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Abstract

In this paper, we will compare the convergence properties
of three basic reduction methods, by placing them in a general
framework. It covers the reduction to tridiagonal, semiseparable
and semiseparable plus diagonal form. These reductions are of-
ten used as the first step in the computation of the eigenvalues
and/or eigenvectors of arbitrary matrices. In this way, the cal-
culation of the eigenvalues using, for example, the QR-algorithm
reduces in complexity. First we will investigate the convergence
properties of these three reduction algorithms. It will be shown
that for the partially reduced matrices at step k of any of these
reduction algorithms, the lower right k x k (already reduced)
sub-block will have the Lanczos-Ritz values, w.r.t. a certain
starting vector. It will also be shown that the reductions to
semiseparable and to semiseparable plus diagonal form have an
extra convergence behavior a special type of subspace iteration
is performed on the lower right k x k submatrix, which contains
these Ritz-values. Secondly we look in more detail at the behav-
ior of the involved subspace iteration. It will be shown that the
reduction method can be interpreted as a nested type of multi-
shift iteration. Theoretical results will be presented, making it
possible to predict the convergence behavior of these reduction
algorithms. Also a theoretical bound on the convergence rate is
presented. Finally we illustrate by means of numerical examples,
how it is possible to tune the convergence behavior such that it
can become a powerful tool for certain applications.
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Summary In this paper, we will compare the convergence proper-
ties of three basic reduction methods, by placing them in a general
framework. It covers the reduction to tridiagonal, semiseparable and
semiseparable plus diagonal form. These reductions are often used as
the first step in the computation of the eigenvalues and/or eigenvec-
tors of arbitrary matrices. In this way, the calculation of the eigen-
values using, for example, the QR-algorithm reduces in complexity.
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First we will investigate the convergence properties of these three
reduction algorithms. It will be shown that for the partially reduced
matrices at step k of any of these reduction algorithms, the lower
right k × k (already reduced) sub-block will have the Lanczos-Ritz
values, w.r.t. a certain starting vector. It will also be shown that
the reductions to semiseparable and to semiseparable plus diagonal
form have an extra convergence behavior: a special type of subspace
iteration is performed on the lower right k × k submatrix, which
contains these Ritz-values.

Secondly we look in more detail at the behavior of the involved
subspace iteration. It will be shown that the reduction method can be
interpreted as a nested type of multi-shift iteration. Theoretical re-
sults will be presented, making it possible to predict the convergence
behavior of these reduction algorithms. Also a theoretical bound on
the convergence rate is presented.

Finally we illustrate by means of numerical examples, how it is
possible to tune the convergence behavior such that it can become a
powerful tool for certain applications.

Key words orthogonal similarity reductions – tridiagonal, semisep-
arable – semiseparable plus diagonal – Lanczos-Ritz values – multi-
shift – subspace iteration

Mathematics Subject Classification (1991): 65F15,15A18

1 Introduction

Recently, two new reduction algorithms were proposed for reducing
arbitrary symmetric matrices via orthogonal similarity transforma-
tions to semiseparable and semiseparable plus diagonal form [1,2].
These reductions are closely related with the tridiagonalization al-
gorithm of a symmetric matrix [3,4]. In computational complexity,
they only differ with a factor O(n2) w.r.t. the latter algorithm. This
O(n2) factor (9n2 and 10n2 for the reduction to semiseparable and
semiseparable plus diagonal form respectively), is due to the fact that
inside the reduction algorithm, some kind of chasing is performed to
chase the semiseparable structure downwards.

It is proved in [1], that this chasing step can be interpreted as a
nested QL-iteration without shift on the original matrix. This gives
the advantage, that the reduction algorithm, might reveal the largest
eigenvalues in the spectrum of the reduced matrix. This application,
the so-called Rank Revealing property, is used for example in [5,6].
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Combined with an effective implementation for computing the eigen-
values of semiseparable matrices [7–10], one can use this reduction
algorithm to compute the spectrum of an arbitrary symmetric ma-
trix.

In [2] a method was presented for reducing a symmetric matrix
into a similar semiseparable plus diagonal one. This reduction offered
the possibility to freely choose the diagonal used in the reduction
scheme. It was shown that the choice of the diagonal heavily deter-
mined the convergence behavior of the reduction algorithm. Also for
the class of semiseparable plus diagonal matrices, several algorithms
exist to compute the eigendecomposition. For example divide and
conquer methods [7,8], and QR-algorithms [11].

In this paper we will investigate in detail the reduction to semisep-
arable plus diagonal form. First we will show that the reduction to
semiseparable, and the reduction to tridiagonal can be seen as special
cases of the reduction to semiseparable plus diagonal form. We will
prove that one can interpret the reduction to tridiagonal form as a
reduction to a semiseparable plus diagonal matrix with the diagonal
equal to −∞. Secondly we will investigate the convergence behav-
ior of all three reduction algorithms. We will prove that all three
algorithms have as eigenvalues in the already reduced lower right
block the Lanczos-Ritz values. Moreover the reduction to semisepa-
rable plus diagonal form, has an extra convergence behavior, which
we can interpret as a nested multi-shift iteration on the original (un-
transformed) matrix. Having some information on the clusters of the
spectrum of the matrix, the diagonal can be chosen in order to enforce
the convergence to different clusters. Finally we combine both con-
vergence behaviors, and prove that the multi-shift subspace iteration
will start converging as soon as the Lanczos-Ritz values approximate
well enough the dominant eigenvalues w.r.t. the multi-shift iteration.

The paper is organized as follows. In Section 2, we repeat briefly
the reduction algorithm to semiseparable plus diagonal form and we
show that the other two orthogonal similarity transformations are
special cases of this reduction. In Section 3, we briefly prove two con-
vergence behaviors, namely the Lanczos-Ritz value convergence and
the subspace iteration. As the subspace iteration as presented in this
section does not explain the convergence properties of the reduction
algorithm in an appealing manner, we investigate it in more detail in
Section 4. We prove that the subspace iteration can be interpreted,
such that a nested multi-shift iteration is performed on the original
unreduced matrix. Section 5 investigates the combined behavior be-
tween the two convergence properties. The speed of convergence of
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this nested multi-shift QL-iteration is examined in Section 6. In the
numerical experiments of Section 7, the behavior of the reduction
algorithm with respect to the theorems in this paper is investigated.

2 The reduction algorithms

As already mentioned in the abstract and the introduction of the
paper, we will consider here three types of orthogonal similarity
reductions, namely the reduction to tridiagonal, semiseparable and
semiseparable plus diagonal form.

In this section we will show that the reduction to semiseparable
plus diagonal form is the most general one. The reduction to semisep-
arable and the reduction to tridiagonal form can be seen as special
cases of this reduction.

First we will briefly repeat the definition of a semiseparable ma-
trix:

Definition 1 A matrix S is called a semiseparable matrix if all sub-
matrices which can be taken out of the lower and upper triangular
part of the matrix S, including the diagonal, have rank ≤ 1.

Actually, this is the class of semiseparable matrices of semisepara-
bility rank 1 (More information about higher order semiseparable
matrices can be found for example in [12,13]). The inverse of a non-
singular semiseparable matrix is a tridiagonal matrix. Hence, there is
a close relation between all the presented reduction algorithms.

Theorem 1 Let A be a real symmetric matrix and d1, . . . , dn n ar-
bitrary real numbers. Then there exists an orthogonal matrix U such
that

UTAU = S +D,

where S is a semiseparable matrix and D is a diagonal matrix con-
taining the numbers d1, . . . , dn as diagonal elements.

Proof The proof is by finite induction and constructive. We illustrate
it on a 5× 5 example, as the more general case is completely similar.

Let us introduce some notation. In the proof, arbitrary elements in
the matrix are denoted with the × and + sign. If an element changes,
symbolically we change the symbol from × to + or vice versa. The
elements surrounded by # denote the elements that will be annihi-
lated by an orthogonal transformation and the elements surrounded
by ¤ denote the elements which already satisfy the semiseparable
structure.
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Before starting the reduction procedure, to reduce the matrix A to
the desired semiseparable plus diagonal form, we can always perform
an initial orthogonal similarity transformation Q0: A

(1) = QT
0 AQ0.

This transformation is not essential for obtaining the final semisep-
arable plus diagonal structure, but it does influence the convergence
behavior as we will show later on.

Let us denote our matrices at the beginning of step k of the al-

gorithm by A(k) = A
(k)
0 . If an orthogonal similarity transformation

is performed on the matrix A
(k)
l the subindex l is increased with 1:

A
(k)
l+1. The idea is, to add in every step of the algorithm, one more

row and column to the semiseparable plus diagonal structure.

– Step 1: In this first step we will make the last two rows and
columns of the matrix of semiseparable plus diagonal form. In
every subsequent step we will add one more row and column to
this structure.
So let us start with the matrix A = A(1) = A

(1)
0 , and let us

annihilate the elements marked in the last row and column, by

performing a similarity Householder transformation H
(i)
j . For the

orthogonal similarity transformations we use the same notation,
the superscript i denotes in which step of the algorithm we are,
and the subscript j denotes that this is the jth orthogonal similar-
ity transformation performed on the matrix A(i). The Householder
transformations are denoted by H, while the Givens transforma-
tions are denoted by G.













× × × × ⊗
× × × × ⊗
× × × × ⊗
× × × × ×
⊗ ⊗ ⊗ × ×













−−−−−−−−→













× × × × 0
× × × × 0
× × × × 0
× × × × ×
0 0 0 × ×













m

A
(1)
0

H
(1)
1

T
A

(1)
0 H

(1)
1−−−−−−−−−−→A

(1)
1 .

