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ABSTRACT

This paper develops a general framework to synthesize apflynomial splines for rigid motion systems
driven by cams or servomotors. This framework is based orenigal optimization and has three main characteris-
tics: (i) spline knot locations are optimized through ariiiect approach based on providing a large number of fixed,
uniformly distributed candidate knots; (ii) in order to eféintly solve the corresponding large-scale optimization
problem to global optimality, only design objectives andstaints are allowed that result in convex programs and
(iif) one-norm regularization is used as an effective tawldelecting the better (that is, having fewer active knots)
solution if many equally optimal solutions exist. The frameek is developed and validated based on a double dwell

benchmark problem for which an analytical solution exists.
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1 Introduction

A core design problem in motion systems driven by cams ands@stors is the synthesis of an optimal motion trajectory,
for which splines constitute an often chosen parametdmatBSpline curves consist of several segments, blendedhirge
under strict continuity requirements at various inter@gtion points, thespline knots Depending on the segment type,
distinction is made between polynomial, rational, trigowatric, . .. splines. Polynomial splines constitute themfacus of

this paper and are rigorously defined in Sec. 1.1.

Polynomial splinegntered the area of cam design in the early 1980s (see themeés provided in [1]) and were quickly
recognized as being more flexible than combining and matifgtandard analytical curves, especially for complex amoti
tasks with a large array of constraints [2]. Splines haveeruly replaced polynomials as the mathematical descspib

valve motion about anywhere in automotive industry [3].

Splines constitute an attractive parametrization for thiéyw the designer (i) to locally control the curve and (iijedttly
impose its smoothnes&ocal controlimplies the possibility to concentrate the effects of a deawithin a specific region
of the curve [4].Smoothnesis quantified here through the numbeiof continuous derivatives: a curve belongingq@ﬂ
has derivatives that are continuous on the intef@al] up to themth-order derivative. It is a common rule of thumb that
motion trajectories should be at least (acceleration must be continuous). This rule, dating badke pioneering work by

Neklutin [5], is termed théundamental law of cam desidpy Norton [6].

For polynomial splines, smoothness is directly controttedugh thespline degree kBesidek, the designer also needs to
carefully select the locations of the spline knots and theespondingspline coefficients which is a difficult problem for
complex motion tasks. It is, for instance, in general noackeow many knots are required, nor what their optimal lacati
is [4]. Several interactive software tools are availablegshsasDynaCam|[6], which give the designer direct feedback
regarding the chosen knot locations in terms of the splimdtarderivatives. The success of such tools, however, aipen

a large extent on the skills and experience of the designer.

A more automated approach results if the spline knots aerméted based on numerical optimization [4, 7—13] for it-pro
vides a mathematical framework in which many design ohjestand constraints can be included. Numerical optimimatio
looks very attractive, since it seems to suffice to push ahutt automatically obtain a solution that optimizes theigtes
objective while complying with all design constraints. Oritinately, despite the advances in algorithmic developrard
computational power, this is generally not the case. Ogation algorithms often need good initialization, may liega

lot of tuning, can be very sensitive to problem scaling ang giald rather poor suboptimal solutions if the algorithmgge

stuck in a local optimum, if converging at all.

Problems with local optima are generally attributed to tbelimearity of the problem. It is, indeed, true that if thgeddtive
and constraints aénear functions of the design variable a linear optimization problem (dinear program LP) results,
of which the global optimum is guaranteed to be found effityesnd reliably using dedicated algorithms. Contrary taatvh
is generally believed, however, nonlinearity does not nthanhall is lost: in fact, the great watershed in optimizati® not

between linearity and nonlinearity, but between conveaitg nonconvexity [14]. That is, a particular class of nagdin

1spline knots, coefficients and degree are rigorously defim&ec. 1.1.
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optimization problems exist, callecbnvex programswhich share with LPs the guarantee to efficiently find thebglo

optimum (Sec. 2.1). Formulating a nonlinear optimizatiooljlem as a convex program therefore has great advantages.

The aim of this paper is to develop a framework in which polyiel spline optimization forigid motion systems is
formulated as such a convex program. To this end, splineskaue optimizedndirectly by providing alarge number of
fixed uniformly distributed candidate knots and only optimgithe corresponding spline coefficients (Sec. 2). The second
essential characteristic of the framework, its formulatas a convex program, is developed in two stages: Sec. 3 first
develops a linear programming formulation, while Sec. Segently adds several nonlinear objectives and contstthiait

give rise to a nonlinear, yet convex, program (further caregensions are discussed in the companion paper [15]).4Sec
introduces a third essential characteristic, that is, moren regularization as an effective tool for selecting thtdr (that is,

having fewer active knots) solution if many equally optirealutions exist.

Before proceeding to the framework development, polynbspénes are formally defined and the main contributions of

this work are presented.

1.1 Polynomial Spline Basics
A motion trajectorys(t), defined on a finite time intervdd, T], is a polynomiakplineof degree k> 0, having asknotsthe

strictly? increasing sequendgi =0,1,...,g+ 1 if[16]:

s(t) is a polynomial of degre€ k on each knot intervdti, ti1]:
S[ti,tprl] € Py, i= 07 la"'vga (1)

with 2y the set of polynomials of degreek.

S(t) and its derivatives up to ordé&r— 1 are continuous ofd, T|:
s(t) € 7 @

It is assumed thap = 0 andtg,; = T, the knotstj, i = 1,...,0, are theg internalknots. Internal knot; is calledactive

if the kth-order derivative of(t) is discontinuous at, while at aninactiveinternal knot, thekth-order derivative o§(t) is
continuous. The definition (1)—(2) implies that the fundatakélaw of cam design dictates the use of at leadtic (k = 3)
splines. Figure 1 shows a cubic spli@) and its first three derivatives as a function of (dimensissiesee further) time
T, where 0< 1 < 21t The spline consists of 3rd-degree polynomial segmentsamadllowed by (2), features discontinuous
jumps of the 3rd-order derivative at all spline knots, exdepthe knots at = 1.0 andt = 5.0. The former knots are active

knots, as opposed to the redundant, inactive knetd.0 andt = 5.0.

