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Goele Pipeleers and Jan Swevers

K.U. Leuven, Dept. of Mechanical Engineering, Div. PMA, Celestijnenlaan 300B,

B-3001 Heverlee, Belgium
(Received 00 Month 200x; final version received 00 Month 200x)

This paper presents an optimal design methodology for feedforward controllers that face periodic refer-
ence/disturbance inputs. The feedforward controller is parameterized as a FIR filter, and its parameters are
computed to minimize the worst-case tracking error in the presence of uncertainty on the input period and
the plant model. Numerical results indicate that for nonminimum-phase systems exploiting the periodic input
characteristics in the feedforward controller design is worthwhile, and reveal the superiority of the developed
design methodology with respect to current design approaches when period-time and/or plant uncertainty is
present.
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1 Introduction

Periodic reference and disturbance signals are widespread in engineering practice, as every ro-
tating machine and repeated process involves periodicity. Periodic disturbances are for instance
encountered in the track-following servo system of disk drives (Chen et al. 2001, 2006), power
electronics (Zhou and Wang 2001, Botteron and Pinheiro 2006), steel casting (Manayathara
et al. 1996) and robotized laparoscopic surgery (Gangloff et al. 2006). Periodic reference tra-
jectories, on the other hand, occur in noncircular machining (Kim et al. 2004), electronic cam
motion generation (Kim and Tsao 2000) and robots performing repetitive tasks (Kasac et al.
2008). Since the attainable performance of a controller is bounded by measurement noise, model
inaccuracies, actuator saturation, etc., exploiting all knowledge available on the reference and
disturbance inputs is indispensable to achieve the tightening performance demands in engineer-
ing practice.

Literature reveals active research on exploiting the periodic input characteristics in a feedback
controller design. This specialized feedback controller design is often handled in the context of
output regulation (see e.g. Saberi et al. 2000, for an in-depth treatement), which concerns the
design of an internally stabilizing controller that yields perfect asymptotic rejection/tracking
of persistent input signals, as are periodic signals. The cornerstone of regulation theory is the
Internal Model Principle (Davison 1972, Francis et al. 1974), which states that in order to achieve
perfect asymptotic rejection/tracking of persistent inputs, their signal generator must be (partly)
replicated in a stable feedback loop. Although a feedback controller is the only means to suppress
unmeasurable disturbances, specializing the feedback controller for periodic inputs involves some
drawbacks: (i) implied by the Bode Sensitivity Integral (Freudenberg and Looze 1985), improved
suppression of the periodic disturbances comes at the price of degraded closed-loop performance
for nonperiodic inputs, wherever they enter the control loop (Pipeleers et al. 2007); and (ii)
robust stability is often compromised by the periodic signal generator inclusion and requires
special care (Hara and Yamamoto 1985).
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In the case of a reference input or measurable disturbance, feedforward control becomes a
valuable alternative/complement to feedback control. Compared to feedback control, a feedfor-
ward controller has the advantage that (i) its effect is restricted to the input channel to which it
is added; and (ii) the only stability concern in a feedforward controller design is its own stability.
Contrary to the vast amount of literature on specialized feedback controller designs, only few
contributions deal with exploiting the periodic input characteristics in a feedforward controller
design. After all, the ideal feedforward controller inverts the (closed-loop) system and yields
perfect tracking/rejection of any reference/disturbance input. However, the ideal feedforward
controller suffers from two deficiencies, giving rise to applications where exploiting the input
periodicity is beneficial. First, the practical implementation of the ideal feedforward controller is
impeded by nonminimum-phase zeros of the plant. For nonminimum-phase systems, the stable
implementation of the ideal feedforward controller is noncausal (Devasia et al. 1996, Hunt et al.
1996), requiring infinite preview and preactuation time: the controller starts generating actuator
signal from t → −∞, and hereby requires knowledge on the entire input trajectory. The second
deficiency of the ideal feedforward controller is related to model uncertainty: it inverts the plant
model and hereby inherently assumes high model accuracy. However, in many applications the
validity of this assumption is limited, and the performance of the ideal feedforward controller is
very sensitive to model uncertainties (Devasia 2002).

