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ABSTRACT

This paper develops a general framework to synthesize optimal polynomial splines for rigid motion systems

driven by cams or servomotors. This framework is based on numerical optimization and has three main characteris-

tics: (i) spline knot locations are optimized through an indirect approach based on providing a large number of fixed,

uniformly distributed candidate knots; (ii) in order to efficiently solve the corresponding large-scale optimization

problem to global optimality, only design objectives and constraints are allowed that result in convex programs and

(iii) one-norm regularization is used as an effective tool for selecting the better (that is, having fewer active knots)

solution if many equally optimal solutions exist. The framework is developed and validated based on a double dwell

benchmark problem for which an analytical solution exists.
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5 Numerically computed knotŝτm2 andτ̂m3 (’x’) for m= 3 and 50 logarithmically spaced even or oddg-values

between 10 and 1001.(a) τ̂m2 for even values ofg; (b) τ̂m3 for even values ofg; (c) τ̂m2 for odd values ofg;

(d) τ̂m3 for odd values ofg. The analytical valuesτ∗m2 andτ∗m3 are indicated by the dash-dotted line, while

the solid lines indicate the error bounds derived from (25).. . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Analytical benchmark problem revisited(g= 1000,m= 2): non-monotonous solution (dashed line), monotonous

solution without one-norm regularization (solid line), monotonous solution with one-norm regularization

(dash-dotted line). Forτ ≤ 2.64, the latter two solutions coincide. The circles in Fig. 6(a) indicate the

precision points (27). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 19

7 Analytical benchmark problem revisited(g= 1000,m= 2): jerk derivative on logarithmic scale for monotonous

solution without one-norm regularization(a), monotonous solution with one-norm regularization(b), monotonous

solutions with relaxed one-norm regularization:ε = 1e−12 (c), ε = 1e−8 (d), ε = 1e−4 (e), ε = 1e−2 ( f ). 21

8 The hat functionsβ0(τ), βi(τ) (1≤ i ≤ g) andβg+1(τ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

MD-08-1165 Swevers 2



List of Tables

1 Analytical benchmark problem solutions form = 0,1,2,3. The solution is a polynomial spline of degree

m+1 with g = m internal knots. The scalarzequals(2−
√

2)/4. . . . . . . . . . . . . . . . . . . . . . . . 13

2 Relative errorεp [%] between the numerically obtained peak absolute value ofθ(k)(τ) and the analytical

values of Table 1 forg = 1000 andg = 999. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

MD-08-1165 Swevers 3



1 Introduction

A core design problem in motion systems driven by cams and servomotors is the synthesis of an optimal motion trajectory,

for which splines constitute an often chosen parametrization. Spline curves consist of several segments, blended together

under strict continuity requirements at various interconnection points, thespline knots. Depending on the segment type,

distinction is made between polynomial, rational, trigonometric, . . . splines. Polynomial splines constitute the main focus of

this paper and are rigorously defined in Sec. 1.1.

Polynomial splinesentered the area of cam design in the early 1980s (see the references provided in [1]) and were quickly

recognized as being more flexible than combining and modifying standard analytical curves, especially for complex motion

tasks with a large array of constraints [2]. Splines have currently replaced polynomials as the mathematical descriptors of

valve motion about anywhere in automotive industry [3].

Splines constitute an attractive parametrization for theyallow the designer (i) to locally control the curve and (ii) directly

impose its smoothness.Local controlimplies the possibility to concentrate the effects of a change within a specific region

of the curve [4].Smoothnessis quantified here through the numberm of continuous derivatives: a curve belonging toC m
[0,T]

has derivatives that are continuous on the interval[0,T] up to themth-order derivative. It is a common rule of thumb that

motion trajectories should be at leastC 2 (acceleration must be continuous). This rule, dating back to the pioneering work by

Neklutin [5], is termed thefundamental law of cam designby Norton [6].

For polynomial splines, smoothness is directly controlledthrough thespline degree k. Besidesk, the designer also needs to

carefully select the locations of the spline knots and the correspondingspline coefficients1, which is a difficult problem for

complex motion tasks. It is, for instance, in general not clear how many knots are required, nor what their optimal location

is [4]. Several interactive software tools are available, such asDynaCam[6], which give the designer direct feedback

regarding the chosen knot locations in terms of the spline and its derivatives. The success of such tools, however, depends to

a large extent on the skills and experience of the designer.

A more automated approach results if the spline knots are determined based on numerical optimization [4, 7–13] for it pro-

vides a mathematical framework in which many design objectives and constraints can be included. Numerical optimization

looks very attractive, since it seems to suffice to push a button to automatically obtain a solution that optimizes the design

objective while complying with all design constraints. Unfortunately, despite the advances in algorithmic development and

computational power, this is generally not the case. Optimization algorithms often need good initialization, may require a

lot of tuning, can be very sensitive to problem scaling and may yield rather poor suboptimal solutions if the algorithm gets

stuck in a local optimum, if converging at all.

Problems with local optima are generally attributed to the nonlinearity of the problem. It is, indeed, true that if the objective

and constraints arelinear functions of the design variablex, a linear optimization problem (orlinear program, LP) results,

of which the global optimum is guaranteed to be found efficiently and reliably using dedicated algorithms. Contrary to what

is generally believed, however, nonlinearity does not meanthat all is lost: in fact, the great watershed in optimization is not

between linearity and nonlinearity, but between convexityand nonconvexity [14]. That is, a particular class of nonlinear

1Spline knots, coefficients and degree are rigorously definedin Sec. 1.1.
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optimization problems exist, calledconvex programs, which share with LPs the guarantee to efficiently find the global

optimum (Sec. 2.1). Formulating a nonlinear optimization problem as a convex program therefore has great advantages.

The aim of this paper is to develop a framework in which polynomial spline optimization forrigid motion systems is

formulated as such a convex program. To this end, spline knots are optimizedindirectly by providing alarge number of

fixed, uniformly distributed candidate knots and only optimizing the corresponding spline coefficients (Sec. 2). The second

essential characteristic of the framework, its formulation as a convex program, is developed in two stages: Sec. 3 first

develops a linear programming formulation, while Sec. 5 subsequently adds several nonlinear objectives and constraints that

give rise to a nonlinear, yet convex, program (further convex extensions are discussed in the companion paper [15]). Sec. 4

introduces a third essential characteristic, that is, one-norm regularization as an effective tool for selecting the better (that is,

having fewer active knots) solution if many equally optimalsolutions exist.

Before proceeding to the framework development, polynomial splines are formally defined and the main contributions of

this work are presented.

