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Abstract. Motivated by an analogy with matrix decomposition, we introduce
the novel problem of relational decomposition. In matrix decomposition one is
given a matrix and has to decompose it as a product of other matrices. In rela-
tional decomposition, one is given a relation r and one has to decompose it as
a conjunctive query of a particular form q :– q1 ∧ ... ∧ qn. Furthermore, the de-
composition has to satisfy certain constraints (e.g. that r ≈ q holds). Relational
decomposition is thus the inverse problem of querying as one is given the result
of the query and has to compute the relations constituting the query itself.
We show that relational decomposition generalizes several well-studied problems
in data mining such as tiling, boolean matrix factorization, and discriminative pat-
tern set mining. Furthermore, we provide an initial strategy for solving relational
decomposition problems that is based on answer set programming. The result-
ing problem formalizations and corresponding solvers fit within the declarative
modelling paradigm for data mining.

1 Introduction

Decomposing matrices is one of the most popular techniques in machine learning and
data mining and many variants have been studied, e.g. non-negative, singular value and
boolean matrix decomposition. The latter problem is illustrated in Figure 1. Given a
boolean n×m matrix A, the problem is to write it as the product of a n× k matrix B
and k×m matrix C, such that Ai,j =

∑
k Bi,k ·Ck,j in the boolean algebra (in which

1 + 1 = 1). The columns of B and rows of C can be interpreted as patterns; cf. [1].
Depending on k, exact decompositions may not be possible, and one then resorts to an
approximation, that is, one searches for a B ·C that is close to A. Usually k << n,m
so that the original matrix is compressed. Various uses exist for the resulting patterns.

This paper investigates this type of decomposition1 using a relational algebra rather
than a matrix algebra. It basically replaces the matrices by relations and the products by
a conjunction or join; this is illustrated in Figure 2. The problem of relational decom-
position can be formalized as follows.

Definition 1. Let r be a relation with its extension, and let q :– q1, ..., qn be a query2

such that q and r share the same variables. Then, the problem is to find the extensions
of the relations qi such that r ≈ q.

1 We synonymously use the word “factorization”
2 In relational algebra, the query q is the projection on the attributes of r of the join of the qi.



Fig. 1: Classic boolean matrix factorization
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Fig. 2: Relational decomposition of a relation about cars

State Age Fuel Type
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In many cases, further constraints on the problem will be given as well as a way to
measure how close r and q are. The problem is thus a constrained optimization prob-
lem. Observe that the example in Figure 2 cannot be cast as a traditional matrix decom-
position problem due to the symbolic nature of the values in the table. So, relational
decomposition goes beyond matrix decomposition.

In this paper we mainly focus on the data mining tasks that we generalize, but
there is also important related work in, e.g., inductive logic programming and statis-
tical relational learning. For example, ‘block models’ are a relatively old application
of matrix factorization for relations. ‘Stochastic block models’ build upon this by at-
taching a probabilistic model to the factorization [2]. Well-known recent examples
are [3] and [4]. [5] recently described the use of Boolean Matrix Factorization for multi-
relational learning and multi-label classification.

In the remainder of this paper, we will demonstrate that 1) relational decomposi-
tion provides a general framework that allows for abstraction of several well-studied
problems in the data mining literature, such as boolean matrix factorization, tiling, and
discriminative pattern set mining, and 2) a simple solver for some relational decompo-
sition tasks using answer set programming (ASP) can be developed.

2 An example: tiling

Data mining has contributed numerous techniques for finding patterns in (boolean) ma-
trices. One fundamental approach is that of tiling [6]. A tile is basically a rectangular
area in a boolean matrix for which all values are 1, specified by a subset of rows and
a subset of columns (or transactions and items). One is typically not interested in any
tile, but in maximal tiles, i.e. tiles that cannot be extended. For instance, in matrix A
in Figure 1, the tile defined by rows {1,2} and columns {1,2} is a maximal tile. Tiles
characterize high density regions of interest and rather than searching for a single tile,
one typically searches for a (small) set of tiles that together cover as much of the 1’s in
the matrix as possible. A second tile would be ({1,3},{1,3}), and together the two tiles
cover all 1’s in the matrix.