Although the literature reveals active research on designing feedforward controllers for
nonminimum-phase systems (see e.g. Tomizuka 1987, Torfs et al. 1992, Gross et al. 1994, Zou
and Devasia 1999, Zou 2007), only few contributions deal with specializing the feedforward con-
troller for periodic inputs in these applications. Tomizuka et al. (1987) propose a feedforward
design that splits up the periodic input in its harmonic components and pre-compensates for each
harmonic the phase and amplitude distortion of the plant. The implementation of this controller
is cumbersome, and Walgama and Sternby (1995) propose a feedforward design much easier to
implement. The feedforward controller is designed as a finite impulse response (FIR) filter that
inverts the plant only at the input harmonics, yielding perfect asymptotic tracking of periodic
reference inputs. This FIR filter design, briefly reviewed in Section 2.2, assumes perfect knowl-
edge of the input period and cannot cope with plant uncertainty. Although robust feedforward
control gains increasing attention (Giusto and Paganini 1999, Devasia 2002, Ferreres and Roos
2005, Scorletti and Fromion 2006, Köse and Scherer 2007), specializing the robust feedforward
controller design for periodic inputs is not yet addressed in the literature.

The present paper proposes a general methodology to optimally design a discrete-time single-
input single-output (SISO) linear time-invariant (LTI) feedforward controller for an LTI system
that faces periodic reference/measurable disturbance inputs. The feedforward controller is pa-
rameterized as a FIR sequence, and its parameters are computed to minimize the steady-state
tracking error. Contrary to the design approach of Walgama and Sternby (1995), uncertainty on
the input period and the plant model are explicitly accounted for. The proposed design approach
is able to reproduce and, on account of the last property, outperform the design approach of
Walgama and Sternby (1995). In addition, the numerical results presented in Section 4 show that
for nonminimum-phase systems the developed feedforward design can yield better performance
than approximate inversion techniques, such as (Gross et al. 1994).

This paper is organized as follows: Section 2 formulates the control problem and reviews
the feedforward controller designs of Gross et al. (1994) and Walgama and Sternby (1995).
Subsequently, Section 3 details the developed optimal design methodology, while Section 4
demonstrates its potential by numerical results. Section 5 summarizes the conclusions of this
paper.

Notation: The sample period of the discrete-time controller design is denoted by Ts [s], while
fs = 1/Ts [Hz], and index k refers to the sampled time instants kTs. The symbols q and z
respectively indicate one-sample-advance operator and the discrete-time Z-transform variable.
All systems are discrete-time SISO LTI, and to differentiate between variables, system X is
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Figure 1. Feedforward control configuration: feedforward controller KFF(z) converts the reference trajectory w(k) into an
appropriate input signal u(k) for the plant G(z) in order to make the resulting tracking error v(k) small.

usually indicated by its transfer function X(z) or difference equation X(q). To alleviate notation,
the frequency response function (FRF) of X is denoted by X(ω) instead of X(ejωTs).

2 Background

This section presents the control problem considered in this paper (Section 2.1), and summa-
rizes the feedforward controller designs of Gross et al. (1994) and Walgama and Sternby (1995)
(Section 2.2).

2.1 Control Problem

Although the developed feedforward design methodology applies to any control configuration
where the exogenous input signal is used as controller input, it is elaborated here for the control
setup shown in Figure 1. The motivation for this choice is that for this setup, the mathematics
involved in Section 3.2 are most intuitive, while the extension to alternative feedforward control
configurations is also discussed there.

The exogenous input w(k) corresponds to the reference signal to be tracked. It is fed to the
feedforward controller KFF(z), which converts it into an appropriate input signal u(k) for the
plant G(z) in order to make the resulting tracking error v(k) small. System G(z) is assumed to
be stable, while the overall transfer function from w(k) to v(k) is denoted by H(z) and equals

H(z) = 1 − G(z)KFF(z) . (1)

In Section 3.2, the plant is considered uncertain and subject to multiplicative unstructured
uncertainty (Skogestad and Postlethwaite 2005). That is: the actual plant model is assumed to
be contained in the set of potential plant models G∆(z) of the form

G∆(z) = G(z)
[
1 + WG(z)∆(z)

]
, ∆(z) ∈ ∆ , (2a)

where G(z) corresponds to the nominal model, the uncertainty set ∆ is given by

∆ = {∆(z) is a stable system with ‖∆(z)‖∞ ≤ 1} , (2b)

and stable transfer function WG(z) determines the “size” of the uncertainty. All potential plant
models G∆(z) are stable, since G(z), WG(z) and ∆(z) are assumed to be stable.

