 1104 2026
Hildreth (EXP) 31123 91.0 14 532

data blocks which makes it even more difficult to manage as a programmer.
The memory constraint is not yet reached. According to the online memory
status information, the current implementation needs only 4% of the 8 MB
available Random Access Memory, 16% of the 1.4 MB working memory and
26% of the 0.7 MB retentive data memory. Hence, there is enough space
to add additional control programs and to increase the QP problem size to
64×64 elements as suggested.

For the qpOASES algorithm, the experiments ended abruptly after 8 time
steps with a system failure. According to the diagnostic registers, the error
was caused by a scan cycle monitoring time violation, which means that the
algorithm needed more than 3.95 s. Increasing the cycle time to 10 seconds,
or even one minute, caused the scan cycle monitoring time to be set to its
maximum setting of 5999 ms. Unfortunately, even this is not high enough
for the qpOASES algorithm. When taking a margin of about 10 percent, one
iteration needs between 350 and 450 ms. According to a Matlab simulation,
up to 25 iterations are to be expected for the reference trajectory as employed
in this HIL experiment. This is at least 8.75 s and far above the maximum
allowed calculation time, the scan cycle monitoring time, of 6 s for the PLC.
The additional calculations required for this algorithm, need too much time
to calculate the solution online. The presented time values in Table 5 are
calculated on the first 7 time steps. The time step causing an error is not
added. The maximum calculation time indicated in the table corresponds to
5 iterations.

As already mentioned in Section 5.3, the practical upper memory limit
for this algorithm should be a Hessian of size 44. The required calculation
time, however, reduces this upper limit. An experiment with control horizon
set to 5 instead of 10, corresponding to a Hessian size of 20 was successful.
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This successful HIL experiment for qpOASES demonstrates that the code is
working properly. The observation that a control horizon of 10 steps reaches
the computing power limits of the employed PLC, which is the most power-
ful of its series, demonstrates that on a PLC does not need a sophisticated
solver as, e.g., qpOASES. The speed constraint is the bottleneck for this algo-
rithm. The Hildreth algorithm on the other hand succeeds to solve the MPC
problem with control horizon 10. For the Hildreth algorithm, the practical

memory constraint of 64 kB for one block is reached first for this experiment.

In contrast to the PAC exponents, the required time to solve the QP is
higher for qpOASES than for Hildreth. Although the number of iterations is
different, it is also important to repeat the S7-SCL translation which is not
fully optimized for speed, which can affect the calculation time. Optimization
of the algorithm is not done as the practical memory constraint limits the
use of qpOASES on a PLC.

8.3.2. Experiments on the pilot-scale set-up

Nevertheless the unexpected failure of the qpOASES algorithm during
the HIL experiments, experiments on the set-up are performed. Using the
Hildreth algorithm, the results plotted in Fig. 9 are obtained. The additional
shift for the reference of 0.3oC employed in the HIL experiments on the PLC,
has been removed. The ambient temperature was 14oC at the start of the
experiment and 19oC at noon.

After a transient from the start-up temperatures above the set-point dur-
ing the first 30 minutes (top plot of Fig. 9), the reference is followed clearly
more accurate than for the experiments on the PAC. The different envi-
ronmental conditions during the PLC experiment mainly cause the better
control, which was confirmed by the mean cost values in Tables 2 and 4. In
contrast to the PAC experiments, the reference trajectory is now also followed
when the temperature decreased below the reference starting temperature for
both the top and the reboiler temperature.

The inputs plotted in the bottom plot of Fig. 9 are also more close to the
HIL experiments. The constraints are hit only during a few minutes for the
flow rates.

The calculation time to present a solution to the column and the number
of iterations required to calculate the QP are plotted in Fig. 10. Some more

33



Postprint version of paper published in Control Engineering Practice 2014, vol 28, pages 34 - 48. 
The content is identical to the published paper, but without the final typesetting by the publisher. 

