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Abstract 

Children apply various strategies to mentally solve multi-digit subtraction problems 

and the efficient use of some of them may depend more or less on numerical magnitude 

processing. For example, the indirect addition strategy (solving 72-67 as ‘‘how much do I 

have to add up to 67 to get 72?”) , which is particularly efficient when the two given numbers 

are close to each other, requires to determine the proximity of these two numbers, a process 

that may depend on numerical magnitude processing. In the present study, children completed 

a numerical magnitude comparison task and a number line estimation task, both in a symbolic 

and nonsymbolic format, to measure their numerical magnitude processing. We administered 

a multi-digit subtraction task, in which half of the items were specifically designed to elicit 

indirect addition. Partial correlational analyses, controlling for intellectual ability and motor 

speed, revealed significant associations between numerical magnitude processing and mental 

multi-digit subtraction. Additional analyses indicated that numerical magnitude processing 

was particularly important for those items for which the use of indirect addition is expected to 

be most efficient. Although this association was observed for both symbolic and nonsymbolic 

tasks, the strongest associations were found for the symbolic format, and they seemed to be 

more prominent on numerical magnitude comparison than on number line estimation.  
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The Association between Children’s Numerical Magnitude Processing and Mental Multi-digit 

Subtraction 

 

Numerical magnitude processing, or people’s elementary intuitions about quantity, has 

been shown to play a crucial role in mathematical development (Booth & Siegler, 2006a; 

Butterworth, Varma, & Laurillard, 2011; Price & Ansari, 2012; see De Smedt, Noël, Gilmore, 

& Ansari, 2013, for a review). Recent studies in typically developing children have provided 

converging evidence on the role of numerical magnitude processing in predicting individual 

differences in mathematics achievement (Bugden & Ansari, 2011; De Smedt, Verschaffel, & 

Ghesquière, 2009; Halberda, Mazzocco, & Feigenson, 2008; Sasanguie, Van den Bussche, & 

Reynvoet, 2012; see De Smedt et al., 2013, for a review). One important limitation of these 

studies is that they mainly examined mathematics achievement with general achievement 

tests, which only yield a total score of mathematics achievement reflecting children’s 

performance across various mathematical subdomains. However, the focus on more specific 

mathematical skills may help to pinpoint associations between numerical magnitude 

processing and mathematics achievement in a more precise way, which may be more 

beneficial to devise appropriate diagnostic instruments and educational interventions. For 

example, recent data by Vanbinst, Ghesquière, and De Smedt (2012) showed that children’s 

symbolic - but not nonsymbolic - numerical magnitude processing skills were associated with 

single-digit arithmetic performance, indicating that children with better access to magnitude 

representations from symbolic digits retrieved more facts from their memory and were faster 

in executing fact retrieval as well as procedural strategies. In the present study, we extended 

this finding by focusing on another mathematical competency that may be specifically related 

to numerical magnitude understanding, namely mental multi-digit subtraction. Numerous 

studies have shown that children develop various strategies to mentally solve multi-digit 

subtraction problems (Beishuizen, 1993; Blöte, Klein, & Beishuizen, 2000; Carpenter, 



Franke, Jacobs, Fennema, & Empson, 1998; Torbeyns, De Smedt, Stassens, Ghesquière, & 

Verschaffel, 2009), and the efficient use of some of them may depend more or less on 

numerical magnitude processing. 

In the remainder of this introduction we describe the tasks that are most often used to 

assess children’s numerical magnitude processing and their associations with mathematics 

achievement as well as the various strategies children use to mentally solve multi-digit 

subtraction problems. Afterwards we present the design and hypotheses of the current study. 

Numerical magnitude processing and mathematics achievement 

Research on associations between numerical magnitude processing and mathematics 

achievement has typically used two types of tasks to measure numerical magnitude 

processing, i.e. a numerical magnitude comparison task (Sekuler & Mierkiewicz, 1977) and a 

number line estimation task (Booth & Siegler, 2006). In a numerical magnitude comparison 

task, children are asked to indicate the numerically larger of two presented numerical 

magnitudes, which can be presented in either a symbolic (digits) or a nonsymbolic (dots) 

format (Holloway & Ansari, 2009). In a number line estimation task, children are typically 

shown a horizontal number line, for example with 0 on one end and 100 on the other, and they 

are given a number to be positioned on this number line (Ashcraft & Moore, 2012; Booth & 

Siegler, 2006, 2008). Similar to the numerical magnitude comparison task, this task can be 

presented in a symbolic or a nonsymbolic format (Sasanguie, De Smedt, Defever, & 

Reynvoet, 2012).  

Performance on a numerical magnitude comparison task has been related to general 

mathematics achievement, revealing that children who are faster in indicating which of two 

numbers is the larger, show higher achievement in mathematics more precise representations 

of numerical magnitude (Bugden & Ansari, 2011; Halberda, Mazzocco, & Feigenson, 2008; 

Holloway & Ansari, 2009; Sasanguie et al., 2012). Moreover, De Smedt, Verschaffel, and 



Ghesquière (2009) provided longitudinal evidence that the speed of comparing numbers 

assessed at the start of formal schooling is predictively related to subsequent general 

mathematics achievement in second grade. 

A similar association with mathematics achievement has been observed in studies with 

number line estimation as a measure for numerical magnitude processing. Siegler and Booth 

(2004), for example, demonstrated that individual differences in number line estimation for 

kindergarteners, first and second graders were strongly correlated with their general 

mathematics achievement test scores. In line with these results, Sasanguie et al. (2012) 

observed that more linear estimation patterns on the symbolic number line estimation task 

were associated with higher general mathematics achievement for kindergarteners, first, 

second and sixth graders. 

It has been assumed that the performance in the numerical magnitude comparison task 

and number line estimation task relies on the same underlying magnitude representation 

(Deheane, 1997; Laski & Siegler, 2007). However, this idea has recently been questioned 

(Paladino & Barth, 2011; Sasanguie and Reynvoet, 2013). For instance, Sasanguie and 

Reynvoet (2013) compared the performance in the numerical magnitude comparison task and 

the number line estimation task directly and observed no significant relations between 

performance in both tasks. Based on these results, the authors suggested that different 

mechanisms might underlie these numerical magnitude processing tasks. They speculated that 

the performance in a numerical magnitude comparison task is reflecting decisional 

mechanisms upon activated magnitude representations (see Verguts, Fias & Stevens, 2005; 

Van Opstal, Gevers, De Moor & Verguts, 2008), whereas the number line estimation task taps 

more into number-space associations such as, reliance on anchor points to position a number 

on the number line. Although different processes may lie at the basis of performance in both 

tasks, previous studies have extensively shown that both tasks are related to mathematics 



achievement. Therefore, we included a numerical magnitude comparison task and a number 

line estimation task to verify which processes plays a more prominent role in explaining 

performance on subtraction items, or whether both tasks are equally important. 