1.2 Contributions

The presented work is a framework that combines old and neasidOur particular contributions are the following.

2|f the knot sequence is increasing, but not strictly indiregaéthat is, coincident knots are present), the contincitydition (2) has to be relaxed.
MD-08-1165 Swevers 5
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Fig. 1. An example of a cubic spline with knot sequence {0.0,0.64,0.65,1.00,1.91,2.68,3.25,4.21,5.00,5.72,6.28}. Active knots

are indicated with a dashed vertical line, while dotted vertical lines denote the (redundant) inactive knots T = 1.00and T = 5.00.

(i) Simplifying spline optimization by providing a set of &d candidate knots and only optimizing spline coefficieats i
not a new idea [4,7-11, 13]. Contrary to our approach, howelre number of knots was previously always kept limited
(generally 5-20, as opposed to a few hundreds or thousamnels been if the effect of increasing the number of knots was

investigated [7,9, 11].

Convergence, in terms of the number of knots, is carefullgstigated here for the analytical benchmark problem éhtced

in Sec. 3.1. Itis shown that increasing the number of knatbégiond a few tens may be rewarding.

(i) Increasing the number of knots requires careful foratioh of the corresponding optimization problem to keepuit n
merically tractable and hence goes way beyond merely iszrgaome number in an algorithm. To this end, only design
objectives and constraints are allowed that give rise te@oprograms. The important role of convexity as the keyedon
making an optimization problem 'easy’ or 'difficult’ seenshie little known in the area of spline optimization for maetio
systems. While Sections 3 and 4 focus on linear programs,damashof convex programs, Section 5 makes the extension to
convex programs by reviewing the known optimization methgld 7—13] thereby showing that some of these methods can

be extended or simplified based on insights from convex dpétion theory.

(i) An undesirable consequence of the use of a large nurab&nots is that in more complicated case studies counter-
intuitive splines with an unnecessarily high number of\actnots result (Sec. 4). To the best of our knowledge, this
phenomenon, seemingly typical for purely kinematic optiation studies, is reported here for the first time. It isripteted

as the occurrence of a set of solutions all giving rise to anvetpnt value of the objective function. The use of onesmor
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regularization to efficiently deal with this problem is,hadtigh known in areas such as function approximation andakign

processing, new in the area of splines for motion curve desig

2 Polynomial Spline Optimization

This section addresses general topics in polynomial sglptenization relevant for this paper. Consider the problam

finding a polynomial spling(t) of degreek that solves the general optimization problem:

minimizeyqy  fo(s(t)) (3a)
subjectto fy(s(t)) <0, v=1,...,n; (3b)
hv(s(t)) =0, v=1,...,ng (3¢)

where fp denotes the design objective to be minimized, whijlendh, describe, respectively, the inequality and equality
constraints to be satisfied. The optimization problem (Byesents a fairly large class of optimization problems lving
splines. Whether this problem is numerically easy or diffitolsolve (convex or nonconvex) depends on (i) whether the

spline knot sequence is given or not and (ii) the mathenlgiicgerties of the function§, f, andh,.

2.1 Fixed Knot Spacing

For a given knot sequendg, .. .,tg+1, all spliness(t) that comply with the definition (1)—(2) constitute a vectpase of
dimensiong+ k+ 1 [16]. This result implies that ang(t) can be written as a unique linear combinatiogefk+ 1 basis

spline functionss j(t) that only depend ok and the knot sequence:
g+k+1

s = 3 disi(0) (4)
J:

Hence, giverk and the knot sequence, the spline is completely determinguetspline coefficientsd such that (3) reduces

to an optimization problem id € R9+k+1:

minimizey  fo(s(t,d)) (5a)
subjectto fy(s(t,d)) <0, v=1,...,n; (5b)
hy(s(t,d)) =0, v=1,...,ng (5¢)

whered collects alldj and is added as an argumentih d) to indicate relation (4). Iffp, fy andhy are linear functions of
s(t,d), the above optimization problem is a linear program. LPsasy to solve: problems with hundreds of variables and
thousands of constraints can be solved —in the sense ofdititgglobal optimum— on a small desktop computer in a matter
of seconds. If the problem &parsé, or has some other exploitable structure, problems with terhundreds of thousands

of variables and constraints can still be solved [17].

3Sparse problems have constraint functions that depend oveiéables only.
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While the problem (5) is easy to solvefif, f, andh, are linear, it is generally difficult to solve otherwise, da¢he existence
of an unknown number of local optima. A notable exceptiomnwéaer, occurs iffy and f, areconveg nonlinear functions
andhy is linear. In that case, the resulting optimization probismonvex [17], which guarantees that the global optimum
be found fast and reliably. The convex optimization framedwfor spline optimization is first developed in Sec. 3 as an LP

while nonlinear, convex extensions are subsequently g&szlin Sec. 5.

2.2 Variable Knot Spacing

While a fixed knot sequence may give rise to a tractable lineaoovex optimization problem, it is generally (unless an
incremental improvement of an existing design is to be founad clear beforehand what a 'good’ number of knots is, nor
what their location should be. Therefore, it is importargtthlso the knot sequence itself be considered for optiinizat
as in the automotive cam studies [4, 12] and the cam desigwa@efVENTIL[12]. Unfortunately, doing so gives rise to

nonlinear, nonconvex optimization problems that are diffito solve.

In fact, in the area of spline optimization for function apximation, directly optimizing the knot sequence is knovenaa
notoriously difficult optimization problem [16]. Similatservations have been made in the area of spline optimizédio
motion curves. Sandgren and West [4] observed that keepmgline knots fixed “allowed the optimization routine to
quickly locate a reasonable solution in all cases”, whitduding the knot spacing into the optimization variablegase to

a fourfold computational time and yet only similar resulevertheless, Sandgren and West conclude that “in gerleeal,

added flexibility provided by allowing the knot sequence ¢ddlitered is important and should be considered.”

