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Abstract
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over capT (D) over cap has the lowest condition number over
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trices. Here, we will construct the optimal diagonal scaling of
a semiseparable matrix, based on a new inversion formula for
semiseparable matrices. Some numerical experiments are per-
formed. In a first experiment we compare the condition num-
bers of the semiseparable matrices before and after the scaling.
In a second numerical experiment we compare the scalability of
matrices coming from the reduction to semiseparable form and
matrices coming from the reduction to tridiagonal form.
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Abstract
In this paper we will adapt a known method for diagonal scaling of symmetric positive definite

tridiagonal matrices towards the semiseparable case. Based on the fact that a symmetric, positive definite
tridiagonal matrix T satisfies property A, one can easily construct a diagonal matrix D̂ such that D̂T D̂
has the lowest condition number over all matrices DT D, for any choice of diagonal matrix D. Knowing
that semiseparable matrices are the inverses of tridiagonal matrices, one can derive similar properties for
semiseparable matrices. Here, we will construct the optimal diagonal scaling of a semiseparable matrix,
based on a new inversion formula for semiseparable matrices.

Some numerical experiments are performed. In a first experiment we compare the condition numbers
of the semiseparable matrices before and after the scaling. In a second numerical experiment we compare
the scalability of matrices coming from the reduction to semiseparable form and matrices coming from
the reduction to tridiagonal form.
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matrices

AMS Classification: 65F35, 15A12

1 Introduction
The matrices we consider in this paper are symmetric and positive definite. A symmetric matrix A is said
to have property A when there exists a permutation P, such that PAPT is of the following form:

Â = PAPT =

(
D1 F
FT D2

)
, (1)

where F is an arbitrary matrix and D1 and D2 are diagonal matrices. As the matrix is symmetric and
positive definite the elements of D1 and D2 are positive. These matrices are known to be scaled best if the
diagonal matrices D1 and D2 are equal to the identity matrix (see [2, 1, 5]). This can be achieved rather
easily by applying a diagonal scaling of the matrix. Defining the scaling matrix D̂ as

D̂ =

( 1√
(D1)i,i

1√
(D2)i,i

)
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gives us the desired solution. In this paper we will use this result for tridiagonal matrices to derive the best
diagonal scaling for semiseparable matrices. A tridiagonal matrix satisfies property A. For the permutation
PT one uses a reshuffling of the columns, thereby first placing the even columns ([2,4, . . .]) and after the
even, the odd columns ([1,3,5, . . .]). Applying the same reshuffling technique P for the rows, one gets a
matrix PT PT of the desired form.

The optimal scaling matrix D̂ for semiseparable matrices is calculated by using an order O(n) inversion
formula for semiseparable matrices. The most early paper related to the inversion of semiseparable and
tridiagonal matrices is [3], in which irreducible symmetric tridiagonal matrices are inverted. The most early
papers related to the inversion of semiseparable matrices are [6, 7]. These papers focus on semiseparable
matrices arising in statistical applications. In fact inverting these matrices, as well as scaling these matrices
is a very important subject in statistics. The scaling is related to the variance in weighted least squares
regression coefficients [4] (in this paper attention is paid to the condition number of a specific semiseparable
matrix, arising in statistical applications).

The present paper is organized as follows: in Section 2, we derive the structure of the optimal diagonal
scaling matrix for semiseparable matrices. In Section 3 we give a method for computing the inverse of a
semiseparable matrix. This method can now be used for calculating the optimal scaling matrix. In Section
4 we present numerical experiments showing the impact of the scaling on the condition number and on the
accuracy when solving linear systems with semiseparable matrices as coefficient matrices.

2 The scaling technique
Using the knowledge related to matrices having property A as described in the introduction, the optimal
diagonal scaling of a tridiagonal matrix T can be obtained by choosing the diagonal D̂ in such a way that
the diagonal elements of the tridiagonal matrix D̂T D̂ are equal to one. This means that for a tridiagonal
matrix T with diagonal elements ai, our optimal scaling diagonal matrix D̂ has as diagonal elements 1/

√
ai.

This is well defined as a symmetric positive definite matrix has positive diagonal elements.
Defining the condition number κ of a matrix A as κ(A) = ‖A‖‖A−1‖ for any consistent matrix norm, we

have that κ(A) = κ(A−1). This means that for an invertible symmetric, positive definite tridiagonal matrix
T , with inverse S and optimal diagonal scaling matrix D̂ for T , we have:

κ(D̂−1SD̂−1) = κ(D̂T D̂)≤ κ(DT D) = κ(D−1SD−1),

for any matrix D. Using the inversion formula for semiseparable matrices as presented in Section 3 we can
easily calculate in O(n) flops the optimal diagonal scaling of a semiseparable matrix.