1.1 Polynomial Spline Basics

A motion trajectorys(t), defined on a finite time interval[0,T], is a polynomialsplineof degree k≥ 0, having asknotsthe

strictly2 increasing sequenceti , i = 0,1, . . . ,g+1 if [16]:

s(t) is a polynomial of degree≤ k on each knot interval[ti , ti+1]:

s[ti ,ti+1] ∈ Pk, i = 0,1, . . . ,g, (1)

with Pk the set of polynomials of degree≤ k.

s(t) and its derivatives up to orderk−1 are continuous on[0,T]:

s(t) ∈ C k−1
[0,T]. (2)

It is assumed thatt0 = 0 andtg+1 = T; the knotsti , i = 1, . . . ,g, are theg internal knots. Internal knotti is calledactive

if the kth-order derivative ofs(t) is discontinuous atti , while at aninactive internal knot, thekth-order derivative ofs(t) is

continuous. The definition (1)–(2) implies that the fundamental law of cam design dictates the use of at leastcubic (k = 3)

splines. Figure 1 shows a cubic splineθ(τ) and its first three derivatives as a function of (dimensionless, see further) time

τ, where 0≤ τ ≤ 2π. The spline consists of 3rd-degree polynomial segments and, as allowed by (2), features discontinuous

jumps of the 3rd-order derivative at all spline knots, except for the knots atτ = 1.0 andτ = 5.0. The former knots are active

knots, as opposed to the redundant, inactive knotsτ = 1.0 andτ = 5.0.

1.2 Contributions

The presented work is a framework that combines old and new ideas. Our particular contributions are the following.

2If the knot sequence is increasing, but not strictly increasing (that is, coincident knots are present), the continuitycondition (2) has to be relaxed.

MD-08-1165 Swevers 5



ts

0

0

0

0

0
0

0
0

1

1

−1

22

22

44

44

66

66

(a) (b)

(c) (d)

0.1

0.2

0.2

0.3

0.4

0.4

0.5
0.5

0.5

−0.5

−0.5

0.6

0.8

τ [-]τ [-]

θ
(0

) (
τ
)

[-
]

θ
(1

) (
τ
)

[-
]

θ
(2

) (
τ
)

[-
]

θ
(3

) (
τ
)

[-
]

Fig. 1. An example of a cubic spline with knot sequence {0.0,0.64,0.65,1.00,1.91,2.68,3.25,4.21,5.00,5.72,6.28}. Active knots

are indicated with a dashed vertical line, while dotted vertical lines denote the (redundant) inactive knots τ = 1.00and τ = 5.00.

(i) Simplifying spline optimization by providing a set of fixed candidate knots and only optimizing spline coefficients is

not a new idea [4, 7–11, 13]. Contrary to our approach, however, the number of knots was previously always kept limited

(generally 5–20, as opposed to a few hundreds or thousands here), even if the effect of increasing the number of knots was

investigated [7,9,11].

Convergence, in terms of the number of knots, is carefully investigated here for the analytical benchmark problem introduced

in Sec. 3.1. It is shown that increasing the number of knots far beyond a few tens may be rewarding.

(ii) Increasing the number of knots requires careful formulation of the corresponding optimization problem to keep it nu-

merically tractable and hence goes way beyond merely increasing some number in an algorithm. To this end, only design

objectives and constraints are allowed that give rise to convex programs. The important role of convexity as the key criterion

making an optimization problem ’easy’ or ’difficult’ seems to be little known in the area of spline optimization for motion

systems. While Sections 3 and 4 focus on linear programs, a subclass of convex programs, Section 5 makes the extension to

convex programs by reviewing the known optimization methods [4, 7–13] thereby showing that some of these methods can

be extended or simplified based on insights from convex optimization theory.

(iii) An undesirable consequence of the use of a large numberof knots is that in more complicated case studies counter-

intuitive splines with an unnecessarily high number of active knots result (Sec. 4). To the best of our knowledge, this

phenomenon, seemingly typical for purely kinematic optimization studies, is reported here for the first time. It is interpreted

as the occurrence of a set of solutions all giving rise to an equivalent value of the objective function. The use of one-norm
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regularization to efficiently deal with this problem is, although known in areas such as function approximation and signal

processing, new in the area of splines for motion curve design.

2 Polynomial Spline Optimization

This section addresses general topics in polynomial splineoptimization relevant for this paper. Consider the problemof

finding a polynomial splines(t) of degreek that solves the general optimization problem:

minimizes(t) f0(s(t)) (3a)

subject to fv(s(t)) ≤ 0, v = 1, . . . ,nf (3b)

hv(s(t)) = 0, v = 1, . . . ,ng (3c)

where f0 denotes the design objective to be minimized, whilefv andhv describe, respectively, the inequality and equality

constraints to be satisfied. The optimization problem (3) represents a fairly large class of optimization problems involving

splines. Whether this problem is numerically easy or difficult to solve (convex or nonconvex) depends on (i) whether the

spline knot sequence is given or not and (ii) the mathematical properties of the functionsf0, fv andhv.

2.1 Fixed Knot Spacing

For a given knot sequencet0, . . . , tg+1, all spliness(t) that comply with the definition (1)–(2) constitute a vector space of

dimensiong+ k+1 [16]. This result implies that anys(t) can be written as a unique linear combination ofg+ k+1 basis

spline functionssk, j(t) that only depend onk and the knot sequence:

s(t) =
g+k+1

∑
j=1

d jsk, j(t). (4)

Hence, givenk and the knot sequence, the spline is completely determined by thespline coefficients dj , such that (3) reduces

to an optimization problem ind ∈ R
g+k+1:

minimized f0(s(t,d)) (5a)

subject to fv(s(t,d)) ≤ 0, v = 1, . . . ,nf (5b)

hv(s(t,d)) = 0, v = 1, . . . ,ng (5c)

whered collects alld j and is added as an argument ins(t,d) to indicate relation (4). Iff0, fv andhv are linear functions of

s(t,d), the above optimization problem is a linear program. LPs areeasy to solve: problems with hundreds of variables and

thousands of constraints can be solved –in the sense of finding theglobaloptimum– on a small desktop computer in a matter

of seconds. If the problem issparse3, or has some other exploitable structure, problems with tens or hundreds of thousands

of variables and constraints can still be solved [17].

3Sparse problems have constraint functions that depend on fewvariables only.
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While the problem (5) is easy to solve iff0, fv andhv are linear, it is generally difficult to solve otherwise, dueto the existence

of an unknown number of local optima. A notable exception, however, occurs iff0 and fv areconvex4 nonlinear functions

andhv is linear. In that case, the resulting optimization problemis convex [17], which guarantees that the global optimum

be found fast and reliably. The convex optimization framework for spline optimization is first developed in Sec. 3 as an LP,

while nonlinear, convex extensions are subsequently discussed in Sec. 5.

