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One approach to compute the musculotendon forces that underlie human motion is to combine
an inverse dynamic analysis with a static optimisation procedure. Although computationally
efficient, this classical inverse approach fails to incorporate constraints imposed by muscle
physiology.

The present paper reports on a physiological inverse approach that combines an inverse dy-
namic analysis with a dynamic optimisation procedure. This allows the incorporation of a
full description of muscle activation and contraction dynamics, without loss of computational
efficiency.

A comparison of muscle excitations and MT-forces predicted by the classical and the phys-
iological inverse approach is presented for normal and pathological gait. Inclusion of muscle
physiology primarily affects the rate of active muscle force build-up and decay and allows the
estimation of passive muscle force. Consequently, it influences the onset and cessation of the
predicted muscle excitations as well as the level of co-contraction.

Keywords: biomechanics; motion analysis; inverse dynamics; gait

1. Introduction

The calculation of the musculotendon (MT-) forces during gross motor function
such as gait is complicated by the overactuation of the musculoskeletal system.
Consequently, MT-force calculation is often reformulated as an optimisation prob-
lem combined with either an inverse or a forward dynamic analysis.

During an inverse dynamic simulation (Crowninshield and Brand 1981; Yam-
aguchi et al. 1995) the measured movement kinematics and external (ground reac-
tion) forces acting on the musculoskeletal system are prescribed, and the resulting
joint reaction forces and moments are calculated. Subsequently, individual muscle
forces are computed based on a static optimisation procedure that minimizes an
instantaneous performance criterion, e.g., the sum of muscle stress or activation
squared across all muscles (Crowninshield and Brand 1981; Anderson and Pandy
2001). This optimisation procedure is called static since the MT-forces at the time
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instant under consideration are calculated independently of other time instants. Its
main advantage is computational efficiency.

During a forward dynamic simulation (Hatze 1976, 1981; Yamaguchi and Zajac
1990; Anderson and Pandy 2001) joint moments, muscle forces or excitations are
prescribed, and the resulting motion is calculated. The optimisation procedure
involves a trajectory tracking algorithm and/or the minimisation of a performance
criterion related to the entire motion cycle, e.g., metabolic energy usage. This
optimisation procedure is called dynamic since the entire time course of the MT-
forces is optimized at once, increasing substantially the computational effort.

Due to the static nature of the optimisation procedure, classical inverse ap-
proaches (CIA) fail to account for two basic neurophysiological mechanisms in-
fluencing the relationship between muscle excitation and the course of MT-force
production (Yamaguchi et al. 1995): (1) The muscle activation dynamics (Lieber
1992) describes the nonlinear relation between muscle excitation and muscle acti-
vation due to non-homogeneous muscle fiber activation and the dynamic effects in
the muscle activation response to changes in excitation. (2) The muscle contraction
dynamics (Zajac 1989) describes the nonlinear relation between muscle activation
and MT-force, taking into account the nonlinear length and velocity dependency
of the force production of the MT-complex. In contrast to the static optimisation
procedure of the CIA, the dynamic optimisation procedure of forward approaches
allows enforcing muscle activation and contraction dynamics.

A physiological inverse approach (PIA) was proposed (Pipeleers et al. 2008;
De Groote et al. 2006) that supplements a CIA with muscle activation and contrac-
tion dynamics. The inclusion of muscle physiology links the instantaneous (static)
optimisation problems into one large-scale (dynamic) problem. The number of op-
timisation variables trebles, since muscle excitations and activations need to be
included along with the MT-forces. In addition, the inclusion of muscle physiology
imposes nonlinear constraints to the optimisation problem. Nonlinear problems are
generally considered hard to solve, mainly because of the potential stall of the solver
in a local minimum resulting in a high sensitivity of the obtained result to the start-
ing point of the optimisation process. The global optimum of the problem however
can be reliably and efficiently found for convex optimisation problems, a subclass of
nonlinear optimisation problems. Mathematically, these optimisation problems are
characterized by (i) linear equality constraint functions, (ii) convex inequality con-
straint functions, and (iii) a convex goal function (Boyd and Vandenberghe 2004).
Muscle physiology violates the first requirement by imposing nonlinear equality
constraints, therefore making the optimisation problem nonconvex. The resulting
large-scale nonconvex optimisation problem is solved using initializing for local op-
timisation. This is a two-step approach: first a hot-start is determined based on
solving an approximate convex quadratic optimisation problem, second the non-
convex optimisation problem is solved from the hot start (Pipeleers et al. 2008).

