
Skolemization for Weighted First-Order Model Counting

Guy Van den Broeck
Computer Science Department

University of California, Los Angeles
guyvdb@cs.ucla.edu

Wannes Meert
Computer Science Department

KU Leuven
wannes.meert@cs.kuleuven.be

Adnan Darwiche
Computer Science Department

University of California, Los Angeles
darwiche@cs.ucla.edu

Abstract

First-order model counting emerged recently as a novel
reasoning task, at the core of efficient algorithms for
probabilistic logics. We present a Skolemization algo-
rithm for model counting problems that eliminates exis-
tential quantifiers from a first-order logic theory without
changing its weighted model count. For certain subsets
of first-order logic, lifted model counters were shown to
run in time polynomial in the number of objects in the
domain of discourse, where propositional model coun-
ters require exponential time. However, these guaran-
tees apply only to Skolem normal form theories (i.e.,
no existential quantifiers) as the presence of existen-
tial quantifiers reduces lifted model counters to proposi-
tional ones. Since textbook Skolemization is not sound
for model counting, these restrictions precluded effi-
cient model counting for directed models, such as prob-
abilistic logic programs, which rely on existential quan-
tification. Our Skolemization procedure extends the ap-
plicability of first-order model counters to these repre-
sentations. Moreover, it simplifies the design of lifted
model counting algorithms.

1 Introduction
Weighted model counting (WMC) is a generalization of
model counting (Gomes, Sabharwal, and Selman 2009). In
model counting, also known as #SAT, one counts the num-
ber of satisfying assignments of a propositional sentence. In
WMC, each assignment has an associated weight and the
task is to compute the sum of the weights of all satisfying
assignments. One application of WMC is to probabilistic
graphical models. For example, exact inference algorithms
for Bayesian networks encode probabilistic inference as a
WMC task, which can then be solved by knowledge com-
pilation (Darwiche 2002) or exhaustive DPLL search (Sang,
Beame, and Kautz 2005).

WMC also plays an important role in first-order prob-
abilistic representations. These became popular in recent
years, in statistical relational learning (Getoor and Taskar
2007) and probabilistic logic learning (De Raedt et al. 2008),
which are concerned with modeling and learning complex
logical and probabilistic interactions between large num-
bers of objects. Efficient algorithms again reduce exact
probabilistic inference to a WMC problem on a proposi-
tional knowledge base (Chavira, Darwiche, and Jaeger 2006;

Fierens et al. 2011; 2013). Encoding first-order probabilis-
tic models into propositional logic retains a key advantage
of the Bayesian network algorithms: WMC naturally ex-
ploits determinism and local structure in the probabilistic
model (Boutilier et al. 1996; Chavira and Darwiche 2005).
A disadvantage is that the high-level first-order structure
is lost. Poole (2003) observed that knowing the symme-
tries that are abundant in first-order structure can speed up
probabilistic inference. Lifted inference algorithms reason
about groups of objects as a whole, similar to the high-level
reasoning of first-order resolution. This has lead Van den
Broeck et al. (2011) and Gogate and Domingos (2011) to
propose weighted first-order model counting (WFOMC) as
the core reasoning task underlying lifted inference algo-
rithms. WFOMC assigns a weight to interpretations in finite-
domain, function-free first-order logic, and computes the
sum of the weights of all models.

Counting models at the first-order level has computational
advantages. For certain classes of theories, knowing the first-
order structure gives exponential speedups (Van den Broeck
2011). For example, counting the models of a first-order uni-
versally quantified CNF with up to two logical variables per
clause can always be done in time polynomial in the size
of the domain of discourse. In contrast, a propositionaliza-
tion of these CNFs will often have a treewidth polynomial
in the domains size, and propositional model counting runs
in exponential time.

One major limitation of first-order model counters, how-
ever, is that they require input in Skolem normal form (i.e.,
without existential quantifiers). This is a common require-
ment for first-order automated reasoning algorithms, such as
theorem provers. It is usually dealt with by Skolemization,
which introduces Skolem constants and functions. However,
the introduction of functions is problematic for first-order
model counters as they expect a function-free input.

The main contribution of this paper is a Skolemization
procedure that is specific for weighted first-order model
counting. The procedure maps a logical input theory to an
output theory that is devoid of existential quantifiers and
functions, yet has an identical weighted first-order model
count. The procedure is modular, in that it remains sound
when extending the input and output theories with a new
sentence. Furthermore, it is purely first-order as it is inde-
pendent of the domain of discourse.

The proposed Skolemization algorithm has a range of im-
plications. First, it opens up new possibilities for lifted infer-
ence algorithms. For example, on Markov Logic Networks
with quantifiers (Richardson and Domingos 2006), and var-
ious forms of Probabilistic Logic Programs (e.g., De Raedt,
Kimmig, and Toivonen (2007)), lifted algorithms currently
provide little or no benefit over propositional ones. The
main reason is that the WFOMC form of these representa-
tions generally contain existential quantifiers. The proposed
Skolemization algorithm allows us, for the first time, to per-
form lifted inference on these representations. Second, there
are liftability theorems that define classes of theories for
which WFOMC is domain-lifted, meaning that it runs in
time polynomial in the domain size (Jaeger and Van den
Broeck 2012). These theorems had to assume Skolem nor-
mal form for the mentioned reason, but now apply more gen-
erally. Finally, the Skolemization algorithm averts the need
for special inference rules that deal with existential quanti-
fiers, simplifying the design of future WFOMC algorithms.

2 Weighted First-Order Model Counting
We start by formally defining the weighted first-order model
counting task. We also compare it to propositional weighted
model counting and discuss existing algorithms.

Background
Throughout this paper, we will work with the function-free
finite-domain fragment of first-order logic (FOL), which we
now briefly review. An atom P(t1, . . . , tn) consists of pred-
icate P/n of arity n followed by n arguments, which are
either constants from a finite domain D = {A,B, . . . } or
logical variables {x, y, . . . }. We use y to denote a sequence
of logical variables. A literal is an atom or its negation. A
formula combines atoms with logical connectives and quan-
tifiers ∃ and ∀. A logical variable x is quantified if it is
enclosed by a ∀x or ∃x. A free variable is one that is not
quantified. A sentence is a formula without free variables.
A formula is ground if it contains no logical variables. A
clause is a disjunction of literals and a CNF is a conjunc-
tion of clauses. The groundings of a quantifier-free formula
is the set of formulas obtained by instantiating the free vari-
ables with any possible combination of constants from D.
The grounding of ∀x, φ and ∃x, φ is the conjunction resp.
disjunction of all groundings of φ.

We will make use of Herbrand semantics (Hinrichs and
Genesereth 2006), as is customary in statistical relational
learning and probabilistic logic learning. The Herbrand base
of sentence ∆ for domain D is the set of all ground atoms
that can be constructed from predicates and constants in D.
A Herbrand interpretation is a truth-value assignment to
all atoms in the Herbrand base. We will find it convenient
to represent interpretations as sets of literals. A Herbrand
model of ∆ is a Herbrand interpretation ω that satisfies ∆,
denoted by ω |=D ∆.