In order to circumvent the fundamental problems with vdeamot sequences, the framework presented here adopts an
indirect approach for knot optimization. Instead of consideringkhet locationg; directly as optimization variables, the
knot locationd;, i = 0,1,...,g+ 1 are fixed beforehand, but using a special distributionkttws are chosen equidistarttly

as

T
tt=i-ot,i=0,1,....,g+1wheredt = ——, 6
i g grl (6)

andg is a large number, typically a few hundreds or even thousa@twosing the knots equidistantly implies that the

resulting splines(t) is auniformspline.

The proposed indirect approach has two important consegsefior the formulation of the optimization problem. First,
while only the spline coefficients need to be optimized (th@madvantage of this approach), there is a large number of
them. Hence, the objective functidp and constraint function§, andhy, need to be carefully selected to obtain a tractable

optimization problem, being either an LP (Sec. 3) or a n@airconvex program (Sec. 5).

Second, providing a large numbgpof candidate internal knotsimplies that thekth-order derivative can exhibit a discon-
tinuous jump at each of these locations, which may resulninirenecessarily high number of active knots (see the solid

line in Fig. 6(d), discussed further on). This phenomenon can, however, dideaV if one-norm regularizations applied

4A formal definition of convexity is provided in Appendix A.
5Also nonuniform distributions as in [4] can be considered.

MD-08-1165 Swevers 8



(see Sec. 4), such that the resulting number of active ksotery small. Hence, while our indirect approach optimizes a
uniform spline with a large number of equidistant candidatets, it returns a non-uniform spline with a small number of

non-equidistantly spaced active knots, as numericalkgtthted in Secs. 3—4.

2.3 Spline Parametrization

Since our indirect approach is based on fixing the knot sempieeforehand, a set of basis functiapg(t), as defined
in (4) can be chosen. WhilB-splinebasis functions are often preferred for their numericabitita [16], an alternative
parametrization, inspired by the work of Kwakernaak andt$hd] is opted for here. This parametrization is in our opin-
ion more intuitive to mechanical engineers and has provearetaumerically stable for all spline optimization problems

considered in this work. It is derived in three steps:

First, in order to improve scaling, the proposed represieméor akth-degree polynomial spline is developedlimension-

less formthat is, for6(t), wheret (0 < T < 2m) is the dimensionless time defined by

A
—t. == 7
T=t-—, (7a)
while 8(1) denotes a dimensionless versiors(:
1 T
— . C— 7
0(1) 3 s(r Zn) , (7b)
with L a characteristic measure that determines the scale of tiermajectory. The set of equidistant knatss defined
by
Ti=i-01,i=0,1 Jrlwhereé')Tfﬂ (8)
| — I ] a"'7g 7g+l

In dimensionless form, (4) amounts to
g+k+1
6(t)= > dibk;(n), 9)
=1
where thebasis spline function8, ;(t) represent the dimensionless counterparts of the basiedpictionss j (t).

Second, a particular set of dimensionless basis splindituns®y ;(1) is chosen. This set is constructed starting from the
observation that the definition (1)—(2) 6{t) as a degred& polynomial spline implies that iték — 1)st-order derivative
8k (1) is continuous and piecewise-linaHence 8~ (1) is completely determined by its values at the knot locations

Tj (see Fig.2) and can therefore be simply parameterized as

g+1
6 H(m = 3 07V(m) Bi(v), (10)

8Figure 1 illustrates this for a cublc= 3 spline: its(k— 1)st (2nd) order derivative is piecewise-linear.
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Fig. 2. Piecewise-linear parametrization of 8~ (1), where 81 = 211/(g+ 1).

wheref;(t) denotes thénat function further discussed in Appendix B. To obtairt) from (10), 8 V(1) needs to be

integratedk — 1 times that are uniquely determined by fixing values for:
89(0), q=0,...,k—2. (11)
As aresult, every degréepolynomial splineb(1) is uniquely determined by the following vectdof g+ k+ 1 parameters:
d= (9(k71>(0) k=D (1y) --. oD (Tg+1) 89 (0) - - e<k72>(o))T, (12)

where(-)" denotes the matrix transpose. The elemdntsf d correspond to the spline coefficients@ift) (Eq. (9)) for the

following set ofg+ k+ 1 basis spline function8 j (1):

j=1,2,...,0+2: 6 (1) equals the hat functioj_1(1), integrated (13a)
k — 1 times with zero integration constants
i 3 K+1:6¢(T) s (13b)
=g+3,...0+k+1:6(1) =~ :
J=9s0 = =g—39)

The preference for this set of basis functions stems frontlier physical interpretation of the corresponding sptioef-
ficients (12): the firsg+ 2 coefficients directly determine the piecewise-linearction 6~ (1), whereas the remaining

coefficients fully characterize the spline at boundary poia 0.

Third, to enhance the numerical stability of evaluatiig) and its derivatives at the knotg thisevaluationis performed in
arecursivemanner. That is, instead of computid (t;) from Eq. (9), it is computed by the following recursive rédat,
which is only valid for the equidistant knot spacing defingd®), and follows from elementary calcultis=1,...,9+1; q=

0,....,k—2):

005 = [kizem”’(ﬂl)' (5;)1'] N (kq(kl)_.((slr)k_q—l _9<"-1>(ri1)+(?;)_k$_ll 0D (). (14)
= : : :
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This recursion write®(¥ (t;) as alinear combination of thek — q derivatives8(@ (t;_1),...,0 1 (1;_;) evaluated at the
previous time instant; 1, as well as thék — 1)st-order derivativé“—1)(t;) evaluated at the considered time instanfThe

implementation of recursive evaluation (14) requires aemgiing the vectod of spline coefficients ta € RK(9+2):

X = ((e<0>>T (e<1>)T (e(H))T) 7 (15)

where@@ equals theg+ 2)-vector of all8@(1;) values, = 0,1,...,g+ 1. The linear recursion (14) can then be written

compactly as
Gk g-x=0, (16)

whereGy g is a full-rank matrix belonging t&(«~1(9+1)xk9+2) and only depending on the spline degkeand the number
g of equidistant internal knots. Equation (16) imposes- 1)(g-+ 1) linearly independent, linear equations on kig+ 2)
elements ok, resulting ink+ g+ 1 independent degrees of freedom: the spline coefficibdfined by (12).