The contribution of the present paper is twofold. First, we introduce a nonlinear
change of variables that turns the original large-scale nonconvex optimisation prob-
lem into an equivalent convex quadratic problem. This nonlinear change of variables
is an improvement over the previously proposed initializing for local optimisation,
since it is a one-step approach requiring only a convex quadratic optimisation that
is guaranteed to yield the global optimum. Additionally, applying the nonlinear
change of variables to the activation dynamics models proposed by Zajac (1989)
and Raasch et al. (1997), we show that both models are equivalent in terms of
muscle activation and MT-forces. Only the corresponding excitation patterns are
different.

Second, the effect of including muscle physiology is discussed based on a compar-
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Figure 1. Outline of the physiological and the clasical inverse approach. Both approaches include an inverse
dynamic simulation to compute the joint reaction moments and forces (Mjoint, Fjoint) from the measured
skeleton motion (g, ¢, ¢§) and ground reaction forces (Fext), using a dynamic musculoskeletal model. The
classical inverse approach continues with a static optimisation procedure to calculate MT-forces (Fasr, ;)
at each separate time instant t;. The indices k and j number respectively the time instants included in
the simulation and the muscles included in the musculoskeletal model. The physiological inverse approach
uses a dynamic optimisation approach to solve for the MT-forces, activations (a;), and excitations(u;) at
all considered time instants at once.

ison of the muscle excitations and MT-forces computed by the CIA and the PIA for
normal and pathological gait. This comparison requires a new post-processing step
for the CTA which computes the muscle excitations corresponding to the obtained
muscle activations.

2. Methodology

For a gait cycle of a control subject (C) and a hemiparetic subject (H), muscle
excitations and MT-forces of the major lower limb muscles are calculated for one
leg by the PTA and the CIA. Both approaches are outlined in Figure 1.

2.1 Experimental setup and input data

Instrumented gait analysis was performed on the control subject and the hemi-
paretic subject using a 7 camera motion capture system (Qualysis, Inc., Gote-
borg, Sweden) with 3 synchronized force plates (AMTI, Watertown, MA, USA;
and Bertec, Columbus, OH, USA). A modified Cleveland Clinic marker placement
protocol was used (38 markers, Figure 2). Simultaneously, the surface EMG of 8
muscle groups was collected: M. biceps femoris, M. rectus femoris, M. vastus later-
alis, M. semimembranosus, M. gastrocnemius (medial head), M. tibialis anterior,
M. soleus, and M. gluteus medius. The raw EMG signal is high-pass filtered, rec-
tified, and normalized with respect to the maximal signal amplitude over the gait
cycle. A minimum of three valid trials was collected for each limb. From inspection
of the three trials, a representative trial was selected. All procedures were approved
by the Stanford University panels on human subjects in research, and all subjects
gave informed consent.