Before performing the next similarity transformation, which will
make the last two rows and columns dependent, we have to extract

some diagonal elements out of the matrix A
(1)
1 . The matrix A

(1)
1

is written now as the sum of matrix and a diagonal matrix (it is
essential that both the diagonal elements are equal to d1):



6 Raf Vandebril et al.

A
(1)
1 =













× × × × 0
× × × × 0
× × × × 0
× × × + ×
0 0 0 × +













+













0
0
0
d1

d1













= Â
(1)
1 +D

(1)
1 .

Determining now the Givens transformation G
(1)
2 , such that ap-

plying it on the right to Â
(1)
1 (without application on the left)

annihilates the element in position (5, 4) of the matrix Â
(1)
1 . Ap-

plying G
(1)
2 as a similarity transformation on the matrix Â

(1)
1 gives

us the following transformation (More information on this type of
transformations can be found in [2,1]).













× × × × 0
× × × × 0
× × × × 0
× × × + ×
0 0 0 × +













G
(1)
2

T
Â

(1)
1 G

(1)
2−−−−−−−−−−→













× × × £ £
× × × £ £
× × × £ £
£ £ £ £ £

£ £ £ £ £













Â
(1)
1

G
(1)
2

T
Â

(1)
1 G

(1)
2−−−−−−−−−−→ Â

(1)
2 .

Applying now this similarity transformation (with G
(1)
2 ) to the

matrix A
(1)
1 instead of Â

(1)
1 we get the following matrix

G
(1)
2

T
A

(1)
1 G

(1)
2 = A

(1)
2 = A

(2)
0 =













× × × £ £
× × × £ £
× × × £ £
£ £ £ £ £

£ £ £ £ £













+













0
0
0
d1

d1













.

One can see that the Givens transformations can be shifted through
the diagonal matrix, as the Givens is performed on the last two
rows and columns and the diagonal is a multiple of the identity in
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this block. We rewrite the matrix A
(2)
0 now in the following form :

A
(2)
0 =













× × × £ £
× × × £ £
× × × £ £
£ £ £ £ £

£ £ £ £ ¢













+













0
0
0
d1

d2













= Â
(2)
0 +D

(2)
0 .

This completes the first step in the proof. We have now two depen-
dent rows (in the lower triangular part) and the diagonal elements
corresponding to these two rows are d1 and d2. This means that
the last two rows of this matrix satisfy already the semiseparable
plus diagonal structure. The remainder of the proof proceeds by
induction.

– Step k: Assume that the last k rows of the matrix A(k) = A
(k)
0 are

already in semiseparable plus diagonal form and the correspond-
ing diagonal elements are d1, . . . , dk. We will add now one row to
this structure such that A(k+1) has k+1 rows satisfying the struc-
ture and the corresponding diagonal elements are d1, . . . , dk+1. For
simplicity we assume here k = 3 in our example. Our matrix is
therefore of the following form:

A
(3)
0 =













× × £ £ £
× × £ £ £
£ £ £ £ £

£ £ £ £ £

£ £ £ £ £













+













0
0
d1

d2

d3













= Â
(3)
0 +D

(3)
0 .

In a similar way as in step 1 we introduce some zeros in the struc-

ture by applying a similarity Householder transformation H
(3)
1 to

the first two rows and columns. We remark that applying this
transformation does not affect the diagonal matrix as the first

two rows and columns of the diagonal matrix D
(3)
0 equal zero.

Therefore we only demonstrate this similarity transformation on

the matrix Â
(3)
0 . (Because of the semiseparable structure, zeros are

created in the complete first column.)
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× × ⊗ ⊗ ⊗
× × £ £ £
⊗ £ £ £ £
⊗ £ £ £ £
⊗ £ £ £ £













H
(3)
1

T
Â

(3)
0 H

(3)
1−−−−−−−−−−→













× × 0 0 0
× × £ £ £
0 £ £ £ £
0 £ £ £ £
0 £ £ £ £













This transformation is applied to the matrix A
(3)
0 which gives us:

H
(3)
1

T
A

(3)
0 H

(3)
1 = A

(3)
1 and which is rewritten as the sum of a new

semiseparable matrix Â
(3)
1 and a new diagonal D

(3)
1 .

A
(3)
1 =













× × 0 0 0
× × £ £ £
0 £ £ £ £
0 £ £ £ £
0 £ £ £ £













+













0
0
d1

d2

d3













=













× × 0 0 0
× + £ £ £
0 £ £ £ £
0 £ £ £ £
0 £ £ £ £













+













0
d1

d1

d2

d3













= Â
(3)
1 +D

(3)
1 .

The first upper left two nonzero elements of the diagonal matrix
are chosen equal to each other. In this way we can shift again the
next Givens transformation through this matrix. Consecutively we

use the matrix Â
(3)
1 to determine the next Givens transformation

G
(3)
2 . The GivensG

(3)
2 is constructed in such a way that performing

it on the right of Â
(3)
1 annihilates the element in position (3, 2).

The similarity transformation, will therefore transform the matrix

Â
(3)
1 in the following way:













× × 0 0 0
× + £ £ £
0 £ £ £ £
0 £ £ £ £
0 £ £ £ £













G
(3)
2

T
Â

(3)
1 G

(3)
2−−−−−−−−−−→













× £ £ 0 0
£ £ £ 0 0
£ £ £ £ £

0 0 £ £ £
0 0 £ £ £













.

More information on this procedure can be found in [1,2]. Ap-

plying this transformation to the matrix A
(3)
1 and rewriting the



On the convergence properties of orthogonal similarity transformations 9

matrix, results into:

A
(3)
2 =













× £ £ 0 0
£ £ £ 0 0
£ £ £ £ £

0 0 £ £ £
0 0 £ £ £













+













0
d1

d1

d2

d3













=













× £ £ 0 0
£ £ £ 0 0
£ £ ¢ £ £

0 0 £ £ £
0 0 £ £ £













+













0
d1

d2

d2

d3













= Â
(3)
2 +D

(3)
2 .

In a similar way transformation G
(3)
3 is determined such that we

have the following equations for the matrix A
(3)
3 , which is rewrit-

ten such that the diagonal elements subject to the next Givens
transformation are equal to each other.

A
(3)
3 =













× £ £ £ 0
£ £ £ £ 0
£ £ £ £ 0
£ £ £ £ £

0 0 0 £ £













+













0
d1

d2

d2

d3













=













× £ £ £ 0
£ £ £ £ 0
£ £ £ £ 0
£ £ £ ¢ £

0 0 0 £ £













+













0
d1

d2

d3

d3













= Â
(3)
3 +D

(3)
3 .
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Applying the last transformation G
(3)
4 gives us the desired result

A
(3)
4 which completes step k in the iterative procedure.

A
(3)
4 =













× £ £ £ £
£ £ £ £ £

£ £ £ £ £

£ £ £ £ £

£ £ £ £ £













+













0
d1

d2

d3

d3













=













× £ £ £ £
£ £ £ £ £

£ £ £ £ £

£ £ £ £ £

£ £ £ £ ¢













+













0
d1

d2

d3

d4













= Â
(3)
4 +D

(3)
4 . (1)

To obtain the complete semiseparable matrix for this example one
has to perform one extra chasing step.

More information concerning accuracy and the number of involved
operations can be found in [2]. We will now prove the existence of
the reductions to semiseparable and to tridiagonal form as being two
special cases of the previous reduction.

Theorem 2 Let A be a real symmetric matrix. Then there exists an
orthogonal matrix U such that

UTAU = S,

where S is a semiseparable matrix.

Proof The proof can be found in [1]. We will prove it here based on
the previous theorem.

Using Theorem 1, we know that we can reduce any symmetric
matrix into a similar semiseparable plus diagonal one, with a free
choice of the diagonal. Taking the diagonal equal to zero, states that
we can reduce any symmetric matrix into a similar semiseparable one.

The orthogonal similarity transformation of a symmetric matrix
to tridiagonal form is a basic tool and can be found in several books
[3,14,4].

Theorem 3 Let A be a real symmetric matrix. Then there exists an
orthogonal matrix U such that

UTAU = T,

where T is a tridiagonal matrix.



On the convergence properties of orthogonal similarity transformations 11

Proof Considering the proof of Theorem 1, we see that after each
Householder transformation in step k a chasing technique involving
k Givens transformations is applied. Replacing now all these Givens
transformations by a special Givens transformation, namely the iden-
tity, we see that the resulting matrix is not semiseparable but tridi-
agonal.

It is clear that the reduction to semiseparable plus diagonal is
the most general one, while the two other transformations, are spe-
cial cases. In fact we have even more, we can see the reduction to
tridiagonal form as the reduction to semiseparable form with all the
diagonal elements equal to −∞.

Theorem 4 The orthogonal similarity reduction to tridiagonal form,
can be seen as the orthogonal similarity reduction to semiseparable
plus diagonal form, where we choose the diagonal equal to −∞.

Proof If we prove that the performed Givens transformations in this
case equal the identity matrices, we know that the resulting matrix
will be of tridiagonal form.

Let us define a Givens transformation as follows:
(

c s
−s c

)(

x
y

)

=

(

0
r

)

Where c, s and r are defined as:

r =
√

x2 + y2,

c = y/r,

s = −x/r.
The c and s are respectively the cosine and sine of a specific angle.