Listing 1.1: Greedy tile formalization in answer set programming

1 %guess an extension of the code / at most one value per Attribute
2 0 { code(guess, Value, Attribute) : valid(Attribute, Value) } 1 :− col(Attribute).
3 %definition of over-coverage to encode the first constraint
4 over covered(guess,T) :− not db(Value, Attribute, T), code(guess, Value, Attribute), transaction(T).
5 %check if the code intersects with the other codes to encode the second constraint
6 intersect(T) :− guess != Index, code(guess, Value, Attribute), code(Index, Value, Attribute), in(Index,T).
7 %check if a code can be applied
8 in(guess,Transct) :− transaction(Transct), not over covered(guess, Transct), not intersect(Transct).
9 covered(Transct, Attribute) :− in(Index,Transct), code(Index, Value, Attribute).

10 #maximize[covered(Transct, Attribute)].

Let us now formalize tiling as a relational decomposition problem; we will then
solve it using answer set programming. In doing so, we consider the full relational case,
rather than restricting ourselves to boolean values as is traditionally done.

Given a relation db(Value,Attribute,Transct) (denoting that Transct has Value for
Attribute), the task is to find a set of codes (combinations of attribute-values) that can be
applied to the transactions to “summarize” the dataset db. Simply speaking, a coding
set is a sequence of attribute-value pairs

c1 = {code(c1, a, 1),code(c1, b, 2),code(c1, c, 3)},

where the first argument of each code is the index of the code, the second is the value
of this attribute, and the third argument is the index of an attribute. When code C is
applied to a transaction T (i.e. it occurs in the transaction), this is denoted by in(C, T ).

Tiling now corresponds to finding an approximation adb(Value,Attribute,Transct)
for db(Value,Attribute,Transct) by establishing a set of facts over code and in under
the following constraints and query:

adb(Value,Attribute,Transct) :– code(Index,Value,Attribute),in(Index,Transct)

with the following clausal constraints
code(Index,Value,Attribute),in(Index,Transct)→ db(Value,Attribute,Transct)

in(I1, T ),in(I2, T ),code(I1, L, C1),code(I2, L, C2)→ C1 6= C2 (1)

The first constraint states that codes cover part of the database, the second one that two
codes cannot occur in the same transaction if they contain the same attribute (i.e. tiles
are not allowed to overlap). To find a maximal tiling, we need a notion of coverage.

covered(Transct,Attribute) :– in(Index,Transct),code(Index,Value,Attribute).

A tiling is maximal iff it maximizes the number of covered attribute-transaction pairs.
The problem sketched above can be encoded in answer set programming as indi-

cated in Listing 1.1. The code mimics a greedy algorithm for the maximal tiling prob-
lem with a fixed number of tiles k. It assumes we have already found an optimal tiling
for n− 1 tiles, and indicates how to find the n-th tile to cover the largest area. The n-th
tile is called guess in the listing. Furthermore, we have information about the names of
the attributes and the possible values for a particular attribute (through the predicates
attr(Attribute) and valid(Attribute,Value)).



3 Generality of the framework

As mentioned, relational decomposition generalizes numerous data mining tasks. Key
advantages of answer set programming are 1) the flexibility and 2) compactness of the
problem formalizations. Indeed, using ASP it is very easy to specify several tasks, many
of which have been studied in the literature; this is very much in the spirit of the declar-
ative constraint programming paradigm [7]. We illustrate this with a few examples.

Overlapping Tiling Tiles in a tiling are usually not allowed to overlap; looking for over-
lapping tilings is generally a very hard problem. However, changing the assumption in
our ASP implementation is straightforward. It involves replacing constraint 1 by e.g.

#{in(I1, T ),in(I2, T ),code(I1, V, A1),code(I2, V, A2), A1 = A2} ≤ N, (2)

which corresponds to assuming that in one transaction two codes can intersect only on
N attributes. This can be encoded in ASP as indicated in Listing 1.2 (see Appendix).

