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1 u The Dynamic Turn
in Epistemic Logic

The main topic of this thesis is the so-called dynamic turn in epistemic logic.
In particular, I will argue that although this dynamic turn was initially mainly
inspired by technical issues in computer science and game theory, it also has
great philosophical relevance.

This introductory chapter is organized as follows. Section 1.1 provides a
brief history of epistemic logic, focusing on the role and importance of the dy-
namic turn within this history. As an illustration of the dynamic turn, Section 1.2
discusses one of the simplest and most well-known systems of dynamic epis-
temic logic, viz. public announcement logic. Section 1.3 distinguishes between
a weak and a strong interpretation of the dynamic turn. Section 1.4 presents the
main results obtained in this thesis. Finally, Section 1.5 provides a chapter-per-
chapter overview of the thesis, and indicates how the various chapters relate to
each other and to the main line of argumentation.

1.1 A Brief History of Epistemic Logic

The origins. The starting point of ‘modern’ epistemic logic is commonly taken
to be Hintikka’s seminal Knowledge and Belief (1962), in which knowledge is
treated as a modal operator.1 We thus work with formulas of the formKϕ, which
intuitively means that the (unnamed) agent knows that ϕ. If there are several

1Many logical issues pertaining to epistemic and modal operators were already discussed in
great detail, but of course informally, in medieval philosophy (Boh 1993, Knuuttila 1993, Boh
2000, Martens 2011, Uckelman 2011a). For a more comprehensive historical overview of epis-
temic logic, see Gochet and Gribomont (2006).
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1 . The Dynamic Turn in Epistemic Logic

agents, we add agent indices to the K-operators; for example, Kaϕ ∧ ¬Kbϕ
means that agent a knows that ϕ, but agent b does not.

These operators are interpreted on Kripke models, which are triples of the
form M = 〈W,R, V 〉, where W is a non-empty set of states or possible worlds,
R is a binary relation over W , and V is a valuation function that specifies for
each atomic proposition the states in which it is true. The relation R is the
agent’s accessibility relation; it specifies which states are compatible with her
knowledge in any given state. For example, (w, v) ∈ R means that state v is
compatible with the agent’s knowledge in statew; i.e. based on all the knowledge
that she has in state w, the agent is unable to exclude that v might be the actual
state. (If there are several agents, then for each agent i there is a distinct relation
Ri in the Kripke model.) The most important semantic clause looks as follows:

M, w |= Kϕ iff for all v ∈W : if (w, v) ∈ R then M, v |= ϕ. (1.1)

Informally, this clause says that the agent knows that ϕ in a state w iff ϕ is true
in all states that are accessible from w. Note that this clause should not be seen
as a philosophically substantial definition of knowledge, since that would plainly
result in circularity (the agent’s knowledge in a state w is ‘defined’ in terms of
the accessibility relation R, which is itself explicated in terms of (compatibility
with) the agent’s knowledge in w).

As a toy example, consider a model M = 〈W,R, V 〉 with just three possible
worlds: W = {w, v, u}. In w it holds that Barack Obama is currently visiting
Wisconsin, in v it holds that he is currently visiting Vermont, and finally, in u it
holds that he is currently visiting Utah. We thus introduce three atomic propo-
sitions visitWisconsin, visitVermont and visitUtah, and specify the following
valuation function V :

V (visitWisconsin) = {w}, V (visitVermont) = {v}, V (visitUtah) = {u}.

Furthermore, the model specifies that (w,w) ∈ R and (w, v) ∈ R, but (w, u) /∈
R. This means that based on all the knowledge that she has in state w, the agent
is able to exclude that u might be the actual state, but unable to exclude that
w or v might be the actual state. Hence, she knows that Obama is not visiting
Utah, but she does not know that he is visiting Wisconsin (although this actually
happens to be true in w). By applying (1.1), we can check that these statements
are actually true at the state w in the model M; for example:

• M, w |= K¬visitUtah,
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• M, w |= ¬KvisitWisconsin,

• M, w |= K(visitWisconsin ∨ visitVermont).

The fact that (1.1) cannot be taken as a definition of knowledge does not
mean that it is philosophically useless. Its main advantage is that it allows us
to establish correspondences (in a mathematically precise sense) between philo-
sophical principles about knowledge on the one hand, and mathematical prop-
erties of the accessibility relation on the other. Typical examples of such philo-
sophical principles include (i) factivity (if the agent knows that ϕ, then ϕ is true),
(ii) positive introspection (if the agent knows that ϕ, then she knows that she
knows this) and (iii) negative introspection (if the agent does not know that ϕ,
then she knows that she does not know this). These philosophical principles can
be shown to correspond to the mathematical properties of reflexivity, transitivity
and Euclideanness, respectively. The table below provides a summary:2

philosophical principle mathematical property
(i) Kϕ→ ϕ ∀w ∈W : wRw

(ii) Kϕ→ KKϕ ∀w, v, u ∈W :
(
wRv and vRu

)
⇒ wRu

(iii) ¬Kϕ→ K¬Kϕ ∀w, v, u ∈W :
(
wRv and wRu

)
⇒ vRu

Using correspondences such as these, one can argue for or against a philo-
sophical principle about knowledge by arguing for or against the mathematical
property of the accessibility relation that it corresponds to. For example, one can
argue against positive introspection by pointing out that epistemic accessibility
fails to be transitive. Let r, o and y be possible worlds in which the agent is
seeing a piece of paper that is respectively red, orange and yellow. It might well
be that because of her limited perceptual capacities, the agent is unable to distin-
guish between the red and orange pieces of paper, i.e. even if the piece of paper
in front of her is actually red, the agent cannot exclude that it might be orange:
(r, o) ∈ R. Similarly, she is unable to distinguish between the orange and yellow
pieces of paper, i.e. even if the piece of paper in front of her is actually orange,
the agent cannot exclude that it is might be yellow: (o, y) ∈ R. However, from
(r, o) ∈ R and (o, y) ∈ R we cannot automatically conclude that also (r, y) ∈ R
(failure of transitivity of the accessibility relation R). After all, the visual con-
trast between the red and yellow pieces of paper might be so clear that the agent

2I will often write wRv instead of (w, v) ∈ R.
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is in fact able to distinguish between them, i.e. if the piece of paper in front of her
is actually red, the agent can exclude the possibility that it is yellow: (r, y) /∈ R.
It is easy to see that in this model, when the agent is presented with a red piece
of paper, she will know that the paper is not yellow, but she will not know that
she knows this (failure of positive introspection).

In a similar vein, one can also introduce a belief operator, and study vari-
ous philosophical principles about the interaction between knowledge and belief.
Typical examples include doxastic-epistemic introspection (if the agent believes
that ϕ, then she knows that she believes this; formally: Bϕ → KBϕ) and dox-
astic confidence (if the agent believes that ϕ, then she believes that she knows
this; formally: Bϕ → BKϕ). It can be proved that certain of these interac-
tion principles (in combination with principles about the individual behavior of
knowledge and belief) lead to a collapse of knowledge and belief, in the sense
that Kϕ and Bϕ become equivalent (van der Hoek 1993, Halpern et al. 2009).
Many philosophers maintain that knowledge and belief are distinct mental states,
and hence, they cannot simultaneously accept all of the principles that lead to the
collapse.

In summary, then, this line of work in epistemic logic is concerned with is-
sues that are sometimes quite technical, but that are also philosophically relevant.
This does not mean that the technical results themselves constitute philosophical
positions, but rather that they can be usefully applied to conceptually elucidate
various philosophical debates. Two of the grand syntheses of this line of work
are Lenzen (1978) and Lenzen (1980).3

Applications in computer science and game theory. As time progressed, epis-
temic logic started being used more and more by computer scientists, game the-
orists, etc. These scholars make use of epistemic logic to formally analyze the
intricate epistemic aspects of situations that frequently arise in their fields of
study. Typical examples from multi-agent systems (artificial intelligence) are
the so-called ‘muddy children’ puzzle, the ‘sum and product’ puzzle, and the
‘Byzantine generals’ puzzle (Halpern and Moses 1990, van Ditmarsch et al.
2007, 2008). Typical examples from protocol verification (cryptography) are
the so-called ‘dining cryptographers’ puzzle and the ‘Russian cards’ puzzle (van
Ditmarsch 2003, van der Meyden 2011, Pucella forthcoming). In game theory,

3Especially the latter is relevant for our current purposes, since it also studies the connection
between epistemic notions and probabilistic notions, such as ‘being 100% certain that ϕ’. Most of
the systems developed in this thesis also have both an epistemic and a probabilistic component.
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epistemic logic is typically used to analyze the epistemic conditions of solution
concepts for various types of games, such as the backward induction solution
for games of perfect information (Aumann 1995, Halpern 2001, Kaneko 2002,
de Bruin 2008a, Baltag et al. 2009).

To illustrate these kinds of applications, I now describe the Byzantine gen-
erals and Russian cards scenarios4 (without going into their formal analysis, of
course):

Example 1.1 (Byzantine generals). Two army divisions are camped on two hill-
tops, overlooking the enemy city in the valley between them. It is commonly
known by the divisions’ generals that if both divisions attack the enemy simul-
taneously, they will certainly win the battle, while if only one division attacks,
it will certainly lose the battle. The generals wish to coordinate a simultaneous
attack somewhere the next day. They will only attack if it is common knowledge
between them that both of them will attack. The generals can only communicate
by means of a messenger; however, each time this messenger carries a message
from one general to the other, he has to pass through the valley, and runs the risk
of getting caught by the enemy—thus leaving the message undelivered. The first
general sends the messenger to the second general, with the proposal to attack at
8AM. Because of the possibility of the messenger getting caught, the first gen-
eral does not know whether his message actually reached the second general. To
eliminate this uncertainty, the second general sends the messenger back to the
first to confirm that he has indeed received the message. But of course, when
going back from the second to the first general, the messenger again runs the risk
of being caught by the enemy, etc. Assume that the messenger actually never
gets caught (i.e. each message that is sent by one general actually reaches the
other one). What will happen?5

Example 1.2 (Russian cards). Consider three agents: Ann, Bob, and Cath. There

4These examples might look far removed from real-world applications of computer science.
However, they mainly function as small-scale, abstract and/or idealized scenarios to capture cer-
tain intuitions. In this sense, their role is similar to that of fake barns, cleverly disguised mules
and the like in contemporary epistemology. In Demey (forthcoming c) I have suggested that the
medieval philosopher William of Ockham already used such scenarios in his epistemological the-
orizing.

5For the interested reader: it can be shown that despite the messenger actually never getting
caught, the generals do not attack. Each time the messenger successfully reaches the other general,
an additional layer of knowledge is produced, but the generals never reach the common knowledge
that is required to actually launch the attack.
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are seven cards on the table, with the numbers 1 to 7 on them. The cards are
turned such that the numbers are not visible. Ann and Bob each draw three
cards, making sure that no one else sees which cards they have drawn. Cath gets
the remaining card. For the sake of concreteness, let’s say that Ann has cards 1,
2 and 3; Bob has cards 4, 5 and 6; and Cath has card 7. If all has gone well, each
agent now knows which cards she has, but does not know which cards the two
other players have.6 Can Ann and Bob inform each other about which cards they
have, without revealing any information to Cath? All communication has to be
public, i.e. everything that Ann and Bob say to each other can be heard by Cath.7

It should be quite clear from these examples that this line of work in epis-
temic logic is concerned with topics that are of great importance in computer
science, game theory, etc., but that have hardly any direct philosophical rele-
vance. Some of the grand syntheses of the use of epistemic logic in computer
science and game theory are Fagin et al. (1995), Meyer and van der Hoek (1995),
de Bruin (2010) and Perea (2012).

The dynamic turn. Many of the applications of epistemic logic in game theory
and computer science mentioned above involve not only reasoning about agents’
knowledge at a single point in time, but also about how this knowledge changes
over time. Hence, to adequately formalize these examples, we need systems of
epistemic logic that are able to represent this epistemic dynamics. Unfortunately,
however, the first systems of epistemic logic were all entirely static. For example,
Hintikka (1962, pp. 7–8) explicity ruled out occasions

on which people are engaged in gathering new factual information.
Uttered on such an occasion, the sentences ‘I don’t know whether
p’ and [later] ‘I know that p’ need not be inconsistent.

The total absence of dynamics in the early systems of epistemic logic was already
severely criticized by Scott (1970, p. 161):

6Except, of course, for the fact that if an agent has a certain card, then she trivially knows that
the two other players do not have that card.

7For the interested reader: a protocol achieving the stated goals looks as follows (many others
are possible). First, Ann says: ‘The three cards I hold are either cards 1,2,3, or 1,4,5, or 1,6,7, or
2,4,6, or 3,5,7’; next, Bob says: ‘Cath holds card 7’. Checking that this protocol indeed ‘works’
is exactly the task that protocol analysts use epistemic logic for.
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Here is what I consider one of the biggest mistakes of all in modal
logic: concentration on a system with just one modal operator. The
only way to have any philosophically significant results in [. . . ]
epistemic logic is to combine those operators with [e.g.] tense oper-
ators (otherwise how can you formulate principles of change?).

To be able to adequately analyze the scenarios they were interested in, com-
puter scientists and game theorists thus had to develop new, dynamic systems of
epistemic logic. These dynamic epistemic logics have proved to be highly suc-
cessful tools for analyzing intricate epistemic scenarios. This line of work has
therefore rapidly been expanding in the past few years, and is commonly referred
to as the dynamic turn in epistemic logic.

It is important to realize that this dynamic turn in epistemic logic is part of a
broader dynamic turn in logics of rational agency, and even in logic in general.
For example, according to van Benthem (2003, p. 503),

over the past decades computer science has also begun to influence
the research agenda of logic. [. . . ] modern logic is undergoing a
Dynamic Turn, putting activities of inference, evaluation, belief re-
vision or argumentation at centre stage.

A good example of this phenomenon can be seen in the field of preference logic,
which models agents’ preferences. In one of the earliest works on preference
logic, von Wright (1963, p. 23) wrote:8

The preferences which we shall study are a subject’s [. . . ] prefer-
ences on one occasion only. Thus we exclude [. . . ] the possibility
of changes in preferences. [von Wright’s emphasis]

Von Wright’s exclusion of preference changes stands in sharp contrast to con-
temporary preference logics, in which preference dynamics plays an important
role (van Benthem and Liu 2007, Girard 2008, Liu 2011).

1.2 Public Announcement Logic

To illustrate the dynamic turn in epistemic logic, I will now informally discuss
public announcement logic, which is by far the simplest system of dynamic epis-
temic logic, and which was historically the first such system to be studied in

8Note the striking similarity between von Wright’s quotation and that of Hintikka given earlier.
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detail (Plaza 1989, Gerbrandy and Groeneveld 1997). The discussion has in-
tentionally been kept as informal as possible; technical details will be discussed
extensively in the remainder of this thesis.

Recall that classical epistemic logic is static: it aims to describe the knowl-
edge of one (or several) agent(s) at one point in time. In real life, however, an
agent’s knowledge can change over time. Consider the following three examples:

Example 1.3. Ann does not know that Paris is the capital of France. She is
chatting with her best friend, Bob. During their conversation, Bob tells Ann that
Paris is the capital of France. After this dialogue, Ann does know that Paris is
the capital of France.

Example 1.4. Cath does not know that Paris is the capital of France. She is
chatting with Bob (who knows that Paris is the capital of France). During their
conversation, Bob tells Cath that Brussels is the capital of France. After this
dialogue, Cath thinks that she knows that Brussels is the capital of France, but
actually she does not know this.

Example 1.5. Fred and Tom are competing treasure hunters, looking for a par-
ticular treasure. Fred finds a map, thereby learning the treasure’s exact location.
A few miles away, Tom has a conversation with an old magician, who tells him
the treasure’s exact location. The day before they want to go dig up the treasure,
they accidentally meet each other. There is a strange tension between them. . .

Example 1.3 is a straightforward case of a learning process (i.e. a transition
from not-knowing to knowing) through communication. In Example 1.4, Bob is
deceiving Cath: he knows a certain proposition to be false, yet still he commu-
nicates it to Cath. This deception leads Cath to think that she has acquired new
knowledge (i.e. that she has gone through a learning process), but actually she
hasn’t. Finally, Example 1.5 illustrates the difference between private and public
communication: Fred and Tom have both, through independent, private events,
learned about the treasure’s location. Hence, they both know the treasure’s loca-
tion, but they do not know of each other that they know it. When they meet each
other, they do their best not to share their newly acquired knowledge (although
both of them actually already possess it).

These examples show the variety and subtlety of dynamic epistemic phenom-
ena. All of these phenomena (including deception, private communication, etc.)
can be studied in the general system of dynamic epistemic logic, viz. product
update logic (Baltag et al. 1998, Baltag and Moss 2004, Baltag and Smets 2008,
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van Benthem 2011). In this thesis, however, we will focus on (the epistemic and
probabilistic aspects of) one particular type of epistemic dynamics, viz. public
announcements.9 Here is a typical example:

Example 1.6. Ann, Bob and Cath are all sitting together in the living room,
watching television. The news starts, and the newsreader announces that there
will be a train strike tomorrow. Ann, Bob and Cath now know that there will be a
train strike tomorrow, and they start discussing the consequences this strike will
have for them.

In this scenario, the newsreader’s message is a public announcement. This
particular type of dynamic phenomenon has at least three distinct features. First
of all, the announcement is made by an outside source (which will not be ex-
plicitly represented in the logic). In the scenario, this outside source is the news-
reader on television, not Ann, Bob or Cath. (Contrast this with Examples 1.3
and 1.4.) Second, the announcement is truthful: it is indeed true that there will
be a train strike tomorrow. Only truths can be publicly announced. (Contrast this
with Example 1.4.) Third, the announcement is public: afterwards, Ann, Bob
and Cath not only know that there will be a train strike tomorrow, but they also
know of each other that they know it. (Contrast this with Example 1.5.) This is
clear from the fact that without any further ado, they start discussing the conse-
quences of the strike. Ann, for example, does not need to tell Bob and Cath that
there will be a strike; she knows that Bob and Cath were also watching television,
and have thus heard the newsreader’s announcement.

Public announcement logic captures this dynamics by means of a model-
transforming operation. The initial situation is modeled by means of a Kripke
model M: this represents the state of the world (ontic information) and the
agents’ knowledge (epistemic information) before any announcement has been
made. The public announcement of a formula ϕ transforms the model M into a
new model M|ϕ. This model transformation can be defined in such a way that
if M accurately represents all the ontic and epistemic information of the initial
situation (before the public announcement of ϕ), then M|ϕ accurately represents
all the ontic and epistemic information of the terminal situation (after the public
announcement of ϕ).

9There are three exceptions to this claim: Subsection 3.4 discusses a probabilistic extension
of the general product update mechanism, Chapter 4 studies public announcements, but also so-
called ‘radical upgrades’, and Subsection 8.3.3 focuses on the dynamic modal operators from
propositional dynamic logic.
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To be able to talk about this model transformation, a dynamic operator [!·]·
is introduced into the formal language. Intuitively, the formula [!ϕ]ψ means that
after a public announcement of ϕ (assuming it can be publicly announced at
all), it will be the case that ψ. The parenthetical remark is necessary, since if
ϕ happens to be false, then it cannot be publicly announced at all (recall the
truthfulness of public announcements). The dual of [!ϕ]ψ is 〈!ϕ〉ψ ≡ ¬[!ϕ]¬ψ,
which means that ϕ can actually be publicly announced (i.e. ϕ is true), and after
this public announcement of ϕ, it will be the case that ψ. The semantics of these
dynamic operators looks as follows:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ,
M, w |= 〈!ϕ〉ψ iff M, w |= ϕ and M|ϕ,w |= ψ.

Hence, to evalutate [!ϕ]ψ and 〈!ϕ〉ψ at (a state w in) a model M, we have to
check the truth value of ψ at (the same state w in) the transformed model M|ϕ.
The conditional structure of the first clause expresses the truthfulness assumption
of public announcements.

The exact definition of the updated model M|ϕ in terms of its ‘ingredients’
M and ϕ will be discussed later. For now, it suffices to note that this model
transformation, together with the [!ϕ]- and 〈!ϕ〉-operators to describe it, allows us
to formalize scenarios such as Example 1.6 in a highly compact and natural way.
For example, if M represents the situation before the newsreader’s announcement
of the train strike, w is the actual state, and p expresses that there is a train strike
tomorrow, then we have:

M, w |= ¬Kap ∧ ¬Kbp ∧ [!p]
(
Kap ∧Kbp ∧KaKbp ∧KbKap

)
.

This says that initially (i.e. before the newsreader’s announcement), Ann and Bob
do not know that there will be a train strike tomorrow, but after the newsreader’s
announcement, Ann and Bob do know that there will be a train strike tomorrow,
and furthermore, they also know of each other that they know this.

1.3 Weak and Strong Interpretations of
the Dynamic Turn in Epistemic Logic

In this section, I will distinguish between a weak and a strong interpretation of
the dynamic turn, and argue that on the weak interpretation, the dynamic turn is
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hardly philosophically relevant, but that on the strong interpretation, it does turn
out to be highly philosophically relevant. I will also discuss some case studies
that illustrate the strong interpretation of the dynamic turn.

The weak interpretation of the dynamic turn in epistemic logic stays rather
close to the historical facts. According to this interpretation, the primary—if
not the only—use of dynamic epistemic logics is to analyze scenarios such as
those described in Subsection 1.1, which originally inspired the development
of these logics. These examples explicitly contain various types of epistemic
dynamics; for example, in the Russian cards scenario (recall Example 1.2), it
is quite clear that Ann and Bob’s communication plays an important role, and
should be modeled as a sequence of public announcements. As was explained
in Subsection 1.1, the large majority of these examples come from computer
science and game theory.10

On this interpretation, dynamic epistemic logic is severely restricted in scope:
its use lies in analyzing scenarios that mainly (although not exclusively; recall
Footnote 10) come from computer science and game theory. It should not be sur-
prising that the results of these analyses—however useful they may be from the
perspectives of computer science and game theory—will not be of great philo-
sophical significance.

This skepticism about the philosophical importance of dynamic epistemic
logics (and other logics that were historically primarily inspired by applications
in computer science) can be found in many philosophers’ attitudes toward these
logics. For example, it seems to be at least implicitly present in the following
remarks by Korte et al. (2009, p. 544):

epistemic logic again became very popular because of the interest of
computer scientists in the 1980s. A philosophically more interesting
development than formal calculi may be in the speculation concern-
ing objective and subject-bound quantification. [my emphasis]

In contrast, the strong interpretation of the dynamic turn in epistemic logic
10This is not to deny that dynamic epistemic logics have also been applied to explicitly dynamic

issues that come from philosophy, rather than computer science or game theory. A good example
is the formalization of the medieval theory of obligationes in dynamic epistemic logic (Uckelman
2011b,c, 2013). However, such philosophical applications are much more rare than applications
to explicitly dynamic scenarios from computer science and game theory. Furthermore, historically
speaking, these philosophical applications are much more recent, and certainly do not belong to
the examples that originally motivated the development of dynamic epistemic logic.
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maintains that dynamic epistemic logics can be used to analyze not only ex-
plicitly dynamic scenarios, but also scenarios, notions, theorems, etc. that prima
facie look entirely static. After all, these analyses might reveal that underneath
their static appearance, these cases contain a lot of dynamics.11 Using dynamic
epistemic logics, we can make this hidden dynamics fully explicit, and thus ob-
tain more fine-grained conceptual analyses. For example, according to van Ben-
them (1996, p. 17),

the motivation for standard logics often contains procedural ele-
ments present in textbook presentations — and one can make this
implicit dynamics explicit.

This kind of conceptual elucidation is one of the primary uses of logic in
philosophy. For example, in Subsection 1.1, I argued for the philosophical sig-
nificance of the early work in epistemic logic by pointing out how this work has
been used to clarify (the relations between) various philosophical notions and po-
sitions.12 In Must Do Better, his self-proclaimed sermon on the current state of
philosophy, Williamson (2007, pp. 288–291) makes similar comments when dis-
cussing the importance of logic—or mathematics in general—for philosophy:13

How can we do better? We can make a useful start by getting the
simple things right. Much even of analytic philosophy moves too
fast in its haste to reach the sexy bits. Details are not given the
care they deserve: crucial claims are vaguely stated, significantly
different formulations are treated as though they were equivalent,
examples are under-described, arguments are gestured at rather than

11Van Benthem (2011) explains this in terms of the distinction between ‘process’ and ‘product’:
some notions (for example, logical proofs) seem to be products (finished derivations), but we
should not ignore the processes that produced them (actually carrying out the derivations).

12For a more concrete example of the use of logic as a means of conceptual elucidation, consider
the cases of epistemic arithmetic and modal-epistemic arithmetic. Epistemic arithmetic formal-
izes the notion of ‘provability’ by means of a single modal operator K (Shapiro 1985); modal-
epistemic arithmetic disentangles this complex notion into the conceptually more primitive notions
of ‘proof’ and ‘possibility’, which are represented by means of operators P and ♦, respectively.
The statement ‘it is provable that ϕ’ is thus no longer formalized as Kϕ, but rather as ♦Pϕ
(Horsten 1993, 1994, Heylen 2013). One of the advantages of this conceptually more fine-grained
analysis is that it allows us to investigate the ♦- and P -operators separately, and then study how
the behavior of the ‘composite’ ♦P -operator arises out of their interactions.

13For a more systematic reflection on formal methods in philosophy, see Dutilh Novaes (2012).
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properly made, their form is left unexplained, and so on. [. . . ] Phi-
losophy can never be reduced to mathematics. But we can often
produce mathematical models of fragments of philosophy and, when
we can, we should. No doubt the models usually involve wild ide-
alizations. It is still progress if we can agree what consequences an
idea has in one very simple case.

On the strong interpretation of the dynamic turn, dynamic epistemic logics
can thus be used as tools for conceptual elucidation, by revealing the essentially
dynamic aspects of seemingly static notions, theorems, etc. To illustrate this, I
will now briefly discuss how dynamic epistemic logics have recently been used to
shed new light on two well-known and seemingly static issues: Fitch’s paradox
of knowability, and the problem of logical omniscience.

Fitch’s knowability paradox states that, given some plausible assumptions
about knowledge and possibility, the plausible claim that all true statements are
knowable entails the highly implausible claim that all true statements are in fact
known (Fitch 1963). This argument has received a great deal of attention from
philosophers and logicians (Brogaard and Salerno 2009, Salerno 2009). At first
sight, it does not seem to involve any dynamics, since it is concerned with claims
about all true statements being knowable/known at a single time; this was em-
phasized by Fitch himself, who wrote that “the element of time will be ignored
in dealing with these various concepts” (Fitch 1963, p. 135). Recently, how-
ever, there have been proposals to formalize the modal aspect of knowability
not as a metaphysical modality, but rather as a dynamic modality: ‘knowable’
then no longer means ‘known in some possible world’, but rather ‘known after
some announcement’ (van Benthem 2004, 2009, Balbiani et al. 2008). On this
reading, the claim that all true statements are knowable turns out be false, de-
spite its intuitive plausibility. A more positive result is that there exist exact (but
highly non-trivial) characterizations of large classes of formulas that are know-
able; interestingly, the so-called Moore sentence p ∧ ¬Kp does not belong to
these classes (Holliday and Icard III 2010).14

14Moore sentences play a central role in Fitch’s argument, which has roughly the following
structure: towards a contradiction, suppose that all true statements are knowable, but not all true
statements are in fact known. Hence, there exists a statement p that is true but not in fact known,
i.e. the Moore sentence p ∧ ¬Kp is true. Furthermore, since all true statements are knowable,
it follows, in particular, that this Moore sentence is knowable. Using some plausible principles
about knowledge, this quickly leads to a contradiction.
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The problem of logical omniscience is a problem for all systems of epis-
temic logic that take knowledge to be a normal modal operator. In such systems,
agents are predicted to be logically omniscient: they know all tautologies, and
their knowledge is closed under logical consequence. This is a serious problem,
and it has even led authors such as Hocutt (1972) to argue that the entire project
of epistemic logic is doomed to fail. It should thus not be surprising that there
exists a wide variety of proposals to solve this problem (Sim 1997, Artemov and
Kuznets 2006, Halpern and Pucella 2011). Many of these proposals come dan-
gerously close to achieving the exact opposite of logical omniscience: the agents
end up being logical idiots, who cannot perform even the simplest piece of log-
ical reasoning. In reaction to this, several authors have proposed principles of
logical competence: if an agent knows the premises of a long and tedious deriva-
tion, then she does not know its conclusion instantaneously, but she can come
to know it by performing the necessary reasoning steps (Duc 1997, Ågotnes and
Alechina 2007, Velázquez-Quesada 2009, van Benthem and Velázquez-Quesada
2010). By explicitly representing these types of inference dynamics, we are thus
able to avoid the extremes of logical omniscience as well as logical idiocy.

Examples such as these illustrate that on its strong interpretation, the dy-
namic turn in epistemic logic is certainly philosophically relevant. It should be
emphasized, however, that this philosophical relevance is of a strictly method-
ological nature (dynamic epistemic logic as a tool for conceptual elucidation),
and is thus independent of any philosophical relevance that the particular topic
under discussion might have. In other words, when dynamic epistemic logic is
used to reveal dynamic aspects of some seemingly static notion X , the philo-
sophical relevance of this analysis is to be situated in the clearer conceptual un-
derstanding of X that it affords us, rather than in the philosophical implications
(if any) of X itself. For example, even if X is a technical notion from game
theory that does not seem to have any philosophical significance, then showing
that X actually has hitherto unknown dynamic aspects will lead to a clearer con-
ceptual understanding of X , which constitutes genuine philosophical progress,
if only in the philosophy of game theory (Grüne-Yanoff and Lehtinen 2012).

1.4 Main Results of the Thesis

The main claim of this thesis is that despite its origins in computer science and
game theory, the dynamic turn in epistemic logic also has great philosophical sig-
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nificance. The overarching argument for this claim was presented in the previous
section. In the remainder of the thesis, I will further develop this argument by
providing various new applications of dynamic epistemic logic, and discussing
their philosophical significance.

First of all, I will discuss three new examples of the strong interpretation of
the dynamic turn, by showing how dynamic epistemic logics can be used to shed
new light on seemingly static topics: Aumann’s celebrated agreeing to disagree
theorem (from game theory), the Lockean thesis about belief and degrees of be-
lief (from epistemology), and the cognitive and epistemic aspects of surprise
(from cognitive science). These three topics all have in common that they not
only involve the agents’ epistemic information, but also their probabilistic infor-
mation. The dynamic behavior of this probabilistic component is non-trivially
related to Bayesian conditionalization (as studied in Bayesian epistemology).

I will also discuss one application of dynamic epistemic logic that is not
directly an illustration of the strong interpretation of the dynamic turn. This ap-
plication lies in logical geometry, which can be described as the systematic study
of the well-known Aristotelian square of oppositions and its various extensions,
variants, etc. I will show how dynamic epistemic logic gives rise to non-trivial
Aristotelian squares and larger diagrams, and discuss their importance for the
philosophical foundations of logical geometry. These results constitute not only
a further argument for the philosophical relevance of dynamic epistemic logic,
but they are also prime examples of the recent stream of results on logical geom-
etry (independently from its relation to dynamic epistemic logic). These results
can be seen as providing the beginnings of an investigation called for by Kauff-
man (2001, p. 94):

[there exists a] remarkable connection of polyhedral geometry with
basic logic [. . . ] One does not expect to find direct connections of
the structure of logical speech with the symmetries of Euclidean
Geometry. [. . . ] The relationship of logic and geometry demands a
deep investigation. This investigation is in its infancy.

To provide a representative overview of these recent findings in logical geometry,
I will show how several apparently unrelated notions and theorems can be unified
by viewing them from the common perspective of information.
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1.5 Overview of the Thesis

The thesis is organized as follows.
Part I introduces the main topics of this thesis, viz. (epistemic) logic, proba-

bility, and dynamics. Since the three case studies on the dynamic turn all involve
probabilities, it is important to get a clear view of the relationship between logic
and probability theory. Chapter 2 provides a general overview of the various pro-
posals to combine logic and probability, and shows that they can be organized in
a systematical and logically meaningful way.

Next, Chapter 3 zooms in on one particular family of approaches, viz. prob-
abilistic epistemic logics. These logics provide a standard epistemic (possible
worlds) analysis of the agents’ hard information, and supplement it with a fine-
grained probabilistic analysis of their soft information. I introduce various dy-
namic extensions of these logics, and discuss the subtle relationship between
public announcements and Bayesian conditionalization.

One of the case studies on the dynamic turn involves not only probabilistic
Kripke models, but also epistemic plausibility models. In the literature, the lat-
ter are often defined in related, but subtly different ways. Therefore, Chapter 4
provides a detailed introduction to epistemic plausibility models and their model
theory. I then use the model-theoretical results to argue that one way of defin-
ing these models is superior to all others, since it achieves a better equilibrium
between philosophical applicability and mathematical elegance.

Part II presents the three case studies on (the strong interpretation of) the
dynamic turn in epistemic logic. In Chapter 5, I discuss Aumann’s celebrated
agreeing to disagree theorem, and argue that Aumann’s original formulation
fails to fully capture the dynamics behind the agreement theorem (both in its
formulation and in its semantic setup). I show how a more natural formulation
of the theorem can be obtained in a system of probabilistic dynamic epistemic
logic. Furthermore, I discuss how explicitly representing the dynamics behind
the agreement theorem leads to a significant conceptual elucidation concerning
the role of common knowledge in this theorem.

Chapter 6 discusses the Lockean thesis, which states that belief can be de-
fined as ‘sufficiently high degree of belief’. A well-known problem of this thesis
is that it yields a notion of belief that is not closed under conjunction. After
pointing out that this is a static problem, I examine how the Lockean thesis fares
from a dynamic perspective. I compare the notion of belief as defined by the
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Lockean thesis (interpreted on probabilistic Kripke models) with a ‘strictly qual-
itative’ notion of belief (interpreted on epistemic plausibility models), and show
that both notions exhibit exactly the same dynamic behavior under public an-
nouncements. Finally, I argue that this technical observation supports the Lock-
ean thesis, for methodological as well as philosophical reasons.

Chapter 7 discusses the epistemic and cognitive aspects of surprise. After
providing a brief overview of existing work on surprise, I argue that the main
formal accounts of surprise in logic and artificial intelligence fail to do justice to
the essentially dynamic nature of surprise. I then propose a new formalization
of surprise, using a system of probabilistic dynamic epistemic logic. I show that
this system is able to capture several key aspects of surprise, such as its role in
belief revision and its transitory nature. The former can also be captured by other
formalizations, but the latter can only be adequately represented in the current
system, since it is a manifestation of the dynamic nature of surprise.

Part III deals with logical geometry, both in its relation to the dynamic turn in
epistemic logic and as an independent area of interest. In Chapter 8, I show how
non-trivial Aristotelian squares and larger diagrams (such as hexagons, octagons,
and rhombic dodecahedrons) can be constructed for dynamic epistemic logic,
and for dynamic modalities in general. I also discuss the importance of these
new diagrams for the philosophical foundations of logical geometry.

To illustrate the recent stream of results in logical geometry (independently
from its relation to dynamic epistemic logic), I argue in Chapter 9 that Aris-
totelian diagrams can fruitfully be seen as being hybrid between two other types
of diagrams, viz. opposition and implication diagrams. I develop an informa-
tivity perspective on all these types of diagrams, and use it to show that the
Aristotelian square is strictly more informative than almost all other diagrams.

Finally, Chapter 10 summarizes the results obtained in this thesis, and as-
sesses to what extent its main goals have been achieved.

33



1 . The Dynamic Turn in Epistemic Logic

34



Part I

Logic, Probability,
and Dynamics





2 u Combining Logic
and Probability

2.1 Introduction

The very idea of combining logic and probability might look strange at first sight
(Hájek 2001). After all, logic is concerned with absolutely certain truths and in-
ferences, whereas probability theory deals with uncertainties. Furthermore, logic
offers a qualitative (structural) perspective on inference (the deductive validity
of an argument is based on the argument’s formal structure), whereas proba-
bilities are quantitative (numerical) in nature. However, as will be emphasized
throughout this chapter, there are natural senses in which probability theory pre-
supposes as well as extends classical logic. Furthermore, historically speaking,
several distinguished theorists such as De Morgan (1847), Boole (1854), Ram-
sey (1990), de Finetti (1937), Carnap (1950), Jeffrey (1992) and Howson (2003,
2007, 2009) have emphasized the tight connections between logic and probabil-
ity, or even considered their work on probability as a part of logic itself.1

This chapter has three main goals. The first goal is to roughly delineate the
field: what exactly do we take to be the scope of terms such as ‘probability logic’
or ‘probabilistic logic’? The second goal is to provide an overview of the major
approaches to combining logic and probability theory. The third and final goal
is to show that these various approaches can be organized in a systematic and
logically meaningful way.2

1For more extensive historical overviews, see Hailperin (1988, 1991, 1996).
2Of course, each classification of a field as large and diverse as probability logic is bound to be

arbitrary to some extent. Still, I believe that the classification introduced in this chapter—which
is adapted from Demey et al. (2013)—captures some theoretically important distinctions, and can
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The most common strategy to obtain a concrete system of probabilistic logic
is to start with a classical system of logic and to ‘probabilify’ it in one way or an-
other, by adding probabilistic features to it. There are various ways in which this
probabilification can be implemented. One can study probabilistic semantics for
classical languages (which do not have any explicit probabilistic operators), in
which case the consequence relation itself gets a probabilistic flavor: deductive
validity becomes ‘probability preservation’, rather than ‘truth preservation’. Al-
ternatively, one can add various kinds of probabilistic operators to the logic’s ob-
ject language. The first distinction to be made here is whether these probabilistic
operators are qualitative or quantitative in nature. Qualitative (non-numerical)
probabilistic operators include unary operators such as ‘it is probable that . . . ’
and binary operators such as ‘. . . is more probable than . . . ’. As for quantitative
probabilistic operators, I will distinguish between first-order and propositional
operators. A typical first-order operator talks about the probability that a given
individual (randomly selected from the domain) satisfies a certain predicate; in
contrast, a typical propositional operator talks about the probability that a given
proposition is true. Such propositional operators can be studied in isolation, but
they are often studied together with other propositional operators (in particular,
modal operators).

The remainder of this chapter is organized as follows. Section 2.2 delineates
the scope of probability logic. Sections 2.3–2.6 closely correspond to the var-
ious subdivisions of the classification of probabilistic logics that was described
above (also see Figure 2.1). Section 2.3 introduces systems that provide proba-
bilistic semantics for a language that is itself fully classical (i.e. does not contain
any probabilistic operators). Section 2.4 discusses some systems with quali-
tative probabilistic operators. Next, Sections 2.5 and 2.6 deal with first-order
and propositional quantitative probabilistic operators, respectively. Finally, it
should be emphasized that combinations of the latter with other propositional
operators—in particular, modal (epistemic) operators—will not be discussed in
this chapter. Such systems will become very important in the remainder of this
thesis, and are therefore studied separately and in much more detail in Chapter 3.
Finally, Section 2.7 wraps things up.

therefore serve as a guide for further research. For example, De Bona et al. (2013) further develop
this classification and use it to study the expressivity and computational complexity of various
probabilistic logics.
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Figure 2.1: The classification of probabilistic logics discussed in this chapter.

1. no probabilistic operators in the logic’s object language → Section 2.3

2. probabilistic operators in the logic’s object language

(a) qualitative probabilistic operators → Section 2.4

(b) quantitative probabilistic operators

i. first-order operators → Section 2.5
ii. propositional operators

• in isolation → Section 2.6
• together with modal operators → Chapter 3

2.2 The Scope of Probability Logic

By integrating the complementary perspectives of qualitative logic and numer-
ical probability theory, we obtain highly expressive accounts of inference. It
should therefore come as no surprise that combinations of logic and probability
have been fruitfully applied in all fields that study reasoning mechanisms, such
as philosophy, artificial intelligence, linguistics, cognitive science and mathe-
matics.3 The downside of this cross-disciplinary popularity is that terms such as
‘probability logic’ are used by different researchers in different, non-equivalent
ways. Therefore, before moving on to the actual discussion of the various ap-
proaches, I will first attempt to delineate the subject matter of this chapter.

The most important distinction is that between probability logic and induc-
tive logic. Classically, an argument is said to be (deductively) valid if and only
if it is impossible that its premises are all true, while its conclusion is false. In
other words, deductive validity amounts to truth preservation: in a valid argu-
ment, the truth of the premises guarantees the truth of the conclusion. In some
arguments, however, the truth of the premises does not fully guarantee the truth

3 For example, according to Kowalski, “[i]ntegrating probability and logic is one of the most
active areas of research in Artificial Intelligence today” (2011, p. 154), while Oaksford and Chater
contend that “logic and probability have complementary and compatible roles in helping to explain
human reasoning [. . . ] both may be needed to fully understand human reasoning, normatively and
psychologically” (2010, p. 22).
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of the conclusion, but still renders it highly likely. A typical example looks as
follows:

The first swan I saw was white
The second swan I saw was white

...
The 1000th swan I saw was white

All swans are white

Such arguments are studied in inductive logic, which makes extensive use of
probabilistic notions, and is therefore considered by some authors to be related
to probability logic. There is some discussion about the exact relation between
inductive logic and probability logic, which is summarized in the introduction
of Kyburg (1994). The dominant position, which is also adopted here, is that
probability logic entirely belongs to deductive logic, and hence should not be
concerned with inductive reasoning (Adams and Levine 1975). Still, most work
on inductive logic falls within the ‘probability preservation’ approach, and is
thus closely connected to the systems that will be discussed in Section 2.3.4

I will also steer clear of the philosophical debate over the exact nature of
probability. The formal systems discussed here are compatible with all of the
common interpretations of probability, but obviously, in concrete applications,
certain interpretations of probability will fit more naturally than others. For ex-
ample, the probabilistic models discussed in Section 2.6 are, by themselves, neu-
tral about the nature of probability, but when they are used to describe the be-
havior of a physical system, they are typically interpreted in an objective way,
whereas modeling multi-agent scenarios is accompanied most naturally by a sub-
jective interpretation of probabilities (as agents’ degrees of belief).5

Finally, although the success of probability logic is largely due to its various
applications, I will not deal with these applications in any detail. For exam-
ple, I will not assess the use of probability as a formal representation of belief
in philosophy (Bayesian epistemology) or artificial intelligence (knowledge rep-
resentation), and its advantages and disadvantages with respect to alternative

4Recent overviews of inductive logic can be found in Fitelson (2006), Romeijn (2011) and
Hawthorne (2012).

5For more detailed discussions about the philosophical interpretation of probability, see Gillies
(2000), Eagle (2010), Hájek (2011) and Childers (2013).
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representations, such as generalized probability theory (for quantum theory) and
fuzzy logic.6

2.3 Probabilistic Semantics for a Classical Language

In this section, I will present a first family of probability logics, which are used
to study questions of ‘probability preservation’ (or dually, ‘uncertainty propaga-
tion’). These systems do not extend the object language with any probabilistic
operators, but rather deal with a ‘classical’ propositional language that only con-
tains the usual (Boolean) connectives.

Definition 2.1. Let Prop be a countable set of atomic propositions. The language
L(Prop) is defined by means of the following Backus-Naur form (BNF):

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ)

where p ∈ Prop. Usually, I will simply write L instead of L(Prop). It is well-
known that the other Boolean connectives can be defined in terms of ∧ and ¬;
for example, we define ϕ→ ψ :≡ ¬(ϕ ∧ ¬ψ) and ϕ ∨ ψ :≡ ¬(¬ϕ ∧ ¬ψ).

The main idea is that the premises of a valid argument can be uncertain, in
which case (deductive) validity imposes no conditions on the (un)certainty of
the conclusion. For example, the following argument is deductively valid (it is
an instance of the well-known modus ponens argument scheme):

if it will rain tomorrow, I will get wet
it will rain tomorrow

I will get wet

However, if the argument’s second premise is uncertain, its conclusion will typ-
ically also be uncertain. Probabilistic semantics represent such uncertainties as
probabilities, and study how they ‘flow’ from the premises to the conclusion. In
other words, we are not concerned with truth preservation, but rather with prob-
ability preservation. The following three subsections discuss systems that deal
with increasingly more general versions of this issue.

6For more information about these topics, see Gerla (1994), Paris (1994), Halpern (2003), De
Raedt et al. (2008), Vennekens et al. (2009), Hajek (2010), Hájek and Hartmann (2010), Hartmann
and Sprenger (2010), Wilce (2012), Huber (2013) and Koons (2013).
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2.3.1 A Basic Probabilistic Semantics

Let’s begin by introducing the notion of a probability function for the proposi-
tional language L(Prop).7

Definition 2.2. A probability function (for L) is a function P : L → R satisfying
the following constraints:

• P (ϕ) ≥ 0 for all ϕ ∈ L, (non-negativity)

• if |= ϕ, then P (ϕ) = 1, (tautologies)

• if |= ¬(ϕ ∧ ψ), then P (ϕ ∨ ψ) = P (ϕ) + P (ψ). (finite additivity)

Note that in the second and third constraint, the |=-symbol denotes (semantic)
validity in classical propositional logic. The definition of probability functions
thus requires notions from classical logic, and in this sense probability theory
can be said to presuppose classical logic (Adams 1998, p. 22). It can easily be
shown that if P satisfies these constraints, then P (ϕ) ∈ [0, 1] for all formulas
ϕ ∈ L, and P (ϕ) = P (ψ) for all formulas ϕ,ψ ∈ L that are logically equivalent
(i.e. such that |= ϕ ↔ ψ). This shows that probability functions are essentially
semantic entities: if ϕ and ψ are logically equivalent, they are merely two syntac-
tically different ways of expressing the same proposition, and are thus assigned
the same probability.

I now turn to the basic probabilistic semantics, as defined in Leblanc (1983).
The argument with (a set of) premises Γ and conclusion ϕ will henceforth be
denoted (Γ, ϕ).

Definition 2.3. The argument (Γ, ϕ) is probabilistically valid, written Γ |=p ϕ,
iff

for all probability functions P : L → R:
if P (γ) = 1 for all γ ∈ Γ, then also P (ϕ) = 1.

Probabilistic semantics thus replaces the valuations v : L → {0, 1} of classi-
cal propositional logic with probability functions P : L → R, which take values

7In mathematics, probability functions are usually defined as measures on a σ-algebra of sub-
sets of a given set (called the sample space); see Section 2.6. In logical contexts, however, it is
often deemed more natural to define probability functions ‘directly’ on the logic’s object language
(Williamson 2002).
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in the real unit interval [0, 1]. The classical truth values of true (1) and false (0)
can thus be regarded as the endpoints of the unit interval [0, 1], and likewise,
valuations v : L → {0, 1} can be regarded as degenerate probability functions
P : L → [0, 1]. In this sense, classical logic is a special case of probability logic,
or equivalently, probability logic is an extension of classical logic.

It can be shown that classical propositional logic (CPL) is (strongly) sound
and complete with respect to probabilistic semantics:

Γ |=p ϕ if and only if Γ `CPL ϕ.

Some authors interpret probabilities as generalized truth values (Reichen-
bach 1949, Leblanc 1983). According to this view, probability logic is just a
particular kind of many-valued logic, and probabilistic validity boils down to
‘truth preservation’: truth (i.e. probability 1) carries over from the premises to
the conclusion. Other logicians, such as Tarski (1936) and Adams (1998, p. 15),
have noted that probabilities cannot be seen as generalized truth values, because
probability functions are not ‘compositional’; for example, P (ϕ ∧ ψ) cannot be
expressed as a function of P (ϕ) and P (ψ). More discussion on this topic can be
found in Hailperin (1984).

Another possibility is to interpret a sentence’s probability as a measure of
its (un)certainty. For example, the sentence ‘Jones is in Spain at the moment’
is either true or false, but it can have any degree of certainty, ranging from 0
(maximal uncertainty) to 1 (maximal certainty).8 According to this interpreta-
tion, the following theorem follows from the strong soundness and completeness
of probabilistic semantics:

Theorem 2.1. Consider a deductively valid argument (Γ, ϕ). If all premises in
Γ have probability 1, then the conclusion ϕ also has probability 1.

This theorem can be seen as a first, very partial clarification of the issue of
probability preservation (or uncertainty propagation). It says that if there is no
uncertainty whatsoever about the premises, then there cannot be any uncertainty
about the conclusion either. In the next two subsections, I will consider more
interesting cases, in which there is non-zero uncertainty about the premises, and
ask how it carries over to the conclusion.

8Note that 0 is actually a kind of certainty, viz. certainty about falsity. However, in this chapter,
I follow Adams’ terminology and interpret 0 as maximal uncertainty (Adams 1998, p. 31).
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Finally, it should be noted that although this subsection only discussed prob-
abilistic semantics for classical propositional logic, there are also probabilistic
semantics for a variety of other logics, such as intuitionistic propositional logic
(van Fraassen 1981, Morgan and Leblanc 1983), modal logics (Morgan 1982a,b,
1983, Cross 1993), classical first-order logic (Leblanc 1979, 1983, van Fraassen
1981), relevant logic (van Fraassen 1983) and nonmonotonic logic (Pearl 1991).
All of these systems share a key feature: the logic’s semantics is probabilistic
in nature, but probabilities are not explicitly represented in the object language;
hence, they are much closer in nature to the system discussed here than to the
systems presented in later sections.

Most probabilistic semantics for non-classical logics are not based on unary
probabilities P (ϕ), but rather on conditional probabilities P (ϕ | ψ). The con-
ditional probability P (ϕ | ψ) is taken as primitive (rather than being defined as
P (ϕ∧ψ)
P (ψ) , as is usually done) to avoid problems when P (ψ) = 0. Goosens (1979)

provides an overview of various axiomatizations of probability theory in terms
of such primitive notions of conditional probability.

2.3.2 Adams’ Probability Logic

In the previous subsection I discussed a first principle of probability preservation,
which says that if all premises have probability 1, then the conclusion also has
probability 1. Of course, more interesting cases arise when the premises are less
than absolutely certain. Consider the valid argument with premises p ∨ q and
p→ q, and conclusion q.9 One can easily show that

P (q) = P (p ∨ q) + P (p→ q)− 1.

In other words, if one knows the probabilities of the argument’s premises, then
one can calculate the exact probability of its conclusion, and thus provide a com-
plete answer to the question of probability preservation for this particular argu-
ment. For example, if P (p ∨ q) = 0.6 and P (p → q) = 0.8, then P (q) = 0.4.
In general, however, it will not be possible to calculate the exact probability of
the conclusion, given the probabilities of the premises.

Example 2.1. Consider the valid argument with premises p and p → q, and
conclusion q. Furthermore, consider the probability functions P1 and P2, which
assign the following values to the Boolean combinations of p and q:

9Recall that the symbol ‘→’ denotes the truth-conditional material conditional.
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ϕ P1(ϕ) P2(ϕ)

p ∧ q 0.2 0.2
p ∧ ¬q 0.3 0.3
¬p ∧ q 0.1 0.4
¬p ∧ ¬q 0.4 0.1

It is easy to check that P1(p) = P2(p) = 0.5 and P1(p → q) = P2(p → q) =
0.7, while P1(q) = 0.3 6= 0.6 = P2(q).

This example shows that the probabilities of the premises do not uniquely
determine the probability of the conclusion. Hence, the best we can hope for in
general is a (tight) upper and/or lower bound for the conclusion’s probability. I
will now discuss Adams’ (1998) methods to compute such bounds.

Adams’ results can be stated more easily in terms of uncertainty rather than
certainty (probability). Given a probability function P : L → [0, 1], the corre-
sponding uncertainty function UP is defined as

UP : L → [0, 1] : ϕ 7→ UP (ϕ) := 1− P (ϕ).

If the probability function P is clear from the context, I will often simply write
U instead of UP . In the remainder of this subsection (and in the next one as
well), it will be assumed that all arguments have only finitely many premises
(which is not a significant restriction, given the compactness property of classical
propositional logic). Adams’ first main result, which was originally established
by Suppes (1965), can now be stated as follows:

Theorem 2.2. Consider a valid argument (Γ, ϕ) and a probability function P .
Then the uncertainty of the conclusion ϕ cannot exceed the sum of the uncertain-
ties of the premises γ ∈ Γ. Formally:

U(ϕ) ≤
∑
γ∈Γ

U(γ).

First of all, note that this theorem subsumes Theorem 2.1 as a special case: if
P (γ) = 1 for all γ ∈ Γ, then U(γ) = 0 for all γ ∈ Γ, so U(ϕ) ≤

∑
U(γ) = 0,

and thus P (ϕ) = 1. Furthermore, note that the upper bound on the uncertainty
of the conclusion depends on |Γ|, i.e. on the number of premises. If a valid
argument has a small number of premises, each of which only has a small un-
certainty (i.e. a high certainty), then its conclusion will also have a reasonably
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small uncertainty (i.e. a reasonably high certainty). Conversely, if a valid ar-
gument has premises with small uncertainties, then its conclusion can only be
highly uncertain if the argument has a large number of premises.10 To put the
matter more concretely, note that if a valid argument has three premises which
each have uncertainty 0.1, then adding a premise which also has uncertainty 0.1
will not influence the argument’s validity, but it will raise the upper bound on
the conclusion’s uncertainty from 0.3 to 0.4—thus allowing the conclusion to
be more uncertain than was originally the case. Finally, the upper bound pro-
vided by Theorem 2.2 is optimal, in the sense that (under the right conditions)
the uncertainty of the conclusion can coincide with its upper bound:

Theorem 2.3. Consider a valid argument (Γ, ϕ), and assume that the premise
set Γ is consistent, and that every premise γ ∈ Γ is relevant (i.e. Γ− {γ} 6|= ϕ).
Then there exists a probability function P : L → [0, 1] such that

UP (ϕ) =
∑
γ∈Γ

UP (γ).

The upper bound provided by Theorem 2.2 can also be used to define a proba-
bilistic notion of validity. An argument (Γ, ϕ) is said to be Adams-probabilistically
valid, written Γ |=a ϕ, if and only if

for all probability functions P : L → R: UP (ϕ) ≤
∑

γ∈Γ UP (γ).

Adams-probabilistic validity has an alternative, equivalent characterization in
terms of probabilities rather than uncertainties. This characterization says that
the argument (Γ, ϕ) is Adams-probabilistically valid if and only if the conclu-
sion’s probability can get arbitrarily close to 1 if the premises’ probabilities are
sufficiently high. Formally: Γ |=a ϕ if and only if

for all ε > 0 there exists a δ > 0 such that for all probability functions P :
if P (γ) > 1− δ for all γ ∈ Γ, then P (ϕ) > 1− ε.

It can be shown that classical propositional logic is (strongly) sound and
complete with respect to Adams’ probabilistic semantics:

Γ |=a ϕ if and only if Γ `CPL ϕ.

10A famous illustration of this converse principle is the lottery paradox, which was introduced
by Kyburg (1965) and is also discussed in Sorensen (2011). I will briefly touch upon the epistemic
significance of the lottery paradox in Chapter 6.
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Adams (1998, p. 154) also defines another logic which is sound and complete
with respect to his probabilistic semantics. However, this system involves a non-
truth-functional connective (the probability conditional), and therefore falls out-
side the scope of this section.11

Example 2.2. The argument A with premises p, q, r, s and conclusion p∧ (q∨ r)
is valid. Assume that P (p) = 0.9, P (q) = P (r) = 0.8 and P (s) = 0.6. Then
Theorem 2.2 says that

U(p ∧ (q ∨ r)) ≤ 0.1 + 0.2 + 0.2 + 0.4 = 0.9.

This upper bound on the uncertainty of the conclusion is rather disappointing,
and it exposes the main weakness of Theorem 2.2. One of the reasons why the
upper bound is so high is that its calculation takes into account the premise s,
which has a rather high uncertainty (0.4). However, this premise is irrelevant, in
the sense that the conclusion already follows from the other three premises. In
other words, we can regard p ∧ (q ∨ r) not only as the conclusion of the valid
argumentA, but also as the conclusion of the (equally valid) argumentA′, which
has premises p, q, r. In the latter case, Theorem 2.2 yields an upper bound of
0.1 + 0.2 + 0.2 = 0.5, which is already much lower.

The weakness of Theorem 2.2 is thus that it takes into account (the uncer-
tainty of) irrelevant or inessential premises. To obtain an improved version of
this theorem, a more fine-grained notion of ‘essentialness’ is necessary. In ar-
gument A in Example 2.2, premise s is absolutely irrelevant. Similarly, premise
p is absolutely relevant, in the sense that without this premise, the conclusion
p ∧ (q ∨ r) is no longer derivable. Finally, the premise subset {q, r} is ‘in be-
tween’: together q and r are relevant (if both premises are left out, the conclusion
is no longer derivable), but each of them separately can be left out (while keeping
the conclusion derivable).

The notion of essentialness is formalized as follows:

Definition 2.4. Given a valid argument (Γ, ϕ) and a premise γ ∈ Γ,

• a premise set Γ′ ⊆ Γ is essential iff Γ− Γ′ 6|= ϕ,

11More information about probabilistic interpretations of conditionals can be found in Eells and
Skyrms (1994), Edgington (2006) and Arló Costa (2007).
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• the degree of essentialness of γ, written E(γ), is defined as

E(γ) :=
1

|Sγ |
,

where |Sγ | is the cardinality of the smallest essential premise set that con-
tains γ. If γ does not belong to any minimal essential premise set, then the
degree of essentialness of γ is 0.

With these definitions, a refined version of Theorem 2.2 can be established:

Theorem 2.4. Consider a valid argument (Γ, ϕ). Then the uncertainty of the
conclusion ϕ cannot exceed the weighted sum of the uncertainties of the premises
γ ∈ Γ, with the degrees of essentialness as weights. Formally:

U(ϕ) ≤
∑
γ∈Γ

E(γ)U(γ).

The proof of Theorem 2.4 is significantly more difficult than that of The-
orem 2.2: Theorem 2.2 requires only basic probability theory, whereas Theo-
rem 2.4 is proved using methods from linear programming (Goldman and Tucker
1956, Adams and Levine 1975). Theorem 2.4 subsumes Theorem 2.2 as a spe-
cial case: if all premises are relevant (i.e. have degree of essentialness 1), then
Theorem 2.4 yields the same upper bound as Theorem 2.2. Furthermore, Theo-
rem 2.4 does not take into account irrelevant premises (i.e. premises with degree
of essentialness 0) to compute the upper bound; hence, if a premise is irrelevant
for the validity of the argument, then its uncertainty will not carry over to the
conclusion. Finally, note that since E(γ) ∈ [0, 1] for all γ ∈ Γ, it holds that∑

γ∈Γ

E(γ)U(γ) ≤
∑
γ∈Γ

U(γ),

i.e. Theorem 2.4 yields in general a tighter upper bound than Theorem 2.2. To il-
lustrate this, consider again the argument from Example 2.2, which has premises
p, q, r, s and conclusion p∧ (q ∨ r), and recall that P (p) = 0.9, P (q) = P (r) =
0.8 and P (s) = 0.6. One can calculate the degrees of essentialness of the
premises: E(p) = 1, E(q) = E(r) = 0.5 and E(s) = 0. Hence, Theorem 2.4
yields that

U(p ∧ (q ∨ r)) ≤ (1× 0.1) + (0.5× 0.2) + (0.5× 0.2) + (0× 0.4) = 0.3,

which is a tighter upper bound for the uncertainty of p ∧ (q ∨ r) than any of the
bounds obtained above via Theorem 2.2 (viz. 0.9 and 0.5).
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2.3.3 Further Generalizations

Given the uncertainties (and degrees of essentialness) of the premises of a valid
argument, Adams’ theorems allow us to compute an upper bound for the un-
certainty of the conclusion. Of course, these results can also be expressed in
terms of probabilities rather than uncertainties; they then yield a lower bound
for the probability of the conclusion. For example, when expressed in terms of
probabilities rather than uncertainties, Theorem 2.4 looks as follows:

P (ϕ) ≥ 1−
∑
γ∈Γ

E(γ)(1− P (γ)).

Adams’ results are restricted in at least two ways. Their first limitation is that
they only provide a lower bound for the probability of the conclusion (given the
probabilities of the premises). In a sense, this is the most important bound: it
represents the conclusion’s probability in the ‘worst-case scenario’, which might
be useful information in practical applications. However, in some applications
it might also be informative to have an upper bound for the conclusion’s prob-
ability. For example, if one knows that this probability has an upper bound of
0.1, then one might rationally make another decision than one would have made
if the probability’s upper bound had been 0.9. I will now describe such a case,
using the terminology of decision theory (Peterson 2009):

Example 2.3. An agent has to decide between walking to work vs. taking the bus.
Taking the bus requires buying a ticket, whereas walking is free. However, if it
starts raining while she is walking, she will be wet when arriving; if she takes the
bus, she will not get wet. The utilities of the two actions are thus dependent on
whether or not it starts raining; for example, they might sensibly look as follows:

rain no rain
walk 1 5
bus 2 2

Let p be the probability that it will rain (the probability that it will not rain is
thus 1− p). The actions’ expected utilities are as follows:

EU(walk) = 1× p + 5× (1− p) = −4p+ 5,
EU(bus) = 2× p + 2× (1− p) = 2.
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Now suppose that the agent has only partial information about the probability of
rain: she does not know the actual value of p, but only an upper bound for it.
Consider the following two cases:

1. the upper bound is 0.9, i.e. p ≤ 0.9: the expected utility of walking to
work then has the following upper bound:

EU(walk) = −4p+ 5 ≤ −4× 0.9 + 5 = 1.4,

2. the upper bound is 0.1, i.e. p ≤ 0.1: the expected utility of walking to
work then has the following upper bound:

EU(walk) = −4p+ 5 ≤ −4× 0.1 + 5 = 4.6.

The expected utility of taking the bus is 2, independently of the value of p. The
agent chooses the action that maximizes her expected utility. In the first case, she
will certainly choose to take the bus, sinceEU(walk) ≤ 1.4 < 2 = EU(bus). In
the second case, however, things are not so clear. After all, all she knows for sure
is that EU(walk) ≤ 4.6, which can be divided into the subcases EU(walk) ∈
[0, 2] and EU(walk) ∈ (2, 4.6]. Note that in the first subcase, it holds that

EU(walk) ≤ 2 = EU(bus),

while in the second subcase it holds that

EU(bus) = 2 < EU(walk).

Hence, which action maximizes expected utility (and should thus be chosen by
the agent) depends on which subcase actually obtains. In the absence of any other
information, it is rational to assume that the first subcase obtains with probability
2

4.6 ≈ 0.43, and the second one with probability 2.6
4.6 ≈ 0.57. Hence, the second

subcase is more likely to occur, so the agent should choose to walk to work.
In sum, then, in case the upper bound on p is 0.9, the agent should definitely

choose to take the bus, but in case this upper bound is 0.1, the agent can rationally
choose to walk to work. Hence, this example clearly shows that the upper bounds
on an agent’s probabilities might influence her decisions.
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The second limitation on Adams’ results is that they presuppose that the
premises’ exact probabilities are known. In practical applications, however, there
might only be partial information about the probability of a premise γ: its exact
value is not known, but it is known to have a lower bound a and an upper bound
b (Walley 1991). In such applications, it would be useful to have a method to
calculate (optimal) lower and upper bounds for the probability of the conclusion
in terms of the lower and upper bounds of the probabilities of the premises.

Hailperin (1965, 1984, 1986, 1996) and Nilsson (1986) use methods from
linear programming to show that these two restrictions can be overcome. Their
most important result is the following:

Theorem 2.5. Consider an argument (Γ, ϕ), with |Γ| = n. There exist functions
LΓ,ϕ : R2n → R and UΓ,ϕ : R2n → R such that for any probability function P ,
the following holds: if ai ≤ P (γi) ≤ bi for 1 ≤ i ≤ n, then:

1. LΓ,ϕ(a1, . . . , an, b1, . . . , bn) ≤ P (ϕ) ≤ UΓ,ϕ(a1, . . . , an, b1, . . . , bn).

2. The bounds in item 1 are optimal, in the sense that there exist proba-
bility functions PL and PU such that ai ≤ PL(γi), PU (γi) ≤ bi for
1 ≤ i ≤ n, and LΓ,ϕ(a1, . . . , an, b1, . . . , bn) = PL(ϕ) and PU (ϕ) =
UΓ,ϕ(a1, . . . , an, b1, . . . , bn).

3. The functionsLΓ,ϕ andUΓ,ϕ are effectively determinable from the Boolean
structure of the sentences in Γ ∪ {ϕ}.

Proof. I will now give a proof sketch of this theorem.12 The main idea is to
transform the problem of finding optimal lower and upper bounds for the proba-
bility of ϕ to a linear programming problem (the same strategy is used by Adams
to prove Theorem 2.4). Since we are only concerned with finitely many sen-
tences γ1, . . . , γn, ϕ, we can restrict ourselves to a sublanguageL(p1, . . . , pm) ⊆
L(Prop), which contains only formulas based on the propositional atoms p1, . . . , pm.
Consider the sentences σj , which are defined as follows:

σj := ±p1 ∧ · · · ∧ ±pm.
12Many ideas found in this proof sketch will return in subsequent chapters. For example, the

idea of transforming some conditions on probabilities into a linear programming problem is also
central to the completeness proofs of the probabilistic epistemic logic described in Chapter 3 and
its various extensions developed in Part II. Furthermore, the notion of a state description will be
used extensively in Chapter 9.
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(We write +pi for p, and −pi for ¬pi.) Adams (1998) calls these sentences state
descriptions, after Carnap (1947). It is clear that there are 2m such sentences.
They have the following logical properties:

`CPL
∨2m

j=1 σj ,

`CPL ¬(σj ∧ σk) for 1 ≤ j 6= k ≤ 2m,

`CPL α↔
∨
σ`CPLα

σ for all α ∈ L(p1, . . . , pm).

One can then easily show the following for any probability functionP : L(p1, . . . , pm)→
[0, 1] and formula α ∈ L(p1, . . . , pm):∑j=2m

j=1 P (σj) = P
(∨2m

j=1 σj

)
= 1,

P (α) = P
(∨

σ`CPLα
σ
)

=
∑

σ`CPLα
P (σ).

Let’s use variables xj to represent P (σj) (for 1 ≤ j ≤ 2m). The problem
of finding a least upper bound (resp. a greatest upper bound) for P (ϕ) given that
ai ≤ P (γi) ≤ bi (for 1 ≤ i ≤ n) can now be reformulated as the problem of
finding the maximal (resp. minimal) value of the expression∑

σj`CPLϕ

xj (2.1)

subject to the following constraints:

ai ≤
∑

σj`CPLγi
xj for 1 ≤ i ≤ n,

bi ≥
∑

σj`CPLγi
xj for 1 ≤ i ≤ n,∑2m

j=1 xj = 1,

xj ≥ 0 for 1 ≤ j ≤ 2m.

(2.2)

Note that expression (2.1) and the conditions in (2.2) are linear in the variables
xj . The remainder of the proof consists in applying methods from linear pro-
gramming to solve these linear optimization problems.

This result can also be used to define yet another probabilistic notion of valid-
ity, which I will call Hailperin-probabilistic validity or simply h-validity. This
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notion is not defined with respect to formulas, but rather with respect to pairs
consisting of a formula and a subinterval of [0, 1]. If Xi is the interval associated
with premise γi ∈ Γ and Y is the interval associated with the conclusion ϕ, then
the argument (Γ, ϕ) is said to be h-valid, written Γ |=h ϕ, if and only if

for all probability functions P : if P (γi) ∈ Xi for 1 ≤ i ≤ n, then P (ϕ) ∈ Y.

In Haenni et al. (2011) this is written as

γX1
1 , . . . , γXnn |≈ ϕY

and called the standard probabilistic semantics.
Nilsson’s work on probabilistic logic (1986, 1993) has sparked a lot of re-

search on probabilistic reasoning in artificial intelligence (Hansen and Jaumard
2000, Haenni et al. 2011). However, it should be noted that although The-
orem 2.5 states that the functions LΓ,ϕ and UΓ,ϕ are effectively determinable
from the sentences in Γ ∪ {ϕ}, the computational complexity of this problem is
quite high (Georgakopoulos et al. 1988, Kavvadias and Papadimitriou 1990), and
thus finding these functions quickly becomes computationally unfeasible in real-
world applications. Contemporary approaches based on probabilistic argumen-
tation systems and probabilistic networks are better capable of handling these
computational challenges. Furthermore, probabilistic argumentation systems are
closely related to Dempster-Shafer theory (Dempster 1968, Shafer 1976, Haenni
and Lehmann 2003). However, an extended discussion of these approaches is
beyond the scope of this chapter; a recent survey can be found in Haenni et al.
(2011).

2.4 Qualitative Probabilistic Operators

In the remaining sections of this chapter, I will discuss systems that add prob-
abilistic operators to the object language (instead of providing a probabilistic
semantics for an object language which itself stays fully classic). In this section,
the focus is on qualitative (i.e. non-numerical) operators.

There are several applications in which qualitative theories of probability
might be useful, or even necessary. In some situations there are no frequen-
cies available to use as estimates for the probabilities, or it might be practically
impossible to obtain those frequencies. Furthermore, people—even experts in
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their fields—are often willing to compare the probabilities of two statements
(‘ϕ is more probable than ψ’), without being able to assign explicit probabili-
ties to each of the statements individually. Many concrete examples are given by
Szolovits and Pauker (1978) and Halpern and Rabin (1987). When modeling and
analyzing such situations, qualitative probabilistic operators can be very useful.

