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Abstract

We prove that the continuous version of the Connes-Shlyakhtenko first L2-cohomology for
IT; factors, as proposed by A. Thom in [Th06], always vanishes.

In [CS03], A. Connes and D. Shlyakhtenko developed an L2-cohomology theory for finite von
Neumann algebras M, and more generally for weakly dense *-subalgebras A C M of such
von Neumann algebras. Then in [Th06], A. Thom provided an alternative, Hochschild-type
characterization of the first such L?-cohomology of M as the quotient of the space of derivations
d: M — Aff(M ® M°P) by the space of inner derivations, where Aff(M ® M°P) denotes the
x-algebra of operators affiliated with M ® M°P. Thom also proposed in [Th06] a continuous
version of the first L?-cohomology, by considering the (smaller) space of derivations § that are
continuous from M with the operator norm to Aff(M ® M°P) with the topology of convergence
in measure. He noted that in many cases (e.g., when M has a Cartan subalgebra, or when M is
not prime), this cohomology vanishes, i.e. any continuous derivation of M into Aff(M ® M°P)
is inner.

Following up on this work, V. Alekseev and D. Kyed have shown in [AKII] that the first
continuous L?-cohomology also vanishes when M has property (T), when M is finitely generated
with nontrivial fundamental group, or when M has property Gamma. Recently, V. Alekseev
proved in [Al13] that this is also the case for the free group factors L(F,).

In this article, we prove that in fact the first continuous L?-cohomology vanishes for all finite
von Neumann algebras. The starting point of our proof is a key calculation in the proof of
[A113 Proposition 3.1], which provides a concrete sequence of elements y, in the II; factor
M = L(F3) of the free group F3 with generators a,b,c, that tends to 0 in operator norm,
but has the property that if a derivation § : M — Aff(M & M°P) satisfies d(uq) = ug @ 1
and §(up) = 0(u.) = 0, then §(yy,) does not tend to 0 in measure. More precisely, the y,’s
in [AlIl13] are scalar multiples of words w,, in a,b,c with the property that d(w,) is a larger
and larger sum of free independent Haar unitaries. In the case of an arbitrary II; factor M,
we fix a hyperfinite II; factor R C M with trivial relative commutant, and then use [Po92] to
“simulate” (in distribution) L(F3) inside M, with a any fixed unitary in M and b,,, ¢, Haar
unitaries in R such that a, b,,,, ¢, are asymptotically free. If now J is a continuous derivation on
M, then by subtracting an inner derivation, we may assume J vanishes on R, thus on b,,, ¢;,.
If 6(a) # 0, and if we formally define y,,’s via the same formula as Alekseev’s, with a, b, ¢, in
lieu of a, b, ¢, then a careful estimation of norms of y, and §(y,,), which uses results in [HL99],
shows that one still has ||y,|| — 0, while d(y,,) # 0 in measure.

!Mathematics Department, UCLA, CA 90095-1555 (United States), popa@math.ucla.edu
Supported in part by NSF Grant DMS-1101718

2KU Leuven, Department of Mathematics, Leuven (Belgium), stefaan.vaes@wis.kuleuven.be
Supported by Research Programme G.0639.11 of the Research Foundation — Flanders (FWO) and KU Leuven
BOF research grant OT/13/079.



Let M be a finite von Neumann algebra. We denote by M°P the opposite von Neumann
algebra and by Aff(M ® M°P) the x-algebra of operators affiliated with M @ M°P. A derivation
d: M — Aff(M ® MP°P) is a linear map satisfying

0(ab) = (a®1)6(b) + (1 ®b°P)d(a) for all a,be M .
For every £ € Aff(M ® M°P), denote by 0¢ the inner derivation defined as

(08)(a)=(a®1—-1®a’?)¢ forall ae M.

We equip Aff(M ® M°P) with the measure topology, i.e. the unique vector space topology with
basic neighborhoods of 0 given by

B(ry,e) = {€ € AfF(M ® M°P) | 3 projection p € M @ M with 71(p) > 1 —¢,[|ép| < e}

for all normal tracial states 7, : M — C and all e > 0. If 7 : M — C is a normal faithful tracial
state, then {B(7,¢) | ¢ > 0} is a family of basic neighborhoods of 0 and there is no need to
vary the trace.

Theorem 1. Let M be a finite von Neumann algebra. Every derivation § : M — Aff(M & M °P)
that is continuous from the norm topology on M to the measure topology on Aff(M @ M°P), is
mmner.

The following lemma is quite standard, but we include a detailed proof for completeness.

Lemma 2. It suffices to prove Theorem[]] for II; factors M with separable predual.

Proof. We prove the lemma in different steps.