3 Linear Programming Framework

Based on the spline parametrization of Sec. 2.3 and thetasalgenchmark problem introduced in Sec. 3.1, this sadt®
velops the convex optimization framework as a linear progfaonlinear, convex extensions are discussed in Sec. Br Af
defining the optimization variables (Sec. 3.2), constea{®ec. 3.3) and objective (Sec. 3.4), the framework’s fipea-
gramming structure is highlighted in Sec. 3.5. Sectionp8d¥ides numerical validation based on the analytical berark

problem.

3.1 Analytical Benchmark Problem

The considered benchmark problem arises in the ardauble-dwellmotion trajectory design. In dimensionless form (7),
double-dwell curves move a load from a lower dwell (periodstaindstill) at positiord = 0 att = 0 to an upper dwell at
position8 =1 att = 2. A whole body of literature exists on the design of such csied which well-known analytical
examples include the cycloidal curve, modified trapezgidteldified sine and a great many others [6]. In this context it i
known that in general a smoother curve, that is, a curve whigher degree of continuity, results in less excitationhaf t
structural dynamics of the driven mechaniswhile on the other hand a higher degree of continuity resalhigher peak
values of velocity, acceleration and jerk. Hence, the masigh objective is to synthesize curves of a prescribed §mess
that realize an optimal trade-off between peak values ajoisl, acceleration and jerk. In the context of this papee t
considered analytical benchmark problem aims at finding"econtinuous double-dwell curvé(t) with minimal peak

value of the(m+- 1)st-order derivativé™ % (1), which is the first discontinuous yet still finite derivativdore specifically,

“provided that the driven mechanism is sufficiently stiff (Adtigh a motion system may be assumed to be rigid in the desiga,phissever infinitely

rigid in practice.)
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Fig. 3. Analytical benchmark problem solutions for m= 0,1, 2, 3. The solution is a polynomial spline of degree M+ 1 with g = Minternal

knots.

6(1), t € [0, 217 must satisfy

G(T) € C[r(T)],ZT[]
6(0)=0; 6(2m=1
0(9(0)=0; 8@ (2m) =0, g=1,...,m

max_|6(™Y (1)| minimized
1€(0,21

(17a)
(17b)
(17¢)

(17d)

For example, a designer wanting to find a double-dwell cune¢ tomplies with the fundamental law of cam design and

minimizes follower vibration, will be eager to know the stitun of the above problem fan = 2, since it results in the cubic

spline that minimizes peak jerk.

The analytical solution of (17) is known from [19] and is 8lwated in Fig. 3 fom = 0,1,2,3. These solutions can be

represented as polynomial splines of degtee m+ 1 with g = m =k — 1 internal knots [19]. Table 1 provides the knot

H *
locationsty, ,
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m| T =01k | max6®]) | max|6@|) | max|6®]) | max(e“)

0 2m-{0,1} 1/(2m) 00 o0 o0
1 2m-{0,3,1} 2/(2m) 4/(2m)? o o
2 2r-{0,1,2,1} 2/(2m) 8/(2m)? 32/(2m)3 00

3| 2m{0,z3,1-21} | 2.34/(2m) | 8.23/(2m)? | 79.53/(2m)® | 384/(2m)*

Table 1. Analytical benchmark problem solutions for m= 0, 1,2, 3. The solution is a polynomial spline of degree M+ 1 with g = Minternal

knots. The scalar Zequals (2 —+/2) /4.

3.2 Optimization Variables

Given thatc™-continuity is required, the spline degrkés selected am+ 1. The number of knotg is chosen to be large,
typically a few hundreds or even thousands. To adopt the rioally stable recursive implementation (14), vectqd5) is
used as optimization variable insteadd§12), whereby the set of linear equality constraints (16shie included in the

optimization problem. Definition (15) of allows expressing® (ti) as

T

09 (1;) = x(q(g+2) +i+1) (18a)

X, (18b)

whereag; € R92) is a selection vector of which all elements are zero, exdepietement with index|(g+ 2) +i + 1,
which equals one. Shorthand notation (18b) allows us toessspthe constraints and objective criterion in a compact and

neat mannetr.

3.3 Constraints

The choice o, defined by (15), as the optimization variable implies thatlinear set of equations defined by (16) needs
to be imposed to guarantee thatepresents a polynomial spline of degiee m+ 1. While Gy14 is typically a large
matrix, it is also very sparse. The sparsity can be undedstimmn (14) which relates every elementfo at mostm+ 2
other elements of. Hence, whileG featureso (mPg?) elements, only (mPg) are nonzero, which is important given thmat

is small butg is large.

A second set of constraints follows from the boundary ceusts (17b)—(17c):

ago - X=0, a0gi1-X=1 (19a)
ago-x=0 (gq=1,...,m), aggi1-X=0 (g=1,...,m) (19b)
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or, more concisely

Agc - X = bgc, (20)

whereAgc € RAMx(M1)(G+2) i |arge and sparse amgc € R2A™1 . Equation (20) represents a set ¢fr2+ 1) linear
equality constraints ix. The fact that constraints such as (17b)—(17c) can so dasigxpressed in terms gfconstitutes

one of the major advantages of considering the set of vasatfined by (15).

3.4 Objective Function

The objective in the analytical benchmark problem is to mine

p(mt1) 21
. é%%' ol, (21)

which is equivalent to minimizing

(M (1) — M (T
m_ax\e(m“)(ti)|:m_axe () 6? (Ti-1) , (22a)
I 1
T _al.
= max MX ) (22b)
i ot

Given the piecewise-linear, continuous parametrizatidhi® (1), the backward difference used in (22a) constitutes an exact
expression for the left derivative 8™ (1), as well as an unambiguous definition of the discontinuonstfan 8™+ (1),

Using a forward difference (and hence definBi§*? (1) as the right derivative @™ (1)) yields equivalent results.