2.2 Variable Knot Spacing

While a fixed knot sequence may give rise to a tractable linear or convex optimization problem, it is generally (unless an

incremental improvement of an existing design is to be found) not clear beforehand what a ’good’ number of knots is, nor

what their location should be. Therefore, it is important that also the knot sequence itself be considered for optimization,

as in the automotive cam studies [4, 12] and the cam design softwareVENTIL [12]. Unfortunately, doing so gives rise to

nonlinear, nonconvex optimization problems that are difficult to solve.

In fact, in the area of spline optimization for function approximation, directly optimizing the knot sequence is known as a

notoriously difficult optimization problem [16]. Similar observations have been made in the area of spline optimization for

motion curves. Sandgren and West [4] observed that keeping the spline knots fixed “allowed the optimization routine to

quickly locate a reasonable solution in all cases”, while including the knot spacing into the optimization variable gave rise to

a fourfold computational time and yet only similar results.Nevertheless, Sandgren and West conclude that “in general,the

added flexibility provided by allowing the knot sequence to be altered is important and should be considered.”

In order to circumvent the fundamental problems with variable knot sequences, the framework presented here adopts an

indirect approach for knot optimization. Instead of considering theknot locationsti directly as optimization variables, the

knot locationsti , i = 0,1, . . . ,g+1 are fixed beforehand, but using a special distribution: theknots are chosen equidistantly5

as

ti = i ·δt, i = 0,1, . . . ,g+1 whereδt =
T

g+1
, (6)

andg is a large number, typically a few hundreds or even thousands. Choosing the knots equidistantly implies that the

resulting splines(t) is auniformspline.

The proposed indirect approach has two important consequences for the formulation of the optimization problem. First,

while only the spline coefficients need to be optimized (the main advantage of this approach), there is a large number of

them. Hence, the objective functionf0 and constraint functionsfv andhv need to be carefully selected to obtain a tractable

optimization problem, being either an LP (Sec. 3) or a nonlinear convex program (Sec. 5).

Second, providing a large numberg of candidate internal knotsti implies that thekth-order derivative can exhibit a discon-

tinuous jump at each of these locations, which may result in an unnecessarily high number of active knots (see the solid

line in Fig. 6(d), discussed further on). This phenomenon can, however, be avoided if one-norm regularizationis applied

4A formal definition of convexity is provided in Appendix A.
5Also nonuniform distributions as in [4] can be considered.
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(see Sec. 4), such that the resulting number of active knots is very small. Hence, while our indirect approach optimizes a

uniform spline with a large number of equidistant candidateknots, it returns a non-uniform spline with a small number of

non-equidistantly spaced active knots, as numerically illustrated in Secs. 3–4.

2.3 Spline Parametrization

Since our indirect approach is based on fixing the knot sequence beforehand, a set of basis functionssk, j(t), as defined

in (4) can be chosen. WhileB-splinebasis functions are often preferred for their numerical stability [16], an alternative

parametrization, inspired by the work of Kwakernaak and Smit [18] is opted for here. This parametrization is in our opin-

ion more intuitive to mechanical engineers and has proven tobe numerically stable for all spline optimization problems

considered in this work. It is derived in three steps:

First, in order to improve scaling, the proposed representation for akth-degree polynomial spline is developed indimension-

less form, that is, forθ(τ), whereτ (0≤ τ ≤ 2π) is the dimensionless time defined by

τ = t · 2π
T

, (7a)

while θ(τ) denotes a dimensionless version ofs(t):

θ(τ) =
1
L
·s
(

τ · T
2π

)

, (7b)

with L a characteristic measure that determines the scale of the motion trajectory. The set of equidistant knotsτi is defined

by

τi = i ·δτ, i = 0,1, . . . ,g+1 whereδτ =
2π

g+1
. (8)

In dimensionless form, (4) amounts to

θ(τ) =
g+k+1

∑
j=1

d jθk, j(τ), (9)

where thebasis spline functionsθk, j(τ) represent the dimensionless counterparts of the basis spline functionssk, j(t).

Second, a particular set of dimensionless basis spline functions θk, j(τ) is chosen. This set is constructed starting from the

observation that the definition (1)–(2) ofθ(τ) as a degreek polynomial spline implies that its(k− 1)st-order derivative

θ(k−1)(τ) is continuous and piecewise-linear6. Hence,θ(k−1)(τ) is completely determined by its values at the knot locations

τi (see Fig.2) and can therefore be simply parameterized as

θ(k−1)(τ) =
g+1

∑
i=0

θ(k−1)(τi) ·βi(τ), (10)

6Figure 1 illustrates this for a cubick = 3 spline: its(k−1)st (2nd) order derivative is piecewise-linear.
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Fig. 2. Piecewise-linear parametrization of θ(k−1)(τ), where δτ = 2π/(g+1).

whereβi(τ) denotes thehat function, further discussed in Appendix B. To obtainθ(τ) from (10), θ(k−1)(τ) needs to be

integratedk−1 times that are uniquely determined by fixing values for:

θ(q)(0) , q = 0, . . . ,k−2 . (11)

As a result, every degreek polynomial splineθ(τ) is uniquely determined by the following vectord of g+k+1 parameters:

d =
(

θ(k−1)(0) θ(k−1)(τ1) · · · θ(k−1)(τg+1)
∣

∣

∣
θ(0)(0) · · · θ(k−2)(0)

)T
. (12)

where(·)T denotes the matrix transpose. The elementsd j of d correspond to the spline coefficients ofθ(τ) (Eq. (9)) for the

following set ofg+k+1 basis spline functionsθk, j(τ):

j = 1,2, . . . ,g+2 : θk, j(τ) equals the hat functionβ j−1(τ), integrated (13a)

k−1 times with zero integration constants

j = g+3, . . .g+k+1 : θk, j(τ) =
τ( j−g−3)

( j −g−3)!
. (13b)

The preference for this set of basis functions stems from theclear physical interpretation of the corresponding splinecoef-

ficients (12): the firstg+ 2 coefficients directly determine the piecewise-linear function θ(k−1)(τ), whereas the remaining

coefficients fully characterize the spline at boundary point τ = 0.

Third, to enhance the numerical stability of evaluatingθ(τ) and its derivatives at the knotsτi , thisevaluationis performed in

a recursivemanner. That is, instead of computingθ(q)(τi) from Eq. (9), it is computed by the following recursive relation,

which is only valid for the equidistant knot spacing defined by (8), and follows from elementary calculus(i = 1, . . . ,g+1; q=

0, . . . ,k−2):

θ(q)(τi) =

[

k−q−2

∑
j=0

θ(q+ j)(τi−1) ·
(δτ) j

j!