Input signal w(k) is periodic and the nominal value of the input period is denoted by Tp [s],
where fp = 1/Tp [Hz] indicates the corresponding fundamental frequency and ωp = 2πfp [rad/s].
Index l labels the harmonics of the periodic input, where 0 ≤ l ≤ Tpfs/2 is assumed without loss
of generality. The set of harmonics l that are present in w(k) and should be tracked by the plant
output, is denoted by L, and nL equals the number of elements in L. To each harmonic l ∈ L,
a positive weight Wl is attributed, quantifying its relative importance in w(k). As discussed in
Section 3.1, Wl preferably corresponds to the amplitude of the lth Fourier coefficient of w(k),
multiplied by

√
2 if lfp doesn’t coincide with 0 Hz or fs/2.

The design methodology allows accounting for period-time uncertainty, which is modeled as
relative (multiplicative) uncertainty on ωp, bounded by δ. Hence, all potential values ωp,δ of the
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fundamental frequency are given by

ωp,δ = ωp(1 + δ) , |δ| ≤ δ , (3)

while

Ωl = [lωp(1 − δ) , lωp(1 + δ)] (4)

equals the corresponding uncertainty interval on the l’th harmonic frequency. According to ωp,δ:
fp,δ = ωp,δ/(2π) and Tp,δ = 1/fp,δ.

2.2 Current Feedforward Controller Designs

To obtain perfect tracking, KFF(z) should invert the plant G(z). The system G(z) can be de-
composed into the invertible part G−(z), which has zero relative degree and comprises the
poles and minimum-phase zeros of G(z), and the noninvertible part G+(z), which comprises the
nonminimum-phase zeros z+,i of G(z) and a delay equal to the relative degree d of G(z):

G(z) = G−(z) z−d
∏

i

(1 − z−1z+,i)

︸ ︷︷ ︸
G+(z)

.

While the inversion of G−(z) is stable and causal, the stable implementation of G+(z)−1 is
noncausal (Devasia et al. 1996, Hunt et al. 1996): inverting z−d is noncausal, and in addition,
each nonminimum-phase zero yields the following noncausal contribution to G+(z)−1:

(1 − z−1z+,i)
−1 = −

−1∑

m=−∞

(
z−1
+,i z

)−m
.

All feedforward controllers considered in this paper have the following decomposition:

KFF(z) = G−(z)−1 K̃FF(z) , (5)

where K̃FF(z) a FIR filter. Substituting decomposition (5) in relation (1) yields:

H(z) = 1 − G+(z)K̃FF(z) . (6)

The feedforward controller design proposed by Gross et al. (1994), here labeled by the subscript
(·)1, does not exploit the periodicity of w(k). To obtain an approximate inversion of G+(z), Gross

et al. (1994) compute K̃FF1(z) by cutting off the noncausal impulse response of G+(z)−1 at a

certain (arbitrary) length M1. Hence, K̃FF1(z) is a noncausal FIR filter:

K̃FF1(z) =
−1∑

m=−M1

kFF1,m z−m , (7)

where kFF1,m equal the samples of the impulse response of G+(z)−1. Since low-frequency
nonminimum-phase zeros invoke high M1 values to achieve acceptable performance (Gross et al.
1994), for such applications, exploiting the periodic input characteristics is generally worthwhile.

Walgama and Sternby (1995) propose a specialized feedforward controller design for periodic
inputs, and their design is labeled here by the subscript (·)2. Walgama and Sternby (1995) design
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K̃FF2(z) as a causal FIR filter of length M2, which equals 2nL minus the number of elements in
L ∩ {0, Tpfs/2}:

K̃FF2(z) =

M2−1∑

m=0

kFF2,m z−m , (8)

and the FIR parameters kFF2,m are computed such that KFF2(z) yields a zero steady-state
tracking error v(k) for the nominal period Tp. Hence, the FIR parameters are computed as the
solution of the following set of M2 constraints, all linear in kFF2,m:

H(lωp) = 1 − G+(lωp)K̃FF2(lωp) = 0 , ∀l ∈ L . (9)

The corresponding FIR filter K̃FF2(z) is unique, and exists provided that G+(z) has no zeros
coinciding with harmonics in L. Since the design equations (9) rely on the nominal plant model
G(z) and the nominal value ωp of the input’s fundamental frequency, the design approach of
Walgama and Sternby (1995) cannot cope with uncertainty on these data. This disadvantage is
overcome by the proposed design methodology, which is detailed in the following section.