Input to the simulation are the 3D ground reaction forces and moments and the
kinematics calculated based on the trajectories of retroflective markers using in-
verse kinematics. A residual elimination algorithm (Thelen and Anderson 2006) is
applied to make the kinematics dynamically consistent with the measured ground
reaction forces and moments. The gait cycles take 1.08 s (C) and 1.41 s (H), re-
spectively.
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FRONT BACK

Figure 2. Marker placement protocol. A modified Cleveland marker placement protocol (Sutherland 2002)
was used for the data collection. The marker set consisted of 30 markers, including five clusters of three
markers. Three anatomical markers defined the trunk: a marker on the lateral aspects of the left (1)
and right (2) shoulder and a marker on the sternum (3). The pelvis segment is defined by a cluster of
three technical markers on the sacrum (4a, 4b, 4c) and two anatomical markers on the left (5) and right
(6) Anterior Superior Iliac Spine (ASIS). The thigh segment is defined by a cluster of three technical
markers (7a, 7b, 7c). The shank segment is defined by a cluster of three technical markers (8a, 8b, 8¢c), an
anatomical marker on the lateral epicondyle (9), and an anatomical marker on the lateral malleolus (10).
The foot segment is defined by three anatomical markers on the heel (11), the lateral foot (12) and the
first metatarsal head (13). During a static calibration trial, additional anatomical markers were added to
the medial femoral condyles and the medial malleoli to define the knee and ankle joint axis.

2.2 Dynamic musculoskeletal model

The dynamic model consists of eight body segments: a head-arms-trunk (HAT)
segment, the pelvis, left and right thigh, lower leg and foot (Delp et al. 1990). The
generic model was scaled to the subject’s dimensions using marker information
collected during a static trial. Segmental mass and inertial parameters are adapted
to reflect the test subject’s anthropometry (de Leva 1996).

Nineteen degrees of freedom (DOF) are included: A spherical joint connects
the HAT-segment to the pelvis and the pelvis to the thighs. The ankle joints are
modeled as a simple hinge, whereas the knee joints are modeled as a sliding hinge
(Yamaguchi and Zajac 1989). The remaining six DOF correspond to the position
and orientation of the pelvis.

Equations of motion are generated in SIMM Dynamics Pipeline. An inverse dy-
namic analysis by SD Fast (Symbolic Dynamics Inc.) calculates the joint reaction
moments and forces.
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Based on the kinematic input, the moment arms of 43 muscle tendon actuators
of the lower limb (Delp et al. 1990; Anderson 1999) are calculated at each instant
of the recorded movement.

2.3 MT-Force Calculation

The CIA as well as the PIA calculate the force contribution Fysr; of each MT-
actuator j. Both methods enforce the MT-force distribution to be consistent with
the joint reaction moments using the instantaneous moment arms of the MT-
actuators.

2.3.1 Classical Inverse Approach (CIA)

At each time instant ¢; a static optimisation problem is solved to calculate the
instantaneous force contribution Fs7 ;. The static performance criterion is the sum
of the squared activations of all the muscles:

fcia,k = Z(aj(tk))Q' (1)

J
The MT-forces are constrained by:
Furrj(te) = aj(tk) Farr (1), (2)

where muscle activations a; must lie between 0 and 1, the values corresponding to
respectively minimal and maximal activation, and FyTs denotes the instantaneous
maximal force generating capacity of the MT-actuator, calculated from its force-
length-velocity curve and the kinematic input. This implementation is identical to

the one used by Anderson and Pandy (2001).
2.3.2  Physiological Inverse Approach (PIA)

The PIA relies on a large-scale dynamic optimisation problem, calculating the
muscle excitations u;, activations aj, and MT-forces Fr; at all the considered
time instants simultaneously using direct transcription.

Muscle excitations and activations must lie between 0 and 1, the values corre-
sponding to respectively minimal and maximal excitation and activation:

0<u; <I; (3)

0<a; <1 (4)

The MT-forces are enforced to comply with muscle physiology. Two models de-
scribing the activation dynamics are retreived from literature:
Zajac (1989):

da; 1 1 1
D T Nty 5
dt Tau] Tdaj +(Td Ta)u]aj, (5)

and Raasch et al. (1997):

U —a; . L0
dt¢ - u; < a;

da; _ {(uj—aj)(ZjJr ) iz a
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with activation time constant 7, = 11ms and deactivation time constant 7, = 68ms
(Winters and Stark 1988).