Definitions
We first review propositional weighted model counting.

Definition 1 (WMC). Given
– a sentence ∆ in propositional logic over literals L, and
– a weight function w : L → R≥0,

the weighted model count (WMC) is

WMC(∆,w) =
∑
ω|=∆

∏
l∈ω

w(l).

WFOMC lifts WMC to the first-order level as follows.

Definition 2 (WFOMC1). Given

– a sentence ∆ in FOL containing predicates P ,
– a set of constants D, including the constants in ∆, and
– a pair of weight functions w, w̄ : P → R,

the weighted first-order model count (WFOMC) is

WFOMC(∆,D,w, w̄)

=
∑

ω|=D∆

∏
l∈ω0

w̄(pred(l))
∏
l∈ω1

w(pred(l)),

where ω0 and ω1 consists of the true, respectively false, lit-
erals in ω, and pred maps literals to their predicate.

The weight functions assign a weight to each predicate.
The weight of a positive (negative) literal is the weight of its
predicate in w (w̄). The weight of a model is the product of
its literal weights. Finally, the total count is the sum of the
weights of all the Herbrand models of ∆.

Our WFOMC definition deviates from WMC in two
ways. First, WMC directly assigns weights to literals.
WFOMC instead assigns weights to predicates, and de-
fines literal weights in terms of predicate weights. This dis-
tinguishes WFOMC from probabilistic databases (see Sec-
tion 6). If for modeling reasons, certain literals need to be
assigned unique weights, this can always be achieved by in-
troducing new predicates.

Second, our definition permits predicate weights to be
negative numbers. Negative weights will turn out to be cru-
cial for our Skolemization algorithm. Historically, the WMC
weight function has mostly been used to represent prob-
abilities. This led to the (sometimes implicit) assumption
that weights are between zero and one, or at least non-
negative. Nevertheless, all exact weighted model counters
we are aware of can handle negative weights.2 It appears
that the positive weight assumption is more intrinsic to ap-
proximate weighted model counters (Wei and Selman 2005;
Gogate and Dechter 2011). Section 6 discusses negative
weights in more detail.

Motivation
A WFOMC problem can always be propositionalized into a
WMC problem. We can ground ∆ for D, turn every atom

1This definition is based on Van den Broeck et al. (2011).
WFOMC is called Lifted WMC in Gogate and Domingos (2011).

2In fact, the only underlying requirement of exact model count-
ing approaches is that literal weights are elements from a commu-
tative semiring (Kimmig, Van den Broeck, and De Raedt 2012).

in the Herbrand base into a propositional atom, and asso-
ciate with every propositional literal the weight of its orig-
inal predicate. One may wonder why we define this task at
the first-order level.

Our motivation is computational. Similar to how a sin-
gle step of first-order resolution can perform a large number
of propositional resolution steps, a WFOMC solver can of-
ten provide exponential speedups over WMC solvers. First-
order quantifiers make statements about groups of symmet-
ric objects, which we can reason about jointly.

Without going into algorithmic details, we will now il-
lustrate this principle on concrete examples. For the sake
of simplicity, the examples are non-weighted model count-
ing problems, corresponding to WFOMC problems where
w(P) = w̄(P) = 1 for all predicates P. Consider ∆ to be

Stress(A)⇒ Smokes(A). (1)

Assuming that D = {A}, every interpretation of Stress(A)
and Smokes(A) satisfies ∆, except when Stress(A) is true
and Smokes(A) is false. Therefore, the model count is 3.
Now let ∆ be

∀x, Stress(x)⇒ Smokes(x). (2)

Without changing D, the model count is still 3. When we ex-
pand D to contain n constants, we get n independent copies
of Formula 1. For each person x, atoms Stress(x) and
Smokes(x) can jointly take 3 values, and the total model
count becomes 3n.

This example already demonstrates the benefits of first-
order counting. A propositional model counter on the
groundings of Formula 2 would detect that all n clauses are
independent, recompute for every clause that it has 3 mod-
els, and multiply these counts n times. Propositional model
counters have no elementary operation for exponentiation.
A first-order model counter reads from the first-order struc-
ture that it suffices to compute the model count of a single
ground clause, and then knows to exponentiate. It never ac-
tually grounds the formula, and given the size of D, it runs
in logarithmic time. This gives an exponential speedup over
propositional counting, which runs in linear time.

These first-order counting techniques can interplay with
propositional ones. Take for example ∆ to be

∀y, ParentOf(y) ∧ Female⇒ MotherOf(y). (3)

This sentence is about a specific individual who may be a
female, depending on whether the proposition Female is
true. We can separately count the models in which Female
is true, and those in which it is false (i.e., a Shannon de-
composition). When Female is false, ∆ is satisfied, and the
ParentOf and MotherOf atoms can take on any value. This
gives 4n models. When Female is true, ∆ is structurally
identical to Formula 2, and has 3n models. The total model
count is then 3n + 4n.

These concepts can be applied recursively to count more
complicated formulas. Take for example

∀x, ∀y, ParentOf(x, y) ∧ Female(x)⇒ MotherOf(x, y).

There is now a partition of the ground clauses into n inde-
pendent sets of n clauses. The sets correspond to values of

x, and the individual clauses to values of y. The formula for
each specific x, that is, each set of clauses, is structurally
identical to Formula 3 and has count of 3n + 4n. The total
model count is then (3n + 4n)n.

The most impressive improvements are attained when
propositional model counters run in time exponential in n,
yet first-order model counters run in polynomial time. To
consider an example where this comes up, let ∆ be

∀x,∀y, Smokes(x) ∧ Friends(x, y)⇒ Smokes(y). (4)

This time, the clauses in the grounding of ∆ are no longer
independent, and it would be wrong to simply exponentiate
their counts. Let us first assume that we know a partial inter-
pretation of the Smokes atoms with k positive literals (i.e.,
k people smoke). The question is now: how many models
extend this partial interpretation? Formula 4 encodes that a
smoker cannot be friends with a non smoker. Hence, out of
n2 Friends atoms, k(n − k) have to be false, and the oth-
ers can take either truth value. Thus, the number of models
is 2n

2−k(n−k). Second, we know that there are
(
n
k

)
partial

interpretations with k smokers, and k can range from 0 to n.
This results in the total model count of

n∑
k=0

(
n

k

)
2n

2−k(n−k).

In fact, the systems discussed in the next section can au-
tomatically construct this formula and compute the model
count of Formula 4 in time polynomial in n. On the other
hand, existing propositional WMC algorithms require time
that is exponential in n on this problem. We note here that
the treewidth of the grounding of ∆ is linear in n.