The distinction between the symbolic and nonsymbolic formats relates to the question 

whether the representation of numerical magnitudes per se, or its access via symbolic digits, is 

important for mathematical achievement in general. To address this issue, previous studies 

have compared performance on numerical magnitude tasks with symbolic processing 

requirement, i.e. using Arabic digits as stimuli, and without symbolic processing requirement, 

i.e. using dots as stimuli (De Smedt & Gilmore, 2011; Holloway & Ansari, 2009; Landerl & 

Kölle, 2009; Lonnemann, Linkersdörfer, Hasselhorn, & Lindberg, 2011; Mussolin, Mejias, & 

Noël, 2010; Rousselle & Noël, 2007; Sasanguie et al., 2012; Vanbinst et al., 2012). If 

numerical magnitude processing per se is crucial for mathematical achievement, then both 

symbolic and nonsymbolic tasks should predict individual differences in mathematical 

achievement. If only symbolic tasks predict general mathematical skill, the hypothesis of the 

access to numerical meaning from symbolic digits is favored. Several attempts have been 

made to disentangle both hypotheses and evidence favoring both has been reported (De Smedt 

& Gilmore, 2011; Halberda et al., 2008; Holloway & Ansari, 2009; Landerl & Kölle, 2009; 

Libertus, Feigenson, & Halberda, 2011; Lonneman et al., 2011; Mussolin et al., 2010; 

Rouselle & Noël, 2007; Sasanguie et al., 2012, Vanbinst et al., 2012; see De Smedt et al., 

2013, for a review). In the present study we addressed this issue by using both symbolic and 

nonsymbolic formats of the numerical magnitude processing tasks. This allowed us to 

examine whether the representation of numerical magnitudes per se, or their access via 

symbolic digits, is important for mental multi-digit subtraction.  

Although the studies reviewed above have shown that the ability to represent 

numerical magnitudes is related to general mathematics achievement, little is known about 



how numerical magnitude processing is related to more specific mathematical skills. Booth 

and Siegler (2008), for example, explored this relation for mental addition in the number 

domain from 0 to 100, showing a positive correlation with numerical magnitude processing. 

Other research examined numerical magnitude processing in relation to both single- and 

multi-digit addition strategy use in children with different levels of mathematical achievement 

(Geary, Bow-Thomas, & Yao, 1992; Geary, Hoard, Nugent, & Byrd-Craven, 2008; Hoard, 

Geary, Byrd-Craven, & Nugent, 2008), showing that children with difficulties in mathematics 

achievement used more immature counting strategies and made more computational errors, 

coupled with a poorer performance on number line estimation tasks. However, to the best of 

our knowledge, no study has yet explored the association between numerical magnitude 

processing and mental multi-digit subtraction. We focused on mental calculation rather than 

on written computation, because the former is considered to require operating insightfully and 

flexibly on numbers whereas the latter comes down to  routine-based operating on digits 

(Fuson et al., 1997; Verschaffel, Greer, & De Corte, 2007). 

 

Mental multi-digit subtraction 

Numerous studies have shown that children develop various strategies to mentally 

solve multi-digit subtraction problems (Beishuizen, 1993; Blöte et al., 2000; Carpenter et al., 

1998; Torbeyns, De Smedt, Stassens, et al., 2009). These strategies can be described along 

different dimensions (Peltenburg, van den Heuvel-Panhuizen, & Robitzsch, 2012; Torbeyns, 

De Smedt, Stassens, et al., 2009). One way to categorize these strategies is by determining the 

operation that underlies the solution process, which can be either subtraction or addition. 

Using this categorization, two types of strategies can be distinguished: (1) direct subtraction 

strategies, in which the subtrahend is directly subtracted from the minuend and (2) indirect 

addition strategies, in which one determines how much needs to be added to the subtrahend to 



get to the minuend
1
. A rational task analysis of subtraction problems reveals that indirect 

addition is particularly efficient on subtractions with a relatively small difference between the 

minuend and subtrahend (Anghileri, Beishuizen, & van Putten, 2002; Beishuizen, Van Putten, 

& Van Mulken, 1997; Torbeyns, De Smedt, Stassens, et al., 2009). In these cases, the answer 

is found quickly and easily by means of indirect addition, whereas the direct subtraction 

strategy would take more, and more difficult, problem solving steps. For example, if one is 

asked to solve the problem “81 - 79 = ?”, the indirect addition strategy “how much do I have 

to add up to 79 to get 81? Answer: 2”, leads to a faster and less error-prone answer than the 

direct subtraction strategy “81 - 70 = 11 and 11 - 9 = 2” (De Smedt, Torbeyns, Stassens, 

Ghesquière, & Verschaffel, 2010; Peters, De Smedt, Torbeyns, Ghesquière, & Verschaffel, 

2012; Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009b; Verschaffel et al., 2007; 

Woods, Resnick, & Groen, 1975). The meaningful and flexible use of this strategy requires a 

good understanding of the numerical magnitudes in the problem and their mutual relation 

(Baroody, Torbeyns, & Verschaffel, 2009; Verschaffel, Bryant, & Torbeyns, 2012), and, more 

particularly, an appropriate estimation of the difference between minuend and subtrahend. 

Arguably, this determination of the proximity of two given numbers may depend on one’s 

numerical magnitude processing, because children with good numerical magnitude processing 

skills will be more accurate and faster in estimating the difference between the two given 

numbers and in comparing this difference with the size of the subtrahend, to determine if this 

difference is relatively small or not. Against this background, we predicted that the 

association between children’s numerical magnitude processing and their performance on 

items in which the use of indirect addition is expected, will be more prominent than for the 

items in which the use of a direct subtraction strategy is expected. 

                                                             
1 It should be noted that there is also a third class of strategy, namely the indirect subtraction strategy, in which 

one determines how much has to be decreased from the larger given number to get the smaller one (81 – 72 = ? ; 

81 – ? = 72) (De Corte & Verschaffel, 1987; Torbeyns, De Smedt, Stassens, et al., 2009). 



Most available studies on children’s and adults’ use of the indirect addition in multi-

digit subtraction relied on verbal protocol data. Although these studies showed that adults 

frequently reported the use the indirect addition strategy, children hardly reported its use 

(Selter, 2001; Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009a; Torbeyns, De Smedt, 

et al., 2009b). Peters, De Smedt, Torbeyns, Ghesquière, and Verschaffel (2010a, 2010b) 

argued, however, that verbal protocols may be less suited to identify the indirect addition 

strategy in multi-digit subtraction, because this strategy is often executed in a very fast and 

quasi-automatic way and, second, because particularly children might have difficulties in 

articulating precisely how they found the answer when using indirect addition (see also Kirk 

& Ashcraft, 2001). Using a combination of several non-verbal research methods, Peters et al. 

(2012) recently showed that primary school children are indeed using the indirect addition 

strategy, particularly on subtraction items in which the difference between the minuend and 

the subtrahend is relatively small, as in “81 – 79 = .”. Therefore, in order to create items that 

maximally elicit this indirect addition strategy, we selected items with a relatively small 

difference.  