The contraction dynamics are imposed by a linearized Hill-model, neglecting
muscle fiber contraction speed (Pipeleers et al. 2008). The model of Hill (Zajac
1989) describes the contraction dynamics by a nonlinear first order differential
equation in Fyr ;:

dFmrj

T faitj(Fury, aj,t). (7)

This model is based on five muscle-specific parameters for which the values pro-
posed by Delp et al. (1990) are used in this study. For gait, the influence of the
lengthening speed of the muscle fibers on the musculotendon force is considered
negligible. As a result, the nonlinear differential equation 7 can be accurately ap-
proximated by a nonlinear algebraic equation:

Furj(te) = fagj(a;(te), lurj(tr)), (8)

where lp7 (k) is the musculotendon length at time instant k, calculated from the
measured kinematics and the musculoskeletal model. This equation is only slightly
nonlinear and hence, is approximated very well by the linearized model:

Fuyrj(tr) = ¢jraj(te) + djg. 9)

d; and c; are time and muscle-dependent constants. d;; denotes the MT-force
predicted by the model of Hill (8) in the continued absence of activation, that is,
the instantaneous passive MT-force:

djk = fag,i(0, lnr,j(tr))- (10)

c;r minimizes, using a least squares approach, the difference in activations cal-
culated using the linearized (9) and original Hill-model (neglecting muscle fiber
contraction speed) (8) for 21 musculotendon forces, equidistantly divided between
the passive and maximal active musculotendon force at time instant ty.

The dynamic performance criterion sums (1) over all time instants t:

fpia = chia,k (11)
k

This large-scale optimisation problem is nonconvex due to the nonlinear activa-
tion dynamics and therefore features local optima. Hereafter it is shown that by a
nonlinear change of variables, the nonlinear constraints (5) or (6) can be replaced
by linear constraints, such that the nonconvex optimisation problem turns into a
convex quadratic optimisation problem with a single optimal value.

A nonlinear change of variables allows expressing the activation dynamics as a set
of linear equality and inequality constraints. First, the new optimisation variables:

daj
7 12
U] dt ( )
are introduced, along with the additional constraints:
(trrr) — aj(t

ter1 — ti
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These constraints enforce that v; is the time derivative of the muscle activation a;.
Second, expressing both (3) and (5), and (3) and (6) in terms of v; gives rise to:

v+ 2 >0 (14)
Td
7 1
1)« 15
vj + T (15)

By introducing v; and the constraints (13), (14), and (15), the variable u; and
constraints (3) and (5) or (6) are eliminated from the optimisation problem. The
optimisation problem is now a convex quadratic optimisation problem (QP): the
new set of optimisation variables is v;, aj, and Fir;; the objective function (11)
is quadratic; the inequality constraints (4, 14, 15) and the equality constraints (9,
13, and the constraints enforcing the MT-forces to be consistent with the joint
reaction moments) are linear.

After solving the optimisation problem, w; is calculated from v; and a; using
either (5) or (6):

Zajac:
vj + %
Uj =7 T 1y (16)
o o
Raasch:
Tdvj + a; v; <0
Uj =3 ajei—ca+VD , (17)
{ e o o v > 0
where ¢; = % - %, co = %, and D = (c2 + ajc1)? + 4cyvj. Figure 3 visualizes this

change of variables. Muscle excitations based on the activation dynamics model of
Raasch et al. (1997) (17) are further reported.

2.4 Post-Processing of the CIA

The muscle excitations corresponding to the activations predicted by the CIA,
are calculated by (17). Since the CIA does not enforce the muscle activations to
comply with muscle physiology, this computation is not guaranteed to yield a
physiologically meaningful excitation, that is, a real value between 0 and 1.

2.5 Validation

The calculated excitations are compared to the experimentally collected, high-pass
filtered and rectified surface EMG data (1000 Hz) of 8 muscle groups.