2.4.1 Systems with Unary and Binary Operators

One of the earliest qualitative probabilistic logics is found in Hamblin (1959).
The classical language L(Prop) is extended with a unary operator �, which is
read as ‘probably’. Hence a formula such as �ϕ is to be read as ‘probably
ϕ’. This notion of ‘probable’ can be formalized as sufficiently high (numerical)
probability (i.e. P (ϕ) ≥ t, for some threshold value 0.5 < t ≤ 1). An alterna-
tive formalization of the ‘probably’-operator is in terms of plausibility, which is
a non-quantitative generalization of probability. In probabilistic terms, we can
compare the probabilities of two statements ϕ and ψ at several levels of precise-
ness. For example, if P (ϕ) = 0.8 and P (ψ) = 0.4, we can make the following
statements (with increasing levels of preciseness):

1. ϕ and ψ have different probabilities,

2. ϕ is more probable than ψ,

3. ϕ is 0.4 more probable than ψ,

4. ϕ is 2 times as probable as ψ.

Using the well-known terminology of types of measurement scales (Stevens
1946), these statements can be called ‘nominal’, ‘ordinal’, ‘interval’ and ‘ra-
tio’ statements, respectively. The first two are qualitative, whereas the last two
are quantitative in nature. In plausibilistic terms, only the first two statements
can be made:

1. ϕ and ψ have different plausibilities,

2. ϕ is more plausible than ψ.

By abstracting away from the quantitative structure of probability theory, plau-
sibility theory thus allows for coarser, more general models of uncertainty. One
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particular version of the plausibilistic approach to uncertainty will be addressed
in much greater detail in Chapter 4.

Burgess (1969) further develops these qualitative probabilistic systems, fo-
cusing on the ‘high numerical probability’-interpretation. Both Hamblin and
Burgess introduce additional operators into their systems (expressing, for ex-
ample, metaphysical necessity and/or knowledge), and study the interaction be-
tween the ‘probably’-operator and these other modal operators.

However, the ‘probably’-operator already displays some interesting features
on its own (independent from any other operators). For example, if it is in-
terpreted as ‘sufficiently high probability’, then it fails to satisfy the principle
(�ϕ∧�ψ)→ �(ϕ∧ψ). This means that it is not a normal modal operator, and
thus cannot be given a Kripke (relational) semantics (Chellas 1980). Herzig and
Longin (2003) and Arló Costa (2005) provide weaker systems of neighborhood
semantics for such ‘probably’-operators.

Another route is taken by Segerberg (1971) and Gärdenfors (1975a,b), who
introduce a binary operator ≥. The formula ϕ ≥ ψ is to be read as ‘ϕ is at
least as probable as ψ’; formally: P (ϕ) ≥ P (ψ). The key idea is that one can
completely characterize the behavior of≥without having to use the ‘underlying’
probabilities of the individual formulas. It should be noted that with comparative
probability (a binary operator), one can also express some absolute probabilistic
properties (unary operators). For example, (i) ϕ ≥ > expresses that ϕ has prob-
ability 1, (ii) ϕ ≥ ¬ϕ expresses that the probability of ϕ is at least 0.5, and (iii)
¬(¬ϕ ≥ ϕ) expresses that the probability of ϕ is strictly greater than 0.5.

2.4.2 Linguistic Issues

Unary and binary qualitative probabilistic operators have also been studied from
a more linguistically oriented perspective. Kratzer (1991) argues that opera-
tors such as ‘probably’ and ‘likely’ (considered as natural language expressions,
rather than quasi-technical terms) are semantically speaking indeed modal oper-
ators, on a par with epistemic and deontic modals such as ‘possibly’, ‘might’,
‘must’, etc.

Yalcin (2010) assesses various proposals for the semantics of probabilistic
operators, by investigating which inference patterns they (in)validate, such as
the chancy modus ponens pattern for the unary ‘probably’-operator:
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if p then q
probably p

probably q,

but also the conditional to comparative pattern for the binary ‘is at least as prob-
able as’-operator:

if p then q

q is at least as probable as p,

and the positive form transfer pattern that links the unary and binary operators:

q is at least as probable as p
probably p

probably q.

Yalcin also addresses the embedding potential of probability operators. For
example, the formula ��p is trivially well-formed because of the recursive def-
inition of the logics’ object languages, but are sentences such as

‘probably, John is likely to be sleeping’

meaningful in natural languages such as English or Dutch? In its most natural
reading, such a sentence is equivalent to one containing just a single probability
operator, which is in line with the broader literature on modal concord (Zeijlstra
2007, Huitink 2012).

Yalcin’s own analysis takes a binary, comparative operator ≥ as primitive,
which is then used to define a unary ‘probably’-operator, as was explained above
(�ϕ :≡ ϕ ≥ ¬ϕ). This fits naturally with the broader literature on gradable
adjectives (Kennedy 2007), in which the comparative form (e.g. ‘. . . is taller than
. . . ’) is typically taken to be theoretically basic, and then used to define the
absolute form (e.g. ‘. . . is tall’).
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2.5 First-Order Probabilistic Operators

We now turn to systems that add quantitative probabilistic operators to the object
language. In this section, we will focus on first-order operators. Consider the
following example from Bacchus (1990):

‘More than 75% of all birds fly.’

This sentence has a straightforward probabilistic interpretation: when one ran-
domly selects a bird, then the probability that the selected bird flies is more than
0.75. First-order probabilistic operators are needed to express these sort of state-
ments.

2.5.1 A Basic System of First-Order Probabilistic Logic

In this subsection, we will study a basic system of first-order probabilistic logic.
Its object language is as simple as possible, to allow full focus on the probabilistic
quantifiers. The language is very much like the language of classical first-order
logic, but rather than the familiar universal and existential quantifier, it contains
a probabilistic quantifier.

We start by fixing a set Var of individual variables, a set Fun of function sym-
bols, and a set Pred of predicate symbols. All function symbols f and predicate
symbols R have arities ar(f), ar(R) ∈ N.13 The language contains two kinds
of syntactical objects, viz. terms and formulas. The set of terms T (Var,Fun) is
defined by means of the following BNF:

t ::= x | f(t1, . . . , tar(f))

where x ∈ Var and f ∈ Fun. The language LBFOPL(Var,Fun,Pred) of basic
first-order probabilistic logic is then defined by means of the following BNF:

ϕ ::= R(t1, . . . , tar(R)) | ¬ϕ | (ϕ ∧ ϕ) | Px(ϕ) ≥ q

where R ∈ Pred, t1, . . . , tar(R) ∈ T (Var,Fun) and q ∈ [0, 1] ∩Q. (The number
q is restricted to be rational, in order to ensure that the language is countable.)

13Nullary function symbols and predicate symbols are also called individual constants and
propositions, respectively.

57



2 . Combining Logic and Probability

Formulas of the form Px(ϕ) ≥ q should be read as: ‘when an object is
randomly selected, the probability that it satisfies ϕ is at least q’. Every free
occurrence of x in ϕ is bound by the operator. We make use of the following
abbreviations:

Px(ϕ) ≤ q for Px(¬ϕ) ≥ 1− q,
Px(ϕ) > q for ¬(Px(ϕ) ≤ q),
Px(ϕ) < q for ¬(Px(ϕ) ≥ q),
Px(ϕ) = q for Px(ϕ) ≥ q ∧ Px(ϕ) ≤ q.

This language is interpreted with respect to very simple first-order models
and assignment functions, which are defined as follows:

Definition 2.5. A probabilistic first-order model is a triple M := 〈D, I, P 〉.
Here, D is a finite, non-empty set called the domain. Furthermore, I is an inter-
pretation function, which assigns to each R ∈ Pred a set I(R) ⊆ Dar(R) and to
each f ∈ Fun a function I(f) : Dar(f) → D. Finally, P is a function that assigns
a value P (d) ∈ [0, 1] to each element d ∈ D; it is required that

∑
d∈D P (d) = 1.

Definition 2.6. Given a probabilistic first-order model 〈D, I, P 〉, an assignment
function is a function g : Var→ D. For any assignment function g, x ∈ Var and
d ∈ D, the assignment function f [x 7→ d] is defined as follows:

f [x 7→ d] : Var→ D : y 7→

{
f(y) if y 6= x,

d if y = x.

Given a model M = 〈D, I, P 〉 and an assignment function g, the interpreta-
tion [[ t ]]M,g of all terms t ∈ T (Var,Fun) is defined as follows:

[[x ]]M,g := g(x),

[[ f(t1, . . . , tar(f)) ]]M,g := I(f)
(

[[ t1 ]]M,g, . . . , [[ tar(f) ]]M,g
)

.

The logic’s semantics can now be defined as follows:

M, g |= R(t1, . . . , tar(R)) iff
(

[[ t1 ]]M,g, . . . , [[ tar(R) ]]M,g
)
∈ I(R),

M, g |= ¬ϕ iff M, g 6|= ϕ,
M, g |= ϕ ∧ ψ iff M, g |= ϕ and M, g |= ψ,
M, g |= Px(ϕ) ≥ q iff

∑
d : M,g[x 7→d]|=ϕ P (d) ≥ q.
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The only non-standard clause is the final one, for the probabilistic quantifier. To
understand it better, consider the following example:

Example 2.4. A vase contains 10 marbles: 6 are black and 4 are white. In-
tuitively, the probability that a randomly selected marble is black is 0.6, and
the probability that a randomly selected marble is white is 0.4. To formalize
this, define a probabilistic first-order model M := 〈D, I, P 〉 by putting D :=
{m1, . . . ,m10}, I(black) = {m1, . . . ,m5}, I(white) = {m6, . . . ,m10},14 and
P (mi) = 0.1 for each 1 ≤ i ≤ 10 (this captures the assumption that each marble
is equally likely to be selected). For any assignment function g, variable x ∈ Var
and d ∈ D, it holds that

M, g[x 7→ d] |= black(x) iff [[x ]]M,g[x 7→d] ∈ I(black)
iff g[x 7→ d](x) ∈ I(black)
iff d ∈ {m1, . . . ,m6}.

Hence ∑
d : M,g[x 7→d]|=black(x)

P (d) = P (m1) + · · ·+ P (m6) = 0.6.

It now follows by the semantic clause for the probability quantifier that

M, g |= Px(black(x)) = 0.6.

Completely analogously, one can show that

M, g |= Px(white(x)) = 0.4.

2.5.2 Three Extensions

The logic presented in the previous section is too simple to capture many forms
of reasoning about probabilities. I will now discuss three extensions.

Quantifying over more than one variable. First of all, one would like to be able
to reason about cases where more than one object is selected from the domain.
Consider the following variant on Example 2.4: one picks a marble from the
vase, puts it back, and then picks another marble from the vase. The probability

14We assume that black and white are unary predicate symbols in the object language.
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that the first marble is black and the second one is white is 0.6× 0.4 = 0.24, but
this cannot be expressed in the simple language introduced in Subsection 2.5.1.

One can therefore introduce a probabilistic quantifier that deals with multiple
variables simultaneously, thus obtaining formulas of the form Px1, . . . , xn(ϕ) ≥
q. To interpret such formulas in a probabilistic first-order model 〈D, I, P 〉, the
probability function P should assign probabilities not only to elements d ∈ D,
but also to n-tuples (d1, . . . , dn) ∈ Dn (for all n ∈ N). The simplest way to
extend P is by assuming that all selections are independent and with replace-
ment; one can then simply extend P to n-tuples by putting P (d1, . . . , dn) :=∏i=n
i=1 P (di). This approach is taken by Bacchus (1990) and Halpern (1990).

Extending the semantics to this new operator is straightforward:15

M, g |= Px1 . . . xn(ϕ) ≥ q iff
∑

(d1,...,dn) :
M,g[x1 7→d1,...,xn 7→dn]|=ϕ

P (d1, . . . , dn) ≥ q

For example, for the model M defined in Example 2.4 (and an arbitrary as-
signment function g), it holds that

M, g |= Px, y(black(x) ∧ white(y)) = 0.24.

There also exist more general approaches to extending the measure from single
elements of the domain to tuples of elements, which do not assume that the
selections are independent and with replacement. Such alternatives are explored
by Hoover (1978) and Keisler (1985).

Conditional probabilities. Recall the sentence from the beginning of this sec-
tion: ‘more than 75% of all birds fly’. This cannot be adequately captured in a
model where the domain contains objects that are not birds. These non-bird ob-
jects should not matter to what one wishes to express, but the probability quanti-
fiers discussed so far quantify over the entire domain. In order to restrict quantifi-
cation, one must add conditional probability operators, thus obtaining formulas
of the form Px(ϕ | ψ) ≥ q. These formulas have the following semantics:

15The assignment function g[x1 7→ d1, . . . , xn 7→ dn] is defined as expected, viz.

g[x1 7→ d1, . . . , xn 7→ dn](y) :=

{
di if y = xi for some 1 ≤ i ≤ n,
y otherwise.
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M, g |= Px(ϕ | ψ) ≥ q iff if
∑

d : M,g[x 7→d]|=ψ P (d) > 0,

then
∑
d : M,g[x7→d]|=ϕ∧ψ P (d)∑
d : M,g[x 7→d]|=ψ P (d) ≥ q.

With these operators, the formula Px(fly(x) | bird(x)) > 0.75 expresses
that more than 75% of all birds fly.

Probabilities as terms. The basic probabilistic first-order logic has formulas of
the form Px(ϕ) ≥ q, which say that the probability of randomly selecting an
object that satisfies ϕ is at least q. In general, however, one might want to say
other things about the probability of randomly selecting an object that satisfies
ϕ; for example, one might want to compare this probability with the probability
of randomly selecting an object that satisfies some other formula ψ.

In such cases, it is more convenient to treat probabilities as terms in their own
right. For each formula ϕ, the expression Px(ϕ) is thus added to the set of terms
T (Var,Fun).16 For any model M and assignment function g, the interpretation
of Px(ϕ) is defined as follows:

[[Px(ϕ) ]]M,g :=
∑

d : M,g[x 7→d]|=ϕ

P (d).

One can then extend the language with arithmetical operations such as addition
and multiplication, and with operators such as equality and various inequalities
to compare probability terms.

Such extensions require that the language is sorted, i.e. that it contains two
separate classes of terms: one for probabilities, numbers and the results of arith-
metical operations on such terms, and one for the ‘ordinary’ domain of discourse
which the probabilistic operators quantify over. I will not present such a lan-
guage and semantics in detail here; details can be found in Bacchus (1990).

In the context of Example 2.4, one might wish to say that a randomly selected
marble is 1.5 times more likely to be black than to be white. In other words, the
probability that a randomly selected marble is black is 1.5 times higher than
the probability that a randomly selected marble is white. This can easily be
expressed in a sorted language (which contains probabilities as terms, 1.5 as a
constant symbol, and × as a function symbol):

M, g |= Px(black(x)) = 1.5× Px(white(x)).

16Hence, the terms and formulas are defined by a mutual recursion.
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2.5.3 Metatheoretical Results

It is hard to provide proof systems for first-order probabilistic logics, because
the validity problem for these logics is generally not decidable, and not even
semi-decidable (Abadi and Halpern 1994). Compare the situation with classical
first-order logic, which is semi-decidable but not decidable (Boolos et al. 2007):

• if an inference in classical first-order logic is valid, then it is guaranteed
that one can find out in finite time,

• however, if an inference in classical first-order logic is not valid, then it is
not guaranteed that one can find out in finite time.

Since first-order probabilistic logic is not even semi-decidable, neither validity
nor invalidity of inferences is finitely discoverable, i.e.:

• if an inference in first-order probabilistic logic is valid, then it is not guar-
anteed that one can find out in finite time,

• if an inference in first-order probabilistic logic is not valid, then it is not
guaranteed that one can find out in finite time.

Despite these limitations, there exist many interesting metatheoretical re-
sults for various first-order probabilistic logics. For example, Hoover (1978)
and Keisler (1985) study completeness results. Bacchus (1990) and Halpern
(1990) also provide complete axiomatizations, and study combinations of first-
order probabilistic logics and modal probabilistic logics.

2.6 Propositional Probabilistic Operators

In the previous section, we focused on systems that add first-order probabilistic
operators to the object language. In this section, we will study systems that
deal with another type of quantitative probabilistic operators, viz. propositional
operators.

Since propositional probabilistic operators transform a given formula ϕ into
another formula (e.g. P (ϕ) ≥ 0.6), the recursive structure of the object language
allows for the ‘nesting’ of such probabilistic formulas (e.g. formulas of the form
(P (ϕ) ≥ 0.6) ≥ 0.4). Furthermore, it is highly natural to study the interaction
between propositional probabilistic operators and other propositional operators,
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such as epistemic operators. However, as was already noted in Section 2.1, these
extensions will be studied in much more detail in Chapter 3. Therefore, in this
section, we will focus on a rather basic system of probabilistic propositional
logic, which does not have an epistemic component and does not allow reason-
ing about higher-order (nested) probabilities. This will allow us to make some
technical observations in their most general form (which will also apply to the
more complex systems that are introduced in Chapter 3).

Subsection 2.6.1 introduces probability spaces and probabilistic models. Sub-
section 2.6.2 defines the language that is interpreted on these models, and Sub-
section 2.6.3 discusses its expressivity. Subsection 2.6.4 provides a complete
axiomatization.

2.6.1 Probabilistic Models

We begin by introducing probabilistic models, which are based on a set of states
S. There are two ways of adding probabilistic information to such a set S. The
first is to define probabilities directly on the states of S; the second is to define
probabilities on (a subcollection of) the subsets of S. These two approaches are
formalized in the notions of discrete probability structure and probability space,
respectively.

Definition 2.7. A discrete probability structure is a tuple 〈S, p〉, where S is a
non-empty, finite set, whose elements will usually be called ‘states’ or ‘possible
worlds’, and p : S → [0, 1] is a function such that

∑
s∈S p(s) = 1.

Definition 2.8. A probability space is a tuple 〈S,A, µ〉, where S is an arbitrary
(potentially uncountable) set called the sample space, A ⊆ ℘(S) is a σ-algebra
over S,17 and µ : A → [0, 1] is a probability measure, i.e. a countably addi-
tive function18 such that µ(S) = 1. Finally, the elements of A are called the
measurable sets of the space.

The function p on individual states in a discrete probability structure is natu-
rally extended to a function p+ on sets of states, by putting

p+ : ℘(S)→ [0, 1] : X 7→ p+(X) :=
∑
x∈X

p(x).

17I.e. A has the following properties: (i) S ∈ A, (ii) if X,Y ∈ A, then X ∩ Y ∈ A, and (iii)
if X ⊆ A and X is countable, then

⋂
X ∈ A.

18A real-valued set function is countably additive iff for any countable collection of setsAi that
are pairwise disjoint (Ai 6= Aj for each i 6= j), it holds that f(

⋃∞
i=1Ai) =

∑∞
i=1 f(Ai).
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Note that it follows immediately that p+(S) = 1. Given this construction, it
is easy to check that every discrete probability structure gives rise to a prob-
ability space, by taking the σ-algebra of the space to consist of all subsets:
if 〈S, p〉 is a discrete probability structure, then 〈S, ℘(S), p+〉 is a probability
space. Hence, probability spaces can be seen as a generalization of discrete
probability structures—or vice versa, discrete probability structures can be seen
as a special case of probability spaces, viz. those whose σ-algebra is the powerset
of their sample space.

Discrete probability structures, defined by point-functions, have the advan-
tage of simplicity, as well as having numerous countable settings for examples
and applications. The probability spaces, with their set-functions defined on σ-
algebras, have the advantage of generality. The purpose of the σ-algebra is to
restrict the domain of the probability set-function from the entire powerset of
the sample space to a smaller σ-algebra (cf. supra). This is unavoidable, for
example, when we wish to define a uniform probability distribution over an infi-
nite set: one cannot assign equal probability to all singletons while maintaining
countable additivity (since the sum of all probabilities must be at most 1).

In the remainder of this subsection, I will make use of both discrete probabil-
ity structures and probability spaces. However, in the remaining chapters of this
thesis, I will work exclusively with discrete probability functions, since the addi-
tional machinery of σ-algebras is unnecessary for the technical and philosophical
results to be presented.

Let Prop be a countable set of atomic propositions (just as in Subsection 2.3).
Probabilistic models and discrete probabilistic models are defined as follows:

Definition 2.9. A discrete probabilistic model is a tuple M = 〈S, p, V 〉, where
〈S, p〉 is a discrete probability structure, and V : Prop → ℘(S) is a valuation.
The class of all discrete probabilistic models will be denoted CPPLd .

Definition 2.10. A probabilistic model is a tuple M = 〈S,A, µ, V 〉, where
〈S,A, µ〉 is a probability space, and V : Prop → A is a valuation. The class
of all probabilistic models will be denoted CPPL.

The details of discrete probability structures and probability spaces have al-
ready been discussed above. The valuation V determines which atomic proposi-
tions are true at which states; intuitively, s ∈ V (p) means that p is true at the state
s. Note that in the definition of probabilistic model, the valuation is required to
map atomic propositions to the σ-algebraA, instead of to the full powerset ℘(S)
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(as is usually done in modal settings). This restriction ensures that every Boolean
formula has a probability,19 which will be used in the definition of the formal se-
mantics.

2.6.2 Language and Semantics

The basic probability language is defined in layers. For a given set of atomic
propositions Prop, let LB(Prop) be the set of Boolean formulas, given by the
following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ

where p ∈ Prop. Next, let T (Prop) be a set of terms, given by the following
BNF:

t ::= aP (ϕ) | t+ t

where a ∈ Q is a rational number, and ϕ ∈ LB(Prop). Finally, let LP (Prop) be
the set of probability formulas, given by the grammar:

f ::= t ≥ b | ¬f | f ∧ f

where b ∈ Q and t ∈ T (Prop). (The numbers a, b are restricted to be rational, in
order to ensure that the language is countable.)

Formulas of the form t ≥ b are called probability formulas. We allow for
linear combinations in probability formulas, because this additional expressivity
is useful when looking for a complete axiomatization (Fagin et al. 1990), and
because it allows us to make comparative judgments such as ‘ϕ is at least twice
as probable as ψ’: this is expressed by the formula P (ϕ) ≥ 2P (ψ). The added
expressivity of linear combinations will be addressed in more detail in Subsec-
tion 2.6.3.

The formula P (ϕ) ≥ 2P (ψ) is actually an abbreviation for P (ϕ)−2P (ψ) ≥
0. In general, we introduce the following abbreviations:

19The σ-algebra of measurable sets thus plays a role similar to that of the modal algebra of
admissible sets in a general Kripke model (Blackburn et al. 2001, Definition 1.32): both are meant
to restrict the range of the valuation function, to prevent certain ‘problematic’ sets from becoming
truth sets of formulas.
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∑n
`=1 a`P (ϕ`) ≥ b for a1P (ϕ1) + · · ·+ anP (ϕn) ≥ b,

a1Pi(ϕ1) ≥ a2Pi(ϕ2) for a1P (ϕ1) + (−a2)P (ϕ2) ≥ 0,∑n
`=1 a`P (ϕ`) ≤ b for

∑n
`=1(−a`)P (ϕ`) ≥ −b,∑n

`=1 a`P (ϕ`) < b for ¬
(∑n

`=1 a`P (ϕ`) ≥ b
)
,∑n

`=1 a`P (ϕ`) > b for ¬
(∑n

`=1 a`P (ϕ`) ≤ b
)
,∑n

`=1 a`P (ϕ`) = b for
∑n

`=1 a`P (ϕ`) ≥ b ∧
∑n

`=1 a`P (ϕ`) ≤ b.

The formal semantics is defined in layers, just like the language itself. Given
a probabilistic model M (discrete or otherwise) with domain S and valuation V ,
we first define a function [[ · ]]M : LB → ℘(S) by putting

[[ p ]]M = V (p),
[[¬ϕ ]]M = S − [[ϕ ]]M ,
[[ϕ ∧ ψ ]]M = [[ϕ ]]M ∩ [[ψ ]]M .

It is easy to check that if M is a non-discrete probabilistic model, the sets [[ϕ ]]M

are measurable for all ϕ ∈ LB .
Given a probabilistic model M = 〈S,A, µ, V 〉, the semantics of LP looks as

follows:

M |=
∑n

`=1 a`P (ϕ`) ≥ b iff
∑n

`=1 a`µ([[ϕ` ]]M) ≥ b,
M |= ¬f iff M 6|= f ,
M |= f1 ∧ f2 iff M |= f1 and M |= f2.

If M is a discrete probabilistic model, i.e. M = 〈S, p, V 〉, then the first semantic
clause makes use of the additive lifting p+ of the probability function p:

M |=
∑n

`=1 a`P (ϕ`) ≥ b iff
∑n

`=1 a`p
+([[ϕ` ]]M) ≥ b.

It should be emphasized that |= is only defined for LP -formulas. Hence,
for a propositional atom p and a probabilistic model M, it makes sense to ask
whether M |= P (p) ≥ 0.6, but not whether M |= p. More importantly, note
that probability formulas are of the form P (ϕ) ≥ k, where ϕ ∈ LB is a Boolean
combination of propositional atoms. In other words, higher-order probabilities
cannot be expressed in LP : formulas such as P (P (q) ≥ 0.7) ≥ 0.6 are not
well-formed.
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I will finish this subsection by showing that despite these limitations, this
framework is quite powerful, and can be used to naturally formalize rather intri-
cate scenarios.20

Example 2.5. Three indistinguishable balls are simultaneously dropped down a
tube. Inside the tube, each ball gets stuck (independently of the other balls) with
some small probability ε. In other words, each ball rolls out at the other end of
the tube with probability 1− ε, and does not roll out with probability ε. Because
the three balls are indistinguishable, we cannot know which ball(s) got stuck; we
can only count the number of balls that roll out of the tube. (Of course, if we
count 3 (resp. 0) balls rolling out, then we do know that no (resp. all) balls have
gotten stuck.) What is the probability that exactly 2 balls will roll out?

We define the sample space as S := {(s1, s2, s3) | si ∈ {0, 1}}, where

si :=

{
1 if ball i rolls out,
0 if ball i does not roll out.

We consider the propositional atoms rolloutn, which are to be read as ‘exactly n
balls roll out’. Obviously, we put V (rolloutn) := {(s1, s2, s3) ∈ S | s1 + s2 +
s3 = n}. Let A be the σ-algebra generated by {V (rolloutn) | 0 ≤ n ≤ 3}. This
reflects the fact that we can only observe the number of balls rolling out of the
tube; for example, the singleton set {(1, 1, 0)} (which contains the information
that b3 got stuck, and b1 and b2 roll out) is not in A. Finally, we define a proba-
bility measure µ by putting µ(V (rolloutn)) :=

(
3
n

)
(1− ε)nε3−n (i.e. a binomial

distribution).21 The probabilistic model M := 〈S,A, µ, V 〉 fully captures the
scenario. For example, if ε = 0.1, one can check that M |= P (rollout2) = 0.243.

2.6.3 The Expressivity of Linear Combinations

The set of terms T (Prop) introduced in the previous subsection contains not
only terms of the form P (ϕ) (with ϕ ∈ LB(Prop)), but also linear combinatons:
a1P (ϕ1) + · · · + anP (ϕn). Besides having technical motivations, this leads to
the language LP (Prop) being highly expressive. For example, (i) it can express
comparative probability judgments (of the form P (ϕ) ≥ P (ψ)), and (ii) the ≥-
comparison suffices to define all others (cf. the abbreviations stated above for >,
≤, etc.).

20Example 2.5 is loosely based on Example 1.2.5 from Geiss and Geiss (2009).
21The binomial coefficients are defined as

(
m
n

)
= m!

n!(m−n)! .
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However, this expressivity gain should not be exaggerated. For example, if
we restrict ourselves to ‘single’ probabilities—i.e. terms of the form P (ϕ), and
thus probability formulas of the form P (ϕ) ≥ b—, all the comparisons are al-
ready definable. Let’s first consider the case of P (ϕ) ≤ b. With the abbreviations
mentioned above in mind, this can be defined as−P (ϕ) ≥ −b. However, this in-
volves scalar multiplication (with−1) of P (ϕ), and thus already takes us outside
the narrow realm of ‘single’ probabilities. There exists, however, an alternative
definition that stays inside this realm, viz. P (¬ϕ) ≥ 1− b.22 Defining the other
comparisons is now straightforward:

P (ϕ) ≤ b for P (¬ϕ) ≥ 1− b,
P (ϕ) < b for ¬ (P (ϕ) ≥ b),
P (ϕ) > b for ¬ (P (ϕ) ≤ b),
P (ϕ) = b for P (ϕ) ≥ b ∧ P (ϕ) ≤ b.

Next, consider the (finite)23 additivity property of probability measures:

µ(X ∪ Y ) = µ(X) + µ(Y ) for all disjoint X,Y ∈ A.

Using linear combinations of probabilities, this can be expressed almost ‘liter-
ally’ in the object language:

P (ϕ ∨ ψ) = P (ϕ) + P (ψ) whenever ¬(ϕ ∧ ψ) is a tautology. (2.3)

The axiomatization that is introduced in the next subsection uses another, equiv-
alent expression, which also involves linear combinations:

P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ) = P (ϕ).

This suggests an alternative way of expressing additivity, which does not make
use of linear combinations:(

P (ϕ ∧ ψ) = a ∧ P (ϕ ∧ ¬ψ) = b
)
→ P (ϕ) = a+ b. (2.4)

22Note that if ϕ ∈ LB , then ¬ϕ ∈ LB as well, and thus P (¬ϕ) ≥ 1 − b is a perfectly
well-formed LP -formula.

23Probability measures actually satisfy the stronger countable additivity requirement. Since this
requirement cannot easily be captured in a finitary logic (but see Goldblatt (2010) for an example
where countable additivity is captured by means of an infinitary rule in a finitary logic), it is
customary to focus on formulas for finite additivity.
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Heifetz and Mongin (2001) provide an axiomatization of probabilistic proposi-
tional logic along these lines. Note that since (2.3) makes use of a linear com-
bination of probability terms, it does not explicitly contain the numbers a and b,
and is therefore able to express additivity in a single formula (for given ϕ and ψ,
of course). The alternative formulation (2.4), which does not make use of linear
combinations, should be seen as a scheme: it corresponds to the (countable) set
of formulas{((

P (ϕ ∧ ψ) = a ∧ P (ϕ ∧ ¬ψ) = b
)
→ P (ϕ) = a+ b

)
∈ LP (Prop) |

a, b ∈ [0, 1] ∩Q
}
.

Finally, note that linear combinations do not make the language more pow-
erful at distinguishing between models. For any language L and models M1,M2

(on which L is interpretable), we define:

M1 and M2 are L-equivalent iff ∀ϕ ∈ L : M1 |= ϕ⇔M2 |= ϕ.

Informally, two models are L-equivalent if L cannot distinguish between them.
Let L∗P (Prop) be the language that is obtained from LP (Prop) by only al-

lowing probability formulas of the form P (ϕ) ≥ a (in other words, linear combi-
nations of probability terms are not allowed). Then one can show the following:

Lemma 2.1. Consider arbitrary probabilistic models M1 = 〈S1,A1, µ1, V1〉
and M2 = 〈S2,A2, µ2, V2〉. These models are LP (Prop)-equivalent iff they are
L∗P (Prop)-equivalent.

Proof. If M1 and M2 are LP -equivalent, then they are trivially L∗P -equivalent as
well, since L∗P ⊆ LP . We now prove the other direction.

Consider an arbitrary propositional formula ϕ ∈ LB . For a reductio, sup-
pose that µ1([[ϕ ]]M1) 6= µ2([[ϕ ]]M2). Without loss of generality, assume that
µ1([[ϕ ]]M1) > µ2([[ϕ ]]M2) (the other case is completely analogous). Since Q
is dense in R, there exists a k ∈ Q such that µ1([[ϕ ]]M1) > k > µ2([[ϕ ]]M2).
It now follows that M1 |= P (ϕ) ≥ k, while M2 6|= P (ϕ) ≥ k, which con-
tradicts the assumption that these models are L∗P -equivalent. We therefore con-
clude that µ1([[ϕ ]]M1) = µ2([[ϕ ]]M2). Since ϕ ∈ LB was chosen arbitrarily,
this holds for all propositional formulas. Hence, for any probability formula
a1P (ϕ1) + · · ·+ anP (ϕn) ≥ b, we have:
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Figure 2.2: Componentwise axiomatization of probabilistic propositional logic.

1. propositional component

• all propositional tautologies and the modus ponens rule

2. probabilistic component

• P (ϕ) ≥ 0

• P (>) = 1

• P (ϕ ∧ ψ) + P (ϕ ∧ ¬ψ) = P (ϕ)

• if ` ϕ↔ ψ then ` P (ϕ) = P (ψ)

3. linear inequalities component

•
∑n

`=1 a`P (ϕ`) ≥ b↔
∑n

`=1 a`P (ϕ`) + 0P (ϕn+1) ≥ b
•
∑n

`=1 a`P (ϕ`) ≥ b↔
∑n

`=1 ap(`)P (ϕp(`)) ≥ b
(for any permutation p of 1, . . . , n)

•
∑n

`=1 a`P (ϕ`) ≥ b ∧
∑n

`=1 a
′
`P (ϕ`) ≥ b′ →∑n

`=1(a` + a′`)P (ϕ`) ≥ b+ b′

•
∑n

`=1 a`P (ϕ`) ≥ b↔
∑n

`=1 da`P (ϕ`) ≥ db (for any d > 0)

•
∑n

`=1 a`P (ϕ`) ≥ b ∨
∑n

`=1 a`P (ϕ`) ≤ b
•
∑n

`=1 a`P (ϕ`) ≥ b→
∑n

`=1 a`P (ϕ`) > b′ (for any b′ < b)

M1 |=
∑n

`=1 a`P (ϕ`) ≥ b iff
∑n

`=1 a`µ1([[ϕ` ]]M1) ≥ b
iff

∑n
`=1 a`µ2([[ϕ` ]]M2) ≥ b

iff M2 |=
∑n

`=1 a`P (ϕ`) ≥ b.

Since M1 and M2 agree on all probability formulas, they also agree on all
Boolean combinations of such formulas, and are thus LP -equivalent.

2.6.4 Proof System

A proof system for probabilistic propositional logic is given in Figure 2.2. Be-
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yond the propositional component, there is a probabilistic component, which is
a straightforward translation into LP of the well-known Kolmogorov axioms of
probability, together with a rule stating that provably equivalent formulas have
identical probabilities. This component thus ensures that the formal symbol
P ( · ) behaves like a real probability function. Finally, the linear inequalities
component is mainly a technical tool to ensure that the logic is strong enough to
capture the behavior of linear inequalities of probabilities.

Fagin et al. (1990) show that this logic is sound and complete:

Theorem 2.6. Probabilistic propositional logic, as axiomatized in Figure 2.2,
is sound and weakly complete with respect to the class CPPL of probabilistic
models, and also with respect to the class CPPLd of discrete probabilistic models.

The notion of completeness used in this theorem is weak completeness (`
ϕ iff |= ϕ), rather than strong completeness (Γ ` ϕ iff Γ |= ϕ). These two
notions do not coincide in probabilistic propositional logic, because this logic is
not compact. For example, every finite subset of the set

{P (p) > 0} ∪ {P (p) ≤ k | k > 0}

is satisfiable, but the entire set is not. (Similar remarks apply to the other logics
that will be discussed in later chapters.)

The proof of Theorem 2.6 involves establishing the existence of a satisfy-
ing model for a consistent probability formula f . To do this, it is shown that
f is provably equivalent to a conjunction of probability formulas or negations
of probability formulas. Hence, f is satisfiable iff the system of linear inequali-
ties corresponding to this conjunction of (negated) probability formulas, together
with the equalities and inequalities given by the Kolmogorov axioms, has a so-
lution.24 The satisfying model has a finite number of states, its σ-algebra is the
powerset of its domain, and probabilities are assigned to singletons according to
the solution of the linear system. This model is based on a probability space,
and is thus a non-discrete probabilistic model. However, since all subsets of its
domain are measurable, it can also be viewed as a discrete probabilistic model.
It follows that the axiomatization in Figure 2.2 is complete with respect to both
kinds of probabilistic models (CPPL and CPPLd ).

24Recall the proof sketch of Theorem 2.5.
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2.7 Conclusion

This chapter has provided an overview of a wide variety of approaches to com-
bining logic and probability theory. After delineating the field of probabilistic
logic, I discussed the major approaches in the field, and showed that they can be
organized in a systematical and logically meaningful way (recall Figure 2.1).

There is one major class of systems that was not discussed in this chap-
ter, viz. systems whose object language contains both propositional probabilistic
operators and other propositional operators (in particular, epistemic operators).
These probabilistic epistemic logics will be studied in the next chapter.
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3 u Dynamic Epistemic Logic
with Probabilities

3.1 Introduction

Epistemic logic and probability theory both provide formal accounts of informa-
tion. Epistemic logic takes a qualitative perspective on information, and works
with a modal operator K. Formulas such as Kϕ can be interpreted as ‘the agent
knows that ϕ’, ‘the agent believes that ϕ’, or, more generally speaking, ‘ϕ fol-
lows from the agent’s current information’. Probability theory, on the other hand,
takes a quantitative perspective on information, and works with numerical prob-
ability functions P . Formulas such P (ϕ) = k can be interpreted as ‘the proba-
bility of ϕ is k’. In the present context, probabilities will usually be interpreted
subjectively, and can thus be taken to represent the agent’s degrees of belief or
credences.

With respect to one and the same formula ϕ, epistemic logic is able to dis-
tinguish between three epistemic attitudes: knowing its truth (Kϕ), knowing its
falsity (K¬ϕ), and being ignorant about its truth value (¬Kϕ∧¬K¬ϕ).1 Prob-
ability theory, however, distinguishes infinitely many epistemic attitudes with
respect to ϕ, viz. assigning it probability k (P (ϕ) = k), for every k ∈ [0, 1].
In this sense probability theory can be said to provide a much more fine-grained
perspective on information.

While epistemic logic thus is a coarser account of information, it certainly
has a wider scope. From its very origins in Hintikka (1962), epistemic logic has
not only been concerned with knowledge about ‘the world’, but also with knowl-

1In Part III, we will see that these three formulas, together with their negations, form a (strong)
Sesmat-Blanché hexagon.
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edge about knowledge, i.e. with higher-order information. Typical discussions
focus on principles such as positive introspection (Kϕ → KKϕ). In contrast,
probability theory rarely talks about principles involving higher-order probabili-
ties, such as P (ϕ) = 1 → P (P (ϕ) = 1) = 1.2 This issue becomes even more
pressing in multi-agent scenarios. Natural examples might involve an agent a
not having any information about a proposition ϕ, while being certain that an-
other agent, b, does have this information. In epistemic logic this is naturally
formalized as

¬Kaϕ ∧ ¬Ka¬ϕ ∧Ka(Kbϕ ∨Kb¬ϕ).

A formalization in probability theory might look as follows:

Pa(ϕ) = 0.5 ∧ Pa(Pb(ϕ) = 1 ∨ Pb(ϕ) = 0) = 1.

However, because this statement makes use of ‘nested’ probabilities, it is rarely
used in standard treatments of probability theory.

An additional theme is that of dynamics, i.e. information change. The agents’
information is not eternally the same; rather, it should be changed in the light of
new incoming information. Probability theory typically uses Bayesian updat-
ing to represent information change (but other, more complicated update mecha-
nisms are available as well). Dynamic epistemic logic interprets new information
as changing the epistemic model, and uses the new, updated model to represent
the agents’ updated information states. Once again, the main difference is that
dynamic epistemic logic takes (changes in) higher-order information into ac-
count, whereas probability theory does not.

For all these reasons, the project of probabilistic epistemic logic seems very
appealing. Such systems inherit the fine-grained perspective on information from
probability theory, and the representation of higher-order information from epis-
temic logic. Their dynamic versions provide a unified perspective on changes
in first- and higher-order information. In other words, they can be thought of as

2A notable exception is ‘Miller’s principle’, which states that P1(ϕ |P2(ϕ) = b) = b. The
probability functions P1 and P2 can have various interpretations, such as the probabilities of two
agents, subjective probability (credence) and objective probability (chance), or the probabilities of
one agent at different moments in time—in the last two cases, the principle is also called the ‘prin-
cipal principle’ or the ‘principle of reflection’, respectively. These principles have been widely
discussed in Bayesian epistemology and philosophy of science (Miller 1966, Lewis 1980, van
Fraassen 1984, Halpern 1991, Meacham 2010). Regardless of one’s agreement or disagreement
with these principles, arguing for or against them requires a language in which they can at least be
expressed, i.e. in which higher-order probabilities are allowed.
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incorporating the complementary perspectives of (dynamic) epistemic logic and
probability theory, thus yielding richer and more detailed accounts of informa-
tion and information flow.

The remainder of this chapter is organized as follows. Section 3.2 introduces
the static framework of probabilistic epistemic logic, and discusses its intuitive
interpretation and technical features. Section 3.3 focuses on a rather straight-
forward type of dynamics, namely public announcements. It describes a prob-
abilistic version of the well-known system of public announcement logic, and
compares public announcement and Bayesian conditionalization. In Section 3.4
a more general update mechanism is introduced. This is a probabilistic version
of the ‘product update’ mechanism in dynamic epistemic logic. Finally, Sec-
tion 3.5 indicates some applications and potential avenues of further research for
the systems discussed in this chapter.

3.2 Probabilistic Epistemic Logic

In this section, I introduce the static framework of probabilistic epistemic logic,
which will be ‘dynamified’ in Sections 3.3 and 3.4. Subsection 3.2.1 discusses
the models on which the logic is interpreted. Subsection 3.2.2 defines the for-
mal language and its semantics. Finally, Subsection 3.2.3 provides a complete
axiomatization.

3.2.1 Probabilistic Kripke Models

Consider a finite set I of agents, and a countable set Prop of atomic propositions.
Throughout this chapter, these sets will be kept fixed, so they will often be left
implicit.

Definition 3.1. A probabilistic Kripke frame is a tuple F = 〈W,Ri, µi〉i∈I ,
where W is a non-empty finite set of states, Ri ⊆ W × W is agent i’s epis-
temic accessibility relation, and µi : W → (W ⇀ [0, 1]) assigns to each state
w ∈W a partial function µi(w) : W ⇀ [0, 1], such that∑

v∈dom(µi(w))

µi(w)(v) = 1.
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Definition 3.2. A probabilistic Kripke model is a tuple M = 〈F, V 〉, where F is
a probabilistic Kripke frame (with set of states W ), and V : Prop → ℘(W ) is a
valuation.

Note that in principle, no conditions are imposed on the agents’ epistemic
accessibility relations. However, as is usually done in the literature on (proba-
bilistic) dynamic epistemic logic, we will henceforth assume these relations to
be equivalence relations (so that the corresponding knowledge operators satisfy
the principles of the modal logic S5).

The function µi(w) represents agent i’s probabilities (i.e. degrees of belief)
at state w. For example, µi(w)(v) = k means that at state w, agent i assigns
probability k to state v being the actual state. From a mathematical perspective,
this is not the most general approach: one can also define a probability space3

Pi(w) = 〈Si(w),Ai(w), µi(w)〉 for each agent i and state w, and let µi(w) as-
sign probabilities to sets in the σ-algebra Ai(w), rather than to individual states
in the sample space Si(w). In this way, one can easily drop the requirement that
frames and models have finitely many states. This approach is taken in Fagin
and Halpern (1994) for static probabilistic epistemic logic, and extended to dy-
namic settings in Sack (2009); see Demey and Sack (forthcoming) for an exten-
sive overview. However, all the characteristic features of probabilistic (dynamic)
epistemic logic already arise in the simpler approach. Therefore, in the remain-
der of this thesis, I will stick to the simpler approach, and take µi(w) to assign
probabilities to individual states. These functions are additively extended from
individual states to sets of states, by putting for each set X ⊆ dom(µi(w)):4

µi(w)(X) :=
∑
x∈X

µi(w)(x).

A consequence of the simple approach is that all setsX ⊆ dom(µi(w)) have
a definite probability µi(w)(X), whereas in the more general approach, sets X
not belonging to the σ-algebra Ai(w) of Pi(w) are not assigned any definite
probability at all. A similar distinction can be made at the level of individual
states. Because µi(w) is a partial function, states v ∈ W − dom(µi(w)) are
not assigned any definite probability at all. An even simpler approach involves

3Recall Definition 2.8 on p. 63.
4In Section 2.6, I wrote p for the point-function and p+ for its additive lifting to a set-function.

Henceforth, I will no longer notationally distinguish between these two. This should cause no
confusion, since they obviously agree on single states: p(w) = p+({w}).
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putting µi(w)(v) = 0, rather than leaving it undefined. In this way, the func-
tion µi(w) can be assumed to be total after all (i.e. dom(µi(w)) = W ). From a
mathematical perspective, these two approaches are equivalent. From an infor-
mal perspective, however, there is a clear difference: µi(w)(v) = 0 means that
agent i is certain (at statew) that v is not the actual state, whereas µi(w)(v) being
undefined means that agent i has no opinion whatsoever (at state w) about v be-
ing the actual state. Again, because all the characteristic features of probabilistic
(dynamic) epistemic logic already arise without this intuitive distinction, I will
opt for the even simpler approach, and henceforth assume that all probability
functions are total.

To summarize: the approach adopted in this chapter (and in the remainder
of this thesis) is the simplest one possible, in the sense that definite probabilities
are assigned to ‘everything’: (i) to all sets (there is no σ-algebra to rule out some
sets from having a definite probability), and (ii) to all states (the probability
functions µi(w) are total on their domain W , so no states are ruled out from
having a definite probability).

3.2.2 Language and Semantics

The language Ls(Prop) of (static) probabilistic epistemic logic is defined by
means of the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | a1Pi(ϕ) + · · ·+ anPi(ϕ) ≥ b

where p ∈ Prop, i ∈ I, 1 ≤ n < ω, and a1, . . . , an, b ∈ Q. As usual, we
only allow rational numbers as values for a1, . . . , an, b in order to keep the lan-
guage countable. The formula Kiϕ expresses that agent i knows that ϕ, or,
more generally, that ϕ follows from agent i’s information. Its dual is defined as
K̂iϕ := ¬Ki¬ϕ, and means that ϕ is consistent with agent i’s information.

Formulas of the form a1Pi(ϕ1)+ · · ·+anPi(ϕn) ≥ b are called i-probability
formulas. An i-probability formula is said to be atomic iff it is of the form
a1Pi(p1) + · · ·+ anPi(pn) ≥ b with p1, . . . , pn ∈ Prop, i.e. iff the arguments of
its probability operators are propositional atoms (rather than arbitrary formulas).
Note that mixed agent indices are not allowed; for example, Pa(p) + Pb(q) ≥ b
is not a well-formed formula of Ls. Intuitively, Pi(ϕ) ≥ b means that agent
i assigns probability at least b to ϕ. We allow for linear combinations in i-
probability formulas, because this additional expressivity is useful when looking
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for a complete axiomatization (Fagin and Halpern 1994), and because it allows
us to express comparative judgments such as ‘agent i considers ϕ to be at least
twice as probable as ψ’: Pi(ϕ) ≥ 2Pi(ψ). This last formula is actually an
abbreviation for Pi(ϕ) − 2Pi(ψ) ≥ 0. In general, we introduce the following
abbreviations:5

∑n
`=1 a`Pi(ϕ`) ≥ b for a1Pi(ϕ1) + · · ·+ anPi(ϕn) ≥ b,

a1Pi(ϕ1) ≥ a2Pi(ϕ2) for a1Pi(ϕ1) + (−a2)Pi(ϕ2) ≥ 0,∑n
`=1 a`Pi(ϕ`) ≤ b for

∑n
`=1(−a`)Pi(ϕ`) ≥ −b,∑n

`=1 a`Pi(ϕ`) < b for ¬
(∑n

`=1 a`Pi(ϕ`) ≥ b
)
,∑n

`=1 a`Pi(ϕ`) > b for ¬
(∑n

`=1 a`Pi(ϕ`) ≤ b
)
,∑n

`=1 a`Pi(ϕ`) = b for
∑n

`=1 a`Pi(ϕ`) ≥ b ∧
∑n

`=1 a`Pi(ϕ`) ≤ b.

Note that because of its recursive definition, the language Ls can express
the agents’ higher-order information of any sort: higher-order knowledge (for
example KaKbϕ), but also higher-order probabilities (for example Pa(Pb(ϕ) ≥
0.5) = 1), and higher-order information that mixes knowledge and probabilities
(for example, Ka(Pb(ϕ) ≥ 0.5) and Pa(Kbϕ) = 1).

The formal semantics for Ls is defined as follows. Consider an arbitrary
probabilistic Kripke model M and a state w in M. We will often abbreviate
[[ϕ ]]M := {v ∈W |M, v |= ϕ}. Then:

M, w |= p iff w ∈ V (p),
M, w |= ¬ϕ iff M, w 6|= ϕ,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= Kiϕ iff for all v: if (w, v) ∈ Ri then M, v |= ϕ,

M, w |=
∑n

`=1 a`Pi(ϕ`) ≥ b iff
∑n

`=1 a`µi(w)([[ϕ` ]]M) ≥ b.

The following notions are also defined in the standard way:

M |= ϕ iff M, w |= ϕ for all w ∈W ,
F |= ϕ iff 〈F, V 〉 |= ϕ for all valuations V on the frame F,
|= ϕ iff F |= ϕ for all frames F.

5These are essentially the same abbreviations as for propositional probabilistic logic (Subsec-
tion 2.6.2), with the exception that the probability operators now carry agent indices.

78



Probabilistic Epistemic Logic / 3.2

I will now discuss some typical principles about the interaction between
knowledge and probability, and show how they correspond to various proper-
ties of probabilistic relational frames.6

Definition 3.3. Let F = 〈W,Ri, µi〉i∈I be a probabilistic Kripke frame.

1. F is uniform iff for all states w, v: if (w, v) ∈ Ri then µi(w) = µi(v),

2. F is consistent iff for all states w, v: if (w, v) /∈ Ri then µi(w)(v) = 0,

3. F is prudent iff for all states w, v: if (w, v) ∈ Ri, then µi(w)(v) > 0,

4. F is live iff for all states w: µi(w)(w) > 0.

Lemma 3.1. Let F be a probabilistic Kripke frame. Then the following hold:

1. F is uniform iff for all atomic i-probability formulas ϕ:

F |=
(
ϕ→ Kiϕ

)
∧
(
¬ϕ→ Ki¬ϕ

)
,

2. F is consistent iff F |= Kip→ Pi(p) = 1,

3. F is prudent iff F |= K̂p→ Pi(p) > 0,

4. F is live iff F |= p→ Pi(p) > 0.

Uniformity asserts that the agents’ probabilities are entirely determined by
their epistemic information: if an agent cannot epistemically distinguish between
two states, then she should have the same probability functions at those states.
This property corresponds to an epistemic-probabilistic introspection principle,
stating that agents know their own probabilistic setup (i.e. probability formulas
and their negations).

Consistency asserts that the agents assign probability 0 to all states that they
do not consider possible. This seems rational: if an agent knows that a certain
state is not actual, then it would be a ‘waste’ to assign any non-zero probability
to it. This property corresponds to the principle that knowledge implies certainty
(i.e. probability 1). From a more conceptual perspective, consistency yields the
following lemma:7

6See Halpern (2003) for a further discussion of these and other properties, and their correspon-
dence to knowledge/probability interaction principles. Furthermore, from a technical perspective,
Lemma 3.1 illustrates how the notion of frame correspondence from modal logic (van Benthem
1983, 2001a) can be extended into the probabilistic realm.

7I make use of the standard abbreviation Ri[w] := {v ∈W | (w, v) ∈ Ri}.
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Lemma 3.2. Let F = 〈W,Ri, µi, V 〉i∈I be an arbitrary probabilistic Kripke
frame. If F satisfies consistency, then for all w ∈W and X ⊆W it holds that

µi(w)(X) = µi(w)(X ∩Ri[w]).

Although this lemma is almost trivial to prove, its conceptual importance
cannot be underestimated. According to Blackburn et al. (2001, p. ix), one of
the key properties of modal (and thus epistemic) logic is its locality: to find out
whether a formula holds at a given state w, one only needs to check whether it
holds at states that are accessible fromw. In other words, only states insideRi[w]
are relevant for determining the truth values of propositions at w. In general,
probabilistic epistemic logic is not local in this sense. For example, to check
whether M, w |= Pi(q) ≥ 0.4, we need to check whether µi(w)([[ q ]]M) =∑

v : M,v|=q µi(w)(v) ≥ 0.4, which requires checking all states of M (for each
state v, check whether M, v |= q, and if so, add µi(w)(v) to the sum). If (the
frame underlying) M satisfies consistency, however, then Lemma 3.2 states that
we only have to check the states inside Ri[w] when calculating this sum. In
general: if we only work with frames that satisfy consistency, then probabilistic
epistemic logic is local, just as modal logic.

I now turn to the next frame property: prudence. This asserts that the agents
assign non-zero probability to all states that are epistemically indistinguishable
from the actual state. After all, it would be quite ‘bold’ for an agent to assign
probability 0 to a state that, to the best of her knowledge, might turn out to be the
actual state.8 This property corresponds to the principle that epistemic possibility
implies probabilistic possibility (non-zero probability), or, read contrapositively,
that an agent can only assign probability 0 to propositions that she knows to be
false:

Pi(p) = 0→ Ki¬p.

Yet another, equivalent formulation is that an agent can only be certain of propo-
sitions that she knows to be true:

Pi(p) = 1→ Kip.

8However, there also exist counterexamples to this prudence principle. Kooi (2003, p. 384)
gives the example of tossing a fair coin an infinite number of times. A state in which the coin
lands tails every time is epistemically possible (we can perfectly imagine that this would happen),
yet probabilistically impossible (it seems perfectly reasonable to assign probability 0 to it).
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This last formula is exactly the converse of the formula corresponding to consis-
tency, thus revealing the close connection between prudence and consistency.9

Liveness asserts that agents assign non-zero probability to the actual state. If
one assumes that each state is indistinguishable from itself (i.e. that the epistemic
indistinguishability relationRi is reflexive), then liveness is a direct consequence
of prudence. Furthermore, liveness corresponds to the principle that agents
should assign non-zero probability to all true propositions (p → Pi(p) > 0).
Note, trivially perhaps, that if one assumes that knowledge is factive (which is
exactly the principle corresponding to the reflexivity of Ri), then this principle
follows immediately from the principle corresponding to prudence.

The properties of consistency and liveness seem particularly plausible. Fur-
thermore, these properties will return often in Part II. It is therefore useful to
introduce a separate name for probabilistic Kripke frames satisfying these two
properties:

Definition 3.4. A probabilistic Kripke frame is said to be well-behaved iff it is
uniform and live. A probabilistic Kripke model 〈F, V 〉 is said to be well-behaved
iff its underlying frame F is.

3.2.3 Proof System

Probabilistic epistemic logic can be axiomatized in a highly modular fash-
ion. An overview is given in Figure 3.1. The propositional, probabilistic and
linear inequalities components are exactly as in propositional probabilistic logic
(Figure 2.6.4 on p. 70), and should thus not need any further comments.10 The
epistemic component ensures that Ki is an S5 modal operator.

9It should be noted that if a probabilistic Kripke frame 〈W,Ri, µi〉i∈I satisfies consistency
as well as prudence, then for all states w, v ∈ W , it holds that (w, v) ∈ Ri iff µi(w)(v) > 0.
This means that the relation Ri is definable in terms of the probability function µi, and can thus
be dropped from the models altogether. The resulting structures are of the form 〈W,µi, V 〉i∈I ,
and are essentially a type of probabilistic transition systems, which have been extensively studied
in theoretical computer science (Larsen and Skou 1991, de Vink and Rutten 1999, Jonsson et al.
2001).

10The only differences are that the probability operators now carry agent indices, and, more
importantly, that formulas ‘inside’ Pi( · ) are no longer restricted to be Boolean combinations of
propositional atoms. The fact that removing this restriction does not cause any trouble for the
axiomatization seems to suggest that it was not needed in the first place.
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Figure 3.1: Componentwise axiomatization of probabilistic epistemic logic.

1. propositional component

• all propositional tautologies and the modus ponens rule

2. epistemic component

• the S5 axioms and rules for the Ki-operators

3. probabilistic component

• Pi(ϕ) ≥ 0

• Pi(>) = 1

• Pi(ϕ ∧ ψ) + Pi(ϕ ∧ ¬ψ) = Pi(ϕ)

• if ` ϕ↔ ψ then ` Pi(ϕ) = Pi(ψ)

4. linear inequalities component

•
∑n

`=1 a`Pi(ϕ`) ≥ b↔
∑n

`=1 a`Pi(ϕ`) + 0Pi(ϕn+1) ≥ b
•
∑n

`=1 a`Pi(ϕ`) ≥ b↔
∑n

`=1 ap(`)Pi(ϕp(`)) ≥ b
(for any permutation p of 1, . . . , n)

•
∑n

`=1 a`Pi(ϕ`) ≥ b ∧
∑n

`=1 a
′
`Pi(ϕ`) ≥ b′ →∑n

`=1(a` + a′`)Pi(ϕ`) ≥ b+ b′

•
∑n

`=1 a`Pi(ϕ`) ≥ b↔
∑n

`=1 da`Pi(ϕ`) ≥ db (for any d > 0)

•
∑n

`=1 a`Pi(ϕ`) ≥ b ∨
∑n

`=1 a`Pi(ϕ`) ≤ b
•
∑n

`=1 a`Pi(ϕ`) ≥ b→
∑n

`=1 a`Pi(ϕ`) > b′ (for any b′ < b)
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The logic’s soundness and completeness can be proved using standard tech-
niques (Fagin and Halpern 1994):

Theorem 3.1. Probabilistic epistemic logic, as axiomatized in Figure 3.1, is
sound and complete with respect to the class of probabilistic Kripke models, and
also with respect to the class of well-behaved probabilistic Kripke models.

The proof of this theorem involves constructing a canonical model, i.e. a
probabilistic Kripke model in which every consistent formula is satisfiable. By
construction, this model is well-behaved, and thus immediately yields complete-
ness with respect to the subclass of well-behaved models as well.

3.3 Probabilistic Public Announcement Logic

In this section, I will discuss a first ‘dynamification’ of probabilistic epistemic
logic, by introducing public announcements into the logic. Subsection 3.3.1 dis-
cusses updated probabilistic Kripke models, and introduces a public announce-
ment operator into the formal language to talk about these models. Subsec-
tion 3.3.2 provides a complete axiomatization, and Subsection 3.3.3 focuses on
the role of higher-order information in public announcement dynamics.

3.3.1 Semantics

Public announcements form one of the simplest types of epistemic dynamics.
They concern the truthful and public announcement of some piece of informa-
tion ϕ by an external source. That the announcement is truthful means that the
announced information ϕ has to be true; that it is public means that all agents
i ∈ I learn about it simultaneously and commonly. Finally, the announcement’s
source is called ‘external’ because it is not one of the agents i ∈ I (and will thus
not be explicitly represented in the formal language).

Public announcement logic (Plaza 1989, Gerbrandy and Groeneveld 1997,
van Ditmarsch et al. 2007) represents these announcements as updates that change
Kripke models, and introduces a dynamic public announcement operator into the
formal language to describe these updated models. This strategy can straightfor-
wardly be extended into the probabilistic realm.

Syntactically, we add a dynamic operator [! ·] · to the static languageLs(Prop),
thus obtaining the new language L!(Prop). The formula [!ϕ]ψ means that after

83



3 . Dynamic Epistemic Logic with Probabilities

any truthful public announcement of ϕ, it will be the case that ψ. Its dual is
defined as 〈!ϕ〉ψ := ¬[!ϕ]¬ψ, and means that ϕ can truthfully and publicly be
announced, and afterwards ψ will be the case. These formulas thus allow us to
express ‘now’ (i.e. before any dynamics has taken place) what will be the case
‘later’ (after the dynamics has taken place). These formulas are interpreted on a
probabilistic Kripke model M and state w as follows:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ,
M, w |= 〈!ϕ〉ψ iff M, w |= ϕ and M|ϕ,w |= ψ.

Note that these clauses mention not only the model M, but also the updated
model M|ϕ. The model M represents the agents’ information before the public
announcement of ϕ; the model M|ϕ represents their information after the public
announcement of ϕ. Hence, the public announcement of ϕ itself is represented
by the update mechanism M 7→M|ϕ, which is formally defined as follows:

Definition 3.5. Consider a probabilistic Kripke model M = 〈W,Ri, µi, V 〉i∈I
and a formula ϕ ∈ L!. Then the updated probabilistic Kripke model M|ϕ :=
〈Wϕ, Rϕi , µ

ϕ
i , V

ϕ〉i∈I is defined as follows:

• Wϕ := W ,

• Rϕi := Ri ∩ (W × [[ϕ ]]M) for every agent i ∈ I ,

• µϕi : Wϕ → (Wϕ → [0, 1]) is defined (for every agent i ∈ I) by

µϕi (w)(v) :=


µi(w)({v}∩[[ϕ ]]M)

µi(w)([[ϕ ]]M)
if µi(w)([[ϕ ]]M) > 0

µi(w)(v) if µi(w)([[ϕ ]]M) = 0,

• V ϕ := V .

The main effect of the public announcement of ϕ in a model M is that all
links to ¬ϕ-states are deleted; hence these states are no longer accessible for
any of the agents. Also note that the public announcement of ϕ does not change
the ‘ground facts’: the valuation V ϕ is the same as the old valuation V .11 This
procedure is standard; I will therefore focus on the probabilistic components µϕi .

11Public announcements can thus cause changes (e.g. going from not-knowing that ϕ to know-
ing that ϕ), but these changes are always on the epistemic/probabilistic level, never on the ontic
level. Informally: public announcements (can) change the agents’ (epistemic and probabilistic)
information about the world, but they do not change the world itself.
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First of all, it should be noted that the case distinction in the definition of
µϕi (v)(u) is made for strictly technical reasons, viz. to ensure that there are no
‘dangerous’ divisions by 0. In all examples and applications, we will be using
the ‘interesting’ case µi(v)([[ϕ ]]M) > 0. Still, for general theoretical reasons,
something has to be said about the case µi(v)([[ϕ ]]M) = 0. Leaving µϕi (v)(u)
undefined would lead to truth value gaps in the logic, and thus greatly increase
the difficulty of finding a complete axiomatization. The approach taken here is
to define µϕi (v)(u) simply as µi(v)(u) in case µi(v)([[ϕ ]]M) = 0—so the public
announcement of ϕ has no effect whatsoever on µi(v). The intuitive idea behind
this definition is that an agent i simply ignores new information if she previously
assigned probability 0 to it. Technically speaking, this definition will yield a
relatively simple axiomatization.

One can easily check that if M is a probabilistic Kripke model, then M|ϕ
is a probabilistic Kripke model as well. We focus on µϕ(v) (for some arbitrary
state v ∈Wϕ). If µi(v)([[ϕ ]]M) = 0, then µϕi (v) is µi(v), which is a probability
function on W = Wϕ. If µi(v)([[ϕ ]]M) > 0, then for any u ∈Wϕ,

µϕi (v)(u) =
µi(v)({u} ∩ [[ϕ ]]M)

µi(v)([[ϕ ]]M)
,

which is positive because µi(v)({u}∩ [[ϕ ]]M) is positive, and at most 1, because
µi(v)({u} ∩ [[ϕ ]]M) ≤ µi(v)([[ϕ ]]M)—and hence µϕi (v)(u) ∈ [0, 1]. Further-
more,

∑
u∈Wϕ

µϕi (v)(u) =
∑
u∈W

µi(v)({u} ∩ [[ϕ ]]M)

µi(v)([[ϕ ]]M)
=

∑
u∈W :
M,u|=ϕ

µi(v)(u)

µi(v)([[ϕ ]]M)
= 1.

It should be noted that the definition of µϕi (v)—in the interesting case when
µi(v)([[ϕ ]]M) > 0—can also be expressed in terms of conditional probabilities:

µϕi (v)(u) =
µi(v)({u} ∩ [[ϕ ]]M)

µi(v)([[ϕ ]]M)
= µi(v)(u | [[ϕ ]]M).

In general, for any X ⊆Wϕ we have:

µϕi (v)(X) =
µi(v)(X ∩ [[ϕ ]]M)

µi(v)([[ϕ ]]M)
= µi(v)(X | [[ϕ ]]M).
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In other words, after the public announcement of a formula ϕ, the agents calcu-
late their new, updated probabilities by means of Bayesian conditionalization on
the information provided by the announced formula ϕ. This connection between
public announcements and Bayesian conditionalization will be explored more
thoroughly in Subsection 3.3.3.

If the probabilistic Kripke model M is well-behaved (recall Definition 3.4),
the updated model M|ϕ can be defined in a much simpler way:

Definition 3.6. Consider a probabilistic Kripke model M = 〈W,Ri, µi, V 〉i∈I
and a formula ϕ ∈ L!, and suppose that M is well-behaved. Then the updated
probabilistic Kripke model M|ϕ := 〈Wϕ, Rϕi , µ

ϕ
i , V

ϕ〉i∈I can be defined as fol-
lows:

• Wϕ := [[ϕ ]]M,

• Rϕi := Ri ∩ ([[ϕ ]]M× [[ϕ ]]M) for every agent i ∈ I ,

• µϕi (w)(v) := µi(w)(v)

µi(w)([[ϕ ]]M)
for every agent i ∈ I and states w, v ∈Wϕ,

• V ϕ(p) := V (p) ∩ [[ϕ ]]M for every p ∈ Prop.

Informally, Definition 3.5 formalizes a public announcement of ϕ by cutting
all links to ¬ϕ-states, while Definition 3.6 removes these states themselves. Both
techniques are well-known in the literature on public announcement logic; in
non-probabilistic settings they are equivalent to each other.

Note that µϕi is well-defined (there is no danger of dividing by 0); after all,
µϕi (w) is only defined for states w ∈Wϕ = [[ϕ ]]M, and since M is well-behaved
and thus satisfies liveness, it follows that µi(w)([[ϕ ]]M) ≥ µi(w)(w) > 0. Just
as with Definition 3.5, one can easily show that the updated model defined in
Definition 3.6 is a probabilistic Kripke model. Furthermore, this update mecha-
nism preserves well-behavedness:

Lemma 3.3. If M is well-behaved, then M|ϕ is also well-behaved.

Proof. We first check consistency. Consider arbitrary states w, v ∈ Wϕ and
suppose that (w, v) /∈ Rϕi . Since Rϕi = Ri ∩ (Wϕ × Wϕ), it follows that
(w, v) /∈ Ri, and hence (by the consistency of M) µi(w)(v) = 0. We thus find
that

µϕi (w)(v) =
µi(w)(v)

µi(w)([[ϕ ]]M)
= 0.
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Next, we check liveness. Consider an arbitrary state w ∈ Wϕ. Since Wϕ ⊆ W ,
it follows by the liveness of M that µi(w)(w) > 0, and hence

µϕi (w)(w) =
µi(w)(w)

µi(w)([[ϕ ]]M)
> 0.

To illustrate the naturalness and explanatory power of probabilistic public
announcement logic, I will finish this subsection by discussing two examples.
Example 3.1 is quite simple, but Example 3.2 is a more complex scenario, viz. the
well-known Monty Hall puzzle.12

Example 3.1. Consider the following scenario. An agent does not know whether
p is the case, i.e. she cannot distinguish between p-states and ¬p-states. (In fact,
p happens to be true.) Furthermore, the agent has no specific reason to think that
one state is more probable than any other; therefore it is reasonable for her to
assign equal probabilities to all states. This example can be formalized by the
following model: M = 〈W,R, µ, V 〉,W = {w, v}, R = W ×W,µ(w)(w) =
µ(w)(v) = µ(v)(w) = µ(v)(v) = 0.5, and V (p) = {w}. (We work with only
one agent in this example, so agent indices can be dropped.) This model is a
faithful representation of the scenario described above. For example, we have:

M, w |= ¬Kp ∧ ¬K¬p ∧ P (p) = 0.5 ∧ P (¬p) = 0.5.

Now suppose that p is publicly announced (which is indeed possible, since p was
assumed to be actually true). By applying Definition 3.5 we obtain the updated
model M|p, with W p = W,R = {(w,w)}, and

µp(w)([[ p ]]M|p) = µp(w)(w) =
µ(w)({w} ∩ [[ p ]]M)

µ(w)([[ p ]]M)
=
µ(w)(w)

µ(w)(w)
= 1.

Using this updated model M|p, we find that

M, w |= [!p]
(
Kp ∧ P (p) = 1 ∧ P (¬p) = 0

)
.

So after the public announcement of p, the agent has come to know that p is in
fact the case. She has also adjusted her probabilities: she now assigns probability

12 The Monty Hall puzzle has caused a large intellectual stir, the details of which cannot be
recounted here. More information about this fascinating history can be found in the introduction of
Kooi (1999) and Rosenhouse (2009). My presentation of the puzzle follows Kooi (2003, p. 402ff.).
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1 to p being true, and probability 0 to p being false. These are the results that
one would intuitively expect, so Definition 3.5 seems to yield an adequate repre-
sentation of the epistemic and probabilistic effects of public announcements.

Example 3.2. The Monty Hall puzzle is about the following scenario:

Suppose you’re on a game show, and you’re given the choice of
three doors. Behind one door is a car, behind the others, goats. You
pick a door, say number 1, and the host [Monty Hall], who knows
what’s behind the doors opens another door, say number 3, which
has a goat. He says to you, “Do you want to pick door number 2?”
Is it to your advantage to switch your choice of doors?