Boolean Matrix Factorization It is well-known that tiling and boolean matrix factor-
ization are closely related [8]. So, let us briefly show how BMF can be realized in our
framework. It corresponds to the variant of the tiling problems where only binary values
(true and false) are possible and a fixed number of codes k. It is straightforward to real-
ize this by deleting all arguments in Listing 1.1 corresponding to Values and retaining
only the transactions in db(Value,Attribute,Transct) with value true, that is, encoding
only the true facts for db(T,I). (See Listing 1.3 in the Appendix.)

Discriminative Pattern Set Mining A common supervised data mining task is that of
discriminative pattern set mining [9]. Let db(Value,Attribute,Transct) be a categorical
dataset, positive(T) (negative(T)) be the positive (negative) transactions, k be the num-
ber of codes. Then, the task is to find extensions of the relations code(Index,Value,Attribute)
and in(Index,Transct) such that positive and negative transactions are discriminated.
We can achieve this by maximizing the difference between the number of covered pos-
itive and negative transactions. (See Listing 1.4 in the Appendix.)

MDL-based pattern sets KRIMP [10] is a variation on tiling that derives a so-called code
table to encode the data. It is based on the MDL principle and aims to identify a set of
tiles (itemsets) that together compress the data well. It can be realized by replacing the
optimization objective: the total compressed size of the data given the tiles should be
minimized. (We do not present the formulation because of lack of space.)

4 Experiments

We evaluate the ASP problem formulations on a 64-bit Ubuntu machine with Intel Core
i5-3570 CPU @ 3.40GHz x 4 and 8GB memory (except when indicated). The ASP
engine is 64-bit clingo version 3.0.5. The experiments have been carried out on the
following datasets: Congressional Voting Records, Solar Flare, Tic-Tac-Toe Endgame,
Nursery, Mushrooms, Chess (King-Rook vs. King-Pawn) from [11] and the Animals
with Attributes dataset from [12]. We present results obtained after performing a meta-
experiment to determine the best parameters for the ASP solver.



Fig. 3: Greedy tiling – time
Number of tiles

Dataset 5 10 15 20 25
Animals 36s 64s 81s 92s 96s
Solar flare 6s 10s 13s 16s 18s
Tic-tac-toe 22s 31s 33s 34s 35s
Nursery 4m19s 6m32s 7m32s 7m56s 8m13s
Voting 52s 88s 102s 106s 109s
Chess 17h 22h - - -
Mushrooms 13h 19h - - -

Fig. 4: Greedy tiling – coverage
Number of tiles

Dataset 1 5 10 15 20 25
Animals 0.118 0.327 0.472 0.573 0.649 0.709
Solar flare 0.230 0.416 0.565 0.655 0.721 0.751
Tic-tac-toe 0.076 0.251 0.449 0.623 0.784 0.907
Nursery 0.074 0.269 0.454 0.634 0.773 0.905
Voting 0.134 0.399 0.553 0.662 0.749 0.810
Chess 0.254 0.483 0.618 - - -
Mushroom 0.168 0.476 0.586 - - -

Fig. 5: Overlapping tiling – time (s)
Number of tiles

Dataset Overlap 5 10 15 20 25
Animals 1 70 158 226 264 287

2 99 250 386 460 496
Solar flare 1 8 13 17 21 24

2 8 15 20 25 29
Tic-tac-toe 1 24 41 49 52 53

2 23 43 51 55 56
Nursery 1 300 519 610 648 672

2 343 572 669 710 734
Voting 1 70 139 173 188 195

2 99 214 275 309 333

Fig. 6: Overlapping tiling – coverage
Number of tiles

Dataset Overlap 1 5 10 15 20 25
Animals 1 0.117 0.327 0.475 0.583 0.663 0.722

2 0.117 0.332 0.482 0.592 0.675 0.742
Solar flare 1 0.230 0.433 0.595 0.684 0.734 0.756

2 0.230 0.452 0.602 0.685 0.731 0.755
Tic-tac-toe 1 0.076 0.253 0.451 0.626 0.781 0.898

2 0.076 0.253 0.451 0.626 0.781 0.898
Nursery 1 0.074 0.268 0.454 0.633 0.772 0.905

2 0.074 0.268 0.454 0.633 0.772 0.905
Voting 1 0.134 0.403 0.558 0.675 0.765 0.828

2 0.134 0.409 0.571 0.683 0.762 0.819

Greedy tiling Figures 3 and 4 present timing and coverage results obtained on all
datasets. Due to high memory requirements of the ASP system experiments on the
Chess and Mushroom have been performed on a 64-bit Ubuntu machine with 24 Intel
Xeon CPU and 128GB of memory (but all experiments were run single-threaded).