There are space considerations that motivate first-order
model counting as well. When converting a WFOMC prob-
lem to WMC, the grounding of ∆ has size polynomial in
the size of D, but the degree of this polynomial can be high.
When the grounding does not fit into memory, even approx-
imate WMC becomes a problem.

Algorithms
Several algorithms exist for solving propositional WMC.
Exact solvers are based on either exhaustive DPLL
search (Sang, Beame, and Kautz 2005), or knowledge com-
pilation to a circuit language that supports efficient model
counting, such as d-DNNF (Darwiche 2002; Chavira and
Darwiche 2008) or SDD (Choi, Kisa, and Darwiche 2013).
Approximate WMC algorithms use local search (Wei and
Selman 2005) or sampling (Gogate and Dechter 2011).

More recently, algorithms were introduced that directly
solve the WFOMC task. They take a WFOMC problem
and automatically generate and evaluate the types of ex-
pressions shown in the previous section. Their elementary
operations include exponentiation, summation and binomial
coefficients. They are called lifted inference algorithms.
In particular, two lifted algorithms were proposed for ex-
act WFOMC, one based on first-order knowledge compi-
lation (Van den Broeck et al. 2011; Van den Broeck 2011;
Van den Broeck 2013), and the other based on first-order
DPLL search (Gogate and Domingos 2011). Approximate

algorithms were also proposed, including lifted importance
sampling (Gogate and Domingos 2011; Gogate, Jha, and
Venugopal 2012). More generally, there is a large literature
on exact and approximate lifted probabilistic inference in
statistical relational models, which can be adapted to solve
certain WFOMC tasks. See Kersting (2012) for an overview.

Normal Forms
It is common for logical reasoning algorithms to operate on
normal form representations instead of arbitrary sentences.
For example, propositional SAT solvers and weighted model
counters often expect CNF inputs. We distinguish the fol-
lowing first-order normal forms.

– A theory in prenex normal form consists of formulas
Q1x1, . . . , Qnxn, φ, where each Qi is either a universal
or existential quantifier, and φ is quantifier-free.

– A theory in prenex clausal form is a theory in prenex nor-
mal form where φ is a clause.

– A theory in Skolem normal form is a theory in prenex nor-
mal form where all Qi are universal quantifiers.

– A first-order CNF is a theory in Skolem and prenex
clausal form. Thus, all sentences take the form
∀x1, . . . ,∀xn, l1 ∨ · · · ∨ lm.

Existing WFOMC algorithms require a theory to be in
first-order CNF. The same requirement is often posed by
automated theorem provers, such as first-order resolution.

3 Skolemization for WFOMC
It is well known that one can take any arbitrary formula
and convert it to prenex clausal form. This involves push-
ing negations inside, pushing quantifiers to the front, and
distributing disjunctions over conjunctions. The situation for
Skolem normal form is different.

Motivation
Not every formula can be transformed into an equivalent
Skolem normal form. This problem is typically dealt with by
Skolemization, which eliminates existential quantifiers from
a prenex normal form. This is done by replacing existentially
quantified variables by Skolem constants and functions. The
result is not logically equivalent to the original formula, but
only equisatisfiable (i.e., satisfiable precisely when the orig-
inal formula is satisfiable).

The standard Skolemization algorithm is specific to the
satisfiability task and may be unsuitable for other tasks. It is
particularly unsuitable for WFOMC as it may produce a re-
sult with functions, which are not permitted in the WFOMC
task. For example, standard Skolemization would transform
the formula

∀x,∃y, WorksFor(x, y) ∨ Boss(x) (5)

into the following formula with the Skolem function Sk().

∀x, WorksFor(x,Sk(x)) ∨ Boss(x).

As soon as we allow functions, the Herbrand base becomes
infinite, which makes the model counting task ill-defined,
therefore, ruling out standard Skolemization for WFOMC.3

Algorithm
This section introduces a Skolemization technique for
WFOMC. It takes as input a triple (∆,w, w̄) whose ∆ is
an arbitrary sentence and returns a triple (∆′,w′, w̄′) whose
∆′ is in Skolem normal form (i.e., no existential quantifiers).
Such a ∆′ can then be turned into first-order CNF using stan-
dard transformations. The proposed technique does not in-
troduce functions. It satisfies two properties, one is essential
and the other expands the applications of the technique.

The essential property is soundness.
Property 1 (Soundness). Skolemization of (∆,w, w̄) to
(∆′,w′, w̄′) is sound iff for any D, we have that

WFOMC(∆,D,w, w̄) = WFOMC(∆′,D,w′, w̄′).
To motivate the second property, we note that one may be

interested in queries of the form WFOMC(∆∧φ,D,w, w̄),
where ∆, w and w̄ are fixed, but where φ is changing. For
example, we will see in Section 4 that probabilistic inference
can be reduced to these types of queries. Therefore, we want
to achieve a stronger form of soundness.
Property 2 (Modularity). Skolemization of (∆,w, w̄) to
(∆′,w′, w̄′) is modular iff for any D and any sentence φ,
WFOMC(∆ ∧ φ,D,w, w̄) = WFOMC(∆′ ∧ φ,D,w′, w̄′).

That is, by replacing φ, one does not invalidate the
Skolemization obtained under a different φ.

The proposed Skolemization algorithm eliminates exis-
tential quantifiers one by one. Its basic building block is the
following transformation.
Definition 3. Suppose that ∆ contains a subexpression of
the form ∃x, φ(x,y), where φ(x,y) is an arbitrary sentence
containing the free logical variables x and y. Let n be the
number of variables in y. First, we introduce two new pred-
icates: the Tseitin predicate Z/n and the Skolem predicate
S/n. Second, we replace the expression ∃x, φ(x,y) in ∆ by
the atom Z(y), and append the formulas

∀y,∀x, Z(y) ∨ ¬φ(x,y)

∀y, S(y) ∨ Z(y)

∀y,∀x, S(y) ∨ ¬φ(x,y).

The functions w′ and w̄′ are equal to w and w̄, except that
w′(Z) = w̄′(Z) = w′(S) = 1 and w̄′(S) = −1.

In the resulting theory ∆′, a single existential quantifier
is now eliminated. This building block can eliminate single
universal quantifiers as well. When ∆ contains a subexpres-
sion ∀x, φ(x,y), we replace it by ¬∃x,¬φ(x,y), whose ex-
istential quantifier can be eliminated with Definition 3.

We can now show the following.
3One could obtain a Skolem normal form by grounding exis-

tential quantifiers, replacing them by large, but finite disjunctions.
While this may still permit limited runtime improvements on vacu-
ous formulas, it is for all practical purposes equivalent to reducing
the WFOMC problem to a WMC problem. Moreover, that trans-
formation is dependent on the domain and leads to large formulas
whose conversion to CNF blows up (e.g., when grounding ∃x∀y).

Theorem 3 (Modularity). Repeated application of Defini-
tion 3 comprises a modular Skolemization algorithm.

