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Abstract—Time-optimal path following considers the problem
of moving along a predetermined geometric path in minimum
time. In the case of a robotic manipulator with simplified con-
straints a convex reformulation of this optimal control problem
has been derived previously. However, many applications in
robotics feature constraints such as velocity-dependent torque
constraints or torque rate constraints that destroy the convex-
ity. The present paper proposes an efficient sequential convex
programming (SCP) approach to solve the corresponding non-
convex optimal control problems by writing the non-convex
constraints as a difference of convex (DC) functions, result-
ing in convex-concave constraints. We consider seven practical
applications that fit into the proposed framework even when
mutually combined, illustrating the flexibility and practicality of
the proposed framework. Furthermore, numerical simulations
for some typical applications illustrate the fast convergence of
the proposed method in only a few SCP iterations, confirming
the efficiency of the proposed framework.

I. INTRODUCTION

Path following deals with the problem of following a
geometric path without any preassigned timing information.
Many industrial robot tasks, such as welding, glueing, laser
cutting and milling can be cast as path following problems. In
addition, path following is often considered to be the low level
stage in a decoupled motion planning approach [1]–[3], since
the motion planning problem is difficult and highly complex
to solve in its entirety [4], [5]. First, a high level planner
determines a geometric path ignoring the system dynamics
but taking into account geometric path constraints. Second,
an optimal trajectory along the geometric path is determined
that accounts for the system dynamics and limitations. Since
the dynamics along a geometric path can be described by a
scalar path coordinate s and its time derivatives [1]–[3], the
decoupled approach simplifies the motion planning problem
to great extent. Recently it was shown that the path following
problem for a robotic manipulator with simplified constraints
can be cast as a convex optimization problem [6], [7]. This
guarantees the efficient computation of globally optimal so-
lutions. However, this convex reformulation fails to address
many practical applications, since torque rate constraints,
velocity-dependent torque constraints, viscous friction effects
or the inclusion of cutting forces at the tooltip, give rise to

non-convex formulations. To account for such constraints we
propose an extension of the convex framework of [6] using
sequential convex programming (SCP), since many of these
constraints can easily be written as a difference of two convex
(DC) functions [8], [9]. In SCP the concave parts of the
constraints are sequentially linearised while preserving the
convex parts [10]–[12]. Fast convergence of this method in
only three to six iterations is observed for typical applications
in robotics, discussed in this paper, making it a highly efficient
framework.

The paper is organized as follows. Section II reviews
the convex reformulation of the time-optimal path following
problem of [6] and illustrates the non-convex constraints that
are considered in the present paper. Section III describes a DC
decomposition of the non-convex constraints and reviews a se-
quential convex programming approach [10]–[12] to efficiently
solve the non-convex optimal path following problem. To il-
lustrate the practical use of the proposed SCP approach, seven
typical applications in robotics that result in DC constraints are
discussed in Section IV and combined in Section V. In these
sections, many numerical examples illustrate the efficiency and
practicality of the proposed framework.

Throughout the paper we will use the following shorthand
notations for the derivatives of a function f(s(t)): ḟ = df

dt ,
f̈ = d2f

dt2 ,
...
f = d3f

dt3 , f ′ = ∂f
∂s , f ′′ = ∂2f

∂s2 and f ′′′ = ∂3f
∂s3

where t indicates time and s the path coordinate. Furthermore,
we indicate scalars with a lower-case letter, e.g. n, vectors
with a bold lower-case letter, e.g. q, and matrices with an
upper-case letter, e.g. M . qi denotes the i-th element of q. To
indicate an all-ones vector of size n we use 1n ∈ Rn×1. We
use the following definition for the velocity twist, capturing
the translational and rotational velocity of a rigid body:
v
f t
o
w = ((vfv

o
w)T , (fω

o
w)T )T . Here v

fv
o
w and fω

o
w represent the

translational and rotational velocity of the body, represented
by a frame {o} with respect to the world, represented by a
frame {w}. Index v is the reference point on the body used
to express the translational velocity, while {f} represents the
frame in which the coordinates of the v and ω are expressed.

The relation between the velocity twist and the joint velocity
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q̇ is defined by
v
f t
o
w = v

fJ
o
w(q) q̇, (1)

where v
fJ

o
w(q) is the geometric robot Jacobian [13], [14].

II. PROBLEM FORMULATION

Consider a robotic manipulator with n degrees of freedom
and joint angles q ∈ Rn. The equations of motion are given
by

τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (2)

where τ ∈ Rn are the joint torques, M ∈ Rn×n is the mass
matrix, C ∈ Rn×n is a matrix, linear in q̇, accounting for
Coriolis and centrifugal effects and, g is a vector accounting
for gravity and other position dependent torques.

Consider a prescribed geometric path q(s) as a function of
a scalar path coordinate s, given in joint space coordinates.
The time dependence of the path is determined through s(t).
Without loss of generality it is assumed that the trajectory
starts at t = 0, ends at t = T and, 0 = s(0) ≤ s(t) ≤ s(T ) =
1. It is furthermore assumed that we always move forward
along the path, i.e. ṡ(t) ≥ 0,∀t ∈ [0, T ].

Using the chain-rule we rewrite joint velocities and accel-
erations as

q̇(s) = q′(s)ṡ and, q̈(s) = q′′(s)ṡ2 + q′(s)s̈, (3)

where q′ = dq(s)/ds and, q′′ = d2q(s)/ds2. Substitution of
the above equations in (2) projects the equations of motion
onto the path [6]:

τ (s) = m(s)s̈+ c(s)ṡ2 + g(s). (4)

By introducing the variable

b(s) = ṡ2, (5)

it was shown in [6] that the time-optimal path following
problem is transformed into a convex optimization problem.
Indeed, since b(s) ≥ 0, the total motion time

T =

∫ T

0

1dt =

∫ 1

0

1

ṡ
ds =

∫ 1

0

1√
b(s)

ds,

is a convex function. Furthermore, since b′(s) = 2s̈, the torque
constraints are linear in b(s) and b′(s). The time-optimal path
following problem is then reformulated as

minimize
b(·)

∫ 1

0

1√
b(s)

ds

subject to b(0) = ṡ20, b(1) = ṡ2T

b(s) ≥ 0

h(s, b(s)) ≤ ρ(s)

for s ∈ [0, 1].

(6)

where h(s, b(s)) ≤ ρ(s) is interpreted as a component-
wise inequality. To render the problem convex, h(s, b(s)) is
restricted to convex functions in the optimization variables.