In all cases the problem formalisation given in Listing 1.1 was used to mine 25 tiles.
Since the problem becomes over-constrained as the number of tiles increases, running
time and coverage changes for each new tile. We therefore report total running times
and coverage for different total numbers of tiles. For Chess and Mushrooms only results
on the first 10 tiles were computed due to long runtimes.

Overlapping tiling We apply the problem formalisation in Listing 1.2 (see Appendix)
to five datasets, with two levels of overlap: tiles can intersect on at most one or two
attribute(s). As the results in Figures 5 and 6 show, this can give a small increase in
coverage, but runtimes increase due to the costly aggregate operation in Line 1.

Boolean Matrix Factorization We applied the formalisation of Listing 1.3 to the An-
imals dataset and measured coverage gain and required time per iteration, where the

Fig. 7: BMF on the Animals dataset
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Fig. 8: Discriminative pattern set mining
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decomposition rank k was incremented by one in each iteration. The results, summa-
rized in Figure 7, show coverages similar to those obtained in [8]. However, running
times are several times higher, which can be explained by the usage of a general solver.
Discriminative Pattern Set Mining Experiment Here we demonstrate the feasibility of
our approach to discriminative k-pattern mining. Among the datasets we consider, there
are two that can be directly used for discriminative pattern mining: Chess and Tic-tac-
toe, each of which has two classes “won” and “no-win”. We apply Listing 1.4 to both
datasets and summarize the results in Figure 8. The experiments show that five patterns
are enough to cover all positive examples in case of Tic-tac-toe; mining more than 5
patterns is useless. It is interesting to observe the running time for the Chess dataset.
It seems that the problem gets significantly easier, from a computational point of view,
once the initial tile is chosen, which confirms our intuition that the search space shrinks
when the problem becomes more constrained (the number of answer sets and hence the
“search space” becomes smaller with the addition of more constraints).

5 Conclusions and future work

We introduced the problem of relational decomposition, a form of inverse querying.
From an inductive logic programming perspective, it could be related to predicate in-
vention and a form of constrained abduction. From a data mining perspective, it pro-
vides a general, declarative framework for specifying a multitude of different pattern set
mining problems. In the future we intend to further explore what tasks can be expressed
within this framework, and to improve the expressibility and efficiency of the solver.

We have shown that – despite its simplicity – the preliminary ASP implementation
can already solve reasonable decomposition problems, but complete decomposition of
larger datasets like Chess and Mushrooms is currently out of reach. Nevertheless, we be-
lieve that the experiments provide evidence for the potential of the proposed approach.
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A Appendix

Listing 1.2: Overlapping tiling

1 intersect N(T,Attr) :− guess != Indx, code(guess, V, Attr), code(Indx, V, Attr), in(Indx,T).
2 intersect(T) :− overlap level #count{ intersect N(T,Indx) : col(Indx) }, transaction(T).

Listing 1.3: Boolean Matrix Factorization

1 0 { code(guess,I) } 1 :− item(I).
2 over cover(guess, T) :− not db(T,I), code(guess,I), transaction(T).
3 in(guess,T) :− not over cover(guess,T), transaction(T).
4 covered(T,I) :− code(guess,I), in(guess,T), db(T,I).
5 #maximize[covered(T,I)].

Listing 1.4: Discriminative k-pattern set mining

1 in(guess,T) :− transaction(T), not over covered(guess, T).
2 covered plus(T) :− in(Indx,T), code(Indx, Value, Attribute), positive(T).
3 covered minus(T) :− in(Indx,T), code(Indx, Value, Attribute), negative(T).
4 #maximize[covered plus(T) = 1, covered minus(T) = −1].
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