]

+
(k−q−1) · (δτ)k−q−1

(k−q)!
·θ(k−1)(τi−1)+

(δτ)k−q−1

(k−q)!
·θ(k−1)(τi) . (14)
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This recursion writesθ(q)(τi) as alinear combination of thek− q derivativesθ(q)(τi−1), . . . ,θ(k−1)(τi−1) evaluated at the

previous time instantτi−1, as well as the(k−1)st-order derivativeθ(k−1)(τi) evaluated at the considered time instantτi . The

implementation of recursive evaluation (14) requires augmenting the vectord of spline coefficients tox∈ R
k·(g+2):

x =
(
(

Θ(0)
)T (

Θ(1)
)T

. . .
(

Θ(k−1)
)T)T

, (15)

whereΘ(q) equals the(g+2)-vector of allθ(q)(τi) values,i = 0,1, . . . ,g+1. The linear recursion (14) can then be written

compactly as

Gk,g ·x = 0, (16)

whereGk,g is a full-rank matrix belonging toR(k−1)(g+1)×k(g+2) and only depending on the spline degreek and the number

g of equidistant internal knots. Equation (16) imposes(k−1)(g+1) linearly independent, linear equations on thek(g+2)

elements ofx, resulting ink+g+1 independent degrees of freedom: the spline coefficientsd defined by (12).

3 Linear Programming Framework

Based on the spline parametrization of Sec. 2.3 and the analytical benchmark problem introduced in Sec. 3.1, this section de-

velops the convex optimization framework as a linear program (nonlinear, convex extensions are discussed in Sec. 5). After

defining the optimization variables (Sec. 3.2), constraints (Sec. 3.3) and objective (Sec. 3.4), the framework’s linear pro-

gramming structure is highlighted in Sec. 3.5. Section. 3.6provides numerical validation based on the analytical benchmark

problem.

3.1 Analytical Benchmark Problem

The considered benchmark problem arises in the area ofdouble-dwellmotion trajectory design. In dimensionless form (7),

double-dwell curves move a load from a lower dwell (period ofstandstill) at positionθ = 0 at τ = 0 to an upper dwell at

positionθ = 1 at τ = 2π. A whole body of literature exists on the design of such curves, of which well-known analytical

examples include the cycloidal curve, modified trapezoidal, modified sine and a great many others [6]. In this context it is

known that in general a smoother curve, that is, a curve with ahigher degree of continuity, results in less excitation of the

structural dynamics of the driven mechanism7, while on the other hand a higher degree of continuity results in higher peak

values of velocity, acceleration and jerk. Hence, the main design objective is to synthesize curves of a prescribed smoothness

that realize an optimal trade-off between peak values of velocity, acceleration and jerk. In the context of this paper, the

considered analytical benchmark problem aims at finding aC m-continuous double-dwell curveθ(τ) with minimal peak

value of the(m+1)st-order derivativeθ(m+1)(τ), which is the first discontinuous yet still finite derivative. More specifically,

7provided that the driven mechanism is sufficiently stiff (Although a motion system may be assumed to be rigid in the design phase, it is never infinitely

rigid in practice.)
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Fig. 3. Analytical benchmark problem solutions for m= 0,1,2,3. The solution is a polynomial spline of degree m+1 with g = m internal

knots.

θ(τ), t ∈ [0,2π] must satisfy

θ(τ) ∈ C m
[0,2π] (17a)

θ(0) = 0; θ(2π) = 1 (17b)

θ(q)(0) = 0; θ(q)(2π) = 0, q = 1, . . . ,m (17c)

max
τ∈[0,2π]

|θ(m+1)(τ)| minimized (17d)

For example, a designer wanting to find a double-dwell curve that complies with the fundamental law of cam design and

minimizes follower vibration, will be eager to know the solution of the above problem form= 2, since it results in the cubic

spline that minimizes peak jerk.

The analytical solution of (17) is known from [19] and is illustrated in Fig. 3 form = 0,1,2,3. These solutions can be

represented as polynomial splines of degreek = m+ 1 with g = m= k−1 internal knots [19]. Table 1 provides the knot

locationsτ∗m j, j = 0,1, . . . ,m+1 and the peak absolute values of the finite-valued derivatives.
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m τ∗k, j , j = 0,1, . . . ,k max(|θ(1)|) max(|θ(2)|) max(|θ(3)|) max(|θ(4)|)

0 2π · {0,1} 1/(2π) ∞ ∞ ∞

1 2π · {0, 1
2,1} 2/(2π) 4/(2π)2 ∞ ∞

2 2π · {0, 1
4, 3

4,1} 2/(2π) 8/(2π)2 32/(2π)3 ∞

3 2π · {0,z, 1
2,1−z,1} 2.34/(2π) 8.23/(2π)2 79.53/(2π)3 384/(2π)4

Table 1. Analytical benchmark problem solutions for m= 0,1,2,3. The solution is a polynomial spline of degree m+1 with g= m internal

knots. The scalar zequals (2−
√

2)/4.

3.2 Optimization Variables

Given thatC m-continuity is required, the spline degreek is selected asm+1. The number of knotsg is chosen to be large,

typically a few hundreds or even thousands. To adopt the numerically stable recursive implementation (14), vectorx (15) is

used as optimization variable instead ofd (12), whereby the set of linear equality constraints (16) must be included in the

optimization problem. Definition (15) ofx allows expressingθ(q)(τi) as

θ(q)(τi) = x(q(g+2)+ i +1) (18a)

= aT
q,i ·x, (18b)

whereaq,i ∈ R
k(g+2) is a selection vector of which all elements are zero, except the element with indexq(g+ 2) + i + 1,

which equals one. Shorthand notation (18b) allows us to express the constraints and objective criterion in a compact and

neat manner.

3.3 Constraints

The choice ofx, defined by (15), as the optimization variable implies that the linear set of equations defined by (16) needs

to be imposed to guarantee thatx represents a polynomial spline of degreek = m+ 1. While Gm+1,g is typically a large

matrix, it is also very sparse. The sparsity can be understood from (14) which relates every element ofx to at mostm+ 2

other elements ofx. Hence, whileG featuresO (m2g2) elements, onlyO (m2g) are nonzero, which is important given thatm

is small butg is large.

A second set of constraints follows from the boundary constraints (17b)–(17c):

aT
0,0 ·x = 0, aT

0,g+1 ·x = 1 (19a)

aT
q,0 ·x = 0 (q = 1, . . . ,m), aT

q,g+1 ·x = 0 (q = 1, . . . ,m) (19b)
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or, more concisely

ABC ·x = bBC, (20)

whereABC ∈ R
2(m+1)×(m+1)(g+2) is large and sparse andbBC ∈ R

2(m+1). Equation (20) represents a set of 2(m+ 1) linear

equality constraints inx. The fact that constraints such as (17b)–(17c) can so easilybe expressed in terms ofx constitutes

one of the major advantages of considering the set of variables defined by (15).