The present study  

Against the background of the aforementioned research, the present study set out to 

explore the role of numerical magnitude processing in children’s mental multi-digit 

subtraction, and, more particularly, in their use of the indirect addition strategy in mental 

multi-digit subtraction in the number domain 20-100. We administered a numerical 

magnitude comparison task and a number line estimation task, both presented in symbolic 

(digits) and nonsymbolic (dots) formats, to children who were in the middle of third grade. 

First, we expected an association between children’s performance on the multi-digit 

subtraction problems and both numerical magnitude processing tasks. Second, these children 

solved a task consisting of multi-digit subtraction items that were constructed in a way that 



they aimed to elicit the use of  an indirect addition strategy or a direct subtraction strategy; 

and, we hypothesized that the association between children’s numerical magnitude processing 

and their performance on mental multi-digit subtraction would be particularly prominent for 

those items in which the use of indirect addition is considered to be the most efficient. Third, 

we directly compared the numerical magnitude comparison task and the number line 

estimation task to explore the contribution of each task in explaining the performance on 

mental multi-digit subtraction. Fourth, by comparing symbolic and nonsymbolic tasks, we 

additionally tried to verify whether the numerical representations of magnitude per se or the 

access to numerical magnitude from symbolic digits, is related to mental multi-digit 

subtraction. Finally, to evaluate alternative explanations for associations between numerical 

magnitude processing and mental multi-digit subtraction, children’s general intellectual 

ability and general motor speed were assessed as control measures.  

 

Method 

Participants 

The sample consisted of 56 third-graders selected from two schools located in the 

Flemish part of Belgium. Both schools used the same general educational approach and 

mathematics curriculum. Participants were all typically developing children (27 boys, 29 

girls), with a mean age of 8 years 9 months (SD = 5 months) and none of them had repeated a 

grade. All children were recruited from schools with children from middle-class 

socioeconomic backgrounds.  

Measures 

The experimental tasks were administered on a laptop with a 15-inch screen. Stimulus 

presentation and the recording of behavioral data were controlled by E-prime 2 (Schneider, 



Eschman, & Zuccolotto, 2002) and a voice-key that was connected to the serial response box 

(Psychology Software Tools, http://www.pstnet.com) 

Numerical magnitude processing 

Numerical magnitude comparison 

Participants had to select the numerically larger of two presented numerical magnitudes, 

one on the left and one on the right of the screen, by pressing a key at the side of the 

numerically largest magnitude. The left response key was d, the right response key was k. 

Response keys were indicated by a color on the keyboard, green or yellow. Two practice trials 

were included for each task, to make children familiar with the task requirements. A trial 

started with a fixation cross for 200 ms, followed by a pause of 800 ms, after which the two 

stimuli appeared that had to be compared. The experimenter initiated each trial by means of a 

control key. Children were instructed to perform both accurately and quickly. 

Symbolic numerical magnitude comparison 

Symbolic stimuli involved Arabic digits ranging from 1 to 100 presented in white on a 

black background in Arial font (size 72). The stimuli were presented in two separate blocks, 

one including only single-digit numbers and one including only two-digit numbers. Stimuli in 

the single-digit condition comprised all possible pairs of numbers 1 to 9, resulting in 72 trials. 

Stimuli in the multi-digit condition comprised a selection of number pairs with numbers 

ranging from 10 to 99. These number pairs involved eight different types of pairs, 

systematically balanced on the decade distance, the unit distance and the compatibility of the 

digits. The distance between the decades and units of two numbers was either small (1-4) or 

large (5-9). Half of the trials were compatible , i.e. when both comparisons between decades 

and units led to the same decision (e.g. 53 and 68; both 5 < 6 and 3 < 8) whereas half of the 

trials were incompatible, i.e. when the two comparisons for decades and units lead to different 



decisions (e.g. 59 and 74; 5 < 7 but 9 > 4) (Nuerk, Weger, & Willmes, 2001). For each type of 

pair, four items were presented, resulting in 32 trials. Pairs were presented in a semi random 

order, with no two pairs of the same type presented after one another. The position of the 

larger number was counterbalanced and the stimuli remained on the screen until response. 

 Nonsymbolic numerical magnitude comparison 

Nonsymbolic stimuli comprised two sets of white dots simultaneously presented on a 

black background. Dot patterns were generated with a Matlab script (Gebuis & Reynvoet, 

2011) that controlled for information concerning the visual properties of stimuli that co-vary 

with number (area extended, item size, total surface, density, and circumference). This was 

done to ensure that children could not reliably use these non-numerical cues or perceptual 

features to make their decision. To avoid subitizing, stimuli in the nonsymbolic numerical 

magnitude comparison task involved number pairs with numbers ranging from 8 to 32. Pairs 

were constructed using ratios 2.0, 1.5, 1.3, 1.2, 1.12, around the standard number 16, resulting 

in 10 different pairs (i.e. numbers 8, 11, 12, 13, 14, 18, 19, 21, 24 and 32; combined with 

number 16). The order of the quantity in a pair was balanced and each type of pair was 

presented six times, yielding 60 trials. The stimulus disappeared after 840 ms to avoid 

counting the number of dots. 

Number line estimation 

Children were presented with 25 cm long blank lines in the center of white A4 sheets, 

representing the interval 0-100. Children were instructed to mark on the line where they 

thought that the quantity, which was presented on a computer screen, had to be positioned. To 

ensure that children were aware of the interval size, an example was provided by the 

experimenter solving the first item of the task while saying: “This line goes from 0 to 100. If 

here is 0 and here is 100, where would you position this number?”, in the symbolic number 



line estimation task. In the nonsymbolic format, the experimenter provided an example by the 

first item saying: “This line goes from 0 dots to 100 dots. If here is 0 dots and here is 100 

dots, where would you position this quantity?”. A time limit of 5 seconds was administered, 

after which the page was turned and children had to start with the next trial.  

Following Siegler and Booth (2004) we calculated the percentage absolute error (PAE), 

as a measure of children’s estimation accuracy, by dividing the absolute value of difference 

between the estimate and the estimated quantity with the scale of estimates. For example, if a 

child was asked to estimate 26 on a 0-100 number line and placed the mark at the point on the 

line corresponding to 41, the PAE would be (41 - 26) / 100 or 15%. 

Symbolic number line estimation 

Symbolic stimuli involved Arabic digits. The numbers to be positioned were 17, 52, 

90, 48, 61, 39, 4, 33, 42, 79, 14, 3, 24, 29, 64, 81, 8, 96, 12, 84, 21, 18, 6, 57, 72, 25, which 

were the same as in Ashcraft and Moore (2012). Numbers were presented in a fixed random 

order. The end points of the number line in the symbolic task were labeled with 0 on the left 

and 100 on the right.  