—Craig F. Whitaker, as cited in Kooi (2003, p. 402).

It turns out that it is indeed advantageous to switch, because of the following
argument:

Suppose you initially pick the door with the car, then you should not
switch. This happens in one third of the cases. Suppose on the other
hand you initially pick a door that contains a goat, which happens
in two third of the cases. Monty Hall cannot open the door with the
car and he cannot open the door you picked. He has to open the
other door with a goat. So, if you pick a door with a goat, Monty
Hall has only one option. After he opens that door, the remaining
unopened door you did not pick must contain the car. Therefore, if
you initially pick a door with a goat, switching will guarantee that
you win the car. You pick such a door in two third of the cases.
Hence by switching you lose in one third of the cases and you win
in two third of the cases. Kooi (2003, p. 403).

This informal argument—and especially its conclusion—seems highly counter-
intuitive to many people, and is therefore very controversial (recall Footnote 12).
It is therefore useful to formalize the argument in a formal logical system. Since
the argument involves probabilities as well as dynamics (such as ‘opening a
door’), the formal system needs to be able to express and reason about all of
these aspects. Probabilistic public announcement logic is exactly such a system;
we will now show how it can be used to formalize the argument.

There are two agents: the participant p and the quiz master q. For 1 ≤ i ≤ 3,
the propositional atoms cari, choosei and openi express that the car is behind
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door i, that the participant initially chooses door i, and that the quiz master opens
door i, respectively. The rules of the game state that there is exactly one car, that
the participant initially chooses exactly one door, and that the quiz master opens
exactly one door. These can be formalized as follows (Y expresses exclusive
disjunction):

onecar :≡ car1 Y car2 Y car3;

onechoice :≡ choose1 Y choose2 Y choose3;

oneopen :≡ open1 Y open2 Y open3.

Although the informal argument does not mention this explicitly, it relies on the
(very natural) assumption that the participant initially assigns the same proba-
bility to the car being behind each particular door, viz. 1

3 . Furthermore, after
the participant has chosen a door (but before the quiz master has opened another
door), she has not gained any additional information about the car’s location,
and should thus still assign probability 1

3 to it being behind each particular door.
These two assumptions are formalized as follows:

equal :≡ Pp(car1) =
1

3
∧ Pp(car2) =

1

3
∧ Pp(car3) =

1

3
;

stillequal :≡ [!choose1]equal ∧ [!choose2]equal ∧ [!choose3]equal.

Next, consider the way in which the quiz master decides which door to open. If
the participant has chosen door i, then the quiz master should open a door j such
that (i) the car is not behind it and (ii) it is another door than the one initially
chosen by the participant (i.e. i 6= j). If there is a goat behind door i, then there
is exactly one such door j; however, if the car is behind door i, then there are
two such doors, and the quiz master must (arbitrarily) select exactly one of them
as door j. This selection rule can be formalized as follows:

selection :≡
∧

1≤i≤3
1≤j≤3

[!choosei]
(
openj ↔

(
¬carj ∧¬choosej ∧

∧
1≤k≤3
k 6=j

¬openk
))
.

This completes the formalization of the ‘rules’ of the game show; let us define

rules :≡ onecar ∧ onechoice ∧ oneopen ∧ equal ∧ stillequal ∧ selection.

It is natural to assume that the participant knows the rules of the game she is
participating in (the rules have been carefully explained to her, etc.). As a conse-
quence, she will be fully certain of these rules, i.e. assign probability 1 to them.
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We define the general setup of the game show as consisting of all its rules plus
the fact that the participant is certain about these rules:

generalsetup :≡ rules ∧ Pp(rules) = 1.

With the game show’s general setup in place, let us now turn to the particular
scenario described above: the participant chooses door 1 and, subsequently, the
quiz master opens door 3, thus revealing a goat. Is it rational for the participant
to switch from door 1 to door 2 in this case? She should choose the door which
she considers most likely to contain the car. Hence, it will be rational to switch
from door 1 to door 2 iff she considers it more likely that the car is behind door
2 than that it is behind door 1. Hence, the question boils down to the following:

switch :≡ [!choose1][!open3]
(
Pp(car1) < Pp(car2)

)
.

It is natural to assume that the participant does not get radically surprised during
the scenario, i.e. that she did not assign probability 0 to any of the propositions
involved in the scenario. In this particular scenario, this means that the partici-
pant assigns non-zero probability to her choosing door 1, and to the quiz master
opening door 3 after she has chosen door 1. These scenario-specific assumptions
are naturally expressed as follows:

scenario :≡ Pp(choose1) > 0 ∧ [!choose1]Pp(open3) > 0.

It is now a fairly easy exercise in logical reasoning to show that, given the general
setup of the game show and this particular scenario, after the participant has
chosen door 1 and the quiz master has opened door 3, the participant assigns
probability 2

3 to the car being behind door 2, and only probability 1
3 to it being

behind door 1:

|= setup ∧ scenario → [!choose1][!open3]
(
Pp(car1) =

1

3
∧ Pp(car2) =

2

3

)
.

But this means that the participant should indeed switch:

|= setup ∧ scenario → switch.

Probabilistic public announcement logic thus formally vindicates the infor-
mal argument presented at the beginning of this example, despite its counterin-
tuitive conclusion. Furthermore, because of its logical rigor, it forces us to make
all the assumptions of this argument fully explicit, including trivial ones such as
equal, but also more subtle ones such as stillequal.
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Figure 3.2: Axiomatization of probabilistic public announcement logic.

1. static base logic

• probabilistic epistemic logic, as axiomatized in Figure 3.1

2. necessitation for public announcement

• if ` ψ then ` [!ϕ]ψ

3. reduction axioms for public announcement

[!ϕ]p ↔ ϕ→ p
[!ϕ]¬ψ ↔ ϕ→ ¬[!ϕ]ψ

[!ϕ](ψ1 ∧ ψ2) ↔ [!ϕ]ψ1 ∧ [!ϕ]ψ2

[!ϕ]Kiψ ↔ ϕ→ Ki[!ϕ]ψ
[!ϕ]

∑
` a`Pi(ψ`) ≥ b ↔ ϕ→(

Pi(ϕ) = 0 ∧
∑

` a`Pi(〈!ϕ〉ψ`) ≥ b
)
∨(

Pi(ϕ) > 0 ∧
∑

` a`Pi(〈!ϕ〉ψ`) ≥ bPi(ϕ)
)

3.3.2 Proof System

Public announcement logic can be axiomatized by adding a set of reduction
axioms to the static base logic (van Ditmarsch et al. 2007). These axioms allow
us to recursively rewrite formulas containing dynamic public announcement op-
erators as formulas without such operators; hence the dynamic language L! is
equally expressive as the static Ls. Alternatively, reduction axioms can be seen
as ‘predicting’ what will be the case after the public announcement has taken
place in terms of what is the case before the public announcement has taken
place.

This strategy can be extended into the probabilistic realm. For the static base
logic, we do not simply take some system of epistemic logic (usually S5), but
rather the system of probabilistic epistemic logic described in Subsection 3.2.3
(Figure 3.1), and add the reduction axioms shown in Figure 3.2. The first four re-
duction axioms are familiar from classical (non-probabilistic) public announce-
ment logic. Note that the reduction axiom for i-probability formulas makes, just
like Definition 3.5, a case distinction based on whether the agent assigns prob-
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ability 0 to the announced formula ϕ. The significance of this reduction axiom,
and its connection with Bayesian conditionalization, will be further explored in
the next subsection.

If we restrict attention to well-behaved models, then the reduction axiom for
i-probability formulas can be somewhat simplified. If M is well-behaved and
M, w |= ϕ, then also M, w |= Pi(ϕ) > 0, and hence, the reduction axiom for
i-probability formulas reduces to

[!ϕ]
∑
`

a`Pi(ψ`) ≥ b ↔
(
ϕ→

∑
`

a`Pi(〈!ϕ〉ψ`) ≥ bPi(ϕ)
)
.

Once again, standard techniques suffice to prove the following (Kooi 2003):

Theorem 3.2. Probabilistic public announcement logic, as axiomatized in Fig-
ure 3.2, is sound and complete with respect to the class of probabilistic Kripke
models, and also with respect to the class of well-behaved probabilistic Kripke
models.

3.3.3 Higher-Order Information in Public Announcements

In this subsection, I will discuss the role of higher-order information in proba-
bilistic public announcement logic. This will further clarify the connection, but
also the distinction, between (dynamic versions of) probabilistic epistemic logic
and probability theory proper.

In the previous subsection, a reduction axiom for i-probability formulas was
introduced. This axiom allows us to derive the following principle as a special
case:

(ϕ ∧ Pi(ϕ) > 0) −→
(
[!ϕ]Pi(ψ) ≥ b↔ Pi(〈!ϕ〉ψ) ≥ bPi(ϕ)

)
. (3.1)

The antecedent states that ϕ is true (because of the truthfulness of public an-
nouncements) and that agent i assigns a strictly positive probability to it (so that
we are in the ‘interesting’ case of the reduction axiom). To see the meaning
of the consequent more clearly, note that 〈!ϕ〉ψ is equivalent to ϕ ∧ [!ϕ]ψ, and
introduce the following abbreviation of conditional probability into the formal
language:

Pi(β |α) ≥ b :≡ Pi(α ∧ β) ≥ bPi(α). (3.2)
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Principle (3.1) can now be rewritten as follows:

(ϕ ∧ Pi(ϕ) > 0) −→
(
[!ϕ]Pi(ψ) ≥ b↔ Pi([!ϕ]ψ |ϕ) ≥ b

)
. (3.3)

A similar version can be proved for≤ instead of≥; combining these two we get:

(ϕ ∧ Pi(ϕ) > 0) −→
(
[!ϕ]Pi(ψ) = b↔ Pi([!ϕ]ψ |ϕ) = b

)
. (3.4)

The consequent thus states a connection between the agent’s probability of
ψ after the public announcement of ϕ, and her conditional probability of [!ϕ]ψ,
given the truth of ϕ. In other words, after a public announcent of ϕ, the agent
updates her probabilities by Bayesian conditionalization on ϕ. The subtlety of
principle (3.4), however, is that the agent does not take the conditional probabil-
ity (conditional on ϕ) of ψ itself, but rather of the updated formula [!ϕ]ψ.

The reason for this is that [!ϕ]Pi(ψ) = b talks about the probability that the
agent assigns to ψ after the public announcement of ϕ has actually happened.
If we want to describe this probability as a conditional probability, we cannot
simply make use of the conditional probability Pi(ψ |ϕ), because this represents
the probability that the agent would assign to ψ if a public announcement of
ϕ would happen—hypothetically, not actually! Borrowing a slogan from van
Benthem: “The former takes place once arrived at one’s vacation destination,
the latter is like reading a travel folder and musing about tropical islands.” (van
Benthem 2003, p. 417). Hence, if we want to describe the agent’s probability of
ψ after an actual public announcement of ϕ in terms of conditional probabilities,
we need to represent the effects of the public announcement of ϕ on ψ explicitly,
and thus take the conditional probability (conditional on ϕ) of [!ϕ]ψ, rather than
simply ψ.

One might wonder about the relevance of this subtle distinction between ac-
tual and hypothetical public announcements. The point is that the public an-
nouncement of ϕ can have effects on the truth value of ψ. For large classes of
formulas ψ, this will not occur: their truth value is not affected by the public
announcement of ϕ. Formally, this means that [!ϕ]ψ is equivalent to ψ, so (the
consequent of) principle (3.4) becomes:

[!ϕ]Pi(ψ) = b↔ Pi(ψ |ϕ) = b

—thus wiping away all differences between the agent’s probability of ψ after
a public announcement of ϕ, and her conditional probability of ψ, given ϕ. A
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typical class of such formulas (whose truth value is unaffected by the public
announcement of ϕ) is formed by the Boolean combinations of proposition let-
ters, i.e. those formulas which express ontic or first-order information. Since
probability theory proper is usually only concerned with first-order informa-
tion (‘no nested probabilities’), the distinction between actual and hypothetical
announcements—or in general, between actual and hypothetical learning of new
information—thus vanishes completely, and Bayesian conditionalization can be
used as a universal update rule to compute new probabilities after (actually)
learning a new piece of information.

However, in probabilistic epistemic logic (and its dynamic versions, such as
probabilistic PAL), higher-order information is taken into account, and hence
the distinction between actual and hypothetical public announcements has to be
taken seriously. Therefore, the consequent of principle (3.4) should really use
the conditional probability Pi([!ϕ]ψ |ϕ), rather than just Pi(ψ |ϕ).13

Example 3.3. To illustrate this, consider again the model defined in Example 3.1,
and put ϕ := p ∧ P (¬p) = 0.5. It is easy to show that

M, w |= P (ϕ |ϕ) = 1 ∧ P ([!ϕ]ϕ |ϕ) = 0 ∧ [!ϕ]P (ϕ) = 0.

Hence the probability assigned to ϕ after the public announcement is the condi-
tional probability P ([!ϕ]ϕ |ϕ), rather than just P (ϕ |ϕ). Note that this example
indeed involves higher-order information, since we are talking about the proba-
bility of ϕ, which itself contains the probability statement P (¬p) = 0.5 as a con-
junct. Finally, this example also shows that learning a new piece of information
ϕ (via public announcement) does not automatically lead to the agents being cer-
tain about (i.e. assigning probability 1 to) that formula. This is to be contrasted
with probability theory, where a new piece of information ϕ is processed via
Bayesian conditionalization, and thus always leads to certainty: P (ϕ |ϕ) = 1.
The explanation is, once again, that probability theory is only concerned with

13Romeijn (2012) provides an analysis that stays closer in spirit to probability theory proper.
He argues that the public announcement of ϕ induces a shift in the interpretation of ψ (in our
terminology: from ψ to [!ϕ]ψ, i.e. from [[ψ ]]M to [[ψ ]]M|ϕ), and shows that such meaning shifts
can be modeled using Dempster-Shafer belief functions. Crucially, however, this proposal is able
to deal with the case where the formula P (ψ) = b expresses second-order information (e.g. when
ψ itself is of the form Pi(p) = b), but not with the case of higher-order information in general
(e.g. when ψ is of the form Pj(Pi(p) = b) = a, or involves even more deeply nested probabilities)
(Romeijn 2012, p. 603).

94



Probabilistic Dynamic Epistemic Logic / 3.4

first-order information, whereas the phenomena described above can only occur
at the level of higher-order information.14,15

3.4 Probabilistic Dynamic Epistemic Logic

In this section, I will move from a probabilistic version of public announce-
ment logic to a probabilistic version of ‘full’ dynamic epistemic logic. Subsec-
tion 3.4.1 introduces a probabilistic version of the product update mechanism
that is behind dynamic epistemic logic. Subsection 3.4.2 introduces dynamic
operators into the formal language to talk about these product updates, and dis-
cusses a detailed example. Subsection 3.4.3, finally, shows how to obtain a com-
plete axiomatization in a fully standard (though non-trivial) fashion.

3.4.1 Probabilistic Product Update

Classical (non-probabilistic) dynamic epistemic logic models epistemic dynam-
ics by means of a product update mechanism (Baltag and Moss 2004, Baltag
et al. 1998). The agents’ static information (what is the current state?) is repre-
sented in a Kripke model M, and their dynamic information (what type of event
is currently taking place?) is represented in an update model E. The agents’ new
information (after the dynamics has taken place) is represented by means of a
product construction M⊗E. I will now show how a probabilistic version of this
construction can be set up.

Before stating the formal definitions, I will show how they naturally arise
as probabilistic generalizations of the classical (non-probabilistic) notions. The
probabilistic Kripke models introduced in Definition 3.2 represent the agents’
static information, in both its epistemic and its probabilistic aspects. This static
probabilistic information is called the prior probabilities of the states in van

14Similarly, the success postulate for belief expansion in the (traditional) AGM framework (Al-
chourrón et al. 1985, Gärdenfors 1988) states that after expanding one’s belief set with a new piece
of information ϕ, the updated (expanded) belief set should always contain this new information.
Here, too, the explanation is that AGM is only concerned with first-order information. (Note that
we talk about the success postulate for belief expansion, rather than belief revision, because the
former seems to be the best analogue of public announcement in the AGM framework.)

15The occurrence of higher-order information is a necessary condition for this phenomenon,
but not a sufficient one: there exist formulas ϕ that involve higher-order information, but still
|= [!ϕ]Pi(ϕ) = 1 (or epistemically: |= [!ϕ]Kiϕ).
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Benthem et al. (2009). We can thus say that when w is the actual state, agent
i considers it epistemically possible that v is the actual state ((w, v) ∈ Ri),
and, more specifically, that she assigns probability b to v being the actual state
(µi(w)(v) = b).

Update models are essentially like Kripke models: they represent the agents’
information about events, rather than states. Since probabilistic Kripke models
represent both epistemic and probabilistic information about states, by analogy
probabilistic update models should represent both epistemic and probabilistic
information about events. Hence, they should not only have epistemic acces-
sibility relations Ri over their set of events E, but also probability functions
µi : E → (E → [0, 1]). (Formal details will be given in Definition 3.7.) We can
then say that when e is the actually occurring event, agent i considers it epis-
temically possible that f is the actually occurring event ((e, f) ∈ Ri), and, more
specifically, that she assigns probability b to f being the actually occurring event
(µi(e)(f) = b). This dynamic probabilistic information is called the observation
probabilities in van Benthem et al. (2009).

Finally, how probable it is that an event e will occur, might vary from state to
state. We assume that this variation can be captured by means of a set Φ of (pair-
wise inconsistent) sentences in the object language (so that the probability that
an event e will occur can only vary between states that satisfy different sentences
of Φ). This will be formalized by adding to the probabilistic update models a
set of preconditions Φ, and probability functions pre : Φ → (E → [0, 1]). The
meaning of pre(ϕ)(e) = b is that if ϕ holds, then event e occurs with probability
b. In van Benthem et al. (2009) these are called occurrence probabilities.16

We are now ready to formally introduce probabilistic update models:

Definition 3.7. A probabilistic update model is a tuple E = 〈E,Ri,Φ, pre, µi〉i∈I ,
where E is a non-empty finite set of events, Ri ⊆ E × E is agent i’s epistemic
accessibility relation, Φ ⊆ L⊗ is a finite set of pairwise inconsistent sentences
called preconditions, µi : E → (E → [0, 1]) assigns to each event e ∈ E a
probability function µi(e) over E, and pre : Φ → (E → [0, 1]) assigns to each
precondition ϕ ∈ Φ a probability function pre(ϕ) over E.

All components of a probabilistic update model have already been com-
mented upon. Note that we use the same symbols Ri and µi to indicate agent i’s

16Occurrence probabilities are often assumed to be objective frequencies. This is reflected in
the formal setup: the function pre is not agent-dependent.
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epistemic and probabilistic information in a probabilistic Kripke model M and in
a probabilistic update model E—from the context it will always be clear which
of the two is meant. The language L⊗ that the preconditions are taken from will
be formally defined in the next subsection. (As is usual in this area, there is a
non-vicious simultaneous recursion going on here.)

We now introduce occurrence probabilities for events at states:

Definition 3.8. Consider a probabilistic Kripke model M, a statew, a probabilis-
tic update model E, and an event e. Then the occurrence probability of e at w is
defined as

pre(w)(e) :=

{
pre(ϕ)(e) if ϕ ∈ Φ and M, w |= ϕ

0 if there is no ϕ ∈ Φ such that M, w |= ϕ.

Since the preconditions are pairwise inconsistent, pre(w)(e) is always well-
defined. The meaning of pre(w)(e) = b is that in state w, event e occurs with
probability b. Note that if two states w and v satisfy the same precondition, then
always pre(w)(e) = pre(v)(e); in other words, the occurrence probabilities of
an event e can only vary ‘up to a precondition’ (cf. supra).

The probabilistic product update mechanism can now be defined as follows:

Definition 3.9. Consider a probabilistic Kripke model M = 〈W,Ri, µi, V 〉i∈I
and a probabilistic update model E = 〈E,Ri,Φ, pre, µi〉i∈I . Then the updated
model M⊗ E := 〈W ′, R′i, µ′i, V ′〉i∈I is defined as follows:

• W ′ := {(w, e) |w ∈W, e ∈ E, pre(w)(e) > 0},

• R′i := {((w, e), (w′, e′)) ∈W ′ ×W ′ | (w,w′) ∈ Ri and (e, e′) ∈ Ri}
for every agent i ∈ I ,

• µ′i : W ′ → (W ′ → [0, 1]) is defined (for every agent i ∈ I) by

µ′i(w, e)(w
′, e′) :=

{
α−1 · µi(w)(w′) · pre(w′)(e′) · µi(e)(e′) if α > 0

0 if α = 0,

where α :=
∑

w′′∈W
e′′∈E

µi(w)(w′′) · pre(w′′)(e′′) · µi(e)(e′′),

• V ′(p) := {(w, e) ∈W ′ |w ∈ V (p)} for every p ∈ Prop.
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I will only comment on the probabilistic component of this definition (all
other components are fully classical). After the dynamics has taken place, agent
i calculates at state (w, e) her new probability for (w′, e′) by taking the arithmeti-
cal product of (i) her prior probability for w′ at w, (ii) the occurrence probability
of e′ in w′, and (iii) her observation probability for e′ at e, and then normalizing
this product (i.e. dividing it by α). The factors in this product are not weighted
(or equivalently, they all have weight 1); van Benthem et al. (2009) also dis-
cuss weighted versions of this update mechanism, and show how one of these
weighted versions corresponds to the rule of Jeffrey conditioning from probabil-
ity theory (Jeffrey 1983). Finally, note that M⊗E might fail to be a probabilistic
Kripke model: if α = 0, then µ′i(w, e) assigns 0 to all states in W ′. We will not
care here about the interpretation of this feature, but only remark that technically
speaking it is harmless and, perhaps most importantly, still allows for a reduction
axiom for i-probability formulas (cf. Subsection 3.4.3).

3.4.2 Language and Semantics

To talk about these updated models, dynamic operators [E, e] are added to the
static language Ls, thus obtaining the new language L⊗. Here, E, e are formal
names for the probabilistic update model E = 〈E,Ri,Φ, pre, µi〉i∈I and event
e ∈ E; recall the remark about the mutual recursion of the dynamic language and
the updated models. The formula [E, e]ϕ says that after the event e has occurred,
it will be the case that ϕ. It has the following semantics:

M, w |= [E, e]ψ iff if pre(w)(e) > 0, then M⊗ E, (w, e) |= ψ.

I will now illustrate the expressive power of this framework by showing how
it can be used to adequately model a rather intricate scenario. Note that this
example is based on the sense of sight; similar examples in van Benthem et al.
(2009) and Demey and Sack (forthcoming) are based on the senses of touch and
hearing, respectively. This is no coincidence: because of the fallibility of sense
perception, examples based on the senses can easily be used to illustrate the
notion of observation probability.17

Example 3.4. Consider the following scenario. While strolling through a flee
market, you see a painting that you think might be a real Picasso. Of course, the

17Examples based on the senses of smell and taste are eagerly awaited.
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chance that the painting is actually a real Picasso is very slim, say 1 in 100 000.
You know from an art encyclopedia that Picasso signed almost all his paintings
with a very characteristic signature. If the painting is a real Picasso, the chance
that it bears the characteristic signature is 97%, while if the painting is not a real
Picasso, the chance that it bears the characteristic signature is 0% (nobody is
capable of imitating Picasso’s signature). You immediately look at the painting’s
signature, but determining whether it is Picasso’s characteristic signature is very
hard, and—not being an expert art historian—, you remain uncertain and think
that the chance is 50% that the painting’s signature is Picasso’s characteristic
one.

Your initial information (before having looked at the painting’s signature)
can be represented as the following probabilistic Kripke model: M = 〈W,R, µ, V 〉,
where W = {w, v}, R = W ×W,µ(w)(w) = µ(v)(w) = 0.00001, µ(w)(v) =
µ(v)(v) = 0.99999, and V (real) = {w}. (We work with only one agent in this
example, so agent indices can be dropped.) Hence, initially you do not rule out
the possibility that the painting in front of you is a real Picasso, but you consider
it highly unlikely:

M, w |= K̂real ∧ P (real) = 0.00001.

The event of looking at the signature can be represented with the following up-
date model: E = 〈E,R,Φ, pre, µ〉, where E = {e, f}, R = E × E, Φ =
{real,¬real}, pre(real)(e) = 0.97, pre(real)(f) = 0.03, pre(¬real)(e) = 0,
pre(¬real)(f) = 1, and µ(e)(e) = µ(f)(e) = µ(e)(f) = µ(f)(f) = 0.5.
The event e represents ‘looking at Picasso’s characteristic signature’; the event
f represents ‘looking at a signature that is not Picasso’s characteristic one’.

We now construct the updated model M⊗E. Since M, v 6|= real, it holds that
pre(v)(e) = pre(¬real)(e) = 0, and hence (v, e) does not belong to the updated
model. It is easy to see that the other states (w, e), (w, f) and (v, f) do belong to
the updated model. Furthermore, one can easily calculate that µ′(w, e)(w, e) =
0.0000003 and µ′(w, e)(w, f) = 0.0000097, so µ′(w, e)([[ real ]]M⊗E) = 0.0000003+
0.0000097 = 0.00001, and thus

M, w |= [E, e]P (real) = 0.00001.

Hence, even though the painting in front of you is a real Picasso (in statew), after
looking at the signature (which is indeed Picasso’s characteristic signature!—the
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event that actually happened was event e) you still assign a probability of 1 in
100 000 to it being a real Picasso.

Note that if you had been an expert art historian, with the same prior prob-
abilities, but with the reliable capability of recognizing Picasso’s characteristic
signature—let’s formalize this as µ(e)(e) = 0.99 and µ(e)(f) = 0.01—, then
the same update mechanism would have implied that

M, w |= [E, e]P (real) = 0.00096.

In other words, if you had been an expert art historian, then looking at the paint-
ing’s signature would have been highly informative: it would have led to a sig-
nificant change in your probabilities.

3.4.3 Proof System

A complete axiomatization for probabilistic dynamic epistemic logic can be
found using the standard strategy, viz. by adding a set of reduction axioms to
static probabilistic epistemic logic. Implementing this strategy, however, is not
entirely trivial. The reduction axioms for non-probabilistic formulas are famil-
iar from classical (non-probabilistic) dynamic epistemic logic, but the reduction
axiom for i-probability formulas is more complicated.

First of all, this reduction axiom makes a case distinction on whether a cer-
tain sum of probabilities is strictly positive or not. I will now show that this
corresponds to the case distinction made in the definition of the updated proba-
bility functions (Definition 3.9). In the definition of µ′i(w, e), a case distinction
is made on the value of the denominator of a fraction, i.e. on the value of the
following expression:∑

v∈W
f∈E

µi(w)(v) · pre(v)(f) · µi(e)(f). (3.5)

But this expression can be rewritten as∑
v∈W
f∈E
ϕ∈Φ

M,v|=ϕ

µi(w)(v) · pre(ϕ)(f) · µi(e)(f).
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Figure 3.3: Axiomatization of probabilistic dynamic epistemic logic.

1. static base logic

• probabilistic epistemic logic, as axiomatized in Figure 3.1

2. necessitation for [E, e]

• if ` ψ then ` [E, e]ψ

3. reduction axioms
[E, e]p ↔ preE,e → p

[E, e]¬ψ ↔ preE,e → ¬[E, e]ψ
[E, e](ψ1 ∧ ψ2) ↔ [E, e]ψ1 ∧ [E, e]ψ2

[E, e]Kiψ ↔ preE,e →
∧

(e,f)∈Ri Ki[E, f]ψ

[E, e]
∑

` a`Pi(ψ`) ≥ b ↔ preE,e →(∑
ϕ∈Φ
f∈E

ki,e,ϕ,fPi(ϕ) = 0 ∧ 0 ≥ b
)
∨(∑

ϕ∈Φ
f∈E

ki,e,ϕ,fPi(ϕ) > 0 ∧ χ
)

using the following definitions:

• preE,e :=
∨

ϕ∈Φ
pre(ϕ)(e)>0

ϕ

• ki,e,ϕ,f := pre(ϕ)(f) · µi(e)(f) ∈ R
• χ :=

∑
`

ϕ∈Φ
f∈E

a`ki,e,ϕ,fPi(ϕ ∧ 〈E, f〉ψ`) ≥
∑

ϕ∈Φ
f∈E

bki,e,ϕ,fPi(ϕ)
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Using the definition of ki,e,ϕ,f (cf. Figure 3.3), this can be rewritten as∑
ϕ∈Φ
f∈E

µi(w)([[ϕ ]]M) · ki,e,ϕ,f .

Since E and Φ are finite, this sum is finite and corresponds to an expression in
the formal language L⊗, which we will abbreviate as σ:

σ :=
∑
ϕ∈Φ
f∈E

ki,e,ϕ,fPi(ϕ).

This expression can be turned into an i-probability formula by ‘comparing’ it
with a rational number b; for example σ ≥ b. Particularly important are the
formulas σ = 0 and σ > 0: it are exactly these formulas which are used to make
the case distinction in the reduction axiom for i-probability formulas.18

Next, the reduction axiom for i-probability formulas provides a statement in
each case of the case distinction: 0 ≥ b in the case σ = 0, and χ (as defined
in Figure 3.3) in the case σ > 0. We will only discuss the meaning of χ in the
‘interesting’ case σ > 0. If M, w |= σ > 0, then the value of (3.5) is strictly
positive (cf. supra), and we can calculate:

µ′i(w, e)([[ψ ]]M⊗E) =
∑

M⊗E,(w′,e′)|=ψ µ
′
i(w, e)(w

′, e′)

=
∑

w′∈W,e′∈E
M,w′|=〈E,e′〉ψ

µi(w)(w′)·pre(w′)(e′)·µi(e)(e′)∑
v∈W
f∈E

µi(w)(v)·pre(v)(f)·µi(e)(f)

=

∑
ϕ∈Φ
f∈E

µi(w)([[ϕ∧〈E,f〉ψ ]]M)·ki,e,ϕ,f∑
ϕ∈Φ
f∈E

µi(w)([[ϕ ]]M)·ki,e,ϕ,f
.

Hence, in this case (σ > 0) we can express that µ′i(w, e)([[ψ ]]M⊗E) ≥ b in the
formal language, by means of the following i-probability formula:∑

ϕ∈Φ
f∈E

ki,e,ϕ,fPi(ϕ ∧ 〈E, f〉ψ) ≥
∑
ϕ∈Φ
f∈E

bki,e,ϕ,fPi(ϕ).

18Note that E and Φ are components of the probabilistic update model E named by E; further-
more, the values ki,e,ϕ,f are fully determined by the model E and event e named by E and e,
respectively (consider their definition in Figure 3.3). Hence, any i-probability formula involving
the expression σ is fully determined by E, e, and can be interpreted at any probabilistic Kripke
model M and state w.
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Moving to linear combinations, we can express that
∑

` a`µ
′
i(w, e)([[ψ` ]]M⊗E) ≥

b in the formal language using an analogous i-probability formula, namely χ
(cf. the definition of this formula in Figure 3.3).

We thus obtain the following theorem (van Benthem et al. 2009):

Theorem 3.3. Probabilistic dynamic epistemic logic, as axiomatized in Fig-
ure 3.3, is sound and complete with respect to the class of probabilistic Kripke
models.

3.5 Further Developments and Applications

Probabilistic extensions of dynamic epistemic logic are a recent development,
and there are various open questions and potential applications to be explored.
In this section, I discuss a selection of such topics for further research; more
suggestions can be found in van Benthem et al. (2009) and van Benthem (2011,
Chapter 8).

A typical technical issue is whether other representations of soft informa-
tion can learn something from the probabilistic approach to dynamic epistemic
logic. Probabilistic Kripke models represent the agents’ soft information via the
probability functions µi, and interpret formulas of the form Pi(ϕ) ≥ b. Plau-
sibility models, on the other hand, represent the agents’ soft information via a
(non-numerical) plausibility ordering ≤i; for example, w ≤i v means that agent
i considers state w at least as plausible as state v (Baltag and Smets 2008, van
Benthem 2007, 2011).19

The product update for probabilistic Kripke models described in Defini-
tion 3.9 takes into account prior probabilities (µi(w)(v) for states w and v),
observation probabilities (µi(e)(f) for events e and f ), and occurrence proba-
bilities (pre(w)(e) for a state w and event e). One can also define a product
update for plausibility models; a widely used rule to define the updated plau-
sibility ordering is the so-called ‘priority update’ (Baltag and Smets 2008, van
Benthem 2011):

(w, e) ≤i (v, f) iff e <i f or (e ∼=i f and w ≤i v).

The updated plausibility ordering thus gives priority to the plausibility ordering
on events, and otherwise preserves the original plausibility ordering on states

19The model theory of epistemic plausibility models is discussed in detail in Chapter 4.
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as much as possible. In analogy with the probabilistic setting, the plausibility
orderings on states and events can be called the ‘prior plausibility’ and ‘obser-
vation plausibility’, respectively. However, the notion of occurrence probability
does not seem to have a clear analogue in the framework of plausibility models.
Van Benthem (2012) defines a notion of ‘occurrence plausibility’, which can be
expressed as e ≤w f : at state w, event e is at least as plausible as f to occur (this
ordering is not agent-dependent; recall Footnote 16). New product update rules
thus have to merge three plausibility orderings: prior plausibility, observation
plausibility, and occurrence plausibility. Van Benthem (2012) makes some pro-
posals for such rules, but finding a fully satisfactory definition remains a major
open problem in this area.

Probabilistic extensions of (dynamic) epistemic logic have been fruitfully
applied in fields such as game theory and cognitive science. In recent years,
epistemic logic has been widely applied to explore the epistemic foundations of
game theory (van Benthem 2001b, 2007, Bonanno and Dégremont forthcoming).
However, given the importance of probability in game theory (for example, in
the notion of mixed strategy), it is quite surprising that rather few of these logi-
cal analyses have a probabilistic component. A notable exception is de Bruin
(2008a,b, 2010), who uses probabilistic epistemic logic to analyze epistemic
characterization theorems for several solution concepts for normal form games
and extensive games, such as Nash equilibrium, iterated strict dominance, and
backward induction. However, de Bruin’s system is entirely static. An applica-
tion of dynamic probabilistic epistemic logics in game theory will be discussed
in Chapter 5, where I use a version of probabilistic public announcement logic
to analyze the roles of communication and common knowledge in Aumann’s
celebrated agreeing to disagree theorem.

Another potential field of application for probabilistic dynamic epistemic
logic is cognitive science. The usefulness of (epistemic) logic for cognitive
science has been widely recognized (Pietarinen 2003, van Benthem 2008, Ver-
brugge et al. forthcoming). Of course, as in any other empirical discipline,
one quickly finds out that real-life human cognition is rarely a matter of all-
or-nothing, but often involves degrees (probabilities). Furthermore, a recent de-
velopment in cognitive science is toward probabilistic (Bayesian) models of cog-
nition (Oaksford and Chater 2008). If epistemic logic is to remain a valuable tool
here, it will thus have to be a thoroughly ‘probabilified’ version. For example,
Lorini and Castelfranchi (2007) use a version of probabilistic epistemic logic
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to model the cognitive and epistemic aspects of surprise. In Chapter 7, I will
argue that Lorini and Castelfranchi’s system fails to fully capture the dynamic
nature of surprise, and propose an alternative formalization in the framework of
probabilistic public announcement logic.

3.6 Conclusion

In this chapter, I have introduced probabilistic epistemic logic and several of its
dynamic versions. These logics provide a standard epistemic (possible worlds)
analysis of the agents’ hard information, and supplement it with a fine-grained
probabilistic analysis of their soft information. Higher-order information of any
kind (knowledge about probabilities, probabilities about knowledge, etc.) is rep-
resented explicitly. The importance of higher-order information in dynamics is
clearly illustrated by the subtle relationship between public announcements and
Bayesian conditionalization. The probabilistic versions of both public announce-
ment logic and dynamic epistemic logic with product updates can be completely
axiomatized in a standard way (via reduction axioms).
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4 u The Model Theory of
Plausibility Models

4.1 Introduction

Traditional epistemic logic can be seen as a particular branch of modal logic.
Its semantics is defined in terms of Kripke models, and philosophical principles
about knowledge (e.g. factivity: Kϕ → ϕ) are shown to correspond to proper-
ties of the epistemic accessibility relation (e.g. reflexivity). By adding another
(doxastic) accessibility relation, belief can be treated in this framework as well.
Belief is not assumed to be factive, but at least consistent (¬B⊥), which cor-
responds to requiring the doxastic accessibility relation to be serial instead of
reflexive. In this extended framework, one can study the interaction between
knowledge and belief, expressed in principles such as Kϕ→ Bϕ (van der Hoek
1993, Halpern 1996). Furthermore, since this framework is still ‘just’ a modal
logic, it inherits the mathematically well-developed model theory of modal logic.

This framework can also be used to model the interaction of (factive) knowl-
edge with public announcements (Plaza 1989, Gerbrandy and Groeneveld 1997)
and other dynamic epistemic phenomena (Baltag et al. 1998, Baltag and Moss
2004). The dynamics of belief (and other non-factive attitudes), however, cannot
convincingly be modeled in this framework: if an agent receives a true piece of
information ϕ while previously believing that ¬ϕ, then this agent is predicted to
go insane and start believing everything (rather than performing a realistic pro-
cess of belief revision)—thus contradicting the consistency requirement about
belief.1 To remedy this problem, (epistemic) plausibility models have been in-

1More details can be found in van Benthem (2007, Section 3.1).
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troduced (technical details will be presented later). In these models, one can
again study knowledge, belief (and even other cognitive propositional attitudes),
and their various interactions. Furthermore, this framework provides a realistic
model of various dynamic phenomena, and thus solves the main problem of the
previous approach. Because plausibility models give rise to a much richer se-
mantics than Kripke models,2 however, they do not straightforwardly inherit the
model-theoretical results of modal logic. Therefore, while epistemic plausibility
structures are well-suited for modeling purposes, an extensive investigation of
their model theory has been lacking so far.

An additional issue is that some of the main authors in this area, viz. Baltag
and Smets (2008) and van Benthem (2007), define epistemic plausibility models
in subtly different ways. This situation might lead to some unnecessary con-
fusions (for example, see Footnotes 14 and 18). Furthermore, given these two
definitions of epistemic plausibility models, one is left wondering whether one
of them is superior over the other, and for what reasons.

The main aim of this chapter is to initiate a systematic exploration of the
model theory of epistemic plausibility models. Because van Benthem’s defini-
tion is the most general, I will focus on this notion (at least for now). Further-
more, given that bisimulation is the central notion in basic modal logic (Goranko
and Otto 2006), it makes sense to start this investigation by focusing on bisimula-
tions for (van Benthem-type) epistemic plausibility models. In the end, however,
I will argue that the model-theoretical results also shed new light on the issue
of the two definitions of epistemic plausibility models: they provide us with a
specific argument for the superiority of Baltag and Smets’s definition over that
of van Benthem.

The remainder of this chapter is organized as follows. In Section 4.2, I intro-
duce both van Benthem- and Baltag/Smets-type epistemic plausibility models,
and discuss some important operators which can be interpreted on such models,
and their dynamic behavior. In Section 4.3, bisimulations for van Benthem-type
epistemic plausibility models are studied. I first show that the most straightfor-
ward definition of bisimulation fails, and then define various better notions of
bisimulations (parametrized by a language L). I establish a Hennessy-Milner

2In Kripke models, the modal operators are interpreted by universally quantifying over the
accessible states; in plausibility models, however, certain operators are interpreted by consider-
ing the states that are minimal according to the plausibility ordering (cf. the semantic clause for
conditional belief versus those for knowledge and safe belief in Definition 4.3). This notion of
‘minimality’ is completely absent from traditional Kripke semantics and its model theory.
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type theorem, and prove several (un)definability results—thus shedding some
light on the formal relationships between the various operators that can be inter-
preted on epistemic plausibility models. A central aspect of these bisimulations,
however, turns out to be unsatisfactory for several reasons. In Section 4.4, I dis-
cuss these reasons and explore two possible solutions: adding a modality to the
language, and putting extra constraints on the models. In Section 4.5, finally, I
show that the second of these solutions constitutes a methodological argument to
adopt Baltag and Smets’s definition of epistemic plausibility model, rather than
that of van Benthem.

4.2 Epistemic Plausibility Models

I will start by introducing epistemic plausibility models (EPMs), as defined in
van Benthem (2007)3 and Baltag and Smets (2008). Let I be a non-empty, finite
set, whose elements will be called agents; furthermore, let Prop be a countably
infinite set of atomic propositions. These two sets will be kept fixed throughout
the chapter, so they can often be left implicit.

Definition 4.1. A van Benthem-type epistemic plausibility model is a structure
M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I , where W is a non-empty set of states, Ri ⊆ W ×
W is the epistemic accessibility relation for agent i, ≤i,w⊆ W × W is the
plausibility order for agent i at state w, and V : Prop→ ℘(W ) is a valuation.

As usual, (w, v) ∈ Ri, or simply wRiv, means that agent i cannot epis-
temically distinguish between states w and v. This relation is assumed to be an
equivalence relation. The Ri-equivalence class of a state w ∈ W is abbreviated
as Ri[w] := {v ∈ W |wRiv}. Furthermore, w ≤i,s v means that at state s,
agent i considers w at least as plausible as v. This relation is assumed to be a
well-founded preorder. For each X ⊆W , we define the set of ≤i,s-minimal ele-
ments as Min≤i,s(X) := {x ∈ X | ∀y ∈ X : y ≤i,s x⇒ x ≤i,s y}. That≤i,s is

3Actually, van Benthem (2007) only introduces Kripke models and plausibility models sep-
arately, and does not explicitly combine them into ‘full-fledged’ epistemic plausibility models
(hence, in that paper the semantics of conditional belief and safe belief only involved the plau-
sibility order, and not the epistemic accessibility relation—compare with Definition 4.3 here).
However, van Benthem (p.c.) has confirmed that Definitions 4.1 and 4.3 are consistent with his
intentions in that paper. Finally, it should be mentioned that more recently, van Benthem (2011,
Chapter 7) initially defines EPMs in full generality, but almost immediately puts restrictions on
them which are very close to the proposals made in Section 4.4 of this chapter.
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a well-founded preorder means that it is reflexive and transitive, and that for each
non-empty set X ⊆W , Min≤i,s(X) is non-empty as well. Note that the relation
≤i,s is not only dependent on agents, but also on states: it is possible for agent
i to have different plausibility orderings at different states. (From Section 4.4
onwards, more constraints will be placed on the plausibility orderings.)

Definition 4.2. A Baltag/Smets-type epistemic plausibility model is a structure
M = 〈W,Ri,≤i, V 〉i∈I , where W is a non-empty set of states, Ri ⊆W ×W is
the epistemic accessibility relation for agent i, ≤i⊆ W ×W is the plausibility
order for agent i, and V : Prop→ ℘(W ) is a valuation.

The epistemic accessibility relationRi is again assumed to be an equivalence
relation. Note that the plausibility orders are no longer state-dependent. We
assume that if w ≤i v then wRiv, and that for every w ∈ W the restricted
ordering ≤i ∩ (Ri[w] × Ri[w]) is a well-preorder. For each X ⊆ Ri[w], we
define Min≤i(X) := {x ∈ X | ∀y ∈ X : x ≤i y}. That ≤i ∩ (Ri[w]× Ri[w])
is a well-preorder means that it is reflexive and transitive, and that for each non-
empty set X ⊆ Ri[w], Min≤i(X) is non-empty as well.4

Several intuitive epistemic and doxastic notions can be interpreted on EPMs.
The three most important ones are: (i) Kiϕ (agent i knows that ϕ), (ii) Bα

i ϕ
(agent i believes that ϕ, conditional on α), and (iii) �iϕ (agent i safely believes
that ϕ). ‘Normal’ (unconditional) belief can be defined in terms of conditional
belief, by putting Biϕ := B>i ϕ. ‘Safe belief’ is the name given by Baltag
and Smets (2008) to a doxastic attitude ‘between’ belief and knowledge. This
non-introspective attitude is sometimes called ‘defeasible knowledge’; Stalnaker
(2006) takes this operator to be a more faithful representation of our ‘everyday
notion’ of knowledge than the full-fledged S5-type Ki-operator. The formal
semantics for these three notions is as follows:

Definition 4.3. Consider a van Benthem-type EPM M and state w; then

M, w |= Kiϕ iff ∀v ∈ Ri[w] : M, v |= ϕ,
M, w |= Bα

i ϕ iff ∀v ∈ Min≤i,w([[α ]]M ∩ Ri[w]) : M, v |= ϕ,
M, w |= �iϕ iff ∀v ∈ Ri[w] : v ≤i,w w ⇒M, v |= ϕ.

4Baltag and Smets note that on their definition of Min, the non-emptiness of Min≤i(X) (for
every X ⊆ Ri[w]) entails that ≤i is (locally) connected: if wRiv then w ≤i v or v ≤i w. How-
ever, one can also impose (local) connectedness as a ‘primitive’ condition on ≤i, and show that
under this assumption Baltag and Smets’s definition of Min is equivalent to that of van Benthem
(modulo the state-indices on the plausibility orders, of course). The role of local connectedness
will be explored in depth in Subsection 4.4.2.
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If M is a Baltag/Smets-type EPM, then we have the same semantics, with the
obvious proviso that all state-indices need to be removed from the plausibility
orderings.5

I now turn to the dynamics. I will focus on two specific dynamic phenomena:
public announcement (hard information) and radical upgrade (soft information).
Public announcement of a formulaϕ in an epistemic plausibility model M simply
removes all ¬ϕ-states from the model.6 Radical upgrade with ϕ, on the other
hand, makes all ϕ-states more plausible than all ¬ϕ-states, and leaves everything
within these two zones untouched. Formally, this looks as follows:

Definition 4.4. Let M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I be an arbitrary van Benthem-
type EPM, and ϕ an arbitrary formula. We then define the following two van
Benthem-type EPMs (in the definition of the model M!ϕ, the formula ϕ is addi-
tionally assumed to be true in at least one state w ∈W ):

1. M!ϕ := 〈W !ϕ, R!ϕ
i ,≤

!ϕ
i,w, V

!ϕ〉w∈W !ϕ

i∈I , where

• W !ϕ := [[ϕ ]]M = {w ∈W |M, w |= ϕ},
• R!ϕ

i := Ri ∩ ([[ϕ ]]M× [[ϕ ]]M) for all i ∈ I ,

• ≤!ϕ
i,w :=≤i,w ∩ ([[ϕ ]]M× [[ϕ ]]M) for all i ∈ I and w ∈W !ϕ,

• V !ϕ(p) := V (p) ∩ [[ϕ ]]M for all p ∈ Prop;

2. M ⇑ ϕ := 〈W⇑ϕ, R⇑ϕi ,≤⇑ϕi,w, V ⇑ϕ〉
w∈W⇑ϕ
i∈I , where

• W⇑ϕ := W ,

• R⇑ϕi := Ri for all i ∈ I ,

• ≤⇑ϕi,w :=
(
≤i,w ∩ ([[ϕ ]]M× [[ϕ ]]M)

)
∪
(
≤i,w ∩ ([[¬ϕ ]]M× [[¬ϕ ]]M)

)
∪
(

[[ϕ ]]M× [[¬ϕ ]]M
)

for all i ∈ I and w ∈W⇑ϕ,

• V ⇑ϕ(p) := V (p) for all p ∈ Prop.

5Furthermore, for Baltag/Smets-type EPMs the semantic clauses mentioned in the definition
contain some redundancies. For example, in the clause for safe belief, it is not necessary to require
that v ∈ Ri[w], because this follows already from the condition that v ≤i w.

6The definition of a public announcement in an EPM closely resembles that of a public an-
nouncement in a well-behaved probabilistic Kripke model (recall Definition 3.6 on p. 86). In this
chapter, I will write M!ϕ instead of M|ϕ, to emphasize the contrast with M ⇑ ϕ.
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If M is a Baltag/Smets-type EPM, then M!ϕ and M ⇑ ϕ are defined in exactly the
same way, with the provisos (i) that all state-indices need to be removed from the
plausibility orderings, and (ii) that in the definition of ≤⇑ϕi the third part of the
union needs to be added ‘locally’, i.e.

(
[[ϕ ]]M× [[¬ϕ ]]M

)
needs to be replaced

with ⋃
v∈W⇑ϕ

(
([[ϕ ]]M ∩Ri[v])× ([[¬ϕ ]]M ∩Ri[v])

)
.

It is easy to check that if M is a (van Benthem- or Baltag/Smets-type) EPM,
then M!ϕ and M ⇑ ϕ are (van Benthem- or Baltag/Smets-type) EPMs as well.
In order to be able to talk about these new models in the object language, we
add operators [!ϕ] and [⇑ ϕ]. Hence, the full language L(K,Bc,�, !,⇑) has the
following BNF:7

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Bϕ
i ϕ | �iϕ | [A]ϕ

A ::= !ϕ | ⇑ ϕ

The semantics for the two dynamic operators looks as follows:8

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M!ϕ,w |= ψ,
M, w |= [⇑ ϕ]ψ iff M ⇑ ϕ,w |= ψ.

Finally, dynamic epistemic/doxastic logics are constructed using the well-
known modular approach: (i) one starts by taking (an axiomatization of) some
static base logic (in a sufficiently rich language, so that step (iii) can be done
successfully),9 (ii) then one adds dynamic operators to this logic and (iii) finally,
one provides a sound set of reduction axioms, which allow each formula in the
dynamic language to be rewritten as an equivalent formula in the static language.
Because of this final step, completeness of the dynamified logic is reduced to
completeness of the static base logic. It also shows that the dynamic language
L(K,Bc,�, !,⇑) is equally expressive as the static language L(K,Bc,�).10

7Of course, one can also study more restricted languages. BNFs for such restricted languages
can easily be obtained from the BNF for the full language.

8Note that since public announcement is assumed to be truthful, it works with a precondition;
this is not the case for radical upgrade.

9 For example, if the language contains radical upgrade and safe belief operators, then it should
also contain the knowledge operator, since the right-hand-side of the reduction axiom for [⇑ ϕ]�ψ
involves the K-operator (cf. infra).

10In the remainder of the chapter, we can thus safely focus on (sublanguages of) L(K,Bc,�).
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To illustrate this methodology, I will state the most important reduction ax-
ioms for public announcement and radical upgrade, viz. those in which the epis-
temic/doxastic operators are being rewritten:

[!ϕ]Kiψ ↔ (ϕ→ Ki[!ϕ]ψ),

[!ϕ]Bα
i ψ ↔ (ϕ→ B

ϕ∧[!ϕ]α
i [!ϕ]ψ),

[!ϕ]�iψ ↔ (ϕ→ �i[!ϕ]ψ),

[⇑ ϕ]Kiψ ↔ Ki[⇑ ϕ]ψ,

[⇑ ϕ]Bα
i ψ ↔

(
¬Ki¬(ϕ ∧ [⇑ ϕ]α) ∧Bϕ∧[⇑ϕ]α

i [⇑ ϕ]ψ
)
∨(

Ki¬(ϕ ∧ [⇑ ϕ]α) ∧B[⇑ϕ]α
i [⇑ ϕ]ψ

)
,

[⇑ ϕ]�iψ ↔
(
ϕ→ �i(ϕ→ [⇑ ϕ]ψ)

)
∧(

¬ϕ→ (�i(¬ϕ→ [⇑ ϕ]ψ) ∧Ki(ϕ→ [⇑ ϕ]ψ))
)
.

4.3 Bisimulations for Epistemic Plausibility Models

We now begin investigating the model theory of epistemic plausibility models.
Because van Benthem’s notion is the most general, we will start by studying
this notion, rather than that of Baltag and Smets. The focus will be on bisimu-
lation, which is also the central concept in the model theory of Kripke models
(Goranko and Otto 2006). In Subsection 4.3.1, I show that the most straight-
forward generalization of bisimulation fails. In Subsection 4.3.2 I then define
various better notions of bisimulations, parametrized by a language L. Further-
more, a Hennessy-Milner type theorem and several (un)definability results are
established.

4.3.1 A Straightforward Generalization

Since (van Benthem-type) epistemic plausibility models11 are obtained from
Kripke models by adding the plausibility orders ≤i,w, a natural generalization

11Since all epistemic plausibility models in Sections 4.3 and 4.4 are assumed to be van Benthem-
type models, this qualification will often be left implicit in these sections. In Section 4.5, however,
van Benthem- and Baltag/Smets-type models will be compared to each other, and then I will
always mention explicitly which of the two notions is meant.
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of bisimulation is to simply include back- and forth-clauses for these additional
relations.12

Definition 4.5. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I . Then a relation Z ⊆ W ×W ′ is said to be a pseudo-

bisimulation iff

• if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p),

• if (w,w′) ∈ Z and wRiv, then ∃v′ ∈W ′ : (v, v′) ∈ Z and w′R′iv
′,

• if (w,w′) ∈ Z and w′R′iv
′, then ∃v ∈W : (v, v′) ∈ Z and wRiv,

• if (w,w′) ∈ Z and wRiv and v ≤i,w w,

then ∃v′ ∈W ′ : (v, v′) ∈ Z and w′R′iv
′ and v′ ≤′i,w′ w′,

• if (w,w′) ∈ Z and w′R′iv
′ and v′ ≤′i,w′ w′,

then ∃v ∈W : (v, v′) ∈ Z and wRiv and v ≤i,w w.

This definition inherits the back- and forth-clauses forRi from the traditional
definition for Kripke models, and adds to them the back- and forth-clauses for the
plausibility orderings≤i,w and≤′i,w′ . Note that for states w and w′ to be pseudo-
bisimilar, it suffices that the plausibility orderings indexed byw andw′ satisfy the
back- and forth-clauses (rather than all plausibility orderings ≤i,t and ≤′i,t′ , with
arbitrary states t and t′). This fits well with the semantics of conditional belief
(Definition 4.3): to determine the truth value of a conditional belief formula at a
state w, one only needs to take into account (the minimal states according to) the
plausibility ordering ≤i,w, and not (those according to) other orderings ≤i,t.

Despite the simplicity of this definition, it does not capture the right notion of
bisimulation between EPMs. Typically, bisimilar model-state pairs are modally
equivalent (i.e. satisfy exactly the same formulas). Pseudo-bisimulations, how-
ever, are not strong enough to ensure this property. The following example ex-
hibits two model-state pairs which are pseudo-bisimilar, while still differing on
some formulas.

12The defined notion is called ‘pseudo-bisimulation’ because, as will be shown below, it lacks
one of the typical properties of bisimulations.
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Example 4.1. This example only involves one agent; we can therefore drop agent
indices. Define EPMs M = 〈{w, v}, R, {≤w,≤v}, V 〉 and M′ = 〈{w′, v′}, R′, {≤′w′
,≤′v′}, V ′〉, where R = W ×W , R′ = W ′ ×W ′, V (p) = W , V (q) = {w},
V ′(p) = W ′, V ′(q) = {w′}, and

• ≤w = {(w,w), (v, v), (w, v)} = ≤v

• ≤′w′ = {(w′, w′), (v′, v′)} and ≤′v′ = W ′ ×W ′

Then one can show that Z := {(w,w′), (v, v′)} is a pseudo-bisimulation. Still,
it holds that M, w |= Bpq, while M′, w′ 6|= Bpq.

4.3.2 Parametrized Bisimulations

We have just seen that the most straightforward definition of bisimulation for
EPMs is unsuccessful, because it fails to guarantee modal equivalence. I there-
fore propose to consider parametrized bisimulations: for each of the three main
operators introduced in Section 4.2, a corresponding notion of bisimulation is
introduced. The notions of K- and �-bisimulation are as expected. The notion
of Bc-bisimulation, however, is much more intricate, since it involves univer-
sally quantifying over all formulas of the language L(Bc). The semantic notion
of bisimulation thus becomes language- (i.e. syntax-)dependent. I will return to
this issue in Section 4.4.

Definition 4.6. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I , and a relation Z ⊆W ×W ′; then:

1. Z is a K-bisimulation iff

• if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p),

• if (w,w′) ∈ Z and wRiv, then ∃v′ ∈W ′ : (v, v′) ∈ Z and w′R′iv
′,

• if (w,w′) ∈ Z and w′R′iv
′, then ∃v ∈W : (v, v′) ∈ Z and wRiv;

2. Z is a �-bisimulation iff

• if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p),

• if (w,w′) ∈ Z and wRiv and v ≤i,w w,
then ∃v′ ∈W ′ : (v, v′) ∈ Z and w′R′iv

′ and v′ ≤′i,w′ w′,
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• if (w,w′) ∈ Z and w′R′iv
′ and v′ ≤′i,w′ w′,

then ∃v ∈W : (v, v′) ∈ Z and wRiv and v ≤i,w w;

3. Z is a Bc-bisimulation iff

• if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p),

• ∀α ∈ L(Bc): if (w,w′) ∈ Z and v ∈ Min≤i,w([[α ]]M ∩ Ri[w]),

then ∃v′ ∈W ′ : (v, v′) ∈ Z and v′ ∈ Min≤′
i,w′

([[α ]]M
′
∩ R′i[w′]),

• ∀α ∈ L(Bc): if (w,w′) ∈ Z and v′ ∈ Min≤′
i,w′

([[α ]]M
′
∩ R′i[w′]),

then ∃v ∈W : (v, v′) ∈ Z and v ∈ Min≤i,w([[α ]]M ∩ Ri[w]).

Definition 4.7 formally introduces the notion of L-equivalence (for any lan-
guage L). Theorem 4.1 shows that the notions introduced in Definition 4.6 are
the proper ones: each of them gives rise to the desired ‘bisimilarity implies
equivalence’-result.

Definition 4.7. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i},≤′i,w′ , V ′〉
w′∈W ′
i∈I , and states w ∈ W,w′ ∈ W ′. Fix a language L.

We say that M, w and M′, w′ are L-equivalent (notation: M, w ≡L M′, w′) iff

∀ϕ ∈ L : M, w |= ϕ iff M′, w′ |= ϕ.

Theorem 4.1. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I , states w ∈W,w′ ∈W ′, and a relation Z ⊆W ×W ′.

Suppose that (w,w′) ∈ Z.

1. If Z is a K-bisimulation, then M, w ≡L(K) M′, w′.

2. If Z is a �-bisimulation, then M, w ≡L(�) M′, w′.

3. If Z is a Bc-bisimulation, then M, w ≡L(Bc) M′, w′.

Using these ‘separate’ notions of bisimulation, we can introduce bisimula-
tions for languages which have more than just one of the operators K/�/Bc in
a modular way (although conditional belief complicates matters a little bit). Ob-
viously, these combined notions lead to results analogous to Theorem 4.1; three
of them are stated as Theorem 4.2, for future reference.
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Definition 4.8. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I and a relation Z ⊆W ×W ′.

1. Z is a {K,�}-bisimulation iff Z is a K- and a �-bisimulation.

2. Z is a {K,Bc}-bisimulation iff Z is a K- and a Bc-bisimulation,

with the universal quantifiers ranging over L(K,Bc) instead of L(Bc).

3. Z is a {K,�, Bc}-bisimulation iff Z is a K-, a �- and a Bc-bisimulation,

with the universal quantifiers ranging over L(K,�, Bc) instead of L(Bc).

Theorem 4.2. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I , states w ∈W,w′ ∈W ′, and a relation Z ⊆W ×W ′.

Suppose that (w,w′) ∈ Z.

1. If Z is a {K,�}-bisimulation, then M, w ≡L(K,�) M′, w′.

2. If Z is a {K,Bc}-bisimulation, then M, w ≡L(K,Bc) M′, w′.

3. If Z is a {K,Bc,�}-bisimulation, then M, w ≡L(K,Bc,�) M′, w′.

Remark 4.1. Unraveling the definitions, it is clear that {K,�}-bisimulations
simply are pseudo-bisimulations (as defined in the previous subsection). Item 2
of Theorem 4.2 says that such bisimulations imply L(K,�)-equivalence. This
is consistent with Example 4.1, since the differentiating formula there did not
belong to L(K,�): it contained the conditional belief operator.

One can wonder about the converse direction of theorems such as Theo-
rem 4.2: e.g. if M, w ≡L(K,Bc) M′, w′, is there then always a {K,Bc}-bisimulation
Z ⊆ W ×W ′ such that (w,w′) ∈ Z? One of the main results from the model
theory of basic modal logic, viz. the Hennessy-Milner theorem (Blackburn et al.
2001, Theorem 2.24) says that this question can be answered positively, at least
when the models are assumed to be image-finite. This theorem can easily be
generalized to epistemic plausibility models:13

Definition 4.9. Consider an EPM M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I . We say that M is
image-finite if for all i ∈ I and all w ∈W , the set Ri[w] is finite.

13Of course, there are analogues of Theorem 4.3 for all of the languages defined in this chapter.
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Theorem 4.3. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I , and assume that they are image-finite. Then for all

states w ∈ W and w′ ∈ W ′, if M, w ≡L(K,Bc) M′, w′, then w and w′ are
{K,Bc}-bisimilar.

Proof. One can use the proof technique of the Hennessy-Milner theorem for
basic modal logic, viz. show that ≡{K,Bc} is itself a {K,Bc}-bisimulation.

Now that we have bisimulations which are strong enough to guarantee equiv-
alence, the interdefinability of the three epistemic/doxastic operators can be in-
vestigated. Fact 4.1 states that knowledge is already definable in terms of condi-
tional belief (one does not even need safe belief).14 Our reason for still including
knowledge as a separate modality is thus purely practical: EPM semantics can
be seen as an extension of Kripke semantics (recall Footnote 2), and therefore it
is natural to think of the languages interpretable on EPMs as being extensions of
the language L(K). Propositions 4.1 and 4.2, however, show that the conditional
belief and safe belief operators cannot be defined in terms of each other, even in
the presence of the knowledge operator.
Fact 4.1. For all EPMs M it holds that M |= Kiϕ↔ B¬ϕi ⊥.

Proposition 4.1. Conditional belief cannot be defined in terms of knowledge and
safe belief.

Proof. Consider the models defined in Example 4.1. Recall that M, w and M′, w′
are pseudo-bisimilar, and thus {K,�}-bisimilar (recall Remark 4.1). By item 1
of Theorem 4.2 it follows that M, w ≡L(K,�) M′, w′. Still, Example 4.1 also
specified that M, w |= Bpq, while M′, w′ 6|= Bpq. It follows that the formula
Bpq (and thus the conditional belief operator in general) cannot be defined in
L(K,�).

Proposition 4.2. Safe belief cannot be defined in terms of knowledge and condi-
tional belief.

Proof. We will work with only one agent, and thus drop agent indices. Define
EPMs M = 〈{w, v}, R, {≤w,≤v}, V 〉 and M′ = 〈{w′, v′}, R′, {≤′w′ ,≤′v′}, V ′〉,
where R = W ×W , R′ = W ′ ×W ′, V (p) = {w}, V ′(p) = {w′}, and

14This definability result was already noted by Baltag and Smets (2008). Fact 4.1 says, however,
that this definability result holds not only in Baltag/Smets-type EPMs, but also in van Benthem-
type EPMs.

118



Structural Bisimulations / 4.4

• ≤w = {(w,w), (v, v)} = ≤v,

• ≤′w′ = W ′ ×W ′ = ≤′v′ .

One can easily check that M, w |= �p, while M′, w′ 6|= �p. However, Z :=
{(w,w′), (v, v′)} is a {K,Bc}-bisimulation (cf. infra), and hence M, w ≡L(K,Bc)

M′, w′, by item 2 of Theorem 4.2. It follows that the formula �p (and thus the
safe belief operator in general) cannot be defined in L(K,Bc).

We now prove the claim that Z is a {K,Bc}-bisimulation. It is easy to
check that Z is a K-bisimulation; we thus focus on the back- and forth-clauses
of Bc-bisimulations. Note that for any x ∈ {w, v} and X ⊆ {w, v}, it holds that
Min≤x(X) = X andR[x] = {w, v}. Hence we get that y ∈ Min≤x([[α ]]M ∩R[x])

iff y ∈ [[α ]]M iff M, y |= α. Analogously, we show that y′ ∈ Min≤′
x′

([[α ]]M
′
∩R′[x′])

iff M′, y′ |= α. The back- and forth-clauses for Bc-bisimulations can thus be
written as follows:

1. ∀α ∈ L(K,Bc) : if (x, x′) ∈ Z and M, y |= α,

then ∃y′ ∈W ′ : (y, y′) ∈ Z and M′, y′ |= α;

2. ∀α ∈ L(K,Bc) : if (x, x′) ∈ Z and M′, y′ |= α,

then ∃y ∈W : (y, y′) ∈ Z and M, y |= α.

Since Z = {(w,w′), (v, v′)}, the conjunction of these two claims can be rewrit-
ten as follows:

∀α ∈ L(K,Bc) :
(
M, w |= α⇔M′, w′ |= α and M, v |= α⇔M′, v′ |= α

)
.

This is easily proved by induction on the complexity of α.

4.4 Structural Bisimulations

It was already noted in the previous section that the notion of Bc-bisimulation
introduced in Definition 4.6 is much more intricate than the other notions. There-
fore this definition is unsatisfactory for both theoretical and practical reasons.

On the theoretical level, since the definition ofBc-bisimulation involves uni-
versal quantification over L(Bc), it is not strictly structural. Rather than stating
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conditions on Ri and ≤i,w, it essentially involves truth sets of (arbitrary) for-
mulas. A related issue is that—unlike most definitions of bisimulations—the
definition of a Bc-bisimulation for models cannot be turned into a definition
of a bisimulation for frames by simply dropping the atoms clause. After all,
this definition depends on truth sets of formulas (viz. [[α ]]M and [[α ]]M

′
for all

α ∈ L(Bc)), and thus also on the concrete valuations of M and M′.15

Practically speaking, the notion of Bc-bisimulation introduced in Defini-
tion 4.6 makes it often very difficult to prove that two given EPMs are actually
Bc-bisimilar, since it involves a back- and a forth-clause for every single formula
α ∈ L(Bc). In the appendix of Dégremont and Roy (2010), the authors establish
that a relation between two given models is a Bc-bisimulation, and go through
the infinitely many back- and forth-clauses by means of induction on the com-
plexity of α (and a cleverly strengthened induction hypothesis). However, this
approach is geared towards proving one particular Bc-bisimilarity result about
artificially crafted models, and cannot be generalized to the general case. Sim-
ilar remarks apply to the proof of Proposition 4.2 above. This situation often
gives rise to a ‘practical circularity’, which renders the current notion of Bc-
bisimulation practically useless. For example, in Proposition 4.2, we want to
show that the states w and w′ are {K,Bc}-bisimilar, and then conclude from
this that they are L(K,Bc)-equivalent. However, note that while establishing
Bc-bisimilarity, we ended up proving (a strengthened version of) the desired
L(K,Bc)-equivalence directly.

I will now propose two different solutions to this problem, and explore and
compare their advantages and disadvantages. Both solutions involve reducing
conditional belief to other modalities which have more standard (structural) no-
tions of bisimulation. The first approach is presented in Subsection 4.4.1, and
involves both extending the language and putting some mild constraints on the
epistemic plausibility models. The second approach is discussed in Subsec-
tion 4.4.2, and puts more heavy constraints on the models, but does not need
to extend the language.

15When one is quantifying over all definable subsets in a model, and one wants to eliminate
reference to the language, this can sometimes be achieved by quantifying over all subsets in the
model. However, this solution is not available here, since we are ‘comparing’ sets across different
models. For a given subset X in M (where X is meant to generalize a definable subset [[α ]]M), it
is not clear what the subset X ′ in M′ should be (where X ′ plays the role of [[α ]]M

′
).
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4.4.1 Adding a New Modality

The first approach combines language engineering and putting some mild con-
straints on the models.16 These constraints are captured by the following defini-
tion:

Definition 4.10. An EPM M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I is called uniform iff the
plausibility relations are uniform within epistemic equivalence classes, i.e. iff for
any i ∈ I and w, v ∈W : if wRiv then ≤i,w =≤i,v.

Uniformity has an independent intuitive justification (Aucher 2003, p. 22).
Suppose that wRiv, i.e. agent i cannot epistemically distinguish between states
w and v. This means that the same information is available to her in both states.
Since agent i is rational, her plausibility ordering (at any given state) is fully
determined by the information available to her (at that state). Since the same
information is available to agent i in states w and v, her plausibility orderings
should be the same in both states, i.e. ≤i,w =≤i,v.17 Besides being intuitively
motivated, uniformity has some nice technical features as well: it leads to a full
introspection principle (Fact 4.2), and it is a dynamically robust notion, in the
sense that uniformity is preserved by the two model update operations studied in
this chapter (Fact 4.3).

Fact 4.2. For uniform EPMs M, it is the case that

M |= Bα
i ϕ→ KiB

α
i ϕ,

M |= ¬Bα
i ϕ→ Ki¬Bα

i ϕ.

Fact 4.3. If an EPM M is uniform, then so are M!ϕ and M ⇑ ϕ.

I will now introduce the language extension that is needed for the first ap-
proach. For any agent i ∈ I and state w in a plausibility model, let us abbreviate

<i,w := ≤i,w − ≥i,w .

The language is extended with a modality [>i] to talk about this strict version
of the plausibility order. As in Definition 4.3, the semantics for this modality is
relativized to the epistemic equivalence classes:

16This approach is based on a suggestion by Johan van Benthem and Davide Grossi. It has also
been studied by Girard (2008), whose Fact 3.1.4 is similar to Fact 4.4 established here.