Objective function (21) is convex, but as it is piecewiseelir, minimizing this function directly does not give riseatlinear

program. However, as detailed in [17], the problem of mizimg (21) can be transformed into the followieguivalent

linear program

minimizey ) W (23a)

a;,i - a;,ifl

X<w, i=1,... .
5t x<w i=1,...9g+1 (23b)

subjectto  —w<

wherew is a scalar auxiliary optimization variable. This is an opgation problem in(x,w) with a linear objective function

wand Zg+ 1) inequality constraints, all of them linearmandx.
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€p [%0]

m | g=1000| g=999

0 | 1.74e-14 | 1.74e-14

1] 9.98-05| 9.5%-13

2 | 29%-04 | 4.28-12

3 | 9.71e-04 | 7.91e-04

Table 2. Relative error €y [%] between the numerically obtained peak absolute value of 9(k) (T) and the analytical values of Table 1 for

g=1000and g = 999

3.5 Resulting Linear Program

Putting everything together, the analytical benchmarlblenm can be translated in the following optimization proibje

where the designer choices are the continuity levahd the numbeg of (uniformly distributed) internal knots:

minimizey ) W (24a)
subject to Wga’%_&a’}i_l~xgw,i_l,...,g+l (24b)
Gmi1g-X=0, (24c)

Agc - X = bgc. (24d)

(24) constitutes a linear program for the objective and trairgs are linear functions of the optimization variaksew).
In the case of cubic splines(= 2), for instance, choosing= 1000 gives rise to a moderate to large-scale linear program
involving 3007 variables, 2008 linear equality constraiand 2002 linear inequality constraints. All matrices laed are,
however, sparse, such that dedicated sparsity-explditiegr programming algorithms can still guarantee findimgdlobal

optimum in a matter of seconds. Here, the simplex and int@aint algorithms of the MOSEXtoolbox are used.

3.6 Numerical Results

This section investigates whether the proposed framewodble to reproduce the analytical results given Sec. 3.2 Th
overall answer to this question is 'yes’. In fact, Fig. 3 waad®, not by implementing the analytical solution, but byttpig
numerical solutions of (24) foy = 1000 andn= 0...3. Solving the corresponding LPs took a mere 1.34 CPU seaamds
a laptop equipped with a Pentium4@3.2GHz processor and 148.R

While the algorithm is allowed to put an active knot in any @ gfavailable internal knots, Fig. 3 reveals that omynternal

Sywwy. mosek. com
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knots are activg as in the analytical solution. Table 2, on the other handfies whether the obtained peak absolute values

of 8™ 1) (1) agree with the analytical values of Table 1. To this end thative errorey, is defined as:

where8®* and6W+ represent the maxima of the absolute value8f(t) resulting from the numerical and analytical
solutions, respectively. Fon= {1,2}, the reported relative errogg are small but significant fay = 1000, while negligible

for g=999. Such distinctions between the two consideyrgdiues do not occur fan= {0, 3}.

This dependence agfollows from the fact thag determines whether the analytical knofg belong to the set of available
knotsti. Form= {1,2}, Eq. (8) implies that the;j-set includes the analytical knots for oddwhile not for everg. For
m={0,3}, on the other hand, the value @fs irrelevant: (i)m= 0 represents a trivial case for no internal knots are present
(i) for m= 3 the knots 2{z,1— z} can never be part of thg-set forz (defined in Table 1) is an irrational numpgr If
theti-set includesall analytical knotsg is numerically zero and the exact solution has been foundineenical precision
(Table 2:m= {1,2} and oddy). In the other case, the error can be made arbitrarily sryalidreasingg. The latter claim is
not formally proved but numerically verified fon= 3 by solving (24) for 50 logarithmically spaced (evenjalues between

10 and 1000. Figure 4 shows that the relative egpoglobally (but not monotonically) decreases for increagiregnd drops
just below 0.0001% fog = 1000. The decrease is linear on a double logarithmic scalying thate, drops two orders of

magnitude foig increasing one.

Figures %a— b) provide additional insight in these results by showing hba iumerically computed knotsp and gt
vary as a function of for m= 3. The solid lines indicate error bounds, which are compbgesid on the conjecture that if
theti-set does not contain the analytical kg, the computedj-value is the element of thg-set lying closest tam;-

Tmj therefore belongs to the interval

I
Tmjt =7 (25)

ot ot
TEj_77TEj+7 = T:n] .
g+1

o
2 2 g+1

implying error bounds equal fﬁngl- Figures %a— b) provide numerical evidence that this conjecture is trueseédie that
the numerically computed kndtg always lies on the error bound, since for any egehe analytical valua;; = 0.5- 21t
lies in the middle of the interval between the two nearesti@vie knots. Figures & — d) provide similar information as

Figs. §a—b) but for 50 logarithmically spaceadd gvalues between 11 and 1001. In this cgge= 0.5- 2rtbelongs to the

Tj-set and is always chosen by the numerical algorithm.

9As can be seen by counting the number of jump&®i (1) for each of the considerad.
190bserve that the factor/4g+ 1) in (8) is arational number for integeg.
HThe values ofmj are numerically found by detecting jumps@f*%) (1) in the solution of (24).
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Fig. 4. Relative error €y [%] on the obtained peak absolute value of 84 (T) for m= 3 and 50 logarithmically spaced even g-values between
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Fig. 5. Numerically computed knots Tme and T ('x’) for m= 3 and 50 logarithmically spaced even or odd g-values between 10 and 1001.

(@) Tz for even values of g; (b) T3 for even values of g; (C) Ty for odd values of g; (d) Ty for odd values of g. The analytical values

T;p and Tj3 are indicated by the dash-dotted line, while the solid lines indicate the error bounds derived from (25).
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4 One-Norm Regularization

The numerical results of the previous section reveal thatlevthe numerical algorithm is allowed to put an active kimot
any of theg available internal knots, only very few of them effectivelyhibit a8(™ %) (1) jump. Such 'tidy’ solutions do
no always result: Sec. 4.1 shows that making the analyteattmark slightly more complicated gives rise to very idirt
solutions featuring an unnecessarily high number of adtias, as revealed by tt™ ) (1) trajectory nervously banging
back and forth between its upper and lower limit (solid linéFig. §d)). However, it is also shown (Sec. 4.2) that such
solutions can be cleaned up very efficiently and, quite ingualy, at minimal cost through a technique caltatk-norm
regularization One-norm regularization constitutes the third key feauifrthe present framework and is indispensable to

deal with more complex trajectory design problems.