3. Results

3.1 Computational results

All optimisation problems are solved on a Pentium M, 2 GHz processor with 1GB
RAM using the KNITRO Interior/Direct algorithm (Byrd et al. 2006). KNITRO



February 11, 2009
ticle0105

11:20 Computer Methods in Biomechanics and Biomedical Engineering ar-

8 F. De Groote et al.

1000 P .... Zajac — Raasch

a 0 o0 u u

Figure 3. Nonlinear change of variables. Relation between the excitation u and the time derivative of the activation
vior 0 <a <1 (left) and a = 0.4 (right) as defined by the activation dynamics according to Zajac (1989) (top,
dashed line) and Raasch et al. (1997) (bottom, solid line). Both models give rise to a different description of the
activation dynamics: the surfaces (left) and the solid and dashed line (right) do not coincide. However, the time
derivative of activation is subject to the same limits: the surfaces intersect for v = 0 and u = 1 (left) and the
minimum and maximum value of v are equal for the solid and dashed line (right). The intersections of the surfaces
(left) are straight lines: the change in activation is linearly constrained.

Table 1. Computational data of the optimisation problems underlying the CIA and the PIA
for the control (C) and hemiparetic (H) subjects. Whereas the PIA requires solving one large
scale quadratic program (QP), the CIA requires solving multiple small QPs, one for each time
instant ti. For each subject and method, the number of QPs, the number of variables per QP,
the number of function evaluations (NFE) averaged over all QPs, and the summed CPU time in
seconds of all QPs are reported.

Subject Method number of QPs number of variables  averaged total
per QP NFE CPU time [s]

C CIA 219 43 114 3.54

PIA 1 28251 28 11.44

H CIA 274 43 11.5 4.36

PIA 1 35346 26 13.70

offers the choice between interior-point and active-set methods. The interior-point
method is faster than the active-set method on the optimisation problem under-
lying the PIA. This is in accordance with the statement reported in (Nocedal
and Wright 2006) that interior-point methods are generally much faster on large
convex quadratic problems than active-set methods. Table 1 summarizes the com-
putational data of the optimisation problems underlying the CIA and the PIA for
the control and hemiparetic subjects.

3.2 Comparison of the excitations computed by the PIA and the
experimental EMG

Figure 4A-B and Figure 5A-B show the kinematics and kinetics used as input data
for the simulations. Figure 4C and Figure 5C compare the average linear enveloped
EMG to the calculated muscle excitations. A good agreement in timing is observed
for the major muscle groups during normal and hemiparetic gait.

3.2.1 Control subject

Excitation of M. soleus and M. gastrocnemius during mid stance and pre swing is
predicted in agreement with the measured EMG. The onset of M. soleus preceeding
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the onset of M. gastrocnemius is accounted for.

M. tibialis anterior presents maximal excitation during stance-swing transition,
with continued excitation during swing. The duration of the predicted excitation
during loading response is however shortened. The increase in excitation prior to
initial contact is consistent with the surface EMG.

During loading response, maximal excitation of M. vastus lateralis is confirmed.
For M. rectus femoris, delayed onset of excitation during loading response is present
as well as a limited level of excitation preceeding the stance-swing transition. Dur-
ing terminal swing, the increased excitation of these muscles observed in the surface
EMG is not predicted.

Although high M. gluteus medius excitation is calculated during the entire stance
phase, experimental EMG only indicates excitation in the early part of stance.

The computed excitations of M. biceps femoris and M. semimembranosus relate
closely to the measured EMG patterns during initial contact and terminal swing.
However, for both muscles the predicted excitations around stance-swing transition
are not confirmed in the surface EMG.

3.2.2 Hemiparetic Subject

The timing of peak excitation of M. gastrocnemius and M. soleus is predicted
correctly by the PIA. The duration of the computed excitations is however short
compared to the experimental EMG. The delayed onset of the M. soleus excitation,
as present in the surface EMG, is reproduced correctly.

The prolonged excitation of M. tibialis anterior through mid stance, as observed
in the EMG recordings, is confirmed by the calculated muscle excitations. An
additional excitation burst at the stance-swing transition is calculated, but the
timing of peak excitation is premature compared to the experimental EMG.