3.4 Objective Function

The objective in the analytical benchmark problem is to minimize

max
τ∈[0,2π]

|θ(m+1)(τ)| , (21)

which is equivalent to minimizing

max
i

|θ(m+1)(τi)| = max
i

∣

∣

∣

∣

∣

θ(m)(τi)−θ(m)(τi−1)

δτ

∣

∣

∣

∣

∣

, (22a)

= max
i

∣

∣

∣

∣

∣

aT
m,i −aT

m,i−1

δτ
·x
∣

∣

∣

∣

∣

. (22b)

Given the piecewise-linear, continuous parametrization of θ(m)(τ), the backward difference used in (22a) constitutes an exact

expression for the left derivative ofθ(m)(τ), as well as an unambiguous definition of the discontinuous functionθ(m+1)(τ).

Using a forward difference (and hence definingθ(m+1)(τ) as the right derivative ofθ(m)(τ)) yields equivalent results.

Objective function (21) is convex, but as it is piecewise-linear, minimizing this function directly does not give rise to a linear

program. However, as detailed in [17], the problem of minimizing (21) can be transformed into the followingequivalent

linear program:

minimize(x,w) w (23a)

subject to −w≤
aT

m,i −aT
m,i−1

δτ
·x≤ w, i = 1, . . . ,g+1. (23b)

wherew is a scalar auxiliary optimization variable. This is an optimization problem in(x,w) with a linear objective function

w and 2(g+1) inequality constraints, all of them linear inw andx.

MD-08-1165 Swevers 14



εp [%]

m g = 1000 g = 999

0 1.74e-14 1.74e-14

1 9.98e-05 9.59e-13

2 2.99e-04 4.28e-12

3 9.71e-04 7.91e-04

Table 2. Relative error εp [%] between the numerically obtained peak absolute value of θ(k)(τ) and the analytical values of Table 1 for

g = 1000and g = 999.

3.5 Resulting Linear Program

Putting everything together, the analytical benchmark problem can be translated in the following optimization problem,

where the designer choices are the continuity levelm and the numberg of (uniformly distributed) internal knots:

minimize(x,w) w (24a)

subject to −w≤
aT

m,i −aT
m,i−1

δτ
·x≤ w, i = 1, . . . ,g+1 (24b)

Gm+1,g ·x = 0, (24c)

ABC ·x = bBC. (24d)

(24) constitutes a linear program for the objective and constraints are linear functions of the optimization variable(x,w).

In the case of cubic splines (m= 2), for instance, choosingg = 1000 gives rise to a moderate to large-scale linear program

involving 3007 variables, 2008 linear equality constraints and 2002 linear inequality constraints. All matrices involved are,

however, sparse, such that dedicated sparsity-exploitinglinear programming algorithms can still guarantee finding the global

optimum in a matter of seconds. Here, the simplex and interior-point algorithms of the MOSEK8 toolbox are used.

3.6 Numerical Results

This section investigates whether the proposed framework is able to reproduce the analytical results given Sec. 3.1. The

overall answer to this question is ’yes’. In fact, Fig. 3 was made, not by implementing the analytical solution, but by plotting

numerical solutions of (24) forg = 1000 andm= 0. . .3. Solving the corresponding LPs took a mere 1.34 CPU secondson

a laptop equipped with a Pentium4@3.2GHz processor and 1GB RAM.

While the algorithm is allowed to put an active knot in any of theg available internal knots, Fig. 3 reveals that onlym internal

8www.mosek.com
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knots are active9, as in the analytical solution. Table 2, on the other hand, verifies whether the obtained peak absolute values

of θ(m+1)(τ) agree with the analytical values of Table 1. To this end the relative errorεp is defined as:

εp =
|θ(k)∗−θ(k)+|

θ(k)+
,

whereθ(k)∗ andθ(k)+ represent the maxima of the absolute values ofθ(k)(τ) resulting from the numerical and analytical

solutions, respectively. Form= {1,2}, the reported relative errorsεp are small but significant forg = 1000, while negligible

for g = 999. Such distinctions between the two consideredg values do not occur form= {0,3}.

This dependence ong follows from the fact thatg determines whether the analytical knotsτ∗m j belong to the set of available

knotsτi . For m= {1,2}, Eq. (8) implies that theτi-set includes the analytical knots for oddg, while not for eveng. For

m= {0,3}, on the other hand, the value ofg is irrelevant: (i)m= 0 represents a trivial case for no internal knots are present;

(ii) for m= 3 the knots 2π{z,1− z} can never be part of theτi-set forz (defined in Table 1) is an irrational number10. If

theτi-set includesall analytical knots,εp is numerically zero and the exact solution has been found to numerical precision

(Table 2:m= {1,2} and oddg). In the other case, the error can be made arbitrarily small by increasingg. The latter claim is

not formally proved but numerically verified form= 3 by solving (24) for 50 logarithmically spaced (even)g values between

10 and 1000. Figure 4 shows that the relative errorεp globally (but not monotonically) decreases for increasingg and drops

just below 0.0001% forg = 1000. The decrease is linear on a double logarithmic scale implying thatεp drops two orders of

magnitude forg increasing one.

Figures 5(a−b) provide additional insight in these results by showing how the numerically computed knotsτ̂m2 andτ̂m3
11

vary as a function ofg for m= 3. The solid lines indicate error bounds, which are computedbased on the conjecture that if

theτi-set does not contain the analytical knotτ∗m j, the computed̂τm j-value is the element of theτi-set lying closest toτ∗m j.

τ̂m j therefore belongs to the interval

[

τ∗m j−
δτ
2

,τ∗m j +
δτ
2

]

=

[

τ∗m j−
π

g+1
,τ∗m j +

π
g+1

]

. (25)

implying error bounds equal to± π
g+1. Figures 5(a−b) provide numerical evidence that this conjecture is true. Observe that

the numerically computed knotτ̂m3 always lies on the error bound, since for any eveng the analytical valueτ∗m3 = 0.5 ·2π

lies in the middle of the interval between the two nearest available knots. Figures 5(c−d) provide similar information as

Figs. 5(a−b) but for 50 logarithmically spacedodd gvalues between 11 and 1001. In this caseτ∗m3 = 0.5·2π belongs to the

τi-set and is always chosen by the numerical algorithm.

9As can be seen by counting the number of jumps inθ(m+1)(τ) for each of the consideredm.
10Observe that the factor 1/(g+1) in (8) is arational number for integerg.
11The values of̂τm j are numerically found by detecting jumps ofθ(m+1)(τ) in the solution of (24).
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Fig. 4. Relative error εp [%] on the obtained peak absolute value of θ(4)(τ) for m= 3 and 50 logarithmically spaced even g-values between

10 and 1000.
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Fig. 5. Numerically computed knots τ̂m2 and τ̂m3 (’x’) for m= 3 and 50 logarithmically spaced even or odd g-values between 10 and 1001.