17This is a close analogue of the notion of uniformity in probabilistic epistemic models; recall
Definition 3.3 on p. 79. Furthermore, note the similarity between Fact 4.2 about introspection for
plausibilities (conditional beliefs) and Lemma 3.1 (item 1) about introspection for probabilities.
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Definition 4.11. Consider an epistemic plausibility model M and state w; then

M, w |= [>i]ϕ iff ∀v ∈ Ri[w] : v <i,w w ⇒M, v |= ϕ.

Adding this new modality [>i] as a primitive operator is justified, because it
cannot be defined in even the richest language of the previous section:

Proposition 4.3. The modality [>i] cannot be defined in L(K,Bc,�).

Proof. We will work with only one agent, and thus drop agent indices. Define
EPMs M = 〈{w, v}, R, {≤w,≤v}, V 〉 and M′ = 〈{w′, v′}, R′, {≤′w′ ,≤′v′}, V ′〉,
where R = W ×W , R′ = W ′ ×W ′, V and V ′ are irrelevant, and

• ≤w = {(w,w), (v, v), (v, w)} =≤v

• ≤′w′ = W ′ ×W ′ =≤′v′

One can easily check that M, w 6|= [>]⊥, while M′, w′ |= [>]⊥. However, we
claim that M, w ≡L(K,�,Bc) M′, w′ (cf. infra). It follows that the formula [>]⊥
(and thus the [>]-operator in general) cannot be defined in L(K,�, Bc).

We now show that M, w ≡L(K,�,Bc) M′, w′. First, we prove an auxiliary
claim about the model M′:

∀ϕ ∈ L(K,�, Bc) : M′, w′ |= ϕ⇔M′, v′ |= ϕ. (4.1)

This auxiliary claim is proved by induction on the complexity of ϕ. Then we go
on to prove that

∀ϕ ∈ L(K,�, Bc) :
(
M, w |= ϕ⇔M′, w′ |= ϕ and

M, v |= ϕ⇔M′, v′ |= ϕ
)
.

(4.2)

This is also proved by induction on the complexity of ϕ; the auxiliary claim
(4.1) is used in the induction cases for safe belief and conditional belief; fur-
thermore, the induction case for safe belief (i.e. ϕ = Bαψ) is proved using a
case distinction about whether or not M, v |= α. From (4.2) it follows that
M, w ≡L(K,�,Bc) M′, w′, as required.

The [>]-modality is actually so expressive that, together with the knowledge
operator, it is able to define the notion of conditional belief—at least, when we
restrict ourselves to uniform epistemic plausibility models.
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Fact 4.4. For every uniform epistemic plausibility model M, it is the case that

M |= Bα
i ϕ↔ Ki

(
(α ∧ ¬〈>i〉α)→ ϕ

)
.

We are now ready to introduce the notion of [>]-bisimilarity, which—as
desired—is fully structural:

Definition 4.12. Consider two EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ =

〈W ′, R′i,≤′i,w′ , V ′〉
w′∈W ′
i∈I , and a relation Z ⊆ W × W ′. Then Z is a [>]-

bisimulation iff

• if (w,w′) ∈ Z, then for all atoms p: w ∈ V (p)⇔ w′ ∈ V ′(p),

• if (w,w′) ∈ Z and wRiv and v <i,w w,

then ∃v′ ∈W ′ : (v, v′) ∈ Z and w′R′iv
′ and v′ <′i,w′ w

′,

• if (w,w′) ∈ Z and w′R′iv
′ and v′ <′i,w′ w

′,

then ∃v ∈W : (v, v′) ∈ Z and wRiv and v <i,w w.

As expected, a {K, [>]}-bisimulation is defined to be a relation that is simul-
taneously a K- and a [>]-bisimulation. Since K- and [>]-bisimulations are both
structural, {K, [>]}-bisimulations are structural as well. Item 3 of Theorem 4.4
says that for uniform EPMs, the structural notion of {K, [>]}-bisimulation suf-
fices to obtain equivalence for the entire language L(K, [>], Bc), including con-
ditional belief.

Theorem 4.4. Consider two uniform EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and
M′ = 〈W ′, R′i,≤′i,w′ , V ′〉

w′∈W ′
i∈I , states w ∈ W,w′ ∈ W ′, and a relation Z ⊆

W ×W ′. Suppose that (w,w′) ∈ Z.

1. If Z is a [>]-bisimulation, then M, w ≡L([>]) M′, w′.

2. If Z is a {K, [>]}-bisimulation, then M, w ≡L(K,[>]) M′, w′.

3. If Z is a {K, [>]}-bisimulation, then M, w ≡L(K,[>],Bc) M′, w′.

Proof. Items 1 and 2 are easily proved by induction on the complexity of ϕ. Item
3 follows immediately from item 2, because Fact 4.4 states that Bc is definable
in L(K, [>]).
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Finally, it should be noted that the two model update operations studied in
this paper are both safe for {K, [>]}-bisimulation:

Proposition 4.4. Consider two uniform EPMs M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I and
M′ = 〈W ′, R′i,≤′i,w′ , V ′〉

w′∈W ′
i∈I , and states w ∈ W,w′ ∈ W ′. Suppose that

M, w and M′, w′ are {K, [>]}-bisimilar, and M, w |= ϕ and M′, w′ |= ϕ. Then:

1. M!ϕ,w and M′!ϕ,w′ are {K, [>]}-bisimilar.

2. M ⇑ ϕ,w and M′ ⇑ ϕ,w′ are {K, [>]}-bisimilar.

Proof. 1. If Z is a {K, [>]}-bisimulation between M, w and M′, w′, then one
can easily show that Z ∩ ([[ϕ ]]M× [[ϕ ]]M

′
) is a {K, [>]}-bisimulation between

M!ϕ,w and M′!ϕ,w′.
2. If Z is a {K, [>]}-bisimulation between M, w and M′, w′, then one can

show that Z itself is still a {K, [>]}-bisimulation between M ⇑ ϕ,w and M′ ⇑
ϕ,w′. For example, let’s check the forth-condition for >. Consider arbitrary
u, v ∈ W,u′ ∈ W ′ and suppose that (u, u′) ∈ Z and uR⇑ϕi v and v <⇑ϕi,u u.
Hence also uRiv. We now make the following case distinction:

1. u, v ∈ [[ϕ ]]M. Then v <i,u u, and hence there exists a v′ ∈ W ′ such
that (v, v′) ∈ Z, u′R′iv

′, and v′ <′i,u′ u
′. Trivially u′R′i

⇑ϕv′. Since

(u, u′), (v, v′) ∈ Z and u, v ∈ [[ϕ ]]M, also u′, v′ ∈ [[ϕ ]]M
′
. Hence from

v′ <′i,u′ u
′ it follows that v′<′i,u′

⇑ϕu′.

2. u, v /∈ [[ϕ ]]M. Analogous to the previous case.

3. u ∈ [[ϕ ]]M, v /∈ [[ϕ ]]M. This case cannot occur.

4. u /∈ [[ϕ ]]M, v ∈ [[ϕ ]]M. Since uRiv and (u, u′) ∈ Z, it follows that there
exists a v′ ∈ W ′ such that (v, v′) ∈ Z and u′R′iv

′. Since (u, u′) ∈ Z

and u /∈ [[ϕ ]]M, also u′ /∈ [[ϕ ]]M
′
. Analogously v′ ∈ [[ϕ ]]M

′
. Hence

v′<′i,u′
⇑ϕu′.

I will finish this subsection by providing an overview of the first strategy to
solve the main issue of Section 4.3 (i.e. finding a structural notion of bisimulation
that guarantees equivalence for conditional belief), and evaluating its advantages
and disadvantages.
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This strategy has two components. The first component is to impose an extra
condition on epistemic plausibility models, viz. uniformity. I have argued that
this is relatively harmless, because uniformity is intuitively plausible and also
technically well-motivated. The second component involves what van Benthem
calls “redesigning one’s language to fit more standard bisimulations” (van Ben-
them 2002, p. 310): I introduced a new modality [>], and showed that together
with knowledge, it can define conditional belief (for uniform models).

The main disadvantage of this approach lies in its second component: the
[>]-operator was introduced for the sole purpose of defining conditional belief
(while maintaining a structural notion of bisimulation). In itself, however, it
does not seem to have any intuitive epistemic/doxastic reading. A similar worry
is voiced by Baltag and Smets, who write that “[t]he intuitive meaning of these
operators [such as [>]] is not very clear, but they can be used to define other
interesting modalities, capturing various ‘doxastic attitudes’.” (Baltag and Smets
2008, p. 32).

4.4.2 Assuming Connectedness

The second approach tries to preserve the advantages of the first one, while
avoiding its major drawback, viz. the introduction of a new operator that lacks
a direct epistemic interpretation. The basic idea is that, with an extra condition
on the plausibility models, conditional belief can be reduced to knowledge and
safe belief. Hence, the �-operator will now play the role of the [>]-operator, but
unlike the [>]-operator, it does have an intuitive doxastic interpretation (viz. as
Stalnakerian ‘defeasible knowledge’). The extra condition on the models that we
need is local connectedness:

Definition 4.13. An EPM M = 〈W,Ri,≤i,w, V 〉w∈Wi∈I is called locally con-
nected iff for all agents i ∈ I and states w, v ∈W , the following holds:

if wRiv, then w ≤i,w v or v ≤i,w w.

Whether local connectedness is equally harmless as uniformity is unclear. At
least, local connectedness is dynamically robust:

Fact 4.5. If an EPM M is locally connected, then so are M!ϕ and M ⇑ ϕ.
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4 . The Model Theory of Plausibility Models

When the models are required to be both uniform and locally connected, then
conditional belief can be defined in terms of knowledge and safe belief.18

Fact 4.6. For every uniform and locally connected epistemic plausibility model
M, it is the case that

M |= Bα
i ϕ↔

(
K̂iα→ K̂i(α ∧�i(α→ ϕ))

)
.

Using this definability result, we can now immediately prove the analogue
of Theorem 4.4; of course, since we did not introduce a new modality and a new
notion of bisimulation corresponding to it, only the third item has to be reformu-
lated. The importance of this is that when we restrict ourselves to the class of
uniform and locally connected models, we can get equivalence for conditional
belief by means of a structural notion of bisimulation, viz. {K,�}-bisimulation.

Theorem 4.5. Consider two uniform and locally connected EPMs M =
〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ = 〈W ′, R′i,≤′i,w′ , V ′〉

w′∈W ′
i∈I , states w ∈W , w′ ∈

W ′, and a relation Z ⊆W ×W ′ such that (w,w′) ∈ Z. The following holds:

if Z is a {K,�}-bisimulation, then M, w ≡L(K,�,Bc) M′, w′.

Proof. This follows by item 1 of Theorem 4.2 and Fact 4.6.

Finally, it should be noted that the two model update operations studied in
this chapter are both safe for {K,�}-bisimulation:

Proposition 4.5. Consider two uniform and locally connected EPMs M =
〈W,Ri,≤i,w, V 〉w∈Wi∈I and M′ = 〈W ′, R′i,≤′i,w′ , V ′〉

w′∈W ′
i∈I , and states w ∈ W ,

w′ ∈ W ′. Suppose that M, w and M′, w′ are {K,�}-bisimilar, and M, w |= ϕ
and M′, w′ |= ϕ. Then:

1. M!ϕ,w and M′!ϕ,w′ are {K,�}-bisimilar.

2. M ⇑ ϕ,w and M′ ⇑ ϕ,w′ are {K,�}-bisimilar.

18A similar definition was already proposed in the context of modal conditional logics of nor-
mality (Boutilier 1994). Furthermore, Baltag and Smets (2008) propose the same definition.
Fact 4.6 shows, however, that this definability result holds not only in Baltag/Smets-type EPMs,
but also in uniform and locally connected van Benthem-type EPMs. Finally, note that Fact 4.6
does not contradict Proposition 4.1, since the definability result in Fact 4.6 holds for a restricted
class of epistemic plausibility models, whereas the undefinability result in Proposition 4.1 holds
for the entire class of epistemic plausibility models.
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Proof. Analogous to the proof of Proposition 4.4.

Just like in the previous subsection, I will now provide an overview of the
second strategy to solve the main issue of Section 4.3. This approach reduced
conditional belief to knowledge and safe belief, which are both intuitively clear
epistemic/doxastic notions. Therefore, the main issue of the first approach,
viz. the ad hoc character of its introduction of the [>]-operator, is avoided. In or-
der to get the desired results about L(K,Bc)-equivalence, it is required that the
epistemic plausibility models are not only uniform, but also locally connected.
The uniformity constraint inherits all of its intuitive and technical motivations
from the previous subsection. Furthermore, local connectedness is dynamically
robust.

Finally, it should be emphasized that the notion of {K,�}-bisimulation is
exactly the same as that of pseudo-bisimulation (Definition 4.5), which was in-
troduced in Subsection 4.3.1 as being the most natural notion of bisimulation
for EPMs.19 Hence, when uniformity and local connectedness are imposed, the
most natural notion and the technically sound notion coincide. I take this to be an
additional justification for imposing these conditions. In sum, then, the second
solution seems to be preferable over the first one.

4.5 Some Methodological Reflections

In the previous sections, I have explored the model theory of (van Benthem-
type) epistemic plausibility models. Here is a brief overview of the results
that have been achieved. The most natural notion of bisimulation for EPMs
does not work, unfortunately. Therefore, parametrized notions of bisimulations
were introduced. The main problem here was the non-structural notion of Bc-
bisimulation. I discussed two ways of solving this, and argued that the best
solution involves restricting to the class of uniform and locally connected EPMs,
so that the fully structural notion of {K,�}-bisimulation suffices to get equiv-
alence for conditional belief as well. Uniformity and local connectedness have
various intuitive and technical motivations. Most importantly, perhaps, by im-
posing these two conditions, the most natural notion of bisimulation for EPMs
and the technically correct one coincide.

19Also recall Remark 4.1.
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4 . The Model Theory of Plausibility Models

These results also constitute an indirect methodological argument in favor of
Baltag and Smets’s notion of EPM (and thus, against van Benthem’s notion). To
see this, note that by imposing the conditions of uniformity and local connect-
edness on van Benthem-type EPMs, we have actually arrived at a notion which
is very close to Baltag/Smets-type EPMs. This connection can be made fully
formal.

Definition 4.14. Let A = 〈W,Ri,≤i, V 〉i∈I be a Baltag/Smets-type EPM, and
let B = 〈W ′, R′i,≤′i,w, V ′〉w

′∈W ′
i∈I be a van Benthem-type EPM. Then we define:

1. vi,w := ≤i ∩ (Ri[w]×Ri[w]),

2. v′i :=
⋃
w′∈W ′

(
≤′i,w′ ∩ (R′i[w

′]×R′i[w′])
)

,

3. Ab := 〈W,Ri,vi,w, V 〉w∈Wi∈I ,

4. Ba := 〈W ′, R′i,v′i, V ′〉i∈I .

Theorem 4.6. Let A and B be as in Definition 4.14. Suppose that B is uniform
and locally connected. Let w ∈ W be a state in A and let w′ ∈ W ′ be a state in
B. Then:

1. Ab is a uniform and locally connected van Benthem-type EPM.

2. A, w ≡L(K,Bc,�) Ab, w.

3. Ba is a Baltag/Smets-type EPM.

4. B, w′ ≡L(K,Bc,�) Ba, w′.

Proof. Items 1 and 3 are merely a matter of unpacking the definitions. Items 2
and 4 are proved by induction on formula complexity.

Hence, one can move back and forth between Baltag/Smets-type EPMs and
uniform and locally connected van Benthem-type EPMs. Furthermore, these
constructions do not affect the logic: even the richest language studied in this
chapter cannot distinguish between the model (A or B) and its companion (Ab or
Ba, respectively). In other words, logically speaking Baltag/Smets-type EPMs
can be seen as a particular subclass of the class of van Benthem-type EPMs.
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Now consider again the results presented in Sections 4.3 and 4.4. In order to
obtain a mathematically well-behaved model theory (with only structural bisim-
ulations) for van Benthem-type EPMs, it is necessary to restrict to uniform and
locally connected EPMs. Theorem 4.6 says that this particular subclass of van
Benthem-type EPMs corresponds exactly with (and cannot be distinguished by
the logic from) the class of Baltag/Smets-type models. Loosely speaking: in or-
der to obtain a well-behaved model theory for van Benthem-type EPMs, we need
to restrict to Baltag/Smets-type EPMs.

This seems to constitute a methodological argument in favor of Baltag/Smets-
type EPMs. As an applied logician, one is broadly motivated by two conflicting
desiderata. On the one hand, one looks at the concrete applications, and wishes
to develop very expressive and general tools suitable for these applications. On
the other hand, however, one is a formal logician, and thus a mathematician,
wishing to develop a mathematically well-behaved metatheory. I have argued
that Baltag and Smets’s notion of EPMs hits a better equilibrium between these
two desiderata than van Benthem’s: it is quite expressive and general (while
its restrictions are intuitively and technically motivated), but it still allows for
the development of a mathematically elegant metatheory (viz. a metatheory with
only structural bisimulations, and in which the most natural and the technically
sound notion of bisimulation coincide).

4.6 Conclusion

The aim of this chapter has been to explore the model theory of epistemic plausi-
bility models, which has been largely ignored in the literature so far. Because van
Benthem’s notion of epistemic plausibility model is the most general one, it made
sense to start by investigating this type of models (rather than Baltag/Smets-type
models). I focused on the notion of bisimulation, and showed that the most nat-
ural generalization of bisimulation to epistemic plausibility models fails. I then
introduced parametrized bisimulations, and proved various bisimulation-implies-
equivalence theorems, a Hennessy-Milner theorem, and several (un)definability
results. I discussed the problems related to non-structural bisimulations for con-
ditional belief, and presented and compared two different ways of coping with
this issue: adding a modality to the language, and putting extra constraints on
the models. I argued that the most successful solution involves restricting to uni-
form and locally connected models, and showed that such (van Benthem-type)
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4 . The Model Theory of Plausibility Models

epistemic plausibility models correspond exactly with those defined by Baltag
and Smets. This can be seen as a methodological argument favoring Baltag and
Smets’s definition of epistemic plausibililty model over that of van Benthem.
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Part II

Case Studies on
the Dynamic Turn





5 u The Dynamics of Aumann’s
Agreement Theorem

5.1 Introduction

The main goal of this chapter is to study Aumann’s celebrated ‘agreeing to dis-
agree’ theorem (Aumann 1976) from the perspective of epistemic logic, in par-
ticular probabilistic dynamic epistemic logic (PDEL). The agreement theorem,
and the related no-trade theorem (Milgrom and Stokey 1982) are of central im-
portance in game theory. Several notions connected to this theorem, such as the
common prior assumption, and, especially, the notion of common knowledge,
have been studied extensively by game theorists, but also by philosophers, com-
puter scientists and logicians (Lewis 1969, Milgrom and Stokey 1982, Halpern
and Moses 1990). This chapter thus establishes a new connection between the
epistemic-logical and game-theoretical perspectives on (common) knowledge
and related epistemic notions.

This endeavor also has definite advantages for both epistemic logic and game
theory as separate disciplines. Probabilistic dynamic epistemic logic is a recent
development, and to capture the agreement theorems in this framework, several
technical extensions and improvements are necessary. For example, the notion of
a well-behaved probabilistic Kripke model (Definition 3.4 on p. 81) was initially
singled out because of its great usefulness in applications such as this one. On
a more conceptual level, it will be shown how the technical results established
in this chapter can be seen as an application of the dynamic turn in logic (van
Benthem 1996, 2011). The logical perspective on the agreement theorem has
definite advantages for game theorists as well, because it offers a new perspective
on some methodological issues. In particular, it will be argued that the role
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5 . The Dynamics of Aumann’s Agreement Theorem

of common knowledge is less central to the agreement theorem than is often
thought.

Aumann’s agreement theorem (and some of its extensions) were first studied
from the perspective of dynamic epistemic logic by Dégremont and Roy (2009,
2012). They, however, did not use probabilistic Kripke models, but rather epis-
temic plausibility models.1 This shift from a probabilistic to a more qualitative
setting has profound consequences for the formulation of the agreement the-
orem. For example, Dégremont and Roy (2009, 2012)’s agreement theorems
depend crucially on the assumption that the agents’ plausibility orderings are
well-founded—an order-theoretic notion that played no role in Aumann’s orig-
inal formulation of the agreement theorem, and that will play no role in this
chapter either. 2

The remainder of the chapter is organized as follows. Section 5.2 provides
an introduction to Aumann’s original agreement theorem and highlights those
features that will become particularly important in later sections. Section 5.3
briefly introduces the semantic setup of probabilistic dynamic epistemic logic.
I define (enriched) probabilistic Kripke frames and models, and introduce three
ways of updating them: (i) carrying out experiments, (ii) public announcement
of a formula ϕ, and (iii) a dialogue about a formula ϕ, i.e. a sequence of public
annoucements that reaches a fixed point after finitely many steps. Section 5.4
contains the key results of this chapter, viz. several (dynamic) agreement theo-
rems for probabilistic Kripke models/frames. Section 5.5 provides characteriza-
tion results for all conditions of the agreement theorems, and then uses these to
obtain a sound and complete dynamic agreement logic. Section 5.6 uses the for-
mal results to show how the dynamic turn in logic can be applied to agreement
theorems: I will argue that explicitly representing the dynamics that is behind
Aumann’s original result leads to important conceptual clarifications, for exam-
ple, concerning the role and importance of common knowledge in agreement
theorems. Finally, Section 5.7 wraps things up and mentions some topics for
further research.

1See Chapter 4 for an exploration of the model theory of epistemic plausibility models.
2A detailed comparison between Dégremont and Roy’s qualitative approach and the present

probabilistic approach falls outside the scope of this chapter, but can be found in Demey (2010,
ch. 6), where I argue that the probabilistic approach is to be preferred on both philosophical and
technical grounds.
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5.2 Aumann’s Original Agreement Theorem

Aumann originally expressed his celebrated ‘agreeing to disagree’ theorem as
follows: “If two people have the same prior, and their posteriors for an event
A are common knowledge, then these posteriors are equal.” (Aumann 1976,
p. 1236). In other words: if two people have the same prior, then they can-
not agree (have common knowledge of their posteriors) to disagree (while these
posteriors are not equal). It is clear that, when phrased in this way, the agree-
ment theorem is a static result: it is a conditional statement that can be expressed
without any dynamic operators:

[equalpriors ∧ C(posteriors)]→ equalposteriors. (5.1)

Aumann also motivates his theorem by sketching an informal scenario that
embodies the intuitions behind it.3 Roughly speaking, the scenario looks as fol-
lows. We are considering two agents, 1 and 2. Initially, they have the same
probability distribution (P1 = P2). Then both agents separate, and each agent
performs a (different) experiment. Immediately afterwards, the agents’ probabil-
ity distributions have changed due to the information that they have gained from
their experiments. Because the agents performed different experiments, their
probability distributions have changed in different ways, and are thus no longer
identical. In particular, for some ϕ it holds that P1(ϕ) = a and P2(ϕ) = b
(for some a, b ∈ [0, 1]), while a 6= b. Furthermore, since agent 1 doesn’t know
the outcome of agent 2’s experiment, she doesn’t know how agent 2’s proba-
bility function has changed. A symmetric argument applies to agent 2. Hence,
at this stage it is not common knowledge between both agents that P1(ϕ) = a
and P2(ϕ) = b. Finally, the agents start communicating with each other. Agent
1 tells agent 2 that P1(ϕ) = a; on the basis of this new information, agent 2
changes her probability function, which she, in turn, communicates to agent 1,
etc. At a certain point in the conversation, the agents obtain common knowledge
of their probabilities. Since both agents had the same prior (P1 = P2 initially)
and their posteriors have become common knowledge, Aumann’s theorem now
says that these probabilities have to coincide (P1(ϕ) = P2(ϕ) in the end).

Although the formal agreement theorem is a static result, the intuitive sce-
nario behind it clearly involves several dynamic phenomena. Two broad types of
dynamics can be distinguished: (i) the experiments and (ii) the communication.

3A similar explanatory scenario is described more extensively by Bonanno and Nehring (1997).
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This situation seems to be a good illustration of (the strong interpretation of) the
recent dynamic turn in epistemic logic, which van Benthem (1996, p. 17) has
formulated as follows:

the motivation for standard logics often contains procedural ele-
ments present in textbook presentations — and one can make this
implicit dynamics explicit.

Of course, this issue defines an entire research agenda: finding extensions (or
better: refinements) of Aumann’s original result, in which the dynamics of the
scenario described above is explicitly taken into account. Game theorists such as
Geanakoplos and Polemarchakis (1982), Bacharach (1985) and Parikh and Kra-
sucki (1990) have done exactly this, focusing on the communication dynamics.
Similarly, Dégremont and Roy (2009, 2012) have formalized a qualitative ver-
sion of the agreement theorem in dynamic epistemic logic, again focusing on the
communication dynamics.

Here, however, I will formalize Aumann’s original agreement theorem in
probabilistic dynamic epistemic logic, explicitly representing both types of dy-
namics (experimentation and communication). Furthermore, I will argue that
explicitly representing this dynamics has clear conceptual advantages.4

5.3 The General Setup of PDEL

This section introduces the general semantic setup of probabilistic dynamic epis-
temic logic. This setup will be used in Section 5.4 to formalize and prove various
dynamic agreement theorems.

5.3.1 Probabilistic Kripke Models

I first introduce (enriched) probabilistic Kripke frames and models. The focus
will be on the two agent-case (this will suffice for the statement of the agreement
theorems); generalizations to any (finite) number of agents are straightforward.
As usual, we also fix a countably infinite set Prop of atomic propositions.

4I will thus not deal with any of the stronger and more general agreement theorems that exist
in the game-theoretical literature (Bacharach 1985, Bonanno and Nehring 1997, Feinberg 2000),
because the methodological claim about the advantages of explicitly representing the dynamics
can already be made for Aumann’s original result.
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Definition 5.1. An enriched probabilistic Kripke frame (for two agents) is a tuple
F = 〈W,R1, R2, E1, E2, µ1, µ2〉, where W is a non-empty finite set of states,
R1, R2, E1 and E2 are equivalence relations onW , and µ1 and µ2 assign to each
world w ∈ W a probability mass function µi(w) : W → [0, 1] that satisfies the
following two conditions:

• µi(w)(w) > 0,

• µi(w)(v) = 0 for all v ∈W such that (w, v) /∈ Ri.

Definition 5.2. An enriched probabilistic Kripke model is a tuple M = 〈F, V 〉,
where F is an enriched probabilistic Kripke frame (with set of states W ) and
V : Prop→ ℘(W ) is a valuation.

An enriched probabilistic Kripke frame F = 〈W,R1, R2, E1, E2, µ1, µ2〉
thus consists of a probabilistic Kripke frame F∗ = 〈W,R1, R2, µ1, µ2〉 (see
Definition 3.1 on p. 75), together with two equivalence relations E1 and E2,
whose meaning will be discussed below. Note that the ‘base frame’ F∗ is re-
quired to be well-behaved (see Definition 3.4 on p. 81); I argued in Chapter 3
that the conditions involved in being well-behaved are intuitively plausible and
technically well-motivated. Furthermore, in the next subsections, I will intro-
duce several ways of updating probabilistic Kripke models, all of which change
the agents’ probabilities via Bayesian conditionalization. This requires, however,
that µi(w)(X) > 0 for several sets X ⊆ W . Assuming well-behavedness is an
easy way to ensure that µi(w)(X) > 0 for all the relevant sets X .

The probabilistic Kripke frames and models that will be used in the remain-
der of this chapter are always the enriched ones defined above; therefore I will
henceforth omit the extra qualifier and simply talk about ‘probabilistic Kripke
frames/models’.

As usual, Ri is agent i’s epistemic accessibility relation: (w, v) ∈ Ri means
that i cannot epistemically distinguish between states w and v. The Ei-relation
represents the structure of agent i’s experiment: (w, v) ∈ Ei means that agent i’s
experiment does not differentiate betweenw and v. The relationRi thus captures
agent i’s information before any dynamics has taken place, whileEi captures the
information that she will obtain by carrying out her experiment.5 Intuitively, one

5In game-theoretical contexts, Ri is usually implicitly taken to be the universal relation W ×
W (and is therefore often not explicitly mentioned at all), while the equivalence relation Ei is
identified with the partition Πi that it generates. Furthermore, note that if Ri = W ×W , then the
second well-behavedness condition of Definition 5.1 is vacuously satisfied.
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can think of carrying out an experiment as asking a question to nature. This
informal analogy carries over to the formal level: the experiment relations Ei
play the same role in the current framework as the issue relations do in dynamic
epistemic logics of questions (van Benthem and Minică 2009, 2012).

Similarly, the probability mass function µi(w) represents agent i’s subjective
probabilities (at state w) before any dynamics has taken place. For example,
µi(w)(v) = a means that at state w, agent i assigns subjective probability a to
state v being the actual state.

The static language L is defined by means of the following BNF:

ϕ ::= p | ¬ϕ | (ϕ∧ϕ) | Kiϕ | Riϕ | Cϕϕ | Xϕϕ | a1Pi(ϕ1)+· · ·+anPi(ϕn) ≥ k

where i ∈ {1, 2}, 1 ≤ n < ω and a1, . . . , an, k ∈ Q).
As usual, Kiϕ means that agent i knows that ϕ. Furthermore, we have the

relativized common knowledge operator Cϕψ, which intuitively says that if ϕ is
announced, then it becomes common knowledge (among agents 1 and 2) that ψ
was the case before the announcement. The reason for introducing a relativized
instead of an ordinary common knowledge operator is well-known: because of
its higher expressivity, relativized common knowledge allows for the formulation
of a reduction axiom under public announcements (van Benthem et al. 2006).

Knowledge and (relativized) common knowledge have ‘post-experimental’
counterparts: Riϕ and Xϕψ.6 First, Riϕ says that after carrying out the exper-
iments, agent i will know that ϕ was the case before the experiments. Second,
Xϕψ says that after carrying out the experiments, if ϕ is announced, then it be-
comes common knowledge (among agents 1 and 2) that ψ was the case before
the experiments and the announcement. These operators ‘pre-encode’ the effects
of the experiments in the static language, and will thus enable us to express re-
duction axioms for the dynamic experimentation operator that will be introduced
in the next subsection.

Ordinary (post-experimental) common knowledge can be defined as Cϕ :=
C>ϕ and Xϕ := X>ϕ. Furthermore (post-experimental) general knowledge is
defined by putting Eϕ := K1ϕ ∧K2ϕ and Fϕ := R1ϕ ∧R2ϕ.

6Hence there are two Ri’s: on the one hand, Ri is agent i’s epistemic accessibility relation in
a probabilistic Kripke model M; on the other hand, Ri is a unary modal operator of the language
L. The main reason for not using another letter for the post-experimental knowledge operator is
to ensure uniformity of notation with van Benthem and Minică (2012). I trust that the meaning of
Ri will always be clear from the context.

138



The General Setup of PDEL / 5.3

Formulas of the form a1Pi(ϕ1)+· · ·+anPi(ϕn) ≥ k are called i-probability
formulas, and have been discussed extensively in Chapter 3. In particular, recall
the following definition of conditional probabilities in L:

Pi(ϕ | ψ) ≥ k :≡ Pi(ϕ ∧ ψ)− kPi(ψ) ≥ 0.

Since the various types of dynamics that will be introduced in the next two sub-
sections all involve Bayesian conditionalization (and thus conditional probabili-
ties), this definition will often be very convenient.

Consider a probabilistic Kripke model M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉
and a state w ∈ W . Now and in the remainder of this chapter, I will often
abbreviate R := R1 ∪ R2, Re := (R1 ∩ E1) ∪ (R2 ∩ E2), and [[ϕ ]]M := {v ∈
W | M, v |= ϕ}. Furthermore, for any binary relation R ⊆ W ×W and state
w ∈ W , I abbreviate R[w] := {v ∈ W | (w, v) ∈ R}, and write R+ and R∗
for the transitive and reflexive transitive closure of R, respectively. We are now
ready to state the semantics of L:

M, w |= p iff w ∈ V (p),
M, w |= ¬ϕ iff M, w 6|= ϕ,
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ,
M, w |= Kiϕ iff ∀v∈W : (w, v) ∈ Ri ⇒M, v |= ϕ,

M, w |= Cϕψ iff ∀v∈W : (w, v)∈
(
R∩(W×[[ϕ ]]M)

)+⇒M, v |=ψ,
M, w |= Riϕ iff ∀v∈W : (w, v) ∈ Ri ∩ Ei ⇒M, v |= ϕ,

M, w |= Xϕψ iff ∀v∈W : (w, v)∈
(
Re∩(W×[[ϕ ]]M)

)+⇒M, v |=ψ,

M, w |=
∑

` a`Pi(ϕ`)≥k iff
∑

` a`µi(w)([[ϕ` ]]M) ≥ k.

Truth and validity at a model M, a frame F, and a class of frames C are defined
as usual:

M |= ϕ iff M, w |= ϕ for all states w in the domain of M,
F |= ϕ iff F, V |= ϕ for all valuations V on the frame F,
C |= ϕ iff F |= ϕ for all frames F in C.

5.3.2 Dynamics: The Experimentation Phase

I will now show how to model the first type of dynamics described in Section 5.2,
viz. carrying out the experiments. Syntactically, we add a new dynamic operator
[EXP] to the language L, thus obtaining the language L([EXP]). The [EXP]-
operator says that both agents perform their experiments; hence, [EXP]ϕ is to
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be read as: ‘after the agents have performed their experiments, ϕ holds’. The
semantic clause for the [EXP]-operator involves going from the model M to the
updated model Me, which is formally introduced in Definition 5.3:

M, w |= [EXP]ϕ iff Me, w |= ϕ.

Definition 5.3. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary proba-
bilistic Kripke model. The updated model Me :=〈W e, Re1, R

e
2, E

e
1, E

e
2, µ

e
1, µ

e
2, V

e〉
is defined as follows:

• W e := W ,

• Rei := Ri ∩ Ei and Eei := Ei for all i ∈ I ,

• µei (w)(v) := µi(w)({v}∩Ei[w])
µi(w)(Ei[w]) for all i ∈ I and w, v ∈W e,

• V e := V .

It is easy to check that if M is a probabilistic Kripke model, then Me is a
probabilistic Kripke model as well; see Demey (2010, Lemma 9). The model
Me represents the world and the agents’ knowledge and probabilities after the
agents have each carried out their experiment.

Recall that I abbreviated Re = (R1 ∩ E1) ∪ (R2 ∩ E2) in the previous
subsection. Applying Definition 5.3, this can now be rewritten asRe = Re1∪Re2,
which is structurally analogous to the other abbreviation: R = R1 ∪R2.

I will now justify the definition of the model update operation M 7→ Me by
explaining the intuitions behind it, and by showing that it leads to the right results
in a concrete scenario. Carrying out the experiments does not change the set of
possible states. Experiment 1 intersects agent 1’s accessibility relation R1 with
the experiment relation E1, and leaves agent 2’s accessibility relation unchanged
(Re1 = R1 ∩ E1). Hence, after carrying out her experiment, agent 1 cannot
distinguish between states w and v iff (i) before the experiment, she could not
distinguish between those states, and (ii) her experiment does not differentiate
between them. Dually: after carrying out her experiment, agent 1 knows that ϕ
iff (i) she already knew that ϕ before the experiment (by perfect recall), or she
has learned that ϕ is the case by performing her experiment. Symmetric remarks
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hold for experiment 2.7 This closely resembles the description by Bonanno and
Nehring (1997) of the experiments as imposing a partition on the model.8

Let’s now turn to the probabilistic component. The definition of µei (w) can
be rewritten in terms of conditional probabilities: µei (w)(x) = µi(w)(x | Ei[w]);
i.e. agent i conditionalizes on the information that she has gained by performing
her experiment (viz. the information that the actual world w belongs to the cell
Ei[w] of the partition induced by her experiment). This captures the idea that the
agents process new information by means of Bayesian updating.9

Example 5.1. Consider the following scenario. Agent 1 doesn’t know whether
p is the case, i.e. she cannot distinguish between p-states and ¬p-states. (At the
actual state, p is true.) Furthermore, agent 1 has no specific reason to think that
one state is more probable than any other; therefore it is reasonable for her to
assign equal probabilities to all states. Finally, although agent 1 does not know
whether p is the case, she has an experiment that discriminates between p-states
and ¬p-states, and that thus, when carried out, will allow her to find out whether
p is the case. (Agent 2 does not play a role in this scenario.)

Consider the model M := 〈W,R1, R2, E1, E2, µ1, µ2, V 〉, withW := {w, v},
R1 := W × W , E1 = {(w,w), (v, v)}, µ1(w)(w) = µ1(w)(v) = 0.5, and
V (p) = {w} (the definitions of µ1(v), R2, E2 and µ2 are irrelevant). It is easy
to see that this model is a faithful representation of the above scenario. Consider,
for example:

M, w |= ¬K1p ∧ ¬K1¬p ∧ P1(p) = 0.5 ∧ P1(¬p) = 0.5.

Now suppose that the agents carry out their experiments, i.e. consider the updated
model Me. Applying Definition 5.3, it is easy to see that

M, w |= [EXP]
(
K1p ∧ P1(p) = 1 ∧ P1(¬p) = 0

)
.

7I already discussed the analogy between carrying out an experiment and asking a question.
Modeling the experiments as intersecting Ri with Ei is analogous to the ‘resolve’ action in the
dynamic epistemic logic of questions (van Benthem and Minică 2012, Definition 6): carrying out
an experiment means getting an answer to a question posed to nature.

8If one assumes thatRi = W ×W (recall Footnote 5), thenRei = Ei, i.e. agent i’s knowledge
after the experiments consists entirely of what she has learned from carrying out her experiment.
Furthermore, it then holds that µei (w)(v) = µi(w)(v | Πi(w)), where Πi(w) is the cell of the
partition Πi generated by Ei that contains w (obviously, Πi(w) = Ei[w]).

9Note that µei is well-defined (no dangerous division by 0): sinceEi is an equivalence relation,
it holds that w ∈ Ei[w], and hence µi(w)(Ei[w]) ≥ µi(w)(w) > 0.
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So after carrying out her experiment, agent 1 has come to know that p is in fact
the case. She has also adjusted her probabilities: she now assigns probability
1 to p being true, and probability 0 to p being false. These are the results that
we would expect intuitively. Therefore, Definition 5.3 seems to be a natural
way of representing the experimentation dynamics: it makes the intuitively right
‘predictions’ about the agents’ knowledge and probabilities.

5.3.3 Dynamics: The Communication Phase

I will now show how to model the second type of dynamics described in Sec-
tion 5.2, viz. the communication phase. Intuitively, the communication protocol
will be treated as a dialogue about ϕ, i.e. a sequence in which the agents each re-
peatedly communicate the subjective probability they assign to ϕ (at that point in
the dialogue). Single steps in the dialogue are modeled as public announcements.

5.3.3.1 Public Announcements

I first introduce single public announcements. Syntactically, we add a new dy-
namic operator [! ·] to the languageL([EXP]), thus obtaining the languageL([EXP], [! ·]).
The public announcement operator [!ϕ] says that the formula ϕ is truthfully and
publicly announced to all agents. Hence, [!ϕ]ψ is to be read as: ‘after the truthful
public announcement of ϕ, it will be the case that ψ’. The truthfulness of the an-
nouncement is captured by means of a precondition in the semantic clause; this
clause involves going from the model M to the updated model M|ϕ, which is
defined immediately afterwards:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ.

Definition 5.4. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary prob-
abilistic Kripke model and ϕ ∈ L([EXP], [! ·]) an arbitrary formula such that
[[ϕ ]]M 6= ∅. The updated model M|ϕ = 〈Wϕ, Rϕ1 , R

ϕ
2 , E

ϕ
1 , E

ϕ
2 , µ

ϕ
1 , µ

ϕ
2 , V

ϕ〉 is
defined as follows:

• Wϕ := [[ϕ ]]M = {w ∈W |M, w |= ϕ},

• Rϕi := Ri ∩ ([[ϕ ]]M× [[ϕ ]]M) for all i ∈ I ,

• Eϕi := Ei ∩ ([[ϕ ]]M× [[ϕ ]]M) for all i ∈ I ,
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• µϕi (w)(v) := µi(w)(v)

µi(w)([[ϕ ]]M)
for all i ∈ I and w, v ∈Wϕ,

• V ϕ(p) := V (p) ∩ [[ϕ ]]M for all p ∈ Prop.

It is easy to check that if M is a probabilistic Kripke model, then M|ϕ is a
probabilistic Kripke model as well; see Demey (2010, Lemma 16). This model
represents the world and the agents’ knowledge and probabilities after the public
announcement of ϕ.

This definition is just a special case of public announcements in well-behaved
probabilistic Kripke models (see Definition 3.6 on p. 86), so I will not say much
about it. Note that the experiment relations are treated exactly like the epistemic
accessibility relations: the main effect of the public announcement of ϕ is that
all ¬ϕ-states get deleted, and hence, any Ri- or Ei-links that involved ¬ϕ-states
are deleted as well.

Definition 5.4 fits well with our intuitive idea of what a public announcement
of ϕ is, and how it influences the agents’ knowledge and probabilities. One
can easily construct scenarios similar to Example 5.1, in which the ‘predictions’
about the agents’ knowledge and probabilities made by Definition 5.4 match
perfectly with our intuitive expectations (for example, see Example 3.1 on p. 87).

5.3.3.2 Dialogues

I will now move from single public announcements to sequences of public an-
nouncements. I will focus on one particular type of such sequences, which will
be called a dialogue about ϕ. In a dialogue about ϕ, each agent repeatedly an-
nounces the probability she assigns to ϕ (at that step in the dialogue). I will show
that such dialogues reach a fixed point after finitely many steps.

Consider a probabilistic Kripke model M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉,
a state w ∈ W and a formula ϕ. Note that there are unique a, b ∈ R such that
µ1(w)([[ϕ ]]M) = a and µ2(w)([[ϕ ]]M) = b. The sentence d(M, w, ϕ) is now
defined as follows:10

d(M, w, ϕ) := P1(ϕ) = a ∧ P2(ϕ) = b.

10Note that I have tacitly moved outside the official object language here, because the formula
P1(ϕ) = a ∧ P2(ϕ) = b involves real numbers which might not be rational (a, b ∈ R − Q),
whereas the official object language only contains rational numbers. Technically speaking, this
can be ‘repaired’ (cf. Demey 2010), and it does not matter from a modeling perspective, so I will
not dwell on it further.
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Note that for any model M, state w of M, and formula ϕ, it holds—by definition
of d(M, w, ϕ)—that

M, w |= d(M, w, ϕ). (5.2)

A single step in the dialogue consists of both agents publicly announcing the
probabilities they assign to ϕ (at that point in the dialogue). In other words, a
single step consists of the public announcement of the sentence P1(ϕ) = a ∧
P2(ϕ) = b, for the unique a, b ∈ R that make this sentence true.

For any probabilistic Kripke model M that contains w, we define fw,ϕ(M)
to be the result of publicly announcing the sentence d(M, w, ϕ) in the model M
(see Definition 5.4). Symbolically:

fw,ϕ(M) := M | d(M, w, ϕ).

Since M, w |= d(M, w, ϕ), the state w still belongs to M|d(M, w, ϕ), and thus
fw,ϕ can be applied to this model as well. In general, fnw,ϕ(M) is a well-defined
probabilistic Kripke model for all n ≥ 0. For example, unraveling the defini-
tions, we see that

f2
w,ϕ(M) = fw,ϕ(fw,ϕ(M)) =

(
M | d(M, w, ϕ)

)
| d
(
(M | d(M, w, ϕ)), w, ϕ

)
.

The entire dialogue about ϕ will now be modeled as a sequence in which
the agents repeatedly announce the probabilities they assign to ϕ. Consider a
probabilistic Kripke model M that contains the state w. By repeatedly applying
fw,ϕ to M we obtain a sequence which looks as follows:

M 7→ fw,ϕ(M) 7→ f2
w,ϕ(M) 7→ f3

w,ϕ(M) 7→ f4
w,ϕ(M) 7→ · · ·

The following lemma says that the models in this sequence do not continue to
change ad infinitum, i.e. the dialogue reaches a fixed point after finitely many
steps.11

Lemma 5.1. Consider a probabilistic Kripke model M that contains the state w.
Then there exists an n ∈ N such that fnw,ϕ(M) = fn+1

w,ϕ (M).

11Recall that probabilistic Kripke models are assumed to be finite; see Definitions 5.1 and 5.2.
If infinite models are allowed as well, then Lemma 5.1 no longer holds. Nevertheless, because
the submodels of M (ordered by the submodel relation) form a chain-complete poset and fw,ϕ is
a deflationary map on this poset, the Bourbaki-Witt theorem (Bourbaki 1949) still guarantees that
fw,ϕ has a fixed point; however, it might take transfinitely many steps to reach this fixed point.
From an application-oriented perspective, such transfinite dialogues make little sense, and I will
therefore not pursue this topic any further.
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Proof. For any probabilistic Kripke model K, let |K| denote the number of states
in K. For a reductio, suppose that for all n ∈ N : fnw,ϕ(M) 6= fn+1

w,ϕ (M). It fol-
lows from the definition of fw,ϕ that if fnw,ϕ(M) 6= fn+1

w,ϕ (M), then |fnw,ϕ(M)| >
|fn+1
w,ϕ (M)|. Hence we find that

|M| > |fw,ϕ(M)| > |f2
w,ϕ(M)| > |f3

w,ϕ(M)| > · · ·

This contradicts the fact that M has, by definition, only finitely many states.

I will now provide an exact definition of the communication dynamics. Syn-
tactically, we add the [DIAL( · )]-operator to the language L([EXP], [! ·]), thus
obtaining the language L([EXP], [! ·], [DIAL( · )]); this is the final, and most ex-
pressive, language considered in this chapter. The [DIAL(ϕ)]-operator says that
both agents carry out a dialogue about ϕ, i.e. they repeatedly announce the prob-
abilities they assign to ϕ, until a fixed point is reached (Lemma 5.1 guarantees
that such a fixed point will indeed always be reached after finitely many steps).
Hence, [DIAL(ϕ)]ψ is to be read as: ‘after the agents have carried out a dialogue
about ϕ, it will be the case that ψ’.

The semantic clause for [DIAL(ϕ)] involves going to the fixed point model
Mdialw(ϕ), which is defined immediately afterwards:

M, w |= [DIAL(ϕ)]ψ iff Mdialw(ϕ), w |= ψ.

Definition 5.5. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary prob-
abilistic Kripke model, w ∈ W an arbitrary state, and ϕ an arbitrary formula.
Then we define Mdialw(ϕ) := fnw,ϕ(M), where n is the least number such that
fnw,ϕ(M) = fn+1

w,ϕ (M) (this number is guaranteed to exist by Lemma 5.1).

Remark 5.1. Recall that public announcements are assumed to be truthful. Fur-
thermore, a dialogue about ϕ is modeled as a sequence of public announcements.
However, the semantics of [DIAL(ϕ)] does not involve any preconditions. The
reason for this is that the formulas being announced throughout the dialogue se-
quence are true by definition, as was stated in (5.2). Because a dialogue about ϕ
always takes on this form (it will never involve the announcement of other for-
mulas than d(K, w, ϕ), for probabilistic Kripke models K that contain the state
w), the truth precondition can be safely left out.
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Remark 5.2. Given the move from single public announcements to sequences of
public announcements that was just described, one might wonder why we con-
sidered only single experiments (and no sequences of experiments) in Subsec-
tion 5.3.2. However, since experiments typically concern factual propositions
(Boolean combinations of propositional atoms), the single update M 7→ Me

can be interpreted as ‘summarizing’ an entire sequence of experiments. Con-
sider, for example, the sequence consisting of a binary experiment ‘is p the
case?’ followed by another binary experiment ‘is q the case?’; by perform-
ing this sequence of experiments, the agent will first find out whether p is the
case, and then whether q is the case. Because the first experiment does not
change the truth value of p, this sequence of experiments can be replaced by
one single, complex experiment that allows the agent to discover the truth val-
ues of p and q simultaneously. Formally, this is achieved by putting Ei =
[[ p ∧ q ]]2 ∪ [[ p ∧ ¬q ]]2 ∪ [[¬p ∧ q ]]2 ∪ [[¬p ∧ ¬q ]]2.12

In principle, one can also compress a sequence of public announcements
into a single public announcement. However, such a compression will be much
more intricate, because the public announcement of a formula might change the
truth value of that formula, and thus influence the set of formulas that can be
announced next. (Recall the definitions of d(M, w, ϕ) and fw,ϕ.)

5.4 Agreement Theorems in PDEL

Using the semantic setup introduced in the previous section, I will now formu-
late and prove various dynamic agreement theorems in probabilistic dynamic
epistemic logic. In Subsection 5.4.1, I discuss agreement theorems that make the
experimentation dynamics explicit, but still leave the communication implicit.
In Subsection 5.4.2, I build on this and formulate agreement theorems that make
both the experimentation and the communication dynamics explicit.

5.4.1 Only Experimentation

Before turning to the first agreement theorem in probabilistic dynamic epistemic
logic, I formulate two easy auxiliary lemmas:

12This strategy is no longer available if we restrict to binary experiments (as will be done in
Subsection 5.5.1).
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Lemma 5.2. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary proba-
bilistic Kripke model and w ∈ W a state of M. Then for i = 1, 2, the set R∗[w]
can be finitely partitioned in cells of the form Ri[v`]; i.e. it can be expressed as
R∗[w] = Ri[v1] ∪ · · · ∪Ri[vm], with all the Ri[v`] pairwise disjoint.

Proof. Consider an arbitrary agent i ∈ {1, 2}. Since R∗ is the reflexive tran-
sitive closure of R = R1 ∪ R2 and Ri is reflexive, it holds that R∗[w] =⋃
x∈R∗[w]Ri[x]. Since W is finite, R∗[w] is finite as well and can thus be writ-

ten as R∗[w] = {v1, . . . , vn}, and hence R∗[w] = Ri[v1] ∪ · · · ∪ Ri[vn]. Since
Ri is an equivalence relation, we know that the Ri[v`] are mutually exclusive
and pairwise disjoint. By systematically deleting the ‘redundant’ Ri[v`] (i.e. if
` 6= m andRi[v`] = Ri[vm], then delete exactly one ofRi[v`] andRi[vm]; repeat
until stabilization), we obtain a (finite) partition of R∗[w] into cells of the form
Ri[v`].

Lemma 5.3. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary proba-
bilistic Kripke model and w ∈ W a state of M. Consider sets X,Y ⊆ W and
a partition {Y1, . . . , Ym} of Y . Furthermore, assume that for each cell Y` of
the partition it holds that µi(w)(Y`) > 0 and that µi(w)(X∩Y`)

µi(w)(Y`)
= a. Then also

µi(w)(Y ) > 0 and µi(w)(X∩Y )
µi(w)(Y ) = a.

Proof. Since Y1 ⊆ Y , it follows that 0 < µi(w)(Y1) ≤ µi(w)(Y ); this proves
the first part. For the second part, note that

µi(w)(X ∩ Y ) = µi(w)
(
X ∩

⋃m
`=1 Y`

)
= µi(w)

(⋃m
`=1(X ∩ Y`)

)
=

∑m
`=1 µi(w)(X ∩ Y`)

=
∑m

`=1 a · µi(w)(Y`)

= a ·
∑m

`=1 µi(w)(Y`)

= a · µi(w)
(⋃m

`=1 Y`
)

= a · µi(w)(Y ).

Since µi(w)(Y ) > 0, it follows that µi(w)(X∩Y )
µi(w)(Y ) = a.

This brings us to the first agreement theorem:
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Theorem 5.1. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary prob-
abilistic Kripke model and w ∈ W a state of M. Suppose that the following
conditions hold:

1. µ1(w) = µ2(w),

2. for all v ∈ R∗[w] : µi(w) = µi(v).

Then we have:

M, w |= [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Proof. Assume that M, w |= [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b); it will be
shown that M, w |= a = b, i.e. simply that a = b.

Applying Lemma 5.2 to Me (for agent 1), express (Re)∗[w] = Re1[v1] ∪
· · · ∪ Re1[vm], with all the Re1[v`] pairwise disjoint. Now consider an arbitrary
cell Re1[v`] of this partition (1 ≤ ` ≤ m). Since Re1 is reflexive, we have v` ∈
Re1[v`] ⊆ (Re)∗[w]. Since M, w |= [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b), we
get Me, w |= C(P1(ϕ) = a ∧ P2(ϕ) = b), so v` ∈ (Re)∗[w] implies that
Me, v` |= P1(ϕ) = a ∧ P2(ϕ) = b. Hence µe1(v`)([[ϕ ]]M

e

) = a (†). Note that
Re = (R1∩E1)∪(R2∩E2) ⊆ R1∪R2 = R, and hence v ∈ (Re)∗[w] ⊆ R∗[w],
so condition 2 of this theorem applies to v`, i.e. µ1(w) = µ1(v`) (‡). We now
have:

a = µe1(v`)([[ϕ ]]M
e

) (†)

= µ1(v`)([[ϕ ]]M
e
∩E1[v`])

µ1(v`)(E1[v`])
(Definition 5.3)

= µ1(v`)([[ϕ ]]M
e
∩E1[v`]∩R1[v`])

µ1(v`)(E1[v`]∩R1[v`])
(Lemma 3.2, p. 80)

=
µ1(w)([[ϕ ]]M

e
∩Re1[v`])

µ1(w)(Re1[v`])
. (‡)

(Note that µ1(w)(Re1[v`]) = µ1(v`)(R1[v`] ∩ E1[v`]) = µ1(v`)(E1[v`]) > 0.)
As the cell Re1[v`] was chosen arbitrarily, this holds for all cells of the partition
of (Re)∗[w]. By Lemma 5.3 it now follows that µ1(w)

(
(Re)∗[w]

)
> 0 and

µ1(w)
(

[[ϕ ]]M
e

∩(Re)∗[w]
)

µ1(w)
(
(Re)∗[w]

) = a. (5.3)
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It is easy to see that the entire argument presented above can also be carried out
for agent 2. The conclusion of this second, analogous argument will be that

µ2(w)
(

[[ϕ ]]M
e

∩(Re)∗[w]
)

µ2(w)
(
(Re)∗[w]

) = b. (5.4)

Now recall condition 1 of this theorem: µ1(w) = µ2(w). Hence (5.3) and (5.4)
together imply that a = b.

Remark 5.3. The reader familiar with Aumann (1976) will probably have no-
ticed that the proof of the first agreement theorem in probabilistic dynamic epis-
temic logic is a straightforward adaptation of Aumann’s own proof for his origi-
nal agreement theorem (but incorporating already the experimentation dynamics,
whereas Aumann’s theorem is fully static; see Subsection 5.6.1). This shows that
probabilistic Kripke models are a natural setting in which to formalize (dynamic)
agreement theorems.

I will now comment on the intuitive interpretation of this theorem and on the
two assumptions required to prove it. The theorem is essentially a sentence of the
formal language L([EXP]), and says that if after carrying out the experiments,
the agents reach common knowledge about their posteriors for ϕ, then these
posteriors have to be identical. Intuitively, this is very close to Aumann’s origi-
nal agreement theorem, but with the experimentation dynamics explicitly repre-
sented in the language. Note, however, that this theorem talks about what will
be the case if the agents reach common knowledge for their posterior about ϕ,
without saying anything about how such common knowledge is to be achieved.

The two conditions required to prove the agreement theorem are fairly weak.
Condition 1 (µ1(w) = µ2(w)) is an immediate formalization of Aumann’s ‘com-
mon prior’ assumption, but localized to the concrete statew. Condition 2 (µi(w) =
µi(v) for all v ∈ R∗[w]) is a weakened version of an assumption that is also im-
plicit in Aumann’s original setup: Aumann works with structures which have
just one probability mass function, i.e. he assumes that µi(x) = µi(y) for all
states x, y ∈ W . Theorem 5.1 shows that this assumption can be weakened: the
local version (µi(x) = µi(w) for all x ∈ R∗[w]) suffices. In Subsection 5.5.2, I
will show that under the common prior assumption, common knowledge is not
needed to characterize this property: individual knowledge suffices.

It should be noted that Theorem 5.1 is a local theorem (about a particular
state w) and a theorem about probabilistic Kripke models. However, in the proof
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we nowhere made any use of the concrete valuation. Furthermore, the reference
to the concrete state w can also be eliminated by ‘de-localizing’ the theorem’s
two assumptions. In this way, we arrive at the following global frame version of
the first agreement theorem:

Theorem 5.2. Let F = 〈W,R1, R2, E1, E2, µ1, µ2〉 be an arbitrary probabilistic
Kripke frame. Suppose that the following conditions hold:

1. µ1 = µ2,

2. for all w, v ∈W : if (w, v) ∈ R∗, then µi(w) = µi(v).

Then we have:

F |= [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Proof. Let V : Prop → ℘(W ) be an arbitrary valuation on F, and let w ∈ W
be an arbitrary state. Since the conditions of this theorem are simply the ‘de-
localized’ versions of the conditions of Theorem 5.1, it follows immediately by
that theorem that 〈F, V 〉, w |= [EXP]C(P1(ϕ) = a∧P2(ϕ) = b)→ a = b.

5.4.2 Experimentation and Communication

I now turn to the second agreement theorem in probabilistic dynamic epistemic
logic, which also explicitly represents the communication dynamics (in contrast
with the first agreement theorem).

First, however, one more auxiliary lemma is needed. Intuitively, this lemma
says that after a dialogue about ϕ, the agents’ probabilities for ϕ become com-
mon knowledge.

Lemma 5.4. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary proba-
bilistic Kripke model and assume that w ∈W . Then

M, w |= [DIAL(ϕ)]
(
(P1(ϕ) = a∧P2(ϕ) = b)→ C(P1(ϕ) = a∧P2(ϕ) = b)

)
.

Proof. Suppose that Mdialw(ϕ), w |= P1(ϕ) = a ∧ P2(ϕ) = b. Hence

δ := d(Mdialw(ϕ), w, ϕ) =
(
P1(ϕ) = a ∧ P2(ϕ) = b

)
.

Let n be the least number such that fnw,ϕ(M) = fn+1
w,ϕ (M) (such a number is guar-

anteed to exist by Lemma 5.1). Note that Mdialw(ϕ) = fnw,ϕ(M) = fn+1
w,ϕ (M) =

fw,ϕ(fnw,ϕ(M)) = fw,ϕ(Mdialw(ϕ)), so δ is true in all states of Mdialw(ϕ). From
this it follows trivially that Mdialw(ϕ), w |= Cδ, as required.
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This brings us to the second agreement theorem in probabilistic dynamic
epistemic logic, which explicitly represents both the experimentation and the
communication dynamics:

Theorem 5.3. Let M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 be an arbitrary prob-
abilistic Kripke model and w ∈ W a state of M. Suppose that the following
conditions hold:

1. µ1(w) = µ2(w),

2. for all v ∈ R∗[w] : µi(w) = µi(v).

Then we have:

M, w |= [EXP] [DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Proof. This proof is structurally completely analogous to that of Theorem 5.1.
Making use of Lemma 5.4, we show that

µ1(w)
(

[[ϕ ]](M
e)dialw(ϕ)

∩R∗[w]
)

µ1(w)
(
R∗[w]

) = a (5.5)

and that

µ2(w)
(

[[ϕ ]](M
e)dialw(ϕ)

∩R∗[w]
)

µ2(w)
(
R∗[w]

) = b, (5.6)

where R∗ is the reflexive transitive closure of R = R1 ∪ R2, and Ri is agent
i’s epistemic indistinguishability relation in the model (Me)dialw(ϕ). Statements
(5.5) and (5.6), together with condition 1 of this theorem, entail that a = b.13

The theorem says that after the agents have carried out the experiments, and
then carried out a dialogue about ϕ, their posteriors for ϕ have to be identical.
Intuitively, this is very close to Aumann’s original agreement theorem, except
that the experimentation and communication dynamics are now explicitly repre-
sented in the language.

We again obtain a global frame version of the agreement theorem by ‘de-
localizing’ the assumptions:

13For a more detailed proof, see Demey (2010, Theorem 38).
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Theorem 5.4. Let F = 〈W,R1, R2, E1, E2, µ1, µ2〉 be an arbitrary probabilistic
Kripke frame. Suppose that the following conditions hold:

1. µ1 = µ2,

2. for all w, v ∈W : if (w, v) ∈ R∗, then µi(w) = µi(v).

Then we have:

F |= [EXP] [DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Proof. Let V : Prop → ℘(W ) be an arbitrary valuation on F, and let w ∈ W
be an arbitrary state. Since the conditions of this theorem are simply the ‘de-
localized’ versions of the conditions of Theorem 5.3, it follows by that theorem
that 〈F, V 〉, w |= [EXP] [DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Remark 5.4. The first agreement theorem (Theorems 5.1 and 5.2) states that if the
agents have common knowledge of their posteriors, then these posteriors have to
be identical. However, it says nothing about how this common knowledge is to
be achieved, i.e. it did not say anything about the communication. The second
agreement theorem (Theorems 5.3 and 5.4), however, does explicitly represent
the communication dynamics, and thus no longer needs the assumption of com-
mon knowledge: the existence of common knowledge can now be derived from
the communication protocol (Lemma 5.4).

5.5 Metatheory

I will now develop a sound and complete logic in which the agreement theorem
can be derived. Subsection 5.5.1 discusses a technical difficulty related to the
syntactic perspective on probabilistic epistemic logic in general, and proposes a
solution to it. Subsection 5.5.2 provides characterization results for the condi-
tions of the agreement theorems proved in Section 5.4. These characterization
results are then used in Subsection 5.5.3 to obtain various axiomatizations.

5.5.1 A Difficulty about Expressivity

The modeling of the experiments has so far been very general: agent i’s exper-
iment corresponds to any equivalence relation Ei (or, equivalently, to any par-
tition of the model) whatsoever. From the syntactic perspective, however, this
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full generality is difficult to maintain, because it exceeds the expressive powers
of the formal language L([EXP]). I will first give a concrete illustration of this
problem and then propose a solution to it.

Recall the semantics for i-probability formulas such as Pi(ϕ) ≥ k:

M, w |= Pi(ϕ) ≥ k iff µi(w)([[ϕ ]]M) ≥ k.

There is a clear asymmetry in expressivity between both sides of this definition.
On the left hand side, there is a formula of the formal language L([EXP]). The
Backus-Naur form of this language guarantees that Pi(·) will always receive a
formula as its argument. On the right hand side, however, we have the function
µi(w)(·), which can receive any set X ⊆ W whatsoever as its argument, even
undefinable sets (i.e. sets X such that X = [[ϕ ]]M for no L([EXP])-formula ϕ).
It may well be the case that Ei[w] is an undefinable set. In that case, several
problems of expressivity will arise; for example, the [EXP]-reduction axiom for
i-probability formulas will in general not be expressible in L([EXP]).14

To solve the problem, it should thus be ensured that Ei[w] is always de-
finable by means of some formula. One way to ensure this is by restricting
to binary experiments.15 The first, syntactic step of this strategy is to intro-
duce two new primitive formulas α1, α2 into the language. The second, se-
mantic step involves assuming that for any probabilistic Kripke frame F =
〈W,R1, R2, E1, E2, µ1, µ2〉 there exist sets EFi ⊆ W such that Ei =

(
EFi ×

EFi
)
∪
(
(W −EFi )× (W −EFi )

)
. The third and final step links syntax and seman-

tics, by extending the valuations to the newly introduced αi’s: for any valuation

14Here’s another way of putting the problem. Both experimentation and public announcement
of a formula ϕ change the probabilistic component of a Kripke model via Bayesian conditional-
ization: µei (w)(v) = µi(w)(v |Ei[w]) and µϕi (w)(v) = µi(w)(v | [[ϕ ]]M). In the case of public
announcement, this fact can also be expressed in the object language (see Subsection 3.3.3):

ϕ −→
(
[!ϕ]Pi(ψ) = k ↔ Pi([!ϕ]ψ | ϕ) = k

)
.

In the case of experimentation, however, the fact that the agents’ probabilities get updated by
means of Bayesian conditionalization cannot be expressed in the object language (because the set
Ei[w] might be undefinable).

15From a technical perspective, this solution is analogous to the construction of general frames
in modal logic (Blackburn et al. 2001, Definition 1.32); also see Footnote 19 on p. 65. An entirely
different solution, based on hybrid logic, is explored in detail in Demey (2010). There it is also
argued that the ‘binary experiments’-solution is preferable on technical as well as methodological
grounds.
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V on F, we require that V (αi) ∈ {EFi ,W − EFi }, and thus obtain:

Ei =
(
V (αi)× V (αi)

)
∪
(
(W − V (αi))× (W − V (αi))

)
. (5.7)

It is easy to check that Ei, thus defined, is still an equivalence relation, and that
this new definition is ‘compatible’ with the main types of dynamics discussed in
this chapter, in the sense that if a probabilistic Kripke model M satisfies condition
(5.7), then the updated models Me and Mϕ will satisfy it as well.

Informally, (5.7) says that agent i’s experiment only differentiates between
αi-states and ¬αi-states; in other words, it is a ‘binary experiment’. Continuing
the analogy between experiments and questions, carrying out a binary experi-
ment corresponds to asking a yes-no question: ‘is αi the case?’.

In this more restricted setup, it follows easily from condition (5.7) thatEi[w] =
[[αi ]]M if M, w |= αi, and Ei[w] = [[¬αi ]]M otherwise. Hence Ei[w] is now al-
ways definable: either by αi or by ¬αi (depending on whether M, w |= αi). This
definability result will be used extensively in Subsection 5.5.3 (in the [EXP]-
reduction axiom for i-probability formulas, but also in other axioms).

5.5.2 Characterization Results

In Section 5.4, I established various dynamic agreement theorems. These theo-
rems required imposing two conditions on probabilistic Kripke models/frames.
I will now establish characterization results for (the global frame versions of)
these conditions.

I first characterize the common prior assumption, i.e. condition 1 of Theo-
rems 5.2 and 5.4. If ϕ is a 1-probability formula, I will use ϕ[P2/P1] to denote
the formula that is obtained by uniformly substituting P2 for P1 in ϕ. It is clear
that if ϕ is a 1-probability formula, then ϕ[P2/P1] is a 2-probability formula.
Finally, recall that an i-probability formula ϕ is said to be atomic iff it is of the
form

∑n
`=1 a`Pi(p`) ≥ k, i.e. iff the arguments of its probability operators are

propositional atoms (rather than arbitrary formulas).

Lemma 5.5. Let F = 〈W,R1, R2, E1, E2, µ1, µ2〉 be an arbitrary probabilistic
Kripke frame. Then we have:

µ1 = µ2 iff
for all atomic 1-probability formulas ϕ : F |= ϕ↔ ϕ[P2/P1].
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Proof. The left-to-right entailment follows immediately from the semantics; the
right-to-left entailment will be proved by contraposition. Suppose that µ1 6= µ2.
Hence there exist states w, v ∈ W such that µ1(w)(v) 6= µ2(w)(v). Without
loss of generality, assume that µ1(w)(v) < µ2(w)(v). Since Q is dense in R,
there exists a k ∈ Q such that µ1(w)(v) < k < µ2(w)(v). Now define a
valuation V : Prop → ℘(W ) by putting V (p) := {v}. It follows from this
that 〈F, V 〉, w |= P2(p) ≥ k and that 〈F, V 〉, w 6|= P1(p) ≥ k, and hence
F 6|= P1(p) ≥ k ↔ P2(p) ≥ k.

Remark 5.5. Lemma 5.5 clearly involves a (countably) infinite set of formu-
las (the same holds for the second characterization result, stated in Lemmas 5.6
and 5.7). Halpern (2002) provides another characterization of the common prior
assumption, which also involves a (countably) infinite set of formulas (viz. all in-
stances of a single scheme). Halpern’s characterization involves formulas which
are strongly related to the agreeing to disagree theorem, and is thus not suitable
for our current purposes: in the next subsection, the characterization results es-
tablished here will be used to provide a complete axiomatization of a logic in
which the agreeing to disagree result is formally derivable; if the logic’s axiom-
atization would itself already include (something very close to) the agreement
theorem, then this derivation would be trivial. Additionally, the formulas used in
Lemma 5.5 seem to be the most straightforward way of formally expressing the
common prior assumption: agents 1 and 2 having a common prior means exactly
that P1(p) ≥ 0.5↔ P2(p) ≥ 0.5, P1(p) ≤ 0.5↔ P2(p) ≤ 0.5, etc.

Condition 2 of Theorems 5.2 and 5.4 can be characterized as follows:

Lemma 5.6. Let F = 〈W,R1, R2, E1, E2, µ1, µ2〉 be an arbitrary probabilistic
Kripke frame. Then for i = 1, 2 we have:

for all w, v ∈W : if (w, v) ∈ R∗, then µi(w) = µi(v) iff
for all atomic i-probability formulas ϕ : F |=

(
ϕ→ Cϕ

)
∧
(
¬ϕ→ C¬ϕ

)
.