3 Optimal Feedforward Control

The developed feedforward design methodology parameterizes K̃FF(z) as a causal FIR filter of
(arbitrary) length M :

K̃FF(z) =
M−1∑

m=0

kFF,m z−m , (10)

and the FIR filter coefficients kFF,m are computed to minimize the worst-case steady-state track-
ing error v(k). In Section 3.1, only uncertainty on the input period (3) is considered, while
Section 3.2 renders the design additionally robust for plant uncertainty (2).

3.1 Optimal Design

The steady-state tracking error is quantified in terms of its root-mean-square (rms) value, and
if the weights Wl equal the amplitude of lth Fourier coefficient of w(k) multiplied by

√
2 for

l /∈ {0, Tpfs/2}, application of Parseval’s theorem (Oppenheim and Schafer 1999) yields:

rms(vδ) =

√∑

l∈L

(
Wl|H(lωp,δ)|

)2
.

To guarantee good tracking for all potential values ωp,δ, (3), of the fundamental frequency, the
FIR parameters kFF,m are computed to minimize the following upper bound γp on the worst-case
steady-state rms value of v(k):

max
|δ|<δ

{rms(vδ)} ≤
√∑

l∈L

(
Wl max

ω∈Ωl

{
|H(ω)|

})2
= γp ,
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which translates into the following optimization problem:

minimize
kFF,m,γp,Vl

γp (11a)

subject to

√∑

l∈L

V 2
l ≤ γp (11b)

Wl|H(ω)| ≤ Vl , ∀ω ∈ Ωl , ∀l ∈ L . (11c)

Constraints (11c) are not computationally tractable as they require evaluation on an infinite
number of frequencies. Two approaches exist to render these equations tractable: (i) they can be
converted into linear matrix inequalities (LMIs) by application of the generalized KYP lemma
(Iwasaki and Hara 2005, Scherer 2006); or (ii) they can be transformed into sets of second-order
cone constraints by application of gridding, that is: in each interval Ωl (4), a finite instead of
infinite number of frequencies is considered. The latter strategie is adopted here, as this is the
only one that can be extended to account for plant uncertainty, as is discussed in the following
section.

Optimal design problem (11) reproduces the feedforward controller design of Walgama and
Sternby (1995) if the FIR length M , (10), is set equal to their value M2, and no uncertainty on
the input period is considered: δ = 0.

3.2 Optimal Robust Design for Plant Uncertainty

This section renders optimization problem (11) robust for multiplicative unstructured plant un-
certainty. Instead of accounting for the nominal plant G(z) only, a robust feedforward controller
performs well for all potential plant models G∆(z) of the form (2). The corresponding set of
potential closed-loop systems H∆(z) is given by

H∆(z) = 1 − KFF(z)G∆(z) , ∆(z) ∈ ∆ ,

= 1 − K̃FF(z)G+(z)
[
1 + WG(z)∆(z)

]
, ∆(z) ∈ ∆ ,

where ∆ is given by (2b). To obtain good tracking of w(k) for all potential fundamental fre-
quencies fp,δ and all potential plant models G∆(z), for each harmonic l ∈ L, constraint (11c) is
replaced by

Wl|H∆(ω)|wc ≤ Vl,wc , ∀ω ∈ Ωl , (12a)

where

|H∆(ω)|wc = max
|∆(ω)|≤1

{
|H∆(ω)|

}
, (12b)

= max
|∆(ω)|≤1

{∣∣1 − K̃FF(ω)G+(ω) − K̃FF(ω)G+(ω)WG(ω)∆(ω)
∣∣
}

. (12c)

The complex scalar ∆(ω) that maximizes the right-hand side, has modulus |∆(ω)| = 1 and its

phase aligns [K̃FF(ω)G+(ω)WG(ω)∆(ω)] opposite to [1 − K̃FF(ω)G+(ω)]. This way,

|H∆(ω)|wc = |1 − K̃FF(ω)G+(ω)| + |K̃FF(ω)G+(ω)WG(ω)| , (12d)
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and the robust counterpart of (11) amounts to

minimize
kFF,m,γp,Vl,wc

γp (13a)

subject to

√∑

l∈L

V 2
l,wc ≤ γp (13b)

Wl|H∆(ω)|wc ≤ Vl,wc , ∀ω ∈ Ωl , ∀l ∈ L . (13c)

After substituting relation (10) in Equation (12d), constraints (13c) correspond to convex semi-
infinite constraints in the design parameters kFF,m. As these constraints are not quadratic, they
cannot be converted into LMIs by application of the generalized KYP lemma, and hence, gridding
is required to render (13) numerically tractable.