Step 1. It suffices to prove Theorem (1| for diffuse, countably decomposable M. Take a set
I = I U1, and an orthogonal family of projections p; € Z(M) with ), ;p; = 1 and such
that for all ¢ € I, we have that Mp; is countably decomposable and diffuse, and such that for
all ¢ € I, we have that Mp; is a matrix algebra. Since the projections p; are orthogonal, the
element

§=> (pi®1)d(p:)

icl
is well defined in Aff(M ® M°P). The following direct computation shows that
5(pk) = (0€)(px) forall kel . 1)
Indeed,
(08 (pr) = (px @ )3 (pr) — > _(pi @ p7)5(ps) - (2)

i€l
But, for all ¢ and k, we have
(1 ®pP)o(pi) = 6(pirk) — (pi ®1)6(px) -

Multiplying with p; ® 1 and summing over ¢, we find that

> (i @ pP)o(pi) = (pr @ 1)3(pr) — 5(pr) -
iel

In combination with , we find that holds.



Replacing § by 6 — 0¢, we may assume that d(p;) = 0 for all i € I. It follows that §(Mp;) C
Aff(Mp; ® (Mp;)°P) for every i € I. We denote by 0; the restriction of § to Mp;. By the
assumption of step 1, d; is inner when i € I;. So for ¢ € I, we have that §; = 9¢; for some
& € Aff(Mp; ® (Mp;)°P). When i € Is, we have that Mp; is a matrix algebra and we can take
a complete system of matrix units eék for Mp;. We then get that §; = 9¢; for

&= (cha ® 1)dilely) -

k

The vector § = ) . ;& is well defined in Aff(M ® M°P) and § = 0€.

Step 2. It suffices to prove Theorem |1l when M is diffuse and has separable predual. Using
step 1, we may already assume that M is diffuse and admits a faithful normal tracial state
that we keep fixed. We start by proving the following three statements, using that M admits
the faithful trace 7.

If ¢ € Aff(M ® M°P), there exists a von Neumann subalgebra N C M with separable predual
such that £ € Aff(N ® N°P). Take an increasing sequence of projections p, € M ® M°P such
that 7(1 — p,) — 0 and &p, € M ® M°P for all n. In particular, £p, € L*(M ® M°P) =
L?(M) ® L?(M°P) and we can take separable Hilbert subspaces H,, C L?(M), K, C L*(M°P)
such that &p, € H, ® K,,. We then find countable subsets V,, C M such that for every n, the
vector &p,, belongs to the || - ||2-closed linear span of {a ® b°P | a,b € V,,}. Defining N as the
von Neumann subalgebra of M generated by all the sets V,,, our statement is proven.

Let N1 C M be a von Neumann subalgebra with separable predual. Then there exists a von
Neumann subalgebra No C M with separable predual such that Ny C No and 6(N1) C Aff (N ®
N,7). Take a separable and weakly dense C*-subalgebra By C Nj. By the previous paragraph
and because J is norm-measure continuous, we can take No C M with separable predual such
that 6(B1) C Aff(N2 ® N;P). Replacing Ny by the von Neumann algebra generated by Nj
and N2, we may assume that Ny C Na. Since §(By) C Aff(N2 ® N,P), it follows from [Th06),
Lemma 4.2 and Theorem 4.3] that §(N1) C Aff(Ny @ N3P).

Let Ny C M be a von Neumann subalgebra with separable predual. Then there exists a von Neu-
mann subalgebra N C M with separable predual such that Ny C N and §(N) C Aff(N @ N°P).
Using the previous paragraph, we inductively find an increasing sequence of von Neumann
subalgebras Ny C Na C --- with separable predual such that §(Ny,) C Aff(Np1 ® NY,) for
all k. We define N as the von Neumann algebra generated by all the Ni. By construction, N
has separable predual and 6(Ny) C Aff(N @ N°P) for all k. Again using [Th06, Lemma 4.2 and
Theorem 4.3], it follows that §(NN) C Aff(N @ N°P).

We can now conclude the proof of step 2. Since M is diffuse, we can fix a diffuse abelian von
Neumann subalgebra A C M with separable predual. By [Th06, Theorem 6.4], we can replace
d by § — 9¢ for some £ € Aff(M ® M°P) and assume that 6(a) = 0 for all a € A. We prove
that d(x) = 0 for all z € M. Fix an arbitrary z € M. Define N; as the von Neumann algebra
generated by A and x. Note that N has a separable predual. By the previous paragraph, we
can take a von Neumann subalgebra N C M with separable predual such that Ny C N and
d(N) C Aff(N ® N°P). By the initial assumption of step 2, the restriction of § to IV is inner.
So we can take a £ € Aff(N ® N°P) such that d(y) = (9¢)(y) for all y € N. Since A C N and
d(a) = 0 for all a € A, it follows that (a ® 1) = (1 ® a°P)¢ for all @ € A. Since A is diffuse,
this implies that £ = 0. Since x € N, it then follows that §(z) = 0. This concludes the proof
of step 2.