Assume we would like to obtain a semiseparable plus diagonal
matrix with diagonal −ε. This means that we have to perform the
following Givens transformations, in the chasing technique, on the
right to annihilate the element x, where y+ε is the diagonal element:

(

c s
−s c

)(

x
y + ε

)

=

(

0
r

)

With the elements defined as

r =
√

x2 + (y + ε)2,

c = (y + ε)/r,

s = −x/r.
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Taking the limit now for ε→∞ leads to the Givens transformation
equal to the identity.

lim
ε→∞

(

1
√

x2 + (y + ε)2

(

(y + ε) −x
x (y + ε)

)

)

=

(

1 0
0 1

)

We remark, that this previous theorem implies that we can con-
struct for every tridiagonal matrix a sequence of semiseparable plus
diagonal matrices converging to this tridiagonal matrix. This implies
that the class of semiseparable plus diagonal matrices is not point-
wise closed. We briefly illustrate this with a symmetric three by three
matrix.

lim
ε→∞









a b 1
ε

b εbd d
1
ε

d e



+





0 0 0
0 c− εbd 0
0 0 0







 =





a b
b c d
d e





The sequence of matrices on the left are all semiseparable plus
diagonal matrices, and their limit is tridiagonal.

3 The convergence properties

In this section we will investigate two types of convergence proper-
ties, related to the orthogonal similarity transformations: the Lanczos
convergence behavior and the subspace iteration.

3.1 The Lanczos-Ritz values

It is well-known that the reduction to tridiagonal form has the Lanc-
zos-Ritz values in the lower right k×k block of the tridiagonal matrix
T (k). Moreover we know by [15], that also the intermediate semisep-
arable and the intermediate semiseparable plus diagonal matrices in-
herit this behavior. We will however briefly state the results.

Suppose, we have a matrix A(0) = A, which is transformed via an
initial orthogonal similarity transformation into the matrix A(1) =
QT

0 A
(0)Q0. Denote by Qm the product of all orthogonal transfor-

mations used at the mth step of the reduction algorithm to either
tridiagonal, semiseparable or semiseparable plus diagonal form. This
means: A(2) = QT

1 A
(1)Q1, A

(3) = QT
2 A

(2)Q2, . . .. Hence, the orthogo-
nal transformation to go from A(m) to A(m+1) is Qm. With Q0:m the
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orthogonal matrix equal to the product Q0Q1 . . . Qm is denoted. This
means that

A(m+1) = QT
mA

(m)Qm

= QT
mQ

T
m−1 . . . Q

T
1 Q

T
0 AQ0Q1 . . . Qm−1Qm

= QT
0:mAQ0:m.

The matrix A(m+1) is of the following form:
(

Am+1 ×
× Rm+1

)

where Rm+1 stands for that part of the matrix of dimension (m +
1) × (m + 1) which is already transformed to the appropriate form,
e.g., tridiagonal, semiseparable or semiseparable plus diagonal. The
matrix Am+1 is of dimension (n−m− 1)× (n−m− 1). matrices.

The eigenvalues of Rm+1 are called the Ritz values of A with re-
spect to the subspace spanned by the columns of Q0:m〈en−m, . . . , en〉1
(see e.g. [4]).

Suppose we have now the Krylov subspace of order m + 1 with
initial vector v:

Km+1(A, v) = 〈v,Av, . . . , Amv〉
Remark 1 For simplicity, we assume in this paper that the Krylov
subspaces we are working with are not invariant, i.e. that for every
m: Km(A, v) 6= Km+1(A, v), where m = 1, 2, . . . , n − 1. The special
case of invariant subspaces can be dealt with in a completely similar
way (see [15]).

If the columns of the matrix Q0:m〈en−m, . . . , en〉 form an orthonor-
mal basis of the Krylov subspace Km+1(A, v), then we say that the
eigenvalues of Rm+1 are the Lanczos-Ritz (Arnoldi in the nonsym-
metric case) values of A with respect to the initial vector v.

We can now formulate the following theorem:

Theorem 5 Let A be a symmetric matrix and U is the orthogonal
matrix (from Theorem 1,2 or 3) such that

UTAU = B,

where B is either a tridiagonal, semiseparable or semiseparable plus
diagonal matrix.

If we consider the reduction algorithms like in the proofs of The-
orem 1,2 or 3, the intermediate matrices at step m of the reduction

1 With 〈a, b, c〉 we denote the subspace spanned by the vectors a, b and c.
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have as eigenvalues of the lower right m×m block the Lanczos-Ritz
values w.r.t. Q0en.

Proof We will not prove this statement for the tridiagonal matrices,
as this is a well-known, and classical results (see e.g. [3]). Taking a
closer look at the algorithms from the proofs of Theorems 1 and 2, we
see that these latter two orthogonal similarity transformations, per-
form always a chasing step after performing the Householder trans-
formation. This chasing step is applied on the lower right k×k block.
In fact an orthogonal similarity transformation is performed on the
lower right block, and hence it does not change the eigenvalues of
this block. The eigenvalues of this block are in fact essentially the
same eigenvalues as the ones coming from the reduction to tridiago-
nal form, as all three reduction methods use exactly the same (up to
the sign) Householder transformations.

3.2 A nested subspace iteration

The reduction to semiseparable and to semiseparable plus diagonal
form performs more operations than the corresponding reduction to
tridiagonal form. More precisely, at every step m of the reduction al-
gorithm m extra Givens transformations are performed. These extra
Givens transformations create the “nested subspace iteration” behav-
ior. In this section we will investigate more in detail what is meant
by this behavior.

The nested subspace iteration, connected to the orthogonal sim-
ilarity transformation of a matrix to semiseparable form was in-
vestigated in [1]. As proved before, the reduction to semiseparable
form is a special case of the reduction to semiseparable plus diagonal
form, therefore its convergence behavior is also a special case of the
more general convergence behavior. Hence, we will derive the nested
subspace iteration, related to the transformation into semiseparable
plus diagonal form and afterwards translate this to the reduction to
semiseparable and the reduction to tridiagonal form.

Denote by D(m) the diagonal matrix of dimension n, with the
lower right m diagonal elements equal to [d1, d2, . . . , dm].
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When looking at the first step of the reduction algorithm, we can
state that:

QT
0 AQ0 = A(1) = Q1(Q

T
1 A

(1))

= Q1(Q
T
1 (D

(1) + S(1)))

= Q1











QT
1











0
. . .

0
d1











+











× . . . × 0
...

...
...

× . . . × 0
× . . . × ×





















.

Multiplying both sides of the former equality to the right by 〈en〉
leads to

A(1)〈en〉 = d1In〈en〉+Q1〈en〉 (2)

⇒ (A(1) − d1In)〈en〉 = Q1〈en〉 = 〈q(1)
n 〉

with q
(1)
n the last column of Q1. We assume that the lower-right ele-

ment in the matrix QT
1 S

(1) is different from zero, otherwise d1 would
be an eigenvalue, and en would be an eigenvector. This brings us to
the case of invariant subspaces, which is in fact good news. We will
however not go into these details and assume, throughout the remain-
der of the text, that the subspaces we work with are not invariant.
The invariant case naturally splits up in blocks, and the blocks can
be dealt with completely similar as in the remainder of the paper.

To complete the first step of the algorithm, the following trans-
formation is performed:

A(2) = QT
1 A

(1)Q1.

This can be interpreted as a transformation of the basis used: when
transforming a vector y in the old basis into QT

1 y in the new basis,
then A(1) will become A(2) = QT

1 A
(1)Q1 in the new basis. The vector

q
(1)
n becomes QT

1 q
(1)
n = en and hence, because of Equation (2), (A

(1)−
d1In)〈en〉 becomes 〈en〉. This means that the subspace 〈en〉 we are
working on stays the same, only the matrix we use changes.
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Looking now at the mth step, m = 2, . . . , n− 1, of the reduction
algorithm, we get:

A(m) = Qm(Q
T
mA

(m))

= Qm(Q
T
m(D

(m) + S(m)))

= Qm

















QT
m

















0

. . .

0

d1

. . .

dm

















+

















×. . .× 0 . . . 0
...

...
...

...
×. . .× 0 . . . 0

×. . .××. . . 0
...

...
...
. . .

...
×. . .×× . . .×

































.

Multiplying both sides of the latter equality to the right by the sub-
space 〈en−(m−1), en−(m−2), . . . , en−1, en〉 leads to

A(m)〈en−(m−1), en−(m−2), . . . , en〉 =
D(m)〈en−(m−1), en−(m−2), . . . , en〉+Qm〈en−(m−1), en−(m−2), . . . , en〉.

This implies that

(A(m) −D(m))〈en−(m−1), . . . , en〉 = 〈q(m)
n−(m−1), . . . , q

(m)
n 〉, (3)

with q
(m)
i the ith column of Qm. The left-hand side can be rewritten

as

(A(m) −D(m))〈en−(m−1), en−(m−2), . . . , en〉
= 〈(A(m) −D(m))en−(m−1), . . . , (A

(m) −D(m))en〉
= 〈(A(m) − d1In)en−(m−1), . . . , (A

(m) − dmIn)en〉.

Hence, the completion of each mth step (m = 2, . . . , n− 1):

A(m+1) = QT
mA

(m)Qm,

can also be considered as a change of coordinate system: transform
any vector y of the old system into QT

my for the new system. Then
A(m) will be transformed into A(m+1) and the subspace of Equation

(3): 〈q(m)
n−(m−1), q

(m)
n−(m−2), . . . , q

(m)
n 〉 will become

QT
m〈q

(m)
n−(m−1), q

(m)
n−(m−2), . . . , q

(m)
n 〉 = 〈en−(m−1), en−(m−2), . . . , en〉.

Therefore, at each step the basis remains the same but the matrix
used changes. It is called a nested subspace iteration because the
subspace involved increases in each step of the algorithm.
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The subspace iteration involved for the semiseparable reduction is
just a regular subspace iteration without the shift (see e.g. [1]), as the
chasing technique is not involved in the tridiagonal case, no subspace
iteration is involved for the tridiagonal matrices. In the next section,
we will investigate in more detail the resulting convergence behavior,
subject to this subspace iteration.