The most general way to analyze robust performance, that is: to compute |H∆(ω)|wc, relies on
the structured singular value (Packard and Doyle 1993). The control configuration of Figure 1
is chosen here, as for this case the structured singular value analysis yields an analytical expres-
sion (12d) with an intuitive derivation (12). The reader is referred to e.g. Giusto and Paganini
(1999) for more details on the general derivation of |H∆(ω)|wc using the structured singular
value. It translates (13c) into convex semi-infinite constraints, which require gridding to become
numerically tractable.

4 Numerical Results

This section illustrates the potential of the developed feedforward design methodology by numer-
ical results. Section 4.1 presents the simulation example. In Section 4.2, optimal design problem
(11) is considered and the solution is compared to the design methodologies of Gross et al. (1994)
and Walgama and Sternby (1995). Subsequently, Section 4.3 discusses the robust feedforward
controller design for unstructured plant uncertainty.

4.1 Simulation Example

The simulation is executed at fs = 1 kHz, and reference input w(k) corresponds to the periodic
extension of the signal shown in Figure 2(a). The nominal period Tp = 0.05 s comprises N = 50
sample periods, and yields fp = 20 Hz. However, the period is determined by an external
process and may deviate from its nominal value with one sample period, invoking δ = 2%.
Figure 2(b) shows the weights Wl used in the feedforward design, which correspond to the
amplitude spectrum of w(k) divided by its rms value. The set L of harmonics in w(k) comprises
0 Hz and all odd harmonics up to fs/2, yielding nL = 14.

As specializing a feedforward controller design for periodic inputs is most relevant for
nonminimum-phase systems, the noninvertible part G+(z) of the plant is chosen here to com-
prise a nonminimum-phase zero z+ = 1.05 and one sample delay, corresponding to G(z) having
relative degree d = 1:

G+(z) =
−20z + 21

z2
.

Figure 3(a) shows the FRF of this system. In Section 4.3, multiplicative unstructured uncertainty
on G(z) is considered, yielding a set of potential plant models G∆(z) of the form (2), where
|WG(ω)| is shown in Figure 3(b).

The lengths of the FIR filters K̃FF (z) are bounded such that the transient response of H(z)
is restricted to one period. This yields M1 = 50 for the design (7) of Gross et al. (1994), while
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Figure 2. (a) Periodic input signal w(k); and (b) the corresponding weights Wl for the harmonics l, used in the optimal
feedforward controller design.

M = 48 in the optimal design (10). In the feedforward controller design (8) of Walgama and
Sternby (1995) the FIR filter length is reduced to M2 = 26, since otherwise the set of equations
(9) is underdetermined.

4.2 Optimal Design

The purpose of this section is to illustrate the advantage of the developed design methodology
compared to the current feedforward designs of Gross et al. (1994) and Walgama and Sternby
(1995). Hereby, the δ = 2% uncertainty on the input’s fundamental frequency is accounted for,
whereas plant uncertainty ∆ is currently not considered.

The feedforward controller KFF1(z) is designed according to Gross et al. (1994) and as ex-
plained in Section 2.2 it does not exploit any knowledge on the input signal. The controller
designed according to Walgama and Sternby (1995) is indicated by KFF2(z) and it exploits the
knowledge on the nominal fundamental frequency fp and the set of harmonics L. The optimal
controller is indicated by KFF3(z) and designed according to Section 3.1. That is, its FIR pa-
rameters kFF3,m are computed by solving (11), hereby accounting for L, the weights Wl shown
in Figure 2(b), the nominal frequency fp and its relative uncertainty δ. Each of the constraints
(11c) is gridded with a frequency resolution of 0.02 Hz, and SDPT3 (Tütüncü et al. 2003) re-
quires 1.3 CPU seconds (Intelr CoreTM2 Duo T9300, 2.5 GHz, 3.5 GB of RAM) to solve the
corresponding second-order cone program (SOCP).