The nearly continuous excitation of the M. rectus femoris calculated in stance
is confirmed by the recorded EMG signals. The additional burst in swing is only
minimally present in the calculated excitations.

The continuous low level excitation of M. vastus lateralis present in the experi-
mental data during stance is not confirmed.

The PIA correctly predicts the experimentally observed excitation burst of
M. semimembranosus and M. biceps femoris during stance-swing transition. The
excitation burst of both muscles measured at terminal swing and initial contact is
not present in the calculated excitations.

Although the computed excitation and the recorded surface EMG of the M. glu-
teus medius show good agreement during first half of stance, the calculated muscle
excitation tends to show a delay as well as a second excitation burst during second
half of stance.

3.3 Comparison of the calculated MT-forces using the CIA and PIA

Figure 6 and Figure 7 present the excitations and corresponding MT-forces com-
puted by the PIA and the CIA for a selection of muscles. The vertical grey bands
indicate the time instants where too steep an increase or decrease in MT-force is
predicted in the CIA and therefore physiologically meaningful excitations do not
exist. This only occurs at a limited number of time instants, mainly related to
stance-swing transition.

For all muscles, the MT-force decay rate predicted by the PIA is significantly
slower than predicted by the CIA. The PIA consistently predicts earlier cessation
in the excitations, as most clearly observed in M. tibialis anterior (terminal stance)
and M. soleus (pre swing) of the hemiparetic subject. Furthermore, the slower
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Figure 4. Control simulation: input data and results of the physiological inverse approach. Figure A and
B show, respectively, the kinematics and kinetics of ankle, knee, and hip of the control subject, used as
input data for the simulation. Figure C compares the muscle excitations computed by the physiological
inverse approach (black line) with the experimental EMG (grey line). The averaged EMG is scaled to the
maximum excitation level during the gait cycle. The standard deviation of the EMG is indicated by the
grey band.

force decay in M. gastrocnemius results in a higher and earlier onset of M. tibialis
anterior excitation, increasing the duration of co-contraction between plantarflexors
and dorsiflexors.

The PIA predicts passive force generation in M. soleus and M. gastrocnemius
during second half of stance and in M. rectus femoris around stance-swing transi-
tion. To account for the lack of passive force production in the CIA, higher levels
of muscle excitation are predicted for M. soleus and M. gastrocnemius to achieve
similar force production. The findings for M. rectus femoris are different. The exci-
tations predicted by the CIA for M. rectus femoris are not significantly higher than
those predicted by the PIA. Instead, the PIA introduces additional excitations in
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Figure 5. Hemiparetic simulation: input data and results of the physiological inverse approach. Figure
A and B show, respectively, the kinematics and kinetics of ankle, knee, and hip of the hemiparetic
subject, used as input data for the simulation. Figure C compares the muscle excitations computed by the
physiological inverse approach (black line) with the experimental EMG (grey line). The averaged EMG
is scaled to the maximum excitation level during the gait cycle. The standard deviation of the EMG is
indicated by the grey band.

the antagonistic muscle group, M. biceps femoris, to balance the passive force pro-
duction of M. rectus femoris at knee level. These findings are more pronounced in
the control data than in the hemiparetic data.

4. Discussion
This paper investigates the potential of the physiological inverse approach (PIA)

to calculate MT-forces underlying an experimentally measured movement pattern,
here gait. This approach supplements the classical inverse approach (CIA) with
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Figure 6. Control simulation: comparison of the classical and the physiological inverse approach. Compar-
ison of the muscle excitations and MT-forces of the classical (grey line) and physiological inverse approach
(black line) for the control subject. The muscle excitations are shown above the corresponding MT-forces.
The passive force component of the PIA-results is indicated by a dashed line. The time instants for which
no physiological meaningful excitation, that is, a value of u between 0 and 1, can be computed for the
CIA-results are indicated in grey.

constraints imposed by muscle physiology. Using convex optimisation techniques,
the underlying nonlinear optimisation problem is reformulated as an equivalent
convex optimisation problem which can be solved efficiently.