The detailed proof can be found in the appendix.

Intuition
Our Skolemization algorithm implicitly tries to enforce an
equivalence between the eliminated subexpression and the
Tseitin predicate4, which is explicitly written as

∀y, Z(y)⇔ [∃x, φ(x,y)] .

This equivalence contains an existential quantifier so it can-
not be represented explicitly. Instead, the algorithms en-
forces a relaxed equivalence, represented by the three for-
mulas in Definition 3. The intuition is that by relaxing the
equivalence we introduce additional models to the theory,
but for every additional model with weight W , there is ex-
actly one additional model with weight−W .5 The WFOMC
therefore stays the same.

The interaction between the three relaxed formulas, the
intended equivalence, and the model weights becomes more
apparent after a case analysis on Z(y):

1. When Z(y) is false, it implies that ∃x, φ(x,y) is false,
which is intended. It also implies that S(y) is true, which
does not change the model count, since we multiply by 1.

2. When Z(y) is true, it implies that only three states of S(y)
and ∃x, φ(x,y) are allowed:

(a) ∃x, φ(x,y) is true and S(y) is true. This is again in-
tended, because Z(y) and ∃x, φ(x,y) are equivalent.

(b) ∃x, φ(x,y) is false and S(y) is true. This is an unin-
tended state with a positive weight W .

(c) ∃x, φ(x,y) is true and S(y) is false. This is an unin-
tended state with a weight −W . The negative weight
comes from the fact that w̄(S) = −1.

The weights of the unintended models cancel each other out.

Examples
We will now illustrate our Skolemization algorithm on con-
crete examples. Suppose that ∆ is Formula 5, that is,

∀x, ∃y, WorksFor(x, y) ∨ Boss(x).

We can apply Definition 3 to the subexpression
∃y, WorksFor(x, y) ∨ Boss(x), resulting in a ∆′ equal to

∀x, Z(x)

∀x, ∀y, Z(x) ∨ ¬ [WorksFor(x, y) ∨ Boss(x)]

∀x, Z(x) ∨ S(x)

∀x, ∀y, S(x) ∨ ¬ [WorksFor(x, y) ∨ Boss(x)] .

The first formulas is the original formula with the subexpres-
sion substituted by Z(x).

To get a better insight into the result, we will simplify
it using first-order unit propagation (Van den Broeck et al.

4This equivalence represents a set of propositional Tseitin en-
codings, in which each Z atom is a Tseitin variable (Tseitin 1983).

5This is not dissimilar to the inclusion-exclusion principle.

2011) while noting that the first formula is a unit clause. The
simplified theory is

∀x, ∀y, S(x) ∨ ¬WorksFor(x, y)

∀x, S(x) ∨ ¬Boss(x).

We verify the correctness of this Skolemization as follows.
– When Boss(x) is true, the formula is satisfied for x, and

the models of ∆′ are intended, that is, they correspond to
models of ∆. Indeed, S(x) is entailed to be true and the
model weights are multiplied by one.

– When Boss(x) is false and WorksFor(x, y) is true for
at least one y, then S(x) is entailed to be true. Again
these models are intended, because ∃y, WorksFor(x, y)∨
Boss(x) is now satisfied for x. The model weights are
multiplied by one.

– When Boss(x) is false and WorksFor(x, y) is false for
all y then S(x) can be either true or false. This is where
unintended models appear, once with S(x) true and once
with S(x) false. Because they have opposing weights, the
contributions of these unintended models cancel out.

As a second example, consider ∆ to be

∀x, ∃y,∃z, Parents(x, y, z) ∨ Adam(x).

Skolemization of the inner existential quantifier results in

∀x, ∃y, Z1(x, y)

∀x, ∀y,∀z, Z1(x, y) ∨ ¬ [Parents(x, y, z) ∨ Adam(x)]

∀x, ∀y, Z1(x, y) ∨ S1(x, y)

∀x, ∀y,∀z, S1(x, y) ∨ ¬ [Parents(x, y, z) ∨ Adam(x)]

This example shows the need for a Tseitin predicate Z1.
The first sentence still contains an existential quantifier. One
more elimination and unit propagation step replaces that
sentence by ∀y,∀x, S2(y) ∨ ¬Z1(x, y) and the result is in
Skolem normal form.

Properties
Theorem 3 suggests the repeated application of Definition 3,
as long as the sentence contains an existential quantifier,
or a universal quantifier not in prenex form. This approach
has one caveat: eliminating ∃x, φ(x,y) adds the expression
¬φ(x,y) to ∆′. When we eliminate quantifiers from left to
right, φ(x,y) itself can contain quantifiers. This operation
will introduce new quantifiers in ¬φ(x,y) and cause a blow
up due to the duplication in the newly added formulas. This
can be avoided by eliminating from right to left, that is, from
innermost to outermost. We can show the following theo-
rem, whose proof is in the appendix.
Theorem 4 (Termination and Complexity). Repeated ap-
plication of Definition 3 will terminate with a sentence in
Skolem normal form. Moreover, this can be achieved in time
polynomial in the size of ∆.
The resulting Skolem normal form sentence can subse-
quently be transformed into first-order CNF. When using
Tseitin’s transformation (Tseitin 1983), this can even be
done in polynomial time.

In our first example, the Tseitin predicate Z could be re-
moved from ∆′ by unit propagation. The following proposi-
tion generalizes that observation.
Proposition 5. Suppose that we are eliminating a subex-
pression ∃x, φ(x,y) from a sentence ∀y,∃x, φ(x,y) using
the procedure of Definition 3. That is, the existential quanti-
fier in this subexpression is only preceded by universal quan-
tifiers. Then, we can avoid adding Tseitin predicate Z and
instead define ∆′ to be

∀y,∀x, S(y) ∨ ¬φ(x,y).

This simplifies the transformation when applicable, in par-
ticular when ∆ is already in prenex normal form.

4 WFOMC Encodings
We will show in this section how the proposed Skolem-
ization technique can extend the scope of first-order model
counters to new situations. We will consider in particular one
undirected first-order probabilistic language (Markov Logic)
and one directed language (Probabilistic Logic Programs).
First-order model counters currently apply to a subset of
the first representation, and not to the second representation.
With Skolemization, these model counters can now be ap-
plied to both. Our treatment is based on providing WFOMC
encodings of these representations, to which our Skolemiza-
tion technique is then applied.6

Consider a first-order probabilistic model that induces the
distribution PrD(.) for domain D. A WFOMC encoding of
this model is a triple (∆,w, w̄) which guarantees that for any
sentence φ (usually a conjunction of literals) and domain D,
we have that

PrD(φ) =
WFOMC(∆ ∧ φ,D,w, w̄)

WFOMC(∆,D,w, w̄)
.

Markov Logic Networks
We will now introduce a WFOMC encoding for Markov
logic networks (MLN) (Richardson and Domingos 2006).