In [6] some constraints are described that maintain the
convexity of the problem. Torque constraints

τ−(s) ≤ τ (s) ≤ τ+(s), (7)

are convex with ρ(s) =
(
τ+(s)T ,−τ−(s)T

)T
and

h(s, b(s)) =

[
1 0
0 −1

](
m(s) b

′(s)
2 + c(s)b(s) + g(s)

)
. Sym-

metric joint velocity constraints or joint acceleration con-
straints also keep the problem convex. Furthermore, the objec-
tive function can for instance be supplemented with thermal
energy terms or integrals of the absolute value of the rate of
change of the torque.

However, many practical constraints do not have a con-
vex formulation. In practice, torque constraints are speed
dependent [15] and not simple bounds as in (7). Also, to
cope with the limited bandwidth of physical actuators, torque
rate constraints should be added to the problem. Moreover,
robotic manipulators are often used in milling or grinding
applications. In this context, cutting forces at the end-effector
must be taken into account. As will be detailed in Section IV,
all these constraints are non-convex constraints of the form
h(s, b(s)) ≤ ρ(s), where h(s, b(s)) : R2 7→ Rl is a non-
convex function of the form

hi(s, b(s)) = φi(s, b(s)) +ψi(s)b(s)
κi , i = 1, . . . , l, (8)

here φ(s, ·) are linear vector functions of the optimization vari-
ables, ψ(s) and κ are vectors independent of the optimization
variables.

The convexity of (8) depends on the sign of ψi(s) and the
value of κi (see Section III). If non-convex, the constraint
can easily be decomposed as a difference of two convex
functions (DC constraint). The following section illustrates this
decomposition and reviews a sequential convex programming
approach to efficiently solve optimization problem (6)-(8).

Since the resulting time-optimal path following problem has
an infinite number of optimization variables and an infinite
number of constraints, it is discretized by adopting the direct
transcription method from [6]. Here linear constraints maintain
the relationship between the derivatives b′, ... of b. Thus, from
now on we work in a finite dimensional setting.

III. SEQUENTIAL CONVEX PROGRAMMING ALGORITHM

Consider the optimization problem with DC (difference of
two convex functions) constraints:

minimize
x∈Rn

f(x)

subject to ui(x)− vi(x) ≤ 0, i = 1, . . . , l

x ∈ Ω,

(9)

where f : Rn 7→ R is convex, Ω ⊆ Rn is a nonempty, closed
convex set, and ui and vi are convex functions. The feasible
set is denoted by

D = {x ∈ Ω | ui(x)− vi(x) ≤ 0, i = 1, . . . , l}

and its relative interior by

ri(D) = {x ∈ ri(Ω) | ui(x)− vi(x) < 0, i = 1, . . . , l}.

The main idea of the algorithm is to iteratively linearise the
concave part of the DC inequality constraint, to transform the
problem into a convex optimization problem, which can be
solved efficiently.
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Suppose that xk ∈ Ω is a given point, then the linearized
problem of (9) around xk is

minimize
x∈Rn

f(x) + β
2 ‖x− xk‖22

subject to ui(x)− vi(xk)−∇xvi(xk)(x− xk) ≤ 0,

i = 1, . . . , l,

x ∈ Ω,
(10)

where a regularization term with parameter β is added to the
objective function. The following algorithm for solving (9) is
proposed in [8], [10], [11].

Sequential convex programming algorithm

Initialization: Choose a β > 0 and find an initial point
x0 ∈ ri(D). Set k = 0.
Iteration k: For k = 0, 1, . . . do

1) Solve the convex problem (10) to obtain a solution
xk+1.

2) If ‖xk+1 − xk‖ ≤ ε for a given tolerance ε > 0
then terminate. Otherwise, set k = k+ 1 and go to
step 1.

Note that when the initial point x0 ∈ ri(D), then the
algorithm generates a sequence of points xk which also
belongs to D. Geometrically, the algorithm can be seen as an
inner approximation method. Under fairly mild assumptions,
which in practice come down to the problem being well
posed, it can be shown that the SCP algorithm converges to
a stationary point of (9) [11]. The regularisation parameter β
ensures a downhill search direction of the algorithm, however
it is not always needed and can be chosen small depending on
the gradient of the objective function [11].

To apply the algorithm to problem (6)-(8), we need to
determine a DC decomposition of

φi(s, b(s)) +ψi(s)b(s)
κi ≤ ρi(s), i = 1, . . . , l, (11)

by examining its convexity, which depends on the values of
ψi(s) and κi. Since b(s) ≥ 0, (11) is non-convex whenever

ψi(s) > 0 and 0 < κi < 1, or
ψi(s) < 0 and κi > 1 ∪ κi < 0.

In the case that (11) is non-convex, an obvious DC decompo-
sition as in (9) is

ui(b(s)) = φi(s, b(s))−ρi(s) and vi(b(s)) = −ψi(s)b(s)κi .

This is only one of the several possible choices of DC
decompositions. The convergence of the algorithm is faster
when the curvature of the concave part is small [11], hence, it
is worth to find a DC decomposition that has small curvature
in the concave part, as the one given above.

As we are interested in time-optimal solutions, the stopping
criterion of the SCP algorithm may be changed to:

‖T k+1 − T k‖ ≤ ε,
where T k denotes the optimal travel time for iteration k. This
stopping condition allows exiting the SCP algorithm earlier,

since the convergence of T k is observed to be faster than the
convergence of bk(s), as will be illustrated in Section IV.

In the case of the considered path following problem (6) the
variable x represents the discrete values b of b(s) on the grid
points of s. The initial point x0(s) = b0 of the SCP algorithm
is chosen as a parabola in s with a free parameter similar
to [7]. This free parameter is changed until b0(s) satisfies
the constraints of the optimization problem for all s. The
regularisation parameter β is tuned experimentally and it is
observed that it does not influence the convergence much.

IV. APPLICATIONS

In this section, typical robotic applications are described
that fit in problem formulation (6)-(8). Here we show that
these non-convex constraints can easily be transformed into
convex-concave constraints of the form (8). Numerical results
show that in practice only a few SCP iterations are necessary to
solve the corresponding time-optimal path following problem,
illustrating the efficiency of the proposed framework.

The applications we consider result in the addition of new
constraints to the framework of [6] or the adaptation of existing
constraints. Some of these applications involve constraints on,
or extensions to, the robot dynamics as defined in [6] and (2).
Therefore, we redefine the actuator torque

τ̃ = M(q)q̈ + C(q, q̇)q̇ + g(q) (12)

to be the torque following from the nominal robot dynamics as
used in [6], and τ to be the total actuator torques, including
some extensions to the robot dynamics resulting from addi-
tional forces and robot loads.