Step 8. Proof of the lemma : it suffices to prove Theorem[]|when M is a I factor with separable
predual. Using step 2, we may already assume that M is diffuse and has separable predual.



Let po € Z(M) be the maximal projection such that Z(M)py is diffuse (possibly, pop = 0). Let
P1,D2, - - . be the minimal projections in Z(M)(1—po). Note that Y 2 p, = 1. As in the proof
of step 1, we may assume that §(Mp,) C Aff(Mp, ® (Mp,)°P) for all n. Denote by 6, the
restriction of § to Mp,. Since Mpy has a diffuse center, it follows from [Th06, Theorem 6.4]
that g is inner. For all n > 1, we have that Mp, is a II; factor with separable predual. So by
assumption, all §,, n > 1, are inner. But then also ¢ is inner. O

Proof of Theorem[1l Using Lemma [2] it suffices to take a II; factor M with separable predual
and a derivation § : M — Aff(M ® M°P) that is continuous from the norm topology on M to
the measure topology on Aff(M ® M°P). Denote by 7 the unique tracial state on M. By [Po81]
Corollary 4.1], we can fix a copy of the hyperfinite II; factor R C M such that R’ N M = CI.
By [Th06, Theorem 6.4], we can replace ¢ by § — 9¢ and assume that d(z) = 0 for all z € R.
We prove that § = 0. Fix a unitary u € U(M) with 7(u) = 0. It suffices to prove that §(u) = 0.

Fix a free ultrafilter w on N and consider the ultrapower M“. By [P092], Corollary on p. 187],
choose a unitary v € R* such that the subalgebras v* Mv—* c MY, k € Z, are free. Fix a Haar
unitary a € U(R), i.e. a unitary satisfying 7(a") = 0 for all m € Z \ {0}. Define, for k > 1,
a = vFavF. Tt follows that ay € U(R*) are *-free Haar unitaries that are moreover free w.r.t.
M. Write ay, = (ay,) with ay,, € U(R).

Similar to the definition of z,, in the proof of [AlI13 Proposition 3.1], we consider for all large
n and m, the unitary
Wmpn = A1 U A2 7U * - GmnpU

and prove that either §(u) = 0 or §(wy, ) is “very large almost everywhere”, contradicting the
continuity of 9.

Since d(x) = 0 for all x € R, we get that
5(wm,n) = (Z AU a2n Ok 1 pU 0k, & (ak+1,nu' e am,nu)0p> 5(“) y (3)
k=1

where, by convention, the first term in the sum is a1, ® (a2t - ampu)° and the last term
IS a1p% " Gm—10UGmp @ 1.

Consider, in the ultrapower (M ® M°P)¥, the element

m
op
T = E atuagl -+ Qp—1U ag Q (ak+1u- . 'amu)
k=1

We claim that T}, is the sum of m *-free Haar unitaries. To prove this, it suffices to show that
the first tensor factors aq,ajuas, aiuasuas, ... form a x-free family of Haar unitaries. Since
ai,as,as, ... is a x-free family of Haar unitaries that are x-free w.r.t. u, also the Haar unitaries
a1, uas, uas, udy, . . . are x-free. But then the conclusion follows by taking the product of the
first k& unitaries in this last sequence, again producing a *-free family of Haar unitaries.

Since T), is the sum of m x-free Haar unitaries, we get from [HL99, Example 5.5] an explicit
formula for the spectral distribution of |T,,|. It follows that |T),| has the same distribution as
2v/m — 1.8, where S, is a sequence of random variables satisfying 0 < S,,, < 1 and converging
in distribution to the normalized quarter circle law. Therefore, the spectral projections

qm = 1[\/5,4—00) (T’I’TLTm) = 1[m1/4,+oo)( |Tm| ) =1 [m1/4(4(m_1))—1/2’+00) (Sm)

satisfy limy, 7(gm) = 1. Write ¢, = (¢m,n) Where ¢, ,, are projections in M &® M°P.



Fix an arbitrary € > 0. Since ¢ is continuous, fix p > 0 such that 6(z) € B(7,¢/2) whenever
z € M and ||z|| < p. Take m large enough such that m~/* < p and 7(¢gy,) > 1 —¢. For every
n, the element m~"%w,, , has norm less than p. Therefore, §(m~"/*w,, ) belongs to B(,/2)
and we find a projection p, € M ® M°P with

T(pn) >1—¢/2 and H(S(mflﬂwm,n) an <eg/2.