(a) τ̂m2 for even values of g; (b) τ̂m3 for even values of g; (c) τ̂m2 for odd values of g; (d) τ̂m3 for odd values of g. The analytical values

τ∗m2 and τ∗m3 are indicated by the dash-dotted line, while the solid lines indicate the error bounds derived from (25).
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4 One-Norm Regularization

The numerical results of the previous section reveal that, while the numerical algorithm is allowed to put an active knotin

any of theg available internal knots, only very few of them effectivelyexhibit aθ(m+1)(τ) jump. Such ’tidy’ solutions do

no always result: Sec. 4.1 shows that making the analytical benchmark slightly more complicated gives rise to very ’dirty’

solutions featuring an unnecessarily high number of activeknots, as revealed by theθ(m+1)(τ) trajectory nervously banging

back and forth between its upper and lower limit (solid line in Fig. 6(d)). However, it is also shown (Sec. 4.2) that such

solutions can be cleaned up very efficiently and, quite importantly, at minimal cost through a technique calledone-norm

regularization. One-norm regularization constitutes the third key feature of the present framework and is indispensable to

deal with more complex trajectory design problems.

4.1 Analytical Benchmark Problem Revisited

In order to make the analytical benchmark problem more complicated, twoprecision pointsare added, that is, points

(τp, j ,θp, j) through whichθ(τ) must pass:

θ(τp, j) = θp, j , (26)

where

(τp,1 = 1.26,θp,1 = 0.32), (τp,2 = 3.77,θp,2 = 0.70). (27)

These precision points were chosen in an arbitrary way whilemaking sure that they do not lie on the analytical solution

presented in Sec. 3.1 and Fig. 3.

Taking into account that the time instantsτp, j do not necessarily coincide with the available knot locationsτi , the framework

enforces (26) by requiring thatθ̂(τ), the linear interpolation ofθ(τ) between the knotsτi , pass through the prescribed points:

θ̂(τp, j) = θp, j . (28)

Expressing (28) in terms ofx, with the subscriptj dropped, gives rise to

[

aT
0,p +

aT
0,p−aT

0,p

δτ
· (τp− τp)

]

·x = θp, (29)

where12

p = ⌊τp

δτ
⌋,

p = p+1.

12The floor operator⌊x⌋ roundsx to the nearest integer less than or equal tox.
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Fig. 6. Analytical benchmark problem revisited (g = 1000,m= 2): non-monotonous solution (dashed line), monotonous solution without

one-norm regularization (solid line), monotonous solution with one-norm regularization (dash-dotted line). For τ ≤ 2.64, the latter two

solutions coincide. The circles in Fig. 6(a) indicate the precision points (27).

For every considered precision point(τp,θp), Eq. (29)13 constitutes a linear equality constraint inx. Numerically solving

(24) for(g= 1000,m= 2) and the precision points (27) gives rise to the dashed line inFig. 6. Compared to the solution of the

analytical benchmark (Fig. 3), the number of active internal knots has doubled from two to four, but is still limited. However,

the solution is not monotonous, which might be undesirable in many applications of double dwell motions, because it gives

rise to unnecessarily large peak values of velocity and acceleration (see Fig. 3), causing increased wear and inertial load.

Monotonicity is enforced by imposing thatθ(1)(τi) ≥ 0, i = 0,1, . . . ,g+1:

aT
1,i ·x≥ 0, i = 0,1, . . . ,g+1. (30)

Adding the monotonicity constraint has a spectacular effect on the solution, as shown by the solid line in Fig. 6. The solution

is monotonous and passes through the required precision points, but features a large number of active knots in the[2.64,6.28]

interval as revealed by the jerkθ(3)(τ), which bangs nervously between±w∗ =±1.237 in this part of the motion cycle, where

w∗ is the optimal value of objective function (21).

Further interpretation of this unacceptable solution provides the clue to improving upon it. The velocity and acceleration

profiles reveal that in the[2.64,3.77] interval, a standstill is aimed for. The extremely nervous jerk profile is consistent

13Being based on the linear interpolation (28), (29) is an approximation of the exact constraint (26). However, given thatδτ is typically very small, the

approximation is sufficiently accurate. If judged necessary(26) can be expressedexactlyas a linear, yet more tedious to derive, equality constraint in x.
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with the observed standstill, but does not look very intuitive nor sensible to a designer. Our conjecture is that the designer’s

obvious guess (that is, the same trajectory but with zero jerk for τ∈ [2.64,3.77]) and the algorithm’s result are equally optimal

but different solutions of the considered optimization problem: both give rise to the same optimal peak jerkw∗ = 1.237 and

comply with the imposed set of constraints14. The challenge is now to force the numerical algorithm to choose, in the set

of all optimalx∗, anx∗ that looks sensible to a designer. Finding such a solution that does not feature any unnecessary jerk

jumps (active knots) can be done through the one-norm regularization introduced in Sec. 4.2.

4.2 One-Norm Regularization

If our conjecture of the existence of a whole set of equivalent x-vectors is true, it should be possible to find a sensible solution

x by solving the following optimization problem(m= 2)

minimizex fs(x) (31a)

subject to−w∗ ≤
aT

m,i −aT
m,i−1

δτ
·x≤ w∗, i = 1, . . . ,g+1 (31b)

Gm+1,g ·x = 0, (31c)

ABC ·x = bBC (31d)

Ap ·x = bp (31e)

aT
1,i ·x≥ 0, i = 0,1, . . . ,g+1, (31f)

where (31e) concisely expresses the precision point constraints (29). w∗ is the optimal value of objective function (21),

that is, the maximum absolute value ofθ(m+1) obtained by solving the non-regulated linear program (24) supplemented with

the precision point constraints (29) and the monotonicity constraint (30). This optimization problem seeks, in the setof all

feasiblex that give rise to the optimalw∗, the particularx that minimizesfs(x), an objective function that measures the ’lack

of sensibility’ of a solution. Given that solutions with fast switching ofθ(m+1)(τ) are judged not very sensible, it makes sense

to obtain smoother solutions by penalizing some norm of its backward difference,θ(m+2)(τ). The particular norm chosen

here is the one norm, that is,

fs(x) =
g+1

∑
i=2

∣

∣

∣
θ(m+2)(τi)

∣

∣

∣
=

g+1

∑
i=2

∣

∣

∣

∣

∣

θ(m+1)(τi)−θ(m+1)(τi−1)

δτ

∣

∣

∣

∣

∣

. (32)

It is well-known [17] in the area of function approximation that one-norm minimization is likely to yield sparse solutions,

that is, solutions with only few nonzero components. Translated to the present problem, sparsity implies solutions with few

nonzeroθ(m+2)(τi), that is, fewθ(m+1)(τ)-jumps. In other words, few active knots.

