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Abstract: Christopher Bartlett has been wrestling with the apparent significance of a 

1:1.3… ratio rectangle since presenting a paper on a Fairfield Porter painting at Banff 

in 2005. He observed that a rectangle with this aspect ratio could be partitioned into the 

union of a similar rectangle (i.e., one having the same aspect ratio) and another 

rectangle that has the aspect ratio close to the golden ratio. However, the precise value 

of the aspect ratio of a rectangle that can be partitioned in such a way remained 

unknown. Here, a calculation and a construction of the value of the ratio are provided. 

Its approximate value is 1:1.35 and this proportion seems to have been the goal of 

several proportions related to architecture, such as the Dom Hans van der Laan’s 

‘Plastic number’, Gérard Cordonnier’s ‘radian number’ or Rafael de la Hoz’s 

‘Cordovan proportion’. Moreover, the construction method strongly reminds Le 

Corbusier search for ‘the right angle’, though co-author Bartlett was not aware of it: 

his focus is on well-known paintings, suggesting the use of a 1:1.35 ratio in structuring 

the geometry of their compositions. 

 

Keywords: composition in painting, golden section, Le Corbusier. 

1. INTRODUCTION 
Christopher Bartlett has found a significant number of paintings with canvas sizes that 

have the aspect ratio of approximately 1.35 (for a few examples, see Table 1). He 

hypothesized that, for rectangles of sides with a ratio of approximately 1.35, the golden 

ratio  is present in the composition in a way that is hidden, but that can still be 

described by the following explicit geometric construction. 

Dirk Huylebrouck always had a critical mind towards golden section interpretations 

(see, for instance [4]), but after a long career of teaching mathematics to architects, he 

started to understand artists do have a point when studying proportions. Far from 

becoming an adept of Matila Ghyka’s ‘sacred geometry’, he wanted to examine 

Bartlett’s link between a 1.35 proportion and a 1.6 proportion (be it the ‘golden’ section 

1.618…). Of course, the proportions are approximate, but the mathematical reasoning 

given below could well be the one artists are making, be it unconsciously, and thus it 

could demonstrate they are in fact using that exact ratio Bartlett has in mind. 
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Figure 1: A rectangle ABCD and the derived rectangle ECFD.   

 

We start with a rectangle ABCD that has the ratio of the longer side to the shorter side 

equal to x for some x > 1, Figure 1. In the rectangle, draw the diagonal AC and choose 

the unique point E on the segment BC such that the line segment DE is perpendicular to 

AC. The condition that x is strictly greater than 1 ensures both the existence of the point 

E and that E does not coincide with B. Let F be the point on the side AD that completes 

ABEF to a rectangle. Let us call the resulting rectangle ABEF the derived rectangle 

from ABCD (the ‘gnomon’ of the Greek). This construction is common in the analysis 

of the structure of paintings: the rectangle CDFE is called the reciprocal rectangle in art 

literature (the rectangle has the same aspect ratio as the original rectangle). 

Mathematical questions, addressed in the section below, are:   

(1) What is the exact aspect ratio of the given rectangle such that the derived 

rectangle has the aspect ratio ?  

(2) Is the given rectangle constructible with compass and straightedge alone in 

a finite number of steps? 

It turns out there are two different values for the aspect ratio that produce a golden ratio 

rectangle as the derived rectangle: one greater than  and the other one smaller than . 

The approximate numerical value of the latter number, which we denote by the symbol 

 (chi, the letter following  in the Greek alphabet), turned out to be 1.355…  

The analysis of canvas aspect ratios is popular in visual arts. Pablo Tosto analysed 400 

art works by 100 masters from the time of Pompei to the mid-20th century to determine 

the aspect ratio of their canvases in [7]. Although the golden ratio appears in that 

analysis, so does 2 and other ‘root rectangles’. His study looked for aspect ratios of 

root rectangles up to root 9 and also sub-rectangles of a third, half and two-thirds 

between a square and the rectangle with aspect ratio of 2 (namely, the aspect ratios of 

(2+2)/3, (1+2)/2, and (1+22)/3).  