 Nonsymbolic number line estimation 

Nonsymbolic stimuli comprised white dot patterns on a black background. The 

quantities to be positioned concerned the same set as in the symbolic number line task, but in 

a different order: 81, 17, 39, 61, 57, 29, 84, 42, 52, 12, 90, 64, 18, 8, 21, 72, 24, 33, 25, 14, 79, 

96, 48. Similar to the nonsymbolic comparison task, we excluded the numbers 3, 4, and 6, to 

avoid subitizing. Dot patterns were generated with a MATLAB script
2
 provided by Piazza, 

Izard, Pinel, Le Bihan, and Dehaene (2004) and were controlled for non-numerical 

                                                             
2
 It was not possible to use the MATLAB script by Gebuis and Reynvoet (2011). This script only controls for non-

numerical parameters when a set of pairs is created. For the nonsymbolic number line estimation task there 
are no sets of pairs created, only single dot patterns. Therefore, we opted to use the script by Piazza et al. 
(2004) which also controls for non-numerical parameters.   



parameters, i.e. individual dot size, total occupied area, and density. This prevented that 

decisions were dependent on non-numerical cues or perceptual features.  Quantities were 

presented in a fixed random order. The end points were labeled on the left with an empty 

circle and on the right with a circle with 100 dots. 

Mental multi-digit subtraction 

Children had to mentally solve a series of 32 horizontally presented multi-digit 

subtractions. All problems required carrying. The items in the subtraction task were 

constructed in such a way that they triggered the use of either direct subtraction or indirect 

addition. Against the background of previous studies on mental multi-digit subtraction in the 

number domain 20-100 (e.g. Peters et al., 2012, Torbeyns et al., 2009b), items eliciting direct 

subtraction (DS-items) were those with (a) a subtrahend smaller than the difference and (b) a 

relatively large distance (Mdistance = 54.38) between the minuend and the subtrahend, e.g. “83 - 

27 = .”, and items eliciting indirect addition (IA-items) were characterized by (a) a subtrahend 

larger than the difference and (b) a relatively small distance (Mdistance = 13.81) between the 

minuend and the subtrahend, e.g. “72 - 67 = .”. Children were only allowed to solve the items 

using these two different types of strategies, either the direct subtraction strategy or the 

indirect addition strategy. Both strategies were explained and demonstrated at the start of the 

experiment. 

 Children were shown a subtraction problem on the computer screen after which they 

were expected to mentally solve the problem as fast and accurately as possible. They were not 

allowed to use paper and pencil or any other materials. Children had to say their answer out 

loud into a microphone that recorded their response time, using a voice key, after which the 

experimenter typed the child’s answer into the computer. The experimenter initiated each trial 

by means of a control key. 



Control tasks 

Motor reaction time 

This task was included to control for children’s response speed on the keyboard. Two 

figures appeared on the screen. One of them was colored white and one of them was colored 

black. The child was asked to press as soon as possible on the side of the white figure. Twenty 

experimental trials were presented. 

Intellectual ability 

 Children’s general cognitive ability was assessed with Raven’s standard progressive 

matrices (Raven, Court, & Raven, 1992). For each child, a standardized score (M = 100; SD = 

15) was calculated. 

Procedure 

All tasks were administered at the children’s own school. The measure of intellectual 

ability was group-based. All other tasks were completed individually. These tasks were 

administered in two different sessions, starting with the motor reaction time task and the 

numerical magnitude comparison tasks in session 1, followed by the number line estimation 

tasks and the subtraction task in session 2. All children completed the tasks in the same order.  

 

Results 

On a trial level, we removed trials in the numerical magnitude comparison tasks for 

which children had a response time higher than 5 seconds (0.1% of the trials). We also 

removed trials in the subtraction task for which children had a response time higher than 35 

seconds (3.6% of the trials). Response times were calculated on the basis of the correct trials 

only. All analyses were carried out by means of SPSS Version 18.  



Descriptive statistics 

Numerical magnitude processing 

Table 1 shows the descriptive statistics for the numerical magnitude processing tasks. 

The accuracy on symbolic numerical magnitude comparison was very high and therefore we 

only considered mean reaction times on this task in subsequent correlational analyses. On the 

other hand, the accuracy on the nonsymbolic numerical magnitude comparison task was 

substantially lower, and therefore we included accuracy rather than speed on this task in 

subsequent analyses. This echoes previous work with similar symbolic and nonsymbolic 

comparison tasks where respectively speed rather than accuracy (De Smedt et al., 2009; 

Landerl & Kölle, 2009) and accuracy rather than speed is analyzed (Sasanguie et al., 2012). 

Mental multi-digit subtraction 

Table 2 shows the descriptive statistics for the multi-digit subtraction task. The 

accuracy was high for both types of subtraction items. A repeated measures ANOVA on the 

accuracies with type of item as a within-subject factor showed that the accuracy for the DS-

items was significantly higher than for the IA-items (F(1,55) = 5.47, p < .05). Furthermore, 

the reaction time for the DS-items was significantly faster than for the IA-items (F(1,55) = 

4.21, p < .05).  

Correlational analyses 

To examine the associations between the numerical magnitude processing tasks and 

the mental multi-digit subtraction task, we performed partial Pearson correlational analyses 

(Table 3), controlling for intellectual ability. For the symbolic numerical magnitude 

comparison task, there was a strong correlation between the blocks with the numbers 1-9 and 

10-100 (r = .77, p < .01). Analyses with the two tasks separately showed that the results for 

both tasks were very similar. Therefore, performance on both blocks was averaged and this 

average score was used in all subsequent analyses. 



Significant positive correlations were found between the response times on the 

symbolic numerical magnitude comparison task and the response times on the DS-items and 

IA-items of the subtraction task. This means that children who were faster in comparing two 

numbers, were also faster in solving the DS-items and the IA-items. In a second step we 

additionally controlled for motor reaction time when the correlation between two reaction 

times measures was calculated. Results showed that all previously found associations 

remained significant (rs > .39; ps < .01). Symbolic numerical magnitude comparison was also 

significantly negatively correlated with accuracy on the IA-items, indicating that children who 

were faster on symbolic comparison performed more accurately on the IA-items. The 

nonsymbolic numerical magnitude comparison task was only positively correlated with 

accuracy on the IA-items, showing that children who performed more accurately on the 

nonsymbolic numerical magnitude comparison task were also more accurate in solving the 

IA-items. Turning to number line estimation, we only observed significant positive 

correlations between the symbolic number line estimation task and the response times for both 

types of subtraction items, indicating that children who made more accurate number line 

estimates, were also faster in solving DS-items and IA-items. There were no other significant 

associations between the number line estimation tasks and mental multi-digit subtraction 

(Table 3).  