Numerically solving the linear program (31) with (32) as theobjective function15 for the precision points (27) and(g =

14This conjecture does not contradict the convexity of the problem: convexity guarantees that the globally optimal objective valuef ∗0 be found, but there

may be many vectorsx∗ for which f0(x∗) = f ∗0 . Which of thesex∗ is actually obtained depends on the particular algorithm used.
15While in the form (32), the one-norm constitutes a nonlinear,nondifferentiable function due to the presence of the absolute value, it can easily

be transformed into a linear objective function through the introduction of auxiliary variables and additional linear inequality constraints, similar to the

transformation discussed in Sec. 3.4. More details are provided in, e.g., [17].
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Fig. 7. Analytical benchmark problem revisited (g = 1000,m= 2): jerk derivative on logarithmic scale for monotonous solution without

one-norm regularization (a), monotonous solution with one-norm regularization (b), monotonous solutions with relaxed one-norm regular-

ization: ε = 1e−12 (c), ε = 1e−8 (d), ε = 1e−4 (e), ε = 1e−2 ( f ).

1000,m= 2) gives rise to the dash-dotted line in Fig. 6. The improvementis remarkable and confirms the conjecture: the

obtained solution is sensible, featuring zero jerk forτ ∈ [2.64,3.77] and a mere six internal knots.

Figure 7 further analyzes the effect of the one-norm minimization by plottingθ(m+2)(τi) on a logarithmic scale as a function

of τ. Figure 7(a) focuses on the original monotonous solution (solid line of Fig. 6), while Fig. 7(b) shows the solution of

(31). The difference between the two figures confirms the far lower number of knots observed in Fig. 6. However, Fig. 7(b)

also reveals that the solution of (31) is not as ’clean’ as suggested by the six apparent jerk jumps in Fig. 6(d): although

most of the knots feature aθ(m+2)(τi) that is numerically zero (below 10−10), some clearly nonzeroθ(m+2)(τi) values appear

in pairs, while othersθ(m+2)(τi) are in some “gray zone” ranging from 10−5 to 10. To further investigate this effect, the

constraint (31b) is relaxed to:

−(1+ ε) ·w∗ ≤
aT

m,i −aT
m,i−1

δτ
·x≤ (1+ ε) ·w∗, i = 1, . . . ,g+1 (33)

That is, slightly higher values for the peak jerk are allowed, so as to obtain even more sparse solutions. Figure 7(c− f ) show

the results obtained forε = {1e−12,1e−8,1e−4,1e−2}. It is clear that the solutions do get sparser, at the small cost of a

slightly higher peak jerk.
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5 Convex Objectives and Constraints

This section provides several nonlinear framework extensions that turn the linear programming framework into a more

general convex programming framework. In doing so, the known optimization methods [4, 7–13] are reviewed, thereby

showing that some of these methods can be extended or simplified based on insights from convex optimization theory.

(i) Instead of minimizing the peak absolute value (21) of the(m+ 1)st-order (or any other) derivative ofθ(τ), also other

functions ofθ(τ) and its derivatives can be minimized. If a weighted combination (weightsWj ) of mean-square values is

considered,

m+1

∑
j=0

Wj

2π

∫ 2π

0

(

θ( j)(τ)
)2

·dτ (34)

a convex quadratic program follows16, while a (convex) second-order cone program results if a weighted combination of

root-mean-square values is considered:

m+1

∑
j=0

Wj

√

1
2π

∫ 2π

0

(

θ( j)(τ)
)2 ·dτ. (35)

Mermelstein and Acar [10] developed, as an improvement of [8], a method to minimize the mean-square jerk (that is, an

objective of type (34), with allWj = 0, exceptW3 = 1) of a spline subject to a number of prescribed positions, velocities

and/or higher derivatives at specific time instants. For this equality-constrained, convex quadratic program, a complicated

solution procedure was developed of which the implementation ”requires a symbolic mathematics software application,

as the calculations involved are lengthy” [10]. This solution procedure relies on the fact that the solution of an equality-

constrained, convex quadratic program can be found by solving a set of linear equations. There is, however, no need to

develop such a complicated procedure, since any freely available convex solver (such as the matlab-based software packages

SeDuMi [20] and SDPT3 [21] or the Python-based software CVXOPT17) will do the job.

(ii) Nguyen and Kim [13] designed cam profiles based on the idea of a smoothing spline. That is, given some existing

nominal trajectoryθn(τ) (e.g., a trapezoidal trajectory), a splineθ(τ) of odd degreek is sought that has minimalroughness18

and simultaneously satisfies (i) given boundary constraints of the general type (17b)–(17c), as well as (ii) user-specified

upper limitsSj ≥ 0 on the sum-of-squares deviation ofθ( j)(τ) with respect toθ( j)
n (τ):

p

∑
i=0

(

θ( j)(τpi )−θ( j)
n (τpi )

Wji

)2

≤ Sj , j = 0, . . . ,k−1 (36)

where the(p+ 1) time instantsτpi and the relative weightsWji of the various time instants must be chosen by the user.

Minimizing the roughness (a convex quadratic function), subject to boundary constraints (linear equality constraints) and the

16Convex quadratic programs are discussed more thoroughly in the companion paper [15].
17http://www.ee.ucla.edu/∼vandenbe/cvxopt/
18Roughness is defined as the mean square of the(k−1)/2’th-order derivative and hence, corresponds to a convex quadratic objective function of the

general type (34) (34).
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convex quadratic constraints (36) gives rise to a convex program, more specifically aquadratically constrained quadratic

program. The convexity was, however, not recognized nor exploited by Nguyen and Kim: instead of using one of the

aforementioned standard convex solvers, a dedicated quasi-Newton method was developed, while also the guarantee to

obtain a global optimum was not recognized.

(iii) While nonlinear (but convex) extensions are required for the framework to reproduce the results [10, 13], the original

linear programming framework suffices to reproduce the results [11] (kinematic optimization example) and [7].

Yoon and Rao [7] minimized the peak acceleration of a cubic spline subject to prescribed positions, velocities and acceler-

ations at specific time instants. This problem can be directly formulated as an LP in the framework of Secs. 3–4. Linear

programming is, however, not mentioned in [7], nor is any information about the method with which the optimization prob-

lem is solved.