Representation An MLN is a set of tuples (w,ψ), where
w is a real number representing a weight and ψ is a formula
in first-order logic. When w is infinite, ψ represents a first-
order logic constraint, also called a hard formula.

Building further on the example given before, consider
the following MLN

1.3 ∃y, WorksFor(x, y) ∨ Boss(x). (6)

This statement softens the logical sentence we saw earlier.
Instead of saying that every person either has a boss, or is
a boss, it states that worlds with many employed people are
more likely. That is, it is now possible to have a world with
unemployed people, but the more unemployed people there
are, the lower the probability of that world.

The semantics of a first-order MLN Φ is defined in terms
of its grounding for a given domain of constants D. The
grounding of Φ is the MLN obtained by first grounding all

6These encodings are implemented in the WFOMC system:
http://dtai.cs.kuleuven.be/wfomc

its quantifiers and then replacing each formula in Φ with all
its groundings (using the same weight). With the domain
D = {A,B} (e.g., two people, Alice and Bob), the above
first-order MLN represents the following grounding.

1.3 WorksFor(A,A) ∨ WorksFor(A,B) ∨ Boss(A)

1.3 WorksFor(B,A) ∨ WorksFor(B,B) ∨ Boss(B)

This ground MLN contains six different random vari-
ables, which correspond to all groundings of atoms
WorksFor(x, y) and Boss(x). This leads to a distribution
over 26 possible worlds (i.e., interpretation). The weight of
each world is simply the product of all weights ew, where
(w, γ) is a ground MLN formula and γ is satisfied by the
world. The weights of worlds that do not satisfy a hard for-
mula are set to zero. The probabilities of worlds are obtained
by normalizing their weights.

Encoding a Markov Logic Network

Definition 4. The WFOMC encoding (∆,w, w̄) of an
MLN is constructed as follows. For each MLN formula
(wi, φi(xi)), where xi denotes the free logical variables in
φi, we introduce a parameter predicate Pi/|xi|. For each
MLN formula, ∆ contains the sentence ∀xi, Pi(xi) ⇔
φi(xi). The weight function sets w(Pi) = ewi , w̄(Pi) = 1,
and w(Q) = w̄(Q) = 1 for all other predicates Q.

Each Pi captures the truth value of φi and carries its weight.
Hard formulas can directly be encoded as constraints.

The encoding of Formula 6 has ∆ equal to

∀x, P(x)⇔ ∃y, WorksFor(x, y) ∨ Boss(x).

Its w maps P to e1.3 and all other predicates to 1. Its w̄ maps
all predicates to 1.

As discussed in Section 2, WFOMC algorithms require
first-order CNF input. Definition 4 will only yield a ∆ in
Skolem normal form (and thus rewritable into CNF) if the
MLN formulas are quantifier-free. Then, the only quanti-
fiers in ∆ are the universal ones introduced by the encoding
itself. Therefore, Van den Broeck et al. (2011) and Gogate
and Domingos (2011) resort to grounding all quantifiers in
the MLN formulas so as to obtain a CNF. This makes the
WFOMC encoding specific to the domain D, and partly re-
moves first-order structure from the problem.

Our discussion is based on Van den Broeck et al. (2011).
It is similar to the encoding of Gogate and Domingos (2011),
whose parameter predicates have more arguments. While
these encodings are specific to MLNs, it is straightforward
to generalize them to other undirected languages, such as
parfactor graphs (Poole 2003).

Applying Skolemization We can now perform WFOMC
inference in MLNs with quantifiers. Skolemization and CNF

conversion for the example above results in a ∆′ equal to

∀x, P(x) ∨ ¬Z(x)

∀x, ¬P(x) ∨ Z(x)

∀x, ∀y, S(x) ∨ ¬WorksFor(y, x)

∀x, S(x) ∨ ¬Boss(x)

∀x, S(x) ∨ Z(x)

∀x, ∀y, Z(x) ∨ ¬WorksFor(x, y)

∀x, ∀y, Z(x) ∨ ¬Boss(x)

This theory can be used for WFOMC inference.

Probabilistic Logic Programs
We now show a WFOMC encoding for a directed first-order
probabilistic language. The encoding is explained for the
ProbLog language (De Raedt, Kimmig, and Toivonen 2007;
Fierens et al. 2013).

ProbLog Representation ProbLog extends logic pro-
grams with facts that are annotated with probabilities. A
ProbLog program Φ is a set of probabilistic facts F and a
regular logic program L. A probabilistic fact p :: a consists
of a probability p and an atom a. A logic program is a set
of rules, with the form Head : - Body, where the head is an
atom and the body is a conjunction of literals. For example,

0.1 :: Attends(x).

0.3 :: ToSeries(x).

Series : - Attends(x), ToSeries(x).

This program expresses that if more people attend a work-
shop, it more likely turns into a series of workshops.

The semantics of a ProbLog program Φ are defined by a
distribution over the groundings of the probabilistic facts for
a given domain of constants D (Sato 1995).7 The probabilis-
tic facts pi ::ai induce a set of possible worlds, one for each
possible partition of ai in positive and negative literals. The
set of true ai literals with the logic program L define a well-
founded model (Van Gelder, Ross, and Schlipf 1991). The
probability of such a model is the product of pi for all true
ai literals and 1− pi for all false ai literals.

For the domain D = {A,B} (two people), the above first-
order ProbLog program represents the following grounding:

0.1 :: Attends(A).

0.1 :: Attends(B).

0.3 :: ToSeries(A).

0.3 :: ToSeries(B).

Series : - Attends(A), ToSeries(A).

Series : - Attends(B), ToSeries(B).

This ground ProbLog program contains 4 probabilis-
tic facts which corresponds to 24 possible worlds. The

7Our treatment assumes a function-free and finite-domain frag-
ment of ProbLog. Starting from classical ProbLog semantics, one
can obtain the a finite function-free domain for a given query by ex-
haustively executing the Prolog program and keeping track of the
goals that are called during resolution.

weight of, for example, the world in which Attends(A)
and ToSeries(A) are true would be 0.1 · (1 − 0.1) ·
0.3 · (1 − 0.3) = 0.0189 and the model would be
{Attends(A), ToSeries(A), Series}.

Encoding a ProbLog Program The transformation from
a ProbLog program to a first-order logic theory is based on
Clark’s completion (Clark 1978). This is a transformation
from logic programs to first-order logic. For certain classes
of programs, called tight logic programs (Fages 1994), it
is correct, in the sense that every model of the logic pro-
gram is a model of the completion, and vice versa. Intu-
itively, for each predicate P, the completion contains a single
sentence encoding all its rules. These rules have the form
P(x) : - bi(x,yi), where bi is a body and yi are the vari-
ables that appear in the body bi but not in the head. The sen-
tence encoding these rules in the completion is ∀x, P(x)⇔∨

i ∃yi, bi(x,yi). If the program contains cyclic rules, the
completion is not sound, and, it is necessary to first apply a
conversion to remove positive loops (Janhunen 2004).