A contrast with [7] is that the starting point for this study is the geometric properties of 

the number χ, rather than a search for an algebraic number which is ‘close enough’ to 
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canvas ratios under consideration. We observe in Section 1 that rectangles with aspect 

ratio close to χ will have geometric properties that are visually similar to the rectangle 

with the aspect ratio exactly χ. This allows us to avoid the problem of ‘fitting’ the aspect 

ratio into a list of pre-determined numerical values. For example, we note that the size 

published by the Stadel Museum of Van Eyck’s Lucca Madonna is 65.7cm by 49.6cm. 

This gives the aspect ratio of 1.325, not 1.276 ≈ (1+22)/3 as listed by Tosto. Similarly, 

Manet’s Olympia canvas is 130cm by 190cm, as quoted by the Musée-D’Orsay; this 

results in the aspect ratio of 1.462, not 1.414 as listed in [7]. 

1. THE NUMBER  
For convenience, let us call a non-square rectangle that has the ratio of the length of the 

longer side to the length of the shorter side equal to x an x-rectangle. If ABCD is such 

an x-rectangle, with x > 1, then the derived rectangle is a y(x)-rectangle, where y(x) is 

the function given by x/(x2-1) if 1< x ≤  and by (x2-1)/x if  < x. Indeed, we may 

assume that |AD| = x and |CD| = 1. Since |CE|/|CD| = |CD|/|AD|, it follows |CE|/1 = 1/x 

and thus |CE| = 1/x and thus |BE| = x-1/x = (x2-1)/x. Observe the side BE is longer than 

AB if x > φ and BE is shorter than AB if x < φ. It is well known that the derived 

rectangle is a square if we begin with a golden ratio rectangle.  

The derived rectangle is obtained from the given rectangle by removing a rectangle 

similar to the original one: indeed, the rectangle CDEF is similar to the given rectangle 

ABCD. The problem now reduces to solving y(x) = . For each b >1, the equation y(x) 

= b has two distinct positive solutions, one smaller thanand the other greater than . 

The solutions are given by:  
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It remains to substitute for b in the above expressions to get the two values: 
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for the sides ratio of rectangles that produce the golden ratio rectangle as a derived 

rectangle. The approximate numeric values of these ratios are χ ≈ 1.355… and χ' ≈ 

2.095…. The following figure shows the - and '-rectangles. Note that the shaded 

rectangles are equal, yet are not necessarily perceived equal. 
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Figure 2: Two different aspect ratios yield the derived rectangle that has the aspect ratio . 

 

Construction of . We now turn to the question of how to construct a -rectangle. One 

can start with the well-known construction of the golden ratio number, using a segment 

A1A2 of length 1. Now build a segment A2B1, perpendicular to A1A2 and of length 1, 

and bisect the segment A1A2 by the point O1. Find the point A3 of the intersection of the 

circle centred at O1 with the radius |O1B1| and the line containing A1A2. A simple 

calculation shows that 
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So if we begin with the line segment A1A2 of unit length then the length of A2A3 will be 

1/ (see Figure 3). Repeating the same procedure starting with the segment A2A3 gives 

the point A4 such that the segment A2A4 has the length . Note that the number  is 

slightly more complex than the golden ratio  as it is constructed by finding the points 

of intersection of the circles centred at O1 and O2 with the line A1A2, corresponding to 

taking the square root twice. 

 
Figure 3: Construction of the - and -ratio. 
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Additional facts about . As we point out below, it is difficult to discern a 1.35-

rectangle from, for example, a 1.38-rectangle. If the aspect ratio of the given rectangle is 

χ+Δχ, how much would the aspect ratio of the derived rectangle deviate from the golden 

ratio? For small values of , the answer is provided by the derivative of the function 

y(x) at the value χ. As y’(χ) = -4.042…, the first-order approximation gives an aspect 

ratio for the derived rectangle of approximately - 4.042…Δ. Thus a deviation  

increases the result by about 4. For example, for  = 0.03, the numeric values of the 

errors are y(χ+0.03) ≈ φ - 0.11… and y (χ - 0.03) ≈ φ + 0.13….  