Journal homepage: http://www.journals.elsevier.com/control-engineering-practice/  
Original file available at: http://dx.doi.org/10.1016/j.conengprac.2014.02.016 

 

0 50 100 150 200 250 300
58.5

59

59.5

60

60.5

61

Time (Minutes)

T
op

 T
em

pe
ra

tu
re

 (
°C

)

 

 Measured temperature
Hardware−In−The−Loop
Reference temperature

0 50 100 150 200 250 300

77.5

78

78.5

79

Time (Minutes)

R
eb

oi
le

r 
T

em
pe

ra
tu

re
 (

°C
)

0 100 200 300

100

120

140

160

180

200

F
ee

d 
flo

w
 r

at
e 

(g
/m

in
)

0 100 200 300

0

50

100

150

200

F
ee

d 
du

ty
 (

W
)

0 100 200 300

3000

3500

4000

4500

5000

R
eb

oi
le

r 
du

ty
 (

W
)

Time (Minutes)
0 100 200 300

40

50

60

70

80

90

100

R
ef

lu
x 

flo
w

 r
at

e 
(g

/m
in

)

Time (Minutes)

Figure 9: Measured outputs (top) and inputs (bottom) for the top- and reboiler tem-
perature for an experiment tracking a desired reference temperature profile with a MPC
controller running on the PLC.
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Figure 10: Calculation time and number of iterations for the used QP algorithm on the
PLC.

run-times are presented in Table 5. The maximum number of iterations is
33 and at maximum 532 ms are required during this experiment.

9. Practical guidelines

To encourage the use of MPC in industry, the ease of implementation of
model predictive controllers on commonly used devices has to be investigated.
In this paper two standard industrial devices have been employed, i.e. (i) a
PAC device, which can be seen as a robust computer with real-time prop-
erties and additional in- and outputs, and (ii) a PLC, a standard industrial
automation device. Experiments with MPC on the PAC demonstrate that
MPC can easily be implemented. Neither memory nor speed constraints are
encountered in this paper and it is believed that even much larger systems
can be MPC-controlled by these types of devices. However, absolute limits
were not investigated. The practical implementation of MPC by an engineer
is realizable in a limited amount of time. The software is well documented,
is easy to use and has many features. In summary, MPC implemented on
PAC devices is ready for industry.
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The second investigated device is a PLC. Historically, this device is sit-
uated in the automation branch of the industry. The evolution in industry
has been to request additional features, e.g., logging and human-machine in-
teraction, which go together with the increase in computation power of the
PLC. The research in this work to employ MPC on a PLC demonstrated that
these devices, although capable, are not the ideal devices to run MPC. The
limited amount of memory and especially the limited speed of the devices
make it difficult to implement MPC. Based on the experience from this work,
one can conclude that online MPC on a PLC is only applicable for problems
resulting in a QP of limited size. For the PLC used for this study, a Hes-
sian of size 64×64, or 4096 elements is the absolute maximum. Important
to notice is that the classical Hildreth algorithm is able to successfully run a
hardware-in-the loop test and experiments for the pilot-scale set-up.

The state-of-the-art qpOASES algorithm, created with MPC applications
in mind, fails in this test due to its complexity. Notice, however, that it was
not optimized for speed. The hardware time constraint that a function can-
not run longer than 5999 ms, is reached very fast for qpOASES. For the
Hildreth algorithm, the 560 ms required for the experiments in this paper
is sufficiently removed from the previously mentioned time constraint. Al-
though QP algorithms tailored for MPC exist, simple algorithms have been
found to do the job in the current situation using the PLC as a host. More-
over, the uncommon programming language is an extra barrier for the easy
applicability of MPC on PLCs, as the employed algorithms are complex and
require thorough testing. Given the easy applicability for MPC on a PAC,
PLCs are not advisable for MPC applications in industry. To make a PLC
a valuable alternative for a PAC, not only speed and memory limits need
to increase drastically, e.g., by a factor of 100, but also the standard pro-
gramming languages employed in a PLC have to include more commonly
used languages such as C or C++. However, in that situation the difference
between a PAC and a PLC has become rather small.

10. Conclusion

In this paper, the use of an online model predictive control algorithm
hosted by a programmable automation controller and a programmable logic
controller for a pilot-scale binary distillation column has been investigated.
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A linear state-space model of the pilot-scale distillation column has been
obtained via system identification. This model is employed to design a model
predictive controller which is used in practical experiments on the set-up. The
runtimes for two online QP solvers, the Hildreth and the qpOASES algorithm,
have been evaluated and compared. It has been demonstrated that it is pos-
sible to run an online MPC algorithm on a PAC which is not only able to run
the supervisory algorithm, but is also responsible for data logging, human-
machine interfacing and low level control. It has also been experimentally
verified that the pilot-scale set-up can be MPC controlled by a PLC using
the Hildreth algorithm. Unfortunately, the current implementation for the
qpOASES algorithm surpassed the limits of the current state-of-the-art PLC
devices such that these experiments were not successful. Possible future work
is the integration of output (state) constraints.
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