4 More on the subspace iteration

In this section we will give some theoretical results which might help
us to choose the diagonal in the reduction to semiseparable plus diag-
onal form in such a way that we can tune the convergence behavior.
In the last section numerical experiments are given to illustrate these
results. The results we will give here are based on the convergence
properties of a generic GR-algorithm as derived in [16,17].

4.1 The reduction as a nested multi-shift iteration

In this section we will rewrite the subspace iteration as presented
in the previous section, such that it can be interpreted as a nested
multi-shift iteration.

Related to the diagonal elements di, used in the reduction algo-
rithm we define the following monic polynomials pi(λ) = λ− di. The
monic polynomial p̂i(λ) of degree i represents a multiplication of all
the polynomials pi, . . . , p1, i.e.

p̂i(λ) = pi(λ)pi−1(λ) . . . p1(λ)

= (λ− di)(λ− di−1) . . . (λ− d1).

Moreover we also need partial combinations of these polynomials.
Define the polynomials p̂j:i(λ) with (j ≥ i) in the following way:

p̂j:i(λ) = pj(λ)pj−1(λ) . . . pi(λ).

Note that p̂i(λ) = p̂i:1(λ) and assume p̂0 = p̂0:0 = 1.
Let us prove now the following theorem, which rewrites the sub-

space iteration behavior in terms of the original matrix. This theorem
is an extension of Lemma 3.1 in [12].

Theorem 6 Let us use the notation as defined before. At step m =
1, 2, . . . , n−1 of the algorithm we have for every n ≥ k ≥ n−m, that
(denote η = k − n+m)

Q0:m〈ek, . . . , en〉 = p̂η(A)〈f (m)
k , p̂η+1:η+1(A)f

(m)
k+1, . . .

. . . , p̂j−n+m:η+1(A)f
(m)
j , . . . , p̂m:η+1(A)f

(m)
n 〉,
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where the vectors f
(m)
k are defined as follows. For every m, f

(m)
n = en.

For n ≥ k > n−m, with η = k − n+m:

f
(m)
k ∈ 〈f (m−1)

k , p̂η:η(A)f
(m−1)
k+1 , , . . . , p̂m−1:η(A)f

(m−1)
n 〉,

and the vector f
(m)
n−m equals Q0:men−m and is hence orthogonal to the

subspace

p̂1(A)〈f (m)
n−m+1, p̂η+1:2(A)f

(m)
k+1, . . . , p̂j−n+m:2(A)f

(m)
j , . . . , p̂m:2(A)f

(m)
n 〉.

Proof We will prove the theorem by induction on m.

– Step m = 0: We will prove that for every n ≥ k ≥ n − 0 (i.e.
k = n) the following holds:

Q0:0〈en〉 = 〈f (0)
n 〉.

This is straightforward, by choosing f
(0)
n equal to the last column

of Q0:0. We remark that Q0:0 is an initial transformation, which
in fact does not explicitly needs to be applied on the matrix A,
to reduce it to semiseparable plus diagonal form. In the reduction

method we proposed Q0:0 = I and hence f
(0)
n = en.

– Step m = 1: Before starting the induction procedure on m, we
will demonstrate the case m = 1. We have to prove two things:
for k = n:

Q0:1〈en〉 = (A− d1I)〈f (1)
n 〉

= p̂1(A)〈f (1)
n 〉

and for k = n− 1:

Q0:1〈en−1, en〉 = 〈f (1)
n−1, (A− d1I)f

(1)
n 〉

= 〈f (1)
n−1, p̂1(A)f

(1)
n 〉.

We will first prove that the equation holds for k = n.
When the transformation Q1 used at the first step, is only applied
on the rows, the matrix A(1) = QT

0:0AQ0:0 is transformed into:

QT
1 A

(1) = QT
1 (D

(1) + S(1)) = QT
1 D

(1) + L(1)

= QT
1











0 0
. . .

...
0 0

0 . . . 0 d1











+











× . . . × 0
...

...
...

× . . . × 0
× . . . × ×











, (4)
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with all the elements of the strictly upper-triangular part of the
last column of L(1) zero.
Hence, combining Equation (4) with

QT
1 A

(1) = QT
1 (Q

T
0:0AQ0:0) = QT

0:1AQ0:0

implies that

AQ0:0 −Q0:0D
(1) = Q0:1L

(1). (5)

Multiplying both sides of Equation (5) to the right by 〈en〉 and
using the knowledge for m = 0, leads to:

(AQ0:0 −Q0:0D
(1))〈en〉 = (Q0:1L

(1))〈en〉 = Q0:1〈en〉
= (AQ0:0 −Q0:0d1I)〈en〉
= (A− d1I)Q0:0〈en〉
= (A− d1I)〈f (0)

n 〉
= p̂1(A)〈f (0)

n 〉 = p̂1(A)〈f (1)
n 〉,

with f
(0)
n = f

(1)
n . This completes the case k = n. Using this equa-

tion, the case k = n−1 is straightforward. Taking f (1)
n−1 = Q0:1en−1

immediately leads to:

Q0:1〈en−1, en〉 = 〈f (1)
n−1, p̂1(A)f

(1)
n 〉

Moreover, we also have that f
(1)
n−1 is orthogonal to p̂1(A)f

(1)
n .

– Step m: We will prove now the general formulation, assuming
that the case m − 1 holds for every n ≥ k ≥ n − m − 1. So we
know that for every n ≥ k ≥ n−m− 1, the following equation is
true (denote η = k − n+m) 2:

Q0:m−1〈ek, . . . , en〉
= p̂η−1(A)〈f (m−1)

k , p̂η:η(A)f
(m−1)
k+1 , . . . , p̂m−1:η(A)f

(m−1)
n 〉.

To prove the case m, we will distinguish two cases, namely n ≥
k > n−m and k = n−m.

2 Remark that the definition of η is slightly different than the one from the
theorem, this is done to obtain the final formulation in the correct form.
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We start with the case n ≥ k > n − m, in a similar way as for
m = 1. When the transformation Qm used at the mth step, is
only applied on the rows, the matrix A(m) is transformed into:

QT
mA

(m) = QT
m(D

(m) + S(m)) = QT
mD

(m) + L(m)

= QT
m





















0
. . .

0
d1

. . .

dm





















+





















× . . . × 0 . . . 0
...

...
...

...
× . . . × 0 . . . 0
× . . . × × . . . 0
...

...
...
. . .

...
× . . . × × . . . ×





















,(6)

with all the elements of the strictly upper-triangular part of the
last m columns of L(m) zero.
Hence, combining Equation (6) with

QT
mA

(m) = QT
m(Q

T
0:m−1AQ0:m−1) = QT

0:mAQ0:m−1

implies that

AQ0:m−1 −Q0:m−1D
(m) = Q0:mL

(m). (7)

Multiplying now Equation (7) on the right by 〈ek, . . . , en〉 leads
to:

Q0:m〈ek, . . . , en〉
= (Q0:mL

(m))〈ek, . . . , en〉
= (AQ0:m−1 −Q0:m−1D

(m))〈ek, . . . , en〉
= 〈(AQ0:m−1 −Q0:m−1D

(m))ek, . . . , (AQ0:m−1 −Q0:m−1D
(m))en〉

= 〈(A− dηI)Q0:m−1ek, . . . , (A− dmI)Q0:m−1en〉. (8)

We know by induction, that for every k, with k ≤ j ≤ n the
following equation is true (denote ηj = j − n+m):

Q0:m−1〈ej , . . . , en〉
= p̂ηj−1(A)〈f (m−1)

j , p̂ηj :ηj
(A)f

(m−1)
j+1 , . . . , p̂m−1:ηj

(A)f (m−1)
n 〉.

So we can write:

Q0:m−1〈ej〉 = p̂ηj−1(A)〈f (m)
j 〉

where f
(m)
j is a suitably chosen vector such that

f
(m)
j ∈ 〈f (m−1)

j , p̂ηj :ηj
(A)f

(m−1)
j+1 , , . . . , p̂m−1:ηj

(A)f (m−1)
n 〉.
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Using now this relation for every vector Q0:m−1ej in Equation (8),
we get the following relations:

〈(A− dηI)Q0:m−1ek, . . . , (A− dmI)Q0:m−1en〉
= 〈(A− dηI)p̂ηk−1(A)f

(m)
k , . . . , (A− dmI)p̂ηn−1(A)f

(m)
n 〉,

= 〈p̂ηk
(A)f

(m)
k , . . . , p̂ηn(A)f

(m)
n 〉,

= p̂η(A)〈f (m)
k , p̂η+1:η+1(A)f

(m)
k+1, . . . , p̂m:η+1(A)f

(m)
n 〉.

Proving thereby the theorem for k > n−m. The case k = n−m

is again straightforward by defining f
(m)
n−m as Q0:men−m.

This means that at step m of the reduction algorithm we perform
for every n ≥ k ≥ n − m a multi-shift iteration on the subspace

〈f (m)
k , . . . , f

(m)
n 〉. This is called a nested type of multi-shift iteration.