The SCP algorithm is implemented in MATLAB using
the free high-level optimization modeling tool YALMIP [16]
on an Intel Core i3 CPU running at a 2.53GHz Windows
machine. All numerical examples illustrating the applications
are considering a seven degree of freedom robot executing a
line trajectory with starting point (−0.5,−0.4, 0.2) and end
point (0.5,−0.4, 0.2), expressed in the base frame of the
robot, while the end effector frame is aligned with the base
frame of the robot with its z-axis pointing downwards. The
kinematic and dynamic parameters of the robot are given in
the Appendix. The optimization problem is discretized over
one hundred samples.

A. Affine velocity-dependent torque constraint

In this section we consider affine joint velocity-dependent
constraints on τ̃ (12). It will be shown below that these
constraints can be used to impose velocity-dependent con-
straints on the total actuator torque τ (to account for viscous
joint friction). Joint velocity-dependent torque constraints,
together with a torque constraint and an artificial joint velocity
constraint, describe the interior of a polytope for every joint
i = 1..n:

τ̃−,i(s) ≤ τ̃ i(s) ≤ τ̃+,i(s), (13a)

f i(s)τ̃ i(s) + hi(s)q̇i(s) ≤ pi(s), (13b)

q̇−,i(s) ≤ q̇i(s) ≤ q̇+,i(s), (13c)
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where f i(s) ∈ Rm×1, hi(s) ∈ Rm×1 and pi(s) ∈ Rm×1 are
the vectors that define the velocity-dependent torque constraint
for joint i.

An example of a polytope of the form (13a)-(13b) is given
in Figure 1.A. For n joints these n polytope constraints are
expressed compactly as:

τ̃−(s) ≤ τ̃ (s) ≤ τ̃+(s),

T (s)τ̃ (s) +Q(s)q̇(s) ≤ p(s),

q̇−(s) ≤ q̇(s) ≤ q̇+(s),

with

T (s) =




f1(s) 0 · · · 0

0 f2(s) · · · 0
...

...
. . .

...
0 0 · · · fn(s)


 ∈ Rm·n×n,

Q(s) =




h1(s) 0 · · · 0

0 h2(s) · · · 0
...

...
. . .

...
0 0 · · · hn(s)


 ∈ Rm·n×n,

and p(s) =
(
p1(s)T ,p2(s)T , · · · ,pn(s)T

)T ∈ Rm·n×1.
Substituting the expression for the nominal actuator torques
τ̃ (s) and (3) allows us to rewrite the polytope constraint as:

τ̃−(s) ≤
(
m(s)

b′(s)
2

+ c(s)b(s) + g(s)

)
≤ τ̃+(s), (14a)

T (s)

(
m(s)

b′(s)
2

+ c(s)b(s) + g(s)

)

+Q(s)q′(s)
√
b(s) ≤ p(s), (14b)

q̇−(s) ≤ q′(s)
√
b(s) ≤ q̇+(s). (14c)

Note the convexity of (14a). By carefully squaring (14c), it
becomes linear in b(s) and thus convex. Suppose q̇+,i > 0

and q̇−,i < 0 then we can square q′i
√
b ≤ q̇+,i if q′i > 0

(q̇−,i ≤ q′i
√
b can be neglected since b > 0, q̇−,i < 0

and q′i > 0) and square −q̇−,i ≥ −q′i
√
b if q′i < 0.

Note furthermore the non-convexity of the joint velocity-
depending torque constraint (14b) due to

√
b. The following

application shows how this non-convexity is eliminated in
the literature with conservative approximations and shows
how the proposed SCP approach results in a non-conservative
optimization problem.

1) Actuator torque characteristic: In [6] the actuator torque
bounds are assumed to be constant, which follows from an
armature current constraint to prevent overheating of the (e.g.
brushless DC) actuator. If we want to fully utilize the actuator
performance in the optimization problem we also have to con-
sider a bound on the voltage that drives the actuator [17]. This
voltage constraint will become important at high velocities,
which are likely in time-optimal motions. As the produced
counter-EMF (counter-electromotive force) is proportional to
the joint angular velocity, the voltage constraint approximately
imposes a linear decrease of the available actuator torque as

(A) (B)

(C) (D)

τ̃ i

q̇i

τ̃ i

q̇i

τ̃ i

q̇i

τ̃ i

q̇i

I II

Fig. 1. (A) Linear approximation of the torque-velocity characteristic, (B)
conservative constraints in the convex framework of [6], (C) conservative
convex approximation of the polytope from [15] and (D) the SCP approach
with unchanged polytope.

a function of the joint angular velocity. Figure 1.A shows a
typical (linearly approximated) torque-speed characteristic for
a brushless DC-motor in four quadrants, which follows form
the current (I) and voltage (II) constraints.

The entire torque-velocity characteristic in the four quad-
rants for joint i are then expressed as:

I. current bound: τ̃−,i ≤ τ̃ i ≤ τ̃+,i, (15)

II. voltage bound: f ivτ̃ i + hivq̇i ≤ piv, (16)

for i = 1..n, where f iv ∈ R4×1, hiv ∈ R4×1 and piv ∈ R4×1

determine the voltage bound in four quadrants for every joint.
These constraints can be written in the form of (13) with

f i(s) = f iv, h
i(s) = hiv and pi(s) = piv.

The convex framework of [6] considers constant, velocity-
independent, actuator constraints, and hence avoids this non-
convexity, yielding torque bounds which describe the largest
rectangular polytope of the form (13a)-(13c) inside the poly-
tope (13). This requires an artificial joint-velocity constraint.
As can be seen in Figure 1.B, these simplifications induce
conservatism over the whole velocity range. In [15] the authors
make a conservative convex approximation of the non-convex
constraint (13b): f̃

i
(s)τ̃ i+ h̃

i
(s)q̇2i ≤ p̃i(s) (see Figure 1.C).

Hence substitution of (3) results in a term h̃
i
(s)(q′i)

2b(s)
which in turn results in a convex, but conservative (mainly
at high velocities), optimization problem. Since both simplifi-
cations lead to suboptimal actuator use due to the conservative
approximations, we reformulate (14b) as a DC constraint of
the form (11) with

φ(s, b(s)) = T (s)

(
m(s)

b′(s)
2

+ c(s)b(s) + g(s)

)
,

ψ(s) = Q(s)q′(s), ρ(s) = p(s) and κ =
1

2
1n.

(17)

Note that there is no need for an artificial joint-velocity
constraint (14c). In constrast to the methods in [6] and [15],
the proposed SCP approach results in optimal actuator use as
can be seen from Figure 1.D and the following example.
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Time [s](A)

(B)

τ̃
[N

m
]

τ̃
[N

m
]

q̇ [rad/s]

Fig. 2. Actuator torque, as the result of the optimization, in function of time
(A) and joint speed (B).