Proof. The left-to-right entailment follows immediately from the semantics; the
right-to-left entailment will be proved by contraposition. Suppose that there exist
states w, v ∈ W such that (w, v) ∈ R∗ and yet µi(w) 6= µi(v). Hence there
exists a state x ∈ W such that µi(w)(x) 6= µi(v)(x). Now define a valuation
V : Prop→ ℘(W ) by putting V (p) := {x}. Since µi(w)(x) 6= µi(v)(x), one of
the following two cases obtains:
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1. µi(w)(x) > µi(v)(x). Since Q is dense in R, there exists a k ∈ Q such
that µi(w)(x) > k > µi(v)(x). It follows that 〈F, V 〉, w |= Pi(p) ≥ k
and that 〈F, V 〉, v 6|= Pi(p) ≥ k, and hence 〈F, V 〉, w 6|= C(Pi(p) ≥ k).
Hence F 6|= Pi(p) ≥ k → C(Pi(p) ≥ k).

2. µi(w)(x) < µi(v)(x). Completely analogously, it follows that there exists
a k ∈ Q such that F 6|= ¬(Pi(p) ≥ k)→ C¬(Pi(p) ≥ k).

Remark 5.6. The condition that µi(w) = µi(v) whenever (w, v) ∈ R∗ is a very
heavy constraint to impose on probabilistic Kripke frames: it involves the reflex-
ive transitive closure of R, and might therefore be called ‘semi-global’. This as-
pect is reflected in the characterization result above, which makes use of the com-
mon knowledge operator C. However, because frame validity is itself a global
notion, it is possible to capture the semi-global frame property involving R∗ by
means of the more modest general knowledge operator E. This result is still not
fully satisfactory, however: the principles that ϕ → Eϕ and ¬ϕ → E¬ϕ (for
atomic i-probability formulas ϕ) still require the ‘public availability’ of agent i’s
subjective probabilistic setup. However, in frames satisfying the common prior
assumption (µ1 = µ2)—and note that all frames used to prove the agreement
results indeed satisfy this property!—more plausible ‘individual’ introspection
principles suffice: ϕ → Kiϕ and ¬ϕ → Ki¬ϕ (for atomic i-probability formu-
las ϕ). Hence, no notion of social (common/general) knowledge is required to
characterize the second assumption of the agreement theorems.

Lemma 5.7. Let F = 〈W,R1, R2, E1, E2, µ1, µ2〉 be an arbitrary probabilistic
Kripke frame and suppose that µ1 = µ2. Then we have:

for i = 1, 2 and for all w, v ∈W : if (w, v) ∈ R∗, then µi(w) = µi(v) iff
for i = 1, 2 and for all atomic i-probability formulas ϕ :

F |=
(
ϕ→ Kiϕ

)
∧
(
¬ϕ→ Ki¬ϕ

)
.

Proof. Again, the left-to-right entailment follows immediately from the seman-
tics; the right-to-left entailment will be proved directly this time (i.e. not by con-
traposition). Assume that F |= (ϕ → Eϕ) ∧ (¬ϕ → E¬ϕ) for all atomic
i-probability formulas ϕ, and call this assumption (†). We now prove for all
states w, v ∈W that if (w, v) ∈ R∗ then µi(w) = µi(v). Since R∗ =

⋃
n≥0R

n,
it suffices to show that for all n ≥ 0, for all w, v ∈ W : if (w, v) ∈ Rn then
µi(w) = µi(v). This is proved by induction on n. The base case is trivial. For
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the induction case, consider arbitrary w, v ∈W and assume that (w, v) ∈ Rn+1.
Hence there is a state u ∈ W such that (w, u) ∈ Rn and (u, v) ∈ R. Since
(w, u) ∈ Rn it follows by the induction hypothesis that µi(w) = µi(u); I claim
that µi(u) = µi(v) as well, and hence it follows that µi(w) = µi(v).

Proof of the claim that µi(u) = µi(v). For a reductio, suppose that µi(u) 6=
µi(v). Hence there is a state x ∈W such that µi(u)(x) 6= µi(v)(x). Now define
a valuation V : Prop → ℘(W ) by putting V (p) := {x}. Since µi(u)(x) 6=
µi(v)(x), one of the following two cases obtains:

1. µi(u)(x) > µi(v)(x). Since Q is dense in R, there exists a k ∈ Q such
that µi(u)(x) > k > µi(v)(x). It follows that 〈F, V 〉, u |= Pi(p) ≥ k and
that 〈F, V 〉, v 6|= Pi(p) ≥ k, and hence 〈F, V 〉, u 6|= E(Pi(p) ≥ k). Hence
F 6|= Pi(p) ≥ k → E(Pi(p) ≥ k), which contradicts assumption (†).

2. µi(u)(x) < µi(v)(x). Completely analogously, it follows that there exists
a k ∈ Q such that F 6|= ¬(Pi(p) ≥ k) → E¬(Pi(p) ≥ k), which again
contradicts assumption (†).

Remark 5.7. Lemma 5.7 is highly similar to the correspondence result for con-
sistency, as stated by Lemma 3.1 on p. 79. Although the correspondence formu-
las used in both lemmas are the same, the frame properties are quite different:
Lemma 5.7 is concerned with a semi-global property (states that are R∗-related),
while Lemma 3.1 is concerned with a local property (states that are Ri-related).
The lemmas also have different quantificational patterns: Lemma 3.1 establishes
the correspondence ‘agent per agent’, while Lemma 5.7 only holds ‘for all agents
simultaneously’. Formally, this means that Lemma 3.1 is of the form

∀i ∈ I :
(
LHS (i)⇔ RHS (i)

)
and Lemma 5.7 is of the form(

∀i ∈ I : LHS (i)
)
⇔
(
∀i ∈ I : RHS (i)

)
.

5.5.3 The Logics

I will now define three logics of increasing strength, and prove them to be sound
and complete with respect to natural classes of Kripke frames. The second and,
especially, the third logic capture the reasoning behind the agreement theorem.
For the sake of clarity, these logics are presented in a modular fashion.
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Figure 5.1: Componentwise axiomatization of EPEL

1. the propositional component
2. the individual knowledge component
3. the common knowledge component
4. the linear inequalities component
5. the probabilistic component
6. the well-behavedness component
7. the pre-/post-experimental interaction component
8. the αi-component

The first logic is the enriched probabilistic epistemic logic EPEL, which
captures the behavior of the epistemic and probabilistic operators. It does not say
anything about agreement theorems. Figure 5.1 provides a schematic overview
of the logic. I will now discuss each of its components separately.

The propositional, probabilistic and linear inequalities components are ex-
actly as in the axiomatization of basic probabilistic epistemic logic discussed
in Chapter 3 (see Figure 3.1 on p. 82), and thus need no further comments.
The individual knowledge component says that the individual (pre- and post-
experimental) knowledge operators Ki and Ri are S5-modal operators. (Note
that Aumann’s original result also involved S5-type knowledge.) Similarly, the
common knowledge component governs the behavior of (pre- and post-experimental)
relativized common knowledge; it consists of the following rules and axioms
(van Benthem et al. 2006):

if ` ψ then ` Cϕψ, if ` ψ then ` Xϕψ,
Cϕ(ψ → χ)→ (Cϕψ → Cϕχ), Xϕ(ψ → χ)→ (Xϕψ → Xϕχ),
Cϕψ ↔ E

(
ϕ→ (ψ ∧ Cϕψ)

)
, Xϕψ ↔ F

(
ϕ→ (ψ ∧Xϕψ)

)
,

Cϕ
(
ψ → E(ϕ→ ψ)

)
→ Xϕ

(
ψ → F (ϕ→ ψ)

)
→(

E(ϕ→ ψ)→ Cϕψ
)
,

(
F (ϕ→ ψ)→ Xϕψ

)
.

The well-behavedness component indicates that the models on which the
logic is interpreted are well-behaved; it consists simply of the formulas that cor-
respond to the consistency and liveness properties, which jointly define well-
behavedness (see Lemma 3.1 on p. 79):
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ϕ→ Pi(ϕ) > 0, Kiϕ→ Pi(ϕ) = 1.

Next, the pre-/post-experimental interaction component describes the influ-
ence of the experiments on the agents’ (common) knowledge: it says that car-
rying out the experiments does not make the agents forget anything that they
already (commonly) knew before the experiments (principles such as these are
sometimes called perfect recall principles). Formally:

Kiϕ→ Riϕ, Cϕψ → Xϕψ.

The final component of EPEL involves the special proposition letters αi.
First of all, there is an axiom which says that the post-experimental knowledge
operatorRi can be defined in terms of the usual knowledge operatorKi and these
special proposition letters:16

Riϕ↔
((
αi → Ki(αi → ϕ)

)
∧
(
¬αi → Ki(¬αi → ϕ)

))
.

Finally, this component also contains axioms which say that the agents’ exper-
iments are successful: if αi is the case, then after carrying out her experiment,
agent i will know this; likewise if αi is not the case. Formally:

αi → Riαi, ¬αi → Ri¬αi.

This concludes the presentation of enriched probabilistic epistemic logic
(EPEL). We now turn to the second logic, viz. probabilistic epistemic agree-
ment logic or PEAL. The componentwise axiomatization of PEAL can be found
in Figure 5.2. This logic is a simple extension of EPEL: we just add an ‘agree-
ment component’, which consists of the formulas that characterize the two frame
properties needed in the agreement theorems (cf. Lemmas 5.5–5.7).

16Given this definability result, it might be asked why Ri is still introduced as a primitive
operator. The reason for doing this is that this operator is only definable if we make use of the
special proposition letters αi; it should be emphasized that these were only introduced at the
beginning of Section 5.5, when we shifted from a semantic to a syntactic pespective.
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Figure 5.2: Componentwise axiomatization of PEAL

1–8. the eight components of EPEL
9. the agreement component:

ϕ↔ ϕ[P2/P1] (for 1-probability formulas ϕ)
ϕ→ Kiϕ and ¬ϕ→ Ki¬ϕ (for i-probability formulas ϕ)

Figure 5.3: Componentwise axiomatization of DPEALe

1–9. the nine components of PEAL
10. the reduction axioms for [EXP]

I now introduce the third and final logic, viz. dynamic probabilistic epis-
temic agreement logic with explicit experimentation or DPEALe. As can be
seen in Figure 5.3, this logic is obtained by simply adding the [EXP]-reduction
axioms to PEAL. These reduction axioms are displayed below. Most of them
are straightforward; I only emphasize the use of Ri to pre-encode the effects of
the experimentation dynamics on Ki (similar remarks apply to common knowl-
edge), and the use of αi in the reduction axiom for i-probability formulas to
avoid non-expressibility (recall Subsection 5.5.1).

1. [EXP] p ↔ p, (for p ∈ Prop ∪ {α1, α2})
2. [EXP]¬ϕ ↔ ¬ [EXP]ϕ,
3. [EXP](ϕ ∧ ψ) ↔ [EXP]ϕ ∧ [EXP]ψ,
4. [EXP]Kiϕ ↔ Ri [EXP]ϕ,
5. [EXP]Riϕ ↔ Ri [EXP]ϕ,
6. [EXP]Cϕψ ↔ X [EXP]ϕ [EXP]ψ,
7. [EXP]Xϕψ ↔ X [EXP]ϕ [EXP]ψ,
8. [EXP]

∑
` a`Pi(ϕ`) ≥ k ↔{

αi →
∑

` a`Pi([EXP]ϕ` ∧ αi) ≥ kPi(αi)
∧ ¬αi →

∑
` a`Pi([EXP]ϕ` ∧ ¬αi) ≥ kPi(¬αi).

With the logics in place, I now turn to their soundness and completeness.
First, consider the classes of frames with respect to which soundness and com-
pleteness results will be proved:
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Definition 5.6. The class of enriched probabilistic Kripke frames with binary
experiments—i.e. satisfying condition (5.7)—will be denoted PKB.

Definition 5.7. Consider an arbitrary frame F = 〈W,R1, R2, E1, E2, µ1, µ2〉 ∈
PKB. Then F is said to be an agreement frame iff it satisfies conditions 1 and 2
of Theorems 5.2 and 5.4. The class of agreement frames will be denoted AGR.

Remark 5.8. We immediately obtain:

1. AGR |= [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

2. AGR |= [EXP] [DIAL(ϕ)](P1(ϕ) = a ∧ P2(ϕ) = b)→ a = b.

Theorem 5.5. We have the following soundness and completeness results:

1. The logic EPEL is sound and complete with respect to PKB.

2. The logic PEAL is sound and complete with respect to AGR.

3. The logic DPEALe is sound and complete with respect to AGR.

Proof. Soundness of each of the three logics is proved by induction on deriva-
tion length, as is usual. The completeness proofs of the first two logics involve
standard techniques in modal logic, such as a canonical model construction, fil-
tration, etc. (Blackburn et al. 2001). The completeness proof of the third logic
relies on standard techniques in dynamic epistemic logic. In particular, the com-
pleteness of the dynamic logic DPEALe is ‘reduced’ to the completeness of its
static base logic PEAL via the use of reduction axioms (van Ditmarsch et al.
2007). For full details, see Theorems 56, 57 and 58 of Demey (2010).

Corollary 5.1. The logics EPEL, PEAL and DPEALe all have the finite model
property.

Proof. This follows immediately from the completeness results established above,
because enriched probabilistic Kripke frames (with binary experiments) are, by
definition, finite (recall Definition 5.1).

Remark 5.9. Combining Theorem 5.5 with Remark 5.8, it immediately follows
that DPEALe ` [EXP]C(P1(ϕ) = a ∧ P2(ϕ) = b) → a = b. The system
DPEALe is thus strong enough to derive a dynamic agreement theorem which
explicitly represents the experimentation dynamics.
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5.6 Agreeing to Disagree and the Dynamic Turn
in Epistemic Logic

In this section, I will examine some of the methodological and philosophical im-
plications of the technical results established earlier. Subsection 5.6.1 discusses
the importance of explicitly representing the dynamics behind the agreement
theorem. Subsection 5.6.2 examines the implications of this for the role and
importance of common knowledge in agreement results. Together, these two
subsections illustrate how the dynamic turn in logic can be applied to Aumann’s
agreement theorem.

5.6.1 Static versus Dynamic Agreement Theorems

There is an important dynamic aspect to Aumann’s agreement theorem (recall
the intuitive scenario described in Section 5.2). However, Aumann does not
seem to make this dynamic aspect sufficiently explicit. On the syntactic side,
his formulation of the theorem is a conditional statement without any dynamic
operators; recall (5.1) from Section 5.2. I will now argue that the underlying
dynamics is not adequately captured by his semantic setup either.

In the approach developed here, we have two ‘temporally uniform’ models:
the model M = 〈W,R1, R2, E1, E2, µ1, µ2, V 〉 represents the agents’ knowl-
edge and probabilities before the experiments have been carried out, and the
model Me = 〈W e, Re1, R

e
2, E

e
1, E

e
2, µ

e
1, µ

e
2, V

e〉 represents the agents’ knowl-
edge and probabilities after the experiments have been carried out. Now contrast
this with Aumann’s original models. These seem to be ‘temporally incoherent’:
they represent the agents’ knowledge after the experiments, but their probability
distributions before the experiments. In the present framework, such a model
would look as follows: 〈W,Re1, Re2, E1, E2, µ1, µ2, V 〉; it is obtained by cutting
the (temporally uniform) models M and Me into pieces, and then pasting these
pieces back together in a ‘temporally incoherent’ way.

The situation can be analyzed as follows. The intuitive agreeing to disagree
scenario described in Section 5.2 is intrinsically dynamic. If one formulates
the agreement theorem in a static way (like Aumann did), then one will need to
‘smuggle’ this dynamics into the semantics somehow, thus obtaining ‘temporally
incoherent’ models.

The approach developed here, however, makes the underlying dynamics fully
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explicit. On the semantic side, we have a probabilistic Kripke model M which
corresponds to the initial stage (before the experiments), a model Me which cor-
responds to the time immediately after the experiments, and finally, a model
(Me)dialw(ϕ) which corresponds to the final stage after the communication, at
which the agents have reached common knowledge of their posteriors. Hence,
there exists a complete structural analogy between the intuitive scenario on the
one hand and its model-theoretical formalization on the other. On the syntactic
side, the agreement theorems proved here (in particular, Theorems 5.3 and 5.4)
are formulated using the dynamic [EXP]- and [DIAL(ϕ)]-operators, and are thus
able to talk about this entire sequence of models M 7→ Me 7→ (Me)dialw(ϕ).
Hence, they can be read as natural and explicit descriptions of the intuitive sce-
nario that was behind the original agreement theorem.

To summarize: the agreement theorems developed in this chapter perfectly
illustrate the dynamic turn in logic (recall the quote from van Benthem given
in Section 5.2). In the next subsection, I will show that this dynamic turn of-
fers a new perspective on the conceptual landscape surrounding the agreement
theorem, and, in particular, on the role of common knowledge.

5.6.2 The Role of Common Knowledge

In order to formulate and prove his agreement theorem, Aumann used the notion
of common knowledge, thus being the first author to introduce this notion in
the game-theoretical literature. Therefore, it is widely assumed that common
knowledge plays a central role in agreeing to disagree results. Several results
established throughout this chapter, however, seem to suggest that the importance
of common knowledge is not so central as is often thought.

First of all, in Aumann’s original setup, the (common) prior probability dis-
tribution is assumed to be common knowledge among the agents. This is re-
flected in the present framework by the characterization result involving ϕ →
Cϕ (and ¬ϕ→ C¬ϕ) for i-probability formulas ϕ. However, I showed that this
can be replaced with the much weaker individual probabilistic-epistemic intro-
spection principle ϕ → Kiϕ (and ¬ϕ → Ki¬ϕ) for i-probability formulas ϕ
(see Remark 5.6). In other words, the assumption that the agents’ prior prob-
ability distributions are common knowledge can be formally captured without
making use of the common knowledge operator.

A second, more important observation concerns the role of common knowl-
edge in obtaining consensus (i.e. identical posterior probabilities). Aumann’s
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original theorem says that if after carrying out the experiments, the agents have
common knowledge of their posteriors, then these posteriors have to be identical.
However, this theorem does not say how the agents are to obtain this common
knowledge (it just assumes that they have been able to obtain it one way or an-
other). The way to obtain common knowledge is via a certain communication
protocol. Once this communication dynamics is made explicitly part of the story
(as suggested by the dynamic turn—recall the previous subsection), common
knowledge of the posteriors need no longer be assumed in the formulation of the
agreement theorem (see Remark 5.4), since it will now simply follow from the
communication protocol (see Lemma 5.4).

Finally, note that these comments on the relative unimportance of common
knowledge for agreeing to disagree results are in line with the results by Parikh
and Krasucki (1990). They consider groups of more than two agents, in which
communication does not occur publicly, but in pairs. They show that, given cer-
tain conditions on the communication protocol, the agents will reach a consen-
sus—i.e. identical posteriors—, but not common knowledge of these posteriors.

5.7 Conclusion

In this chapter I have established various agreement theorems in probabilistic
dynamic epistemic logic. In particular, I established model- and frame-based
versions of an agreement theorem with experimentation (Theorems 5.1 and 5.2),
and of an agreement theorem with experimentation and communication (Theo-
rems 5.3 and 5.4). I developed a sound and complete logical system within which
the first agreement result is derivable (Theorem 5.5 and Remark 5.9). Through-
out the chapter, I have emphasized that the models and logics are intuitively
plausible, and directly connected with Aumann’s original agreement result.

I have also discussed how these technical results can be seen as an applica-
tion of the dynamic turn in logic. After showing that Aumann’s original result
fails to fully capture the essential dynamics behind the agreement theorem (both
in its formulation and in its semantic setup), I argued that the agreement theo-
rems established in this chapter do succeed in fully capturing this dynamics. In
the first place, this means that these agreement theorems can be read as natu-
ral and explicit descriptions of the intuitive scenario that was behind Aumann’s
original result. Moreover, I showed that this perspective has important concep-
tual consequences, for example, for the role of common knowledge in agreement
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theorems. Common knowledge and communication seem to be two sides of the
same coin: common knowledge is the result of communication, so if the com-
munication dynamics is explicitly represented in the agreement theorem, there is
no need anymore to assume common knowledge (as this will now follow from
the communication protocol).

The technical and philosophical results presented in this chapter naturally
suggest topics for further research. One issue that might be particularly inter-
esting concerns the scope of the logical framework presented here. As I already
mentioned earlier, game theorists have continued to work on extensions and re-
finements of Aumann’s original agreement theorem. For example, Parikh and
Krasucki (1990) have considered scenarios with different (non-public) commu-
nication protocols, and Monderer and Samet (1989) have shown that if com-
mon knowledge is replaced with common p-belief, then a weak version of the
agreement theorem continues to hold (the agents’ posteriors need no longer be
identical, but their difference is bounded by a function of the parameter p). Fur-
thermore, note that the current framework assumes that the experimentation and
communication dynamics yield hard information: they lead to knowledge and
full certainty (probability 1); one might wonder how the agreement theorem fares
if one or both of these types of dynamics can yield soft information (i.e. lead to
‘mere’ beliefs and probabilities less than 1). It will be interesting to investigate
whether such extensions and refinements can also be formalized in the frame-
work of probabilistic dynamic epistemic logic.
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6 u The Dynamics of
the Lockean Thesis

6.1 Introduction

Classical epistemology mainly uses qualitative notions, such as knowledge, be-
lief, justification, etc. (Williams 2001). Formal epistemology, however, makes
extensive use of quantitative notions, such as degrees of belief, coherence, con-
firmation, etc. (Douven and Meijs 2007, Eells and Fitelson 2000, Huber and
Schmidt-Petri 2009). A natural question thus arises: what is the relationship—if
any—between the qualitative and the quantitative framework? In particular, one
may ask whether there is a relation between belief and degrees of belief.

A widespread thesis about this issue is that the qualitative notion of belief
is reducible to the quantitative notion of degree of belief: believing that ϕ is
defined as having a ‘sufficiently high’ degree of belief that ϕ. Foley (1992)
argues that this thesis was hinted at by Locke (1975), and therefore labels it the
‘Lockean thesis’. The main aim of this chapter is to explore the advantages and
disadvantages of this thesis from the perspective of the dynamic turn in epistemic
logic. To broaden the scope of the discussion, I will also briefly discuss its
relation to the other main tenet of contemporary epistemic logic, viz. the focus on
multi-agent operators. Based on these discussions, I will argue that, although the
Lockean thesis is quite problematic for classical (static, single-agent) epistemic
logic, it seems to have a much brighter future in contemporary (dynamic, multi-
agent) epistemic logic.

The chapter is organized as follows. Section 6.2 compares classical and con-
temporary epistemic logic, focusing on the singe-agent/multi-agent and static/dynamic
distinctions. Furthermore, I will point out that these distinctions interact with
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each other, and can be found not only in epistemic logic, but also in epistemol-
ogy. Section 6.3 introduces the formal details of the Lockean thesis. This thesis
yields a notion of belief which is not closed under conjunction; I will discuss the
relationship of this problem with the well-known lottery paradox. In Section 6.4,
I argue that the conjunction problem is typical for classical epistemic logic, and
propose to reconsider the Lockean thesis from the perspective of contemporary
epistemic logic. After briefly considering how this thesis can be generalized
from single-agent to multi-agent contexts, I focus in Section 6.5 on its dynamic
behavior. To this end, I will introduce a system of public announcement logic,
enriched with a (qualitative) belief operator, and a system of probabilistic public
announcement logic (in which the Lockean thesis can be applied to ‘define’ a be-
lief operator). I will prove two theorems which say that the Lockean thesis leads
to a unified perspective on the dynamic behavior of belief and degrees of belief
under public announcements. In Section 6.6, I will explore the conceptual and
philosophical consequences of these technical results. The theoretical elegance
and practical applications of this unified account can be seen as a methodological
argument for the Lockean thesis. Furthermore, I will argue that, when combined
with Baltag’s so-called ‘Erlangen program’ in epistemology, the possibility of
such a unified account also constitutes a philosophical argument in favor of the
Lockean thesis. Section 6.7, finally, summarizes the results obtained in this chap-
ter, and suggests some questions for further inquiry.

6.2 Classical and Contemporary Epistemic Logic

The aim of this section is to introduce and discuss the most important features of
contemporary epistemic logic, and to compare them with those of classical epis-
temic logic. First, however, it should be emphasized that, despite the terminol-
ogy (‘classical’/‘contemporary’) being used, the distinction being made is in the
first place a conceptual one, rather than a strictly historical one. Most work on
classical epistemic logic was being done before the emergence of contemporary
epistemic logic, but one can certainly find examples of contemporary epistemic
logic as early as the late 1960’s—for example, Lewis (1969)—, and conversely,
some logicians are still doing (very valuable) work in classical epistemic logic
today—for example, Halpern et al. (2009).

The starting point of classical epistemic logic, and of epistemic logic in gen-
eral, is Hintikka’s seminal Knowledge and Belief (1962). In this work, knowl-
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edge is analyzed as a modal operator, which is given a semantics in terms of
Kripke models. The formula Kiϕ thus means: ‘agent i knows that ϕ’. Hintikka
used his framework to gain insight about principles such as Kiϕ → KiKiϕ (if
agent i knows that ϕ, does it then follow that she knows that she knows this?).
The technical details of (probabilistic extensions of) this framework have already
been addressed in great detail earlier in this thesis (in particular, see Sections 3.1
and 3.2.).

For our current purposes, two features are of central importance in this frame-
work. First, the framework is essentially single-agent. It is about the knowledge
of one single agent, not about the (pieces of) knowledge of several agents, and
how these might interact. One can trivially go from one to many agents, by sim-
ply ‘adding subscripts’; for example, one then gets formulas such asKiϕ∧¬Kjϕ
(‘agent i knows that ϕ, but agent j doesn’t’). However, in this way, one still
cannot obtain the social notions of common knowledge and distributed knowl-
edge. Syntactically speaking, the common knowledge and distributed knowledge
operators are not definable in terms of the individual knowledge operators Ki,
and thus have to be added as primitives into the object language, and axioma-
tized separately. Semantically speaking, the distributed knowledge and common
knowledge operators are not interpreted with respect to the individual epistemic
accessibility relations Ri, but rather with respect to their intersection and the
reflexive transitive closure of their union, respectively.

Second, the framework is static. It focuses entirely on an agent’s knowl-
edge at a single point in time, without taking into consideration that the agent’s
knowledge might change over time (e.g. because she learns about new informa-
tion). For example, Hintikka explicitly rules out occasions “on which people
are engaged in gathering new factual information. Uttered on such an occasion,
the sentences ‘I don’t know whether p’ and [later] ‘I know that p’ need not be
inconsistent” (1962, p. 7–8).

Contemporary epistemic logic (as this term is used here) can be defined as
the opposite of classical epistemic logic with respect to exactly these two key
features. In the first place, contemporary epistemic logic is a multi-agent enter-
prise. Because of applications in economics and computer science (distributed
systems), the notion of common knowledge has become very important. A typ-
ical game-theoretical example of a multi-agent context is Aumann’s agreeing to
disagree theorem; the role of common knowledge in this context was discussed
extensively in Chapter 5. Several characterizations of common knowledge are
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available; the most important ones are the iterative and the fixed-point charac-
terization (Barwise 1988, Halpern and Moses 1990). Similarly, the notion of
distributed knowledge has been studied extensively (van der Hoek et al. 1999,
Roelofsen 2007).

In the second place, contemporary epistemic logic focuses on the dynamics
of knowledge. One typically studies scenarios that involve learning: at first, an
agent does not know whether ϕ; next, ϕ is (truthfully) announced; then, after
the announcement, the agent does know that ϕ. Dynamic epistemic logic can be
used to formalize and analyze such scenarios, but also more complicated ones.
Several examples (including their probabilistic aspects) were discussed in Chap-
ter 3, such as the Monty Hall puzzle (Example 3.2 on p. 88) and the Picasso
scenario (Example 3.4 on p. 98).

It should be noted that these two themes (multi-agent/dynamics) often inter-
act with each other. For example, the distinction between three important types
of epistemic dynamics, viz. public announcements, private announcements, and
semi-private announcements (Baltag and Moss 2004),1 only makes sense in a
multi-agent setting: in a single-agent setting, these three notions collapse into
each other. Another example of the interaction between dynamics and multi-
agent operators comes, again, from Aumann’s agreeing to disagree theorem: in
Section 5.6, I argued that common knowledge and dynamics are two sides of
the same coin: if the communication dynamics is explicitly represented in the
agreement theorem, common knowledge no longer needs to be assumed, but can
rather be derived from the communication protocol.

Finally, it should be noted that this double evolution (from single-agent to
multi-agent, from static to dynamic) has taken place not only in epistemic logic,
but also in epistemology. Classical epistemology deals with the question whether
a single agent, at a given point in time, does or does not possess knowledge con-
cerning some proposition ϕ (intuitively, think of the Cartesian cogito, sitting qui-
etly next to the fireplace and exploring the contents of its mind). Contemporary
epistemologists, however, also deal with social (multi-agent) phenomena such as
knowledge by testimony, pluralistic ignorance, and the role of experts (Goldman
1999, Pritchard 2004, Lackey and Sosa 2006). Furthermore, formal epistemolo-
gists study how new information should be processed, e.g. via Bayesian updat-

1The distinction between public and private announcements is illustrated by Examples 1.4
and 1.5 on p. 24. A semi-private announcement is an announcement that is made publicly to a
subset of agents I ′ ⊂ I .
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ing or Jeffrey conditionalization (Jeffrey 1983, Lange 2000). These analogous
evolutions might have serious methodological consequences, since they seem to
suggest a unified perspective on epistemic logic and epistemology.2 For exam-
ple, probabilistic public announcement logic and Bayesian epistemology offer
similar analyses of learning new information; the subtle connection between
these analyses was discussed in Section 3.3.3. Furthermore, various versions
of dynamic epistemic logic have been used to analyze social-epistemic phenom-
ena such as testimony and pluralistic ignorance (Holliday 2009, Hendricks 2010,
Hansen 2012).

6.3 The Lockean Thesis

Classical epistemology mainly uses the qualitative notion of belief, whereas for-
mal epistemology makes extensive use of the quantitative notion of degrees of
belief. There exists a variety of frameworks in which degrees of belief can be for-
malized, such as possibility theory and ranking theory (Dubois and Prade 2009,
Spohn 2009); the most widespread framework, however, is probability theory.
Degrees of belief are then taken to be subjective probabilities, and one works
with statements of the form P (ϕ) = a (for some a ∈ [0, 1]), which means that
the agent assigns probability a to proposition ϕ.

A well-known thesis, sometimes called the Lockean thesis, is that “it is epis-
temically rational for us to believe a proposition just in case it is epistemically
rational for us to have sufficiently high degree of confidence in it” (Foley 1992,
p. 111, my emphasis). Formally, this means that in a purely probabilistic frame-
work, one can define (‘qualitative’) belief as follows:

Bϕ :≡ P (ϕ) ≥ τ. (6.1)

Here, τ is a threshold: a degree of belief in the proposition ϕ is ‘sufficiently’
high to count as a (qualitative) belief that ϕ iff that degree of belief is above τ .

There has been a lot of discussion about what the exact value of the threshold
τ should be. There seems to be a consensus that τ should be strictly higher than
0.5, since otherwise the resulting notion of belief might violate the requirement
that belief be consistent:

Bϕ→ ¬B¬ϕ.
2Similar remarks are made in Demey (2011b).
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For example, if τ = 0.4, then for a proposition ϕ with P (ϕ) = 0.45 ≥ τ , thesis
(6.1) yieldsBϕ, but it also follows that P (¬ϕ) = 1−P (ϕ) = 1−0.45 = 0.55 ≥
τ , and thus also B¬ϕ. On the other hand, if τ > 0.5, this cannot occur: if Bϕ,
then P (ϕ) ≥ τ > 0.5, and thus P (¬ϕ) = 1− P (ϕ) < 0.5 < τ , i.e. ¬B¬ϕ.

Some authors have proposed to take τ = 1, but this suggestion seems to
be too strong: belief intuitively does not require complete certainty. For τ <
1, however, a well-known problem for the Lockean thesis arises: the resulting
notion of belief is not closed under conjunction. For example, suppose that τ =
0.6, consider a fair six-faced die, write p for ‘the die will land with 1,2,3 or 4
eyes up’ and q for ‘the die will land with 3,4,5 or 6 eyes up’; then

P (p) = P (q) = 0.66 ≥ 0.6, and P (p ∧ q) = 0.33 < 0.6

and thus (6.1) yields
Bp ∧Bq ∧ ¬B(p ∧ q).

One might think that this problem can be solved by taking τ to be increasingly
closer to 1, e.g. 0.95. However, consider a fair lottery with 100 tickets (the agent
considers all tickets equally likely to win, and exactly one ticket will win) and
write pi for ‘ticket i will not win’; then

P (pi) = 0.99 ≥ 0.95 for each i, and P
( 100∧
i=1

pi
)

= 0 < 0.95

and thus (6.1) yields
100∧
i=1

Bpi ∧ ¬B
( 100∧
i=1

pi
)
.

This explains the central role of the lottery paradox in this context: fair lot-
teries form a canonical class of counterexamples to belief being closed under
conjunction. No matter how close to 1 the value of τ is taken to be, one can
construct a fair lottery (with a sufficiently large number of tickets) which yields
a finite number of propositions that are believed (i.e. their probabilities are ≥ τ ),
while their conjunction is not believed (i.e. its probability is < τ ).

Given these considerations, it will be assumed in the remainder of this chap-
ter that the value of the threshold lies in the open interval (0.5, 1), i.e. 0.5 < τ <
1.
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6.4 The Lockean Thesis from the Perspective of
Contemporary Epistemic Logic

In the previous section, I introduced the Lockean thesis, and discussed its most
important problem, viz. that it yields a notion of belief which is not closed un-
der conjunction. Recalling the distinction between classical and contemporary
epistemic logic from Section 6.2, it is clear that this problem is to be situated in
classical epistemic logic: it is about a single agent, and it is entirely static (the
agent’s beliefs are examined at a single point in time).

One can also ask, however, how the Lockean thesis fares from the perspective
of contemporary epistemic logic. Typical issues that arise in this perspective are:

1. Can the Lockean thesis also be used to define interesting multi-agent no-
tions of belief, such as common belief?

2. Does the Lockean thesis generate interesting behavior under various types
of epistemic dynamics?

Game theorists use the Lockean thesis to define a notion of belief they call p-
belief (because they usually use the letter p, instead of τ , to denote the threshold
value). Just like ‘classical’ belief (and knowledge) can be used to define common
belief (and common knowledge), the notion of p-belief can be used to define a
natural notion of common p-belief. The formal behavior of common p-belief
largely resembles that of ‘classical’ common belief; for example, it has both an
iterative and a fixed-point characterization (Monderer and Samet 1989, Kajii and
Morris 1997).

Furthermore, many applications that require the notion of common belief can
equally well be modeled using the notion of common p-belief. For example, the
agreeing to disagree theorem was first established by Aumann (1976), using the
notion of common knowledge. Dégremont and Roy (2009, 2012) prove a logical
version of this theorem that only requires the ‘classical’ (qualitative) notion of
common belief; however, Monderer and Samet (1989) already established a ver-
sion of this theorem using the notion of common p-belief. To summarize: both
from a theoretical and an application-oriented3 perspective, the Lockean thesis
seems to transfer well from the single-agent to the multi-agent case.

3I will return to this application-oriented perspective on the Lockean thesis in Section 6.6.
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In sum, then, the first issue (multi-agent contexts) has been studied quite
extensively (especially in game theory). The second issue (dynamics), however,
has largely been ignored in the literature so far. In the remainder of this chapter, I
will explore exactly this. I will study the dynamic behavior of the notion of belief
generated by the Lockean thesis, and compare it with the dynamic behavior of a
‘classical’ qualitative notion of belief. The focus will be on one particular type
of dynamics, viz. public announcements.

6.5 A Dynamic Perspective on the Lockean Thesis

In order to formally compare the probabilistic belief operator defined by means
of the Lockean thesis and the ‘primitive’ qualitative belief operator, it is neces-
sary to introduce logical systems in which each of these two operators can be
interpreted. Subsection 6.5.1 introduces a system of public announcement logic,
enriched with a (qualitative) belief operator. Subsection 6.5.2 introduces proba-
bilistic public announcement logic, in which the Lockean thesis can be applied to
define a belief operator. The technical details of these two systems have already
been extensively discussed elsewhere in this thesis (in particular, in Chapters 3
and 4), so these two subsections are quite brief, and focus on those aspects that
are most relevant for our current purposes. Next, in Subsection 6.5.3, I show that
the qualitative belief operator and the probabilistically defined belief operator
display the same dynamic behavior with respect to public announcements.

6.5.1 Public Announcement Logic with Beliefs

I will now give a brief overview of a system of public announcement logic, en-
riched with a belief operator. It is well-known that such systems cannot plausibly
be interpreted on Kripke models: if an agent receives a true piece of information
ϕ while previously believing that ¬ϕ, then this agent is predicted to go insane
and start believing everything (rather than performing a realistic process of be-
lief revision)—thus contradicting the consistency requirement about belief (van
Benthem 2007, Section 3.1). Therefore, systems of public announcement logic
with a belief operator have to be interpreted on epistemic plausibility models.

Some of the main authors in this area, in particular van Benthem (2007) and
Baltag and Smets (2008), use subtly different notions of epistemic plausibility
models. In Chapter 4, I argued that Baltag and Smets’s notion is superior over
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that of van Benthem. Hence, the epistemic plausibility models that will be used
here are those defined by Baltag and Smets (2008) (see Definition 4.2 on p. 110
for a formal definition).

The qualitative language Lqual that will be interpreted on such models is
defined by means of the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Bi(ϕ | ϕ)

Bi(· | ·) is a conditional belief operator; formulas of the form Bi(ϕ | ψ) should
be read as: ‘agent i believes that ϕ, conditional on ψ’.4 Recall that the ordinary
belief operator can easily be defined in terms of the conditional belief operator,
by putting

Biϕ :≡ Bi(ϕ | >). (6.2)

The semantics of the conditional belief and ordinary belief operators looks
as follows (recall Definition 4.3 on p. 110):

M, w |= Bi(ϕ | ψ) iff ∀v ∈ Min≤i(Ri[w] ∩ [[ψ ]]M) : M, v |= ϕ,
M, w |= Biϕ iff ∀v ∈ Min≤i(Ri[w]) : M, v |= ϕ.

As for the dynamics, we focus exclusively on public announcements. We
extend Lqual to L!

qual , by adding a public announcement operator [!·]·. As usual,
formulas of the form [!ϕ]ψ should be read as: ‘after any public announcement
of ϕ, it will be the case that ψ’. The dual of [!ϕ]ψ is defined as 〈!ϕ〉ψ :≡
¬[!ϕ]¬ψ, and should be read as: ‘ϕ can be announced, and afterwards it will
be the case that ψ’. Recall that given an epistemic plausibility model M and a
formula ϕ ∈ L!

qual , we can define the updated epistemic plausibility model M|ϕ
(see Definition 4.4 on p. 111 for details). We can now state the usual semantics
for the public announcement operator:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ,
M, w |= 〈!ϕ〉ψ iff M, w |= ϕ and M|ϕ,w |= ψ.

The dynamic behavior generated by public announcements is completely de-
scribed by means of reduction axioms. These are biconditional statements which

4We usually write Bψi ϕ instead of Bi(ϕ | ψ). In this chapter, however, I will use the latter
notation, to suggest a similarity between conditional belief and conditional probability. Indeed,
the entire point of this chapter is that this suggestion has some interesting implications, and should
therefore be taken seriously.
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allow us to recursively rewrite formulas containing dynamic operators as formu-
las without such operators; hence, the dynamic language L!

qual is equally expres-
sive as the static Lqual , and proving completeness for the dynamic logic can be
reduced to that of the static logic (van Ditmarsch et al. 2007). For our current
purposes, however, it is more important to note that reduction axioms can also
be seen as ‘predicting’ what will be the case after the dynamics has taken place
in terms of what is the case before the dynamics has taken place.

For expository purposes, I first state the reduction axiom for the ordinary
belief operator:

[!ϕ]Biψ ←→
(
ϕ→ Bi(〈!ϕ〉ψ | ϕ)

)
. (6.3)

This illustrates the two perspectives on reduction axioms discussed above.
First of all, when (6.3) is read ‘from left to right’, it states that the public an-
nouncement operator [!ϕ] can be ‘pushed through’ the complex formulaBiϕ: on
the right-hand side its scope is just ψ, which has a lower complexity than the
original Biψ. Using the other reduction axioms as well, one can thus rewrite
[!ϕ]Biψ as a formula that does not involve the public announcement operator at
all. Secondly, when (6.3) is read ‘from right to left’, it ‘predicts’ that agent i
will believe that ψ after the public announcement of ϕ, just in case before the
announcement, she believed 〈!ϕ〉ψ, conditional on ϕ.

Note that (6.3), which is the reduction axiom for the ordinary belief opera-
tor, requires the conditional belief operator to be expressible; this is one of the
reasons for introducing this conditional belief operator from the start.5 The re-
duction axiom for the conditional belief operator looks as follows:

[!ϕ]Bi(ψ | α)←→
(
ϕ→ Bi(〈!ϕ〉ψ | 〈!ϕ〉α)

)
. (6.4)

If we take α = > and note that 〈!ϕ〉> is equivalent to ϕ, it is easy to see that the
reduction axiom (6.3) for ordinary belief is just a special case of the reduction
axiom (6.4) for conditional belief.

6.5.2 Probabilistic Public Announcement Logic

I will now provide a brief overview of probabilistic public announcement logic.
Unlike the system discussed in the previous subsection, this system does not

5In other words, this is another example of enriching the static language to ensure the express-
ibility of all reduction axioms; also see Footnote 9 on p. 112.
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contain a ‘primitive’ belief operator; however, since it can express probabilistic
information, the Lockean thesis can be applied to it to obtain a ‘defined’ belief
operator (this will be discussed in detail in Subsection 6.5.3).

We will work with well-behaved probabilistic Kripke models (see Defini-
tions 3.2, 3.3 and 3.4 on p. 75, 79 and 81 for technical details).

The probabilistic language Lprob that will be interpreted on such models is
defined by means of the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | a1Pi(ϕ) + · · ·+ anPi(ϕ) ≥ k

As was discussed earlier, allowing for linear combinations of probability
terms has a technical motivation. In the present context, however, we will usu-
ally just be working with formulas of the form Pi(ϕ) ≥ k, which should be read
as: ‘agent i assigns (subjective) probability (i.e. degree of belief) at least k to
ϕ’. The only use we make here of linear combinations of probabilities, is to in-
troduce conditional probabilities into the formal language Lprob. Recall that in
probability theory, the conditional probability of ϕ given ψ is defined as follows
(provided that P (ψ) > 0):

P (ϕ | ψ) =
P (ϕ ∧ ψ)

P (ψ)
.

It thus makes sense to introduce the following definition in the formal language
(recall Equation 3.2 on p. 92):

Pi(ϕ | ψ) ≥ k :≡ Pi(ϕ ∧ ψ)− kPi(ψ) ≥ 0. (6.5)

Formulas of the form Pi(ϕ | ψ) ≥ k should be read as ‘agent i assigns condi-
tional probability at least k to ϕ, conditional on ψ’. Consider the following chain
of equivalences:

Pi(ϕ | >) ≥ k ≡ Pi(ϕ ∧ >)− kPi(>) ≥ 0
≡ Pi(ϕ)− k · 1 ≥ 0
≡ Pi(ϕ) ≥ k.

In sum, we thus get:

Pi(ϕ) ≥ k ≡ Pi(ϕ | >) ≥ k. (6.6)
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It should be emphasized that this formula merely expresses an equivalence in
probabilistic public announcement logic; it does not define the absolute prob-
ability on the left in terms of the conditional probability on the right. On the
contrary, absolute probabilities are taken as primitive, and conditional probabili-
ties are defined in terms of them by Equation 3.2.

The semantics of i-probability formulas looks as follows (this clause was
originally stated on p. 78):

M, w |=
∑n

`=1 a`Pi(ϕ`) ≥ k iff
∑n

`=1 a`µi(w)([[ϕ` ]]M) ≥ k.

I now turn to the dynamic part, again focusing on public announcements.
We extend Lprob to L!

prob , by adding a public announcement operator [!·]·. The
meaning of [!ϕ]ψ and its dual 〈!ϕ〉ψ are exactly the same as in the previous
subsection. Recall that given a well-behaved probabilistic Kripke model M and a
formula ϕ ∈ L!

prob , we can define the updated well-behaved probabilistic Kripke
model M|ϕ (see Definition 3.6 on p. 86 for details). Again, we can now state the
usual semantics for the public announcement operator:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ,
M, w |= 〈!ϕ〉ψ iff M, w |= ϕ and M|ϕ,w |= ψ.

To study the dynamic behavior of i-probability formulas under public an-
nouncements, we will again look at its reduction axioms. The reduction axiom
for the formula Pi(ψ) ≥ k reads as follows:6

[!ϕ]Pi(ψ) ≥ k ←→
(
ϕ→ Pi(〈!ϕ〉ψ | ϕ) ≥ k

)
. (6.7)

Note that to formulate a reduction axiom for the formula Pi(ϕ) ≥ k, we used
conditional probabilities. These can be defined in the formal language, using
Equation 6.5. Hence, it is not strictly necessary to provide a separate reduction
axiom for them.7 Still, by unpacking Equation 6.5, we easily obtain a reduction
axiom for Pi(ψ | α) ≥ k as well:

[!ϕ]Pi(ψ | α) ≥ k ←→
(
ϕ→ Pi(〈!ϕ〉ψ | 〈!ϕ〉α) ≥ k

)
. (6.8)

6To achieve full generality, one needs to provide a reduction axiom not just for Pi(ψ) ≥ k,
but rather for

∑n
`=1 a`Pi(ψ`) ≥ k. This can easily be done; however, for our present purposes, it

will suffice to focus on the simpler case Pi(ψ) ≥ k.
7In the previous subsection, it was necessary to provide a separate reduction axiom for condi-

tional belief, since that operator is not definable in the formal language.
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It should be emphasized that (6.8) is a ‘reduction axiom’ in name only: it can be
derived from the reduction axiom for absolute probabilities (6.7) and the defini-
tion of conditional probabilities in terms of absolute probabilities (6.5).

6.5.3 Unification of the Reduction Axioms

Let’s take stock. In Subsection 6.5.1, I discussed a system of public announce-
ment logic, enriched with a qualitative notion of (conditional) belief. This system
gives rise to the reduction axioms (6.3) and (6.4), for belief and conditional be-
lief, respectively. In Subsection 6.5.2, I discussed probabilistic public announce-
ment logic. This system gives rise to the reduction axioms (6.7) and (6.8), for
probability and conditional probability, respectively.

Note that the reduction axioms (6.7) and (6.8) hold for any value of k, so
in particular also for τ , i.e. the threshold value used in the Lockean thesis. Any
concrete instance of (6.7) or (6.8) in which the value of k is τ will be called a
τ -instance. For example, if we assume that τ = 0.85 (this satisfies the restriction
that 0.5 < τ < 1 that was imposed at the end of Section 6.3), then the formula

[!p]Pi(q | r) ≥ 0.85←→
(
p→ Pi(〈!p〉q | 〈!p〉r) ≥ 0.85

)
is a τ -instance of (6.8) (with p, q and r for ϕ, ψ and α, respectively); on the other
hand,

[!p]Pi(q | r) ≥ 0.75←→
(
p→ Pi(〈!p〉q | 〈!p〉r) ≥ 0.75

)
certainly is an instance of (6.8) (again with p, q and r for ϕ, ψ and α, respec-
tively), but it is obviously not a τ -instance, since τ = 0.85 6= 0.75.

Recall that the Lockean thesis says that belief can be defined as ‘high’ prob-
ability:

Biϕ :≡ Pi(ϕ) ≥ τ.
Given the highly similar relationships between belief and conditional belief (Equa-
tion 6.2) on the one hand and between probability and conditional probability
(Equation 6.6) on the other hand, it makes sense to also consider a slightly more
sophisticated version of the Lockean thesis, which says that conditional belief
can be defined as ‘high’ conditional probability:

Bi(ϕ | ψ) :≡ Pi(ϕ | ψ) ≥ τ.

This version of the Lockean thesis can be used to define a mapping πτ from
the qualitative language L!

qual to the probabilistic language L!
prob .
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Definition 6.1. The mapping πτ : L!
qual → L!

prob is defined by induction on
formula complexity:

πτ (p) := p,
πτ (¬ϕ) := ¬πτ (ϕ),

πτ (ϕ ∧ ψ) := πτ (ϕ) ∧ πτ (ψ),
πτ (Bi(ϕ | ψ)) := Pi(πτ (ϕ) | πτ (ψ)) ≥ τ ,

πτ ([!ϕ]ψ) := [!πτ (ϕ)]πτ (ψ).

The only effect of πτ is thus that it ‘probabilifies’ the belief operator accord-
ing to (the sophisticated version of) the Lockean thesis: each conditional belief
formula Bi(ϕ | ψ) is mapped to the conditional probability formula in terms of
which it is defined according to this thesis, viz. Pi(ϕ | ψ) ≥ τ . It is easy to see
that πτ (ϕ • ψ) = πτ (ϕ) • πτ (ψ) for all binary Boolean connectives, and that
πτ (>) = >.

Theorem 6.1. If a formula λ ∈ L!
qual is an instance of the reduction axiom (6.4)

for conditional belief, then πτ (λ) ∈ L!
prob is a τ -instance of the reduction axiom

(6.8) for conditional probability.

Proof. If λ is an instance of (6.4), then λ is of the form

[!ϕ]Bi(ψ | α)←→
(
ϕ→ Bi(〈!ϕ〉ψ | 〈!ϕ〉α)

)
,

and hence

πτ (λ) = πτ

(
[!ϕ]Bi(ψ | α)←→

(
ϕ→ Bi(〈!ϕ〉ψ | 〈!ϕ〉α)

))
= πτ

(
[!ϕ]Bi(ψ | α)

)
←→ πτ

(
ϕ→ Bi(〈!ϕ〉ψ | 〈!ϕ〉α)

)
= [!πτ (ϕ)]πτ

(
Bi(ψ | α)

)
←→

(
πτ (ϕ)→ πτ

(
Bi(〈!ϕ〉ψ | 〈!ϕ〉α)

))
= [!πτ (ϕ)]Pi

(
πτ (ψ) | πτ (α)

)
≥ τ ←→(

πτ (ϕ)→ Pi
(
πτ (〈!ϕ〉ψ) | πτ (〈!ϕ〉α)

)
≥ τ

)
= [!πτ (ϕ)]Pi

(
πτ (ψ) | πτ (α)

)
≥ τ ←→(

πτ (ϕ)→ Pi
(
〈!πτ (ϕ)〉πτ (ψ) | 〈!πτ (ϕ)〉πτ (α)

)
≥ τ

)
—which is clearly a τ -instance of (6.8).
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Theorem 6.2. If a formula λ ∈ L!
qual is an instance of the reduction axiom (6.3)

for belief, then πτ (λ) ∈ L!
PKM is a τ -instance of the reduction axiom (6.7) for

probability.

Proof. If λ is an instance of (6.3), then λ is of the form

[!ϕ]Biψ ←→
(
ϕ→ Bi(〈!ϕ〉ψ | ϕ)

)
,

and hence

πτ (λ) = πτ

(
[!ϕ]Biψ ←→

(
ϕ→ Bi(〈!ϕ〉ψ | ϕ)

))
(6.2)
= πτ

(
[!ϕ]Bi(ψ | >)←→

(
ϕ→ Bi(〈!ϕ〉ψ | ϕ)

))
= πτ

(
[!ϕ]Bi(ψ | >)

)
←→ πτ

(
ϕ→ Bi(〈!ϕ〉ψ | ϕ)

)
= [!πτ (ϕ)]πτ

(
Bi(ψ | >)

)
←→

(
πτ (ϕ)→ πτ

(
Bi(〈!ϕ〉ψ | ϕ)

))
= [!πτ (ϕ)]Pi

(
πτ (ψ) | πτ (>)

)
≥ τ ←→(

πτ (ϕ)→ Pi
(
πτ (〈!ϕ〉ψ) | πτ (ϕ)

)
≥ τ

)
= [!πτ (ϕ)]Pi

(
πτ (ψ) | >

)
≥ τ ←→(

πτ (ϕ)→ Pi
(
〈!πτ (ϕ)〉πτ (ψ) | πτ (ϕ)

)
≥ τ

)
(6.6)
= [!πτ (ϕ)]Pi

(
πτ (ψ)

)
≥ τ ←→(

πτ (ϕ)→ Pi
(
〈!πτ (ϕ)〉πτ (ψ) | πτ (ϕ)

)
≥ τ

)
—which is clearly a τ -instance of (6.7).

Theorems 6.1 and 6.2 say that the πτ -translation of the reduction axiom for
(conditional) belief is exactly the reduction axiom for high (conditional) prob-
ability (where ‘high’ means ‘strictly greater than τ ’). In other words: if one
accepts the Lockean thesis and its slightly more sophisticated version as prob-
abilistic definitions of (conditional) belief, then the reduction axioms for these
probabilistically defined notions are exactly the same syntactic expressions as the
reduction axioms for the ‘primitive’, qualitative notions of (conditional) belief.
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Accepting the Lockean thesis leads to a unified perspective on the dynamic
behavior of belief and probabilities (degrees of belief). In the next section, I
will discuss the methodological and philosophical importance of this technical
observation.

6.6 Methodological and Philosophical Importance

By themselves, Theorems 6.1 and 6.2 are strictly technical results, which are
mathematically provable and philosophically ‘neutral’. Hence, any methodolog-
ical and/or philosophical consequences that one wishes to draw from them, will
have to be supported by additional (non-formal) argumentation. In this section,
I will argue that the availability of these theorems can be seen as a reason to
adopt the Lockean thesis after all (despite its problems with being closed un-
der conjunction). To do this, I will discuss three distinct, increasingly strong
interpretations of these theorems.

The first reaction one might have about Theorems 6.1 and 6.2 is to regard
them as merely technical ‘artefacts’, which do not have any further concep-
tual or philosophical implications. However, this interpretation seems to ignore
the vast formal and conceptual distance between the reduction axioms for (con-
ditional) belief on the one hand, and for high (conditional) probability on the
other. For example, the reduction axioms (6.3–6.4) for (conditional) belief are
L!
qual -formulas that are interpreted on (Baltag/Smets-type) epistemic plausibil-

ity models. These models are purely qualitative entities: (conditional) belief
is interpreted by looking at ≤i-minimal states, and the definition of an updated
plausibility model is a straightforward extension of the well-known definition of
an updated Kripke model. On the other hand, the reduction axioms (6.7–6.8) for
(conditional) probability are L!

prob-formulas that are interpreted on well-behaved
probabilistic Kripke models. These models have a large quantitative (probabilis-
tic) component: (conditional) probability-formulas are interpreted by means of
the probability mass functions µi(w), and the definition of an updated proba-
bilistic Kripke model essentially involves the idea of Bayesian conditionalization
(including the arithmetic of division, etc.).

Keeping in mind this formal and conceptual distance between the frame-
works of qualitative (conditional) belief and high (conditional) probability, it
is all the more surprising that the Lockean thesis, together with its more so-
phisticated version, leads to a precise unification between the reduction axioms
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of both frameworks. Therefore, the second interpretation takes Theorems 6.1
and 6.2 to constitute a pragmatic or methodological argument in favor of the
Lockean thesis. Accepting this thesis leads to a significant and unexpected uni-
fied perspective on the dynamic properties of technically and conceptually very
different frameworks, and thus helps to focus on the common purpose of these
frameworks (despite their technical differences), viz. providing an account of the
agents’ ‘soft information’ and its dynamics.

This is also relevant for the practical or philosophical applications of these
frameworks. If a certain application requires that one focuses on the dynamics
of belief, but less on its static properties (such as closure under conjunction),
then both frameworks described in this chapter are equally applicable, and thus
the final decision about which system to use will have to be motivated by other
considerations. As a concrete example, Chapter 7 will provide a detailed anal-
ysis of the epistemic aspects of surprise, focusing on its dynamic behavior (a
typical topic that will be analyzed is the relationship between surprise and belief
revision). Given its strong focus on dynamics, this analysis can be carried out
in the qualitative framework of epistemic plausibility models—with a primitive
notion of (conditional) belief—, but also in the quantitative framework of prob-
abilistic Kripke models—with a notion of (conditional) belief defined according
to the Lockean thesis, viz. as high (conditional) probability. Since probabili-
ties are needed in the analysis for other, independent reasons as well (viz. as a
quantitative representation of intensity of surprise), the methodological interpre-
tation holds that there is no need to introduce ‘primitive’ belief operators, and
that one can thus simply employ probabilistic Kripke models (in particular, see
Subsection 7.4.4).

Applications such as these illustrate the pragmatic importance of the Lock-
ean thesis. According to a third and final interpretation, however, it might be
possible to draw even further philosophical conclusions from the technical ob-
servations made in Subsection 6.5.3. Baltag (2008, 2011) has argued for an
‘Erlangen program’ for epistemology, which can be described as follows (Baltag
2011, p. 4):

in the spirit of Felix Klein’s 1862 Erlangen program for mathemat-
ics, I argue that ‘static’ epistemic notions and properties are best
characterized in terms of their transformations, their potential dy-
namics
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It was shown above that if one accepts the Lockean thesis (and its more so-
phisticated version)—if only for methodological or pragmatic reasons, such as in
the analysis of surprise—, the epistemic notions of (conditional) belief and high
(conditional) probability display exactly the same dynamic behavior (i.e. they
have the same reduction axioms) with respect to public announcements. Bal-
tag’s Erlangen program for epistemology uses exactly this dynamic behavior to
characterize epistemic notions, and therefore classifies (conditional) belief and
high (conditional) probability as one and the same epistemic notion. But this
exactly means that the Lockean thesis should be accepted, not merely as a prac-
tically useful hypothesis, but also as a substantial epistemological claim about
the notion of belief.

At this point, it might be objected that belief and high probability really can-
not be the same epistemic notion, simply because the former notion is closed
under conjunction, whereas the latter isn’t (recall Section 6.3). However, from
the perspective of Baltag’s Erlangen program, this difference is a static difference
(not a dynamic one), and should not be accepted as the sole criterium of individu-
ation for epistemic concepts. With respect to dynamic behavior, which is deemed
a more relevant individuation criterium in Baltag’s Erlangen program, belief and
high probability do have the same properties. In other words: the difference with
respect to closure under conjunction might indicate that belief and high proba-
bility are not the same notion altogether, but from an epistemic perspective, they
cannot be distinguished (the difference arises only at a non-epistemic level, for
example the psychological level).

6.7 Conclusion

In this chapter, I have studied the Lockean thesis about beliefs and degrees of
belief from the perspective of contemporary epistemic logic. The main problem
of this thesis, viz. that it gives rise to a notion of belief which is not closed
under conjunction, is typical for classical epistemic logic. I have argued that in
contemporary epistemic logic, this thesis seems to have a much brighter future.

In the first place, I have briefly pointed out that the Lockean thesis can easily
be extended from single-agent to multi-agent settings (via the notion of com-
mon p-belief). More importantly, however, I have shown that accepting it (and
a more sophisticated version for conditional beliefs) leads to a significant and
unexpected unification in the dynamic behavior of (conditional) belief (inter-
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preted on epistemic plausibility models) and high (conditional) probability (in-
terpreted on probabilistic Kripke models) with respect to public announcements.
This already constitutes a strong argument for the methodological usefulness of
the Lockean thesis. Furthermore, if one accepts Baltag’s Erlangen program for
epistemology, this technical observation has even stronger philosophical impli-
cations: because belief and high probability display the same dynamic behavior,
it is very plausible that they are indeed one and the same epistemic notion.

Obviously, much more work needs to be done on this topic. In this chapter,
it was shown that belief and high probability have the same dynamic behavior
with respect to public announcements. However, for Baltag’s Erlangen program
to reach its full force, it is necessary to show that these two notions have the
same dynamic behavior in general, i.e. with respect to an entire range of other
types of dynamic phenomena. Secondly, there is a more philosophical issue that
needs to be addressed. So far, Baltag has only provided a negative motivation for
his epistemological Erlangen program: all attempts by classical epistemology to
provide static definitions of the main epistemic notions (for example: ‘knowl-
edge at time t is defined as justified true belief at time t’)8 have utterly failed,
and therefore it seems worthwile to look at an entirely new sort of individuation
criterium, viz. sameness of dynamic behavior (this criterium has already proved
to be successful in another area, viz. geometry). Still, if this Erlangen program
is to develop into a mature epistemological position, much more work will need
to be done—in particular, providing a positive motivation.

8A notable exception is Goldman (1979)’s ‘historical reliabilism’. However, this theory
is ‘backward-looking’ (epistemic states are characterized in terms of how they are generated),
whereas Baltag’s proposal is ‘forward-looking’ (epistemic states are characterized in terms of
how they can change).
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7 u The Dynamics of Surprise

7.1 Introduction

The phenomenon of surprise is ubiquitous in everyday life. People get surprised
all the time; for example, by an unexpected flash of light, or—more ‘down to
earth’—about the fact that their local grocery store has run out of milk (after all,
the store is usually well-stocked!). The role of surprise in human life has been
intensively studied in psychology from cognitive, social, developmental and ed-
ucational perspectives. Furthermore, computer scientists have implemented the
psychological findings about human surprise in artificial agents, and used logical
models to describe these agent architectures. Surprise even crops up in various
philosophical debates, such as those concerning the role of surprising evidence in
Bayesian epistemology, or concerning the so-called surprise examination para-
dox.1

The overarching goal of this chapter is to provide a new analysis of the phe-
nomenon of surprise in the framework of probabilistic dynamic epistemic logic.
This account is based on the vast amount of experimental work on surprise in
psychology, which should benefit its empirical adequacy. The chapter’s main
thesis, however, is of a more conceptual nature: surprise is an essentially dy-
namic phenomenon, and any good formal analysis should represent this dynam-
ics explicitly. I will argue that all current formalizations of surprise in artificial
intelligence and logic fail to fully capture this dynamics, and show that the frame-
work developed in this paper is able to capture it. As an additional benefit, this
new framework can be used to analyze some aspects of surprise that could not
be analyzed before.

1These philosophical debates will not be addressed directly in this chapter; for overviews, the
reader can consult Talbott (2008) and Chow (1998), respectively.
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This enterprise is motivated by a variety of interrelated issues. In the first
place, a logical perspective on surprise can help to elucidate the basic properties
of this notion. Starting from the concrete empirical results about surprise, a com-
plete axiomatization is proposed in which the observed behavioral patterns can
be derived as theorems. In other words, the fundamental laws of surprise can be
‘reverse engineered’ out of the concrete behavior that they generate. Secondly,
the resulting logical system serves as a highly expressive language to formally
specify agent architectures; it belongs to the general framework of (dynamic)
epistemic logic, which is becoming a contemporary ‘lingua franca’ in multi-
agent systems (Wooldridge 2002, Shoham and Leyton-Brown 2009). Thirdly,
and most importantly, since the conceptual and technical advantages of this sys-
tem mainly stem from the fact that it explicitly represents the dynamics of sur-
prise, it also constitutes another concrete illustration of the (strong interpretation
of the) dynamic turn in logic (van Benthem 2011; also see Chapter 1).

The remainder of the chapter is organized as follows. Section 7.2 briefly
reviews the literature on surprise in cognitive science, multi-agent systems and
logic. In Section 7.3 I argue that two earlier formalizations do not adequately
represent the dynamic nature of surprise, and make some suggestions on how
this can be achieved. In Section 7.4, then, I show how these suggestions can
be developed into a full-fledged dynamic logic of surprise, which can capture
several key aspects of surprise, such as its transitory (short-lived) nature and its
role in belief revision. Finally, Section 7.5 wraps things up, and discusses some
potential lines of further research.

7.2 Three Perspectives on Surprise

This section provides an overview of the literature on surprise in cognitive sci-
ence, multi-agent systems, and logic, focusing on those topics and debates that
are most relevant for our current purposes. For more comprehensive overviews,
the reader can fruitfully consult Macedo et al. (2009, 2012) and Reisenzein and
Meyer (2009).

7.2.1 Cognitive Science

The emotion of surprise is probably of old phylogenetic origin (Reisenzein et al.
1996). This short-lived state of mind is caused in an agent when she encounters
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an event that she did not expect. Surprise comes in degrees of intensity, which
depend monotonically on the degree of unexpectedness of the surprise-causing
event (Stiensmeier-Pelster et al. 1995). Like most emotions, surprise has both
phenomenal aspects (there is an experience of ‘what it is like to be surprised’;
Nagel 1974, Reisenzein 2000) and physical (behavioral/physiological) mani-
festations, such as a characteristic facial expression (raised eyebrows, opened
mouth, etc.) and a decrease in heart rate (Miller 1973, Sokolov et al. 2002).

The cognitive-psychoevolutionary theory of surprise (Meyer et al. 1997) claims
that, typically, an unexpected event elicits a sequence of four processes. First,
the event is appraised as unexpected, i.e. as conflicting with a previously held
belief.2 Second, if the degree of unexpectedness is sufficiently large, then on-
going processes are interrupted and attention is shifted to the unexpected event.
Third, the unexpected event is analyzed and evaluated, which can lead to the
fourth process, viz. revision of the relevant beliefs.

The fact that this sequence ends in belief revision helps to explain the transi-
tory (short-lived) character of surprise. When a surprising event occurs again and
again, subjects tend to ‘get used’ to it, and after a few occurrences they do not
find it surprising at all anymore (Charlesworth 1964, Experiment II). Initially, the
surprising event is unexpected: it conflicts with a previously held belief B. This
leads to a process of belief revision, which removes B from the agent’s stock
of beliefs (and perhaps replaces it with another belief). When the same event
happens again, it is no longer surprising, because it no longer conflicts with a
previously held belief (in particular, it does not conflict with B anymore).

The third step in the sequence of events triggered by an unexpected event
involves analyzing that event. One of the features that is typically analyzed, is
the event’s cause: does it have a ‘substantial’ cause, or should it be attributed to
‘mere chance’? Surprise thus leads to ‘causal curiosity’: it motivates the agent
to inquire about the event’s cause (Stiensmeier-Pelster et al. 1995, Meyer et al.
1997).3 Charlesworth has compared the motivational power of unexpected (sur-
prising) data (which conflict with a previously held belief), expected data (which
are in full agreement with previously held beliefs) and novel data (about which

2Building upon earlier work on schema theory (Rumelhart 1984, Schank 1986), the cognitive-
pyschoevolutionary theory uses the notion of ‘schema’ rather than ‘belief’. This distinction is not
relevant for our current purposes, so I will simply use the term ‘belief’.

3The process of searching for an explanation of an observed event is widely known as ab-
duction. Peirce, who coined this term, explicitly refers to surprising events when characterizing
abductive reasoning (Peirce 1934, § 189).
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the agent had no previous beliefs at all), and his experiments show that surprising
data have the highest motivational power, i.e. they trigger further inquiry most
frequently (Charlesworth 1964).

I just mentioned Charlesworth’s distinction between unexpected and novel
data. For an event to be unexpected, it really has to conflict with a previously
held belief; if the agent did not have any beliefs about that (type of) event(s),
then the event is not unexpected, but rather novel. The most common perspec-
tive is that surprise can only be generated by unexpected data, not by novel data
(Charlesworth 1964, Stiensmeier-Pelster et al. 1995, Meyer et al. 1997).4 How-
ever, some theorists maintain that an agent can also be surprised about events that
she previously did not have any beliefs about. For example, Ortony and Partridge
(1987) distinguish between actively expected events and passively expected or
assumed events, and claim that surprise can arise from active expectation fail-
ure as well as assumption failure.5 There is no real contradiction between both
perspectives, since Ortony and Partridge maintain that in the case of surprise
caused by assumption failure, the agent still has a belief, albeit a ‘passive’ one
(an assumption). For example, if the legs of my chair suddenly break and I fall,
I am surprised, not because I actively believed that I would remain seated in the
chair, but because I passively expected (i.e. assumed) that the chair’s legs are
strong enough to support me. The tension between both perspectives can thus be
resolved by postulating implicit beliefs with which the novel event conflicts—
hence, although the event does not conflict with any explicit (active) beliefs, it
does conflict with the postulated implicit (passive) belief.6

4This perspective is also common among philosophers. Davidson, for example, claims that “I
could not be surprised [. . . ] if I did not have beliefs in the first place. [...] Surprise requires that
I be aware of a contrast between what I did believe and what I come to believe” (Davidson 1982,
p. 326).

5Peirce, too, claims that surprise “has its Active and its Passive variety;—the former when what
one perceives positively conflicts with expectation, the latter when having no positive expectation
but only the absence of any suspicion of anything out of the common something quite unexpected
occurs” (Peirce 1958, § 315).

6For example, novel events “can also be conceptualised as instances of expectancy disconfir-
mation: They disconfirm the implicit, schema-based belief that the unexpected event was unlikely
to occur in the given situation.” (Stiensmeier-Pelster et al. 1995, p. 6, my emphasis).
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7.2.2 Multi-agent Systems

Since surprise typically leads to processes of learning and belief revision in hu-
mans, it is a natural move to endow artificial agents with the capability of feel-
ing surprise, which can guide them in their actions. In a recent series of pa-
pers, Macedo and Cardoso have done exactly this (Macedo and Cardoso 2001a,b,
2004, Macedo et al. 2004, 2006). This work is based on the cognitive theories of
surprise described in the previous subsection (Ortony and Partridge 1987, Meyer
et al. 1997), and can thus also be seen as a simulation of the human surprise
mechanism (with various simplifications, obviously).