Under mild assumptions we will therefore get a similar convergence
behavior as in the multi-shift case. Before giving some reformulations
of Theorem 6. We will give a first intuitive interpretation to this
convergence behavior. Let us write down for some k, the different
formulas

Q0:m〈en〉 = 〈p̂m(A)f (m)
n 〉 (9)

Q0:m〈en−1, en〉 = 〈p̂m−1(A)f
(m)
n−1, p̂m(A)f

(m)
n 〉 (10)

Q0:m〈en−2, en−1, en〉 = 〈p̂m−2(A)f
(m)
n−2, p̂m−1(A)f

(m)
n−1, p̂m(A)f

(m)
n 〉

We will assume, for simplicity reasons, that the vectors f
(m)
k do not

have a significant influence on the convergence behavior. This means
that they do not have a small or zero component in the direction we
want them to converge too. Further on in the text we will investigate

in more detail the influence of these vectors f
(m)
k , w.r.t. the conver-

gence speed. Under this assumption, according to Equation (9), the
last vector of Q0:m will converge (for increasingm) towards the eigen-
vector of the matrix p̂m(A) corresponding to the dominant eigenvalue
of p̂m(A). Combining this with Equation (10) shows us that Q0:men−1

will converge to the eigenvector perpendicular to the vector Q0:men
and corresponding to the dominant eigenvalue for p̂m−1(A). Similarly
a combination of all above equations reveals that Q0:men−2 converges
to an eigenvector perpendicular to the above two and corresponding
to the dominant eigenvalue for p̂m−2(A). More details on the conver-
gence behavior will be given in Section 6.

Below, we have rewritten Theorem 6 in different forms, to illus-
trate more clearly what happens, and to make different interpreta-
tions of the method possible:
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– Formulation 1: The shift through form. We drag the poly-
nomial in front of the subspace completely through the subspace.

Corollary 1 Let us use the notation as defined before. At step
m of the algorithm we have for every n ≥ k ≥ n − m: (denote
η = k − n+m):

Q0:m〈ek, . . . , en〉 = 〈p̂η(A)f (m)
k , p̂η+1(A)f

(m)
k+1, . . . , p̂m(A)f

(m)
n 〉.

This means that on every vector, a form of the shifted power
method is applied and the vectors are re-orthogonalized w.r.t. each
other.

– Formulation 2: The nested shift formulation. We can also
reformulate the theorem such that we apply on each nested sub-
space an iteration with shift.

Corollary 2 Let us use the notation as defined before. At step
m of the algorithm we have for every n ≥ k ≥ n − m, (denote
η = k − n+m)

Q0:m〈ek, . . . , en〉
= p̂η(A)〈f (m)

k , pη+1(A)〈f (m)
k+1, pη+2(A)〈f (m)

k+2, . . . , pm(A)f
(m)
n 〉 . . .〉〉,

which can be rewritten as:

Q0:m〈ek, . . . , en〉
= p̂η(A)〈f (m)

k , (A− dη+1I)〈f (m)
k+1, (A− dη+2I)〈f (m)

k+2, . . .

. . . , (A− dmI)f
(m)
n 〉 . . .〉〉.

So we can see, that on each nested subspace an iteration with shift
is performed.

– Formulation 3: The nested QL-iteration with shift. Theo-
rem 6 as presented above incorporates all the transformations in
one orthogonal matrix Q0:m. If we perform, however, after each
step in the reduction algorithm the basis transformation, this cor-
responds to performing a similarity transformation, leading to a
different form of the theorem. This formulation corresponds to a
shifted QL-iteration on the matrix A.
We already know from the results in Section 3.2, that we can
interpret the reduction method as a nested subspace iteration, as
follows:

(A(m) −D(m))〈en−(m−1), . . . , en〉 = 〈q(m)
n−(m−1), . . . , q

(m)
n 〉.
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The interpretation of this type of iteration is not straightforward
as we are not subtracting a shift matrix from the matrix A(m), but
a diagonal matrix. This interpretation says that at every step m
a subspace iteration of the matrix (A(m) −D(m)) is performed on
the space 〈en−(m−1), . . . , en〉, which gives us part of the orthogonal
matrix Qm. If a column of this matrix Qm is close enough to an
eigenvector of the matrix A(m), this will be visible after performing
the basis transformation QT

mA
(m)Qm. (For more information see

[16].)
Using Theorem 6, we can reformulate this nested iteration, to-
wards an iteration with a shift and another subspace on which
one iterates.
We know that QT

0:m−1AQ0:m−1 = A(m). One can also easily prove
the following relations:

QT
0:m−1pi(A)Q0:m−1 = pi(A

(m)),

QT
0:m−1p̂i(A)Q0:m−1 = p̂i(A

(m)),

QT
0:m−1p̂j:i(A)Q0:m−1 = p̂j:i(A

(m)).

If we perform now the basis transformation corresponding to the
orthogonal matrix Q0:m−1 on the subspace Q0:m〈ek, . . . , en〉, we
get the following relations:

Qm〈ek, . . . , en〉
= QT

0:m−1Q0:m〈ek, . . . , en〉
= QT

0:m−1p̂η(A)〈f
(m)
k , p̂η+1:η+1(A)f

(m)
k+1, . . . , p̂m:η(A)f

(m)
n 〉

= p̂η(A
(m))〈QT

0:m−1f
(m)
k , p̂η+1:η+1(A

(m))QT
0:m−1f

(m)
k+1, . . .

. . . , p̂m:η(A
(m))QT

0:mf
(m)
n 〉

We can formulate the following equivalent corollary with f̂
(m)
j =

QT
0:m−1f

(m)
j .

Corollary 3 Let us use the notation as defined before. At step
m of the algorithm we have for every n ≥ k ≥ n − m, (denote
η = k − n+m)

Qm〈ek, . . . , en〉 = p̂η(A
(m))〈f̂ (m)

k , p̂η+1:η+1(A
(m))f̂

(m)
k+1, . . .

. . . , p̂j−n+m:η+1(A
(m))f̂

(m)
j , . . . , p̂m:η(A

(m))f̂ (m)
n 〉
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In this way we know that a partial QL-iteration, with partial we
mean, a subspace of dimension less than n, is performed on the

subspace defined by the vectors f̂
(m)
j and the last columns of Qm

span this space.
This means that if a column of Qm is close to an eigenvector of
A(m) the basis transformation will reveal it. But of course the con-
vergence behavior is heavily dominated by the vectors f̂ (m). This
will be investigated further on in the text. For a traditional con-
vergence behavior, related to QR and QL-iterations, these sub-
spaces are always equal to 〈e1, . . . , en〉, and one can assume (in
most cases), that these vectors do not heavily influence the con-
vergence speed. Here however these vectors of the subspace are
constructed in a specific way, and do have an important impact
on the convergence behavior.
Of course we can also reformulate this last theorem, w.r.t. the first
two formulations in this list.

Before investigating in more detail the convergence speed, and
the interaction between the Ritz-value convergence behavior and the
subspace iteration, we will translate the theorem towards the semisep-
arable and tridiagonal case.

1. In the tridiagonal case, there is no chasing step involved, as all the
performed Givens transformations are equal to the identity. Hence
the lower right already reduced part of the matrix, contains the
Lanczos-Ritz values, and no subspace iteration is performed.

2. In a previous publication it was stated that on the lower right part
of the semiseparable matrix always a step of non-shifted subspace
iteration was performed. We get exactly this behavior if we take
the shift equal to zero: Theorem 6 is therefore an extension of
Lemma 3.1 in [12].

Theorem 7 Let us use the notation as defined before. At step m =
1, 2, . . . , n− 1 of the algorithm we have for every n ≥ k ≥ n−m,
that (denote η = k − n+m)

Q0:m〈ek, . . . , en〉
= Ak−1〈f (m)

k , Af
(m)
k+1, . . . , A

j−n+mf
(m)
j , . . . , A(m)f (m)

n 〉

Using Corollary 3 one can easily explain the convergence behavior
as observed in [2]. In this paper, it was observed, that the reduction
of a symmetric matrix into a similar semiseparable plus diagonal one,
with the top left elements of the diagonal equal to eigenvalues of this
matrix, revealed these eigenvalues. More precisely the transformed
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semiseparable plus diagonal matrix was in the upper left k× k block
diagonal, where k is the number of top left diagonal elements equal
to eigenvalues of the original matrix. This is natural, as after the
complete reduction method on the complete matrix a step of the
QL-iteration with shift d1 is performed. If d1 equals an eigenvalue,
we have a perfect shift, and this will be revealed in the upper left
position. If we continue now with the trailing (n− 1)× (n− 1) block
of this matrix, we know that this matrix has as eigenvalues, the same
eigenvalues as the original matrix without the eigenvalue d1. As on
this matrix a QL-iteration with shift d2 is performed, with d2 and
eigenvalue, the procedure, will again reveal this eigenvalue. This pro-
cess continues as long as the first d1, . . . , dk diagonal elements are
equal to the eigenvalues of the original matrix. As soon as one di-
agonal element does not correspond anymore to an eigenvalue, the
procedure stops.

Let us investigate in more detail now the relation between the
subspace iteration and the Lanczos-Ritz values.

5 The interaction between the subspace iteration and the
Lanczos-Ritz values

In the previous two sections, we investigated two convergence be-
haviors of the reduction to semiseparable plus diagonal form. In this
section we will prove the following behavior:

The nested multi-shift iteration will start converging as soon as
the Lanczos-Ritz values approximate well enough the dominant
eigenvalues with respect to the multi-shift iteration.

Let us use the notation as defined before. At stepm = 1, 2, . . . , n−
1 of the algorithm we have for every n ≥ k ≥ n −m, that (denote
η = k − n+m)

Q0:m〈ek, . . . , en〉 = p̂η(A)〈f (m)
k , p̂η+1:η+1(A)f

(m)
k+1, . . . , p̂m:η+1(A)f

(m)
n 〉

Moreover, we also have that, due to the Lanczos-Ritz value conver-
gence

Q0:m〈en−m, . . . , en〉 = Km+1(A,Q0en).

Clearly the following relation holds between the two above presented
subspaces, for all k:

Q0:m〈ek, . . . , en〉 ⊂ Q0:m〈en−m, . . . , en〉.
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These relations do exactly explain the behavior as presented above.