The results of a numerical simulation, for a seven dof
robotic manipulator executing a line trajectory, are given in
Figure 2. The values used for the voltage constraint vectors
f iv , hiv and piv are given in the Appendix. A solution was
obtained with sufficient precision (ε = 10−8) in five iterations.
The inner convex problem is solved in ±1.5 s, which is similar
to the results presented in [6]. Only the actuator torque of
joint 1 and 2 are shown, since the other torques are small in
comparison and do not hit any bound. The actuator torque
is plotted as a function of time in 2.A and as a function of
the joint speed in 2.B, where the velocity-dependent torque
constraints are shown in thin lines. The optimal motion is
of the bang-bang type, since at any s, there is always one
actuator where the torque hits one of the bounds, which is to
be expected for a time-optimal motion.

Figure 3 illustrates the convergence of the SCP algorithm.
Here the normalised optimal motion time (∆T/T ∗ with ∆T =
T k+1 − T k and T ∗ the solution of the SCP algorithm) and
the normalised residual (||∆b||/||b∗|| with ∆b = bk+1 − bk)
are shown for each iteration. After the second iteration the
accuracy is already high.

Using the convex framework of [6] the constant torque
constraint is chosen conservatively (τ̃+ = 120Nm) and results
in an optimal motion time of T ∗convex = 0.265s. Including the
speed dependence of the torque constraint results in an optimal

Iterations

||∆b||/||b∗||

lo
g 1

0
(.

)

∆T/T ∗

Fig. 3. Convergence of the SCP algorithm.

motion time of T ∗SCP = 0.236s, which is 12% faster for this
example thanks to the full use of the actuator’s capacity.

2) Viscous friction in the joints: Viscous friction in the
joints results in an extension of the robot dynamics given as
in (2):

τ = M(q)q̈+C(q, q̇)q̇+g(q)+B(q)q̇ = τ̃ +B(q)q̇, (18)

where B(q) ∈ Rn×n is a diagonal matrix accounting for
viscous friction in the joints. Hence, viscous friction introduces
an affine velocity dependence, and results in non-convex
constraints

τ−(s) ≤ τ̃ +B(s)q(s)′
√
b(s) ≤ τ+(s).

These constraints describe an open polytope in the four
quadrants of the τ̃ i-q̇i plane for every joint i, of the form (14)
where we only have (14b), with:

f i(s) =

(
1
−1

)
, hi(s) = Bii(s)f

i and pi(s) =

(
τ+,i(s)
−τ−,i(s)

)
,

where Bii(s) indicates the i-th diagonal element of B(s).
Due to this non-convexity, viscous friction in the joints is

either neglected in [6] or it is included in the torque bounds
in [6] and approximated by constant, velocity-independent,
torque bounds τ̃− ≤ τ̃ ≤ τ̃+ which ensure that τ− −
B(q)q̇ ≤ τ̃ ≤ τ+ −B(q)q̇ for some artificial velocity range
between q̇− and q̇+, introducing an artificial constraint (14c).
As can be seen from Figure 4.A, the larger the viscous friction,
the more conservative these bounds will be.

In this paper, we include the viscous friction by treating the
introduced velocity-dependence as a polytope of the form (14)
and by using the proposed SCP approach with the DC decom-
position of (14b) as in (17). This results in optimal actuator
use (see Figure 4.B).

B. Forces at the tool tip proportional to the path velocity

Assume the robot is using a tool for interaction with the
environment. Obviously, the tool contact forces influence the
robot dynamics. This section focusses on the effect of tool
contact forces that are a function of the path velocity ṡ onto
the robot dynamics and their DC decomposition. Figure 5
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(A) (B)

1
B

τ̃ i

q̇i

τ̃ i

q̇i

τ̃+,i

q̇+,i

τ+,i −B(qi)q̇i τ+,i −B(qi)q̇i

Fig. 4. Incorporation of the viscous friction into the available actuator torque.
In the convex framework this results in a conservative torque bound (A),
however in the non-convex SCP framework the actuator is used at full capacity
(B).

{ee}

eep
ee,t

{t}

Fig. 5. Schematic of a serial robot holding a tool with tool frame {t} with
orientation t

eeR and position eepee,t with respect to the end effector frame.

illustrates the notation used. The tool frame {t} has orientation
Rtee = Reet

T and position eep
ee,t with respect to the end

effector frame {ee}.
The actuator torque equation in [6] only takes into account

the torque produced by the motion of the links of the robot,
so when there is no contact with the environment. However,
the tool contact forces tf

t ∈ R3×1 and contact torques tτ
t ∈

R3×1 (with reference point at the tool tip), both expressed
in the tool tip frame, stacked in the contact wrench tw

t =((
tf
t
)T
, (tτ

t)
T
)T
∈ R6×1, introduce extra actuator torques

W (s)tw
t(s) [13]. The robot dynamics are now given by:

τ = τ̃ +W (s) tw
t(s, ṡ), (19)

where W (s) = N−1 (eeeeJ
ee
bs (s))T Stee (s) ∈ Rn×6. eeeeJ

ee
bs is

the body-fixed1 representation [14] of the geometrical Jaco-

bian, Stee (s) =

[
Rtee 03×3

eep
ee,t × Rtee Rtee

]
the wrench (screw)

transformation matrix between the tool frame {t} and the
end effector frame {ee}. N is the diagonal actuator-joint
transmission ratio matrix.

In this section we are interested in contact wrenches that
are a function of the path velocity ṡ and can be written as

tw
t(s, ṡ) = wc(s)ṡ

2κ = wc(s)b(s)
κ. (20)

1This Jacobian describes the motion of the end effector frame {ee} with
respect to the robot base frame {bs}, with reference point for the translational
velocity in the origin of {ee}, and expressed in {ee}.

Physically this means that we are interested in forces and
torques that are proportional to a power of the velocity along
the path. These forces are determined by the desired path
following task. Below, two applications (cutting forces and
viscous friction at the tool tip) are given that result in this
type of contact wrench.

Substitution into (19) and substitution of (12) and (3) allows
us to write the joint torques as

τ (s) = m(s)
b′(s)

2
+ c(s)b(s) + g(s) +W (s)wc(s)b(s)

κ,

Then, the actuator torque constraints can be rewritten in the
form of (11) with

φ(s, b(s)) =

(
−m(s) b

′(s)
2 − c(s)b(s)− g(s)

m(s) b
′(s)
2 + c(s)b(s) + g(s)

)
,

ψ(s) =

(
−W (s)wc(s)
W (s)wc(s)

)
, ρ(s) =

(
−τ−(s)
τ+(s)

)
and κ = κ12n.