The agent’s goal is to explore an unknown and dynamic environment. The
agent architecture is similar to the well-known BDI (belief-desire-intention) ar-
chitecture (Wooldridge 2002), and looks as follows. The agent’s perceptual
system provides (partial) information about the environment, and stores it in
memory. When new (hypothetical) information comes in, the agent’s surprise-
generating module calculates the intensity of the surprise caused by that piece of
information. Finally, the decision-making module selects the agent’s next action
by considering, for every available action α, how surprised the agent would be
by the state of the world caused by α, and then selecting the action that max-
imizes the agent’s anticipated surprise. This module thus implements a utility-
maximizing function, where the agent’s utility is assumed to coincide with her
anticipated surprise (more sophisticated architectures also take other emotions
into account).

In the simplest model (Macedo and Cardoso 2001b), the anticipated intensity
of surprise elicited by a piece of information ϕ is calculated as follows:7

S(ϕ) := 1− P (ϕ). (7.1)

The unexpectedness of ϕ is represented by 1 − P (ϕ). Here, P (ϕ) denotes the
subjective probability of ϕ, which is computed based on frequencies stored in
the agent’s memory. Thus (7.1) clearly shows that the intensity of surprise about
ϕ is a monotone increasing function of the unexpectedness of ϕ (cf. supra).

7There exist more complex (and realistic) proposals for defining surprise in terms of unex-
pectedness (probability) (Macedo et al. 2004). However, the experimental data do not seem to
single out one of these complex definitions over the other ones. Furthermore, the main conceptual
points of this chapter (regarding the dynamic nature of surprise) can perfectly be made using (7.1).
Therefore, I will stick to the simpler definition.
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This work on surprise-based agent architectures fits in the broader field of
emotion-based agent architectures (Bates 1994, Macedo et al. 2009, Faghihi et al.
2011). There are also proposals to incorporate the dynamics of emotion (El-Nasr
1998, Becker et al. 2004, Marsella and Gratch 2009), but none of them so far
make use of the framework of (probabilistic) dynamic epistemic logic.

7.2.3 Logic

Lorini (2008) has argued that researchers attempting to incorporate surprise and
other emotions into multi-agent systems can benefit from the accuracy of logi-
cal frameworks for the formal specification of emotions. Together with Castel-
franchi, he has developed a logical framework for surprise (Lorini and Castel-
franchi 2006, 2007). Just like Macedo and Cardoso’s, this framework is based
on the cognitive theories of surprise described in Subsection 7.2.1 (Ortony and
Partridge 1987, Meyer et al. 1997), and can thus be seen as a formal-logical
model of human surprise.

I will now discuss the main features of this framework.8 The base logic is
a system of probabilistic epistemic logic with a belief operator B and formulas
about (linear combinations of) probabilities, such as P (ϕ) ≥ 0.5 and P (ϕ) +
2P (ψ) ≥ 0.7 (Fagin and Halpern 1994). This system is extended with PDL-
style dynamic operators (Harel et al. 2000), and two unary operators Test and
Datum. The formulas Test(ϕ) and Datum(ϕ) are to be read as “the agent is
currently scrutinizing ϕ” and “the agent has perceptual datum ϕ”, respectively.
Furthermore, there are actions observe(ϕ) and retrieve(ϕ), which represent
observing that ϕ is the case and retrieving (from memory) that ϕ. Each of these
actions gives rise to a PDL-style dynamic operator. The two most important
axioms are:

[observe(ϕ)]Datum(ϕ), (7.2)

[retrieve(ϕ)]Test(ϕ). (7.3)

Axiom (7.2) says that after the agent observes that ϕ, this becomes a perceptual
8In this subsection in particular, I will not be able to do justice to all details of the framework

under discussion. For example, I will only reason ‘within’ the logic, and not say anything about its
formal semantics. Furthermore, Lorini and Castelfranchi define two types of surprise, mismatch-
based surprise and astonishment, but I will only discuss the first one, because it is better suited to
illustrate the main claims of the next section. (However, one might argue that the notion of surprise
defined in Section 7.4 is actually closer to astonishment than to mismatch-based surprise.)
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datum; analogously, axiom (7.3) says that after the agent has retrieved ϕ, this
becomes an item under scrutiny.

With these resources, the notion of mismatch-based surprise can be defined.
This emotion arises when there is a conflict between a perceptual datum ψ and a
currently scrutinized belief ϕ; ‘conflict’ here means that the agent believes that
ϕ and ψ cannot be jointly true. Furthermore, the intensity of a mismatch-based
surprise is defined as the probability that the agent assigns to the scrutinized
belief ϕ. Hence, the more confident the agent is in her belief that ϕ, the more
intensely she will be surprised upon receiving a perceptual datum that conflicts
with ϕ (this captures exactly the idea that the intensity of surprise is a monotone
function of the degree of unexpectedness). Formally:

MismatchS(ψ,ϕ) :≡ Datum(ψ) ∧ Test(ϕ) ∧B(ψ → ¬ϕ), (7.4)

IntensityS(ψ,ϕ) = c :≡ MismatchS(ψ,ϕ) ∧ P (ϕ) = c. (7.5)

7.3 Surprise as a Dynamic Phenomenon

In this section, I will argue that neither Macedo and Cardoso’s computational nor
Lorini and Castelfranchi’s logical models of surprise adequately capture the dy-
namic nature of surprise. Afterwards I will suggest how the dynamics of surprise
can adequately be formalized.

7.3.1 Quasi-Static Analyses of Surprise

Let’s first fix some terminology. Surprise is caused by an unexpected event. Any
mental state (beliefs, desires, emotions, etc.) that the agent had (just) before
perceiving the unexpected event will be called ‘prior’; any such state that she
has (just) after perceiving the event will be called ‘posterior’.9 A statement that
involves only prior notions or only posterior notions will be called ‘temporally
coherent’; a statement that involves both prior and posterior notions will be called
‘temporally incoherent’.

9 This terminology is analogous to the use of ‘priors’ and ‘posteriors’ in Bayesian frameworks.
However, it should be emphasized that in this chapter, ‘prior’ and ‘posterior’ are defined in terms
of (being before or after) perceiving the unexpected event, while in Bayesian frameworks they
are defined in terms of (being before or after) the probabilistic update (‘probability revision’)
triggered by that event.
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Consider Macedo and Cardoso’s analysis of surprise, and recall their Defini-
tion (7.1) of surprise intensity as unexpectedness:

S(ϕ) = 1− P (ϕ).

The left side contains a posterior notion: the intensity of the surprise felt by
the agent after the unexpected event. The right side, however, contains a prior
notion: the agent’s subjective probability before the unexpected event. Hence,
Definition (7.1) is a temporally incoherent statement.

To see this more clearly, note that there are two ways of reading (7.1) as
a temporally coherent statement: (i) by considering both S and P to be prior
notions, and (ii) by considering both S and P to be posterior notions. For in-
terpretation (i), consider a case where the agent assigns a low (prior) probability
to ϕ; Definition (7.1) then says that she should experience a highly intensive
surprise about ϕ. Under interpretation (i), this surprise is prior; in other words,
the agent is highly surprised about an event before she has even perceived it—
which is clearly absurd. For interpretation (ii), consider a case where the agent is
highly surprised after perceiving an occurrence of ϕ; Definition (7.1) then says
that she assigns a low probability to ϕ. Under interpretation (ii), this probability
is posterior; in other words, even after the agent has observed an occurrence of ϕ,
she still assigns a low probability to it—which clearly contradicts the common
assumption that agents process new information via Bayesian updating.10

I now turn to Lorini and Castelfranchi’s analysis of surprise. Let’s first con-
sider the qualitative notion of mismatch-based surprise—ignoring, for the mo-
ment, surprise intensity. Recall their Definition (7.4):

MismatchS(ψ,ϕ) ≡ Datum(ψ) ∧ Test(ϕ) ∧B(ψ → ¬ϕ).

The left side contains a posterior notion: the agent’s mismatch-based surprise
after the unexpected event. The right side is more complicated. The first con-
junct is posterior: ψ is only a perceptual datum after it has been observed by
the agent; this dynamics was explicitly represented in (7.2). The second con-
junct is both prior and posterior: ϕ was under scrutiny before the observation
of the unexpected event, and remains so afterwards. The third and final con-
junct is prior: the agent believed that ψ and ϕ cannot be jointly true before the
unexpected event; typically, she will drop this belief as a result of her surprise

10And P (ϕ|ϕ) = 1, so after the occurrence of ϕ, the agent should assign probability 1 to it.
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(recall from Subsection 7.2.1 that surprise typically leads to a process of belief
revision). Thus, in total, Definition (7.4) is temporally incoherent.11

Finally, let’s consider the quantitative aspects of Lorini and Castelfranchi’s
system. Recall their Definition (7.5) of surprise intensity:

IntensityS(ψ,ϕ) = c ≡MismatchS(ψ,ϕ) ∧ P (ϕ) = c.

The left side contains a posterior notion: the intensity of the agent’s mismatch-
based surprise after she has perceived the unexpected event. The right side is,
again, more complicated. The first conjunct—which was also the left side of
(7.4)—is posterior: the agent experiences mismatch-based surprise only after
perceiving the unexpected event. The second conjunct, however, involves a prior
notion, viz. the probability that the agent assigns to the scrutinized item ϕ before
perceiving the unexpected event. Hence, Definition (7.5) is temporally incoher-
ent as well.12

An intuitively correct principle about surprise should look somewhat like
this: if the agent has a (prior) belief that ψ and ϕ are incompatible, and assigns
(prior) probability c to ϕ, then after retrieving ϕ and observing an occurrence
of ψ, she will experience a (posterior) mismatch-based surprise with intensity c.
Formally, this looks as follows:13(

B(ψ → ¬ϕ) ∧ P (ϕ) = c
)
−→

[retrieve(ϕ); observe(ψ)]IntensityS(ψ,ϕ) = c.
(7.6)

However, to derive (7.6) in Castelfranchi and Lorini’s system, one needs princi-
ples such as (7.7) and (7.8), which link the agent’s prior and posterior states by

11Again, there are two ways of reading (7.4) as a temporally coherent statement: by considering
all notions that appear in it to be prior, or by considering all those notions to be posterior. It is easy
to see, however, that both interpretations quickly lead to counterintuitive consequences. Similar
remarks apply to (7.5), which will be discussed next.

12It should be emphasized that the assessment of Lorini and Castelfranchi’s analysis as tempo-
rally incoherent is only valid on the assumption that the terms ‘prior’ and ‘posterior’ are defined
relative to the moment of perceiving the unexpected event, as specified at the beginning of this
subsection (also recall Footnote 9). In particular, if these terms are defined relative to the mo-
ment of recognizing the mismatch between the datum and the scrutinized expectation—which is
the viewpoint taken by Lorini and Castelfranchi themselves—, then this analysis is temporally
coherent.

13As usual, ‘;’ denotes ordinary PDL sequential composition (Harel et al. 2000); this operation
on actions is allowed in Lorini and Castelfranchi’s system.
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claiming that her observation of the occurrence of ψ does not change her rele-
vant beliefs and probabilities in any way. This is highly counterintuitive: both
(7.7) and (7.8) go entirely against the idea that surprise triggers a process of be-
lief revision. Additionally, (7.8) clearly contradicts the common assumption that
agents process new information via Bayesian conditionalization.

B(ψ → ¬ϕ) → [observe(ψ)]B(ψ → ¬ϕ), (7.7)

P (ϕ) = c → [observe(ψ)]P (ϕ) = c. (7.8)

7.3.2 Towards a Fully Dynamic Analysis of Surprise

I have shown that both Macedo and Cardoso’s definition of surprise intensity
(7.1) and Lorini and Castelfranchi’s definitions of mismatch-based surprise and
its intensity (7.4–7.5) are temporally incoherent (but recall Footnote 12). There is
a uniform explanation for this: surprise is an essentially dynamic phenomenon,
but none of these authors explicitly represents this dynamics, so they have to
‘smuggle’ it into their systems—which thus end up being temporally incoher-
ent.14

Before moving on, we need to clarify the relationship between the systems
discussed above and the system that will be developed in this chapter. The prob-
lem of temporal incoherence is situated at the conceptual, rather than at the em-
pirical level, and is therefore largely independent of the original motivations
behind the systems discussed above. For example, Lorini and Castelfranchi’s
goal is first and foremost to propose a cognitively realistic model of surprise;
although their analysis is largely static, it certainly achieves its main goal, since
it is highly successful at capturing various experimentally observed properties of
surprise. In contrast, the main motivation behind this chapter is to propose a tem-
porally coherent model of surprise (using the framework of dynamic epistemic
logic). Looking ahead, this means that the major advantage of the new account
of surprise that will be developed in Section 7.4 will not be so much its level of
empirical adequacy—which, I will argue, is more or less comparable to that of
the other accounts—, but rather the fact that it is temporally coherent, and thus
better able to capture the dynamic nature of surprise.

Now that this methodological issue has been clarified, we are ready to move
on. To obtain a temporally coherent definition of surprise, which respects the dif-

14This analysis is highly similar to that of Aumann’s agreement theorem in Chapter 5; in par-
ticular, see Subection 5.6.1.
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ferent ‘stages’ (before vs. after perceiving the unexpected event), the dynamics
of surprise needs to be represented explicitly. I will use a public announcement
operator [!ϕ] for this purpose (technical details will be discussed in the next sec-
tion). Whether a certain notion is to be interpreted as prior or as posterior, is now
encoded directly in the syntax of the language: if the notion is within the scope of
a dynamic operator, it is posterior, otherwise it is prior. For example, P (ϕ) = 0.2
means that the agent’s prior probability of ϕ is 0.2, while [!ϕ]P (ϕ) = 0.2 means
that her posterior probability of ϕ is 0.2.

We will work with a simple measure of surprise intensity S, based on Macedo
and Cardoso’s (7.1).15 When the surprise dynamics is explicitly represented,
(7.1) is transformed into the following:

[!ϕ]S(ϕ) = c←→ P (ϕ) = 1− c. (7.9)

This principle says that the agent will be surprised about ϕ with intensity c after
the unexpected event iff she assigns probability 1− c to ϕ before the unexpected
event. It thus says exactly the same as (7.1), but now in a temporally coherent
way: both sides of (7.9) are prior statements.16 Furthermore, note that the right-
to-left direction of (7.9) is similar in spirit to (7.6), which was very intuitive, but
which was only derivable using additional implausible principles such as (7.7–
7.8).

7.4 Modeling Surprise in Probabilistic DEL

In the previous section, I made some suggestions on how the dynamics of sur-
prise can be represented explicitly. In this section, these suggestions will be
developed into a full-fledged logical system. I will also show how this system
can naturally capture several important properties of surprise, and how it can be
used to define a qualitative notion of surprise.

15Recall Footnote 7.
16The left formula as a whole is prior; the subformula S(ϕ) = c occurs inside the scope of the

[!ϕ]-operator, and is thus posterior. In other words, principle (7.9) is able to express a connection
between the agent’s prior probability and her posterior surprise intensity in a temporally coherent
way, by making use of the dynamic [!ϕ]-operator.
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7.4.1 Semantic Setup

Given the dynamic nature of surprise, and its connection with epistemic states
and processes (beliefs, unexpectedness, belief revision, etc.), it is natural to
work in the general framework of dynamic epistemic logic. This framework
is rapidly becoming a ‘lingua franca’ or ‘universal toolbox’, which has been ap-
plied to problems in game theory, philosophy, artificial intelligence, etc. (Fagin
and Halpern 1994, Kooi 2003, van Ditmarsch et al. 2007).

As usual, we fix a countable set Prop of proposition letters. In this chapter,
we will only work with a single agent, so it is not necessary to introduce agent
indices. The formal language L is given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ |
n∑
i=1

aiP (ϕ) ≥ b | S(ϕ) ≥ b | S(ϕ) ≤ b | [!ϕ]ϕ

where p ∈ Prop, 1 ≤ n < ω, and a1, . . . , an, b ∈ Q. The informal interpretation
of this language has largely been discussed in Chapter 3. The only new formulas
are those of the form S(ϕ) ≥ b (resp. S(ϕ) ≤ b), which says that the agent
is surprised about ϕ with intensity at least b (resp. at most b). Recall that for
probability formulas, only the ≥-form is taken as primitive, and the ≤-form is
then defined in terms of it, via multiplication with −1 (see p. 66). There is also
an alternative definition, which relies on the probabilistic law that P (¬ϕ) =
1 − P (ϕ) (see p. 68). However, for surprise formulas, we do not have linear
combinations, nor an analogous law that links surprise about ϕ and surprise
about ¬ϕ,17 and therefore the≥- and≤-forms both have to be taken as primitive.
One can then define S(ϕ) < b as ¬(S(ϕ) ≥ b), etc.

Public announcement is usually explicated in terms of rational communi-
cation, but actually, almost any public event can be modeled using public an-
nouncements; for example, a strike of lightning can be modeled as a public an-
nouncement of the proposition ‘lightning occurs (at time t and location `)’.18 It
thus makes perfect sense to represent an unexpected event (whatever its exact

17This will be further clarified in Footnote 20 and Lemma 7.4.
18Van Benthem, Gerbrandy and Kooi make a similar comment: “While much of the theory has

been developed with conversation and communication in mind, it is important [ . . . ] to stress that
we are not doing some sort of formal linguistics. The formal systems we will be dealing with
apply just as well to observation, experimentation, learning, or any sort of information-carrying
scenario.” (van Benthem et al. 2009, p. 71).
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nature) as a public announcement.19

I now introduce the models on which this language will be interpreted:

Definition 7.1. A surprise model is a tuple M := 〈W,R, µ, σ, V 〉, where W
is a non-empty finite set of states, R is an equivalence relation on W , and
V : Prop → ℘(W ) is a valuation function. Furthermore, µ assigns to every
state w ∈ W a probability mass function µ(w) : W → [0, 1] that satisfies the
following two conditions:

• µ(w)(w) > 0,

• µ(w)(v) = 0 for all v ∈W such that (w, v) /∈ R.

Finally, σ assigns to every state w ∈W a surprise measure, i.e. a partial function
σ(w) : ℘(W ) ⇀ [0, 1].

Definition 7.2. The class of all surprise models will be denoted CS . Further-
more, C∗S is the class of all surprise models whose surprise measures are entirely
undefined, i.e. such that σ(w)(X) is undefined for all w ∈W and X ⊆W .

A surprise model is thus just a (single-agent) well-behaved probabilistic
Kripke model 〈W,R, µ, V 〉 (see Definitions 3.2 and 3.4 on p. 75 and 81 for
details), with an additional component σ. Recall that µ(w)(v) = c means that
at state w, the agent assigns probability c to v being the actual state. Similarly,
σ(w)(X) = c means that at state w, the agent experiences surprise with inten-
sity c about X (i.e. about one of the states in X being the actual state). Note the
following differences between µ(w) and σ(w) (for any state w ∈W ):

• µ(w) is a total function, so µ(w)(v) is defined for every state v ∈ W
(this simplifying assumption was discussed after Definition 3.2 on p. 75);
in contrast, σ(w) is a partial function, so it is allowed that σ(w)(X) is
undefined for some sets X ⊆W ,

• µ(w) is required to satisfy the liveness and consistency conditions, whose
motivations were discussed extensively after Definition 3.3 and Lemma 3.1

19This also resolves a terminological tension in the literature on surprise. Agents are surprised
about some propositional content (a piece of information), but their surprise is caused by some
(non-propositional) event. In the new system, the propositional content of the surprise is for-
malized as the proposition ϕ, while its cause is formalized as the public announcement of that
proposition. In short: ϕ is a proposition, but !ϕ is an event.
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on p. 79ff.; in contrast, σ(w) is not required to satisfy any additional con-
ditions whatsoever,

• µ(w) is defined on individual states, and can additively be lifted to sets
of states: µ(w)(X) =

∑
x∈X µ(w)(x) (this essentially reflects the finite

additivity of probabilities); in contrast, σ(w) is defined directly on sets of
states, so it might happen that σ(w)({x, y}) 6= σ(w)({x}) + σ(w)({y}).

These differences show that unlike the well-behaved epistemological notion
of probability (degree of belief), the psychological notion of (degree of) surprise
satisfies no static regularities whatsoever. This is a clear manifestion of the es-
sentially dynamic nature of surprise in the definition of surprise models.20

I now turn to the logic’s semantics. This is entirely as expected, so Defini-
tion 7.3 only provides the formal clause for surprise formulas. This clause holds
for ≷ ∈ {≥,≤}; I will return to it later (see Lemma 7.2). As usual, interpreting
a formula of the form [!ϕ]ψ on a surprise model M requires that the subformula
ψ be interpreted on the updated model M|ϕ, which is well-defined because of
Definition 7.4 and Lemma 7.1. Finally, Definition 7.5 states the usual definition
of semantic validity.

Definition 7.3. Consider a surprise model M, a state w in M, and ϕ ∈ L. Then:

M, w |= S(ϕ) ≷ c iff

{
σ(w)([[ϕ ]]M) ≷ c if σ(w)([[ϕ ]]M) is defined,
c = 0 otherwise.

Definition 7.4. Consider an arbitrary surprise model M = 〈W,R, µ, σ, V 〉 and
formula ϕ ∈ L, and suppose that M, w |= ϕ for some w ∈W . Then the updated
model M|ϕ := 〈Wϕ, Rϕ, µϕ, σϕ, V ϕ〉 is defined as follows:

• Wϕ := [[ϕ ]]M = {w ∈W |M, w |= ϕ},

• Rϕ := R ∩ ([[ϕ ]]M× [[ϕ ]]M),
20One might consider adding the requirements that if X ⊆ Y ⊆ W , then σ(w)(X) ≥

σ(w)(Y ) and σ(w)(W −X) = 1−σ(w)(X), in analogy to the well-known Kolmogorov axioms
for probability. However, the only motivation for such requirements seems to be the observation
that ‘surprise is inversely correlated with probability’, which is only plausible on the temporally
incoherent reading in which ‘surprise’ is taken to be a posterior notion and ‘probability’ a prior
notion. I will return to this suggestion after the dynamics has been formally introduced (see
Lemma 7.4).
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• µϕ(w)(v) := µ(w)(v)

µ(w)([[ϕ ]]M)
for all w, v ∈Wϕ,

• σϕ(w)(X) := 1− µ(w)(X) for all w ∈Wϕ, X ⊆Wϕ,

• V ϕ(p) := V (p) ∩ [[ϕ ]]M for all p ∈ Prop.

Definition 7.5. For any formula ϕ ∈ L and class of models C, we say that C |= ϕ
iff M, w |= ϕ for all models M ∈ C and states w in M.

Lemma 7.1. The class CS is closed under public announcements, i.e. if M ∈ CS ,
then also M|ϕ ∈ CS (for any formula ϕ ∈ L). This does not hold for C∗S .

Proof. The CS case is trivial: for the non-surprise components, see Lemma 3.3
on p. 86, and since Definition 7.1 does not require the surprise measures to satisfy
any additional requirements, there is nothing else to prove. For C∗S , note that
by Definition 7.4, the updated surprise measures are total functions, even if the
original surprise measures were entirely undefined.

Definition 7.4 is a special case of public announcements in well-behaved
probabilistic Kripke models (see Definition 3.6 on p. 86), so I will not comment
upon it, except for re-emphasizing that the probability functions are changed by
Bayesian conditionalization on the announced proposition ϕ. More importantly,
note that the updated surprise measure σϕ(w) is defined in terms of the original
probability function µ(w). This is the only substantial property of surprise that is
assumed in the logic’s semantic setup; it is clearly of a dynamic nature (linking
the original and the updated model).

Even though the surprise measures σ(w) are allowed to be partial, Lemma 7.2
below shows that this does not lead to any truth value gaps in the semantics.
When we are modeling concrete scenarios, we typically want to assume that the
agent initially (i.e. before any unexpected events have taken place) experiences
no surprise. Lemma 7.2 therefore justifies the following heuristic rule (HEUR) :

When modeling a scenario, it can always be assumed that the ‘ini-
tial’ model M (which represents the situation before any unexpected
events have taken place) leaves all surprise measures undefined, or
formally: M ∈ C∗S .

Lemma 7.2. Consider an arbitrary surprise model M = 〈W,R, µ, σ, V 〉 and
formula ϕ ∈ L, and suppose that σ(w)([[ϕ ]]M) is undefined. Then M, w |=
S(ϕ) = 0.
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Proof. Since σ(w)([[ϕ ]]M) is undefined, it follows by the semantic clause for
S(ϕ) ≥ c that M, w |= S(ϕ) ≥ 0 (and M, w 6|= S(ϕ) ≥ c for all c 6= 0). Entirely
analogously, M, w |= S(ϕ) ≤ 0 (and M, w 6|= S(ϕ) ≤ c for all c 6= 0).

The following lemma states that the language L contains no redundancies. In
particular, the surprise operator cannot be defined in terms of the other available
operators.

Lemma 7.3. There exists no formula ϕ ∈ L − {S} such that

CS |= ϕ↔ S(p) ≥ 0.5.

Proof. Consider the surprise models M1 and M2, defined as follows:

• M1 = 〈W1, R1, µ1, σ1, V1〉,W1 = {w1}, R1 = {(w1, w1)}, µ(w1)(w1) =
1, σ1(w1)(X) = 0.6 for all X ⊆W1, and V1(p) = W1,

• M2 = 〈W2, R2, µ2, σ2, V2〉,W2 = {w2}, R2 = {(w2, w2)}, µ2(w2)(w2) =
1, σ2(w2)(X) = 0.4 for all X ⊆W2, and V2(p) = W2.

One can show by induction on the complexity of ϕ that

for all ϕ ∈ L − {S} : M1, w1 |= ϕ iff M2, w2 |= ϕ.

But it also holds that M1, w1 |= S(p) ≥ 0.5, while M2, w2 6|= S(p) ≥ 0.5.

The distinction between the original and the updated model corresponds ex-
actly to the distinction between prior and posterior notions that was introduced
in the previous section. Hence, the definition σϕ(w)(X) = 1 − µ(w)(X) de-
fines posterior surprise in terms of prior probability. As a consequence, all the
properties of probability are manifested in the posterior surprise measure (recall
Footnote 20):

Lemma 7.4. Consider an arbitrary surprise model M = 〈W,R, µ, σ, V 〉 and
formula ϕ ∈ L, and suppose that M, w |= ϕ for some w ∈ W . For all w ∈ Wϕ

and X ⊆ Y ⊆Wϕ, it holds that σϕ(w)(X) ≥ σϕ(w)(Y ) and that σϕ(w)(W −
X) = 1− σϕ(w)(X).

Proof. Both items follow from the definition of σϕ and the fact that µ(w) is a
probability function. For example, if X ⊆ Y , then µ(w)(X) ≤ µ(w)(Y ), and
hence σϕ(w)(X) = 1− µ(w)(X) ≥ 1− µ(w)(Y ) = σϕ(w)(Y ).

202



Modeling Surprise in Probabilistic DEL / 7.4

Before moving to the logic’s proof theory, I will illustrate and justify its
semantics by discussing a simple example in full detail.
Example 7.1. Consider the following scenario. Mary does not know whether
it is currently snowing. In fact, it is indeed currently snowing, but since Mary
does not yet know about this, she experiences no surprise about it whatsoever.
Furthermore, since it is July and Mary knows that snow in July is very rare
at her current location, she considers it very unlikely that it is currently snow-
ing. This example can be formalized using the following surprise model: M =
〈W,R, µ, σ, V 〉,W = {w, v}, R = W×W,µ(w)(w) = µ(v)(w) = 0.05, µ(w)(v) =
µ(v)(v) = 0.95, V (p) = {w}, and σ(w)(X) and σ(v)(X) undefined for all
X ⊆W . (Note that we have followed the heuristic rule HEUR discussed above.)
The proposition letter p represents ‘it is snowing’; the state w represents the
actual world. This model is a faithful representation of the scenario described
above; for example:

M, w |= ¬Kp ∧ ¬K¬p ∧ P (p) = 0.05 ∧ P (¬p) = 0.95 ∧ S(p) = 0.

Now suppose that Mary goes outside and sees that it is actually snowing. This
can be modeled as a public announcement of p (recall Footnote 18). Apply-
ing Definition 7.4, we obtain the updated model M|p, with W p = {w}, R =
{(w,w)},

µp(w)([[ p ]]M|p) = µp(w)(w) =
µ(w)(w)

µ(w)([[ p ]]M)
=
µ(w)(w)

µ(w)(w)
= 1,

σp(w)([[ p ]]M|p) = σp(w)({w}) = 1− µ(w)({w}) = 1− 0.05 = 0.95.

Using this updated model M|p, we find that

M, w |= [!p]
(
Kp ∧ P (p) = 1 ∧ P (¬p) = 0 ∧ S(p) = 0.95

)
.

So after going outside, Mary comes to know that it is in fact snowing. She also
adjusts her probabilities: she is now certain that it is snowing, i.e. she assigns
probability 1 to p being true and probability 0 to p being false. These are the
main cognitive effects of Mary’s observation that it is snowing. However, on the
emotional side, she is also highly surprised to find out that it is snowing, because
she initially considered this highly unlikely. These are the results that one would
intuitively expect, so the semantic setup introduced above seems to yield an ad-
equate representation of (the interactions between) the cognitive (epistemic and
probabilistic) and emotional (surprise) effects of a public announcement.
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7.4.2 Axiomatization

I now turn to the logic’s proof theory. We can make use of the well-known strat-
egy of adding reduction axioms to a static base logic (see Subsection 3.3.2 for
details). The reduction axioms for all operators of L− {S} are well-known; see
items 1–5 of Definition 7.6 below. What about reduction axioms for S? Re-
call that in Subsection 7.3.2 I suggested a dynamified (and temporally coherent!)
version (7.9) of Macedo and Cardoso’s original (7.1). With only minor modifi-
cations,21 this suggestion can be turned into reduction axioms for S; see items
6–7 below.

Definition 7.6. The reduction axioms for public announcement:

1. [!ϕ]p ←→ ϕ→ p, (for p ∈ Prop)
2. [!ϕ]¬ψ ←→ ϕ→ ¬[!ϕ]ψ,
3. [!ϕ](ψ1 ∧ ψ2) ←→ [!ϕ]ψ1 ∧ [!ϕ]ψ2,
4. [!ϕ]Kψ ←→ ϕ→ K[!ϕ]ψ,
5. [!ϕ]

∑
ciP (ψi) ≥ c ←→ ϕ→

∑
ci(〈!ϕ〉ψ) ≥ cP (ϕ),

6. [!ϕ]S(ψ) ≥ c ←→ ϕ→ P (〈!ϕ〉ψ) ≤ 1− c,
7. [!ϕ]S(ψ) ≤ c ←→ ϕ→ P (〈!ϕ〉ψ) ≥ 1− c.

We are now ready to provide an axiomatization. As is shown in Figure 7.1,
the logic SURPRISE can be axiomatized in a highly modular fashion. The
first five components are exactly the same as their namesakes in the component-
wise axiomatization of EPEL (see Figure 5.1 on p. 158). The reduction axioms
component consists of the reduction axioms stated in Definition 7.6. Finally,
the surprise component comprises some static axioms and rules for the surprise
operator S:

• S(ϕ) ≥ 0,

• S(ϕ) > 0→ S(ϕ) ≤ 1,

• ¬
(
S(ϕ) ≤ k ∧ S(ϕ) ≥ k′

)
for all k < k′,

21Trivial modifications are that the statement about = needs to be ‘split out’ into statements
about≤ and≥, and that in the reduction axioms the argument of S should be an arbitrary formula
ψ, and not just ϕ itself. A more serious modification is that the right sides of the reduction axioms
should not contain simply P (ψ), but rather P (〈!ϕ〉ψ), to ‘pre-encode’ the effect of the public
announcement of ϕ on ψ.
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Figure 7.1: Componentwise axiomatization of SURPRISE

1. the propositional component
2. the individual knowledge component
3. the linear inequalities component
4. the probabilistic component
5. the well-behavedness component
6. the surprise component
7. the reduction axioms component

• S(ϕ) > 0→ (S(ϕ) ≥ k ∨ S(ϕ) ≤ k),

• if ` ϕ↔ ψ then ` S(ϕ) ≷ c↔ S(ψ) ≷ c (for ≷ ∈ {≥,≤}).

Note that these static axioms for surprise are all concerned with the technical
details of this particular formalization of surprise, rather than with any substantial
properties of surprise itself. The only substantial axioms for surprise are thus
its reduction axioms (items 6–7 of Definition 7.6), which together constitute a
dynamified version of Macedo and Cardoso’s original definition (7.1). I take
this to be a clear manifestion of the essentially dynamic nature of surprise in the
axiomatization of the logic.

I will finish this subsection by showing that the logic’s semantics and axiom-
atization are in perfect harmony: the axiom system is sound and complete with
respect to the semantics.

Theorem 7.1. SURPRISE is (weakly) sound and complete with respect to CS .

Proof. As usual, soundness is proved by induction on derivation length. It is
easy to check that all axioms of SURPRISE are semantically valid on CS , and
that all of its rules are CS-validity-preserving.

Completeness can also be proved using standard techniques. First of all,
because the reduction axioms allow us to rewrite any formula as an equivalent
formula without any dynamic operators, it suffices to prove completeness for the
static fragment of the logic. This is done using a filtration of a canonical model
over a set of formulas Σ which is finite and closed under subformulas. These
methods are well-known in probabilistic epistemic logic (Fagin and Halpern
1994), so I will only discuss the surprise component.
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The following can easily be proved for maximally consistent sets Γ ⊆ Σ:

• for all χ ∈ Σ, there exists a number αΓ,χ ∈ [0, 1]∩Q such that the formula
S(χ) = αΓ,χ is consistent with Γ,

• for all χ, χ′ ∈ Σ, if ` χ↔ χ′, one can always choose αΓ,χ = αΓ,χ′ .

The canonical model Mc has states W c = {Γ ⊆ Σ |Γ is maximally consistent};
its surprise function is defined as follows: for all Γ ∈W c and X ⊆W c, put

σc(Γ)(X) :=

{
αΓ,χ if ∃χ ∈ Σ : X = {∆ ∈W c |χ ∈ ∆},
0 otherwise.

The truth lemma can now easily be extended to the case of surprise formulas.
Suppose, for example, that the formula S(χ) ≥ c belongs to Σ; then χ itself also
belongs to Σ, and by the definition of σc, showing that Mc,Γ |= S(χ) ≥ c iff
S(χ) ≥ c ∈ Γ boils down to showing that αΓ,χ ≥ c iff S(χ) ≥ c ∈ Γ. The latter
follows from the fact that the formula S(χ) = αΓ,χ is consistent with Γ.

Corollary 7.1. SURPRISE has the finite model property.

Proof. Trivial, since surprise models are, by definition, finite.

7.4.3 Some Interesting Modeling Results

I will now show that the logical system developed above is able to capture several
properties of surprise. However, there is one technical caveat. Recall that ϕ can
only be publicly announced if ϕ is true before the announcement. It is natural to
assume that ϕwill still be true after the announcement. However, because public
announcements take into account higher-order information, it might happen that
ϕ, simply by being announced, becomes false. A typical example is ϕ = p ∧
¬Kp.22 If no such ‘self-falsifying’ effects occur, ϕ is called successful:

Definition 7.7. A formula ϕ ∈ L is called successful iff CS |= [!ϕ]ϕ.

When modeling ‘real-life’ scenarios in a single-agent setting, formulas typ-
ically do not involve higher-order information,23 so at least from this modeling

22See Subsection 3.3.3 for a more detailed discussion.
23In a single-agent setting one is typically surprised about ‘facts of nature’, not about one’s

epistemic attitudes about such facts. In a multi-agent setting, however, it would be natural to have
scenarios like “Alice was surprised when finding out that Bob knows that ϕ”.
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perspective, the assumption of successfulness in many of the propositions below
is quite harmless.24 I now turn to the first concrete result.

Proposition 7.1. The following formula is satisfiable:

ϕ ∧ ¬Kϕ ∧ P (ϕ) = 0.2 ∧ S(ϕ) = 0
∧ 〈!ϕ〉

(
Kϕ ∧ P (ϕ) = 1 ∧ S(ϕ) = 0.8

)
∧ 〈!ϕ〉〈!ϕ〉

(
Kϕ ∧ P (ϕ) = 1 ∧ S(ϕ) = 0

)
.

Proof. Consider M := 〈W,R, σ, µ, V 〉, withW = {w, v}, R = W×W,V (p) =
{w}, µ(w)(w) = 0.2, µ(w)(v) = 0.8 and σ(w)(X) and σ(v)(X) undefined for
all X ⊆ w (all components which have not been mentioned are irrelevant, and
can thus be assigned values at random). One can easily check that this is indeed
a surprise model, and that the formula stated above (with ϕ instantiated to p)
is indeed true at M, w. Finally, note that M ∈ C∗S , i.e. we have followed the
heuristic rule HEUR.

Proposition 7.1 shows that the logic is capable of doing what it was designed
to do, viz. explicitly representing surprise dynamics. It describes the following
scenario. Initially, ϕ is true, but the agent does not know this. Furthermore,
she assigns rather low prior probability to it (and thus does not expect its an-
nouncement). However, because she does not yet know that ϕ is actually true,
she experiences no surprise about it whatsoever. Next, the unexpected announce-
ment of ϕ occurs, and three things happen: (i) the agent comes to know that ϕ,
(ii) she processes this new information by Bayesian conditionalization and thus
assigns probability 1 to it, and (iii) she experiences a very high degree of surprise
about ϕ (inversely correlated to the low probability that she initially assigned to
it). After another announcement of ϕ, the agent’s knowledge and probabilities
are not changed; however, because this second announcement was no longer un-
expected (after all, in the meanwhile she has come to know that ϕ), her surprise
about ϕ drops again to 0. The formula in Proposition 7.1 captures this scenario
in a very natural way, using nested public announcement operators to explicitly
represent the successive layers of surprise dynamics.

24Next to the ‘standard’ unsuccessful formulas involving knowledge (p ∧¬Kp, van Ditmarsch
et al. 2007) and probability (p∧P (p) < 1, Kooi 2003), one can also define unsuccessful formulas
involving the surprise operator S, e.g. P (p) > 0 ∧ S(p) ≥ 1. Clearly, these formulas all have
the same underlying syntactic structure. For technical results on the syntactical characterization
of successful and unsuccessful formulas, see Holliday and Icard III (2010).
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At this point, it should be pointed out that not all scenarios described by
satisfiable formulas are equally plausible. In particular, it is easy to check that
formulas of the form S(ϕ) > 0 ∧ P (ϕ) < 1 are satisfiable, although the sce-
nario described by such formulas sounds highly counterintuitive. The first con-
junct says that the agent experiences some surprise about ϕ, which normally
only happens after a public announcement of ϕ; however, this announcement
should also have led the agent to become certain about ϕ (i.e. to assign proba-
bility 1 to it), which contradicts the second conjunct. To rule out such scenarios,
one might consider adding an axiom of the form S(ϕ) > 0 → P (ϕ) = 1
to the SURPRISE system. However, this ignores the fact that there exist for-
mulas ϕ to which the agent does not assign probability 1 after they have been
announced.25 Furthermore, even if such formulas are excluded—for example,
by only considering (Boolean combinations of) propositional atoms—, then it
is still the case that CS 6|= S(p) > 0 → P (p) = 1. However, it does hold
that C∗S |= S(p) > 0 → P (p) = 1. In other words, even though the formula
S(p) > 0 ∧ P (p) < 1 is satisfiable in a CS-model, it is not satisfiable in a
C∗S-model. Hence, when we are modeling concrete scenarios (and following the
heuristic rule HEUR), the entire problem does not arise.

We now turn to Proposition 7.2 below. This says that an occurrence of ϕ
can lead to surprise about ϕ itself, but also about all of its consequences. For
example, it follows from items 1 and 2 that if an agent assigns probability 0.2
to p ∧ q, then after the announcement of this conjunction, she is surprised with
intensity 0.8 about p ∧ q, but also about p and q individually. Items 3 and 4 are
trivial consequences of 1 and 2; they are mentioned to highlight the subtleties of
unsuccessful formulas: if ϕ is not assumed to be successful, then 4 continues to
hold, but 3 doesn’t.

Proposition 7.2. Assume that ϕ ∈ L is successful, and that |= ϕ→ ψ. Then:

1. CS |= P (ϕ) ≥ c→ [!ϕ]S(ψ) ≤ 1− c,

2. CS |= P (ϕ) ≤ c→ [!ϕ]S(ψ) ≥ 1− c,

3. CS |= P (ϕ) ≥ c→ [!ϕ]S(ϕ) ≤ 1− c,

4. CS |= P (ϕ) ≤ c→ [!ϕ]S(ϕ) ≥ 1− c.
25For example, let ϕ := p ∧ P (p) = 0.05, and let M be the surprise model defined in Exam-

ple 7.1; it is now easy to check that M, w |= ϕ ∧ [!ϕ]P (ϕ) = 0.
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Proof. Straightforward applications of the semantics.

The fact that an occurrence of ϕ can lead to surprise about its consequences
presupposes that the agent is actually able to draw those consequences (if the
agent did not realize that ψ is a logical consequence of ϕ, then an unexpected
occurrence of ϕ would cause her to be surprised about ϕ, but not about ψ). In
other words, Proposition 7.2 shows that the logical system assumes the agent
to be logically omniscient.26 An even clearer illustration of this assumption is
provided by item 1 of Proposition 7.3 below, which says that the agent is never
surprised about semantic validities. Similarly, items 2 and 3 say that if an agent
already knows ϕ, or assigns probability 1 to it, then she will not be surprised
about it. These principles are clearly false for actual human beings, which are
not logically omniscient, and can thus e.g. be genuinely surprised upon learning
(that some formula is actually) a semantic validity; rather, the main importance
of item 1 is that it elucidates Wittgenstein’s famous anti-psychologistic claim that
“there can never be surprises in logic” (Wittgenstein 1922, Proposition 6.1251).

Proposition 7.3. Assume ϕ ∈ L is successful. Then:

1. if CS |= ϕ, then CS |= [!ϕ]S(ϕ) = 0,

2. CS |= P (ϕ) = 1→ [!ϕ]S(ϕ) = 0,

3. CS |= Kϕ→ [!ϕ]S(ϕ) = 0.

Proof. Straightforward applications of the semantics.

I will finish this subsection by proving two more substantial results, both of
which illustrate how important empirical properties of surprise can be obtained
as semantic validities of the logical system.

Proposition 7.4. Assume ϕ ∈ L is successful. Then for all n ≥ 2, we have:27

CS |= [!ϕ]nS(ϕ) = 0.

26This also illustrates the thoroughly epistemic character of surprise: the problem of logical
omniscience is originally a problem for epistemic logic, but it automatically carries over into the
surprise component.

27[!ϕ]n is defined inductively: [!ϕ]0ψ := ψ, and [!ϕ]n+1ψ := [!ϕ][!ϕ]nψ.
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Proof. First of all, note that since ϕ is successful, it holds that |= ϕ ↔ 〈!ϕ〉ϕ;
call this principle (†). Consider an arbitrary surprise model M = 〈W,R, µ, σ, V 〉
and state w, and assume that M, w |= ϕ. For any n ≥ 0, we abbreviate

〈Wn, Rn, µn, σn, V n〉 = M|n := (· · · (M |ϕ)|ϕ · · · )|ϕ︸ ︷︷ ︸
n times

.

Let’s now show that M, w |= [!ϕ]n+1P (ϕ) = 1 for all n ≥ 0. This follows
directly from the following calculation:

µn+1(w)([[ϕ ]]M|n+1) = µn+1(w)([[〈!ϕ〉ϕ ]]M|n)

= µn+1(w)([[ϕ ]]M|n) (†)
= µn(w)([[ϕ ]]M|n | [[ϕ ]]M|n) = 1.

We now use this to justify the (‡)-labeled step in the following calculation:

σn+2(w)([[ϕ ]]M|n+2) = σn+2(w)([[〈!ϕ〉ϕ ]]M|n+1)

= σn+2(w)([[ϕ ]]M|n+1) (†)
= 1− µn+1(w)([[ϕ ]]M|n+1)
= 1− 1 = 0. (‡)

This shows that M, w |= [!ϕ]n+2S(ϕ) = 0 for all n ≥ 0.

Informally speaking, Proposition 7.4 says that after two public announce-
ments of ϕ, the agent is no longer surprised about ϕ. It thus nicely captures
the transitory nature of surprise, which was discussed in Subsection 7.2.1. Fur-
thermore, the proof closely resembles the informal explanation which was given
there: the first announcement of ϕ causes the agent to update her probabilities
and to assign probability 1 to ϕ, so that the second (and subsequent) announce-
ment is no longer unexpected, and thus no longer surprising.28

Finally, Proposition 7.5 says that if an occurrence of (a public announce-
ment of) ϕ leads an agent to change her probability of ψ from a to b in a non-

28The fact that surprise intensity drops to 0 after only two announcements is no problem for
Proposition 7.4, even though for most real subjects this drop happens more gradually and requires
several more repetitions (Charlesworth 1964). The more gradual decrease in surprise intensity is
the consequence of personal and coincidental factors, such as intelligence and fatigue. Both the
informal explanation in Subsection 7.2.1 and Proposition 7.4 make abstraction of such factors, and
predict that the drop in surprise intensity will already happen after the second repetition.

210



Modeling Surprise in Probabilistic DEL / 7.4

trivial29 fashion, then she will experience at least some surprise about ψ. In
other words: surprise is a necessary condition for belief revision (in the current
framework: probability revision).30 This is perfectly in line with the cognitive-
psychoevolutionary theory of surprise described in Subsection 7.2.1, which holds
that surprise is part of a sequence of processes triggered by an unexpected event;
the final stage of this sequence is typically a process of belief revision.

Proposition 7.5. Consider ϕ,ψ ∈ L and suppose that |= ¬ψ → [!ϕ]¬ψ. Then

CS |=
(
P (ψ) = a ∧ [!ϕ]P (ψ) = b ∧ a 6= b

)
→ [!ϕ]S(ψ) > 0.

Proof. Consider an arbitrary surprise model M = 〈W,R, µ, σ, V 〉 and state w,
and assume that the antecedent of the formula above is true at M, w. For a
reductio, assume that M, w 6|= [!ϕ]S(ψ) > 0. Then it follows that

0 = σϕ(w)([[ψ ]]M|ϕ) = σϕ(w)([[〈!ϕ〉ψ ]]M) = 1− µ(w)([[〈!ϕ〉ψ ]]M),

and thus µ(w)([[〈!ϕ〉ψ ]]M) = 1. From the assumption that |= ¬ψ → [!ϕ]¬ψ in
the statement of the proposition, it follows that [[〈!ϕ〉ψ ]]M ⊆ [[ψ ]]M, and thus

1 = µ(w)([[〈!ϕ〉ψ ]]M) ≤ µ(w)([[ψ ]]M) = a,

so a = 1. Since |= 〈!ϕ〉ψ → ϕ, we similarly get that µ(w)([[ϕ ]]M) = 1, and
hence

b = µϕ(w)([[ψ ]]M|ϕ) = µϕ(w)([[〈!ϕ〉ψ ]]M) =
µ(w)([[〈!ϕ〉ψ ]]M)

µ(w)([[ϕ ]]M)
=

1

1
= 1.

We thus have a = 1 = b, which contradicts the assumption that a 6= b.

29This non-triviality requirement is captured by the condition that |= ¬ψ → [!ϕ]¬ψ, i.e. the
public announcement of ϕ should not turn any ¬ψ-states into ψ-states. In other words, the change
of P (ψ) from a to b is non-trivial if [[ψ ]]M does not grow. (If [[ψ ]]M grows, then it is trivial that
the value of P (ψ) might change: if A ⊆ B, then P (A) ≤ P (B).) Intuitively, exactly the same
argument can be made about [[ψ ]]M shrinking rather than growing (i.e. about the requirement that
|= ψ → [!ϕ]ψ), but it turns out that this second requirement is technically speaking not necessary
for Proposition 7.5 to hold. This disanalogy is similar to the disanalogy between items 3 and 4 of
Proposition 7.2.

30I use the term ‘belief revision’ as synonymous to ‘probability revision’ here, and do not mean
to suggest any straightforward technical connection with AGM-style theories of belief revision
(Alchourrón et al. 1985, Gärdenfors 1988).
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Corollary 7.2. For any ϕ ∈ L, it holds that

CS |=
(
P (ϕ) = a ∧ [!ϕ]P (ϕ) = b ∧ a 6= b

)
→ [!ϕ]S(ϕ) > 0.

Proof. It always holds that |= ¬ϕ→ [!ϕ]¬ϕ, so by putting ψ = ϕ, the condition
of Proposition 7.5 is always satisfied.

7.4.4 A Lockean Thesis for Surprise

The current framework allows us to express statements such as ‘the agent is sur-
prised about ϕ with intensity 0.8’. In many natural cases, however, we might
want to say that the agent is surprised about ϕ, without wishing to commit our-
selves to some particular value for her surprise intensity. This is entirely anal-
ogous to the epistemic cases, where we might sometimes want to say that the
agent believes that ϕ, without committing ourselves to some particular degree of
belief.

A widespread proposal is to define ‘belief’ as ‘sufficiently high degree of
belief’; this proposal is called the Lockean thesis, and was studied in Chapter 6.
Formally, the Lockean thesis for belief looks as follows:

Bϕ :≡ P (ϕ) ≥ τ (7.10)

where τ ∈ (0.5, 1) is some threshold value. In Chapter 6, I also introduced a
more sophisticated version that defines conditional belief in terms of high con-
ditional probability, but the basic version (7.10) will suffice for our current pur-
poses.

Because of the high similarity between the epistemic case and the surprise
case, it seems natural to apply the Lockean thesis also to surprise. In other words,
we will introduce a ‘qualitative’ surprise operator by saying that the agent is sur-
prised about ϕ iff she is surprised about ϕ with some sufficiently high intensity.
I will argue below that the most natural choice for the value of the surprise inten-
sity threshold is τ , i.e. the same value as the degree of belief threshold. Formally,
the Lockean thesis for surprise thus looks as follows:

Sϕ :≡ S(ϕ) ≥ τ (7.11)

Principles (7.10) and (7.11) allow us to talk about an agent’s ‘qualitative’
beliefs and surprises. Furthermore, since both principles make use of the same
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threshold value τ , there is a natural connection between the two operators they
define. Proposition 7.6 says that after an announcement of ϕ, the agent will be
surprised about ψ iff (assuming that ϕ is true) she initially believed that ψ would
be false then. This qualitative observation is in line with the psychoevolutation-
ary theory of surprise described in Subsection 7.2.1, which holds that surprise
stems from a conflict between unexpected data and a previously held belief.

Proposition 7.6. CS |= [!ϕ]Sψ ←→ ϕ→ B[!ϕ]¬ψ.

Proof. Consider the reduction axiom for surprise formulas:

[!ϕ]S(ψ) ≥ τ ←→ ϕ→ P (〈!ϕ〉ψ) ≤ 1− τ. (7.12)

We have the following chain of SURPRISE-equivalences:

P (〈!ϕ〉ψ) ≤ 1− τ ↔ 1− P (〈!ϕ〉ψ) ≥ τ
↔ P (¬〈!ϕ〉ψ) ≥ τ
↔ P ([!ϕ]¬ψ) ≥ τ

and thus (7.12) can be rewritten as

[!ϕ]S(ψ) ≥ τ ←→ ϕ→ P ([!ϕ]¬ψ) ≥ τ.

Applying (7.11) and (7.10) to the left- and right-hand sides, respectively, yields
the desired result.

The Lockean theses for belief (7.10) and surprise (7.11) thus allow us to
simulate qualitative notions of belief and surprise in a probabilistic framework.
The interaction between these notions, as described in Proposition 7.6, is in line
with the cognitive-psychoevolutionary theory of surprise. Note that this theory is
not primarily concerned with the static properties of belief and/or surprise (such
as being closed under conjunction), but rather with their dynamic properties.
Technical results such as Propositions 7.4, 7.5 and 7.6 show that the framework
developed here is able to capture, in particular, these dynamic properties. In sum,
then, the fruitfulness of applying the Lockean thesis inside this framework can
be seen as a further illustration of the pragmatic argument in favor of this thesis
(see Section 6.6).
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7.5 Conclusion

In this chapter, I have presented a new analysis of surprise in the framework of
probabilistic dynamic epistemic logic. This analysis is based on current psy-
chological theories, and as a result, several experimentally observed aspects of
surprise can be derived as theorems within the logical system (recall, for ex-
ample, Proposition 7.5 on the role of surprise in belief revision). Furthermore,
being based on the contemporary ‘lingua franca’ of (dynamic) epistemic logic,
it offers a natural, well-understood and highly expressive language for the for-
mal description of agent architectures (cf. Proposition 7.1). The framework also
allows us to define qualitative surprise and belief operators, and study their in-
teraction (cf. Proposition 7.6).

Most importantly, however, the analysis naturally captures the dynamic na-
ture of surprise. This is clearly manifested in the logic’s semantics (the surprise
measures σ(w) are not required to satisfy any static properties) as well as in its
proof theory (the only substantial axioms for surprise are its reduction axioms).
These reduction axioms jointly constitute a temporally coherent definition of sur-
prise, in contrast to earlier, temporally incoherent formalizations such as Macedo
and Cardoso’s and Lorini and Castelfranchi’s. This temporal coherence has sev-
eral advantages. First and foremost, by explicitly distinguishing between prior
and posterior notions, the proposed analysis is able to reach a high level of con-
ceptual hygiene (recall the methodological remark at the beginning of Subsec-
tion 7.3.2). This conceptual advantage also yields additional empirical benefits:
the new analysis can capture important aspects of surprise that are not covered
by earlier frameworks, such as its transitory nature (cf. Proposition 7.4).31

Several questions are left for further research. For example, I intend to ex-
plore what happens with the propositions mentioned in Subsection 7.4.3 when
the assumption of successfulness is lifted (unsuccessful formulas require higher-
order information, and thus seem to arise most naturally in multi-agent scenarios;
recall Footnote 23). Another topic involves adding awareness to the logic, which
would greatly increase its empirical adequacy (cf. Proposition 7.3).

31Unsurprisingly, the aspect of transitoriness is itself of a highly dynamic character, involving
repeated occurrences of the unexpected event.
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8 u Aristotelian Diagrams for
Dynamic Epistemic Logic

8.1 Introduction

The Aristotelian square of oppositions is a historically rich and interesting sub-
ject in philosophical logic. It provides a compact way of representing various
logical relations between formulas, and thus serves as an illustration of the un-
derlying logic’s expressive and deductive powers. Therefore, throughout the his-
tory of logic, many authors have found it worthwhile to show that the logics
they were studying gave rise to square-like diagrams. Typical examples include
the construction of Aristotelian squares for deontic logic (McNamara 2010) and
modal logic (Fitting and Mendelsohn 1998).1

In this chapter, however, I will continue studying the (family of) logic(s)
that has been the main topic of this thesis so far, viz. dynamic epistemic logic.
Lenzen, one of the main epistemic logicians of the 20th century (Lenzen 1978,
1980), has shown how squares can be constructed for notions such as knowl-
edge and belief (Lenzen 2012). He thus connected ‘classical’ epistemic logic
and ‘classical’ squares of oppositions. In recent years, however, both topics have
been developing rapidly. On the one hand, squares of oppositions have been gen-
eralized, mainly by Moretti (2009a) and Smessaert (2009), to larger and more
complex Aristotelian diagrams; these generalizations are systematically stud-
ied in logical geometry.2 On the other hand, epistemic logic has been dynami-

1A more elaborate overview of the square’s history and applications is given in Section 9.2.
2The term ‘logical geometry’ dates back to Smessaert’s PhD thesis (Smessaert 1993). Moretti

(2009a) prefers the terms ‘n-opposition theory’, and, more recently, ‘oppositional geometry’
(Moretti 2012a). There are subtle conceptual and technical differences between Moretti’s ap-
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fied, leading to various versions of dynamic epistemic logic (van Ditmarsch et al.
2007, van Benthem 2011).

The main purpose of this chapter is to study dynamic epistemic logic from
the perspective of logical geometry. In other words, I will establish a connection
between ‘contemporary’ epistemic logic and ‘contemporary’ generalizations of
the Aristotelian square of oppositions.3,4

Establishing such a connection has many advantages for both of the frame-
works involved. On the one hand, dynamic epistemic logic can benefit from
the representational powers of logical geometry. Epistemic dynamic phenomena
(such as public announcements) have various structural and epistemic proper-
ties. Because of the expressivity of dynamic epistemic logic, especially the latter
tend to become quite subtle. The tools of logical geometry allow us to visual-
ize this vast amount of information in a clear and compact way. They can thus
help us to understand the subject more thoroughly, and even gain new insights.5

On the other hand, there are also several advantages for logical geometry itself.
Dynamic epistemic logic provides new examples of the use of logical geometry,
thus broadening its scope of applicability. More importantly, this chapter shows
that not only classical static modalities, but also dynamic modalities give rise
to oppositional phenomena, thus broadening the scope of logical geometry in a
more fundamental way. Finally, the technical properties of such dynamic modal-
ities turn out to be directly relevant for the philosophical foundations of logical
geometry.

The remainder of this chapter is organized as follows. Section 8.2 introduces
one particular type of epistemic dynamics, viz. public announcements,6 and dis-

proach and Smessaert’s approach; however, these are irrelevant for our current purposes, so I will
henceforth uniformly use the term ‘logical geometry’.

3Moretti (2009a, p. 306–308) has already shown how Lenzen’s original squares for epistemic
logic can be generalized to larger Aristotelian diagrams (in particular, tetraicosahedra). In other
words, he has used the contemporary machinery of logical geometry to look at classical epistemic
logic.

4Note that the terms ‘classical epistemic logic’ and ‘contemporary epistemic logic’ are used
here in the same sense as in Subsection 6.2; however, the focus here is exclusively on the
static/dynamic distinction (not on the single-agent/multi-agent distinction).

5This heuristic role is not often acknowledged. A notable exception are Davey and Priestley,
who write that “Diagram-drawing is as much an art as a science [. . . ] good diagrams can be a real
asset to understanding and to theorem-proving.” (Davey and Priestley 2002, p. 11).

6For ease of exposition, I focus on public announcement logic, rather than dynamic epistemic
logic in general (with product updates). However, all the results obtained in this chapter straight-
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cusses some of its structural and epistemic properties. Section 8.3 initiates the
investigation of Aristotelian diagrams in public announcement logic, focusing on
the structural properties of public announcements. I show how an Aristotelian
square and hexagon can be constructed in a non-trivial fashion, and argue that
dynamic modalities fit well in the structuralist philosophy of logical geometry.
In Section 8.4, we turn to the epistemic properties of public announcements. I
show how to construct an octagon and a rhombic dodecahedron for public an-
nouncement logic, and compare these results to those of Smessaert (2009) for
the modal logic S5. Section 8.5, finally, wraps things up by summarizing the
results obtained in this chapter.

8.2 A Brief Overview of Public Announcement Logic

This section provides a brief overview of public announcement logic, focusing on
those aspects that are most important for the further development of the chapter.
This introduction is quite brief, since an informal discussion of public announce-
ment logic was already given in Subsection 1.2, and the technical details of its
probabilistic extensions have already been discussed extensively earlier in this
thesis (in particular, see Section 3.3).

As usual, we fix a finite set I of agents and a countably infinite set Prop of
atomic propositions. The models used in public announcement logic are multi-
agent Kripke models M = 〈W,Ri, V 〉i∈I , where Ri is an equivalence relation
on W . These models are thus probabilistic Kripke models (see Definition 3.2 on
p. 75) without the probabilistic components µi. The formal language of public
announcement logic is defined by means of the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | [!ϕ]ϕ

—where p ∈ Prop and i ∈ I . Note that this is just the language of probabilistic
epistemic logic (see its BNF on p. 77) without i-probability formulas, and thus
its intuitive interpretation and formal semantics do not need much additional ex-
planation. Below, I will just highlight a few aspects that are particularly relevant
for our current purposes.

Recall that the public announcement operator has a dual, which is defined as
〈!ϕ〉ψ :≡ ¬[!ϕ]¬ψ. Furthermore, recall that the standard meaning of [!ϕ]ψ is

forwardly generalize from public announcement logic to product update logic.
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that after a public announcement of ϕ (assuming it can be publicly announced
at all), it will be the case that ψ. Similarly, 〈!ϕ〉ψ means that ϕ can actually be
publicly announced, and after this public announcement of ϕ, it will be the case
that ψ. These two operators can thus be seen as quantifying over the set of public
announcements of ϕ: [!ϕ]ψ means that ψ holds after all public announcements
of ϕ,7 and 〈!ϕ〉ψ means that ψ holds after at least one public announcement of
ϕ (see Subsection 8.3.3 for a more abstract discussion of this quantificational
interpretation of the public announcement operators).

Recall the formal semantics of [!ϕ]ψ and 〈!ϕ〉ψ:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M|ϕ,w |= ψ,
M, w |= 〈!ϕ〉ψ iff M, w |= ϕ and M|ϕ,w |= ψ.

These clauses involve going to the updated model M|ϕ. This is defined by means
of the well-known ‘state-deleting’ process, just as in the definition of updated
well-behaved probabilistic Kripke models (see Definition 3.6 on p. 86). The
following definitions are entirely standard:

Definition 8.1. Consider an arbitrary formula ϕ. Then

• ϕ is said to be PAL-valid (notation: |= ϕ) iff M, w |= ϕ for all Kripke
models M and states w,8

• ϕ is said to be PAL-contingent iff 6|= ϕ and 6|= ¬ϕ.

Usually, the ‘PAL’ qualifier will be omitted, and we will simply talk about ‘valid’
or ‘contingent’ formulas.

7Recall that if ϕ is false, then it cannot be publicly announced at all (because of the truthfulness
assumption of public announcements). This means that the set of all public announcements of ϕ
is empty, and hence, the formula [!ϕ]ψ, which involves universally quantifying over this set, is
vacuously true.

8Public announcement logic also has a stronger notion of validity. A formula ϕ is said to
be schematically valid iff all of its substitution instances ϕ[ψ/p] are valid (where ϕ[ψ/p] is the
formula that results from uniformly replacing every occurrence of p in ϕ with an occurrence of
ψ). Obviously, schematic validity implies validity. In logics which have the uniform substitution
property (if ϕ is valid, then every substitution instance ϕ[ψ/p] is valid), validity also implies
schematic validity, and thus the two notions coincide. Public announcement logic, however, does
not have the uniform substitution property, and hence, schematic PAL-validity is strictly stronger
than ‘ordinary’ PAL-validity (van Benthem 2006a,b). Also see Footnote 10.
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I will now discuss some important formal properties of public announce-
ments, which will be useful in Sections 8.3 and 8.4. We distinguish between two
types of properties: structural properties, which describe the general structure
of public announcement as a dynamic phenomenon, and epistemic properties,
which describe the interaction between public announcements and knowledge.

The structural properties of public announcements are summarized by the
following lemma:9

Lemma 8.1. The following hold:

1. |= [!ϕ](ψ → χ)→ ([!ϕ]ψ → [!ϕ]χ),

2. if |= ψ then |= [!ϕ]ψ,

3. |= ϕ↔ 〈!ϕ〉>,

4. if ϕ is contingent, then 6|= 〈!ϕ〉>,

5. if ϕ is contingent, then 6|= [!ϕ]ψ → 〈!ϕ〉ψ,

6. |= 〈!ϕ〉ψ → [!ϕ]ψ.

Items 1 and 2 say that the public announcement operator [!ϕ] satisfies distribu-
tivity and the ‘necessitation’ rule, which is often summarized by saying that it
is a normal modal operator.10 Item 3 says that announceability equals truth: a
formula can be announced iff it is true. Since not all formulas are true, it follows
that not all formulas can be announced, which is what item 4 says. This property
is called the partiality of public announcements. Item 5 says that [!ϕ]ψ does not
require that ϕ can be announced, whereas 〈!ϕ〉ψ does require this. Finally, item
6 says that public announcement is functional: if a formula ϕ is announced in
identical states (in which it can be announced, i.e. in which it is true), this will
always lead to identical ‘outcome states’. In model-theoretic terms: the updated
model M|ϕ is uniquely determined by M and ϕ.

We now turn to the epistemic properties of public announcements:

Lemma 8.2. The following hold:
9For proofs of Lemmas 8.1 and 8.2, see van Ditmarsch et al. (2007, chapter 4).

10However, it should be emphasized that public announcement logic, as a logical system, is not
a normal modal logic, because it does not have the uniform substitution property. For example, it
holds that |= [!p]p, but 6|= [!(p ∧ ¬Kip)](p ∧ ¬Kip) (van Ditmarsch et al. 2007, p. 106).
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1. |= 〈!ϕ〉Kiψ → Ki[!ϕ]ψ,

2. |= Ki[!ϕ]ψ → [!ϕ]Kiψ,

3. |= 〈!ϕ〉¬Kiψ → ¬Ki[!ϕ]ψ,

4. |= ¬Ki[!ϕ]ψ → [!ϕ]¬Kiψ.

Item 1 says that if ϕ can be announced and after that announcement agent
i knows that ψ is the case, then she already knows ‘now’ (i.e. before any an-
nouncements) that ψ will be the case after any announcement of ϕ. Similarly,
item 2 says that if i knows ‘now’ that ψ will be the case after any announcement
of ϕ, then after any announcement of ϕ she will know that ψ is the case. Finally,
items 3 and 4 are merely the contrapositives of items 2 and 1, respectively, so
they will not be discussed separately.

The general idea behind these principles is quite clear: they all state suf-
ficient or necessary conditions for an agent to know something after a pub-
lic announcement in terms of what she knows before the announcement. The
more fine-grained distinctions between them (in particular, whether [!ϕ] or 〈!ϕ〉
is used) illustrate the subtlety of the interactions between public announcement
and knowledge. The Aristotelian diagrams developed in Sections 8.3 and 8.4
visualize networks of subtle interactions such as these ones.

8.3 Structural Oppositions for Public Announcements

This section initiates our investigation of Aristotelian diagrams for public an-
nouncement logic. For now, I will focus on the structural properties of pub-
lic announcements (as listed in Lemma 8.1), and thus consider only ‘structural
oppositions’. Subsection 8.3.1 introduces some key notions from logical ge-
ometry, loosely based on Smessaert (2009) and Smessaert and Demey (2013b).
These notions are used in Subsection 8.3.2 to construct an Aristotelian square
and hexagon. Finally, in Subsection 8.3.3, I make some remarks about the role
of partial functionality, and connect this with the structuralist positions held by
many authors in logical geometry.

8.3.1 Some Notions from Logical Geometry

The fundamental building blocks of the traditional square of oppositions, and
any other Aristotelian diagrams, are the Aristotelian relations:
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Definition 8.2. The Aristotelian relations are binary relations between formulas,
defined as follows:

1. ϕ and ψ are contradictory iff |= ¬(ϕ ∧ ψ) and |= ϕ ∨ ψ
(i.e. they cannot be true together and they cannot be false together),

2. ϕ and ψ are contrary iff |= ¬(ϕ ∧ ψ) and 6|= ϕ ∨ ψ
(i.e. they cannot be true together, but they can be false together),

3. ϕ and ψ are subcontrary iff 6|= ¬(ϕ ∧ ψ) and |= ϕ ∨ ψ
(i.e. they can be true together, but they cannot be false together),

4. ϕ and ψ are in subalternation iff |= ϕ→ ψ and 6|= ψ → ϕ

(ϕ is called the superaltern and ψ the subaltern).

It is easy to check that the first three of these relations are symmetrical, and that
the fourth one is (by definition) asymmetrical. Furthermore, Lemma 8.3 says
that these four relations are mutually exclusive (at least when one restricts to
contingent formulas). The logical and informational properties of these relations
will be discussed in much more detail in Chapter 9.

Lemma 8.3. The Aristotelian relations are mutually exclusive for contingent
formulas; i.e. if two contingent formulas ϕ and ψ stand in one of these four
relations, then they cannot stand in any of the other three.

Proof. First of all, note that it follows trivially from the definitions that the three
symmetrical Aristotelian relations are mutually exclusive (one does not even
need to restrict to contingent formulas). It thus suffices to show that two con-
tingent formulas cannot simultaneously be in subalternation and in one of the
three other Aristotelian relations. For this purpose, let ϕ and ψ be contingent
formulas, and suppose that ϕ and ψ are in subalternation (so |= ϕ→ ψ). Then:

1. Suppose, towards a contradiction, that ϕ and ψ are contradictories. Hence
|= ¬(ϕ ∧ ψ). From |= ϕ→ ψ it follows that |= ϕ↔ (ϕ ∧ ψ), and hence
|= ¬ϕ, which contradicts the contingency of ϕ.

2. Suppose, towards a contradiction, that ϕ and ψ are contraries. By an anal-
ogous argument it follows that |= ¬ϕ, which contradicts the contingency
of ϕ.
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Figure 8.1: Code for visually representing the Aristotelian relations

3. Suppose, towards a contradiction, that ϕ and ψ are subcontraries. Hence
|= ϕ ∨ ψ. Combining this with |= ϕ → ψ it follows that |= ψ, which
contradicts the contingency of ψ.