The multi-shift subspace iteration works on the vectors f
(i)
j , but they

are constructed in such a way that after the subspace iteration we
get a subspace which is part of the Krylov subspace Km+1(A,Q0en).
As long as this Krylov subspace is not large enough, to contain the
eigenvectors corresponding to the dominant eigenvalues of the ma-
trix polynomials p̂j−n+m:1(A), the subspace iteration can simply not
converge to these eigenvectors.

As soon as the dominant eigenvectors, w.r.t. the multishift poly-
nomial, will be present in the Krylov subspace, the Ritz-values will
approximate the corresponding eigenvalues and this means that the
multi-shift iteration can start converging to these eigenvalues / eigen-
vectors. This behavior will be illustrated in the numerical experi-
ments.

6 The convergence speed of the nested multi-shift iteration

In this section we will present some theorems concerning the speed of
convergence, using the nested multi-shift QL-iteration as presented
in this paper. In a first part we present some theorems from [16,17],
which are useful for traditional GR-algorithms. In the second part,
we apply these theorems to our nested subspace formulation.

6.1 General subspace iteration theory

First we will reconsider some general results concerning the distances
between subspaces. A more elaborate study can be found in [16,3].
Given two subspaces S and T in R

n and denote with PS and PT the
orthonormal projector onto the subspace S and T respectively. The
standard metric between subspaces (see [3]) is defined as

d(S, T ) = ‖PS − PT ‖2 = sup
s ∈ S
‖s‖2 = 1

d(s, T ) = sup
s ∈ S
‖s‖2 = 1

inf
t ∈ T

‖s− t‖2

if dim(S) = dim(T ) and d(S, T ) = 1 otherwise.
The next theorem states how the distance between subspaces

changes, when performing subspace iteration with shifted polyno-
mials.

Theorem 8 (Theorem 5.1 from [16]) Given a simple3 matrix
A ∈ R

n×n with eigenvalues λ1, λ2, . . . , λn and associated linearly

3 A matrix is called simple if it has n linearly independent eigenvectors.
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independent eigenvectors v1, v2, . . . , vn. Let V = [v1, v2, . . . , vn] and
κV is the condition number of V , w.r.t. to the spectral4 norm. Let
l be an integer 1 ≤ l ≤ n − 1, and define the invariant subspaces
U = 〈v1, . . . , vl−1〉 and T = 〈vl, . . . , vn〉. Denote with (pi) a sequence
of polynomials and let p̂i = pi . . . p2p1. Suppose that

p̂i(λj) 6= 0 j = l, . . . , n

for all i, and let

ri =
max1≤j≤l−1 |p̂i(λj)|
minl≤j≤n |p̂i(λj)|

.

Let S be a k-dimensional subspace of R
n, satisfying

S ∩ U = {0}.
Let Si = p̂i(A)S, i = 1, 2, . . .. Then there exists a constant C (de-
pending on S) such that for all i,

d(Si, T ) ≤ C κV ri.

In particular Si → T if ri → 0. More precisely we have that

C =
d(V −1S, V −1T )

√

1− d(V −1S, V −1T )
We remark, that similar theorems exist for defective matrices. Also
more information concerning the conditions put on the matrices in
Theorem 8, can be found in [16]. We will however not go into these
details.

The following lemma relates the subspace convergence, towards
the vanishing of certain subblocks in a matrix.

Lemma 1 (Lemma 6.1 from [16]) Suppose A ∈ R
n×n is given,

and let T be a subspace, which is invariant under A. Assume G to be
a nonsingular matrix and assume S to be the subspace spanned by the
last k columns of G. (The subspace S can be seen as an approximation
of the subspace T .) Assume B = G−1AG, and consider the matrix
B, partitioned in the following way:

B =

[

B11 B12

B21 B22

]

,

where B21 ∈ R
k×(n−k). Then we have:

‖B21‖2 ≤ 2
√
2 κG ‖A‖2 d(S, T ),

where κG denotes the condition number of the matrix G.

4 The spectral norm is naturally induced by the ‖.‖2 norm on vectors.
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We are now ready to use these theorems, to derive an upper bound
on the norm of the subblocks, while reducing a matrix to semisepa-
rable plus diagonal form.

6.2 Application to the nested multi-shift iteration

Let us apply the above theorems to our specific case, and see how
we can derive convergence results for the reduction to semiseparable
plus diagonal form.

Let as assume we are working with a symmetric matrix A (which
is naturally simple), with eigenvalues λ1, λ2, . . . , λn. The associated
linear independent eigenvectors are denoted by v1, v2, . . . , vn. As we
proved before, in Section 5, the subspace iteration will only start
working, as soon as the Lanczos-Ritz values, approximate well enough
the dominant eigenvalues, w.r.t. the multi-shift polynomial. In this
section however, we do not need to worry about the Lanczos con-
vergence behavior. Our theoretical upper bound for the convergence
speed, will naturally incorporate this Lanczos influence on the con-
vergence.

Let T = 〈vl, vl+1, . . . , vn〉 and U = 〈v1, v2, . . . , vl−1〉. In this sec-
tion we will derive an upper bound for the convergence towards the
subspace T .

The outcome of step m in the reduction algorithm is the matrix
A(m+1) = QT

0:mA
(0)Q0:m, and we are interested in small subblocks

of this matrix. (Assume m ≥ n − l + 1, otherwise there are not yet
subspace iteration steps performed on the lower right (n − l + 1) ×
(n− l+1) block.) Using Lemma 1, we know that this is related to the
orthogonal transformation matrix Q0:m. Partition the matrix A(m+1)

in the following way:

A(m+1) =

[

A
(m+1)
11 A

(m+1)
12

A
(m+1)
21 A

(m+1)
22

]

,

where A
(m+1)
22 is of size (n − l + 1) × (n − l + 1). Denote with Ŝ

the space spanned by the last n− l + 1 components of Q0:m. (Hence

Ŝ = Q0:m〈el, . . . , en〉.) Then we have by Lemma 1 that

‖A(m+1)
21 ‖2 ≤ 2

√
2 ‖A(0)‖2 d(Ŝ, T ).

as κ2 = 1, because Q0:m is an orthogonal matrix.
To determine the distance between Ŝ and T one can apply Theo-

rem 8. As we are in step m of the reduction algorithm, we can apply
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Theorem 6 for k = l, this means that (with η = l − n+m):

Q0:m〈el, . . . , en〉 = p̂η(A)〈f (m)
l , p̂η+1:η+1(A)f

(m)
l+1 , . . . , p̂m:η+1(A)f

(m)
n 〉.

This

Ŝ = p̂η(A)S,

with

S = 〈f (m)
l , p̂η+1:η+1(A)f

(m)
l+1 , . . . , p̂m:η+1(A)f

(m)
n 〉.

Applying Theorem 8 gives us the following upper bound for the dis-
tance between Ŝ and T . For

r =
max1≤j≤l−1 |p̂η(λj)|
minl≤j≤n |p̂η(λj)|

,

the following upper bound is obtained

d(Ŝ, T ) ≤ C r,

where

C =
d(V −1S, V −1T )

√

1− d(V −1S, V −1T )
.

Summarizing this deduction we get that the norm ‖A(m+1)
21 ‖2 is bounded

as follows:

‖A(m+1)
21 ‖2 (11)

≤ 2
√
2 ‖A(0)‖2

(

d(V −1S, V −1T )
√

1− d(V −1S, V −1T )

)

(

max1≤j≤l−1 |p̂η(λj)|
minl≤j≤n |p̂η(λj)|

)

.

If one is interested in the bound for the next iterate m + 1, one has
to use in fact another subspace S̃. But, due to the specific structure

of the vectors f
(m)
j (see Theorem 6), the subspaces S and S̃ span

the same space. Hence, the distance remains the same, and only the
polynomials in Formula 11 determine the change in norm of the sub-
block. This means that once the subspace iteration starts working
on a specific part, one can calculate the constant C, and it will not
change anymore.

In practice, the constant C, can be very large as long as the dom-
inant eigenvectors, w.r.t. the polynomial pη, are not present in the
Krylov subspace, and hence the Lanczos-Ritz values are not close
enough to the dominant eigenvalues, w.r.t. the polynomial pη. This
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constant can create a delay in the convergence of the subspace itera-
tion behavior. The influence of the Lanczos convergence behavior on
the subspace iteration is therefore captured in the constant C.

Let us give a traditional example on the convergence speed. We
will only present the results, more information can be found in [16].
The polynomial considered here, namely p̂η(λ), is in fact a multipli-
cation between several polynomials:

p̂η(λ) = pη(λ)pη−1(λ) · · · p2(λ)p1(λ).

Assume all pi(λ) = p(λ) = λ − d, this means, that we always
consider the same shift d. If d = 0, we get the power method. Ordering
the eigenvalues such that: |p(λ1)| ≤ |p(λ2)| ≤ . . . ≤ |p(λn)|. Assume
l to be chosen such that

ρ =
max1≤j≤l−1 |p(λj)|
minl≤j≤n |p(λj)|

=
|p(λl−1)|
|p(λl)|

< 1,

then we get that r = ρη, and hence we get linear convergence.
In the last section on the numerical experiments, we calculate

some of these bounds in real experiments and we observe that this is
a valuable and usefull upper bound in practice. Moreover, we will see
that one can use Formula 11 to predict possible convergence behavior
to eigenvalues.

7 Numerical experiments

In this section, numerical experiments are given, illustrating the the-
oretical results presented in this paper. Several types of experiments
will be performed. We will investigate the delay of convergence caused
by the Lanczos-Ritz values behavior, we will experimentally check the
convergence speed of the subspace iteration and we will present some
experiments in which the diagonal is chosen in such a way to reveal a
specific part of the spectrum. Moreover, we will start the numerical
experiments with a section, in which we compare the complexity of
the different reduction algorithms.