1) Cutting forces at the tool tip: In milling or grinding the
(contact) cutting forces are given by [18]:

tw
t(s, ṡ) = c1r(s, ṡ)

λ,

where r(s, ṡ) = c2
t
tv
t
bs(s, ṡ) is the feed rate which is

tangential to the geometric trajectory, c1 ∈ R6×1 is a vector
depending on cutting conditions and the parameter λ repre-
sents the influence of the cutting depth. In the definition of
the feed rate r, t

tv
t
bs(s, ṡ) is the translational speed of the

origin of {t} on the tool tip with respect to the base frame,
expressed in the tool frame. In this application we align one of
the axes of the tool frame with the direction of the feed rate
r, where this alignment is described by c2 ∈ R1×3, so the
tool frame is aligned with the task. Hence the forces parallel
and orthogonal to the feed rate can be expressed easily in the
tool frame by means of c1. This also implies that r(s, ṡ) ≥ 0
for s ∈ [0, 1]. We now assume that the orientation between
the tool frame {t} and the end effector frame {ee} does not
change so that the end effector frame is also aligned with the
feed rate. This is taken care of during path planning. Hence
we get a constant Rtee .

Now, using some velocity manipulations2 we
can write t

tv
t
bs(s, ṡ) = Sv

ee
eet

ee
bs(s, ṡ) with

Sv =
[
Rtee ( Rtee (−eepee,t))× Rtee

]
. Then by using (1)

and (3) the tool velocity can be written as

t
tv
t
bs(s, ṡ) = ν(s)ṡ, (22)

with ν(s) = Sv
ee
eeJ

ee
bs (s)q′(s). This allows us to write the

contact wrench as in (20) with3

wc(s) = c1(c2ν(s))λ and κ =
λ

2
.

2Since t
tt

t
bs = ee

t S
ee
eet

t
bs with the screw transformation matrix ee

t S =[
ee
t R tptee × ee

t R
0 ee

t R

]T
, tptee = ee

t R (−eepee,t) and ee
eet

t
ee + ee

eet
ee
bs =

ee
eet

t
bs where ee

eet
t
ee = 0 since the tool frame does not move with respect to

the end-effector frame.
3We have that r(s, ṡ) ≥ 0 and ṡ > 0 [6] for s ∈ [0, 1], hence the scalar

c2ν(s) ≥ 0 for s ∈ [0, 1]
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2) Viscous friction at the tool tip: In this paragraph we
consider time-optimal tasks that include viscous friction at the
tool tip, e.g. a robot performing a writing task on a whiteboard
with a marker [6]. We consider the contact to be a point and to
lie at the origin of {t}. Therefore there will only be a contact
force, which can be written as tf

t(s, ṡ) = Bt(s)
t
tv
t
bs(s, ṡ)

where Bt(s) ∈ R3×3 is a matrix accounting for viscous
friction. Again, we assume the orientation of the tool frame
with respect to the end effector frame to be constant. Hence,
the end effector frame is aligned with the task. Using (22) we
can write the contact wrench as in (20) with

wc(s) =

(
Bt(s)ν(s)

0

)
and κ =

1

2
. (23)

Note on Coulomb friction:
Coulomb friction at the tool tip will depend on the normal
force the tool exerts on the object the robot tool is in contact
with, but also on the velocity of the tool which determines
the direction of the friction force. Hence the Coulomb friction
force can be writen as tf t ∼ sign(ttv

t
bs). By using (22) we can

write tf
t ∼ sign (ν(s)) since ṡ ≥ 0. Hence Coulomb friction

is independent of b(s) and results only in an extra term in g(s)
since ṡ has been eliminated from the contact force. Hence,
similar to static friction in the joints [6], static friction at the
tool tip preserves the convexity of the optimization problem.

C. Torque rate constraints

Due to the bang-bang nature of time-optimal trajectories,
the framework in [6] will result in near infinitely fast torque
changes, and hence near infinite torque rates. However, phys-
ical actuators cannot realise these infinite torque rates due
to electromechanical effects. To cope with this limitation, a
torque rate constraint is introduced. Also, adding torque rate
constraints results in smoother actuator loads [19]–[21].

The torque rate is found by taking the time derivative of the
actuator torque equation (4)

τ̇ =
d
(
m(s)s̈+ c(s)ṡ2 + g(s)

)

dt
,

= m′(s)ṡs̈+m(s)
...
s + c′(s)ṡṡ2 + 2c(s)ṡs̈+ g′(s)ṡ

which is constrained by τ̇− and τ̇+. Applying the chain rule
results in:

ṡ =
√
b(s), s̈ =

1

2
b′(s),

...
s =

1

2
b′′(s)

√
b(s). (24)

This is substituted in the expression of the torque rate. Now
note that in all terms of τ̇ the expression

√
b(s) can be

factored out. This allows us to write the torque rate constraint
as in (11) with κ = − 1

212n, ρ(s) = 0 and

φ(s, b(s)) =

[
−1 0
0 1

] (
g′(s) + c′(s)b(s)

+
(
c(s) + 1

2m
′(s)
)
b′(s) + 1

2m(s)b′′(s)

)
,

ψ(s) =

(
τ̇−(s)
−τ̇+(s)

)
.

(A)
s

s

τ
[N

m
]

τ̇
[N

m
/s

]

(B)

Fig. 6. Torque (A) and torque rate (B) of joint 1, with and without torque
rate constraint.

Figure 6 shows the torque (Figure 6.A) and torque rate
(Figure 6.B) of one joint of a seven degree of freedom
robotic manipulator executing a line trajectory. The torque is
constrained between −158 Nm and 158 Nm. The results of
the optimization problem with torque rate constraint are shown
in dashed lines and without in full lines. Without torque rate
constraint the torque rate goes up to 1.5 ·105 Nm/s in contrast
to a torque rate constraint of 1 · 104 Nm/s. A solution was
obtained in five iterations. The inner convex problem is solved
in ±1.5 s, which is similar to the results presented in [6].

D. Jerk constraints

Due to the bang-bang nature of time-optimal trajectories,
the framework in [6] may also result in near-infinite jerks in
joint space and operational (Cartesian) space. For systems with
unmodeled flexibilities, this usually results in high acceleration
peaks and unwanted oscillations. These vibrations can be
reduced by imposing jerk constraints [21]. Jerks in joint space
and Cartesian space are treated separately.

1) Joint jerk: By using the chain rule and (24), and by
factoring out

√
b(s), we can write the joint jerk constraint

...
q−(s) ≤ ...

q = d2q̇
dt2 ≤

...
q+ as in (11) with κ = − 1

212n,
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ρ(s) = 0 and

φ(s, b(s)) =

[
−1 0
0 1

] (
q′′′(s)b(s)

+ 3
2q
′′(s)b′(s) + 1

2q
′(s)b′′(s)

)
,

ψ(s) =

( ...
q−(s)
−...
q+(s)

)
.