Definition 5. The WFOMC encoding (∆,w, w̄) of a tight
ProbLog program has ∆ equal to Clark’s completion of L.
For each probabilistic fact8 p ::a we set the weight function
to w(pred(a)) = p and w̄(pred(a)) = 1− p.

Again, a Skolem normal form is required to use WFOMC.
However, we get this form only when the variables that ap-
pear in the body of a rule also appear in the head of a rule.
This is not the case for most Prolog programs though. For
example, if we apply Definition 5 to the example above, an
existential quantifier appears in the sentence:

Series⇔ ∃x, Attends(x) ∧ ToSeries(x).

Furthermore, w maps Attends to 0.1 and ToSeries to 0.3,
and w̄ maps Attends to 0.9 and ToSeries to 0.7. Both w
and w̄ are 1 for all other predicates. This example is not in
Skolem normal form and requires Skolemization before it
can be processed by WFOMC algorithms.

Applying Skolemization Skolemization followed by
CNF conversion gives a ∆′ equal to

Series ∨ ¬Z
¬Series ∨ Z

∀x, Z ∨ ¬Attends(x) ∨ ¬ToSeries(x)

Z ∨ S
∀x, S ∨ ¬Attends(x) ∨ ¬ToSeries(x)

Sentence ∆′ is in Skolem normal form and is now process-
able by WFOMC algorithms.

A simple ProbLog program as the one above is identical
to a noisy-or structure (Cozman 2004), popular in Bayesian
network modeling. Skolemization thus offers a fundamen-
tal method to lift first-order, directed structures, such as the
noisy-or, in a generic manner (see also Section 6).

8If multiple probabilistic facts are defined for the same predi-
cate, auxiliary predicates need to be introduced.

5 Liftability Implications
In our motivation for introducing first-order model counting,
we touched upon the runtime and complexity improvements
that can be attained by first-order counting. These complex-
ity improvements have inspired a particular notion of lifted
inference, called domain-lifted inference, which says that a
WFOMC algorithm is lifted when it runs in time polynomial
in the size of D (Van den Broeck 2011).

While this notion of lifted inference may not capture ev-
eryone’s perception of lifting, it does provide a clear formal
framework. In particular, we can now talk about classes of
sentences ∆ for which an algorithm is domain-lifted. We say
that the algorithm is complete for those classes. We can also
talk about classes of sentences ∆ for which there exists, or
cannot exist a domain-lifted algorithm. We call the former
classes liftable (Jaeger and Van den Broeck 2012).

All existing completeness and liftability theorems require
that ∆ is in first-order CNF. This requirement carries over
from the existing WFOMC algorithms. Given our Skolem-
ization algorithm, we can now restate these theorems to ap-
ply more generally. For example, the positive liftability re-
sult of Van den Broeck (2011) becomes the following

Corollary 6. Suppose that ∆ is a theory of sentences with
up to two logical variables, and otherwise arbitrary struc-
ture. The complexity of computing the WFOMC of ∆ is poly-
nomial in the size of D. That is, this class is domain-liftable.

Other notions of liftability also include queries φ in
the complexity analysis, since they are important for lifted
probabilistic inference. Based on Van den Broeck and
Davis (2012), and Van den Broeck and Darwiche (2013),
we can now claim the following.

Corollary 7. Suppose that ∆ is a theory of sentences with
up to two logical variables, and otherwise arbitrary struc-
ture. The complexity of computing the WFOMC of ∆ ∧ φ
is polynomial in the size of D and φ, provided that φ is
a conjunction of only unary literals, and binary literals of
bounded Boolean rank.

These WFOMC liftability theorems have direct implica-
tions for all languages with a WFOMC encoding. For ex-
ample, we can now say that MLNs with up to two logical
variables per formula are domain-liftable, regardless of the
quantifiers used. Previously, this was only true for quantifier-
free MLNs. We can now also show that ProbLog programs
with up to two logical variables per clause are guaranteed to
be liftable. This is the first such liftability result for proba-
bilistic logic programs.

6 Related Work
In the encodings for MLNs and probabilistic logics, the
weight functions (indirectly) represent probabilities and are
therefore always positive. Our Skolemization algorithm in-
troduces negative weights. This might appear odd when in-
terpreting the weights as negative probabilities. This issue
has been discussed before. For example, Feynman (1987)
writes “Negative probabilities allow an abstract calculation
which permits freedom to do mathematical calculations in
any order simplifying the analysis enormously”.

The potential of negative probabilities was already ob-
served by Jha and Suciu (2012) for answering queries in
probabilistic databases and served as inspiration for our ap-
proach. Probabilistic databases (Suciu et al. 2011) are funda-
mentally a type of first-order probabilistic model. It can be
viewed as a special type of weighted model counting prob-
lem (∆, w), where the weight function encodes the probabil-
ity w(t) with which a tuple t can be found in the database. A
query on such a database is typically a union of conjunctive
queries (UCQ), which corresponds to a monotone DNF sen-
tence ∆. A noticeable difference with most WMC solvers
(and WFOMC) is that the solvers for probabilistic databases
expect the theory ∆ to be in DNF instead of CNF. Different
from WFOMC is that although the query (i.e., ∆) is first-
order, the weight function is defined on the propositional
level like in WMC. Weights are thus assigned to ground lit-
erals (the tuples) whereas for WFOMC weights are assigned
to predicates (the tables). This allows WFOMC to exploit
more types of symmetries.

Jha and Suciu (2012) propose to extend probabilistic
databases with MarkoViews, a representation similar to
MLNs, in which each weighted formula is again a UCQ
query, that is, a monotone DNF. To compute the probabil-
ity of a query, they introduce negative tuple probabilities.

The use of negative probabilities has also come up for op-
timizing calculations for specific structures in probabilistic
graphical models like noisy-or (Dı́ez and Galán 2003). This
particular case has been translated to the first-order case by
Kisynski and Poole (2011) and resulted in an approach to
lift noisy-or structures. In Section 4 we showed how the ap-
plication of Skolemization leads to lifting noisy-or and both
methods turn out to output a similar encoding for this par-
ticular case. Therefore, the approach followed by Kisynski
and Poole (2011) can be considered a special case of the
Skolemization algorithm applied to a noisy-or model.

Jaeger (2012) shows a negative liftability proof that uses
relational Skolemization. Similar to our approach, subex-
pressions containing an existential quantifier are trans-
formed and relaxed to eliminate the quantifier. Relational
Skolemization, however, does not guarantee a correct model
count. It rather guarantees that if the weight of a model is
non-zero it will also be non-zero in the Skolemized version.

7 Conclusions
In this paper, we introduced a Skolemization procedure that
is sound for weighted first-order model counting. It extends
the applicability of first-order model counters to encodings
which require an existential quantifier such as Markov logic
models with quantifiers and probabilistic logic programs. It
also extends the class of first-order sentences whose models
we can count efficiently.