3 Inversion of semiseparable matrices
Traditional inversion methods of semiseparable matrices are based on the generator representation. This
means that the lower triangular part of a semiseparable matrix, as well as the upper triangular part are
coming from rank 1 matrices. Based on the Givens-vector representation (see [9]), we will derive here an
inversion formula for the class of semiseparable matrices representable in this way. Moreover, this class is
more general than the class of generator representable matrices (see [9]). The algorithm will be designed
for a 4×4 semiseparable matrix, as this illustrates the general case. Our semiseparable matrix S is of the
following form (see [9]):

S =


c1d1 c2s1d1 c3s2s1d1 s3s2s1d1

c2s1d1 c2d2 c3s2d2 s3s2d2
c3s2s1d1 c3s2d2 c3d3 s3d3
s3s2s1d1 s3s2d2 s3d3 d4

 .

This matrix is stored by using 3n − 2 parameters namely the ci,si and the di (d1 6= 0 as the matrix is
invertible). Note however that the ci and si represent the cosine and sine of the same angle, this means that
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essentially 2n−1 parameters are needed to represent this matrix. (More information can be found in [9]).
The inverse of the semiseparable matrix S is denoted as T :

T =


a1 b1
b1 a2 b2

b2 a3 b3
b3 a4

 .

Let us start by calculating a1 and b1. The 4 equations corresponding to the first column of the product
ST = I, namely STe1 = e1 (the elements ei represent the standard basis vectors), are:

a1(c1d1)+b1(c2s1d1) = 1, (2)

whereas, the remaining equations collapse into one singular equation: (This happens because the two first
columns of S are dependent below the first row.)

a1(s1d1)+b1d2 = 0. (3)

Rewriting equation (3) towards a1d1 we get

a1d1 =
−b1d2

s1
.

If s1 = 0 we can easily see that b1 = 0 and a1 = 1/d1, so let us assume s1 to be different from zero.(We
note that by definition of the representation the cosines are always positive. If s1 = 0 this implies c1 = 1.)
Substituting a1d1 in equation (2) and rewriting the equation towards b1 gives us

b1 =
1

c2s1d1 −d2
c1
s1

.

Note that this equation is well defined as s1 is different from zero and an easy calculation reveals that also
the denominator in the equation has to be different from zero, otherwise the semiseparable matrix would be
singular. Once we have b1 the calculation of a1 is straightforward using equation (3). We have calculated
now a1 and b1. To continue we calculate a2 and b2. We write down the equations corresponding to the
second column of ST = I, i.e. STe2 = e2, let us consider the equations on and below the diagonal. This
gives us:

eT
2 STe2 = b1(c2s1d1)+a2(c2d2)+b2(c3s2d2) = 1, (4)

while the equations eT
3 STe2 = 0 and eT

4 STe2 = 0 collapse again into one single equation:

b1(s2s1d1)+a2(s2d2)+b2d3 = 0. (5)

We will distinguish between two cases now: s2 = 0 and s2 6= 0.

• Let us assume s2 = 0. This implies directly that b2 = 0. Again we have to distinguish between two
cases to calculate a2. Assuming s1 = 0 we get a2 = 1/d2.

Assuming now s1 6= 0, we can write down equation eT
1 STe2 = 0:

b1(c1d1)+a2(c2s1d1) = 0.

Rewriting this equation towards a2 we get a2 = −b1c1/(c2s1). This means that for s2 = 0 we can
calculate a2 and b2.

• Let us assume now s2 6= 0 and f2 = b1s1d1, then we get for equations (4) and (5):{
c2 f2 +a2(c2d2)+b2(c3s2d2) = 1

s2 f2 +a2(s2d2)+b2d3 = 0. (6)
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Extracting a2d2 from the second equation of (6) gives us:

a2d2 =
−b2d3 − s2 f2

s2
,

(which is well defined as s2 6= 0) filling it in in the first equation of (6), we get:

b2 =
1

c3s2d2 −d3
c2
s2

,

which is similar to equation (3). The calculation of a2 is again a little more complicated. Two cases
can occur:

– If d2 = 0 we use the equation e1STe2 = 0 and extract a2 from this equation, this gives us:

a2 =
−b2c3s2s1 −b1c1

c2s1
.

We know that c2s1 has to be different from zero, otherwise the semiseparable matrix would
have been singular.

– If d2 6= 0 we use equation (5). Giving us

a2 =
−b2d3 − s2 f2

s2d2
,

which is well defined because both s2 and d2 are different from zero.

This last procedure can similarly be repeated for the third column, leading to the same formula’s for
calculating a3 and b3. Only the last column needs some extra attention. For the last column we consider
the equations eT

4 STe4 = 1 and eT
3 STe4 = 0:{

b3(s3d3)+a4d4 = 1
b3(c3d3)+a4(s3d3) = 0

Using these formulas we get

a4 =
1−b3s3d3

d4
,

if d4 6= 0 or else if d4 = 0

a4 =−b3c3

s3
,

because if d4 = 0, s3 has to be different from zero, otherwise the matrix would have been singular.
Even though we calculated only the inverse of a 4×4 matrix, the procedure clearly demonstrates how

to calculate inverses of larger semiseparable matrices. Moreover, inverting semiseparable matrices in this
way leads to an O(n) procedure.