 

From the above equations it follows that the solutions of x2 - (1/φ)x -1 = 0 are χ and -

1/χ, while the solutions of x2 + φx -1 = 0 are -χ’ and 1/χ’. Also, from  
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it follows that the so-called ‘minimal polynomial’ of χ is 
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This polynomial can be factored as: 
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   = (x2 - (1/φ)x -1).( x2 + φx -1) 

Note the coefficients are 1  and φ and -1/φ. The latter are the solutions of the golden 

section equation 012  xx . Thus, from a purely mathematical point of view, φ and 

χ combine in a pleasant way. This property was noticed by Antonia Redondo Buitrago 

(personal communication; a paper about her findings is forthcoming, see [6]). 

Moreover, not only the pure formal algebra of φ and χ is pleasing, its artistic 

interpretation seems to confirm their neat properties.  

2. APPLICATION OF THE  RATIO RECTANGLE IN PAINTING 
Confronted with a painting that may take a year or so to complete it is not hard to 

imagine that there is considerable planning involved, no less than in the design of a 

building. A painter’s geometry, however, is not altogether concerned with the precision 

of mathematics. For example, it is virtually impossible visually to discern a 1.35 

rectangle from a 1.38 rectangle. Perhaps, in art there is an accepted ‘visual tolerance 

factor’. In attempting any analysis of a painting, it should be recognized that artists are 

not under any obligation to follow even their own planned structure blindly. There’s 
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always a continuing dialogue with the ‘life’ of the work, perhaps similarly, as in 

changes that might be necessary from the architectural plan to the actual building. 
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Ratio 1.354 1.348 1.352 1.35 1.351 1.355 1.353 1.358 1.358 1.353 1.346 

Table 1: Aspect ratios of famous paintings that are approximately equal to . 

 

Some artists would seem to favour an aspect ratio that is squarer than the -ratio 

rectangle, and   1.272 is often chosen. This root golden ratio rectangle is unique in 

that the ‘eyes’, the intersections of a diagonal and another at right angles to it from the 

opposite side, divide the rectangle into golden ratio divisions from all sides and the 

diagonals. [1,103] 

 

Composition. Then there is the crucial tabula rasa issue, how do you start a 

painting? Why does an artist choose a specific aspect ratio to stretch a canvas when a 

certain size is not demanded by a functional use (e.g. an altarpiece)? It may well be 

because a certain ratio can give a geometric system of interior measures providing self-

similarity and consonance to the arrangement of forms, based on those chosen 

proportions.  

 

Design. The important part of this equation is a tenet of design, where on one end of the 

design continuum is chaos/variety, on the other unity/monotony. Depending on 

expressive intent, the artist aims at a place on that continuum, usually trying to make 

some form of garden from the jungle, harmonized by similarity and repetition of 

elements and placement of forms. This is not dissimilar from music, where if playing 

notes indiscriminately it is a cacophony, when what is usually sought is 

harmony/melody. The use of geometry in art, like any aspect of the design process is to 

produce some form of variety within unity. The artist, using the geometry of 

composition, places primary divisions so that they are located at key points in the 

geometric intersections of the linear structure of the painting. In architecture where the 
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rectangle rules the shape of most structures, the concern for the harmony of geometric 

proportion is more obvious. But it is really not that much different in painting a picture. 

The artist develops a plan to allow for a variety of placement possibilities in accord with 

the subject or content of the work. By this means his work has an asymmetrical 

harmony of parts, an architecture which houses his imagery in a unified whole.  

3. ART EXAMPLES 
The examples chosen are paintings by well-known master artists and span nearly five 

centuries. (Their work is easily found in books and on the Internet). We cannot 

document these artists’ conscious intent to use a -ratio in their compositions, but we do 

have the measurements of the canvas size, which they must have consciously chosen in 

order to have them made. In the examples here the aspect ratio is a verifiable 1:1.35, the 

-ratio rectangle. We can also make some simple observations. In Porter’s painting 

Yellow Sunrise, for example, even the casual observer would have to agree that the 

strongest horizontal is the islands on the horizon. They are painted at the horizontal 

formed by the right angle and one at right angles to it from the opposite side deriving a 

golden ratio rectangle and its reciprocal -rectangle. The vertical from the intersection 

of the main diagonal and the horizon positions the sun (Figure 4a). Similarly, what 

would you choose as a central feature in what is often known as the Arnolfini Marriage 

(Figure 4b)? It’s a symmetrical composition. They are holding hands, an important 

symbolic gesture in this scene. Where are they placed? As the diagram shows it is at the 

same horizontal as Porter’s horizon.  