The proposed nonlinear change of variables which linearizes the activation dy-
namics does not change the global optimum of the optimisation problem, since
the one-to-one relation between muscle excitation u; and the variable v; guaran-
tees that for every solution in u; a corresponding unique solution in v; exists, and
vice versa. However, by performing the change of variables a convex QP instead
of a nonconvex program is obtained. The major advantage is that a convex QP
has a single optimum instead of many local optima in which solvers get trapped.
Furthermore, there exist very efficient algorithms to solve QPs.

By introducing the nonlinear change of variables, we additionally show that the
activation dynamics models proposed by Zajac (1989) and Raasch et al. (1997) are
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Figure 7. Hemiparetic simulation: comparison of the classical and the physiological inverse approach.
Comparison of the muscle excitations and MT-forces of the classical (grey line) and physiological inverse
approach (black line) for the control subject. The muscle excitations are shown above the corresponding
MT-forces. The passive force component of the PIA-results is indicated by a dashed line. The time instants
for which no physiological meaningful excitation, that is, a value of u between 0 and 1, can be computed
for the CIA-results are indicated in grey.

equivalent in terms of muscle activations and MT-forces. Although both models
give a different description of the activation dynamics (solid and dashed line in
Figure 3 do not coincide), the rate of change in activation is subject to the same
limits (minimum and maximum value of v are equal for the solid and dashed
line in Figure 3). At the level of the optimisation problem this observation is
reflected in (3) and (5) giving rise to the same constraints (14, 15) as (3) and
(6). In an inverse approach, there are no additional constraints on the excitations
and as a consequence, both models give rise to the same values for the muscle
activations and the MT-forces at the global optimum; however, the corresponding
muscle excitations are different, (16) versus (17).

In general, the muscle excitations computed by the PTA show good agreement
with key features of muscle actions during normal gait (Gage 1991; Perry 1992).
The role of M. gastrocnemius and M. soleus during stance, the antagonistic action
of M. tibialis anterior during initial contact and swing, as well as the excitation
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of the hamstrings around terminal swing and initial contact are confirmed. The
excitation burst for M. gluteus medius is longer than experimentally observed,
which might be attributed to insufficient selectivity in electrode placement on this
large muscle group.

For hemiparetic gait, key pathological timing abnormalities present in the
recorded EMG are predicted: prolonged excitation of M. tibialis anterior and
M. rectus femoris during mid stance, as well as the excitation burst of M. semimem-
branosus and M. biceps femoris around stance-swing transition. The low activation
of M. vastus lateralis during stance is not confirmed, since it is mainly M. rectus
femoris that accounts for the knee extension moment. The additional excitation
burst of M. rectus femoris during swing phase is not as pronounced as experimen-
tally observed. While similarities between excitations and EMG are obtained in the
hemiparetic subject, based on input kinematics and kinetics and the assumption
of optimal load sharing, the remaining differences between excitations and EMG
mentioned above, indicate that the assumption of optimal load sharing is inade-
quate in these patients. Hence, accurate calculation of muscle excitations during
hemiparetic gait requires the modelling and incorporation of neural control.

This paper proposes a post-processing step for the CIA which computes the
corresponding muscle excitations. However, even for slow motions like gait this
post-processing cannot yield muscle excitations at all time instants, since the CIA
does not enforce the computed MT-force patterns to comply with muscle physiol-
ogy. While these excitation results are therefore inherently partial, they are judged
valuable. First, a more accurate assessment of the predicted timing of muscle ac-
tion is possible through direct comparison of the muscle excitations (instead of
the calculated MT-forces) with the measured EMG. Second, comparing the PIA
and CIA excitation patterns allows a more profound investigation of the effect of
muscle physiology.