4 Numerical experiments
The software used for performing these numerical experiments can be downloaded from:
http://www.cs.kuleuven.ac.be/∼marc.
The experiments were performed using Matlab 7 Release 14.1.

For the first set of experiments we generated matrices of sizes ranging from 200 to 600, thereby varying
the condition number from 108 to 1014. The table below shows the difference in condition number, with
and without the diagonal scaling.

1Matlab is a registered trademark of The Mathworks, inc.
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κ ≈ size −→ 200 300 400 500 600
108 without scaling 1.775e+08 9.197e+07 7.837e+07 7.803e+07 7.720e+07

with scaling 2.783e+06 1.515e+07 7.528e+06 1.449e+07 7.874e+06
1010 without scaling 1.319e+10 1.151e+10 1.012e+10 7.463e+09 6.387e+09

with scaling 3.069e+08 1.325e+09 4.186e+08 5.071e+08 2.344e+08
1012 without scaling 1.344e+12 1.432e+12 9.865e+11 1.065e+12 8.168e+11

with scaling 1.846e+10 7.043e+09 5.135e+10 2.337e+10 4.045e+10
1014 without scaling 1.259e+14 1.673e+14 6.909e+13 1.079e+14 6.556e+13

with scaling 2.466e+11 2.209e+12 1.942e+12 9.188e+12 6.571e+11

Table 1: Scalability of semiseparable matrices.

Recently an orthogonal similarity reduction to semiseparable form was proposed [8]. This reduction
performs 9n2 more operations than the corresponding reduction to tridiagonal form. Both reductions have
an overall cost of O(n3). These 9n2 operations create an extra convergence behavior (nested subspace iter-
ation) inside the reduction algorithm. This behavior is not present in the reduction to tridiagonal form. In a
second experiment we compared the scalability of the matrices reduced to either tridiagonal or semisepara-
ble form. Positive definite matrices of various condition numbers were generated and afterwards reduced to
semiseparable and tridiagonal form. For both forms the scalability was tested. The results show the condi-
tion numbers of the matrices after the reduction without scaling, and then after scaling was applied. In the
table with S without we denote the semiseparable matrix without scaling, with T without, the tridiagonal
without scaling, and with S with or T with, these matrices with scaling.

κ ≈ size −→ 200 300 400 500 600
108 S without 1.608e+08 6.012e+07 9.702e+07 7.306e+07 5.759e+07

S with 2.044e+00 2.156e+00 2.046e+00 2.214e+00 2.017e+00
T without 1.608e+08 6.012e+07 9.702e+07 7.306e+07 5.759e+07
T with 1.070e+06 3.940e+06 1.096e+07 4.363e+06 6.862e+06

1010 S without 1.482e+10 7.719e+09 7.892e+09 1.261e+10 7.448e+09
S with 1.893e+00 2.190e+00 1.954e+00 1.970e+00 1.890e+00
T without 1.482e+10 7.719e+09 7.892e+09 1.261e+10 7.448e+09
T with 1.397e+08 1.057e+09 8.510e+08 3.860e+08 1.984e+08

1012 S without 1.637e+12 1.071e+12 9.664e+11 7.772e+11 7.576e+11
S with 2.160e+00 1.905e+00 1.809e+00 2.115e+00 1.898e+00
T without 1.637e+12 1.071e+12 9.664e+11 7.772e+11 7.576e+11
T with 7.110e+10 2.697e+10 5.145e+10 1.937e+10 1.213e+10

1014 S without 1.344e+14 1.394e+14 1.617e+14 8.475e+13 8.471e+13
S with 2.091e+00 2.045e+00 1.842e+00 1.809e+00 2.238e+00
T without 1.637e+12 1.071e+12 9.664e+11 7.772e+11 7.576e+11
T with 1.138e+12 2.115e+12 5.823e+11 2.656e+12 3.105e+12

Table 2: Comparison in scalability.

This indicates that due to extra convergence properties of the reduction to semiseparable form [8], these
matrices are far better scalable than the matrices coming from the reduction to tridiagonal form.

5 Conclusions and future research
In this paper an O(n) scaling technique for semiseparable matrices was presented, based on the scaling of
tridiagonal matrices.
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Future research will focus on a direct translation of property A towards the semiseparable case, as this
could lead to scaling of more general classes of semiseparable matrices, such as sequentially or hierarchi-
cally semiseparable ones. Also attention will be paid towards scaling techniques for rectangular matrices,
as this can improve accuracy e.g. in least squares problems.
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