To compare the unique contribution of each numerical magnitude processing task in 

explaining performance on the DS-items and IA-items, we calculated partial correlations in 

which the correlation between performance on a numerical magnitude processing task and 

one type of item was controlled for the performance on the other type of item, and for 

intellectual ability (Table 4). Results showed  that there was no significant correlation 

between the performance on the symbolic numerical magnitude comparison task and the 

response times on the DS-items, when controlled for the performance on the IA-items. On the 



other hand, a significant positive correlation was found between response times on the 

symbolic numerical magnitude comparison tasks and response times on the IA-items, when 

controlling for the response times on the DS-items.  The comparison of these two partial 

correlations, using the Williams-Steiger test, showed that they were significantly different 

from each other (t = -2.89; p < .01), suggesting that symbolic numerical magnitude 

comparison yields a more unique contribution in explaining the response times on IA items. 

No significant correlation was found between performance on the symbolic numerical 

magnitude comparison task and accuracy on the DS-items, when we controlled for the 

accuracy on the IA-items. However, there was a significant negative correlation between the 

performance on symbolic numerical magnitude comparison task and the accuracy on the IA-

items, when controlling for the accuracy on the DS-items. These partial correlations did not 

significantly differ from each other (t = 1.50; p = .14).  

A similar pattern of results was found for the nonsymbolic numerical magnitude 

comparison task. No significant correlation was found with the accuracy on the DS-items 

when controlling for the accuracy on the IA, but there was a significant positive correlation 

with the accuracy on the IA-items when controlling for the accuracy on the DS-items. A 

comparison of these partial correlations showed that they were significantly different from 

each other (t = 2.04; p < .05). 

To assess the unique contribution of symbolic number line estimation in explaining the 

performance on the DS-items and IA-items, we again calculated partial correlations in which 

the correlation between the PAE on the symbolic number line estimation task and the 

performance on one type of item was controlled for the performance on the other item type. 

Results showed  that there was no significant correlation between PAE and performance on 

the DS-items, when controlled for performance on the IA-items, and no significant correlation 

between PAE and performance on the IA-items, controlling for performance on the IA-items. 



All associations remained significant after additionally controlling for motor reaction time (rs 

> .28; ps < .05). 

Discussion 

Studies in typically developing children have shown that the ability to represent 

numerical magnitudes, as measured with the numerical magnitude comparison tasks and 

number line estimation tasks, is related to general mathematics achievement (Booth & 

Siegler, 2006; Holloway & Ansari, 2009). From these tests it is unclear how children’s 

numerical magnitude processing contributes to specific mathematical skills. In the current 

study, we therefore investigated the association between numerical magnitude processing and 

individual differences in mental multi-digit subtraction in the number domain 20-100. First, 

we expected an association between children’s numerical magnitude processing and their 

performance on the multi-digit subtraction problems. Second, we anticipated this association 

to be more prominent for those items in which the use of indirect addition is considered most 

efficient. Third, comparing the performance on two numerical magnitude processing tasks 

could give us insight on which of these tasks is most important for mental multi-digit 

subtraction. Finally, by comparing symbolic and nonsymbolic tasks, we tried to verify 

whether the numerical representations of magnitude per se or rather the access to numerical 

magnitude from symbolic digits, is related to mental multi-digit subtraction.  

First, extending the existing body of data, our results indicated that there was a 

significant association between numerical magnitude processing and mental multi-digit 

subtraction, even after we additionally controlled for intellectual ability and motor speed. 

Children with a better numerical magnitude processing ability were faster and more accurate 

in mentally solving multi-digit subtractions. The present findings replicated those of previous 

studies on the role of numerical magnitude processing in general mathematics achievement 

(Booth & Siegler, 2006; Bugden & Ansari, 2011; Butterworth, Varma, & Laurillard, 2011; De 



Smedt et al., 2009; Halberda & Feigenson, 2008; Price & Ansari, 2012), and go beyond the 

previous ones, by showing that this association also applies to a more specific mathematical 

skill, i.e. mental multi-digit subtraction.  

Second, while our findings showed that children with better numerical magnitude 

processing ability performed better on both types of subtraction items, the role of numerical 

magnitude processing ability seemed to be more important in the IA-items, as indicated by the 

partial correlation analyses in which we controlled for the performance on the DS-items and 

vice versa, and by the direct comparison of these correlations. This could be explained by the 

fact that the flexible use of the indirect addition strategy requires a good understanding of the 

numerical magnitudes in the problem and their mutual relation (Baroody et al., 2009; 

Verschaffel et al., 2012). For example, the flexible use of the indirect addition strategy 

requires an appropriate estimation of the difference between minuend and subtrahend, on 

which children with better numerical magnitude ability may perform better. Our findings are 

in line with this idea and suggest that indeed the determination of the proximity of two given 

numbers, which is required for applying the indirect addition strategy efficiently, i.e. fast and 

accurate, depends on one’s numerical magnitude processing.  

A third goal was to unravel which of the numerical magnitude processing tasks 

provided the best predictor of mental multi-digit subtraction. Sasanguie et al. (2012) found 

that the symbolic numerical magnitude comparison task and the symbolic number line 

estimation task were both related to children’s mathematics achievement. This is consistent 

with our results, suggesting that that both tasks indeed are measures of a common mechanism, 

namely numerical magnitude processing. When performing the partial correlational analyses, 

however, to compare the unique contribution of each numerical magnitude processing task, 

the association between the number line estimation task and mental multi-digit subtraction 

disappeared, while the association with numerical magnitude comparison was still significant. 



This suggests that numerical magnitude comparison has a more unique contribution in 

explaining performance on IA items. It is possible that different mechanisms underlie these 

numerical magnitude processing tasks, which has also been shown in a recent study by 

Sasanguie and Reynvoet (2013).  The numerical magnitude comparison task is reflecting 

decisional mechanisms on activated magnitude representations (see Verguts, Fias & Stevens, 

2005), whereas the  number line estimation task also taps into visuo-spatial processes. Our 

results suggests that the fluency by which number representations are available, i.e. how fast 

decisions can be made based on the activated magnitude representations, is an important 

factor, as shown by the role numerical magnitude comparison plays in explaining mental 

multi-digit subtraction. However, more work needs to be done to provide a fine grained 

characterization of the specific mechanisms involved in the numerical magnitude comparison 

task and the number line estimation task. 