Figure 4 compares the FRFs of the overall systems H(z) corresponding to the three feedfor-
ward controllers, where the shaded bands indicate the uncertainty intervals Ωl (4) around the
harmonics l ∈ L. The design KFF1(z) by Gross et al. (1994) does not exploit the characteristics
of periodic input w(k), and yields the same amplitude |H(ω)| for all ω. Due to cutting off the
infinite noncausal impulse response of G+(z)−1 at length M1 = 50, |H(ω)| = z−M1+1

+ = 0.092
instead of |H(ω)| = 0 is obtained (Gross et al. 1994). According to the design constraints (9),
KFF2(z) yields |H(ω)| = 0 on the nominal harmonic frequencies lωp for all l ∈ L. However,
the design of Walgama and Sternby (1995) only controls |H(ω)| at these frequencies, while in
between the harmonics |H(ω)| may become large, as is the case for the considered simulation
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Figure 3. (a) FRF of noninvertible part G+(z) of the plant G(z); and (b) weight |WG(ω)| of the multiplicative unstructured
plant uncertainty.
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Figure 4. Amplitude FRF of the overall transfer function H(z) achieved by the feedforward controllers KFF1(z) (Gross
et al. 1994), KFF2(z) (Walgama and Sternby 1995), and KFF3(z) (optimal design).
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Figure 5. Reduction of the harmonics l, achieved by the feedforward controllers KFF1(z) (Gross et al. 1994), KFF2(z)
(Walgama and Sternby 1995), and KFF3(z) (optimal design): Vl/Wl = maxω∈Ωl
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Figure 6. Overall rms reduction of the considered input w(k) achieved by the feedforward controllers KFF1(z) (Gross et al.
1994), KFF2(z) (Walgama and Sternby 1995), and KFF3(z) (optimal design), as a function of fp,δ.

example. Optimal controller KFF3(z) accounts for the δ = 2% uncertainty on fp, and contrary
to KFF2(z), it reduces |H(ω)| as much as possible over the shaded uncertainty intervals, instead
of on the nominal harmonic frequencies solely.

To evaluate the periodic performance achieved by the three controllers, Figure 5 compares
the worst-case overall reduction of each harmonic l ∈ L, over all potential values ωp,δ (3) of the
fundamental frequency:

Vl/Wl = max
ω∈Ωl

{|H(ω)|} .

Hence, Figure 5 is constructed from Figure 4 by computing the maximum of |H(ω)| over each of
the uncertainty intervals. Although for δ = 0%, KFF2(z) yields perfect rejection of all harmonics
l ∈ L, its periodic performance is very sensitive to uncertainty on the fundamental frequency:
for δ = 2%, all harmonics except l = 0 and l = 1 are amplified instead of attenuated. On the
other hand, KFF3(z) attenuates all harmonics l ∈ L for all ωp,δ, but this controller no longer
yields perfect periodic performance for δ = 0%. That is: KFF3(z) does not yield H(lωp) = 0,
∀l ∈ L, as is clear from Figure 4.

Figure 6 evaluates the overall performance of the controllers for the particular reference input
w(k) of Figure 2, by showing rms(vδ)/rms(w) as a function of fp,δ. Implied by the independence
of |H(ω)| from ω, the overall performance of KFF1(z) is independent of fp,δ. Since the zero’th and
first harmonic are dominant in w(k), see Figure 2(b), KFF2(z) still yields an overall reduction
of wp(k) for all possible fundamental frequencies fp,δ. Compared to KFF2(z), the performance
of KFF3(z) for w(k) is significantly less sensitive to δ, where the price for this improved robust
performance is moderate: instead of yielding rms(vδ) = 0 for δ = 0, 0.4% of rms(w) remains.
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Figure 7. Evaluation of feedforward controllers KFF3(z) (optimal design) and KFF4(z) (optimal robust design): (a) am-

plitude FRF of K̃FF(z); and (b) amplitude FRF of the overall transfer function H∆(z), where the thin and thick line
respectively indicate the nominal amplitude |H(ω)| and worst-case amplitude |H∆(ω)|wc.

4.3 Optimal Robust Design for Plant Uncertainty

This section illustrates the necessity of a robust controller design in the presence of plant un-
certainty ∆. To this end, optimal design KFF3(z) is compared to KFF4(z), which is designed
according to Section 3.2. The SOCP obtained by gridding design problem (13) (0.02 Hz frequency
resolution) is solved with SDPT3 (Tütüncü et al. 2003) in 2.9 CPU seconds (Intelr CoreTM2
Duo T9300, 2.5 GHz, 3.5 GB of RAM).