Acknowledgments
This work was supported by ONR grant #N00014-12-1-
0423, NSF grant #IIS-1118122, NSF grant #IIS-0916161,
and the Research Foundation-Flanders (FWO-Vlaanderen).
GVdB is also at KU Leuven, Belgium.

Appendix
A Proof of Theorem 3

We will now prove the sequence of steps that leads to the
removal of an existential quantifier in ∆ to obtain ∆′, w′ and
w̄′ while maintaining modularity. To replace the expression
∃x, φ(x,y) we perform the following steps.
Isolate the Quantifier Introduce a new Tseitin predicate
Z/n, whose arity n is the number of y variables. Set
w′(Z) = w̄′(Z) = 1 and for all other predicates P, set
w′(P) = w(P) and w̄′(P) = w̄(P). Construct ∆′ by re-
placing the expression ∃x, φ(x,y) in ∆ by the atom Z(y),
and appending the equivalence .
In any grounding of ∆, this step performs a Tseitin en-
coding of all groundings of ∃x, φ(x,y). The groundings
of Z(y) play the role of Tseitin variables. This step there-
fore satisfies Property 2.

Split the Equivalence Rewrite equivalence ∀y, Z(y) ⇔
∃x, φ(x,y) as two implications, ∀y, Z(y)⇒ ∃x, φ(x,y)
and ∀y, Z(y) ⇐ ∃x, φ(x,y). In clausal form, these be-
come

∀y,∃x, ¬Z(y) ∨ φ(x,y)

∀y,∀x, Z(y) ∨ ¬φ(x,y).

This step satisfies Property 2 because it is a logical equiv-
alence.

Convert to a Feature Introduce a new Skolem predicate
predicate S/n. Set w(S) = 1 and w̄(S) = 0 and replace
the sentence ∀y,∃x, ¬Z(y) ∨ φ(x,y) by

∀y, S(y)⇔ ∃x,¬Z(y) ∨ φ(x,y).

In all models of the resulting theory where
∀y,∃x, ¬Z(y) ∨ φ(x,y) is not satisfied, there will
exist a y for which ∃x,¬Z(y) ∨ φ(x,y) is not satisfied.
This will cause at least one S(y) atom to be false in those
models, which means that the weight of those models is
multiplied by 0. The weight of all other models remains
the same. This step therefore satisfies Property 2.

Convert to an Implication Set w̄(S) = −1 and turn the
equivalence ∀y, S(y) ⇔ ∃x,¬Z(y) ∨ φ(x,y) into an
implication ∀y, S(y) ⇐ ∃x,¬Z(y) ∨ φ(x,y), which in
clausal form becomes

∀y, S(y) ∨ Z(y)

∀y,∀x, S(y) ∨ ¬φ(x,y).

Replacing the equivalence by an implication and chang-
ing w̄(S) to −1 is correct for the following reason. Let
S(y) ⇔ Σ(y) be the above equivalence which is in ∆,
and let Γ represent all other sentences in ∆ (i.e., ∆ ≡
(Σ(y) ⇔ S(y)) ∧ Γ). Our goal is now to construct a
triple (∆′,w′, w̄′), where ∆′ ≡ (Σ(y) ⇒ S(y)) ∧ Γ,
such that WFOMC(∆ ∧ φ,D,w, w̄) = WFOMC(∆′ ∧
φ,D,w′, w̄′) for all domains D and all sentences φ.
Let Σ(A) and S(A) be any arbitrary grounding of Σ(y)
and S(y). A case analysis on the values of Σ(A) and S(A)
shows that WFOMC(∆∧φ,D,w, w̄) and WFOMC(∆′∧
φ,D,w′, w̄′) consist of the following terms (for compact-
ness we drop D from the notation since it doesn’t change).

Σ(A) S(A) WFOMC(∆ ∧ φ,w, w̄)

1 1 w(S) ·WFOMC(Γ ∧ Σ(A) ∧ φ,w, w̄)

1 0 0
0 1 0
0 0 w̄(S) ·WFOMC(Γ ∧ ¬Σ(A) ∧ φ,w, w̄)

Σ(A) S(A) WFOMC(∆′ ∧ φ,w′, w̄′)

1 1 w′(S) ·WFOMC(Γ ∧ Σ(A) ∧ φ,w′, w̄′)

1 0 0
0 1 w′(S) ·WFOMC(Γ ∧ ¬Σ(A) ∧ φ,w′, w̄′)

0 0 w̄′(S) ·WFOMC(Γ ∧ ¬Σ(A) ∧ φ,w′, w̄′)

Note that w̄(S) = 0 in the encoding of ∆, and that thus

WFOMC(∆ ∧ φ,w, w̄) =

w(S) ·WFOMC(Γ ∧ Σ(A) ∧ φ,w, w̄)

+ 0 ·WFOMC(Γ ∧ ¬Σ(A) ∧ φ,w, w̄)

WFOMC(∆′ ∧ φ,w′, w̄′) =

w′(S) ·WFOMC(Γ ∧ Σ(A) ∧ φ,w′, w̄′)
+ [w′(S) + w̄′(S)]

·WFOMC(Γ ∧ ¬Σ(A) ∧ φ,w′, w̄′)

Setting w′(P) = w(P) for all predicates P except
for S ensures that WFOMC(Γ ∧ Σ(A) ∧ φ,w, w̄) =
WFOMC(Γ ∧ Σ(A) ∧ φ,w′, w̄′), that WFOMC(Γ ∧
¬Σ(A) ∧ φ,w, w̄) = WFOMC(Γ ∧ ¬Σ(A) ∧
φ,w′, w̄′). Furthermore, set w(S) = w′(S). What remains
for WFOMC(∆ ∧ φ,w, w̄) to equal WFOMC(∆′ ∧
φ,w′, w̄′) is that w′(S) + w̄′(S) = w(S) + w̄′(S) = 0,
which is achieved by setting w̄′(S) = −w(S) = −1.

B Proof of Theorem 4
Proof. We begin by proving termination. Let the internal
quantifier count of a sentence be the number of quantifiers
it contains, excluding the leading universal quantifiers. Sup-
pose that a sentence has an internal quantifier count of m.
We can select any subexpression that starts with a quanti-
fier and apply Skolemization to it (potentially converting ∀
into ∃ first). This reduces the internal quantifier count of ∆
to be at most m − 1 because at least one quantifier is re-
moved. New sentences are added, however, containing the
Tseitin and Skolem predicates, and expressions ¬φ(x,y).
These sentences also have an internal quantifier count of at
mostm−1. Suppose that the sentences in ∆ have an internal
quantifier count of at most mmax . Applying Skolemization
to one quantifier in each sentence reduces the maximal in-
ternal quantifier count to at most mmax − 1. Therefore, by
repeating this procedure for a finite number of steps, we ob-
tain a theory with an internal quantifier count of zero, which
is in Skolem normal form.