Finally, in contrast to the findings of Vanbinst et al. (2012), who observed similar 

associations between numerical magnitude processing and mental subtraction in the number 

domain up to 20 and only revealed a significant association with the symbolic numerical 

magnitude comparison task, we also found a significant association between mental 

calculation and nonsymbolic numerical magnitude comparison. A possible explanation is that 

nonsymbolic processing does not play a role in the processing of small numbers, and only 

comes into play when larger, multi-digit numbers are used. This further relates to the question 

whether the representation of numerical magnitudes per se or its access via symbolic digits is 

important for mathematics achievement (De Smedt & Gilmore, 2011; Rousselle & Noël, 

2007) and consequently for mental multi-digit subtraction. To address this issue, we 

compared the performance on numerical magnitude tasks with symbolic processing 

requirement, i.e. using Arabic digits as stimuli, and without symbolic processing requirement, 

i.e. using dots as stimuli. Some studies have shown that symbolic but not nonsymbolic 



magnitude processing skills correlate with individual differences in general mathematics 

achievement (Holloway & Ansari, 2009; Rousselle & Noël, 2007; Sasanguie, De Smedt, et 

al., 2012), whereas others observed significant associations between nonsymbolic magnitude 

processing and mathematics performance (Halberda et al., 2008; Libertus et al., 2011; 

Mazzocco, Feigenson, & Halberda, 2011). Our results revealed significant correlations 

between mental multi-digit subtraction and both symbolic and nonsymbolic tasks. This is in 

line with previous studies on general mathematics achievement (Mundy & Gilmore, 2009; 

Mussolin, Mejias, & Noël, 2010). These associations, however, were different for speed and 

accuracy on the multi-digit subtraction task. Accuracy on the subtraction task was associated 

with the symbolic numerical magnitude comparison task, the nonsymbolic numerical 

magnitude comparison task, and the symbolic number line estimation tasks, indicating that 

both symbolic and nonsymbolic representations seem to play a their role in mental multi-digit 

subtraction. By contrast, the speed by which children solved the subtraction items was only 

associated with the two symbolic tasks and not with the nonsymbolic tasks, indicating the 

association to be more prominent for the symbolic tasks. This suggests that particularly the 

access to numerical magnitudes from symbolic digits is crucial for mental multi-digit 

subtraction.  

 The current data were collected at only one measurement point and therefore they do 

not allow us to make causal interpretations. It would be interesting to conduct, as a next step, 

a longitudinal study that examines the development of children’s numerical magnitude 

processing and its association with mental multi-digit subtraction. Even more compelling 

would be to carry out carefully controlled intervention research that examines the effect of 

training children’s numerical magnitude processing on their mental subtraction performance. 

It has been shown that interventions that use games based on magnitude processing, e.g. 

number lines, enhance children’s performance in numerical magnitude processing tasks 



(Kucian et al., 2011; Ramani & Siegler, 2011) as well as learning of multi-digit addition 

(Booth & Siegler, 2008). Against the background of these findings, it would be interesting to 

examine whether interventions that use such games affect mental multi-digit subtraction. 

  



References 

 

Anghileri, J., Beishuizen, M., & van Putten, K. (2002). From informal strategies to structured 

procedures: Mind the gap! Educational Studies in Mathematics, 49(2), 149-170. doi: 

10.1023/a:1016273328213 

Ashcraft, M. H., & Moore, A. M. (2012). Cognitive processes of numerical estimation in 

children. Journal of Experimental Child Psychology, 111(2), 246-267. doi: 

10.1016/j.jecp.2011.08.005 

Baroody, A. J., Torbeyns, J., & Verschaffel, L. (2009). Young children's understanding and 

application of subtraction-related principles. Mathematical Thinking and Learning, 

11(1-2), 2-9. doi: 10.1080/10986060802583873 

Barth, H.C., & Paladino, A.M. (2011). The development of numerical estimation: evidence 

against a representational shift. Developmental Science, 14, 125-135. 

Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction 

up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 

24(4), 294-323.  

Beishuizen, M., Van Putten, C. M., & Van Mulken, F. (1997). Mental arithmetic and strategy 

use with indirect number problems up to one hundred. Learning and Instruction, 7(1), 

87-106. doi: 10.1016/s0959-4752(96)00012-6 

Blöte, A. W., Klein, A. S., & Beishuizen, M. (2000). Mental computation and conceptual 

understanding. Learning and Instruction, 10(3), 221-247. doi: 10.1016/s0959-

4752(99)00028-6 

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure 

numerical estimation. Developmental Psychology, 42(1), 189-201.  



Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence 

arithmetic learning. Child Development, 79(4), 1016-1031. doi: 10.1111/j.1467-

8624.2008.01173.x 

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence 

arithmetic learning. Child Development, 79(4), 1016-1031. doi: 10.1111/j.1467-

8624.2008.01173.x 

Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical 

competence are related to the intentional but not automatic processing of Arabic 

numerals. Cognition, 118(1), 32-44. doi: 10.1016/j.cognition.2010.09.005 

Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: From brain to education. 

Science, 332(6033), 1049-1053. doi: 10.1126/science.1201536 

Carpenter, T. P., Franke, M. L., Jacobs, V. R., Fennema, E., & Empson, S. B. (1998). A 

longitudinal study of invention and understanding in children's multidigit addition and 

subtraction. Journal for Research in Mathematics Education, 29(1), 3-20.  

Cowan, R. (2003). Does it all add up? Changes in children’s knowledge of addition 

combinations, strategies, and principles. In A. Baroody & A. Dowker (Eds.), The 

development of arithmetic concepts and skills (pp. 35-74). Mahwah, NJ: Erlbaum. 

De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first graders' 

strategies for solving addition and subtraction word problems. Journal for Research in 

Mathematics Education, 18(5), 363-381.  

Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: 

Oxford University Press. 

De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? 

Numerical magnitude processing in first graders with mathematical difficulties. 



Journal of Experimental Child Psychology, 108(2), 278-292. doi: 

10.1016/j.jecp.2010.09.003 

De Smedt, B., Noël, M., Gilmore, C., Ansari, D. (2013). The relationship between symbolic 

and non-symbolic numerical magnitude processing skills and the typical and atypical 

development of mathematics: a review of evidence from brain and behavior. Trends in 

Neuroscience & Education, 2, 48-55. 

De Smedt, B., Torbeyns, J., Stassens, N., Ghesquière, P., & Verschaffel, L. (2010). 

Frequency, efficiency and flexibility of indirect addition in two learning environments. 

Learning and Instruction, 20(3), 205-215. doi: 10.1016/j.learninstruc.2009.02.020 

De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical 

magnitude comparison for individual differences in mathematics achievement. Journal 

of Experimental Child Psychology, 103(4), 469-479.  

Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., 

Carpenter, T. P., & Fennema, E. (1997). Children's conceptual structures for multidigit 

numbers and methods of multidigit addition and subtraction. Journal for Research in 

Mathematics Education, 28(2), 130-162.  

Geary, D. C., Bow-Thomas, C. C., & Yao, Y. (1992). Counting knowledge and skill in 

cognitive addition: A comparison of normal and mathematically disabled children. 

Journal of Experimental Child Psychology, 54(3), 372-391. doi: 

http://dx.doi.org/10.1016/0022-0965(92)90026-3 

Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number 

line representations in children with mathematical learning disability. Developmental 

Neuropsychology, 33(3), 277-299. doi: 10.1080/87565640801982361 

Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior 

Research Methods, 43(4), 981-986. doi: 10.3758/s13428-011-0097-5 



Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the "Number 

Sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. 

Developmental Psychology, 44(5), 1457-1465.  

Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-

verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.  

Hoard, M. K., Geary, D. C., Byrd-Craven, J., & Nugent, L. (2008). Mathematical cognition in 

intellectually precocious first graders. Developmental Neuropsychology, 33(3), 251-

276. doi: 10.1080/87565640801982338 

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The 

numerical distance effect and individual differences in children's mathematics 

achievement. Journal of Experimental Child Psychology, 103(1), 13.  

Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of using verbal 

reports to study math strategies. Learning & Memory, 27(1), 157-175.  

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin, 

E., & von Aster, M. (2011). Mental number line training in children with 

developmental dyscalculia. NeuroImage, 57(3), 782-795. doi: 

10.1016/j.neuroimage.2011.01.070 

Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in 

elementary school. Journal of Experimental Child Psychology, 103(4), 546-565. doi: 

10.1016/j.jecp.2008.12.006 

Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal 

connections among numerical categorization, number line estimation, and numerical 

magnitude comparison. Child Development, 78(6), 1723-1743. doi: 10.1111/j.1467-

8624.2007.01087.x 



Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate 

number system correlates with school math ability. Developmental Science, 14(6), 

1292-1300. doi: 10.1111/j.1467-7687.2011.01080.x 

Lonnemann, J., Linkersdörfer, J., Hasselhorn, M., & Lindberg, S. (2011). Symbolic and non-

symbolic distance effects in children and their connection with arithmetic skills. 

Journal of Neurolinguistics, 24(5), 583-591. doi: 10.1016/j.jneuroling.2011.02.004 

Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers' precision of the 

approximate number system predicts later school mathematics performance. PLoS 

ONE, 6(9), e23749. doi: 10.1371/journal.pone.0023749 

Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic 

representations of number. Journal of Experimental Child Psychology, 103, 490–502. 

Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number 

comparison in children with and without dyscalculia. Cognition, 115(1), 10-25. doi: 

10.1016/j.cognition.2009.10.006 

Nuerk, H.-C., Weger, U., & Willmes, K. (2001). Decade breaks in the mental number line? 

Putting the tens and units back in different bins. Cognition, 82(1), B25-B33. doi: 

10.1016/s0010-0277(01)00142-1 

Peltenburg, M., van den Heuvel-Panhuizen, M., & Robitzsch, A. (2012). Special education 

students’ use of indirect addition in solving subtraction problems up to 100—A proof 

of the didactical potential of an ignored procedure. Educational Studies in 

Mathematics, 79(3), 351-369. doi: 10.1007/s10649-011-9351-0 

Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2010a). Adults’ use 

of subtraction by addition. Acta Psychologica, 135(3), 323-329. doi: 

http://dx.doi.org/10.1016/j.actpsy.2010.08.007 



Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2010b). Using 

addition to solve large subtractions in the number domain up to 20. Acta Psychologica, 

133(2), 163-169. doi: 10.1016/j.actpsy.2009.10.012  

Peters, G., De Smedt, B., Torbeyns, J., Ghesquière, P., & Verschaffel, L. (2012). Children’s 

use of subtraction by addition on large single-digit subtractions. Educational Studies 

in Mathematics, 79(3), 335-349. doi: 10.1007/s10649-011-9308-3 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 

approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547-555. 

doi: 10.1016/j.neuron.2004.10.014 

Price, G. R., & Ansari, D. (2012). Developmental dyscalculia: A case for neuroscience in 

education. BJEP Monograph Series II, Number 8 - Educational Neuroscience, 1(1), 

45-62.  

Ramani, G. B., & Siegler, R. S. (2011). Reducing the gap in numerical knowledge between 

low- and middle-income preschoolers. Journal of Applied Developmental Psychology, 

32(3), 146-159. doi: 10.1016/j.appdev.2011.02.005 

Raven, J. C., Court, J. H., & Raven, J. (1992). Standard Progressive Matrices. Oxford: 

Psychologists Press. 

Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics 

learning disabilities: A comparison of symbolic vs non-symbolic number magnitude 

processing. Cognition, 102(3), 361-395. doi: 10.1016/j.cognition.2006.01.005 

Russo, J. E., Johnson, E. J., & Stephens, D. (1989). The validity of verbal reports. Memory 

and Cognition, 17(759-769).  

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic 

numerical abilities and mathematics achievement. British Journal of Developmental 

Psychology, 30(2), 344-357. doi: 10.1111/j.2044-835X.2011.02048.x 



Sasanguie, D., & Reynvoet, B. (in press). Number comparison and number line estimation 

rely on different mechanisms. Psychologica Belgica. 

Sasanguie, D., Van den Bussche, E., & Reynvoet, B. (2012). Predictors for mathematics 

achievement? Evidence from a longitudinal study. Mind, Brain, and Education, 6(3), 

119-128. doi: 10.1111/j.1751-228X.2012.01147.x 

Schneider, M., Eschman, A., & Zuccolotto, A. (2002). E-Prime User's Guide. Pittsburgh: 

Psychology Software Tools, Inc. 

Sekuler, R., & Mierkiewicz, D. (1977). Children's judgments of numerical inequality. Child 

Development, 48(2), 630-633.  

Selter, C. (2001). Addition and subtraction of three-digit numbers: German elementary 

children's success, methods and strategies. Educational Studies in Mathematics, 47(2), 

145-173. doi: 10.2307/3483326 

Selter, C., Prediger, S., Nuhrenborger, M., & Hussmann, S. (2012). Taking away and 

determining the difference-a longitudinal perspective on two models of subtraction 

and the inverse relation to addition. Educational Studies in Mathematics, 79(3), 389-

408. doi: 10.1007/s10649-011-9305-6 

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. 

Child Development, 75(2), 428-444. doi: 10.1111/j.1467-8624.2004.00684.x 

Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009a). Acquisition and use of 

shortcut strategies by traditionally schooled children. Educational Studies in 

Mathematics, 71(1), 1-17. doi: 10.1007/s10649-008-9155-z 

Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2009b). Solving subtractions 

adaptively by means of indirect addition: Influence of task, subject, and instructional 

factors. Mediterranean Journal for Research in Mathematics Education, 8(2), 1-30.  



Torbeyns, J., De Smedt, B., Stassens, N., Ghesquière, P., & Verschaffel, L. (2009). Solving 

subtraction problems by means of indirect addition. Mathematical Thinking and 

Learning, 11(1-2), 79-91. doi: 10.1080/10986060802583998 

Vanbinst, K., Ghesquière, P., & De Smedt, B. (2012). Numerical magnitude representations 

and individual differences in children's arithmetic strategy use. Mind, Brain, and 

Education, 6(3), 129-136. doi: 10.1111/j.1751-228X.2012.01148.x 

Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic 

distance effect: priming and comparison distance effects in numerical and non-

numerical orders. Psychonomic Bulletin & Review, 15, 419-425. 

Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. 

Psychonomic Bulletin & Review, 12, 66−80. 

Verschaffel, L., Bryant, P., & Torbeyns, J. (2012). Introduction. Educational Studies in 

Mathematics, 79(3), 327-334. doi: 10.1007/s10649-012-9381-2 

Verschaffel, L., Greer, B., & De Corte, E. (2007). Whole number concepts and operations. In 

F. K. Lester (Ed.), Second handbook of research on mathematics teaching and 

learning (pp. 557-628). Greenwich, CT: Information Age Publishing. 