2) Cartesian jerk: The Cartesian jerk v
f ẗ
o
w =

d2(v
f t

o
w)

dt2 , the
second derivative of the twist, represents the jerk, of the frame
{o} with respect to the reference point v, with respect to
the frame {w}, expressed in the frame {f}. For notational
simplicity we neglect the indices from here on. Similarly, by
elaborating ẗ, using (1) and (24) and factoring out

√
b(s),

we can write a Cartesian jerk constraint as in (11) with
κ = − 1

212n, ρ(s) = 0 and

φ(s, b(s)) =

[
−1 0
0 1

] (
(J ′′(s)q′(s) + J ′(s)q′′(s)

+J(s)q′′′(s)) b(s) + 3
2 (J ′(s)q′(s) + J(s)q′′(s)) b′(s)

+ 1
2J(s)q′(s)b′′(s)

)
,

ψ(s) =

(
ẗ−(s)
−ẗ+(s)

)
.

V. COMBINING CONSTRAINTS AND PHYSICAL EFFECTS

This section focusses on pairwise combinations of the
constraints and physical effects resulting from the applications
given in Section IV. In several cases both of the discussed
physical effects lead to two independent constraints which can
be stacked into a constraint of the form (11) (see Section V-A).
In several other cases the physical effects from both appli-
cations influence each other leading to different constraints
than when treated individually. These constraints either fit
in the proposed form (11) (see SectionV-B) or not. In the
latter case an efficient DC decomposition may be hard to find.
E.g. when including a torque rate constraint (Section IV-C)
in the optimization while considering viscous friction in the
joints (Section IV-A2), the viscous friction term in the actuator
torque (18) introduces extra terms in the torque rate constraint

τ̇− ≤
(
g′(s)+c′(s)b(s)+(Bq′)′b(s)

1
2 +(Bq′)b′(s)b(s)−

1
2

+
(
c(s) + 1

2m
′(s)
)
b′(s) + 1

2m(s)b′′(s)

)
b(s)

1
2 ≤ τ̇+,

which is not of the form (11), hence, it does not fit into the
scope of this paper.

Table I lists whether the combination of two applications
leads to a constraint of the form (11) (indicated by 3) or not
(indicated by 7). The constraint that follows from a specific
application is indicated by its section letter from IV. From
Table I it can also be concluded whether a combination
of more than two constraints leads to a constraint of the
form (11), e.g. we can combine A.1 with A.2, A.2 with D.1,
and A.1 with D.1, hence we can combine A.1 with A.2 with
D.1. Two combinations of DC constraints are illustrated below.

A.1 A.2 B.1 B.2 C D.1 D.2

A.1 -
A.2 3 -
B.1 7 7 -
B.2 3 3 7 -
C 3 7 7 7 -

D.1 3 3 3 3 3 -
D.2 3 3 3 3 3 3 -

TABLE I
APPLICATION COMBINATION THAT LEADS TO A CONSTRAINT OF THE

FORM (11) THAT ALLOWS FOR A SIMPLE DC DECOMPOSITION. THE TABLE
LISTINGS REFER TO THE CORRESPONDING SUBSECTIONS OF SECTION IV.

Time [s]

τ̃
[N

m
]

˙̃ τ
[N

m
/s

]

τ̃
[N

m
]

q̇ [rad/s]

(A)

(B)

Fig. 7. Actuator torque as the result of the optimization in function of time
(A) and joint speed (B), with torque rate constraint.

A. Actuator characteristic and torque rate constraints

In a typical application in robotics, we have velocity-
dependent torque bounds due to the actuator voltage con-
straints and torque rate constraints due to the limited band-
width of the actuators. Combining both constraints involves
stacking the φ(s, b(s)), ψ(s), ρ(s) and κ from IV-A.1
and IV-C. This results in a constraint of the form (11) with

φ(s, b(s)) =

(
φA.1(s, b(s))
φC(s, b(s))

)
, ψ(s) =

(
ψA.1(s)
ψC(s)

)
,

ρ(s) =

(
ρA.1(s)
ρC(s)

)
and κ =

(
κA.1
κC

)

The example of IV-A is revisited with an added torque rate
constraint (±7000 Nm/s). To illustrate that both constraints
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Iterations

||∆b||/||b∗||
∆T/T ∗

lo
g 1

0
(.

)

Fig. 8. Convergence of the SCP algorithm.

become active, the voltage constraints are chosen slightly
differently. The results for the first joint are given in figure 7.
Figure 7.A shows the actuator torque and torque rate as a
function of time. Figure 7.B illustrates the actuator torque as
a function of the joint speed and visualizes the velocity depen-
dent torque constraints. Figure 8 illustrates the convergence of
the SCP algorithm. Here the normalised optimal motion time
(∆T/T ∗ with ∆T = T k+1 − T k and T ∗ the solution of the
SCP algorithm) and the normalised residual (||∆b||/||b∗|| with
∆b = bk+1 − bk) are shown for each iteration.

A solution with sufficient precision (ε = 10−4) was ob-
tained in six iterations. The inner convex problem is solved
in ±2 s. Compared to the example of IV-A more iterations
are needed. As to be expected for a time-optimal control
problem, the motion is of the bang-bang type. This can be seen
from Figure 7, since for all s, always one constraint is active
(neglecting discretisation effects). From s = 0 to s = 0.285
and from s = 0.695 to s = 1 the torque (current) constraint
is active, from s = 0.285 to s = 0.415 and from s = 0.635 to
s = 0.695 the voltage constraint is active and from s = 0.435
to s = 0.595 the torque rate constraint is active.

B. Actuator characteristic and viscous friction in the joints

Other applications involve viscous friction in the joints and
velocity-dependent torque bounds due to an actuator voltage
constraint. Including both in the optimization problem leads
to a closed polytope for every joint of the form (13), as can
be seen in Figure 9.B, with

f i(s) =




1
−1

f iv


 , hi(s) =




0
0

hiv


+Bii(s)f

i(s)

and pi(s) =



τ+,i(s)
−τ−,i(s)
piv


 .

The example of IV-A is revisited with viscous friction in the
joints (1 N m s/rad). The results for joint 1 and 2 are given
in figure 9. Figure 9.A shows the actuator torque and torque
rate as a function of time. Figure 7.B illustrates the actuator
torque as a function of the joint speed, where the polytope is

Time [s](A)

(B)

τ̃
[N

m
]

τ̃
[N

m
]

q̇ [rad/s]

Fig. 9. Actuator torque, as the result of the optimization, in function of time
(A) and joint speed (B).

also shown in thin lines. A solution with sufficient precision
(ε = 10−4) is obtained in five iterations. The inner convex
problem is solved in ±1.5 s.