We also fix a projection eg € M ® M°P with 7(ep) > 1 —¢/2 and such that é(u)eg € M & M°P.
We write e, = eg A pp and view e = (e,) as a projection in (M ® M°P)“. By (B3)), we have in
(M ® M°P)% the equality (0(wm,n)eo)n = Tm (6(u)eg), and therefore also that (d(wmn)en)n =
T (0(u)eg) e. We then find that

>t o )

>t o )

= 7(e (8(u)eo)” m™ 2Ty Ty ((u)eo) €)
7(e (0(u)eo)” gm (3(u)eo) €) .

Since 7(¢) > 1 — &, we can fix n such that

Y

lgmnd(u)enlla <e and 7(gmnm) >1—c¢.

Since 7(e,) > 1—¢, we have proven that for every € > 0, there exist projections p,q € M ® M°P
such that 7(p) > 1—¢, 7(¢) > 1 — ¢ and ||¢d(u)p||2 < €. This means that d(u) = 0. O

The proof of Theorem [1| gives no indication as to whether or not the Connes-Shlyakhtenko first
L?-cohomology vanishes as well. Note however that in order for a first L?-cohomology theory
to “work well” for II; factors M, the corresponding derivations should be uniquely determined
by their values on a set of elements generating M as a von Neumann algebra. In order for this
to be the case, the derivations should normally satisfy some continuity property, even if that
continuity is “very weak”. However, by combining Theorem (1| with the closed graph theorem,
it follows that any derivation from M into Aff(M ® M°P) that satisfies some “reasonable” weak
continuity property, must in fact be inner (see also Remark |4 hereafter):

Corollary 3. Let M be a finite von Neumann algebra and write € = Aff(M & M°). Assume
that 6 : M — & is a derivation. If 0 has a closed graph for the norm topology on M and the
measure topology on &, then § is inner.

This is in particular the case if § is norm-T -continuous w.r.t. any vector space topology T on
E satisfying the following two properties:

e the inclusion M @ M°P — £ is norm-T -continuous;

e for every fired a € M @ M°P, the map £ — & : £ — Ea is T-T -continuous.

Proof. Take an orthogonal family of projections p; € Z(M) such that ), ;p; = 1 and every
Mp; is countably decomposable. As in step 1 of Lemma [2, we may assume that 6(Mp;) C
Aff(Mp; ® (Mp;)°P). If § has closed graph, the restrictions ¢; of  to Mp; still have closed
graph. If all these restrictions §; are inner, also ¢ is inner. So to prove the first part of the
corollary, we may assume that M admits a faithful normal tracial state T that we keep fixed.
But then, the formula

d(&,m) = inf{e > 0 | 3 projection p € M @ M°? : 7(1 — p) < e and ||({ — n)p|| < &}



defines a translation invariant, complete metric on Aff(M ® M°P) that induces the measure
topology. So by [Ru91l, 2.15], the closed graph theorem is valid and we find that ¢ is continuous,
and hence inner by Theorem [I]

Assume now in general that § is norm-7 -continuous. To prove that ¢ has closed graph, assume
that ||x,|| — 0 and §(z,) — £ in the measure topology. We have to show that £ = 0. Fix a
normal tracial state 7 on M. Choose projections p, € M ® M°P such that 7(p,) > 1—27"
and [[(0(zn) —&)pn|| < 1/n. Define the projections g = A\,,~; Pn and note that g is increasing
and satisfies 7(qz) — 1. For every fixed k, we get that (§(x,) — £)gx converges to 0 in norm, as
n — oo. By the first assumption on 7, this convergence also holds in 7. But also §(z,) — 0
in 7 so that, by our second assumption on 7, the sequence §(z,)qr converges to 0 in T as
n — co. We conclude that g = 0 for all k. This implies that £z, = 0 where z; € Z(M) is the
support projection of 7. Since T was arbitrary, it follows that £ = 0. O

Remark 4. We should point out that we have no concrete examples of vector topologies on
Aff(M ® M°P) satisfying the conditions in the second part of Corollary |3| and that are strictly
weaker than the measure topology (in fact, it is not even clear whether such a topology exists!).
Let us also point out that there are other weak continuity properties of d implying that J has
closed graph, thus following inner by the first part of Corollary For instance, by using
a similar argument as above, one can easily prove that this is the case when ¢§ satisfies the
following weak continuity property: whenever z,, is a sequence in M such that ||z,| — 0, there
exists a sequence of projections p, € M @ M°P such that p, — 1 strongly, 6(zy)p, € M ® M°P
and 6(x,)pn, — 0 o-weakly.
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