All the experiments are performed in Matlab5. We use Matlab-
style notation. With zeros(i, j), we denote a zero matrix with i rows,
and i columns, with ones(i, j), we denote a matrix with all entries
equal to 1 of dimension i×j, with rand(i, j) we denote a matrix of di-
mension i×j, with entries random chosen from a uniform distribution
between 0 and 1.

5 Matlab is a registered trademark of the Mathworks inc.
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7.1 Complexity analysis

In this section we will briefly compare the complexity of computing
the eigenvalues of a symmetric matrix, via the reduction methods
covered in this manuscript. Let us start first with comparing the
complexities of the reduction methods.

To reduce a symmetric matrix to tridiagonal form, we only need
to perform Householder transformations. The cost of performing a
symmetric Householder transformation on a matrix of size n equals
4n2+8n+7 operations, leading to a global reduction cost of 4/3n3+
O(n2). This cost is shared by the reduction to semiseparable form,
and one cannot get rid of this n3 term.

The cost of the chasing steps performed in the reduction to semisep-
arable and semiseparable plus diagonal form equals (for a block of size
n):

α(n− 1) + β,

with α = 18, β = 9 for the reduction to semiseparable form, and
α = 20, β = 13, for the reduction to semiseparable plus diagonal
form. We chose α = 0 = β in case the matrix is reduced to tridiagonal
form.

During the reduction, deflation of blocks may occur. Deflating
these blocks has its influence on the complexity of the chasing, but
it also heavily influences the complexity of the algorithms for com-
puting the eigenvalues, as they work on smaller blocks. Let us firstly
investigate the reduction algorithms.

Suppose we reduce a matrix A to semiseparable (plus diagonal)
form. During the reduction we obtain convergence to k blocks, which
we can deflate. Suppose the k blocks have the following sizes, in order
of deflation: n1, n2, n3, . . . , nk. Each of the blocks is deflated after
l1, l1 + l2, l1 + l2 + l3, . . . steps.

This means that the global cost of reducing a matrix to one of the
three forms is the following one. In order to deflate the first block,
we need to perform

l1
∑

i=1

(

α(i− 1) + β + 4(n− i)2 + 8(n− i) + 7
)

operations. To deflate the second block, an extra

l2
∑

i=1

(

α(i− 1 + l1 − n1) + β + 4(n− i− l1)
2 + 8(n− i− l1) + 7

)
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operations are needed. Globally, in order to deflate block q with 1 ≤
q ≤ k we need

q
∑

j=1





lj
∑

i=1



α(i− 1 +

q−1
∑

p=1

(lp − np)) + β

+ 4



n− i−
q−1
∑

p=1

l1





2

+ 8



n− i−
q−1
∑

p=1

l1



+ 7









operations in total. The terms in the first line are related to the chas-
ing, and the terms in the second line are related to the Householder
tridiagonalization.

We know now, the number of operations needed in order to de-
flate blocks inside the reduction algorithms. Remark, that in general,
the reduction to tridiagonal form does not reveal blocks. In order
to compare globally the eigenvalue solvers based on the tridiagonal
reduction, and the reduction to semiseparable (plus diagonal) form,
we need to have estimates on the complexity of the computation of
eigenvalues of semiseparable (plus diagonal) and tridiagonal matrices.

We list here some of the complexities of algorithms for computing
the eigenvalues of a matrix of size n.

– Standard QR-algorithms for tridiagonal matrices cost approxi-
mately 30n for one step of the QR-method, and it takes globally
2 steps to converge to an eigenvalue.

– Standard QR-algorithms for semiseparable (plus diagonal) matri-
ces (see [18,19]) cost approximately 40n for one step, but they
converge slightly faster, at approximately 1.7 steps.

– Divide and conquer for tridiagonal matrices (see [20,21]) takes
n2 +O(n) operations

– A Divide and conquer method for semiseparable (plus diagonal
matrices) (see [7,8]), takes also approximately n2 + O(n) opera-
tions.

Assume now that after a block has been separated in the reduc-
tion method, that we immediately compute its eigenvalues via one
of the above methods. Once we have computed these eigenvalues,
we continue the reduction until another block separates, of which we
compute then the eigenvalues.

In the following figures we compare the speed of convergence of
the above approaches for the computation of the eigenvalues based
on the semiseparable plus diagonal and on the tridiagonal approach.
On the vertical axis the number of eigenvalues computed is depicted,
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and on horizontal axis, the number of flops which were needed to
compute this amount of eigenvalues is presented. The algorithm used
for computing the eigenvalues of both approaches is the standard
QR-algorithms. We considered also the complexity w.r.t. the divide
and conquer methods, but they were rather similar, and hence not
included.
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Fig. 1. Comparison in speed

In the first figure, we compared the speed, in case no blocks are
separated in the semiseparable plus diagonal case. In this case one
can clearly see that the semiseparable case is slightly slower than
the tridiagonal case. The second figure was for a matrix of size 100,
separating two blocks of sizes 4 each after an extra 20 steps in the
reduction procedure. The third figure is for a problem size 2000 and
l1 = 500, l2 = 300 and l3 = 500. The separated blocks are of sizes
100, 50 and 100 respectively. In the second and third figure, the final
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complexity is almost equal, but in the two cases, the semiseparable
approach already revealed eigenvalues, a long time before the tridi-
agonal approach did. In case one is interested in only these largest
eigenvalues, the semiseparable appraoch performs much better. In
the last example only one large block is separated in the reduction of
a matrix of size 1000. After 500 steps in the reduction procedure, a
matrix of size 200 is separated. We see that in this case the semisep-
arable case outperforms the tridiagonal case and moreover, it finds
much faster these 200 dominant eigenvalues.

To conclude we can say, that in case we can tune the convergence
behavior, such that initially blocks are separated, the semiseparable
approach reveals information faster concerning the separated blocks.
Moreover it can outperform the tridiagonal approach.

Future work will be dedicated to chosing the diagonal in such a
manner that deflation of as many blocks as possible is obtained. In
this way we can speed up the computation of the eigenvalues and we
can gain faster information concerning clustered eigenvalues.

7.2 Tuning the multi-shift convergence behavior

In these first experiments we construct several matrices, with specific
eigenvalues, and we choose the diagonal for the reduction in such a
way that it will reveal parts of the spectrum. In the following ex-
amples the eigenvalues Λ = [λ1, . . . , λn] of the matrix are given and
the matrix itself is constructed as A = QT diag(Λ)Q, where Q is the
orthogonal matrix coming from the QR-factorization of a random
matrix. For every example we give the eigenvalues, the diagonal and
the number of Householder and Givens transformations performed
before the reduction algorithm separated a block containing the de-
sired eigenvalues. A block is separated if the norm of the off-diagonal
block is relatively less than 10(−10). Also the maximum absolute error
between the real and the computed eigenvalues is given.

1. Λ = [rand(10, 1); 100] and d = zeros(11, 1).
Number of Householder transformations: 6
Number of Givens transformations: 21
Separated eigenvalue: 100
Maximum absolute error: 4.2633e− 14

2. Λ = [rand(100, 1); 100] and d = zeros(101, 1)
Number of Householder transformations: 6
Number of Givens transformations: 21
Separated eigenvalue: 100
Maximum absolute error: 1.4211e− 14
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3. Λ = [rand(100, 1); 100; 101; 102] and d = zeros(103, 1)
Number of Householder transformations: 10
Number of Givens transformations: 55
Separated eigenvalues: 100, 101, 102
Maximum absolute error: 5.6843e− 14

4. Λ = [1; 100 + rand(10, 1)] and d = 100 ∗ ones(11, 1)
Number of Householder transformations: 6
Number of Givens transformations: 21
Separated eigenvalue: 1
Maximum absolute error: 1.4211e− 14

5. Λ = [1; 100 + rand(100, 1)] and d = 100 ∗ ones(101, 1)
Number of Householder transformations: 6
Number of Givens transformations: 21
Separated eigenvalues: 1
Maximum absolute error: 1.4211e− 14

6. Λ = [1; 2; 3; 100 + rand(100, 1)] and d = 100 ∗ ones(103, 1)
Number of Householder transformations: 11
Number of Givens transformations: 66
Separated eigenvalue: 1, 2, 3
Maximum absolute error: 6.7502e− 14

7. Λ = [ones(50, 1)+rand(50, 1); 100; 10000∗ones(50, 1)+rand(50, 1)]
and
d = [10000, 1, 10000, 1, . . . , 10000, 1, 10000]
Number of Householder transformations: 12
Number of Givens transformations: 78
Separated eigenvalue: 100
Maximum absolute error: 1.8190e− 12

8. Λ = [1; 2; 3; 100 + rand(100, 1); 10000; 10001; 10002] and
d = [zeros(6, 1); ones(96, 1) ∗ 100]
First there is convergence to the cluster with the largest eigenval-
ues:
Number of Householder transformations: 10
Number of Givens transformations: 55
Separated eigenvalues: 1001, 1002, 1003
Maximum absolute error: 3.6380e− 12
Secondly there is convergence to the cluster with the smallest
eigenvalues
Extra number of Householder transformations: 15
Extra number of Givens transformations: 170
Separated eigenvalues: 1, 2, 3
Maximum absolute error: 1.5099e− 14
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The examples illustrate clearly, that the convergence behavior can
be tuned, by choosing different diagonal values, for reducing the ma-
trix to semiseparable plus diagonal form.

7.3 The interaction between both convergence behaviors

In the following experiments, the interaction between the Lanczos
and the multi-shift convergence behavior is shown. For each exper-
iment two figures are given. The left figure shows the Lanczos-Ritz
values behavior and the right figure shows the subspace iteration con-
vergence.