Next, we prove polynomial complexity. We can remove
the quantifiers in a sentence ∆ one by one, starting from the
innermost quantifier. The removed subexpression φ(x,y)
does not contain any quantifiers, so the internal quantifier
count of the added formulas is zero. They are in Skolem
normal form. The innermost subexpression is replaced by
a Tseitin predicate, reducing the internal quantifier count by

one. The number of required elimination steps before the en-
tire sentence is in Skolem normal form is thus equal to the
number of quantifiers in ∆. Moreover, the number of added
formulas, and their size, is polynomial in the size of ∆.

References
Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller, D. 1996.
Context-specific independence in Bayesian networks. In Proceed-
ings of UAI, 115–123. Morgan Kaufmann Publishers Inc.
Chavira, M., and Darwiche, A. 2005. Compiling Bayesian net-
works with local structure. In Proceedings of IJCAI, volume 19,
1306.
Chavira, M., and Darwiche, A. 2008. On probabilistic inference
by weighted model counting. Artificial Intelligence 172(6-7):772–
799.
Chavira, M.; Darwiche, A.; and Jaeger, M. 2006. Compiling rela-
tional Bayesian networks for exact inference. International Journal
of Approximate Reasoning 42(1-2):4–20.
Choi, A.; Kisa, D.; and Darwiche, A. 2013. Compiling probabilis-
tic graphical models using sentential decision diagrams. In Pro-
ceedings of the 12th European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty (ECSQARU).
Clark, K. 1978. Negation as failure. In Readings in nonmonotonic
reasoning, 311–325. Morgan Kaufmann Publishers.
Cozman, F. G. 2004. Axiomatizing noisy-or. In Proceedings of
European Conference on Artificial Intelligence (ECAI), 979–980.
Darwiche, A. 2002. A logical approach to factoring belief net-
works. Proceedings of KR 409–420.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S., eds.
2008. Probabilistic inductive logic programming: theory and ap-
plications. Berlin, Heidelberg: Springer-Verlag.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. Problog: A
probabilistic prolog and its application in link discovery. In Pro-
ceedings of IJCAI, volume 7, 2462–2467.
Dı́ez, F. J., and Galán, S. F. 2003. Efficient computation for the
noisy max. International Journal of Intelligent Systems 18(2):165–
177.
Fages, F. 1994. Consistency of Clark’s completion and existence of
stable models. Journal of Methods of Logic in Computer Science
1:51–60.
Feynman, R. P. 1987. Negative probability. Quantum implications:
essays in honour of David Bohm 235–248.
Fierens, D.; Van den Broeck, G.; Thon, I.; Gutmann, B.; and
De Raedt, L. 2011. Inference in probabilistic logic programs using
weighted CNF’s. In Proceedings of UAI, 211–220.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov, D.; Gut-
mann, B.; Thon, I.; Janssens, G.; and De Raedt, L. 2013. Infer-
ence and learning in probabilistic logic programs using weighted
Boolean formulas. Theory and Practice of Logic Programming.
Getoor, L., and Taskar, B., eds. 2007. An Introduction to Statistical
Relational Learning. MIT Press.
Gogate, V., and Dechter, R. 2011. Samplesearch: Importance
sampling in presence of determinism. Artificial Intelligence
175(2):694–729.
Gogate, V., and Domingos, P. 2011. Probabilistic theorem proving.
In Proceedings of UAI, 256–265.
Gogate, V.; Jha, A. K.; and Venugopal, D. 2012. Advances in lifted
importance sampling. In Proceedings of AAAI, 1910–1916.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2009. Model count-
ing. Handbook of Satisfiability 185:633–654.
Hinrichs, T., and Genesereth, M. 2006. Herbrand logic. Tech-
nical Report LG-2006-02, Stanford University, Stanford, CA.
http://logic.stanford.edu/reports/LG-2006-02.pdf.
Jaeger, M., and Van den Broeck, G. 2012. Liftability of probabilis-
tic inference: Upper and lower bounds. In Proceedings of StarAI.
Jaeger, M. 2012. Lower complexity bounds for lifted inference.
arXiv preprint arXiv:1204.3255.
Janhunen, T. 2004. Representing normal programs with clauses.
In Proceedings of European Conference on Artificial Intelligence
(ECAI), volume 16, 358.
Jha, A., and Suciu, D. 2012. Probabilistic databases with
MarkoViews. Proceedings of the VLDB Endowment 5(11):1160–
1171.
Kersting, K. 2012. Lifted probabilistic inference. In Proceedings
of European Conference on Artificial Intelligence (ECAI).
Kimmig, A.; Van den Broeck, G.; and De Raedt, L. 2012. Alge-
braic model counting. arXiv preprint arXiv:1211.4475.
Kisynski, J., and Poole, D. 2011. Lifted aggregation in directed
first-order probabilistic models. In Proceedings of IJCAI, 1922–
1929.
Poole, D. 2003. First-order probabilistic inference. In Proceedings
of IJCAI, 985–991.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine learning 62(1-2):107–136.
Sang, T.; Beame, P.; and Kautz, H. 2005. Solving Bayesian net-
works by weighted model counting. In Proceedings of AAAI, vol-
ume 1, 475–482.
Sato, T. 1995. A statistical learning method for logic programs with
distribution semantics. In Proceedings of the 12th International
Conference on Logic Programming (ICLP), 715–729.
Suciu, D.; Olteanu, D.; Ré, C.; and Koch, C. 2011. Probabilistic
databases. Synthesis Lectures on Data Management 3(2):1–180.
Tseitin, G. S. 1983. On the complexity of derivation in proposi-
tional calculus. In Automation of Reasoning. Springer. 466–483.
Van den Broeck, G., and Darwiche, A. 2013. On the complex-
ity and approximation of binary evidence in lifted inference. In
Advances in Neural Information Processing Systems 26 (NIPS).
Van den Broeck, G., and Davis, J. 2012. Conditioning in first-
order knowledge compilation and lifted probabilistic inference. In
Proceedings of AAAI.
Van den Broeck, G.; Taghipour, N.; Meert, W.; Davis, J.; and
De Raedt, L. 2011. Lifted Probabilistic Inference by First-Order
Knowledge Compilation. In Proceedings of IJCAI, 2178–2185.
Van den Broeck, G. 2011. On the completeness of first-
order knowledge compilation for lifted probabilistic inference. In
Advances in Neural Information Processing Systems 24 (NIPS),
1386–1394.
Van den Broeck, G. 2013. Lifted Inference and Learning in Statis-
tical Relational Models. Ph.D. Dissertation, KU Leuven.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991. The well-
founded semantics for general logic programs. Journal of the ACM
(JACM) 38(3):619–649.
Wei, W., and Selman, B. 2005. A new approach to model count-
ing. In Theory and Applications of Satisfiability Testing, 96–97.
Springer.