Woods, S. S., Resnick, L. B., & Groen, G. J. (1975). An experimental test of five process 

models for subtraction. Journal of Educational Psychology, 67(1), 17-21.  



Table 1 

Descriptive statistics for numerical magnitude comparison and number line estimation tasks 

Measure M SD 

Numerical magnitude comparison 

Symbolic 

  Reaction time (ms) 965.11 246.03 

Accuracy (%) 94.67 2.98 

Nonsymbolic 

  Reaction time (ms) 1009.49 238.65 

Accuracy (%) 71.35 7.26 

      

Number line estimation 

Symbolic 

  Percentage absolute error  6.30 2.25 

Nonsymbolic 

  Percentage absolute error  17.48 4.65 

      

 

  



Table 2 

Descriptive statistics for mental multi-digit subtraction 

Note. DS = direct subtraction. IA = indirect addition. 

  

Variable              M                      SD 

   
DS-items   

Reaction time (ms) 10842.18 3319.78 

Accuracy (%) 96.53 4.72 

IA-items   

Reaction time (ms) 11532.08 4242.00 

Accuracy (%) 94.50 6.23 

      



 

Table 3 

Pearson partial correlations between the numerical magnitude processing tasks and 

subtraction, controlling for intellectual ability 

 

                 Direct subtraction                   Indirect addition 

Measure Accuracy RT Accuracy RT 

     Numerical magnitude comparison 

 

   

Symbolic (RT) -.16 .43** -.32* .50** 

Nonsymbolic (Accuracy) .10 -.26 .33* -.24 

Number line estimation 

  

  

Symbolic (PAE) -.12 .37** .15 .35* 

Nonsymbolic (PAE) -.16 .08 -.22 .06 

          

Note. * p < .05; ** p <.01 

     Note. PAE = percentage absolute error.  

  



Table 4 

Pearson partial correlations between the numerical magnitude processing tasks and one type 

of subtraction item, controlling for the other type of subtraction item and intellectual ability. 

           DS (controlling for IA)          IA (controlling for DS) 

Measure Accuracy RT Accuracy RT 

     Numerical magnitude comparison 

 

   

Symbolic (RT) -.07 .06 -.29* .30* 

Nonsymbolic (Accuracy) -.01 -.11 .32* -.05 

Number line estimation 

  

  

Symbolic (PAE) -.16 .17 .20 .08 

          

Note. * p < .05; ** p <.01 

Note. DS = Direct subtraction. IA = Indirect addition 

  



Appendix 1 

 

Studies that have examined the association between numerical magnitude processing and 

mathematics achievement by means of magnitude comparison tasks have typically included 

various indicators to index performance on the comparison task, such as distance effects or 

Weber fractions (see De Smedt et al., 2013, for a recent review). In this appendix, we explore 

this issue for the current study. To address this issue for the association between numerical 

magnitude processing and multi-digit subtraction, we performed additional analyses using the 

distance effect and Weber fraction as other indicators of numerical magnitude processing.  

We first re-analyzed our symbolic numerical magnitude processing data using the 

slope of a regression of numerical distance on RT as a measure for the distance effect (see De 

Smedt et al., 2009, for a similar analysis). This was done separately for the numbers 1 to 9, 

where all distances were included in the analysis, and the numbers 10 to 99, where distances 

between decades were included to calculate the distance effect (see Table 1 below). We found 

a significant negative correlation between the response times on the IA items and the distance 

effect on both the numbers 1 to 9 and the numbers 10 to 99 in the symbolic numerical 

magnitude comparison task. Moreover, a significant negative correlation between the 

response times on the DS items and the distance effect on the small numbers, and a trend for 

the large numbers (p = .06), in the symbolic numerical magnitude comparison task was found. 

 

Table 1 

Pearson partial correlations between the distance effect on symbolic numerical magnitude 

comparison and subtraction, controlling for intellectual ability 

  
 

Direct subtraction       Indirect addition 

Measure 

 

     Accuracy    RT          Accuracy     RT 

 

  

   Symbolic numerical magnitude comparison 

    Numbers 1-9 
 

-.01 -.38** .05 -.36* 

Numbers 10-99 
 

.08 -.25° .15 -.30* 

 
        

Note. ° p = .06; * p < .05; * p <.01   

    



In a next step, we again performed partial correlation analyses in which we accounted for the 

performance on DS items when considering the association between IA items and numerical 

magnitude comparison and vice versa. Results (See table 2 below) showed that the distance 

effect did not have a unique role in explaining the performance on the subtraction items.  

These data seem to be less strong and robust compared to data where general reaction time on 

the comparison task is used as outcome measure. This is in line with the existing body of 

studies that examined the association between symbolic magnitude comparison and 

mathematics achievement (De Smedt et al., 2013). In their review, De Smedt et al. show that 

while there are consistent and robust associations between reaction on the symbolic 

comparison task and mathematics achievement, the associations between the distance effect 

and mathematics performance are less consistent (see also Sasanguie et al., 2012, 2013).  

 

Table 2 

Pearson partial correlations between the distance effect on symbolic numerical magnitude 

comparison tasks and one type of subtraction item, controlling for the other type of 

subtraction item 

  
 

DS (controlling for IA)       IA (controlling for DS) 

Measure 

 

Accuracy RT Accuracy RT 

 

  

   Symbolic numerical magnitude comparison 

    Slope: numbers 1-9 
 

-.01 -.24 .09 .00 

Slope: numbers 10-99 
 

.04 -.01 .13 -.17 

          

Note. * p < .05; ** p <.01   

    

Secondly, we re-analyzed our nonsymbolic data by using the weber fraction as a measure for 

nonsymbolic numerical magnitude processing. It was not possible to find a good fit for two 

children, so this analysis was based on the data of 54 children instead of the complete dataset 

of 56 children. Table 3 below shows the results of the correlational analysis, which indicates 

that no significant correlations were found between the Weber fraction and children’s 

performance on mental multi-digit subtraction items. A recent study by Sasanguie et al. 

(2013) has used both the weber fraction and accuracy as a measure for non-symbolic 



comparison and showed that both measures indicated the same results and were strongly 

correlated. This suggests that both measures index similar processes. On the other hand, the fit 

for the weber fraction is not always very good in children, making it a less suitable measure 

for our study, which might explain why not all studies using weber fractions have observed an 

association between non-symbolic comparison performance and math achievement (see also 

De Smedt et al., 2013, for a discussion). 

 

Table 3 

Pearson partial correlations between the weber fraction on nonsymbolic numerical magnitude 

comparison and subtraction, controlling for intellectual ability 

    

 

      Direct subtraction          Indirect addition 

Measure   

 

      Accuracy    RT            Accuracy     RT 

 

  

   Nonsymbolic numerical magnitude comparison 

    Weber Fraction 
 

-.09 .08 -.05 .16 

          

Note. * p < .05; ** p <.01 
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