We are now ready to define the general notion of an Aristotelian diagram:

Definition 8.3. An Aristotelian diagram (for public announcement logic) is a
diagram that visualizes a labeled graph G. The vertices of G are contingent
and pairwise non-equivalent formulas ϕ1, . . . , ϕn;11 the edges of G are the Aris-
totelian relations between those formulas, i.e. if ϕi and ϕj stand in any Aris-
totelian relation, then this is visualized in the diagram, according to the code in
Figure 8.1.12

Note that the formulas appearing in Aristotelian diagrams are assumed to be
contingent and pairwise non-equivalent. These restrictions are motivated by his-
torical as well as systematical reasons; see the discussion ensuing Definition 9.2
on p. 248 for details. Furthermore, note that Definition 8.3 does not mention vi-
sual simplicity, two- or three-dimensionality, symmetry, compactness, elegance,
etc. Although logical geometry is primarily concerned with diagrams which have
qualities such as these, it is difficult to capture them in formal, precise definitions.
(Recall Footnote 5 about diagram-drawing as a science versus an art.)13

11So 6|= ϕi, 6|= ¬ϕi, and 6|= ϕi ↔ ϕj , for 1 ≤ i 6= j ≤ n.
12Note that the three symmetrical relations are represented by non-directed edges, whereas the

asymmetrical subalternation relation is represented by directed edges going from the superaltern
to the subaltern.

13This does not mean that nothing at all can be said about these properties. For example, in on-
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A powerful technique for generating new Aristotelian diagrams from already
existing ones is that of taking Boolean closures. I first define this notion for sets
of formulas, and then for Aristotelian diagrams.

Definition 8.4. A set S of contingent formulas is called Boolean closed iff for
any ϕ,ψ ∈ S, the following holds:

1. if 6|= ¬(ϕ ∧ ψ), then there is a θ ∈ S such that |= θ ↔ (ϕ ∧ ψ),

2. there is a θ ∈ S such that |= θ ↔ ¬ϕ.

Definition 8.5. Let S be a set of contingent formulas. Then the Boolean closure
of S is the set B such that (i) S ⊆ B, (ii) B is Boolean closed, and (iii) for any
set B′ such that S ⊆ B′ and B′ is Boolean closed, it holds that B ⊆ B′.

Definition 8.4 is semantic in nature: if ϕ ∈ S, then this definition does
not require that S contains ¬ϕ itself, but at least a formula that is equivalent
to ¬ϕ (similarly for ∧).14 Note, furthermore, that the ∧-closure condition is
also subject to a consistency requirement;15 for example, if a set S contains the
contingencies p and ¬p, then it is not required to also contain p ∧ ¬p (or any
other equivalent formula), since the latter is not consistent. Finally, note that it
is clear from Definition 8.5 that if S is already Boolean closed, then it is its own
Boolean closure.

We can now lift these notions from sets of formulas to Aristotelian diagrams:

Definition 8.6. An Aristotelian diagram S is called Boolean closed iff the set
of formulas appearing as vertices in S is Boolean closed (according to Defini-
tion 8.4).

going work with Hans Smessaert, I am exploring the symmetry properties of certain n-dimensional
diagrams by viewing them as vertex-first projections of (n+ 1)-dimensional hypercubes (Demey
and Smessaert 2013a). We also have some promising group-theoretical results about the rela-
tion between the visual properties of a given Aristotelian diagram and the logical/combinatorial
properties of the formulas that appear in it (Demey and Smessaert 2013b).

14It suffices to consider the connectives ∧ and ¬, since these two are functionally complete,
i.e. any other truth-functional connective (of any arity) can be written in terms of them (van Dalen
2004, p. 24–25).

15This consistency requirement does not need to be stated explicitly for ¬-closure, because the
negation of a contingent formula is itself always consistent.
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Definition 8.7. Let S be an Aristotelian diagram. Let F be the set of formulas
appearing as vertices in S, and let F ′ be the Boolean closure (according to Defi-
nition 8.5) of this set. Then the Boolean closure of S is the Aristotelian diagram
which has as its vertices the formulas of F ′.

Definition 8.6 is the natural generalization of Definition 8.4. Note that in
Definition 8.7, the set F contains only contingent formulas, so that it indeed
makes sense to take its Boolean closure F ′. Finally, note that these definitions
yield some easy consequences. First of all, the Boolean closure of an Aristotelian
diagram is itself always Boolean closed (as an Aristotelian diagram). Secondly,
if an Aristotelian diagram is already Boolean closed, then it is its own Boolean
closure.

8.3.2 From Square to Hexagon

I will now start putting the tools of logical geometry to use, by constructing Aris-
totelian diagrams for the structural properties of public announcement (which de-
scribe the general structure of public announcement as a dynamic phenomenon).

Despite its dynamic nature, the public announcement operator [!ϕ] is essen-
tially a modal operator; recall items 1 and 2 of Lemma 8.1. Modal operators
come in dual pairs; for example in alethic modal logic (necessary/possible), epis-
temic logic (knowing/holding possible), deontic logic (obligatory/permissible),
and temporal logic (always/sometimes). The first item of each of these dual
pairs is given a universal reading, and the second one an existential reading (for
example: ‘in all possible worlds’/‘in some possible worlds’). Furthermore, in
the squares of oppositions the universal notions occupy the two upper corners,
and the existential notions occupy the two lower corners, so that each universal
notion and the corresponding existential notion stand in subalternation.16

The public announcement operator comes in a dual pair as well: [!ϕ] and
〈!ϕ〉. Furthermore, recall from Section 8.2 that the first item of this pair can
informally be read as a universal quantifier (‘after all public announcements of
ϕ’), and the second one as an existential quantifier (‘after at least one public
announcement of ϕ’). Hence, a natural idea might be to construct a square of
oppositions for public announcement logic with the formulas [!p]q and [!p]¬q

16Note that I do not consider Aristotelian squares for the first-order quantifiers themselves, to
avoid getting caught up in the issue of existential import. Although this issue has been hotly
debated, it is not relevant for our current purposes; also see Footnote 12 on p. 249.
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Figure 8.2: Square of oppositions for the structural properties of public an-
nouncement

in the upper corners, and the formulas 〈!p〉q and 〈!p〉¬q in the lower corners.
However, it follows from item 5 of Lemma 8.1 that 6|= [!p]q → 〈!p〉q,17 and
hence, the proposed square cannot be constructed.

Because of the specific dynamic structure of public announcements, how-
ever, it is still possible to obtain a valid square of oppositions. The key idea is to
reverse the direction of the subalternation relation. It then suffices to verify that
this reversing operation does not mess up the other Aristotelian relations:

Theorem 8.1. The square in Figure 8.2 is a valid Aristotelian diagram.

Proof. It suffices to check that the Aristotelian relations represented in Figure 8.2
(according to the code of Figure 8.1) do indeed hold; Lemma 8.3 then guarantees
that there are no other Aristotelian relations that have been ‘left out’.

Given Definition 8.2, checking that these relations hold involves showing
that certain formulas are valid and that certain others are invalid. For example,
checking that 〈!p〉q and 〈!p〉¬q are contraries involves checking that

|= ¬(〈!p〉q ∧ 〈!p〉¬q) and 6|= 〈!p〉q ∨ 〈!p〉¬q.

Proving the validities is an easy exercise in reasoning in public announcement
logic. Similarly, showing that certain formulas are invalid involves constructing
models that falsify them; because these formulas are syntactically very simple,
the countermodels can be ‘read off’ almost directly from them.

Lemma 8.4. The Aristotelian square in Figure 8.2 is not Boolean closed.
17Similar remarks apply to [!p]¬q and 〈!p〉¬q.
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Figure 8.3: Hexagon of oppositions for the structural properties of public an-
nouncement

Proof. Consider, for example, the conjunction of the formulas in the two lower
corners, χ := [!p]q ∧ [!p]¬q. It is easy to check that χ is consistent, but not
equivalent to any of the four formulas appearing in the square.

Because the Aristotelian square in Figure 8.2 is not Boolean closed, we can
extend it to a new Aristotelian diagram by constructing its Boolean closure. This
turns out to be the hexagon in Figure 8.3.

Theorem 8.2. The Boolean closure of the Aristotelian square in Figure 8.2 is
the Aristotelian hexagon in Figure 8.3.

Proof. Let S be the set of formulas appearing in the square in Figure 8.2, and
let H be the set of formulas appearing in the hexagon in Figure 8.3. Note that
S ⊆ H; furthermore, the following tables show that H is Boolean closed:18

〈!p〉q 〈!p〉¬q [!p]q [!p]¬q p ¬p
¬ [!p]¬q [!p]q 〈!p〉¬q 〈!p〉q ¬p p

18The format
α

¬ β
means that |= β ↔ ¬α. Similarly, the format

∧ β

α γ
means that

|= γ ↔ (α ∧ β). Because of the commutativity of ∧, it suffices to state only the upper right half
of the table.
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∧ 〈!p〉q 〈!p〉¬q [!p]q [!p]¬q p ¬p
〈!p〉q 〈!p〉q ⊥ 〈!p〉q ⊥ 〈!p〉q ⊥
〈!p〉¬q 〈!p〉¬q ⊥ 〈!p〉¬q 〈!p〉¬q ⊥
[!p]q [!p]q ¬p 〈!p〉q ¬p

[!p]¬q [!p]¬q 〈!p〉¬q ¬p
p p ⊥
¬p ¬p

It is easy to check that there is no set of formulas X such that S ⊆ X ⊂ H
and X is Boolean closed. This shows that H is indeed the Boolean closure of S
(recall Definition 8.5). Finally, showing that the hexagon in Figure 8.3 is itself
an Aristotelian diagram is entirely analogous to the proof of Theorem 8.1.

The Aristotelian hexagon in Figure 8.3 thus arises as the Boolean closure of
the Aristotelian square in Figure 8.2. In logical geometry, this type of hexagon
is called a (strong) Sesmat-Blanché hexagon, which is named after the first lo-
gicians to study such Aristotelian diagrams (Sesmat 1951, Blanché 1952, 1953,
1957, 1966).19 This observation is more general than the framework of public
announcement logic for which it was proved here: all of the traditional squares
of oppositions gives rise to a (strong) Sesmat-Blanché hexagon via their Boolean
closure.20

I will finish this subsection by making some remarks on how the Aristotelian
hexagon in Figure 8.3 represents the structural properties of public announce-
ments. First of all, it shows that public announcement operators are modal oper-
ators and thus, like any other modal operator, give rise to Aristotelian diagrams.
More importantly, however, the subalternations from 〈!p〉(¬)q to [!p](¬)q cap-
ture the functionality of public announcements, while the subalternations involv-
ing (¬)p capture the partiality of public announcements (after all, the precon-

19The distinction between strong and weak Sesmat-Blanché hexagons was introduced by Pel-
lissier (2008). A Sesmat-Blanché hexagon contains three pairs of contrary formulas; by the defi-
nition of contrariety, the pairwise disjunctions of these formulas are not valid. If the simultaneous
disjunction of all three formulas is valid, the hexagon is called ‘strong’, otherwise it is called
‘weak’. The Sesmat-Blanché hexagon in Figure 8.3 is strong, since |= ¬p ∨ 〈!p〉q ∨ 〈!p〉¬q.

20In the specific framework of public announcement logic, the hexagon is a bit more elegant than
in other frameworks, because the conjunction [!p]q ∧ [!p]¬q and the disjunction 〈!p〉q ∨ 〈!p〉¬q
‘reduce to’ the simpler formulas ¬p and p, respectively. However, when we turn to Aristotelian
diagrams for the epistemic properties of public announcements in Section 8.4, we will not be able
to maintain this simplicity, and we will have to work with syntactically complex formulas.
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dition for a public announcement to be executable is the truth of the announced
formula).

8.3.3 The Role of Partial Functionality

I have just argued that partial functionality (items 4–6 of Lemma 8.1) plays a
key role in the Aristotelian diagrams for the structural properties of public an-
nouncements. However, this observation is not restricted to the particular context
of public announcement logic. I will now examine the role of partial functional-
ity from a more abstract perspective.

For any ‘process’ or ‘operation’ (epistemic or otherwise), it makes sense to
ask whether it is partially functional. Consider an arbitrary process π (π can be an
epistemic process, such as the public announcement of some formula, but it can
also be a non-epistemic process, such as the execution of a computer program).
Then the following questions arise:

1. Is π functional?21 In other words, if π is executed in identical states (in
which it can be executed), will it always lead to identical ‘outcome states’?

2. Is π partial? In other words, are there states where π cannot be executed
at all? And if so, can the states where π is executable be characterized
by means of a ‘precondition’ pre(π), so that π is executable in a state iff
pre(π) is true in that state?

The logical properties of such arbitrary processes are studied by propositional
dynamic logic (Kozen and Parikh 1981, Harel et al. 2000). This framework rep-
resents a process π by means of dynamic modal operators [π] and 〈π〉. As is to
be expected, [π]ψ means that after all executions of π it will be the case that ψ,
whereas 〈π〉ψ means that after some execution of π it will be the case that ψ.

It is easy to see that a process π is functional iff |= 〈π〉ψ → [π]ψ, and
partial iff 6|= [π]ψ → 〈π〉ψ.22 Furthermore, the partiality of π can be further
specified by means of its precondition: π can be executed iff (i.e. in exactly
those states where) pre(π) is true; formally: |= pre(π) ↔ 〈π〉>. There is
an alternative characterization of the partiality of a process π in terms of its
precondition pre(π): the process π is partial iff 6|= pre(π).

21Computer scientists prefer the term ‘deterministic’.
22In this subsection (and in this subsection only), I use |= to denote validity in propositional

dynamic logic, rather than in public announcement logic.
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Figure 8.4: Aristotelian hexagon for a partially functional process π

With the same reasoning as in Subsection 8.3.2, we are now able to show that
any partially functional process π (whose executability can be captured by means
of a precondition pre(π)) gives rise to an Aristotelian hexagon as in Figure 8.4.
In fact, if we take π to be the concrete process !p (a public announcement of
p), and recall that the precondition of the public announcement of p is the truth
of the announced formula p (i.e. pre(!p) = p), then the Aristotelian diagram in
Figure 8.3 turns out to be merely a particular instance of that in Figure 8.4.

A question that arises naturally at this point is what happens when we move
from partial functionality to total functionality, i.e. when we focus on processes
that are still functional, but that can be executed in all states. (Note that in this
context the notion of a precondition is meaningless, since a totally functional
process has as its precondition always >.) For totally functional processes π, we
do not only have |= 〈π〉q → [π]q, but also the stronger |= 〈π〉q ↔ [π]q.

Since Aristotelian diagrams cannot contain equivalent formulas, this means
that the two left formulas of (the square part of) Figure 8.4 (〈π〉q and [π]q)

Figure 8.5: Degenerate Aristotelian diagram for a totally functional process π
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collapse, and similarly that the two right formulas (〈π〉¬q and [π]¬q) collapse.
Hence, for totally functional processes the square of oppositions collapses into a
single binary opposition (viz. a contradiction relation), as in Figure 8.5. Further-
more, it is easy to see that this Aristotelian diagram is already Boolean closed,
and is thus its own Boolean closure.

In sum: from the perspective of logical geometry, partially functional pro-
cesses are more interesting than totally functional ones, because the latter only
give rise to highly degenerate Aristotelian diagrams (Figure 8.5), whereas the
former give rise to rich, non-degenerate Aristotelian diagrams, viz. (strong) Sesmat-
Blanché hexagons (Figure 8.4).

I will finish this subsection by showing how the partial functionality of dy-
namic modal operators nicely corroborates the structuralist foundations of log-
ical geometry (Moretti 2009a). According to the structuralist viewpoint, Aris-
totelian diagrams are in the first place determined by their constituent relations,
rather than by their constituent formulas. The identity and properties of the con-
crete formulas only matter insofar as they stand in one of the Aristotelian rela-
tions.23

An important argument for this claim stems from the fact that Aristotelian
diagrams can be constructed for a wide variety of logics. For ease of exposi-
tion, let us focus on Aristotelian squares (generalizations to other Aristotelian
diagrams are straightforward). There are squares for Aristotelian syllogistics,
alethic modal logic, epistemic logic, deontic logic, temporal logic, etc. All of
these logics have formulas of very different kinds (‘all As are Bs’, ‘it is neces-
sary that ϕ’, ‘agent i knows that ϕ’, ‘it is obligatory that ϕ’, ‘it is always the
case that ϕ’, etc.), yet all of these formulas enter into the same kinds of Aris-
totelian relations (in casu: a contradiction relation, a contrariety relation, and
(being the superaltern in) a subalternation relation). Hence, the ‘relational’ prop-
erties of these formulas are more important than the ‘subject matter’ that they
speak about (knowledge/time/etc.).

Opponents of structuralism grant all of this, but they maintain that at a suf-
ficiently high level of abstraction, the formulas still have ‘independent’ (non-
relational) properties that determine their relational properties. For example,
Parry and Hacker (1991, p. 157) define the contrariety relation as holding be-

23Note that I implicitly subscribed to this structuralist philosophy when I claimed in Subsec-
tion 8.3.1 that the ‘fundamental building blocks’ of Aristotelian diagrams are the Aristotelian
relations, rather than the concrete formulas that stand in those relations.
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tween universal formulas of different quality, and the subcontrariety relation as
holding between existential formulas of different quality.24 Hence, the formulas’
independent properties (universality/existentiality) are still essential to determine
their relational properties.

Parry and Hacker are right that in all traditional Aristotelian squares, the con-
trariety relation holds between ‘universal’ formulas of different quality (for ex-
ample, between�q and�¬q) and the subcontrariety relation holds between ‘ex-
istential’ formulas of different quality (for example, between ♦q and ♦¬q); also
see the remarks at the beginning of Subsection 8.3.2. The Aristotelain squares
obtained from partially functional dynamic modal operators, however, are coun-
terexamples to Parry and Hacker’s claims: in these diagrams, the formulas in
the contrariety relation are existential (〈π〉q and 〈π〉¬q), and the formulas in the
subcontrariety relation are universal ([π]q and [π]¬q).

This clearly shows that the independent properties of the formulas (univer-
sality/existentiality) do not suffice to determine their relational properties. In
other words, the Aristotelian relations cannot be reduced to the properties of in-
dependent formulas, and thus still need to be taken as primitive—i.e., we have
arrived back at the original structuralist position.

8.4 Epistemic Oppositions for Public Announcements

This section continues our investigation of Aristotelian diagrams in public an-
nouncement logic. We shift our attention from the structural to the epistemic
properties of public announcements, thus arriving at ‘epistemic oppositions’. In
Subsection 8.4.1, I show that this naturally leads to the construction of an Aris-
totelian octagon. In Subsection 8.4.2 this octagon is further generalized to a
three-dimensional Aristotelian diagram, viz. a rhombic dodecahedron. Subsec-
tion 8.4.3 provides a comparison between the results obtained here and those of
Smessaert (2009).

24Parry and Hacker (1991, p. 161) do state the characterizations of contrariety and subcon-
trariety in terms of ‘being able to be true/false together’ (as in our Definition 8.2), but only as
further lemmas about these relations, not as their definitions. Similar remarks apply to de Pater
and Vergauwen (2005, p. 100).
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8.4.1 Adding Knowledge: From Hexagon to Octagon

In Subsection 8.3.3, I argued that the essence of the Aristotelian hexagon in
Figure 8.3 was the partial functionality of public announcements, and noted that
this can be generalized to any partially functional process π (see the Aristotelian
hexagon in Figure 8.4). In Sections 8.1 and 8.2, however, I stated that this chapter
would be concerned not just with dynamics in general, but with one particular
kind of dynamics, viz. public announcements.

The main difference between public announcements and other (partially func-
tional) processes is that public announcements are epistemic processes: they
interact with the agents’ knowledge. For example, after the public announce-
ment of a formula ϕ, it (usually)25 becomes common knowledge between the
agents that ϕ is the case. The most important of these interactions were stated
in Lemma 8.2. I will now use this lemma to construct Aristotelian diagrams for
the epistemic properties of public announcements (i.e. for public announcements
qua epistemic processes, not simply qua partially functional processes).

I will first informally describe how to build these new, ‘epistemic’ Aris-
totelian diagrams as conservative extensions of the original hexagon (Figure 8.3).
The first step is to replace the ontic formula q (which describes what is the case
after the public announcement) with the epistemic formula Kq.26 For example,
the formula in the upper left corner is now no longer 〈!p〉q, but rather 〈!p〉Kq. On
the left side, we thus obtain the subalternation 〈!p〉Kq → [!p]Kq. By inserting
the formula K[!p]q, this subalternation can be broken up into two subalterna-
tions. (Note that this new formula no longer speaks about what will be the case
after any/some public announcement of p; rather it says something about (what
is known in) the present.) Similar remarks apply to the subalternation on the
right side (inserting the formula ¬K[!p]q).

These two new formulas also enter into Aristotelian relations with each other,
and with all but two of the other formulas already present in the original hexagon.
This leads to the octagon in Figure 8.6.

Theorem 8.3. The octagon in Figure 8.6 is a valid Aristotelian diagram.

Proof. Similar to the proof of Theorem 8.1.

25Modulo the existence of unsuccessful formulas; see Definition 7.7 on p. 206.
26In the remainder of this section, I will drop agent indices, since they are not crucial.
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Figure 8.6: Octagon of oppositions for the epistemic properties of public an-
nouncement

The key idea to obtain this octagon of oppositions was to split the subalter-
nation 〈!p〉(¬)Kq → [!p](¬)Kq into two subalternations, by inserting the new
formula (¬)K[!p]q. Béziau (2003) applied the same idea to the Sesmat-Blanché
hexagon for the S5 modal operators: the subalternation �(¬)p → ♦(¬)p is
then split into two subalternations, by inserting the new formula (¬)p. The ad-
ditional Aristotelian relations that arise in this way are exactly the same as those
we obtained in Theorem 8.3. In other words, the Aristotelian octagon for the
epistemic properties of public announcement (Figure 8.6) is essentially the same
as Béziau’s Aristotelian octagon for the S5 modal operators (Figure 8.7).27

8.4.2 A Three-dimensional Aristotelian Diagram

In the previous subsection, I established an analogy between the Aristotelian oc-
tagon for the epistemic properties of public announcement and Béziau’s octagon
for modal S5. In this subsection, I will further exploit this analogy. Béziau

27Note that I am again implicitly subscribing to the structuralist philosophy mentioned in Sub-
section 8.3.3: two Aristotelian diagrams are said to be ‘essentially the same’, because they have the
same configuration of Aristotelian relations. The formulas in both structures are concerned with
different topics (public announcements/necessity), and even on a higher level of abstraction they
differ significantly: in Figure 8.6 the formulas in the upper corners of the original square ‘inside’
the octagon are existential (〈!p〉(¬)Kq), whereas in Figure 8.7 they are universal (�(¬)p).

235



8 . Aristotelian Diagrams for Dynamic Epistemic Logic

Figure 8.7: Octagon of oppositions for the S5 modal operators

(2003)’s initial results on S5 have been generalized by Moretti (2009a), Smes-
saert (2009), and others. I will now show that these generalizations can perfectly
be transferred from their original context (S5) to the context of public announce-
ment logic.

The first thing to note is that the Aristotelian octagon that was constructed in
the previous subsection is not Boolean closed.

Lemma 8.5. The Aristotelian diagram in Figure 8.6 is not Boolean closed.

Proof. Consider, for example, the conjunction of ¬p and K[!p]q. Just like in the
proof of Lemma 8.4, one can show that this conjunction is consistent, but not
equivalent to any of the formulas appearing in the octagon in Figure 8.6.

In Section 8.3, I showed that the Aristotelian square for public announcement
logic (Figure 8.2) is not Boolean closed (Lemma 8.4), and then immediately
went on to construct its Boolean closure (Theorem 8.2). Now, however, we
will proceed in a more indirect way. First, we construct the Boolean closure of
the set of formulas appearing in the octagon (so not of the octagon itself, qua
Aristotelian diagram).
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Theorem 8.4. Let F be the set containing the eight formulas appearing in the
Aristotelian octagon in Figure 8.6. The Boolean closure of F is the fourteen-
element set F ′, which has the following elements:28

1. p, 8. [!p]¬Kq,
2. 〈!p〉Kq, 9. ¬p ∧K[!p]q,
3. K[!p]q, 10. ¬p ∧ ¬K[!p]q,
4. [!p]Kq, 11. p ∨ ¬K[!p]q,
5. ¬p, 12. p ∨K[!p]q,
6. 〈!p〉¬Kq, 13. [!p]Kq ∧ (p ∨ ¬K[!p]q),
7. ¬K[!p]q, 14. [!p]¬Kq ∧ (p ∨K[!p]q).

Proof. Note that F ⊆ F ′. The following tables show that F ′ is Boolean closed:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
¬ 5 8 7 6 1 4 3 2 11 12 9 10 14 13

∧ 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1 2 2 2 ⊥ 6 6 6 ⊥ ⊥ 1 1 2 3
2 2 2 2 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 2 2 2 ⊥
3 3 3 9 ⊥ ⊥ 9 9 ⊥ 2 3 2 9
4 4 5 ⊥ 10 5 9 10 13 3 13 9
5 5 ⊥ 10 5 9 10 10 9 10 9
6 6 6 6 ⊥ ⊥ 6 6 ⊥ 6
7 7 7 ⊥ 10 7 6 10 6
8 8 9 10 7 14 10 14
9 9 ⊥ ⊥ 9 ⊥ 9
10 10 10 ⊥ 10 ⊥
11 11 1 13 6
12 12 13 14
13 13 ⊥
14 14

Furthermore, it is a tedious but easy exercise to show that there is no set of
formulas X such that F ⊆ X ⊂ F ′ and X is Boolean closed.

28In the remainder of this subsection, I will often refer to the formulas in F ′ using the numbers
that are given here. For example, I will refer to the formula ¬p ∧ ¬K[!p]q using the number 10.
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Figure 8.8: Hasse diagram for the fourteen formulas in F ′

We have constructed the Boolean closure F ′ of the set F of formulas appear-
ing in the Aristotelian octagon in Figure 8.6. By Definition 8.7, the formulas
in F ′ are exactly the formulas that should appear in the Boolean closure of this
octagon (qua Aristotelian diagram). The question now arises how to ‘organize’
these formulas into a helpful and visually elegant Aristotelian diagram.

To get some inspiration, let us first construct a Hasse diagram for F ′: see
Figure 8.8. This Hasse diagram is itself not an Aristotelian diagram, because it
does not display all of the Aristotelian relations between the fourteen formulas
in F ′ (it only represents some of the subalternation relations). A tedious but easy
exercise leads to the following table, which lists the 79 Aristotelian relations that
hold between any of the fourteen formulas in F ′.29

29‘CD’ stands for contradiction, ‘C’ stands for contrariety, ‘SC’ stands for subcontrariety, and
‘↙ / ↗’ stand for subalternation. In particular, ‘↙’ says that there is a subalternation from the
column-formula to the row-formula, and vice versa for ‘↗’. Finally, ’NO’ says that there is no
Aristotelian relation at all between the row- and column-formulas; the significance of these cases
will be discussed in much more detail in Chapter 9 (in particular, see Theorem 9.8 on p. 281).
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2 3 4 5 6 7 8 9 10 11 12 13 14
1 ↙ NO SC CD ↙ NO SC C C ↗ ↗ NO NO
2 ↗ ↗ C C C CD C C ↗ ↗ ↗ C
3 ↗ NO C CD SC ↙ C SC ↗ NO NO
4 ↙ CD SC SC ↙ ↙ SC SC ↙ SC
5 C NO ↗ ↙ ↙ SC SC NO NO
6 ↗ ↗ C C ↗ ↗ C ↗
7 ↗ C ↙ ↗ SC NO NO
8 ↙ ↙ SC SC SC ↙
9 C CD ↗ C ↗
10 ↗ CD ↗ C
11 SC ↙ SC
12 SC ↙
13 CD

Let us take stock. The aim is to construct the Boolean closure of the Aris-
totelian octagon in Figure 8.6. We already know the formulas of this Boolean
closure: they are the fourteen elements of F ′. We also already know the 79 Aris-
totelian relations which hold between these fourteen formulas: they are listed in
the table above.

We are now ready to apply Smessaert’s (2009) results, which Moretti (2009a,
p. 217) calls “simply brilliant”. Reconsider the Hasse diagram for F ′ (Fig-
ure 8.8). Smessaert’s results say that this Hasse diagram can be transformed into
a rhombic dodecahedron. This is a three-dimensional structure, which has twelve
rhombus-shaped faces, and (of course) fourteen vertices. Figure 8.9 shows this
dodecahedron; however, it does not show the dodecahedron qua Aristotelian di-
agram, because it does not show the 79 Aristotelian relations holding between
the fourteen vertices (for reasons of visual clarity).

Theorem 8.5. The Boolean closure of the Aristotelian octagon in Figure 8.6 is
the Aristotelian rhombic dodecahedron in Figure 8.9.

Proof. The formulas appearing in the dodecahedron are the elements of F ′, and
so they are certainly the right ones, because of Theorem 8.4. That this dodec-
ahedron completely represents the Aristotelian relations between these fourteen
formulas follows from the fact that the six strong Sesmat-Blanché hexagons i
– vi in Figure 8.10 can be embedded inside the dodecahedron: each of the 79
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Figure 8.9: Rhombic dodecahedron of oppositions for the epistemic properties
of public announcement

Aristotelian relations appears in at least one of these hexagons, and thus in the
dodecahedron.

The six Aristotelian hexagons in Figure 8.10 that are used in the proof are
the PAL-analogues of six ‘original’ Aristotelian hexagons for S5. This analogy
illustrates the progress logical geometry has been making over the past few years.
Béziau (2003) already constructed hexagons i, ii and iii (for S5). Subsequently,
hexagon iv (for S5) was constructed independently (and through different ways
of reasoning) by Moretti and Smessaert. Finally, hexagons v and vi (for S5)
were constructed by Smessaert (2009), who also proved that no other strong
Sesmat-Blanché hexagons besides these six can be embedded inside the rhombic
dodecahederon. In this chapter, (the PAL-analogues of) these six hexagons were
constructed in one fell swoop. This illustrates how we have been able to exploit
the ‘initial’ analogy between the Aristotelian octagon for the epistemic properties
of public announcement (Figure 8.6) and Béziau’s Aristotelian octagon for the
S5 modal operators (Figure 8.7).
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Figure 8.10: Six hexagons that are embeddable in the rhombic dodecahedron

8.4.3 A Comparison with Smessaert’s Results

As was emphasized throughout the previous subsection, the construction of the
Aristotelian rhombic dodecahedron for the epistemic properties of public an-
nouncement (Figure 8.9) is essentially an application of the techniques devel-
oped by Smessaert (2009) in the context of S5. It should thus not be surprising
that we obtain the same ‘end results’, viz. the Aristotelian rhombic dodecahe-
dra for S5 and public announcement logic. This also means that new results on
the rhombic dodecahedron for S5 also apply to the rhombic dodecahedron for
public announcement logic. For example, it turns out that next to the six strong
Sesmat-Blanché hexagons mentioned above, many more Aristotelian diagrams
(smaller as well as larger ones) can be embedded inside the rhombic dodecahe-
dron. In ongoing work with Smessaert, I am developing an exhaustive typology
of these Aristotelian diagrams, defining various ‘types’ (for example, one type
is the strong Sesmat-Blanché hexagon) and exploring how many instances of
each type can be embedded inside the rhombic dodecahedron (Smessaert and
Demey 2013a). Although many of these results were initially obtained for S5,
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Figure 8.11: Modal graph for S5

because of the analogy discussed above, they automatically ‘carry over’ to public
announcement logic.

Despite the similarities, there are also some differences between Smessaert’s
original results on S5 and the present results on public announcement logic.
The first difference is that the dodecahedron for public announcement logic does
not arise from a modal graph. Smessaert’s dodecahedron for S5 arises from
the modal graph for S5 (Figure 8.11), which represents the six non-equivalent
modalities expressible in S5 (including the ‘naked’ modalities). Similarly, the
hexagon for the structural properties of public announcement (Figure 8.3) can be
seen as arising from the modal graph for the public announcement operators.30

The rhombic dodecahedron for public announcement logic, however, is based on
Lemma 8.2, which talks about the interaction between public announcement and
knowledge, rather than about the non-equivalent public announcement operators
expressible in public announcement logic. This shows that there are Aristotelian
diagrams that do not arise from a modal graph, and thus loosens the connection
between logical geometry and modal graphs.

The most important difference between the current results and those of Smes-
saert, however, is the difference in complexity.31 Smessaert constructed an Aris-

30More generally: the Aristotelian hexagon for any partially functional process π (Figure 8.4)
can be seen as arising from the modal graph for the dynamic operators representing π.

31The term ‘complexity’ is used in an intuitive sense here (as is explained in the main text).
It is well-known that from the perspective of computational complexity, PAL is equally complex
as S5: the satisfiability problem of both S5 and PAL is NP-complete in the single-agent case,
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totelian rhombic dodecahedron for S5, and is thus concerned with one modal-
ity (� · /♦ ·), which is unary. The Aristotelian rhombic dodecahedron for the
epistemic properties of public announcements, however, is concerned with two
modalities: the knowledge operator (K) and the public announcement operator
([! ·] ·). The former is also unary, but the latter is binary: if one has a public
announcement operator [! ·] ·, then one needs to supply two formulas ϕ and ψ to
obtain a well-formed formula [!ϕ]ψ. Hence, according to both parameters (num-
ber of modalities/arity of the modalities), public announcement logic is more
complex than S5.

These differences exhibit the power and wide applicability of Smessaert’s
techniques. Although Smessaert initially applied them to obtain an Aristotelian
rhombic dodecahedron for the ‘simple’ modal logic S5 (based on the modal
graph for that logic), they can also be used to obtain Aristotelian diagrams (which
are not necessarily based on modal graphs) for more complex logics, such as
public announcement logic.

8.5 Conclusion

In this chapter, I have studied dynamic epistemic logic, and in particular public
announcement logic, using the tools of logical geometry. After giving a brief
overview of public announcement logic, I constructed an Aristotelian square and
hexagon for the structural properties of public announcements, and showed how
to generalize them to Aristotelian diagrams for any partially functional process.
These results support the structuralist philosophy surrounding logical geometry.
Finally, I focused on the epistemic properties of public announcements, and con-
structed an Aristotelian octagon and rhombic dodecahedron.

PSPACE-complete in the multi-agent case without common knowledge, and EXPTIME-complete
in the multi-agent case with common knowledge (Halpern and Moses 1992, Lutz 2006).
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9 u Logical Geometry
and Information

9.1 Introduction

The Aristotelian square of oppositions is a diagram that displays four formulas,
and certain logical relations holding between them. Although traditionally, it was
closely associated with Aristotelian syllogistics, it can be used to study many
other logical systems, and nowadays it also has applications in linguistics. In
recent years, many, increasingly complex extensions of the square have been
discovered and intensively studied. At first sight, there does not seem to be a
fundamental difference between the Aristotelian square and its extensions. In
practice, however, there is a major difference in ‘popularity’: while the square
is nearly universally known among logicians and formal linguists, many of the
larger diagrams are only known by a few specialists.

The main aim of this chapter is to argue that there is indeed a fundamental
difference between the square and its extensions, viz. a difference in informativ-
ity. To do this, I will develop a formal, well-motivated account of information
in (Aristotelian and other) diagrams, and then use it to show that the square is
strictly more informative than many of the more complex diagrams.

The argumentation consists of four main steps. The first step is to distinguish
between concrete Aristotelian diagrams (such as the square and its extensions)
and, on a more abstract level, the Aristotelian geometry (the set of logical re-
lations visualized in Aristotelian diagrams). This distinction will enable us to
provide a more fine-grained analysis later on (in the fourth step).

Second, I will define two new logical geometries, viz. the opposition and im-
plication geometries (and the corresponding types of diagrams). The Aristotelian
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geometry can advantageously be seen as hybrid between these two new geome-
tries: they solve some problems that have traditionally been associated with the
Aristotelian geometry, and they also have several independent motivations.

The third step concerns information in the opposition and implication ge-
ometries. I will adopt an account of information that is well-known in logic and
semantics, viz. information as range, and show that it can be used to compare
the informativity not only of statements (as is usually done), but also of logical
relations. This yields an informativity ordering on the opposition and implica-
tion geometries. I will show that this ordering is highly intuitive, and also fits
well with the structural properties of these geometries.

The fourth and final step brings everything together. I will argue that the
Aristotelian square is highly informative in two successive steps. First, I will
show that the Aristotelian geometry is informationally optimal: it is hybrid be-
tween the opposition and implication geometries not in some random manner,
but exactly so as to maximize informativity. Second, within the Aristotelian
geometry, I will make a further distinction between more and less informative
diagrams, based on whether or not they contain pairs of formulas that are un-
connected (i.e. that stand in the least informative opposition and implication re-
lations). It turns out that such minimally informative pairs do not occur in the
classical square, but do occur in some of its extensions.

This four-step argumentation is reflected in the structure of the chapter. Sec-
tion 9.2 provides some historical background and examples of the Aristotelian
square and its extensions; most importantly, it also introduces the geometry/diagram
distinction. Section 9.3 introduces the opposition and implication geometries and
discusses their various properties and motivations. Section 9.4 applies the well-
known ‘information as range’-perspective to the opposition and implication ge-
ometries, and discusses some advantages of this application. Section 9.5 shows
that the Aristotelian geometry is hybrid between the opposition and implication
geometries in an informationally optimal way; it also introduces the notion of
unconnectedness and studies in which Aristotelian diagram it occurs. Finally,
Section 9.6 wraps things up and suggests some questions for further research.1

1For the sake of readability, some technical remarks and results have been placed in a separate
appendix (see p. 289ff.); they are not essential for the main line of argumentation.
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9.2 The Aristotelian Square of Oppositions

This section introduces the Aristotelian square of oppositions. Subsection 9.2.1
defines the Aristotelian geometry and its diagrams, and provides some examples
of the square in various logical systems, while Subsection 9.2.2 discusses some
extensions to larger diagrams, such as hexagons and octagons. Building on this
concise overview, Subsection 9.2.3 raises the main issue that will be addressed
in this paper.

9.2.1 A Brief History of the Aristotelian Square

The Aristotelian square of oppositions has a rich tradition, originating—together
with the discipline of logic itself—in Aristotle’s logical works. It has been stud-
ied by some of the most distinguished scholars in the history of logic, such
as Avicenna (Chatti 2012), John Buridan (Hughes 1987, Read 2012a), Boole
and Frege (Peckhaus 2012).2 Contemporary logicians too have found it worth-
wile to show that the logics they are studying give rise to square-like structures.
Typical examples include the construction of squares for modal logic (Fitting
and Mendelsohn 1998, Carnielli and Pizzi 2008), intuitionistic and linear logic
(Mélès 2012), epistemic logic (Lenzen 2012), deontic logic (Moretti 2009b, Mc-
Namara 2010) and temporal logic (Rini and Cresswell 2012). Applications of
the square to natural language have been explored by linguists such as van der
Auwera (1996), Horn (1989, 2012) and Seuren (2010, 2012b,a).

Formally speaking, we will take the Aristotelian square to be a concrete dia-
gram that visualizes an underlying abstract geometry, i.e. a set of logical relations
between formulas (relative to some background logical system S).3

Definition 9.1 (Aristotelian geometry). Let S be a logical system, which is as-
sumed to have connectives expressing classical negation (¬), conjunction (∧) and
implication (→),4 and a model-theoretic semantics. Let LS be the language of S.

2For a more exhaustive historical overview, see Parsons (2012) and Seuren (2010, Chapter 5).
3The term ‘Aristotelian’ is used in a strictly technical sense here, to distinguish the Aristotelian

geometry and its diagrams from other kinds of geometries and diagrams that will be introduced
later. For a detailed account of the historical origins of the square (and the crucial role of Apuleius),
see Londey and Johanson (1984).

4It is well-known that in the presence of classical negation, each of ∧ and→ can be defined
in terms of the other: ϕ → ψ = ¬(ϕ ∧ ¬ψ), and ϕ ∧ ψ = ¬(ϕ → ¬ψ). It does not matter for
Definition 9.1 whether both of these connectives are taken as primitive, or one of them is defined
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The Aristotelian relations for S are defined as follows: the formulas ϕ,ψ ∈ LS
are

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ),
S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
in S-subalternation iff S |= ϕ→ ψ and S 6|= ψ → ϕ.

The Aristotelian geometry for S is the setAGS = {CD,C, SC, SA} of the four
Aristotelian relations for S (the abbreviations stand for contradiction, contrariety,
subcontrariety and subalternation, respectively).

When the system S is clear from the context, I will often leave it implicit,
and simply talk about ‘contrary’ instead of ‘S-contrary’, etc. Intuitively, the first
three relations—CD, C and SC—are defined in terms of whether the formulas
can be true together (the ϕ ∧ ψ part) and whether they can be false together (the
¬ϕ ∧ ¬ψ part);5 the fourth relation—SA—is defined in terms of truth propaga-
tion.6

Definition 9.2 (Aristotelian diagrams). Let S be a logical system as in Defini-
tion 9.1. An Aristotelian diagram for S is a diagram that visualizes an edge-
labeled graph G. The vertices of G are contingent and pairwise non-equivalent
formulas ϕ1, . . . , ϕn ∈ LS;7 the edges of G are labeled by the Aristotelian rela-
tions between those formulas, i.e. if ϕi and ϕj stand in any Aristotelian relation,
then this is visualized in the diagram, according to the code in Figure 9.1.8

Note that Definition 9.2 allows only contingent and pairwise non-equivalent
formulas to appear in Aristotelian diagrams. The first reason for these restrictions
is of a historical nature: classically, squares of oppositions only contained non-
equivalent contingencies. More importantly, although the Aristotelian geometry

in terms of the other. I will return to the interdefinability of ∧ and→ in Subsection 9.3.3.
5It is well-known that ¬(¬ϕ ∧ ¬ψ) is equivalent to ϕ ∨ ψ, but I prefer to stick with the first

notation, because it more clearly expresses the idea of ϕ and ψ being false together.
6It should be clear that the Aristotelian relations are not defined in terms of properties of

the formulas they relate, such as quantity and quality, as is done in many historical studies on
Aristotelian logic (Parry and Hacker 1991); also see the discussion in Subsection 8.3.3.

7So S 6|= ϕi, S 6|= ¬ϕi, and S 6|= ϕi ↔ ϕj , for 1 ≤ i 6= j ≤ n.
8It follows immediately from Definition 9.1 that the first three relations are symmetric, and

are therefore represented in Figure 9.1 by lines without arrows. We represent ϕ and ψ being in
subalternation by means of an arrow going from ϕ to ψ, classically referred to as the ‘superaltern’
and ‘subaltern’, respectively.
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Figure 9.1: Code for visually representing the Aristotelian relations

perfectly allows non-contingencies to enter into multiple Aristotelian relations
with other formulas,9 those relations will be vacuous and visualizing them would
needlessly mess up the diagrams (Sanford 1968). Furthermore, the restriction to
pairwise non-equivalent formulas shows that Aristotelian diagrams are essen-
tially semantic entities: like Hasse diagrams, they represent formulas only up to
logical equivalence.10

The most prototypical Aristotelian diagrams are those which have exactly
four vertices, better known as the Aristotelian squares. Figure 9.2 shows three
such Aristotelian squares for fragments of (a) classical propositional logic (CPL),
(b) the modal logic S5, and (c) the deontic logic KD.11 For example, p ∧ q
and p ∨ q are in CPL-subalternation (CPL |= (p ∧ q) → (p ∨ q) and CPL 6|=
(p∨q)→ (p∧q)),�p and�¬p are S5-contrary (S5 |= ¬(�p∧�¬p) and S5 6|=
¬(¬�p ∧ ¬�¬p)), and Pp and P¬p are KD-subcontrary (KD 6|= ¬(Pp ∧ P¬p)
and KD |= ¬(¬Pp ∧ ¬P¬p)). The modal logic S5 will be used as a running
example throughout this chapter.12

9Tautologies are subaltern and subcontrary to any contingent formula. Conversely, contradic-
tions are superaltern and contrary to any contingent formula.

10For a more detailed discussion of the connection between Aristotelian diagrams and Hasse
diagrams, see Smessaert (2009) and Demey and Smessaert (2013a).

11The operators O and P in the deontic square stand for ‘obligatory’ and ‘permitted’, respec-
tively.

12Note that I will not consider squares for the quantifiers, and thus sidestep the notoriously
difficult issue of existential import (Chatti and Schang 2013, Parsons 2012, Read 2012b, Seuren
2012b), since the informativity account to be developed here is entirely independent of it.
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Figure 9.2: Aristotelian squares for (a) CPL, (b) the modal logic S5 and (c) the
deontic logic KD.

9.2.2 Extensions of the Aristotelian Square

It should be noted that Definition 9.2 does not require an Aristotelian diagram to
have only 4 formulas as vertices. Unsurprisingly, then, there have been several
proposals throughout history to extend the Aristotelian square to more complex
diagrams. The most widely known extension is the Aristotelian hexagon pro-
posed by Jacoby (1950, 1960), Sesmat (1951) and Blanché (1952, 1966). A
different Aristotelian hexagon was proposed by Czeżowski (1955), although it
was already known by the 13th-century logician William of Sherwood (Khom-
skii 2012). While the first type of hexagon is Boolean closed, the second one is
not; these, and other, differences are studied in Smessaert (2012b). Further two-
dimensional generalizations include the octagons described by Béziau (2003)
and Seuren (2010). Figure 9.3 shows two hexagons and an octagon for the modal
logic S5.13

In recent years, even further generalizations have been proposed, moving
from the two-dimensional to the three-dimensional realm. For example, Moretti
(2009a) and Chatti and Schang (2013) study two types of Aristotelian cubes,
while Smessaert (2009) describes an Aristotelian rhombic dodecahedron for the
modal logic S5. In Chapter 8 of this thesis, Smessaert’s results were generalized,
thus obtaining a rhombic dodecahedron for public announcement logic. Other,
related Aristotelian diagrams have been studied by Sauriol (1968) and Moretti
(2009a, 2012a).

In ongoing work, Smessaert and I are developing an exhaustive typology
of Aristotelian diagrams, which allows us to classify all the diagrams mentioned

13Note that the octagon in Figure 9.3(c) can be seen as the ‘sum’ of the hexagons in (a) and (b).
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Figure 9.3: (a) Sesmat-Blanché hexagon, (b) Sherwood-Czeżowski hexagon, and
(c) Béziau octagon for S5.

above (and many others), and to study their various interrelationships (Smessaert
and Demey 2013a). The informational account that is developed in this chapter,
however, is conceptually prior to this typology, so I will not go into it any further.

9.2.3 The Success of the Aristotelian Square

From a theoretical perspective, there does not seem to be any fundamental dif-
ference between the Aristotelian square and its extensions: both the square and
its extensions are just examples of Aristotelian diagrams (cf. Definition 9.2). In
practice, however, there is a major difference in popularity: while the square
is nearly universally known among logicians and formal linguists, many of the
larger diagrams are only known by a few specialists studying them.14 This might
partially be explained by the relative recency of their discovery; however, even
the hexagons that were already being investigated in the 1950s have never been
able to attract much attention (despite having various interesting properties, as
shown by Smessaert 2012b).

Another explanation of the square’s success is based on the intuition that
this diagram is highly informative.15 Unfortunately, this intuition is quite vague;

14This does not mean that these extensions do not have any applications at all. For example,
Horn (1990) uses various hexagons to study Gricean maxims and conversational implicatures,
while Jaspers (2012) uses the Sesmat-Blanché hexagon to analyze the structure of the color cate-
gories from a logical, linguistic and cognitive perspective.

15For example, this intuition seems to be implicit in remarks such as the following: “familiarity
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for example, what does ‘informative’ mean here?—and are the larger diagrams
then supposed to be less informative than the square? In the remainder of this
chapter, however, I will argue that this intuition is essentially on the right track:
I will develop a formal, well-motivated account of information in (Aristotelian
and other) geometries and diagrams, and then use it to show that the square is
indeed more informative than many of the more complex diagrams.

9.3 The Logical Geometries of
Opposition and Implication

This section introduces two new logical geometries in addition to the classical
Aristotelian geometry. Subsection 9.3.1 discusses some problems that have tradi-
tionally been associated with the Aristotelian geometry. Subsection 9.3.2 defines
the opposition geometry and the implication geometry, as well as their associated
diagrams. Subsection 9.3.3 shows that these geometries not only solve the prob-
lems of the Aristotelian geometry, but also have several independent motivations.

9.3.1 Problems with the Aristotelian Geometry

The Aristotelian geometry, as introduced in Definition 9.1, seems to suffer from a
number of problems. For starters, this geometry does not induce a partition on the
formula-pairs, and thus fails to provide a full organization of logical space. On
the one hand, the Aristotelian relations are not mutually exclusive: as was already
discussed in Subsection 9.2.1,16 there exist pairs of formulas that simultaneously
stand in two Aristotelian relations. For example, the formulas p ∧ ¬p and p are
both contrary and in subalternation, whereas p and p ∨ ¬p are both subcontrary
and in subalternation.17 On the other hand, the Aristotelian geometry is not
exhaustive either: some pairs of formulas—for example, p and ♦p ∧ ♦¬p—
stand in no Aristotelian relation whatsoever. A particular subclass of such pairs

with the square is useful for logicians today as a kind of lingua franca, when adapted as a shorthand
to express logical relations in specialized applied logics with specialized domains” (Jacquette
2012, p. 81).

16In particular, see Footnote 9.
17Note that both examples involve a non-contingent formula. This is not a coincidence: if we

restrict to contingent formulas, then Lemma 8.3 on p. 223 states that the Aristotelian relations are
mutually exclusive.
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results from the Aristotelian relations’ irreflexivity on contingent formulas: no
contingent formula stands in any Aristotelian relation whatsoever to itself.

Most importantly, however, the Aristotelian geometry is inherently based on
a certain conceptual confusion, which is visible in the relations’ definitions and
which will turn out to have far-reaching consequences. Whereas the first three
Aristotelian relations (contradiction, contrariety and subcontrariety) are charac-
terized in terms of the related formulas possibly being true/false together, the
fourth relation (subalternation) is characterized in terms of truth propagation.
These two notions are conceptually independent: the former is commutative
(ϕ and ψ can be true together iff ψ and ϕ can be true together), whereas the
latter is directional (truth is propagated from ϕ to ψ). The commutativity of
‘together’ is captured by the conjunctions in the definitions of the first three re-
lations, which are therefore symmetrical: for R = CD, C and SC, we have
R(ϕ,ψ) iff R(ψ,ϕ). By contrast, the directionality of ‘propagation’ is captured
by the implications in the definition of the fourth relation, which is therefore
asymmetrical: if SA(ϕ,ψ), then not SA(ψ,ϕ).

9.3.2 Defining the Opposition and Implication Geometries

I have just argued that the first three Aristotelian relations are conceptually inde-
pendent from the fourth one. These three relations are all based on the idea of
the related formulas possibly being true/false together. Combinatorially speak-
ing, this idea leads to four separate cases:

1. the related formulas cannot be true together, and cannot be false together,

2. the related formulas cannot be true together, but can be false together,

3. the related formulas can be true together, but cannot be false together,

4. the related formulas can be true together, and can be false together.

The first three cases correspond exactly with the Aristotelian relations of contra-
diction, contrariety and subcontrariety, respectively. The fourth case, however,
does not correspond with any Aristotelian relation. The relation corresponding
to this case will be called non-contradiction (Smessaert 2009, p. 310).18

18Non-contradiction is clearly different from the Aristotelian relation of subalternation. First of
all, there exist pairs of formulas—such as (p,¬¬p) and (p, q)—which are in non-contradiction,
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In the light of these observations, it is natural to remove the subalternation re-
lation from the Aristotelian geometry, and to replace it with the non-contradiction
relation. The new geometry that is thus obtained, will be called the ‘opposition
geometry’.19

Definition 9.3 (opposition geometry). Let S be a logical system as in Defini-
tion 9.1. The opposition relations for S are defined as follows: the formulas
ϕ,ψ ∈ LS are

S-contradictory iff S |= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
S-contrary iff S |= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ),
S-subcontrary iff S 6|= ¬(ϕ ∧ ψ) and S |= ¬(¬ϕ ∧ ¬ψ),
S-non-contradictory iff S 6|= ¬(ϕ ∧ ψ) and S 6|= ¬(¬ϕ ∧ ¬ψ).

The opposition geometry for S is the set OGS = {CD,C, SC,NCD} of the
four opposition relations for S (the abbreviationNCD stands for non-contradiction).

Consider again the relation of subalternation, which we have just removed
from the Aristotelian geometry to obtain the opposition geometry. This relation
is based on the idea of truth propagation (entailment), with truth being propa-
gated from the left formula (ϕ) to the right one (ψ), i.e. ϕ entails ψ, and not vice
versa. Combinatorially speaking, there are four ‘directions’ of truth propagation:

1. ϕ entails ψ, and ϕ is entailed by ψ,

2. ϕ entails ψ, but ϕ is not entailed by ψ,

3. ϕ does not entail ψ, but ϕ is entailed by ψ,

4. ϕ does not entail ψ, and ϕ is not entailed by ψ.

but not in subalternation. Furthermore, if two contingent formulas ϕ and ψ are in subalternation,
they will also be in non-contradiction, but that characterization would miss the key point that the
truth values of ϕ and ψ are not independent (if ϕ is true, then ψ has to be true as well).

19‘Opposition geometry’ (Definition 9.3) is a technical term, on a par with ‘Aristotelian geome-
try’ (Definition 9.1) and ‘implication geometry’ (Definition 9.4), and should thus not be confused
with the general framework of oppositional geometry developed by Moretti (2012a); also recall
Footnote 2 on p. 217. Finally, note that Definition 9.3 is similar in spirit to Moretti (2009a, 2012b)
and Schang (2012b)’s ‘question-answer semantics’; however, they propose this as a semantics
for the Aristotelian geometry, and thus run into trouble when dealing with subalternation (recall
Footnote 18 on the distinction between subalternation and non-contradiction).
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The second case corresponds to the relation of subalternation, which will also be
called left-implication (because truth is propagated from left to right). Continu-
ing this naming convention, the relations corresponding to cases 1, 3 and 4 will
be called bi-implication, right-implication and non-implication, respectively. To-
gether, these four relations constitute the implication geometry:

Definition 9.4 (implication geometry). Let S be a logical system as in Defini-
tion 9.1. The implication relations for S are defined as follows: the formulas
ϕ,ψ ∈ LS are in

S-bi-implication iff S |= ϕ→ ψ and S |= ψ → ϕ,
S-left-implication iff S |= ϕ→ ψ and S 6|= ψ → ϕ,
S-right-implication iff S 6|= ϕ→ ψ and S |= ψ → ϕ,
S-non-implication iff S 6|= ϕ→ ψ and S 6|= ψ → ϕ.

The implication geometry for S is the set IGS = {BI,LI,RI,NI} of the four
implication relations for S (the abbreviations stand for bi-, left-, right- and non-
implication, respectively).

Remark 9.1. The opposition and implication relations are all defined by means
of the propositional functions ∆1 −∆4:

• ∆1(ϕ,ψ) := (ϕ ∧ ψ),

• ∆2(ϕ,ψ) := (ϕ ∧ ¬ψ),

• ∆3(ϕ,ψ) := (¬ϕ ∧ ψ),

• ∆4(ϕ,ψ) := (¬ϕ ∧ ¬ψ).

The opposition relations are defined in terms of (the negations of) ∆1 and ∆4.
Similarly, recalling that α → β is equivalent to ¬(α ∧ ¬β), it should be clear
that the implication relations are defined in terms of (the negations of) ∆2 and
∆3. Each of these functions provides a complete description of the world with
respect to ϕ and ψ, and is thus related to Carnap (1947)’s notion of state descrip-
tion. The indices come from the canonical way of displaying a truth table for a
binary, truth-functional connective •; for example, the table’s first row indicates
the truth value of ϕ • ψ when ϕ and ψ are both true, i.e. when ∆1(ϕ,ψ) is true.
These propositional functions jointly partition logical space, as is illustrated in
Figure 9.4. The opposition and implication relations holding between ϕ and ψ
are determined by which of the regions [[∆i(ϕ,ψ)]] are empty; this corresponds
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Figure 9.4: The partition of logical space (CS) induced by the propositions
∆i(ϕ,ψ)

to the fact that the opposition and implication relations are defined in terms of
the negations of ∆i.

The opposition and implication geometries are visualized by opposition and
implication diagrams, in exactly the same way as the Aristotelian geometry is
visualized by Aristotelian diagrams (recall Definition 9.2).

Definition 9.5 (opposition and implication diagrams). Let S be a logical sys-
tem as in Definition 9.1. An opposition diagram (resp. implication diagram) for
S is a diagram that visualizes an edge-labeled graph G. The vertices of G are
contingent and pairwise non-equivalent formulas ϕ1, . . . , ϕn ∈ LS; the edges of
G are labeled by the opposition relations (resp. implication relations) between
those formulas, i.e. if ϕi and ϕj stand in any opposition relation (resp. impli-
cation relation), then this is visualized in the diagram, according to the code in
Figure 9.5.

Figure 9.5: Code for visually representing the opposition and implication rela-
tions
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Since the two new geometries were obtained by disentangling the Aristotelian
geometry, several relations occur in both the Aristotelian geometry and one of
the new geometries; obviously, opposition/implication diagrams visualize these
relations in the same way as Aristotelian diagrams (compare the codes in Fig-
ures 9.1 and 9.5). Furthermore, some opposition and implication relations are
visualized in the same way (in particular, solid black lines for CD as well asBI ,
or solid grey lines for NCD as well as NI).20 However, this should not cause
any confusion, because a diagram for a given geometry visualizes only relations
belonging to that geometry (for example, a solid grey line in an opposition di-
agram can only represent NCD). Finally, the six symmetric opposition and
implication relations are represented by lines without arrows; the asymmetric re-
lations of LI and RI are represented by arrows, with the arrow going from the
relation’s first argument to its second argument. Thus, LI(ϕ,ψ) and RI(ϕ,ψ)
are visualized as ϕ —I ψ and ϕ —J ψ, respectively.21

These visual properties are illustrated in Figure 9.6, which shows an Aris-
totelian diagram, an opposition diagram and an implication diagram for one and
the same fragment of S5-formulas: {�p, �¬p, ♦p}.

9.3.3 Motivating the New Geometries

The two geometries introduced in the previous subsection are well-motivated:
not only do they solve the problems of the Aristotelian geometry (§ 9.3.3.1),
they also shed new light on a number of historical issues (§ 9.3.3.2) and turn out
to have various interesting formal properties (§ 9.3.3.3 and § 9.3.3.4).

9.3.3.1 Conceptual Clarification

The opposition and implication geometries jointly solve the problems that led to
their introduction in the first place, viz. the problems of the Aristotelian geometry
that were discussed in Subsection 9.3.1. Both geometries induce a partition on

20The contrast within the opposition and implication geometries between (three kinds of) black
lines on the one hand and a grey line on the other is motivated by informativity considerations that
will be discussed later in the chapter.

21The arrow’s head indicates the direction of truth propagation. In the case of LI , this direction
matches the direction of the arrow itself, but in the case ofRI , they differ. For example,LI(�p, p)
is visualized as �p —I p, because both the LI-relation and truth propagation go from �p to p;
however, RI(♦p, p) is visualized as ♦p —J p, because the RI-relation goes from ♦p to p, but
truth is propagated from p to ♦p.
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Figure 9.6: (a) Aristotelian diagram, (b) opposition diagram, and (c) implication
diagram for an S5-fragment

the formula-pairs: it is easy to show that each pair of formulas stands in one and
only one opposition relation and in one and only one implication relation.

More importantly, the conceptual confusion underlying the Aristotelian ge-
ometry is dissolved: the opposition geometry is uniformly based on the notion
of ‘possibly being true/false together’ (its relations are defined in terms of ∆1

and ∆4), and the implication geometry is uniformly based on the notion of ‘truth
propagation’ (its relations are defined in terms of ∆2 and ∆3).

9.3.3.2 Historical Context

The two new geometries are firmly rooted in a long-standing tradition of dis-
cussions about the conceptual confusion underlying the Aristotelian geometry.
For example, already in the second century AD, Apuleius observed that the rela-
tions of contradiction, contrariety and subcontrariety are all based on the notion
of ‘possibly being true/false together’, which he called ‘pugna’. Subalternation,
however, falls outside the scope of this notion: “[u]nder the truth-functional per-
spective of pugnae we learn quickly that a-i and e-o [i.e. subaltern formulas] are
neither in pugna perfecta [CD], nor in pugna dividua [C/SC], but they are in no
pugna whatsoever” (Gombocz 1990, p. 126). If Apuleius’ notion of ‘no pugna
whatsoever’ is viewed as non-contradiction, his pugna-perspective clearly antic-
ipates the opposition geometry.

Furthermore, Correia (2012) convincingly argues that there are two comple-
mentary perspectives on the square: as a theory of negation and as a theory of
logical consequence. Both perspectives have been discussed in separate textual
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traditions of Aristotle’s work: the former is mainly found in commentaries on
De Interpretatione, while the latter is central in commentaries on Prior Analyt-
ics. As Correia points out, these perspectives are based on “two kinds of logical
relations that commentators distinguished in their comments on the square: rela-
tions of opposition [CD, C, SC] and relations of the parts and the whole [SA/LI]”
(Correia 2012, p. 47). Hence, the negation- and consequence-perspectives (with
their underlying logical relations) clearly anticipate the opposition and implica-
tion geometries, respectively.

9.3.3.3 Internal and External Structure

The two new geometries are highly structured, both internally and externally
(i.e. with respect to each other). I will first discuss the geometries’ internal struc-
ture. Since the opposition geometry is based on the commutative notion of ‘to-
gether’, its relations are all symmetric. The implication geometry, however, is
based on the directional notion of ‘truth propagation’; if the direction of truth
propagation is reversed, the roles of left-to-right implication (LI) and right-to-
left implication (RI) are changed around (the ‘neutral’ relations of both-way
implication (BI) and neither-way implication (NI) are left untouched). This is
summarized in the following lemma.

Lemma 9.1. For all formulas ϕ,ψ ∈ LS, the following hold:

1a) CD(ϕ,ψ) iff CD(ψ,ϕ), 1b) BI(ϕ,ψ) iff BI(ψ,ϕ),
2a) C(ϕ,ψ) iff C(ψ,ϕ), 2b) LI(ϕ,ψ) iff RI(ψ,ϕ),
3a) SC(ϕ,ψ) iff SC(ψ,ϕ), 3b) RI(ϕ,ψ) iff LI(ψ,ϕ),
4a) NCD(ϕ,ψ) iff NCD(ψ,ϕ), 4b) NI(ϕ,ψ) iff NI(ψ,ϕ).

Proof. All items follow trivially from Definitions 9.3 and 9.4.

If we use GS to denote the set of all opposition and implication relations
(GS := OGS ∪ IGS),22 this lemma can be rephrased in a slightly more compact
way. The advantages of this rephrasing will become clear later on.

Corollary 9.1. There exists a mapping F : G → G such that for all relations
R ∈ G, it holds for all ϕ,ψ ∈ LS that R(ϕ,ψ) iff F (R)(ψ,ϕ).

22Note that this set includes the original Aristotelian relations, i.e. AG ⊆ G.
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Proof. The definition of F can be straightforwardly ‘read off’ from Lemma 9.1,
i.e. put F (CD) := CD, F (C) := C, F (SC) := SC, F (NCD) := NCD,
F (BI) := BI , F (LI) := RI , F (RI) := LI , and F (NI) := NI .

Another, independent way in which the new geometries are internally struc-
tured, is that if two formulas stand in some opposition (resp. implication) rela-
tion, their negations stand in some opposition (resp. implication) relation as well.
Details can be found in the following lemma and corollary.

Lemma 9.2. For all formulas ϕ,ψ ∈ LS, the following hold:

1a) CD(ϕ,ψ) iff CD(¬ϕ,¬ψ), 1b) BI(ϕ,ψ) iff BI(¬ϕ,¬ψ),
2a) C(ϕ,ψ) iff SC(¬ϕ,¬ψ), 2b) LI(ϕ,ψ) iff RI(¬ϕ,¬ψ),
3a) SC(ϕ,ψ) iff C(¬ϕ,¬ψ), 3b) RI(ϕ,ψ) iff LI(¬ϕ,¬ψ),
4a) NCD(ϕ,ψ) iff NCD(¬ϕ,¬ψ), 4b) NI(ϕ,ψ) iff NI(¬ϕ,¬ψ).

Proof. All items follow trivially from Definitions 9.3 and 9.4.

Corollary 9.2. There exists a mapping N12: G → G such that for all relations
R ∈ G, it holds for all ϕ,ψ ∈ LS that R(ϕ,ψ) iff N12(R)(¬ϕ,¬ψ).

Proof. As before, the definition of N12 can be ‘read off’ from Lemma 9.2.

It should be noted that for allR ∈ G, it holds thatF (N12(R)) = N12(F (R));
we can thus define the mapping FN12: G → G by putting FN12 := F ◦N12 =
N12 ◦ F . If we use Id to note the identity mapping on G, the internal structure
of the opposition and implication geometries can be summarized as follows:

Remark 9.2. The set {Id, F,N12, FN12} is closed under composition (◦), and
forms a group that acts faithfully on G. This group is isomorphic to the Klein
four-group. The separate geometries OG and IG are invariant under this group
action. More details can be found in Remark 9.6 in the appendix.23

I have argued above that the opposition and implication geometries are con-
ceptually independent: the former is based on the notion of ‘possibly being
true/false together’, while the latter is based on the notion of ‘truth propaga-
tion’. This does not imply, however, that there are absolutely no connections

23For more background on group theory, see Rotman (1995), in particular p. 55ff. and p. 345ff.
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between both geometries. Consider, for example, the opposition relation of con-
trariety. If C(ϕ,ψ), then ϕ and ψ cannot be true together, which is, by itself,
a ‘directionless’ situation. However, we can impose a direction upon it, in two
complementary ways:

• If the first formula (ϕ) is true, then the second one (ψ) has to be false
(because otherwise both formulas would be true together after all).

• If the second formula (ψ) is true, then the first one (ϕ) has to be false
(because otherwise both formulas would be true together after all).24

It is easy to see that these two ways of symmetry breaking correspond exactly
to LI(ϕ,¬ψ) and RI(¬ϕ,ψ), and have thus taken us to the implication geom-
etry. The following lemma lists similar ways in which oppositional facts can be
expressed using implication relations, and vice versa.25

Lemma 9.3. For all formulas ϕ,ψ ∈ LS, the following hold:

1a) CD(ϕ,ψ) iff BI(¬ϕ,ψ), 1b) CD(ϕ,ψ) iff BI(ϕ,¬ψ),
2a) C(ϕ,ψ) iff RI(¬ϕ,ψ), 2b) C(ϕ,ψ) iff LI(ϕ,¬ψ),
3a) SC(ϕ,ψ) iff LI(¬ϕ,ψ), 3b) SC(ϕ,ψ) iff RI(ϕ,¬ψ),
4a) NCD(ϕ,ψ) iff NI(¬ϕ,ψ), 4b) NCD(ϕ,ψ) iff NI(ϕ,¬ψ),
5a) BI(ϕ,ψ) iff CD(¬ϕ,ψ), 5b) BI(ϕ,ψ) iff CD(ϕ,¬ψ),
6a) LI(ϕ,ψ) iff SC(¬ϕ,ψ), 6b) LI(ϕ,ψ) iff C(ϕ,¬ψ),
7a) RI(ϕ,ψ) iff C(¬ϕ,ψ), 7b) RI(ϕ,ψ) iff SC(ϕ,¬ψ),
8a) NI(ϕ,ψ) iff NCD(¬ϕ,ψ), 8b) NI(ϕ,ψ) iff NCD(ϕ,¬ψ).

Proof. All items follow trivially from Definitions 9.3 and 9.4.

Corollary 9.3. There exist mappingsN1, N2: G → G such that for all relations
R ∈ G, the following holds for all ϕ,ψ ∈ LS:

a) R(ϕ,ψ) iff N1(R)(¬ϕ,ψ),
b) R(ϕ,ψ) iff N2(R)(ϕ,¬ψ).

24These facts were already known by the 12th-century logician Peter of Spain, who called them
the ‘law of contraries’ (Horn 2010).

25Lemma 9.3 consists of an a- and a b-series, which describe the effects of negating the first,
resp. the second argument of a given relation. The symmetry breaking/creating required to connect
the opposition and implication geometries is manifested in the fact that exactly one argument is
negated. This is to be contrasted with Lemma 9.2, in which both arguments are negated, and the
geometries are kept apart (opposition relations are connected with opposition relations, implication
relations with implication relations).
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Proof. The definitions of N1 and N2 can be ‘read off’ from the a- and b-series
of items, respectively, in Lemma 9.3.

These mappings N1 and N2 are obviously related to the mapping N12 de-
fined above: N12 = N1◦N2 = N2◦N1. If we define two additional mappings
FN1, FN2: G → G by FN1 = F ◦ N1 and FN2 = F ◦ N2, the close rela-
tionship between the opposition and implication geometries can be summarized
as follows:

Remark 9.3. The set {Id,N1, N2, N12, F, FN1, FN2, FN12} is closed under
composition, and forms a group that acts faithfully on G. This group is isomor-
phic to the dihedral group of order 8. More details can be found in Remark 9.7
in the appendix.

It should be emphasized that the rich structure of the opposition and im-
plication geometries does not primarily consist in the individual items of Lem-
mas 9.1–9.3, but rather in the fact that they interact with each other in interesting
ways. These interactions can concisely be described using the language of group
theory, as illustrated in Remarks 9.2–9.3 and Remarks 9.6–9.7.