4.1 Analytical Benchmark Problem Revisited

In order to make the analytical benchmark problem more cmaigd, twoprecision pointsare added, that is, points

(Tp,j,Bp,j) through whichd(t) must pass:
0(tpj) = Op,j; (26)
where
(Tp1=1.26,6p1=0.32), (Tp2=3.77,8p2 = 0.70). (27)

These precision points were chosen in an arbitrary way wha&ing sure that they do not lie on the analytical solution

presented in Sec. 3.1 and Fig. 3.

Taking into account that the time instamts; do not necessarily coincide with the available knot logain, the framework

enforces (26) by requiring thé(T), the linear interpolation dd(t) between the knots, pass through the prescribed points:

B(tp,j) =6pj- (28)

Expressing (28) in terms of with the subscripf dropped, gives rise to

p—ag
ag,B+ p6.[. E ’ (Tp _TE) X= ep7 (29)
wherg?
_
E - |_6.[J 9
p=p+1

12The floor operatotx| roundsx to the nearest integer less than or equad. to

MD-08-1165 Swevers 18



0)(r) [}
09(r) [}

Fig. 6. Analytical benchmark problem revisited (g =1000m= 2): non-monotonous solution (dashed line), monotonous solution without
one-norm regularization (solid line), monotonous solution with one-norm regularization (dash-dotted line). For T < 2.64, the latter two

solutions coincide. The circles in Fig. 6(a) indicate the precision points (27).

For every considered precision poit,, 6p), Eq. (29¥2 constitutes a linear equality constraintin Numerically solving
(24) for(g= 1000 m= 2) and the precision points (27) gives rise to the dashed lifréggn6. Compared to the solution of the
analytical benchmark (Fig. 3), the number of active inteknats has doubled from two to four, but is still limited. Hewver,
the solution is not monotonous, which might be undesirabl@any applications of double dwell motions, because itgjive

rise to unnecessarily large peak values of velocity andla®on (see Fig. 3), causing increased wear and ineoial.|

Monotonicity is enforced by imposing that! (t;) > 0,i =0,1,...,g+ 1:
aj;-x>0,i=0,1,...,g+1. (30)

Adding the monotonicity constraint has a spectacular effache solution, as shown by the solid line in Fig. 6. The tofu
is monotonous and passes through the required precisiatspbut features a large number of active knots ir2t4, 6.28)
interval as revealed by the je8k® (1), which bangs nervously betweeitw* = +1.237 in this part of the motion cycle, where

w* is the optimal value of objective function (21).

Further interpretation of this unacceptable solution fites the clue to improving upon it. The velocity and acceiera

profiles reveal that in th§2.64,3.77] interval, a standstill is aimed for. The extremely nervoerk jprofile is consistent

13Being based on the linear interpolation (28), (29) is an axipration of the exact constraint (26). However, given &mis typically very small, the
approximation is sufficiently accurate. If judged neces$26y can be expressenactlyas a linear, yet more tedious to derive, equality constrairt i
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with the observed standstill, but does not look very inteithor sensible to a designer. Our conjecture is that thgaess
obvious guess (that is, the same trajectory but with zekdfggrt € [2.64, 3.77]) and the algorithm’s result are equally optimal
but different solutions of the considered optimizationipgemn: both give rise to the same optimal peak jetk= 1.237 and
comply with the imposed set of constraitfts The challenge is now to force the numerical algorithm toasfen in the set
of all optimalx*, anx* that looks sensible to a designer. Finding such a solutiahdbes not feature any unnecessary jerk

jumps (active knots) can be done through the one-norm regaten introduced in Sec. 4.2.

4.2 One-Norm Regularization

If our conjecture of the existence of a whole set of equiviaterectors is true, it should be possible to find a sensibleisoiu

x by solving the following optimization problerfm = 2)

minimize,  fs(X) (31a)
subjectto—mﬁgW-xgmﬁ,i:l,...,g+1 (31b)
Gmi1g-X=0, (31c)
Agc - X = bgc (31d)
Ap-x=Dbp (31e)
al;-x>0,i=0,1,...,0+1, (31f)

where (31e) concisely expresses the precision point aingr(29). w* is the optimal value of objective function (21),
that is, the maximum absolute value@®f 1 obtained by solving the non-regulated linear program (2¢pEemented with
the precision point constraints (29) and the monotoniaitystraint (30). This optimization problem seeks, in thec$etl
feasiblex that give rise to the optimal*, the particulax that minimizesfs(x), an objective function that measures the ’'lack
of sensibility’ of a solution. Given that solutions with fasvitching ofe(m1) (1) are judged not very sensible, it makes sense
to obtain smoother solutions by penalizing some norm of diskivard difference®(™+2)(t). The particular norm chosen

here is the one norm, that is,
g+1

iZQ

It is well-known [17] in the area of function approximatidmet one-norm minimization is likely to yield sparse solagp

g(m+1) (Ti) _g(m+l) (Tifl)
ot ’

g+1
fs(x) = ; ]e<m+2> (ri)] - (32)

that is, solutions with only few nonzero components. Tratesl to the present problem, sparsity implies solutioni feitv

nonzerdd ™ 2)(1;), that is, fewd(™ Y (1)-jumps. In other words, few active knots.

Numerically solving the linear program (31) with (32) as titgective functiod® for the precision points (27) an@ =

14This conjecture does not contradict the convexity of théfenm: convexity guarantees that the globally optimal obyectaluefy be found, but there

may be many vectors" for which fo(x*) = f;. Which of theses* is actually obtained depends on the particular algorithedus
5while in the form (32), the one-norm constitutes a nonlineamndifferentiable function due to the presence of the ateolalue, it can easily

be transformed into a linear objective function through titeoduction of auxiliary variables and additional lineaequality constraints, similar to the

transformation discussed in Sec. 3.4. More details are geolin, e.g.,é]\ﬁ]e.vers 20
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Fig. 7. Analytical benchmark problem revisited (g = 100Q M = 2): jerk derivative on logarithmic scale for monotonous solution without
one-norm regularization (&), monotonous solution with one-norm regularization (b), monotonous solutions with relaxed one-norm regular-

ization: € = 1e—12(c),e=1e—8 (), e=1le—4 (e, = 1le— 2 (f).