VI. DISCUSSION

The SCP approach given in Section III is very appealing
from a theoretical and practical point of view. Theoretically
it ensures that a stationary point of the non-convex optimal
path following problem (6)-(8) is attained. Furthermore, the
solution is found with high accuracy in only a few iterations,
which is important from a practical point of view. All numer-
ical examples given here were performed off-line, but thanks
to its high efficiency, the proposed SCP approach has potential
to be used in on-line applications similar to [7].

Furthermore, the SCP framework proposed in this paper
counters the major downsides of the convex framework [6].
In [6] the torque rates, velocity-dependence of the actuator
torque bounds and interaction with the environment, which
cannot be neglected in practical applications, cannot be in-
cluded due to the non-convex nature of the resulting con-
straints. In the proposed SCP approach we can easily include
these constraints, as shown in the previous sections. Regarding
the velocity-dependence of the actuator torque bounds, the pro-
posed approach results in an optimal use of the actuators, since
the torque characteristic is not approximated by a conservative
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link α a θ d

1 0 0 0 0.31
2 π/2 0 0 0
3 -π/2 0 0 0.4
4 -π/2 0 0 0
5 π/2 0 0 0.39
6 π/2 0 0 0
7 -π/2 0 0 0

TABLE II
DENAVIT-HARTENBERG COORDINATES FOR EACH JOINT.

convex characteristic as in [15], or the torque bounds are not
chosen conservatively as in [6]. Hence, the actuators are used
at full capacity. The downside of the proposed approach is a
larger computational time by a factor of three to six due to
the SCP iterations.

Also, the SCP approach can easily be implemented. The
algorithm can be built around the convex optimal path follow-
ing framework from [6] with minimal extra effort. The DC
decomposition (11) involves only a few lines of code.

In this paper, we have discussed only one DC decomposition
for one particular form of non-convex constraints. In general,
one can find multiple DC decompositions. From the given
numerical simulations, we can conclude that the presented DC
decomposition results in an efficient algorithm.

A drawback of the proposed SCP method is that not all
items in Table I are checked. Thus, not all applications can
be combined into a constraint of the form (11). Although in
some cases we can still make an approximation that results in
a simple DC decomposition as in (11), for example, by ne-
glecting viscous friction effects in torque rate constraints while
including them in the torque constraints. Furthermore, e.g. in
the case of viscous friction effects in torque rate constraints
(see Section V), it is possible to find a DC decomposition
although it does not fit into the form we discuss in this paper.

As a general conclusion, the proposed SCP method with
DC constraints offers an efficient solution to many practical
non-convex optimal path following problems for robotic ma-
nipulators.

APPENDIX

Dynamic model of the robot: In this appendix we include the
dynamic model of the considered robot. The kinematics of the
robot are described using Denavit-Hartenberg coordinates [13].
Table II and III give the Denavit-Hartenberg coordinates and
dynamic parameters, respectively, for each joint. Here Ixx, Iyy
and Izz represent the inertia [13] of each link, rx, ry and
rz represent the location of the center of gravity in the link
frame [13] of each link. The mass m of each link is assumed
to be 2 kg for each link.

Voltage bound: The used voltage bound in the numerical
simulations are given by the following vectors for each joint
i:

f iv =




1
1
−1
−1


 ,hiv =




− 1
16 τ̃+,i
1
16 τ̃+,i
1
16 τ̃−,i
− 1

16 τ̃−,i


 ,piv =




2τ̃+,i

2τ̃+,i

2τ̃−,i
2τ̃−,i


 .

link (Ixx, Iyy , Izz) [kg m2] (rx, ry , rz) [m] τ+,− [Nm]

1 (0, 0, 0.0115) (0, 0, 0) ± 158
2 (-0.5472, 0, -0.54) (0, -0.3, -0.0039) ± 158
3 (0.0064, 0, 0.0108) (0, -0.0016, 0) ± 90
4 (-1.044, 0, -1.040) (0, 0.5217, 0) ± 90
5 (0.0037, 0, 0.006) (0, 0.012, 0) ± 90
6 (0.001, 0, 0.0036) (0, 0.0081, 0) ± 27
7 (0.001, 0, 0.12)·10−3 (0, 0, 0) ± 27

TABLE III
DYNAMIC PARAMETERS FOR EACH LINK

ACKNOWLEDGMENT

This work benefits from K.U.Leuven-BOF PFV/10/002
Center-of-Excellence Optimization in Engineering (OPTEC),
the Belgian Programme on Interuniversity Attraction Poles,
initiated by the Belgian Federal Science Policy Office
(DYSCO), the European research project EMBOCON FP7-
ICT-2009-4 248940, ERC HIGHWIND (259 166), project
IWT-SBO 80032 (LECOPRO) of the Institute for the Pro-
motion of Innovation through Science and Technology in
Flanders (IWT-Vlaanderen), project G.0377.09 of the Research
Foundation Flanders (FWO Vlaanderen), and K.U.Leuvens
Concerted Research Action GOA/10/11. Goele Pipeleers is a
Postdoctoral Fellow of the Research Foundation - Flanders
(FWO - Vlaanderen).

REFERENCES

[1] J. Bobrow, S. Dubowsky, and J. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” The International Journal
of Robotics Research, vol. 4, no. 3, pp. 3–17, 1985.

[2] K. Shin and N. Mckay, “Minimum-time control of robotic manipulators
with geometric path constraints,” Automatic Control, IEEE Transactions
on, vol. 30, no. 6, pp. 531–541, 1985.

[3] W. Van Loock, S. Bellens, G. Pipeleers, J. De Schutter, and J. Swevers,
“Time-optimal parking and flying: Solving path following problems
efficiently,” in IEEE International Conference on Mechatronics, Vicenza,
27-28 February, 1 March, 2013.

[4] O. von Stryk and R. Bulirsch, “Direct and indirect methods for trajectory
optimization,” Annals of Operations Research, vol. 37, pp. 357–373,
1992.

[5] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast Direct
Multiple Shooting Algorithms for Optimal Robot Control,” in Fast
Motions in Biomechanics and Robotics, (Heidelberg, Allemagne), 2005.

[6] D. Verscheure, B. Demeulenaere, J. Swevers, J. De Schutter, and
M. Diehl, “Time-optimal path tracking for robots: A convex optimization
approach,” Automatic Control, IEEE Transactions on, vol. 54, pp. 2318
–2327, oct. 2009.