The left figure depicts on the x-axis the iteration step of the re-
duction algorithm and on the y-axis the eigenvalues of the original
matrix. If at step k of the reduction algorithm a Ritz-value of the
lower right block approximates well-enough (closer than 10(−5)) an
eigenvalue of the original matrix, a cross is placed on the intersection
of this step (x-axis) and this eigenvalue (y-axis).

The right figure, shows for all off-diagonal blocks the norm (y-
axis), w.r.t. the iteration step (x-axis).

According to the theory, one should observe decreasing norms,
as soon as the Ritz-values approximate well enough the dominant
eigenvalues w.r.t. the multi-shift polynomial.

In the first example, we generated an example with Λ = [1; 2; 3; 10+
rand(22, 1)], and the diagonal used for the reduction is d = 10 ∗
ones(25, 1). In the left figure, we see that after six steps in the re-
duction algorithm, three eigenvalues are approximated up to 5 digits
by the Lanczos convergence behavior. In the right figure, we see that
after step 6, the norm of 1 subblock, starts to decrease. This means
that the subspace iteration starts separating a block with these three
eigenvalues.

In the second example, a matrix with three clusters in its eigen-
values, was generated: Λ = [1; 2; 10 + rand(21, 1); 100; 101], and the
diagonal used for the reduction d = 10 ∗ ones(25, 1). As the eigenval-
ues are separated in three clusters and two clusters are both dominant
with respect to the multi-shift polynomial, we would expect two clus-
ters to be separated by the reduction to semiseparable plus diagonal
form. This is exactly what we observe in Figure 3. The Lanczos Ritz
values approximate both clusters (see the left figure), and as soon as
these clusters are well enough approximated, the subspace iteration
starts converging. The subspace iteration converges to two clusters,
and hence two subblocks show a decreasing norm.
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Fig. 2. Example 1
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Fig. 3. Example 2

Continuing with this last example, but changing the diagonal d,
should only influence the subspace convergence. This can clearly
be seen in Figure 4. In the left figure we chose d = [100; 101; 10 ∗
ones(23, 1)] and in the right figure d = [100; 101; 100; 101; 100; 101; 10∗
ones(21, 1)]. For the left figure, we see that the convergence towards
the small eigenvalues starts, but then the norm starts to increase
again, and finally we get only convergence towards the eigenvalues
100, 101. For the second polynomial however, we do get convergence
to the smaller eigenvalues. (More information on this behavior can
be found in the next section.)

In the last example (see Figure 5) convergence is forced into the
middle of the spectrum of the matrix. The considered matrix has
eigenvalues Λ = [ones(50, 1) + rand(50, 1); 100; 10000 ∗ ones(50, 1) +
rand(50, 1)] and d = [10000, 1, 10000, 1, . . .]. This forces convergence
towards the middle of the spectrum. As soon as there is convergence
of the Ritz values towards the eigenvalue 100, the subspace itera-
tion starts working. We can see that the convergence rate is not as
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Fig. 4. Example 3

smooth as in the other cases, this is due to the changing roots in the
polynomials pi(λ).
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7.4 The multi-shift convergence speed

In this last subsection with numerical experiments we will investigate
the upper bound for the convergence speed as presented in Section 6.6

In the following experiments the figures show the norm of the sub-
matrix, which should decrease in norm, and the upper bound for this

6 The implementation used in the previous sections is based on the Givens-vector
representation (see [13]) and is therefore more stable than the implementation used
in this section, for generating the figures and calculating the constant C. That is
why we get a horizontal line in the figures, once the norm of a subblock reaches the
machine precision. This means that using this implementation, the norm of the
subblocks cannot, relatively spoken, go below the machine precision, in contrast
to the figures in the previous section.



On the convergence properties of orthogonal similarity transformations 39

subblock. The upperbound is dependent of the following factor:

max1≤j≤l−1 |p̂η(λj)|
minl≤j≤n |p̂η(λj)|

.

To obtain the norm of a subblock, we need to reorder at every step
of the method the eigenvalues such that |p̂η(λ1)| ≤ |p̂η(λ2)| ≤ . . ..
In our computation of the upper bound, we assume however, that
we know to which eigenvalues convergence will occur. Hence, we can
divide the eigenvalues into two clusters, a cluster λ1, . . . , λl−1 and a
cluster λl, . . . , λn. We know that when there is convergence we have
that

max
1≤j≤l−1

|p̂η(λj)| ≤ min
l≤j≤n

|p̂η(λj)|.

Hence our computed upper bound will be the correct one, in case
there is convergence to the eigenvalus λl, . . . , λn.

For every example we also give the constant C, which is a measure
for the influence of the Lanczos convergence behavior on the subspace
iteration. (see Section 6.)

The first example is similar as in the previous two sections. A
matrix is constructed with eigenvalues Λ = [1; 2; 3; 10 + rand(22, 1)],
the diagonal d = 10 ∗ ones(25, 1). We expect convergence to a 3 × 3
block containing the three eigenvalues [1, 2, 3]. The norm of the off-
diagonal block is plotted and decreases linearly as can be seen in the
left figure of Figure 6. The size of the constant C, for calculating the
convergence rate equals 1.0772 ∗ 104. In the right figure, we plotted
almost the same example, but the sizes of the larger eigenvalues, are
chosen smaller now. The eigenvalues were Λ = [1; 2; 3; 5+rand(22, 1)],
and d = 5 ∗ ones(25, 1), this clearly has an effect on the slope of line
representing the convergence speed, the size of the constant C equals
1.8409 ∗ 103. In both figures we see that our upper bound predicts
well the convergence behavior.

Also in the case of a diagonal with varying elements, our up-
per bound provides an accurate estimate of the decay of the corre-
sponding subblock. We consider the example with eigenvalues Λ =
[1; 2; 10 + rand(21, 1); 100; 101]. If we choose as diagonal d = 10 ∗
ones(25, 1), we get a similar behavior as above (see the left of Fig-
ure 7), and convergence to the cluster containing the eigenvalues
100, 101. The constant C = 3.4803∗103. To obtain however the cluster
1, 2 we need to change our diagonal to e.g. d = [100; 101; 100; 101; 100; 10∗
ones(21, 1)]. Also in this case our upper bound provides an accu-
rate estimate of the decay (see the right of Figure 7). The constant
C = 2.0396 ∗ 103.
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Fig. 6. Example 5
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Fig. 7. Example 6

In the following experiment we illustrate, that also if convergence
is slowed down, our upper convergence bound predicts a rather accu-
rate estimate of the convergence rate. We consider here the same ma-
trix three times, with varying values for the diagonal, used to reduce
it to semiseparable plus diagonal form. The matrix has eigenvalues
Λ = [1 + rand(20, 1); 100 + rand(2, 1)]. The diagonals considered for
the reduction algorithm are the following ones:

d1 = [zeros(22, 1)],

d2 = [100; zeros(21, 1)],

d3 = [100; 100; 100; zeros(21, 1)].

In the first case we expect normal convergence, in the second case
a delay, and in the third one an even larger delay. This behavior is
shown in Figure 8, where the reduction with d1, d2 and d3 from left
to right is shown.

In the last experiments we illustrate false convergence, and how
our upper bound can deal with, or predicts, it. Suppose we have a
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Fig. 8. Example 7

matrix with eigenvalues Λ = [1 + rand(2, 1); 5 + rand(36, 1); 10 +
rand(2, 1)], suppose the diagonal is chosen in the following way: d =
[10; 10; 10; 10; 10; 10; 5 ∗ ones(38, 1)]. We observe in the convergence
behavior (left of Figure 9), that first there is convergence, but then
suddenly the subblock starts to diverge again. This divergence was
predicted by the convergence bound. This means that our designed
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Fig. 9. Example 8

polynomial was not yet strong enough, to force convergence to the
two small eigenvalues. If we however would have chosen our diagonal
as d = [10, 5, 10, 5, . . .], we would have been able to force convergence
towards the two small eigenvalues (see right of Figure 9).

Let us conclude with almost the same experiment, but let us
increase the number of eigenvalues in the middle of the spectrum.
The eigenvalues are now Λ = [1 + rand(2, 1); 5 + rand(66, 1); 10 +
rand(2, 1)], and our diagonal values are d = [10; 10; 10; 10; 10; 10; 10; 5∗
ones(10, 1); zeros(58, 1)]. Similar like in the previous example, we ob-
serve first (see left of Figure 10) false convergence towards the small
eigenvalues. We see that our upper bound goes up very fast. In reality
however we see that norm of that subblock, starts decreasing again in
size, so there is convergence towards a block. This block does however
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not contain the small eigenvalues anymore, but the largest two. This
is depicted in the second figure (right of Figure 10), where we plotted
the upper bound related to convergence of the largest eigenvalues. It
is clear that the upper limit predicts that the separated block will
contain the largest eigenvalues, instead of the smallest ones
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Fig. 10. Example 9

These last examples illustrate that the theoretical upper bound
computed for this multishift subspace iteration is correct. Moreover
this upper bound can also be used as a theoretical device to predict
the eigenvalue convergence.

8 Conclusions

In this paper we presented theoretical results explaining the conver-
gence behavior of the reduction to semiseparable plus diagonal form.
As we proved that also the reduction to semiseparable and tridiagonal
form can be seen as special cases of the reduction to semiseparable
plus diagonal form, we know that also the presented theorems are
valid for these reduction methods. Also a theoretical bound for the
convergence speed was given.

In a final section we illustrated our theoretical findings by experi-
ments, related to the tuning of the convergence behavior, the interac-
tion between the Lanczos convergence and the subspace convergence
and the bound on the convergence rate.
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