Comparison of the CIA and PIA results reveals that during gait both activation
and contraction dynamics affect the muscle excitations and MT-force patterns,
hereby altering the level of co-contraction predicted by the simulation.

The activation dynamics limits the rate of muscle force build-up and, especially,
decay. The fast decrease in MT-force of M. gastrocnemius and M. soleus predicted
by the CIA is inconsistent with muscle physiology. Enforcing a gradual force build-
up and decay in the PIA influences the onset and cessation of muscle excitations,
as most clearly observed in the earlier excitation cessation of M. tibialis anterior
and M. soleus of the hemiparetic subject. Furthermore, the predicted degree of co-
contraction between antagonistic muscle groups changes, especially during phases
that precede and follow loading response and pre swing, in which ground reaction
forces change rapidly (Thelen and Anderson 2006; Neptune and Kautz 2001). For
instance, a higher and premature excitation of M. tibialis anterior is required to
achieve sufficient force production associated with ankle control during swing in
the presence of the decaying muscle force of the ankle plantarflexors.

By including the contraction dynamics in the PIA, the passive component of
the muscle force is accounted for. The plantarflexors produce passive force during
the second half of stance, while M. rectus femoris yields substantial passive force
during initial swing. The force output without excitation gives rise to substantial
co-contraction of antagonistic muscle groups, e.g., M. biceps femoris versus M. rec-
tus femoris. In contrast, the CIA requires additional excitation bursts to achieve
sufficient MT force production. The high level of passive muscle force for M. rectus
femoris (C) is remarkable and suggests that customization of the generic muscle
parameters, which affect the ratio between active and passive muscle force, may
become more crucial when using the PIA.
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Although limited, we value the observed effects of muscle physiology on the mus-
cle excitations and MT-force patterns as relevant. This conclusion is in marked
contrast with Anderson and Pandy (2001) who judge static and dynamic optimisa-
tion solutions for gait to be practically equivalent. The static solution of Anderson
and Pandy (2001) is based on the same CIA implementation as used here, while
the dynamic solution, which includes muscle physiology, is based on a forward dy-
namic simulation. The discrepancy in conclusion relates to the additional compu-
tational effort required for predicting MT-forces consistent with muscle physiology.
Our approach gives rise to a limited additional effort, since the PIA requires only
marginally more computational time than the CIA. Anderson and Pandy (2001),
on the other hand, need to carry out a forward dynamic simulation of which the
additional computational effort is huge compared to the CIA, and therefore not
justifiable in view of the limited effect on the computed MT-force patterns.

Given its dynamic nature, the PIA allows incorporation of physiological cost
functions such as muscle fatigue and metabolic energy usage, of which the specific
effect on the predicted excitations and MT-force patterns is to be explored.

The observations presented here relate only to gait. In explosive movements such
as jumping, cycling and sprinting, the impact of muscle physiology is more promi-
nent and the contribution of active versus passive force production may be altered.
Future work includes assessing the potential of the PIA for such movements. This
will require, among other things, the investigation of the effect of muscle fiber
contraction speed on the MT-force, neglected in this paper.

By incorporating the effect of muscle contraction speed, the contraction dynamics
are described by a first order dynamic model instead of the linear approximation
for slow motions (9). Extending the nonlinear change of variables to the contraction
dynamics results in a set of inequality constraints limiting the first and second time
derivatives of the musculotendon forces. However, these inequality constraints are
no longer convex in the optimisation variables and consequently, no computational
advantage is obtained.

In conclusion, the PIA supplements aspects of muscle activation and contraction
dynamics to the CIA without substantial increase of the computational time. By a
nonlinear change of variables the activation dynamics can be efficiently handled in
the PIA. The MT-forces are the solution of a QP of which the global optimum is
found with high computational efficiency. Simulations for normal and pathological
gait show that our approach constitutes a promising improvement of the CIA.
Inclusion of muscle physiology mainly affects the rate of muscle force build-up and
decay, as well as the level of passive force production, both influencing the level of
co-contraction.
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