[7] D. Verscheure, M. Diehl, J. De Schutter, and J. Swevers, “On-line
time-optimal path tracking for robots,” in Proceedings of the 2009
IEEE international conference on Robotics and Automation, ICRA’09,
(Piscataway, NJ, USA), pp. 610–616, IEEE Press, 2009.

[8] R. Horst and N. Thoai, “Dc programming: Overview,” J. Optim. Theory
Appl., vol. 103(1), pp. 1–43, 1999.

[9] D. Pham and H. L. Thi, “A DC optimization algorithms for solving the
trust region subproblem,” SIAM J. Optimization, vol. 8, pp. 476–507,
1998.

[10] Q. Tran-Dinh, C. Savorgnan, and M. Diehl, “Adjoint-based predictor-
corrector sequential convex programming for parametric nonlinear op-
timization.,” SIAM J. Optimization, (accepted).

[11] T. D. Quoc, S. Gumussoy, W. Michiels, and M. Diehl, “Combining
convex-concave decompositions and linearization approaches for solving
bmis, with application to static output feedback,” IEEE Transactions on
Automatic Control, vol. 57, no. 6, pp. 1377–1390, 2012.

[12] B. K. Sriperumbudur and G. R. G. Lanckriet, “On the convergence of
the concave-convex procedure,” in NIPS’09, pp. 1759–1767, 2009.



11

[13] M. W. Spong, Robot Dynamics and Control. New York, NY, USA: John
Wiley & Sons, Inc., 1st ed., 1989.

[14] H. Bruyninckx and J. D. Schutter, “Symbolic differentiation of the
velocity mapping for a serial kinematic chain,” Mechanism and Machine
Theory, vol. 31, no. 2, pp. 135 – 148, 1996.

[15] T. Ardeshiri, M. Norrlöf, J. Löfberg, and A. Hansson, “Convex opti-
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[16] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in
MATLAB,” in Proceedings of the CACSD Conference, (Taipei, Taiwan),
2004.

[17] H. W. Beaty and J. L. Kirtley, Electric Motor Handbook. McGraw-Hill
Handbooks. McGraw-Hill Book Company, 1998.

[18] J. P. Kruth, Productietechnieken en -systemen. ACCO Leuven, Belgium
(Dutch), 2012.

[19] D. Constantinescu and E. A. Croft, “Smooth and time-optimal trajectory
planning for industrial manipulators along specified paths,” Journal of
Robotic Systems, vol. 17, no. 5, pp. 233–249, 2000.

[20] S. Macfarlane and E. Croft, “Jerk-bounded manipulator trajectory plan-
ning: design for real-time applications,” Robotics and Automation, IEEE
Transactions on, vol. 19, pp. 42 – 52, feb 2003.

[21] K. J. Kyriakopoulos and Saridis, “Minimum jerk path generation,” in
Proc. IEEE International Conference Robotics and Automation, pp. 364–
369, 1988.

Frederik Debrouwere received the M.Sc. de-
gree in mechanical engineering, in 2011, from the
Katholieke Universiteit Leuven (KU Leuven), Bel-
gium, where he is currently working towards the
Ph.D. degree. His research interests include optimal
motion control of mechatronic systems with a focus
on robotic manipulators.

Wannes Van Loock received the M.Sc. degree
in mechanical engineering, in 2009, from the
Katholieke Universiteit Leuven (KU Leuven), Bel-
gium, where he is currently working towards the
Ph.D. degree. His research interests include optimal
motion control of mechatronic systems.

Goele Pipeleers received her M.Sc. degree in me-
chanical engineering and her Ph.D. degree in me-
chanical engineering from the Katholieke Univer-
siteit Leuven, Belgium, in 2004 and 2009, respec-
tively. Currently she is a Post-doctoral Fellow of the
Research Foundation-Flanders affiliated with the KU
Leuven, Department of Mechanical Engineering, Di-
vision of Production Engineering, Machine Design
and Automation (PMA). She has been a visiting
scholar at the Colorado School of Mines and at the
University of California Los Angeles. Her research

interests include convex optimization, optimal and robust control, and their
applications in mechatronics.

Quoc Tran Dinh obtained his B.S. degree in Ap-
plied Mathematics and Informatics, and M.S. de-
gree in Computer Science from Vietnam National
University, Hanoi, in 2001 and 2004, respectively.
In 2012, he received the Ph.D degree in Electrical
Engineering at the Department of Electrical En-
gineering and Optimization in Engineering Center
(OPTEC), Katholieke Universiteit Leuven, under the
supervision of Prof. Moritz Diehl. Currently, he is a
postdoctoral researcher at the Laboratory for Infor-
mation and Inference System, Ecole Polytechnique

Federale de Lausanne, Switzerland. His research focuses on methods for con-
vex optimization, sequential convex programming, parametric optimization,
optimization in machine learning, and methods for variational inequality and
equilibrium problems.

Moritz Diehl received the Ph.D. degree from
the Interdisciplinary Center for Scientic Computing
(IWR), Heidelberg University, Heidelberg, Germany,
in 2001. Since 2006, he has been a Professor with the
University of Leuven (K.U. Leuven), Belgium, and
Principal Investigator of K.U. Leuvens Optimization
in Engineering Center OPTEC. His research is cen-
tered around embedded optimization algorithms for
use in model predictive control, real-time optimiza-
tion, and moving horizon estimation. His general
interests are in structure exploitation for optimization

in engineering, convex optimization, dynamic optimization. He works on
real-world applications of optimization and control in mechatronics, robotics,
sustainable energy, and chemical engineering.

Joris De Schutter received the M.Sc. degree in
mechanical engineering from the Katholieke Univer-
siteit Leuven, Belgium, in 1980, the M.Sc. degree
from the Massachusetts Institute of Technology, in
1981, and the Ph.D. degree in mechanical engi-
neering, also from KU Leuven, in 1986. Following
work as a control systems engineer in industry, in
1986, he became a lecturer in the Department of
Mechanical Engineering, KU Leuven, where he has
been a full professor since 1995. He teaches courses
in kinematics and dynamics of machinery, control,

robotics and optimization. His research interests include sensor-based robot
control and programming, optimal motion control of mechatronic systems,
and modeling and simulation of human motion.

Jan Swevers received his M.Sc. degree in elec-
trical engineering and the Ph.D. degree in me-
chanical engineering from the Katholieke Univer-
siteit Leuven (KU Leuven), Belgium, in 1986 and
1992, respectively. He is since 1995 a profes-
sor in the Department of Mechanical Engineer-
ing, Division Production Engineering, Machine De-
sign and Automation (PMA), of KU Leuven. His
research interests include modeling, identification,
control and optimization of mechatronics systems.
http://www.mech.kuleuven.be/meco