Qiu et al. [11], on the other hand, minimized the peak acceleration of a quintic(k = 5) spline subject to boundary constraints

and upper limits on peak velocity and peak absolute jerk. While, as shown in the companion paper [15], this problem can

be reformulated as an LP, Qiu et al. solved it as a general nonlinear program. The companion paper [15] furthermore shows

that considering a large number of knots (350 instead of 7, asdid Qiu et al.) leads to significantly improved results thereby

illustrating the benefit of formulating linear/convex programs whenever possible.

(iv) All aforementioned studies [7, 8, 10, 13] and [11] (kinematic optimization example) are methods to optimize purely

kinematicproperties of a spline with prescribed knots. The basic framework of Secs. 3–4, along with its nonlinear extensions

(34) and (36) is able to simplify (no need to write dedicated numerical solution procedures; proof of global optimality

follows from convexity), and extend any of these results. Extensions are twofold. First of all, the convexity of the presented

framework allows considering a large number of knots, whichpays off as shown in the companion paper [15] for the case

study [11]. Second, other objectives such as (35) can be considered, while the companion paper further generalizes the

framework such that it can also deal with (i) time optimality; (ii) upper and lower bounds on motor torque for servomotor

driven systems; (iii) the time-energy optimality trade-off in servomotor driven systems.

(v) Preserving convexity implies that objectives and constraints related to cam geometry [4, 9, 12] or cam driving torque

( [11], dynamic optimization example) cannot be included inthe framework. The main problem with cam geometry is

the complex geometric relation between the motion curve andthe corresponding cam profile. The main problem with cam

driving torque is that it involves products of velocity and acceleration (inertia part) or velocity and displacement (spring part).

Still, however, a kinematically optimized motion law can provide a very good initialization for a nonconvex optimization

routine involving the cam shape, since many geometric and dynamic aspects of cam design can be expressed approximately

in terms of purely kinematic properties. Minimizing peak acceleration, for instance, results in a spline that is a good starting

value for finding a spline that minimizes Hertzian pressure.Minimizing

max
τ

{|θ(2)(τ)| | θ(2)(τ) ≤ 0}

on the other hand, can be cast as an LP and is in general beneficial for minimizing return spring size.
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(vi) While cam geometry cannot be directly included in the convex programming framework, load vibration can, provided

that it is described by a linear set of differential equations. Preliminary efforts along these line are described in [22].

6 Discussion

The present paper develops a general framework to synthesize optimal polynomial splines for rigid motion systems driven

by cams or servomotors. This framework is based on numericaloptimization and has three main characteristics: (i) spline

knot locations are optimized through an indirect approach based on providing a large number of fixed, uniformly distributed

candidate knots; (ii) in order to efficiently solve the corresponding large-scale optimization problem to global optimality,

only design objectives and constraints are allowed that result in convex programs and (iii) one-norm regularization isused as

an effective tool for selecting the better (that is, having fewer active knots) solution if many equally optimal solutions exist.

One-norm regularization as a means of controlling the number of active knots does not allow specifying the number of active

knots beforehand. The authors, however, feel that this is only a minor restriction: the more important consideration isthat

the number of knots is limited, not whether it is exactly four, six or ten. The use of one-norm regularization is to a large

extent inspired by the idea of (smoothing)regularization. In mathematics, the termregularizationis associated with making

a function more ’regular’ or smooth. Regularization is, forinstance, commonly used in approximation and fitting problems.

In regularized approximation the goal is to find a vectorx that is small (if possible) and also makes the residualAx−b small,

whereA andb denote given data [17]. This goal is achieved by solving the optimization problem

minimize||Ax−b||+ γ||x||, (37)

where the norms may be different andγ > 0 is a user-defined parameter. Asγ varies over(0,∞), the solution of (37) traces

out an optimal trade-off curve. If both norms are equal to thetwo-norm,Tikhonov regularizationresults. If, on the other

hand, the one-norm is selected for||x||, a sparse solutionx is likely to be found, that is, a solution with only few nonzero xi .

For an elaborate discussion on this topic, the reader is referred to [17].

In fact, the whole framework laid out in the present paper canbe thought of as a variation ofbasis pursuit[23], another

well-known concept from function approximation. In basis pursuit, there is a very large number of basis functions and the

goal is to find a good fit of some given data as a linear combination of a small number of the basis functions. The term basis

pursuit was coined since a much smaller basis is selected from a given over-complete basis. A commonly used heuristic

to finding such a sparse description is to minimize an objective of the general type (37), using a one-norm for||x||. In

the present framework, one can think of theg+ 2 equidistantly spaced available knots as defining the over-complete basis

and the one-norm minimization ofθ(m+2)(τi) as the heuristic to select a smaller basis, defined by much fewer non-uniformly

distributed knots. The use of the one-norm as a sparsity-promoting function also underlies a new sensing/sampling paradigm,

termedcompressive sampling[24], as well as total variation reconstruction in image processing [25].

The current framework has an interpretation as an optimal control problem in which a piecewise-linear control signal is

applied to a series ofm integrators. This interpretation may be beneficial if also nonconvex nonlinear functions need to
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be considered for efficient, structure-exploiting algorithms exist that are able to find reasonable local optima for nonconvex

optimal control problems [26].

The framework was developed for the spline basis presented in Sec. 2.3, while an implementation based on the numerically

more stable and more commonly used B-spline basis is also already available. Preliminary numerical experiments with

the latter implementation revealed identical solutions but longer computational times. Which basis is more appropriate for

elastic (instead of rigid) motion systems, is currently under investigation.

While the current paper already provides substantial numerical evidence of the efficiency of the proposed framework, more

complicated numerical benchmarks and extensions are considered in the companion paper [15]. Current research focuseson

further extending and experimentally validating the preliminary results [22] concerning follower vibration.
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Fig. 8. The hat functions β0(τ), βi(τ) (1≤ i ≤ g) and βg+1(τ).

A Convex Functions and Sets

A setS⊆ R
n is convex if the line segment between any two points inC lies inC, that is, if for anyx,y∈ Sandθ ∈ [0,1], we

have

θx+(1−θ)y∈ S. (38)

A function f : R
n → R is convex if its domaindom f is a convex set and if for allx,y∈ dom f andθ ∈ [0,1], we have

f (θx+(1−θ)y) ≤ θ f (x)+(1−θ) f (y). (39)

Geometrically, this inequality means that the line segmentbetween(x; f (x)) and(y; f (y)), which is the chord fromx to y,

lies above the graph off . Some examples (onR) include: (i) f (x) = x2 is convex; (ii) f (x) = log1/x is convex(dom f =

{x|x > 0}); f (x) = 1/x is convex(dom f = {x|x > 0}).

B The Hat Function

The hat functionβi(τ) is defined by(1≤ i ≤ g)

βi(τ) =


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β0 is defined as

β0(τ) =
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βg+1 is defined as

βg+1(τ) =


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