1000 m = 2) gives rise to the dash-dotted line in Fig. 6. The improven®némarkable and confirms the conjecture: the

obtained solution is sensible, featuring zero jerktfar [2.64,3.77] and a mere six internal knots.

Figure 7 further analyzes the effect of the one-norm minatigm by plottingd(™+2)(t;) on a logarithmic scale as a function
of 1. Figure {a) focuses on the original monotonous solution (solid line igf B), while Fig. 7b) shows the solution of
(31). The difference between the two figures confirms thedi@el number of knots observed in Fig. 6. However, Figp)7
also reveals that the solution of (31) is not as 'clean’ agseated by the six apparent jerk jumps in FigdB although
most of the knots feature@™?)(1;) that is numerically zero (below 18%), some clearly nonze®™? (t;) values appear
in pairs, while other®(™2)(1;) are in some “gray zone” ranging from 1®to 10. To further investigate this effect, the

constraint (31b) is relaxed to:

Tl oy < (1+e)-wh, i=1,...,0+1 (33)

That is, slightly higher values for the peak jerk are allon&alas to obtain even more sparse solutions. Fig{ge 7) show
the results obtained far= {1le— 12,1e— 8,1e—4,1e— 2}. Itis clear that the solutions do get sparser, at the smatl@fa

slightly higher peak jerk.
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5 Convex Objectives and Constraints

This section provides several nonlinear framework exterssithat turn the linear programming framework into a more
general convex programming framework. In doing so, the kmoptimization methods [4, 7-13] are reviewed, thereby

showing that some of these methods can be extended or sed@ifised on insights from convex optimization theory.

(i) Instead of minimizing the peak absolute value (21) of thet+ 1)st-order (or any other) derivative 6{t), also other
functions of6(t) and its derivatives can be minimized. If a weighted combdmatweightsW,) of mean-square values is

considered,

mi: \%J[ /0 - (e<i>(r))2 dt (34)
pa

a convex quadratic program follos while a (convex) second-order cone program results if aitedl combination of

root-mean-square values is considered:

m+1 1 r2n ) 2
J;V\/,\/Zn/o (60)(1))? - df. (35)

Mermelstein and Acar [10] developed, as an improvement phfg8nethod to minimize the mean-square jerk (that is, an
objective of type (34), with alW; = 0, excepMi = 1) of a spline subject to a number of prescribed positionkscities
and/or higher derivatives at specific time instants. Fa® #guality-constrained, convex quadratic program, a cicateld
solution procedure was developed of which the implememtatiequires a symbolic mathematics software application,
as the calculations involved are lengthy” [10]. This salatprocedure relies on the fact that the solution of an etyuali
constrained, convex quadratic program can be found byreplaiset of linear equations. There is, however, no need to
develop such a complicated procedure, since any freelJadlaiconvex solver (such as the matlab-based softwareagask

SeDuMi [20] and SDPT3 [21] or the Python-based software C¥X8E) will do the job.

(i) Nguyen and Kim [13] designed cam profiles based on tha idiea smoothing spline. That is, given some existing
nominal trajectoryBy (1) (e.9., a trapezoidal trajectory), a splié) of odd degred is sought that has minimabughnes¥
and simultaneously satisfies (i) given boundary conssaiftthe general type (17b)—(17c), as well as (ii) user-gjgeki

upper limitsS; > 0 on the sum-of-squares deviation®? (1) with respect tcﬁﬁj)(r):

P (8W(ty) —ew(Tp) ’

' ' <S§j, j=0,...,k-1 (36)
iZO Wi :

where the(p+ 1) time instantst,, and the relative weight#/ of the various time instants must be chosen by the user.

Minimizing the roughness (a convex quadratic functionpject to boundary constraints (linear equality constgiahd the

16Convex quadratic programs are discussed more thoroughlg ioaimpanion paper [15].
ht t p: / / wwy. ee. ucl a. edu/ ~vandenbe/ cvxopt /
18Roughness is defined as the mean square ofkthel)/2'th-order derivative and hence, corresponds to a convexgtic objective function of the

general type (34) (34).
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convex quadratic constraints (36) gives rise to a convegrara, more specifically guadratically constrained quadratic
program The convexity was, however, not recognized nor exploitgdNguyen and Kim: instead of using one of the
aforementioned standard convex solvers, a dedicated-bieagion method was developed, while also the guarantee to

obtain a global optimum was not recognized.

(i) While nonlinear (but convex) extensions are requiredthe framework to reproduce the results [10, 13], the pabi

linear programming framework suffices to reproduce thelteglil] (kinematic optimization example) and [7].

Yoon and Rao [7] minimized the peak acceleration of a cublinsubject to prescribed positions, velocities and aeel
ations at specific time instants. This problem can be dirdotimulated as an LP in the framework of Secs. 3-4. Linear
programming is, however, not mentioned in [7], nor is anpinfation about the method with which the optimization prob-

lem is solved.

Qiu et al. [11], on the other hand, minimized the peak aceélan of a quintick = 5) spline subject to boundary constraints
and upper limits on peak velocity and peak absolute jerk. kit shown in the companion paper [15], this problem can
be reformulated as an LP, Qiu et al. solved it as a generaimearlprogram. The companion paper [15] furthermore shows
that considering a large number of knots (350 instead of djcaQiu et al.) leads to significantly improved results thgre

illustrating the benefit of formulating linear/convex prams whenever possible.

(iv) All aforementioned studies [7, 8, 10, 13] and [11] (kinatic optimization example) are methods to optimize purely
kinematicproperties of a spline with prescribed knots. The basic otk of Secs. 3—4, along with its nonlinear extensions
(34) and (36) is able to simplify (no need to write dedicateanerical solution procedures; proof of global optimality
follows from convexity), and extend any of these resultsteBgions are twofold. First of all, the convexity of the meted
framework allows considering a large number of knots, wigialis off as shown in the companion paper [15] for the case
study [11]. Second, other objectives such as (35) can bedmmesl, while the companion paper further generalizes the
framework such that it can also deal with (i) time optimalii§) upper and lower bounds on motor torque for servomotor

driven systems; (iii) the time-energy optimality tradéiofservomotor driven systems.