9.3.3.4 Geometries and Connectives

There are 4 opposition relations and 4 implication relations, and thus 4× 4 = 16
possible combinations of an opposition and an implication relation. On the other
hand, it is well-known that there are 24 = 16 binary, truth-functional connectives
(Enderton 2001, pp. 50–51). I will now show that this numerical equality is not
a coincidence, because there exists a canonical correspondence between pairs of
opposition and implication relations and binary connectives.

Each binary, truth-functional connective • can be identified with its truth
table, i.e. with the 4-tuple (•1, •2, •3, •4) ∈ {0, 1}4, where •i is the truth value
of the formula ϕ •ψ on row i, i.e. in case ∆i(ϕ,ψ) is true. Formally, this means
that

if •i = 1, then S |= ∆i(ϕ,ψ)→ (ϕ • ψ), (9.1)

if •i = 0, then S |= ∆i(ϕ,ψ)→ ¬(ϕ • ψ). (9.2)

For example, conjunction is ∧ = (1, 0, 0, 0), while (inclusive) disjunction is
∨ = (1, 1, 1, 0). This identification between connectives and their truth tables is

262



The Logical Geometries of Opposition and Information / 9.3

used in the following definition:26

Definition 9.6. Given an opposition relationR ∈ OG and an implication relation
S ∈ IG, we define the binary, truth-functional connective •(R,S) by putting, for
1 ≤ i ≤ 4:

•(R,S)
i :=

{
0 if for all ϕ,ψ ∈ LS such that R(ϕ,ψ) and S(ϕ,ψ) : |= ¬∆i(ϕ,ψ),
1 if there exist ϕ,ψ ∈ LS such that R(ϕ,ψ) and S(ϕ,ψ) : 6|= ¬∆i(ϕ,ψ).

As noted in Remark 9.1, the opposition relationR is defined in terms of ¬∆1

and ¬∆4, and thus determines the values of •(R,S)
1 and •(R,S)

4 ; similarly, the
implication relation S is defined in terms of ¬∆2 and ¬∆3, and thus determines
the values of •(R,S)

2 and •(R,S)
3 . In total, the pair (R,S) ∈ OG × IG yields

the connective •(R,S). For example, (SC,NI) yields the connective •(SC,NI) =
(1, 1, 1, 0) = ∨, and (SC,LI) yields the connective •(SC,LI) = (1, 0, 1, 0).

Definition 9.6 thus associates each pair of an opposition relation R and an
implication relation S with a truth-functional, binary connective •(R,S). It is easy
to see that this mapping (R,S) 7−→ •(R,S) is a bijection:

• it is injective: for all opposition relations R,R′ and implication relations
S, S′, •(R,S) = •(R′,S′) implies that R = R′ and S = S′,

• it is surjective: for every binary, truth-functional connective •, there ex-
ist an opposition relation R and an implication relation S such that • =
•(R,S).

The mere existence of a bijection between OG × IG and the set of all truth-
functional, binary connectives should come as no surprise, since we already
knew that both sets have the same cardinality (viz. 16). Theorem 9.1 below
states that the bijection described in Definition 9.6 is canonical, and thus pro-
vides a positive answer to the question whether “each [binary] logical connec-
tive corresponds to a relation of opposition” (Schang 2012a, p. 152)—at least,
if Schang’s ‘relation of opposition’ is re-interpreted as a ‘pair of an opposition
relation and an implication relation’.

26Definition 9.6 might look cumbersome, because it involves quantifying over formulas. How-
ever, it follows immediately from Definitions 9.3–9.4 that if R(ϕ,ψ), S(ϕ,ψ), R(ϕ′, ψ′) and
S(ϕ′, ψ′), then for 1 ≤ i ≤ 4: |= ¬∆i(ϕ,ψ) ⇔ |= ¬∆i(ϕ

′, ψ′). This shows that the quan-
tification over formulas in Definition 9.6 is ‘innocent’: if there exists at least one pair of formulas
(ϕ,ψ) standing in the relations R and S for which it holds that |= ¬∆i(ϕ,ψ), then this holds for
all such pairs of formulas.
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Theorem 9.1. Consider an opposition relation R ∈ OG and an implication
relation S ∈ IG. Then for all formulas ϕ,ψ ∈ LS, the following holds:

if R(ϕ,ψ) and S(ϕ,ψ), then S |= ϕ •(R,S) ψ.

Proof. Let ϕ,ψ ∈ LS be arbitrary formulas and suppose that R(ϕ,ψ) and
S(ϕ,ψ). Let M be an arbitrary model (of the semantics of the system S); we
will show that M |= ϕ •(R,S) ψ. By definition of the propositional functions
∆i, there exists exactly one i ∈ {1, 2, 3, 4} such that M |= ∆i(ϕ,ψ). Hence
6|= ¬∆i(ϕ,ψ), and thus it follows by Definition 9.6 that •(R,S)

i = 1. Given
the connection between a connective and its truth table—as formally expressed
by (9.1) and (9.2)—, it thus follows that |= ∆i(ϕ,ψ) → (ϕ •(R,S) ψ). Hence,
M |= ∆i(ϕ,ψ) entails that M |= ϕ •(R,S) ψ.

Consider, for example, the relations SC and NI , and recall that •(SC,NI) =
(1, 1, 1, 0) = ∨. Theorem 9.1 now states that for any formulas ϕ,ψ standing in
these relations, it holds that |= ϕ∨ψ. For another example, consider the relations
SC and LI , and recall that •(SC,LI) = (1, 0, 1, 0); Theorem 9.1 now states that
for any formulas ϕ,ψ standing in these relations, it holds that |= ψ.27

The correspondence established above is certainly not the only connection
between the binary, truth-functional connectives and logical geometry. For ex-
ample, several authors have noted that these connectives can be used to decorate a
rhombic dodecahedron (Zellweger 1997, Kauffman 2001) and related diagrams
(Sauriol 1968, Luzeaux et al. 2008, Moretti 2009a, Dubois and Prade 2012).
Such diagrams visualize the Aristotelian relations that hold among the 16 propo-
sitions of the form p • q, where • is a binary, truth-functional connective. Hence,
the connectives appear at the object level: they are (inside) the relata, i.e. the
concrete formulas standing in the Aristotelian relations. Theorem 9.1, however,
is of a fundamentally different nature, because it operates on the metalevel: it
does not link the connectives with the relata of the opposition and implication
relations, but rather with these relations themselves.

Additionally, Theorem 9.1 immediately leads to Theorem 9.2 below, which
states that contingent formulas can stand in only 7 out of the 16 combinatorially
possible pairs of opposition and implication relations. This restriction will turn
out to have a number of applications in the remainder of the chapter.

27Theorem 9.1 also has a partial converse, which is of less importance for the sake of our
argument; more information about this converse can be found in Lemma 9.7 and Remark 9.8 in
the appendix.
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Theorem 9.2. Consider arbitrary formulas ϕ,ψ ∈ LS, and suppose that ϕ and
ψ are contingent. Then ϕ and ψ stand in one of the following 7 pairs of relations:

(NCD,BI) (CD,NI)
(NCD,LI) (C,NI)
(NCD,RI) (SC,NI)

(NCD,NI)

Proof. It suffices to show that ϕ and ψ do not stand in any of the 9 other pairs:

• ϕ and ψ do not stand in (CD,BI):

For a reductio, suppose they do stand in those relations; since •(CD,BI) =
(0, 0, 0, 0) = ⊥, it follows by Theorem 9.1 that |= ⊥, which contradicts the
consistency of S. Note that this case does not even rely on the contingency
of ϕ and ψ.

• ϕ and ψ do not stand in (SC,LI):

For a reductio, suppose they do stand in those relations; since •(SC,LI) =
(1, 0, 1, 0), it follows by Theorem 9.1 that |= ψ, which contradicts the
contingency of ψ. The cases (SC,RI), (C,LI) and (C,RI) yield the
connectives (1, 1, 0, 0), (0, 0, 1, 1) and (0, 1, 0, 1), respectively, and can
thus be treated analogously.

• ϕ and ψ do not stand in (CD,LI):

For a reductio, suppose they do stand in those relations; since •(CD,LI) =
(0, 0, 1, 0), it follows by Theorem 9.1 that |= ¬ϕ ∧ ψ, and hence also
|= ¬ϕ and |= ψ, which contradict the contingency of both ϕ and ψ. The
cases (SC,BI), (CD,LI) and (C,BI) yield the connectives (1, 0, 0, 0),
(0, 0, 1, 0) and (0, 0, 0, 1), respectively, and can thus be treated analo-
gously.

Theorems 9.1 and 9.2 connect the binary, truth-functional connectives on
the one hand with pairs consisting of an opposition and an implication relation
(OG×IG) on the other. I will finish this subsection by showing that this connec-
tion generalizes the connection between the original Aristotelian relations (AG)
and their defining connectives, which was already hinted at by Bocheński (1959)
and Williamson (1972).
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Remark 9.4. Consider arbitrary contingent formulas ϕ,ψ ∈ LS. If CD(ϕ,ψ) or
C(ϕ,ψ) or SC(ϕ,ψ), then it follows by Theorem 9.2 that NI(ϕ,ψ). Similarly,
if SA(ϕ,ψ), i.e. LI(ϕ,ψ), then NCD(ϕ,ψ). By Definition 9.6, it holds that
•(CD,NI) = (0, 1, 1, 0) = Y (exclusive disjunction), •(C,NI) = (0, 1, 1, 1) = |
(Sheffer’s stroke), •(SC,NI) = (1, 1, 1, 0) = ∨ and •(NCD,LI) = (1, 0, 1, 1) =
→. Then by Theorem 9.1 it follows that:

• if CD(ϕ,ψ), then S |= ϕ Y ψ, i.e. S |= ¬∆1(ϕ,ψ) and S |= ¬∆4(ϕ,ψ),

• if C(ϕ,ψ), then S |= ϕ |ψ, i.e. S |= ¬∆1(ϕ,ψ),

• if SC(ϕ,ψ), then S |= ϕ ∨ ψ, i.e. S |= ¬∆4(ϕ,ψ),

• if SA(ϕ,ψ), then S |= ϕ→ ψ, i.e. S |= ¬∆2(ϕ,ψ).

These entailments are entirely natural; after all, they merely express that the |=-
parts of Definition 9.1 are necessary (but not sufficient)28 conditions for the Aris-
totelian relations. Bocheński (1959, p. 14) uses these entailments to define the
Aristotelian relations, i.e. he views them as expressing necessary and sufficient
conditions (e.g. SC(ϕ,ψ) :⇔ S |= ϕ ∨ ψ). In comparison to Definition 9.1,
Bocheński’s definition can thus be seen as keeping the |=-conditions, while leav-
ing out the 6|=-conditions.29 Obviously, both definitions are not equivalent; for
example, although SC(ϕ,ψ) entails that S |= ϕ ∨ ψ according to both defini-
tions, the converse is valid according to Bocheński’s definition, but not according
to our Definition 9.1 (recall Remark 9.8 about the converse of Theorem 9.1 being
only partial).

9.4 Information in the Opposition
and Implication Geometries

This section is an investigation into the informativity of the opposition and im-
plication geometries. Subsection 9.4.1 introduces a well-known perspective on

28Of course, the |=- and 6|=-parts together are sufficient.
29Seuren (2010, p. 49) defines the Aristotelian relations in a similar way. Sanford (1968) com-

pares the usual definition (see Definition 9.1) with that of Bocheński, and judges the former to be
preferable.
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informativity, called ‘information as range’. Subsection 9.4.2 applies this per-
spective to the opposition and implication geometries, and Subsection 9.4.3 dis-
cusses some advantages of this application.

9.4.1 Information as Range

The ‘information as range’-perspective on information is well-known in logic
and formal semantics.30 We start by associating with each statement σ a set I(σ),
which is called the information range of σ, and whose elements are often referred
to as ‘states’ or ‘possible worlds’. The ‘information as range’-perspective states
that the informativity of a statement is inversely correlated with the size of its
information range: “the more worlds there still are in the information range,
the less information it contains” (Gamut 1991, p. 54). This inverse correlation
is formally expressed by the definition of the informativity ordering ≤i, which
looks as follows:

σ ≤i τ :⇔ I(σ) ⊇ I(τ).

Informally, this definition states that the statement τ is at least as informative as
the statement σ iff τ ’s information range is a subset of σ’s information range.

Since ⊇ is a partial ordering (reflexive, transitive and antisymmetric), the in-
formativity ordering ≤i is a preordering (reflexive and transitive).31 A strict in-
formativity ordering <i can be defined by putting σ <i τ :⇔ (σ ≤i τ and τ 6≤i
σ); this is a strict partial ordering (irreflexive and transitive) (Harel et al. 2000,
pp. 6–11).

In formal semantics, the information range of a statement σ is usually iden-
tified with its truth set, i.e. the set of all possible worlds w (in a given model M)
that make σ true: I(σ) = [[σ ]]M = {w ∈ M | w |= σ}. Consider the following
example from Löbner (2002, pp. 64–66): let σ be ‘Donald Duck is a bird’ and
τ ‘Donald Duck is a duck’. Since every possible world in which Donald Duck
is a duck is also a world in which he is a bird, but not vice versa, it holds that
I(τ) = [[ τ ]] ⊆ [[σ ]] = I(σ) and I(σ) 6⊆ I(τ), and hence the ‘information as

30A contemporary overview of this and other logical perspectives on information, which empha-
sizes their dynamic aspects, can be found in van Benthem and Martinez (2008). Demey (2012b)
uses a version of the ‘information as range’-perspective to obtain a logical account of the informa-
tivity of narratives.

31The information ordering ≤i is not antisymmetric, because from σ ≤i τ and τ ≤i σ it
follows that the statements σ and τ are equally informative (i.e. I(σ) = I(τ)), but not that they
are identical (i.e. not σ = τ ).
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range’-perspective states that σ ≤i τ and τ 6≤i σ, respectively, and thus σ <i τ .
This matches the semantic judgment that the nominal predicate ‘is a duck’ is
strictly more informative than the nominal predicate ‘is a bird’.

It should be emphasized that unlike other, more quantitatively oriented the-
ories of information (Harremoës and Topsœ 2008), the ‘information as range’-
perspective does not yield any absolute informativity judgments (of the form
‘σ has informativity k’, where k ∈ [0, 1]), but only comparative informativity
judgments (of the form ‘σ is at least as informative as τ ’ and ‘σ is strictly more
informative than τ ’). For our current purposes, however, such comparative judg-
ments will suffice.

9.4.2 Information in the Opposition and Implication Geometries

I will now show how the ‘information as range’-perspective introduced above
can be used to compare the informativity of opposition and implication rela-
tions. However, this perspective concerns the informativity of statements rather
than relations. Therefore, it is first applied to statements of the form R(ϕ,ψ),
and subsequently, this analysis is lifted from statements about relations to the
relations themselves.

For any opposition or implication relation R and formulas ϕ,ψ ∈ LS, we
consider the statement R(ϕ,ψ), which says that ϕ and ψ stand in the relation
R. This statement does not belong to the logic’s object language (LS), but rather
to its metalanguage. Hence, it does not make sense to talk about R(ϕ,ψ) being
true in a given S-model M; however, it does make sense to talk about R(ϕ,ψ)
being compatible with M. Consequently, the information range of the statement
R(ϕ,ψ) does not consist of the models in which it is true, but rather of the
models with which it is compatible.

Definition 9.7. Consider a relation R ∈ OG ∪ IG and formulas ϕ,ψ ∈ LS. Let
CS be the class of all models of S. Then we define:

1. a model M ∈ CS is compatible with the statement R(ϕ,ψ) iff

for 1 ≤ i ≤ 4:
(
R(ϕ,ψ)⇒ S |= ¬∆i(ϕ,ψ)

)
=⇒M |= ¬∆i(ϕ,ψ),

2. the information range of the statement R(ϕ,ψ) is

I(R(ϕ,ψ)) :=
{
M ∈ CS |M is compatible with R(ϕ,ψ)

}
.
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An S-model M is thus compatible with a statement R(ϕ,ψ) iff it is not a
countermodel to any of the universal claims in terms of which the truth of the
statement R(ϕ,ψ) is defined; in other words, iff all formulas ¬∆i(ϕ,ψ) that
R(ϕ,ψ) entails to be tautological (cf. Definitions 9.3 and 9.4) are satisfied by
M. Note that for most logical systems S, the class CS of all S-models is a proper
class, and thus the information ranges of statements R(ϕ,ψ) will be proper
classes too. This is not a problem for the ‘information as range’-perspective,
however, because this perspective only makes use of comparative statements,
and it makes perfect sense to say that X ⊆ Y for proper classes X and Y (Jech
2002, p. 6).

Definition 9.7 provides a ‘top-down’ perspective on the information range of
a statementR(ϕ,ψ): we start from the class of all models, and remove those that
are not compatible with R(ϕ,ψ). Lemma 9.4 provides an alternative, ‘bottom-
up’ perspective, by characterizing the information range ofR(ϕ,ψ) as a union of
truth classes, i.e. classes of models of the form [[ ∆i(ϕ,ψ) ]] = {M ∈ CS |M |=
∆i(ϕ,ψ)}.

Lemma 9.4. Consider arbitrary formulas ϕ,ψ ∈ LS. Then the following hold:

I(CD(ϕ,ψ)) = [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]],
I(C(ϕ,ψ)) = [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]],
I(SC(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]],
I(NCD(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]] = CS,

I(BI(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]],
I(LI(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]],
I(RI(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆2(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]],
I(NI(ϕ,ψ)) = [[ ∆1(ϕ,ψ) ]]∪ [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]] = CS.

Proof. We prove the first item. Recall that by Definition 9.3, CD(ϕ,ψ) entails
that S |= ¬∆i(ϕ,ψ) for i = 1, 4, and hence, by Definition 9.7, an S-model M is
compatible with CD(ϕ,ψ) iff M |= ¬∆1(ϕ,ψ) and M |= ¬∆4(ϕ,ψ) (†). Fur-
thermore, note that it follows from the definitions of ∆i that S |=

∨i=4
i=1 ∆i(ϕ,ψ)

(‡). We thus get the following chain of identities:
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I(CD(ϕ,ψ)) = {M ∈ CS |M is compatible with CD(ϕ,ψ)}
= {M ∈ CS |M |= ¬∆1(ϕ,ψ) and M |= ¬∆4(ϕ,ψ)} (†)
= {M ∈ CS |M |= ∆2(ϕ,ψ) or M |= ∆3(ϕ,ψ)} (‡)
= [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]].

The other items are proved completely analogously.

We are now ready to move from the informativity of statements to that of
relations. By universally quantifying over LS, we lift the informativity ordering
≤i of statements of the form R(ϕ,ψ) to an informativity ordering ≤∀i of the
relations R themselves.

Definition 9.8. Consider relations R,S ∈ OG ∪ IG. Then we define:

R ≤∀i S :⇔ ∀ϕ,ψ ∈ LS : R(ϕ,ψ) ≤i S(ϕ,ψ).

Since ≤i is a preordering, its lifted version ≤∀i is a preordering as well. The
strict version of this ordering is defined as follows:

R <∀i S :⇔ (R ≤∀i S and S 6≤∀i R).

This is a strict partial ordering (Harel et al. 2000, p. 11).
Definition 9.8 defines the informativity ordering ≤∀i for OG ∪ IG, i.e. for

opposition and implication relations collectively. Theorems 9.3 and 9.4 describe
how ≤∀i orders the opposition and implication geometries separately.32

Theorem 9.3. The opposition geometry OG is ordered by ≤∀i as follows:

• NCD ≤∀i C,NCD ≤∀i SC,NCD ≤∀i CD,C ≤∀i CD and SC ≤∀i CD,

• for all R ∈ OG : R ≤∀i R,

• for all other pairs (R,S) ∈ OG2 : R 6≤∀i S.

Proof. We prove that C ≤∀i CD (the other items of the form R ≤∀i S are proved
analogously). Consider arbitrary formulas ϕ,ψ ∈ LS; it suffices to show that
C(ϕ,ψ) ≤i CD(ϕ,ψ). It follows from Lemma 9.4 that

I(CD(ϕ,ψ)) = [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]

⊆ [[ ∆2(ϕ,ψ) ]]∪ [[ ∆3(ϕ,ψ) ]]∪ [[ ∆4(ϕ,ψ) ]] = I(C(ϕ,ψ)).

32The only cross-geometry informativity statements that hold are NCD ≤∀i R and NI ≤∀i R,
for all relationsR ∈ OG∪IG. I will return to such cross-geometry statements in Subsection 9.5.1;
in particular, see Definition 9.9.
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By the definition of the ≤i, this means that C(ϕ,ψ) ≤i CD(ϕ,ψ).
We now prove thatCD 6≤∀i C (the other items of the formR 6≤∀i S are proved

analogously). It suffices to show that ∃ϕ,ψ ∈ LC : CD(ϕ,ψ) 6≤i C(ϕ,ψ). Let
ϕ := p and ψ := q. Note that [[ ∆4(p, q) ]] is non-empty (there certainly exists a
model M such that M |= ∆4(p, q)); hence

I(C(p, q)) = [[ ∆2(p, q) ]]∪ [[ ∆3(p, q) ]]∪ [[ ∆4(p, q) ]]

6⊆ [[ ∆2(p, q) ]]∪ [[ ∆3(p, q) ]] = I(CD(ϕ,ψ)).

Again, by the definition of ≤i, this means that CD(p, q) 6≤i C(p, q).

Theorem 9.4. The implication geometry IG is ordered by ≤∀i as follows:

• NI ≤∀i LI,NI ≤∀i RI,NI ≤∀i BI,LI ≤∀i BI and RI ≤∀i BI ,

• for all R ∈ IG : R ≤∀i R,

• for all other pairs of relations (R,S) ∈ IG2 : R 6≤∀i S.

Proof. Completely analogous to the proof of Theorem 9.3.

It follows from Theorem 9.3 that C ≤∀i CD and CD 6≤∀i C, and hence
C <∀i CD. Similarly, we get that NCD <∀i C, NCD <∀i SC, NCD <∀i CD,
and SC <∀i CD. Furthermore, C and SC are ≤i-incomparable. The opposition
relations are thus ordered by informativity as in Figure 9.7(a). Completely anal-
ogously, it follows from Theorem 9.4 that the implication relations are ordered
as in Figure 9.7(b). The relations NCD and NI are thus the least informative
in their respective geometries,33 a property that will become crucial in Subsec-
tion 9.5.2.

9.4.3 Motivating the Information Account

The application of the ‘information as range’-perspective to the opposition and
implication geometries is well-motivated: it matches well with our intuitive in-
formativity judgments (§ 9.4.3.1), and it intertwines seamlessly with the structure
of both geometries (§ 9.4.3.2).

33This is reflected in the code in Figure 9.5, which visualizes these two relations in grey instead
of black (recall Footnote 20).
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Figure 9.7: Informativity ordering of (a) the opposition geometry and (b) the
implication geometry.

9.4.3.1 Intuitive Informativity Judgments

In the previous subsection, the ‘information as range’-perspective was used to
order the opposition and implication relations according to informativity. For ex-
ample, it entails that NCD is the least informative opposition relation, that CD
is the most informative opposition relation, and that C and SC are in between
(cf. Theorem 9.3 and Figure 9.7).34 These theoretical claims seem to match our
intuitive judgments about the relative informativity of the opposition relations.

I will describe a game to explain this. Recall that there are 16 binary, truth-
functional connectives. For each connective •, we consider the formula p • q;
these 16 formulas form a Boolean algebra B4. We randomly choose a formula
from B4, let’s say q, and show it to the opponent Op. We then randomly select
another formula ϕ from B4 (possibly the one that was chosen before), but do not
show it to Op. Instead, we determine the opposition relation that holds between q
and ϕ, and communicate this to Op. Based on this information, Op has to guess
the value of ϕ. There are four cases:

1. CD(q, ϕ): then Op knows that ϕ = ¬q,

2. C(q, ϕ): then Op knows that ϕ ∈ {p ∧ ¬q, ¬p ∧ ¬q, ⊥},

3. SC(q, ϕ): then Op knows that ϕ ∈ {p ∨ ¬q, ¬p ∨ ¬q, >},
34We will focus exclusively on the opposition geometry in this paragraph. However, all claims

straightforwardly carry over to the implication geometry.
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4. NCD(q, ϕ): then Op knows that

ϕ ∈ {p, q, p ∧ q, ¬p, p ∨ q, p→ q, p↔ q, p Y q, ¬p ∧ q}.

In the first case, Op comes to know the exact value of ϕ; CD is thus the most
informative opposition relation. In the second and third cases, Op comes to know
that ϕ has one out of 3 values, but she remains uncertain as to which of these 3;
hence, C and SC are strictly less informative than CD. In the fourth case, Op
merely comes to know that ϕ has one out of 9 values; hence,NCD is strictly less
informative than C and SC, and thus the least informative opposition relation.

One might object that this intuitive scenario only works because the formula
q sits in the middle level of B4, and that formulas in other levels will yield re-
sults that match less well with the informativity claims made by the account
developed here.35 For example, q has the same number of contraries and sub-
contraries (viz. 3), while for formulas in other levels, this might not be the case.
However, it should be noted that in general, the Boolean algebra Bn (with n > 1)
has levels L0, L1, L2, . . . Ln−2, Ln−1, Ln, and that every formula not belonging
to L0, L1, Ln−1 or Ln yields the right comparative results, i.e. the numbers of
its contraries and of its subcontraries will be strictly between the number of its
contradictories and the number of its noncontradictories.36 Furthermore, since
|Lk| =

(
n
k

)
= n!

k!(n−k)! , it holds that

lim
n→∞

|L0|+ |L1|+ |Ln−1|+ |Ln|
|Bn|

= lim
n→∞

1 + n+ n+ 1

2n
= 0.

Hence, the chance that a randomly chosen formula belongs to L0, L1, Ln−1

or Ln (and thus yields results that do not entirely match with the informativity
claims made by our account) vanishes for sufficiently large Boolean algebras.

The remarks made above apply not only to Boolean algebras of formulas, but
to finite Boolean algebras in general, since the opposition and implication rela-
tions can be defined for any Boolean algebra B = 〈B,∧B,∨B,¬B,⊥B,>B,≤B〉;

35For a formal definition of the notion of ‘level’ in a Boolean algebra, or, more generally, in a
poset, see Engel (1997, p. 7).

36More precisely, a formula in level Li has 1 contradictory, 2n−i − 1 contraries, 2i − 1 sub-
contraries, and (2n−i − 1) · (2i − 1) noncontradictories. Note that 1 < {2n−i − 1, 2i − 1} <
(2n−i − 1) · (2i − 1) iff 1 < i < n − 1, i.e. a formula yields the right comparative results iff
it does not belong to L0, L1, Ln−1 or Ln. Finally, note that if i ≈ n

2
, then 2n−i − 1 ≈ 2i − 1,

i.e. formulas sitting (approximately) in the middle level of Bn indeed have (approximately) the
same number of contraries and subcontraries.
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for example, contrariety and left-implication in B are typically defined as follows
(for any x, y ∈ B):37

CB(x, y) iff x ∧B y = ⊥B and x ∨B y 6= >B,
LIB(x, y) iff x ≤B y and y 6≤B x.

9.4.3.2 Coherence with the Structure of the Geometries

A major theoretical advantage of the informativity perspective on the opposition
and implication geometries is that it intertwines seamlessly with the internal and
external structure of these geometries, which was described in Subsection 9.3.3
(§ 9.3.3.3).

The informativity ordering of the opposition geometry is fully described by
Theorem 9.3, and visualized by Figure 9.7(a). It is immediately clear from this
figure that from the informativity perspective, C and SC play symmetrical roles:
both are strictly in between NCD and CD. Formally, this can be expressed as
follows:

NCD <∀i C <∀i CD and NCD <∀i SC <∀i CD.

However, there is a theoretical redundancy here, since each of these two series
of inequalities actually follows from the other one. Using the mapping N12 that
was defined in Corollary 9.2, this can be reformulated as follows:

Lemma 9.5. For all relations R,S ∈ OG: R ≤∀i S iff N12(R) ≤∀i N12(S).

Proof. For all R,S ∈ OG, it holds that

R ≤∀i S ⇔ ∀ϕ,ψ ∈ LS : R(ϕ,ψ) ≤i S(ϕ,ψ)
⇔ ∀ϕ,ψ ∈ LS : N12(R)(¬ϕ,¬ψ) ≤i N12(S)(¬ϕ,¬ψ) (†)
⇔ ∀ϕ,ψ ∈ LS : N12(R)(ϕ,ψ) ≤i N12(S)(ϕ,ψ) (‡)
⇔ N12(R) ≤∀i N12(S).

37The opposition relations are thus typically defined in terms of ∧B and ∨B, while the im-
plication relations are typically defined in terms of ≤B. This suggests that the distinction be-
tween the opposition and implication geometries is analogous to the distinction between the alge-
braic and order-theoretic perspectives on Boolean algebras (Davey and Priestley 2002, pp. 33–
41). Furthermore, it is well-known that both perspectives are equivalent to each other (via
x ≤B y ⇔ x ∧B y = x); this is analogous to the connection between the opposition and im-
plication geometries described in Lemma 9.3.
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The †-labeled equivalence holds because of Corollary 9.2. The ‡-labeled equiv-
alence holds because of the universal quantification over LS and the fact that
R(ϕ,ψ) iff R(¬¬ϕ,¬¬ψ) for any opposition relation R and formulas ϕ,ψ.

Similar remarks can be made about the connection between the informa-
tivity ordering of the implication geometry—as described by Theorem 9.4 and
visualized by Figure 9.7(b)—and the internal structure of this geometry (if OG
is replaced with IG in Lemma 9.5, the proof remains valid).

I now turn to the connection between the informativity perspective and the
geometries’ external structure (i.e. how they are related to each other). It is
immediately clear from Figure 9.7 that OG and IG are ordered in exactly the
same way. Formally, this can be expressed as follows:

NCD <∀i {C, SC} <∀i CD and NI <∀i {LI,RI} <∀i BI.

However, there is a theoretical redundancy here, since each of these two series
of inequalities actually follows from the other one. Using the mapping N2 that
was defined in Corollary 9.3, this can be reformulated as follows:

Lemma 9.6. For all relations R,S ∈ OG ∪IG: R ≤∀i S iff N2(R) ≤∀i N2(S).

Proof. Completely analogous to the proof of Lemma 9.5, but based on Corol-
lary 9.3 instead of Corollary 9.2.

In sum, there are certain facts about the informativity ordering of the oppo-
sition and implication geometries that can be obtained in two distinct ways:

1. by deriving them directly from the ‘information as range’-perspective on
these geometries (Definitions 9.7 and 9.8); this was done in Theorems 9.3
and 9.4;

2. by combining that perspective with the geometries’ internal and external
structure (Corollaries 9.2 and 9.3); this was done in Lemmas 9.5 and 9.6.

These considerations can be seen as evidence for the theoretical robustness of
the informativity account that was described in this section.
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9.5 Information in the Aristotelian Geometry
and its Diagrams

In the previous two sections, I have introduced the opposition and implication
geometries, and shown how the ‘information as range’-perspective can be ap-
plied to them. This conceptual machinery will now be used to explicate the
intuition that the Aristotelian square is highly informative. This will be done in
two successive steps: in Subsection 9.5.1 I will show that the Aristotelian geom-
etry is an informative geometry, and in Subsection 9.5.2 I will show that within
this geometry, the well-known square is a highly informative diagram. Finally,
in Subsection 9.5.3 I will reassess the purported problems of the Aristotelian
geometry in the light of these informativity considerations.

9.5.1 Information in the Aristotelian Geometry

The Aristotelian geometry (Definition 9.1) can be characterized as being hybrid
between the opposition geometry (Definition 9.3) and the implication geometry
(Definition 9.4): it consists of three opposition relations (CD, C and SC) and
one implication relation (LI , i.e. SA).38 From an informativity perspective, the
former three are the most informative relations in the opposition geometry, while
the latter is second most informative in the implication geometry (Figure 9.7).
Hence, the Aristotelian geometry is hybrid in an informationally optimal way.

One might object that for the Aristotelian geometry to be truly informa-
tionally optimal, it would have to include BI , since that implication relation
is strictly more informative than LI . Additionally, since RI is second most in-
formative too, it seems arbitrary to include LI and not RI . I will now provide
a more formal account of the hybrid nature of the Aristotelian geometry, which
adequately addresses both these objections, and thus supports the conclusion re-
garding its informational optimality.

For our purposes, it will be necessary to compare informativity ‘across ge-
ometries’. For example, considering Figure 9.7, there is a clear sense in which
CD is strictly more informative in OG than RI is in IG: CD is the most infor-
mative relation in OG, while RI is only amongst the second most informative

38This should come as no surprise, since the opposition and implication geometries were ob-
tained in Subsection 9.3.2 precisely by conceptually disentangling the Aristotelian geometry.
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relations in IG. Still, one can check that it does not hold that RI <∀i CD.39

However, the mapping N2 defined in Corollary 9.3 does enable us to make such
cross-geometrical informativity comparisons (this is justified because informa-
tivity is invariant under this mapping; recall Lemma 9.6). For example, although
it does not hold that RI <∀i CD, it does hold that N2(RI) = SC <∀i CD, and
therefore CD will be called the ‘winner’ of {CD,RI}.

Definition 9.9. Consider arbitrary relations R ∈ OG and S ∈ IG. Then the
winner of {R,S} is defined as follows:

• S is the winner iff R <∀i N2(S),

• R is the winner iff N2(S) <∀i R.

For example, BI is the winner of {C,BI}, since C <∀i CD = N2(BI).
Furthermore, {C,RI} does not yield a winner at all: C 6<∀i SC = N2(RI), so
RI is not the winner; and N2(RI) = SC 6<∀i C, so C is not the winner either.

We are now ready to discuss the informational optimality of the Aristotelian
geometry in a formally precise sense. Theorem 9.5 below states that all Aris-
totelian relations (between contingent formulas) are winners, i.e. informationally
optimal.

Theorem 9.5. Consider arbitrary contingent formulas ϕ,ψ ∈ LS. Let R ∈ OG
and S ∈ IG be the unique relations such thatR(ϕ,ψ) and S(ϕ,ψ), respectively.

1. If R ∈ AG, then R is the winner of {R,S}.

2. If S ∈ AG, then S is the winner of {R,S}.

Proof. First, suppose that R ∈ AG. Since ϕ and ψ are contingent, it follows by
Theorem 9.2 that R ∈ {CD,C, SC} and S = NI , and hence R is the winner of
{R,S}. Second, suppose that S ∈ AG. Since ϕ and ψ are contingent, it follows
by Theorem 9.2 that R = NCD and S = LI , and hence S is the winner of
{R,S}.

Since Theorem 9.5 states that all Aristotelian relations are winners, it is natu-
ral to ask the converse question: are all winners Aristotelian? Theorem 9.6 states
that this is indeed by and large the case.

39Theorems 9.3 and 9.4 apply only ‘locally’ to OG and IG, respectively; recall Footnote 32.
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Theorem 9.6. Let ϕ,ψ ∈ LS and R ∈ OG, S ∈ IG be as in Theorem 9.5.

1. If R is the winner of {R,S}, then R ∈ AG.

2. If S is the winner of {R,S}, then S ∈ AG ∪ {BI,RI}.

Proof. First, suppose that R is the winner of {R,S}. Since ϕ and ψ are con-
tingent, it follows by Theorem 9.2 that R ∈ {CD,C, SC} ⊆ AG. Second,
suppose that S is the winner of {R,S}. Since ϕ and ψ are contingent, it follows
by Theorem 9.2 that S ∈ {BI,LI,RI} ⊆ AG ∪ {BI,RI}.

The two cases where the winner is BI or RI (and thus does not belong to
AG) correspond exactly to the two objections against the informational optimal-
ity of AG that were raised at the beginning of this subsection. I will now discuss
how these cases are resolved in the class of Aristotelian diagrams.40

First, note that by definition, Aristotelian diagrams are semantic entities,
i.e. they do not contain any distinct equivalent formulas (Definition 9.2). Logical
equivalence coincides with BI , and therefore, in any diagram, BI holds exactly
between each formula and itself.41 The BI-relations thus need not be visual-
ized explicitly in the Aristotelian diagrams: their place is predetermined by their
definition and does not vary from diagram to diagram (they occur exactly as the
‘loops’ between each formula and itself).

Second, note that if RI(ϕ,ψ), then Theorem 9.2 yields NCD(ϕ,ψ). By
Lemma 9.1 it follows thatNCD(ψ,ϕ) andLI(ψ,ϕ). The winner of {NCD,LI}
is LI , which does belong to AG. Therefore, the RI-relations need not be vi-
sualized explicitly in the Aristotelian diagrams: they correlate exactly with the
LI-relations (because LI andRI offer two complementary perspectives on truth
propagation; recall Footnote 21).42

40Since this discussion applies to all Aristotelian diagrams, it rightly belongs in this subsec-
tion. The next subsection, in contrast, will distinguish between various particular Aristotelian
diagrams, e.g. the concrete square, the concrete Sesmat-Blanché hexagon, etc.

41This argument is made fully precise in Definitions 9.11 and 9.12 and Lemma 9.8 in the ap-
pendix.

42From a theoretical perspective, the case of LI/RI described above (which is based on the
equivalence LI(ϕ,ψ) ⇔ RI(ψ,ϕ), cf. Lemma 9.1) seems to be exactly similar to the case of
C/SC (which is based on the equivalence C(ϕ,ψ)⇔ SC(¬ϕ,¬ψ), cf. Lemma 9.2) and to that
of C/LI (which is based on the equivalence C(ϕ,ψ)⇔ LI(ϕ,¬ψ), cf. Lemma 9.3). This might
suggest that SC and LI can unproblematically be left out of the Aristotelian diagrams as well.
From a visual perspective, however, the latter two cases are entirely different from the first. The
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The remarks above suggest that from an information visualization viewpoint,
BI and RI are redundant (even though they are among the more informative
implication relations). After all, their place in the Aristotelian diagrams is pre-
dictable, either absolutely (the BI-relations occur exactly as the ‘loops’), or on
the basis of the other Aristotelian relations (the RI-relations occur exactly wher-
ever there are LI-relations in the converse direction). It is important to empha-
size, however, that this visual redundancy of BI and RI is perfectly compatible
with their importance in the internal and external structure of the implication
geometry (as discussed in § 9.3.3.3).

Example 9.1. Consider the fragment {�p,♦p,�¬p}. Parts (a), (b) and (c) of
Figure 9.8 show the respective opposition, Aristotelian and implication diagrams
for this fragment (using the code of Figure 9.5).43

Figure 9.8: The (a) opposition, (b) Aristotelian and (c) implication diagram for
{�p,♦p,�¬p}

For each pair of distinct formulas, the Aristotelian diagram contains the win-
ner of the corresponding opposition and implication relations:

• C(�p,�¬p) and NI(�p,�¬p): the winner of {C,NI} is C ∈ AG;

LI/RI case does not require considering formulas other than ϕ and ψ; hence, in the diagrams,
the RI relations occur in exactly the same place as the original LI relations (but in the reverse
direction). On the other hand, the C/SC and C/LI cases require considering formulas other than
ϕ and ψ, viz. ¬ϕ and/or ¬ψ; hence, in the diagrams, the SC and LI relations occur in other
places than the original C relations.

43Note that Figure 9.8 shows the same three diagrams as Figure 9.6, but in a different order: I
will henceforth put the Aristotelian diagram in between the opposition and implication diagrams,
to reflect the fact that AG is hybrid between OG and IG.
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• CD(♦p,�¬p) and NI(♦p,�¬p): the winner of {CD,NI} is CD ∈
AG;

• NCD(�p,♦p) and LI(�p,♦p): the winner of {NCD,LI} is LI ∈ AG.

Furthermore, note that for each formulaϕ in this fragment, it holds thatNCD(ϕ,ϕ)
andBI(ϕ,ϕ). AlthoughBI is the winner of {NCD,BI}, it is not visualized in
the Aristotelian diagram, because of the reasons stated above. Finally, note that
NCD(♦p,�p) and RI(♦p,�p); although RI is the winner of {NCD,RI}, it
is not visualized in the Aristotelian diagram (but its converse LI is visualized;
cf. the third item above).

In sum, Theorems 9.5 and 9.6 together state that a relation between con-
tingent formulas is a winner if and only if it is Aristotelian (modulo BI and
RI). Hence, each Aristotelian diagram offers an informationally optimal picture
of its vertices: all winners are represented in the Aristotelian diagram (modulo
BI and RI), and all Aristotelian relations are winners, i.e., contrapositively, all
non-winners are not represented in the Aristotelian diagram.

9.5.2 Information in the Aristotelian Diagrams

In the previous subsection I have argued that the Aristotelian geometry is infor-
mationally optimal in a positive sense: a relation between contingent formulas is
Aristotelian if and only if it is a winner (i.e. cross-geometrically most informa-
tive). In this subsection I will focus on a negative aspect of this informational
optimality, by showing that Aristotelian diagrams avoid (the combination of) the
least informative relations as much as possible. It turns out that this minimally
informative combination does not occur in certain diagrams, but is unavoidable
in others.

One question that was left unanswered in the previous subsection is: what if
{R,S} does not yield a winner at all? Such cases certainly exist; cf. the {C,RI}
example below Definition 9.9. However, in the case of contingent formulas, if
{R,S} does not yield a winner, it follows by contraposition on Theorem 9.5 that
neither R nor S is an Aristotelian relation. Moreover, the following theorem
states that in this case, R and S are uniquely identified.

Theorem 9.7. Let ϕ,ψ ∈ LS and R ∈ OG, S ∈ IG be as in Theorem 9.5. If
neither R nor S is the winner of {R,S}, then R = NCD and S = NI .
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Proof. Since R is not the winner of {R,S}, it follows by Theorem 9.2 that R /∈
{CD,C, SC}, and thus R = NCD. Similarly, since S is not the winner of
{R,S}, it follows that S /∈ {BI,LI,RI}, and thus S = NI .

The combination of NCD and NI effectively occurs; for example, it is easy
to check that p and ♦p∧♦¬p are both non-contradictory and in non-implication.
This combination of relations will be crucial to the remainder of this subsection,
and is therefore given a separate name, viz. ‘unconnectedness’.44

Definition 9.10. Let ϕ,ψ ∈ LS be arbitrary formulas. Then ϕ and ψ are said
to be unconnected, written U(ϕ,ψ), iff they are in non-contradiction and non-
implication. Formally: U(ϕ,ψ) :⇔ NCD(ϕ,ψ) and NI(ϕ,ψ).

The term ‘unconnectedness’ suggests that unconnected formulas stand in no
Aristotelian relation at all.45 The following theorem shows that this is essentially
correct (and thus justifies the term ‘unconnectedness’).46

Theorem 9.8. Consider formulas ϕ,ψ in an arbitrary Aristotelian diagram.
Then:

ϕ and ψ do not stand in any Aristotelian relation ⇔ ϕ and ψ are unconnected.

Proof. Let R ∈ OG and S ∈ IG be the unique relations such that R(ϕ,ψ) and
S(ϕ,ψ), respectively. For the right-to-left direction, note that if ϕ and ψ are
unconnected, then R = NCD /∈ AG and S = NI /∈ AG. We now prove
the left-to-right direction. Assume that R /∈ AG and S /∈ AG. Since ϕ and ψ
belong to an Aristotelian diagram, they are (by Definition 9.2) contingent and
non-equivalent. Hence S 6= BI . Furthermore, note that if S = RI , then (by
Lemma 9.1) LI(ψ,ϕ), and since LI is an Aristotelian relation, this contradicts
the assumption that ϕ and ψ do not stand in any Aristotelian relation; therefore,

44Although its combinatorial and informational properties have not been systematically ex-
plored so far, the notion of unconnectedness as such has surfaced at various places in the litera-
ture, usually under the label ‘logical independence’; for example, see Hughes (1987, p. 99), Béziau
(2003, p. 226), Karger (2003, p. 435), Seuren (2010, p. 50), Campos-Benítez (2012, pp. 101ff.),
Jacquette (2012, p. 86) and Read (2012a, p. 104).

45For example, Campos-Benítez states that “independent sentences [. . . ] are not contrary nei-
ther subcontrary nor contradictory or subaltern: they have no relationship at all” (Campos-Benítez
2012, p. 103).

46In other words, Theorem 9.8 characterizes the absence of any Aristotelian relation in a posi-
tive way, viz. as the joint presence of an opposition and an implication relation.
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S 6= RI . Hence, by contraposition on Theorem 9.6 we get that neitherR nor S is
the winner of {R,S}. By Theorem 9.7 it follows that R = NCD and S = NI ,
i.e. ϕ and ψ are unconnected.

Remark 9.5. The proofs of Theorems 9.5–9.8 all make essential use of Theo-
rem 9.2. The 7 pairs of opposition and implication relations singled out by that
theorem are structured according to informativity: they are exactly the pairs that
consist of (i) the least informative relation in either the opposition or the impli-
cation geometry (NCD or NI , respectively) and (ii) any of the four relations
in the other geometry. Formally, this means that the set of those 7 pairs can be
written as

({NCD} × IG) ∪ (OG × {NI}).

Of course, in this way the unconnectedness combination gets ‘counted twice’,
since (NCD,NI) ∈ ({NCD} × IG) ∩ (OG × {NI}). The importance of
these 7 pairs was already noted by the medieval logician John Buridan (Karger
2003) and later rediscovered by Doyle (1952), although these authors did not
view them as pairs of more primitive notions, nor in the light of informativity
considerations as we have done here.

Unconnectedness is thus the combination of the two relations that are least
informative in their respective geometries.47 The Aristotelian diagrams avoid
this minimally informative combination as much as possible. This can be seen
as the negative counterpart of the informativity claim argued for in the previous
subsection, viz. that the Aristotelian diagrams consist entirely and exclusively of
winners. These negative and positive theses jointly constitute the informational
optimality of the Aristotelian diagrams.

Obviously, whether or not unconnectedness occurs in a given Aristotelian
diagram is fully determined by whether there are unconnected formulas amongst
its vertices. Considering the diagrams mentioned in Section 9.2, it turns out that
some of them have unconnectedness, while others do not. We consider them one
by one.48

47This might explain why some authors, while acknowledging the existence of this relation,
deny its logical relevance. For example, according to Seuren, unconnectedness is “a legitimate
relation between L-propositions producing truth under certain conditions, yet [. . . ] plays no role
[. . . ] in any logic” (Seuren 2010, p. 50). Similarly, Béziau thinks that by treating unconnectedness
as a ‘real’ logical relation, “we are going too far and confusing here negation with distinction”
(Béziau 2003, p. 226).

48These diagrams fit into an exhaustive typology that is currently being developed (Smessaert
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We begin by considering the usual Aristotelian square for the fragment F4 =
{�p,�¬p,♦p,♦¬p}, which was already displayed in Figure 9.2(b). Note that
there is no unconnectedness in this fragment: for allϕ,ψ, it holds that ifNCD(ϕ,ψ)
then not NI(ϕ,ψ) (or equivalently, if NI(ϕ,ψ) then not NCD(ϕ,ψ)), and
hence, there are no ϕ,ψ such that NCD(ϕ,ψ) and NI(ϕ,ψ) simultaneously,
i.e. such that U(ϕ,ψ). Visually speaking, each grey NCD relation in the op-
position square in Figure 9.9(a) corresponds to a black (LI/RI/BI) relation in
the implication square in Figure 9.9(c), and vice versa, each grey NI relation on
the right corresponds to a black (CD/C/SC) relation on the left. Therefore, the
Aristotelian square in Figure 9.9(b) contains no unconnectedness: each pair of
distinct formulas stands in some Aristotelian relation.

Figure 9.9: The (a) opposition, (b) Aristotelian and (c) implication square for
{�p,�¬p,♦p,♦¬p}

Next, we consider two types of Aristotelian hexagons: the Sesmat-Blanché
hexagon for the fragmentF6a = F4∪{�p∨�¬p,♦p∧♦¬p} and the Sherwood-
Czeżowski hexagon for the fragment F6b = F4 ∪ {p,¬p}, which were already
displayed in Figure 9.3(a) and (b), respectively. Neither of these fragments con-
tains any unconnectedness, so each pair of distinct formulas in the Aristotelian
hexagons in Figures 9.10(b) and 9.11(b) stands in some Aristotelian relation.

None of the Aristotelian diagrams considered thus far contains unconnect-
edness. This changes, however, when we turn to the Béziau octagon for the
fragment F8 = F6a ∪ F6b, cf. Figure 9.3(c) above (despite the fact that it is the
‘sum’ of the hexagons for F6a and F6b, which themselves do not contain any un-

and Demey 2013a). This typology includes several other types of Aristotelian diagrams, which
have various proportions of unconnectedness among their relations.
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Figure 9.10: The (a) opposition, (b) Aristotelian and (c) implication Sesmat-
Blanché hexagon for {�p,�¬p,♦p,♦¬p,�p ∨�¬p,♦p ∧ ♦¬p}

Figure 9.11: The (a) opposition, (b) Aristotelian and (c) implication Sherwood-
Czeżowski hexagon for {�p,�¬p,♦p,♦¬p, p,¬p}

284



Information in the Aristotelian Geometry and its Diagrams / 9.5

Figure 9.12: The (a) opposition, (b) Aristotelian and (c) implication Béziau oc-
tagon for {�p,�¬p,♦p,♦¬p,�p ∨ ¬�p,♦p ∧ ♦¬p, p,¬p} (the RI relations
have not been visualized in (c) for the sake of visual clarity)

connectedness). For example, we have NCD(p,♦p ∧ ♦¬p) and NI(p,♦p ∧
♦¬p), and thus U(p,♦p ∧ ♦¬p). Similarly, it holds that U(p,�p ∨ �¬p),
U(¬p,♦p ∧ ♦¬p) and U(¬p,�p ∨ �¬p). Visually speaking, these four for-
mulas are thus connected by four grey NCD relations in the opposition octagon
in Figure 9.12(a) and by four grey NI relations in the implication octagon in
Figure 9.12(c); hence, they are not connected by any relation in the Aristotelian
octagon in Figure 9.12(b).

To summarize, the Aristotelian square and hexagons discussed above do not
contain unconnectedness, and thus avoid the combination of the least informative
opposition and implication relations. However, this combination does occur in
the Béziau octagon for F8, and thus also in every Aristotelian diagram in which
this octagon can be embedded (such as the rhombic dodecahedron).

It does not hold in general, however, that larger diagrams contain more un-
connectedness. To see this, note that there exist still other ‘large’ Aristotelian
diagrams which do not contain any unconnectedness (such as the cube in Moretti
(2009a), which consists of 8 formulas). Conversely, there also exist ‘small’ Aris-
totelian diagrams which do contain unconnectedness. Consider, for example, the
three squares for the fragment F ′4 = {�p∨�¬p,♦p∧♦¬p, p,¬p}.49 The outer

49Note that F ′4 = F8−F4, i.e. the squares in Figure 9.13 can be seen as the result of ‘subtract-
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Figure 9.13: The (a) opposition, (b) Aristotelian and (c) implication square for
{�p ∨ ¬�p,♦p ∧ ♦¬p, p,¬p}

edges of the opposition and implication squares in Figure 9.13(a) and (c) are
grey NCD and NI relations, respectively. Hence, there are no Aristotelian re-
lations at the outer edges of the Aristotelian square in Figure 9.13(b), which thus
degenerates into “an X of opposition” (Béziau and Payette 2012, p. 13). This
abundance of unconnectedness might explain why such degenerated diagrams
have rarely been studied in the literature.

9.5.3 Reassessing the Problems of the Aristotelian Geometry

In Subsection 9.3.1 I discussed three problems of the Aristotelian geometry. I
will now show that the informativity perspective developed in this section sheds
new light on these issues: rather than being ‘brute facts’ about the Aristotelian
geometry, they can be seen as necessary consequences of its informational opti-
mality.

The first problem was that the Aristotelian relations are not mutually exclu-
sive; for example, we have both C(p∧¬p, p) and LI(p∧¬p, p). Recall that any
two formulas ϕ and ψ stand in exactly one opposition relation and exactly one
implication relation; hence, if ϕ an ψ stand in two distinct Aristotelian relations
R and S at all, then one of those relations (say R) will be an opposition relation,
and the other one (say S) an implication relation. Note that R and S cannot be
both the winner of {R,S}, since otherwise we would have R <∀i N2(S) <∀i R,
which contradicts the transitivity and irreflexivity of <∀i . Hence, if ϕ and ψ are
contingent, then contraposition on Theorem 9.5 yields that R and S cannot be

ing’ the classical squares in Figure 9.9 from the corresponding Béziau octagons in Figure 9.12.
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both Aristotelian. In other words, ϕ and ψ can stand in two distinct Aristotelian
relations only if at least one of them is non-contingent. This fact was already
known (recall Footnote 17); what we discussed here is how it arises out of the
informational interplay between the opposition and implication geometries.

The second problem was that the Aristotelian relations are not jointly exhaus-
tive; for example, p and ♦p ∧ ♦¬p stand in no Aristotelian relation whatsoever.
Recall that unconnectedness is the combination of the least informative oppo-
sition and implication relations (NCD and NI). Theorem 9.8 states that two
formulas stand in no Aristotelian relation if and only if they are unconnected. In
other words, the Aristotelian geometry is indeed not exhaustive, but only inas-
much as this is required by its informational optimality. This means, in partic-
ular, that there are no ‘fortuitous’ failures of exhaustiveness: if two formulas
stand in no Aristotelian relation, this can only be because they stand in the least
informative opposition and implication relations.50

The third and final problem was that the Aristotelian geometry is conceptu-
ally confused, because it consists of opposition as well as implication relations.
Recall that (modulo the cases of BI and RI) Theorem 9.6 states that all winners
are Aristotelian. Since opposition as well as implication relations can be win-
ners, it follows that both kinds of relations belong to the Aristotelian geometry,
which thus ends up being hybrid between the opposition and implication geome-
tries. Furthermore, Theorem 9.5 states that a relation is Aristotelian only if it is
a winner; in other words, the Aristotelian geometry includes no more relations
than is required by informativity considerations.

9.6 Conclusion

In this chapter, I have argued that the classical Aristotelian square of oppositions
is highly informative. After distinguishing between the Aristotelian geometry
and its concrete diagrams, I introduced two more logical geometries: the op-
position and implication geometries. This is a well-motivated move: the new
geometries are highly structured (Lemmas 9.1–9.3) and have a canonical corre-
spondence with the binary, truth-functional connectives (Theorem 9.1). I then

50Note that the second problem involves contingent formulas (such as p and ♦p ∧ ♦¬p), and
thus occurs both in the Aristotelian geometry and its diagrams. In contrast, we showed above
that non-contingency is a necessary condition for the first problem, which thus never occurs in the
diagrams (since these contain only contingent formulas).
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extended the well-known ‘information as range’-perspective from statements to
logical relations, thus obtaining an informativity ordering on the opposition and
implication geometries (Theorems 9.3–9.4). This ordering is highly intuitive,
and matches well with the geometries’ structural properties (Lemmas 9.5–9.6).
I then argued that the Aristotelian geometry is hybrid between the opposition
and implication geometries in an informationally optimal way, since it consists
entirely and exclusively of winners (Theorems 9.5–9.6). Finally, I studied the
notion of unconnectedness (Theorems 9.7–9.8) and found that this minimally
informative combination does not occur in the classical Aristotelian square, but
does appear in some of its extensions (such as the Béziau octagon).

The following question now arises: what about diagrams such as the Sesmat-
Blanché and Sherwood-Czeżowski hexagons? After all, these diagrams are as
highly informative as the classical square (they are also Aristotelian diagrams
that do not contain any unconnectedness), yet they are much less widely known
than the square. In other words, aren’t these hexagons counterexamples to our
explanation of the square’s success in terms of its informativity?

Answering this question requires the introduction of one more logical ge-
ometry, viz. the duality geometry. This geometry is concerned with (the inter-
play of) internal and external negations on an operator (e.g. ♦ = ¬�¬), and
is well-known in linguistics (van Benthem 1991, Löbner 1989, Löbner 1990,
Westerståhl 2012) and logic (Demey 2012a, Libert 2012, Veloso et al. 2011).
Although the duality geometry is sometimes confused with the Aristotelian ge-
ometry (D’Alfonso 2012, Mélès 2012), they are conceptually independent of
each other (Löbner 1990, Smessaert 2012a, Westerståhl 2012). It turns out that
if the duality geometry is taken into account as well, then the classical square
is singled out as the most informative diagram (being strictly more informative
than all of its extensions, including the hexagons).

It will also be interesting to explore the various connections between the in-
formational account developed here and the exhaustive typology of Aristotelian
diagrams developed in Smessaert and Demey (2013a). For example, in this ty-
pology we often make use of bitstrings (an algebraic representation of the for-
mulas), and some of the informational notions defined here are directly related
to bitstring properties (such as length, i.e. number of bit positions). It can be
shown, for example, that two formulas are unconnected only if their bitstring
representations have a length of at least 4 bit positions.
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Appendix

Remark 9.6. The group G4 = 〈{Id, F,N12, FN12}, ◦〉 is isomorphic to the
Klein four-group V. The latter has generators x, y and can be presented as
〈x, y |x2 = 1, y2 = 1, xy = yx〉. A concrete isomorphism ι : V → G4 is
determined by where it sends the generators of V: ι(x) = F and ι(y) = N12.
The Cayley table of G4 thus looks as follows:

◦ Id F N12 FN12

Id Id F N12 FN12
F F Id FN12 N12
N12 N12 FN12 Id F
FN12 FN12 N12 F Id

This group acts faithfully on G, and partitions it into six G4-orbits:

1) G4(CD) = {CD}, 4) G4(BI) = {BI},
2) G4(C) = G4(SC) = {C, SC}, 5) G4(LI) = G4(RI) = {LI,RI},
3) G4(NCD) = {NCD}, 6) G4(NI) = {NI}.

Remark 9.7. The group G8 = 〈{Id,N1, N2, N12, F, FN1, FN2, FN12}, ◦〉
is isomorphic to the dihedral group of order 8, i.e. D8. The latter has generators
x, y and can be presented as 〈x, y |x4 = 1, y2 = 1, yxyx = 1〉. A concrete
isomorphism ι : D8 → G8 is determined by where it sends the generators of
D8: ι(x) = FN2 and ι(y) = F . The Cayley table of G8 thus looks as follows:

◦ Id N1 N2 N12 F FN1 FN2 FN12

Id Id N1 N2 N12 F FN1 FN2 FN12
N1 N1 Id N12 N2 FN2 FN12 F FN
N2 N2 N12 Id N1 FN1 F FN12 FN2
N12 N12 N2 N1 Id FN12 FN2 FN1 F
F F FN1 FN2 FN12 Id N1 N2 N12

FN1 FN1 F FN12 FN2 N2 N12 Id N1
FN2 FN2 FN12 F FN1 N1 Id N12 N2
FN12 FN12 FN2 FN1 F N12 N2 N1 Id

This group acts faithfully on G, and partitions it into three G8-orbits:
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1) G8(CD) = G8(BI) = {CD,BI},
2) G8(C) = G8(SC) = G8(LI) = G8(RI) = {C, SC,LI,RI},
3) G8(NCD) = G8(NI) = {NCD,NI}.

Lemma 9.7. Consider a binary, truth-functional connective •. Then for all for-
mulas ϕ,ψ ∈ LS such that S |= ϕ • ψ, the following holds:

for all 1 ≤ i ≤ 4 : if •i = 0 then S |= ¬∆i(ϕ,ψ).

Proof. Suppose that •i = 0. By definition of the propositional function ∆i, this
means that S |= ∆i(ϕ,ψ) → ¬(ϕ • ψ). Since S |= ϕ • ψ, it follows that
S |= ¬∆i(ϕ,ψ).

Remark 9.8. Lemma 9.7 can be seen as a partial converse of Theorem 9.1. To
see this more clearly, recall Remark 9.1 about the opposition and implication
geometries being defined in terms of ∆1 − ∆4. Theorem 9.1 moves from an
opposition relation and an implication relation, i.e. ∆1 − ∆4, to a binary con-
nective. Lemma 9.7 goes exactly in the other direction: it moves from a binary
connective to ∆1 −∆4.

Of course, Lemma 9.7 is only a partial converse of Theorem 9.1, because it
states that S |= ¬∆i(ϕ,ψ) if i = 0, but remains silent about the case i = 1.
Based on Definition 9.6, one might expect that S 6|= ¬∆i(ϕ,ψ) if i = 1, but
this does not hold in general. Consider, for example, the binary connective ∨ =
(1, 1, 1, 0) and the formulas p and ¬p. Since CPL |= p ∨ ¬p and ∨1 = 1, one
would erroneously conclude that CPL 6|= ¬∆1(p,¬p), i.e. CPL 6|= ¬(p ∧ ¬p).

Definition 9.11. Let S be a logical system as in Definition 9.1. Recall that
GS = OGS ∪ IGS is the set of all opposition and implication relations for S.
The pair AS := 〈LS,GS〉 is thus a relational structure, in the sense of Dunn and
Hardegree (2001). Note that S has a notion of logical equivalence≡S⊆ LS×LS,
defined by ϕ ≡S ψ :⇔ S |= ϕ↔ ψ. The equivalence class of ϕ ∈ LS is defined
as [ϕ]≡S := {ψ ∈ LS |ϕ ≡S ψ}. This equivalence relation is actually even a
congruence relation on AS (Dunn and Hardegree 2001, Definition 2.6.2). In the
following definition and lemma, the subscript S will be left implicit.

Definition 9.12. Given the relational structure A = 〈L,G〉 and the congruence
relation ≡ on A, we define the quotient structure A/≡ := 〈L/≡, G/≡〉, with
L/≡ := {[ϕ] |ϕ ∈ L}, and each relation R/≡ ∈ G/≡ defined as follows:
([ϕ], [ψ]) ∈ R/ ≡ :⇔ ∃ψ′ ∈ [ψ] : (ϕ,ψ′) ∈ R (Dunn and Hardegree 2001,
p. 23).
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Lemma 9.8. Since BI ∈ G, the quotient structure A/ ≡ will also contain the
relation BI/≡. But since ≡ and BI are actually the same relation, BI/≡ is
the identity relation on L/≡.

Proof. For any [ϕ], [ψ] ∈ L/≡, we have:

([ϕ], [ψ]) ∈ BI/≡ ⇔ ∃ψ′ ∈ [ψ] : (ϕ,ψ′) ∈ BI
⇔ ∃ψ′ ∈ L : ψ ≡ ψ′ and ϕ ≡ ψ′

⇔ ϕ ≡ ψ
⇔ [ϕ] = [ψ].

Hence, each [ϕ] stands in the BI/≡-relation to exactly one element: itself.
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10 u Conclusion

The overarching goal of this thesis has been to show that, despite its origins in
computer science and game theory, the dynamic turn in epistemic logic also has
great philosophical significance. I will now summarize the main results obtained
in this thesis, and assess their contribution toward achieving the overarching goal.

The main line of argumentation essentially consists in a sequence of case
studies, in which some system of dynamic epistemic logic is applied to a notion
or theorem in a philosophically fruitful way. The core chapters of this thesis are
thus Chapters 5, 6, 7 and 8, in which dynamic epistemic logic is applied to no-
tions or theorems from game theory, epistemology, cognitive science and logical
geometry, respectively. The other chapters provide some more background for
these case studies and introduce the technical notions.

Chapter 1 discusses the philosophical and historical background of this the-
sis. Most importantly, it introduces the distinction between the weak and the
strong interpretation of the dynamic turn in epistemic logic, and argues that while
the dynamic turn is not philosophically relevant according to the weak interpre-
tation, it is highly philosophical relevant according to the strong interpretation.
This distinction is important for the remainder of the thesis, since three of the
four case studies on dynamic epistemic logic (viz. those in Part II: Chapters 5, 6
and 7) are clear illustrations of the strong interpretation of the dynamic turn in
epistemic logic.

Part I introduces all the technical notions that are needed in the case stud-
ies. The three case studies in Part II have in common that they involve not only
(dynamic epistemic) logic, but also probability. Hence, it is important to get a
clear view of the relationship between (dynamic epistemic) logic and probability
theory. There has recently been a vast amount of research on this relationship,
which has led to a very interesting, but also quite chaotic literature. Therefore, I
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have attempted to clarify matters in two consecutive steps. Chapter 2 provides a
large-scale overview of the various proposals to combine logic and probability,
and shows that they can be organized in a systematical and logically meaningful
way. This overview includes discussions of systems such as probabilistic se-
mantics and first-order probabilistic logic, but does not yet focus on probabilistic
systems of dynamic epistemic logic. Its importance thus lies in the fact that it
sketches the broader context for these probabilistic dynamic epistemic logics:
in this thesis, these systems are naturally seen as belonging to the family of dy-
namic epistemic logics; however, Chapter 2 shows that they can equally naturally
be seen as belonging to the family of probabilistic logics.

Next, Chapter 3 focuses on the kind of probabilistic logics that are used
most frequently in this thesis, viz. probabilistic epistemic logics (static as well as
dynamic). It introduces the syntax and semantics of some important systems in
great detail, since the case studies in Part II all involve variations or extensions of
these systems. It also discusses the relationship between public announcement
and Bayesian conditionalization, and shows how the subtlety of this relationship
derives from the ability of probabilistic dynamic epistemic logic to deal with
higher-order information.

One of the case studies in Part II (viz. Chapter 6 on the Lockean thesis)
involves not only probabilistic Kripke models (which were introduced in Chap-
ter 3), but also epistemic plausibility models. However, in the literature, the
latter are often defined in two related, but subtly different ways. Therefore,
Chapter 4 provides a detailed introduction to epistemic plausibility models and
their model theory. I also use these model-theoretical results to argue that one
way of defining these models is superior to the other, since it achieves a bet-
ter equilibrium between philosophical applicability and mathematical elegance.
Finally, although probabilistic Kripke models and epistemic plausibility models
capture the agents’ soft information (belief) in radically different ways (qual-
itatively vs. quantitatively), throughout this chapter I emphasize that there are
also some fundamental similarities between both kinds of models (for example,
the notion of uniformity, which states that epistemically indistinguishable states
have identical soft information—i.e. identical probability functions or identical
plausibility orderings).

Part II presents the three case studies on the strong interpretation of the
dynamic turn in epistemic logic. In Chapter 5, I discuss Aumann’s celebrated
agreeing to disagree theorem from game theory, and argue that Aumann’s origi-
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nal formulation fails to fully capture the dynamics behind the agreement theorem
(both in its formulation and in its semantic setup). I show how a more natural
formulation of the theorem can be obtained in a system of probabilistic dynamic
epistemic logic. Furthermore, I show how explicitly representing the dynam-
ics behind the agreement theorem leads to a significant conceptual elucidation
concerning the role of common knowledge in the agreement theorem. It turns
out that common knowledge is less central to this theorem than is often thought:
common knowledge is the result of communication, so if the communication
dynamics is explicitly represented in the agreement theorem, there is no need
anymore to assume common knowledge (as this will now follow from the com-
munication protocol).

Next, Chapter 6 discusses the Lockean thesis about belief and degrees of be-
lief. A well-known problem of this thesis is that it yields a notion of belief that
is not closed under conjunction. After pointing out that this is a static problem,
I examine how the Lockean thesis fares from a dynamic perspective. I compare
the notions of high degree of (conditional) belief with the corresponding ‘strictly
qualitative’ notions of (conditional) belief, and show that accepting the Lock-
ean thesis for belief (and a slightly more sophisticated version for conditional
belief) leads to a significant and unexpected unification in the dynamic behav-
ior of (conditional) belief and high degree of (conditional) belief with respect
to public announcements. Finally, I argue that this technical observation consti-
tutes a methodological and perhaps even a philosophical argument in favor of the
Lockean thesis.

The final case study on the strong interpretation of the dynamic turn in epis-
temic logic is Chapter 7, which discusses the epistemic and cognitive aspects of
surprise. After providing a brief overview of existing work on surprise, I argue
that the main formal accounts of surprise in logic and artificial intelligence fail
to do justice to its essentially dynamic nature. I then propose a new formaliza-
tion of surprise, using a system of probabilistic dynamic epistemic logic. This
system is able to naturally capture the dynamic nature of surprise: this is clear
from the logic’s semantics as well as its proof theory. Finally, I show that this
system is able to capture several key aspects of surprise, such as its role in be-
lief revision and its transitory nature. The former can also be captured by other
formalizations, but the latter can only be adequately represented in the current
system, since it is a manifestation of the dynamic nature of surprise.

Part III is concerned with logical geometry, both in its relation to the dynamic
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turn in epstemic logic and as an independent topic of interest. Chapter 8 presents
the fourth case study on the dynamic turn: it shows how dynamic epistemic
logic gives rise to non-trivial Aristotelian squares and larger diagrams (such as
hexagons, octagons, and rhombic dodecahedrons). These diagrams not only ex-
tend the scope of logical geometry, but they are also important for its philosoph-
ical foundations. It is clear that this application of dynamic epistemic logic is
not an illustration of the strong interpretation of the dynamic turn, since it does
not have the purpose of uncovering hidden dynamic aspects of some seemingly
static notion.

Unlike the case studies in Part II, which were all concerned with topics from
well-established fields such as game theory, epistemology and cognitive science,
the case study in Chapter 8 is concerned with a much less widely known topic,
viz. logical geometry. Hence, to provide some more context to this last case
study, Chapter 9 shows how several apparently unrelated notions and theorems in
logical geometry can be unified by viewing them from the common perspective
of information.
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