Figure 7(a) compares the amplitude FRFs of K̃FF3(z) and K̃FF4(z), while |G+(ω)−1|, corre-
sponding to the noncausal ideal feedforward controller, is added to facilitate the interpretation
of the results. Figure 7(b) compares the FRFs of the corresponding overall systems H∆(z): the
thin lines indicate the nominal amplitude |H(ω)|, (6), while the thick lines correspond to the
worst-case amplitude |H(ω)|wc, (12d). For KFF3(z), the thin curve corresponds to the result
shown in Figure 4.

Figure 8(a) evaluates the periodic performance achieved by the feedforward controllers for the
nominal plant model, showing

Vl/Wl = max
ω∈Ωl

{|H(ω)|} ,
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Figure 8. Reduction of the harmonics l, achieved by the feedforward controllers KFF3(z) (optimal design) and KFF4(z)
(optimal robust design): (a) Vl/Wl = maxω∈Ωl

{|H(ω)|}; and (b) Vl,wc/Wl = maxω∈Ωl
{|H∆(ω)|wc}.
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Figure 9. Overall rms reduction of the considered input w(k) achieved by the feedforward controllers KFF3(z) (optimal
design) and KFF3(z) (optimal robust design) as a function of fp,δ: the thin and thick lines respectively correspond to the
nominal and worst-case plant.

whereas Figure 8(b) evaluates their periodic performance for the worst-case plant:

Vl,wc/Wl = max
ω∈Ωl

{|H∆(ω)|wc} .

Hence, Figures 8(a) and 8(b) are constructed from Figure 7(b) by computing the maximum of,
respectively, the thin and thick curve over each of the gray-shaded uncertainty intervals.

Figure 7(b) reveals that KFF3(z) is very sensitive to plant uncertainty: at high frequencies
where plant uncertainty is prominent, see Figure 3(b), |H∆(ω)|wc deviates significantly from
|H(ω)|, both around and in between the harmonics. For l ≥ 13 (260 Hz), |H∆(ω)|wc > 1 in the
gray-shaded uncertainty intervals, and hence, the periodic performance achieved by KFF3(z) for
the worst-case plant is poor. This is clarified by Figure 8: at the higher harmonics, Vl,wc is about
30 dB higher than the nominal value Vl.

Robust controller KFF4(z) is designed to yield good periodic performance for all potential
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plants G∆(z). Comparison of Equations (6) and (12d) reveals that the difference between
|H(ω)| and |H∆(ω)|wc can only be reduced by restricting the control action, that is: by reducing

|K̃FF(ω)|. This is confirmed by Figure 7(a), which shows that at high frequencies, |K̃FF(ω)| is
significantly lower for KFF4(z) than for KFF3(z), particularly around the input harmonics. As

revealed by (6) and Figure 7(b), the reduced gain |K̃FF(ω)| ≈ 0 translates into |H(ω)| ≈ 1. Due
to this property, at the higher harmonics, the periodic performance of KFF4(z) for the nominal
plant is worse compared to KFF3(z), see Figure 8(a). However, KFF4(z) yields significantly better
periodic performance for the worst-case plant, as is clear from Figure 8(b).

Figure 9 evaluates the overall performance of the two feedforward controllers for the particular
reference trajectory w(k) of Figure 2, by showing rms(vδ,∆)/rms(w) as a function of fp,δ. The thin
and thick lines respectively correspond to the nominal and worst-case plant. While for nominal
plant G(z), the overall performance of KFF4(z) is only slightly larger compared to KFF3(z), its
worst-case performance is significantly better.

5 Conclusion

This paper presents an optimal design methodology for discrete-time SISO LTI feedforward
controllers in the presence of periodic reference/disturbance inputs. The feedforward controller
is parameterized as a FIR filter, and its parameters are computed to minimize the worst-case
steady-state tracking error in the presence of uncertainty on the input period and the plant
model.

For systems with a low-frequency nonminimum-phase zero, exploiting the periodic input char-
acteristics in the feedforward controller design is shown to be worthwhile: for the elaborated
simulation example, the presented design methodology outperforms one of the more advanced
approximate inversion techniques. In addition, the numerical results demonstrate that in the
presence of uncertainty on the input period and/or the plant model, a robust feedforward con-
troller design is indispensable. The explicit incorporation of period-time and plant uncertainty
proposed in this paper is innovative with respect to the current literature.
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