(v) Preserving convexity implies that objectives and craists related to cam geometry [4, 9, 12] or cam driving terqu

( [11], dynamic optimization example) cannot be includedha framework. The main problem with cam geometry is
the complex geometric relation between the motion curvethadorresponding cam profile. The main problem with cam
driving torque is that it involves products of velocity anztaleration (inertia part) or velocity and displacemepti(sy part).

Still, however, a kinematically optimized motion law caropide a very good initialization for a nonconvex optimipati
routine involving the cam shape, since many geometric andiyc aspects of cam design can be expressed approximately
in terms of purely kinematic properties. Minimizing peakeleration, for instance, results in a spline that is a gtéadisg

value for finding a spline that minimizes Hertzian pressidimizing

max{[6'®(r)| | 8%(r) <0}

on the other hand, can be cast as an LP and is in general bahffianinimizing return spring size.
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(vi) While cam geometry cannot be directly included in thev@nprogramming framework, load vibration can, provided

that it is described by a linear set of differential equadioRreliminary efforts along these line are described if.[22

6 Discussion

The present paper develops a general framework to synéheptimal polynomial splines for rigid motion systems drive
by cams or servomotors. This framework is based on numesptirhization and has three main characteristics: (i) gplin
knot locations are optimized through an indirect approased on providing a large number of fixed, uniformly distréuli
candidate knots; (ii) in order to efficiently solve the cepending large-scale optimization problem to global optity,
only design objectives and constraints are allowed thafitregsconvex programs and (iii) one-norm regularizationsed as

an effective tool for selecting the better (that is, haviegér active knots) solution if many equally optimal solngeexist.

One-norm regularization as a means of controlling the nurobactive knots does not allow specifying the number ofvacti
knots beforehand. The authors, however, feel that thislisaminor restriction: the more important consideratiothist

the number of knots is limited, not whether it is exactly fosik or ten. The use of one-norm regularization is to a large
extent inspired by the idea of (smoothingyjularization In mathematics, the termegularizationis associated with making

a function more 'regular’ or smooth. Regularization is, iftstance, commonly used in approximation and fitting pnuisle

In regularized approximation the goal is to find a veottinat is small (if possible) and also makes the residuat b small,

whereA andb denote given data [17]. This goal is achieved by solving fhtémzation problem

minimize|Ax— bl| + v||X||, (37)

where the norms may be different apd- 0 is a user-defined parameter. saries over(0,«), the solution of (37) traces
out an optimal trade-off curve. If both norms are equal totthe-norm, Tikhonov regularizatiomesults. If, on the other
hand, the one-norm is selected fpq|, a sparse solutiokis likely to be found, that is, a solution with only few nonaex.

For an elaborate discussion on this topic, the reader isreef¢o [17].

In fact, the whole framework laid out in the present paper lsarthought of as a variation dfasis pursuif23], another
well-known concept from function approximation. In basisguit, there is a very large number of basis functions aad th
goal is to find a good fit of some given data as a linear comlinaif a small number of the basis functions. The term basis
pursuit was coined since a much smaller basis is selected drgiven over-complete basis. A commonly used heuristic
to finding such a sparse description is to minimize an ohjeatif the general type (37), using a one-norm |[iaf|. In

the present framework, one can think of the 2 equidistantly spaced available knots as defining the coeplete basis
and the one-norm minimization 8f™2)(1;) as the heuristic to select a smaller basis, defined by mucérfean-uniformly
distributed knots. The use of the one-norm as a sparsitygtiog function also underlies a new sensing/samplingdigna,

termedcompressive samplin@4], as well as total variation reconstruction in imageqgassing [25].

The current framework has an interpretation as an optimairobproblem in which a piecewise-linear control signal is

applied to a series ah integrators. This interpretation may be beneficial if alsmgonvex nonlinear functions need to
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be considered for efficient, structure-exploiting alguris exist that are able to find reasonable local optima focomvex

optimal control problems [26].

The framework was developed for the spline basis present8dé. 2.3, while an implementation based on the numerically
more stable and more commonly used B-spline basis is alsadjravailable. Preliminary numerical experiments with
the latter implementation revealed identical solutionslboger computational times. Which basis is more appropifiait

elastic (instead of rigid) motion systems, is currently emidvestigation.

While the current paper already provides substantial nuraleevidence of the efficiency of the proposed framework,emor
complicated numerical benchmarks and extensions aredsmesi in the companion paper [15]. Current research foarses

further extending and experimentally validating the pnéfiary results [22] concerning follower vibration.
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Fig. 8. The hat functions Bo(T), Bi(T) (1 <i < g) and Bg1(T).

A Convex Functions and Sets

A setSC R"is convex if the line segment between any two point€ ifes inC, that is, if for anyx,y € Sand6 < [0, 1], we

have
Ox+(1—8)ye S (38)
A function f : R" — R is convex if its domairdomf is a convex set and if for a,y € domf and® € [0, 1], we have
f(Bx+ (1—8)y) < 0f(x)+ (1—6)f(y). (39)
Geometrically, this inequality means that the line segnhbetiveen(x; f(x)) and(y; f(y)), which is the chord fronx to y,

lies above the graph df. Some examples (0R) include: (i) f(x) = x? is convex; (i) f (x) = log 1/x is convex(domf =

{x|x> 0}); f(x) = 1/xis convex(domf = {x|x > 0}).

B The Hat Function

The hat functiori(1) is defined by(1 <i < g)

0 T<Ti1
T-Ti1 . .
Bi(T) = oy T|—1§T§T|'
T:I%T;i—i-lﬁ <T<Ti1
0 T> Ty
Bo is defined as
0 1<Tg
Bo(U) =9 2 +1T0<T<Ty -
0 T>T
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Bg+1 is defined as
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