In Degas’ painting Absinthe Drinkers, the main actors are placed in the upper rectangle 

(Figure 5a). If one follows the vertical up from the intersection of the diagonals it leads 

to the glass of deadly absinthe. Sickert’s painting Ennui follows the same pattern, but in 

this case the half empty glass of beer is on a vertical dropped down from the intersection 

of the horizontal division and the diagonal (Figure 5b). Again, somewhat similarly, but 

maybe a little more controversial for the casual observer is Leonardo’s Lady with 

Ermine (Figure 6a). Nevertheless, it does seem logical that a horizontal division has 

been made between her and the ermine, and if one drops a vertical from the intersection 

of the diagonals it encapsulates the ermine. 
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Figure 4 a; b: Yellow Sunrise, Fairfield Porter, 1975, Private Collection (left); Arnolfini Portrait, Jan Van 

Eyck, 1434, National Gallery, London (right). 

  
Figure 5 a; b: L’Absinthe, Edgar Degas, 1876, Musée d'Orsay, Paris (left); Ennui, Walter Sickert, c.1914, 

Tate Museum, London (right). 
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Figure 6 a; b: Woman with Ermine, Leonardo da Vinci, c.1490, Czartoryski Museum, Krakow (left); Le 

Café-concert aux ambassadeurs, Edgar Degas, Musée des Beaux-arts, Lyon 1876-77 (right). 

5. HISTORICAL BACKGROUND 
A painting constructed with an armature using the -ratio rectangle, yields golden ratio 

divisions, consequent squares and reciprocal golden and -ratio rectangles. Co-author 

Bartlett obtained the value χ ≈ 1.35…independently, as shown above but in architecture 

the proportions closed to 1.3 have quite a history, and approximations of this ratios can 

be perceived in other contexts (see [6]). 

 

The Plastic Number. The -ratio reminds Dom Hans van der Laan’s ‘Plastic number’ 

(1928),  = 1.324….  (see [8]). It is the limit of the ratios of consecutive numbers in the 

so-called Padovan sequence 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, … (p(n) = p(n-2) + p(n-3), ), 

just as the golden section with respect of the Fibonacci sequence 1, 1, 2, 3, 5, … (p(n) = 

p(n-1) + p(n-2)). Even the acclaimed Ian Stewart wrote about it in his Scientific 

American column ‘Mathematical Recreations’ (see [9]), though less down-to-earth 

minds such as Gérard Cordonnier laid claims on the number too. He would have 

discovered this number, which he called the ‘radiant number’, as early as 1924, but 

perhaps because of his ‘cosmological’ tendencies he was readily catalogued as a ‘sacred 

geometer’ (see [10]).  
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The Cordovan Proportion. Another independent attempt to justify the use of a 1.3… 

approximation in architecture was made in Spain, by architect Rafael de la Hoz (1973). 

He called the ratio between the radius and the side of the regular octagon c = (2−√2)−1/2 

= 1.306… the ‘Cordovan proportion’, after the city of Cordoba (see [2]). De la Hoz 

discovered this proportion in several architectural and artistic expressions in this 

Spanish city.  

 

Le Corbusier’s ‘angle droit’. However, what makes co-author Bartlett’s approach 

original, is that his 1.3… construction method strongly reminds le Corbusier’s search 

for ‘l’angle droit’. As Roger Herz-Fischler pointed out, Le Corbusier was mainly 

interested in ‘the right angle’ (see [3]). A consequence of his ‘right angle constructions’ 

was that his ‘Scottish police man’ led to the golden section, though initially the golden 

proportion would not have been Le Corbusier’s goal. Once Le Corbusier learned about 

phi, he set up a ‘nombre d’or’ group, that is, ‘a posteriori’, but Bartlett now showed Le 

Corbusier’s motivation was entirely justified. 

 
Figure 10: A plan by Le Corbusier, showing the right angle construction (below left). 

 

Finally, let us emphasize we don’t want to argue whether the specific chi ratio is used or 

some of the other numbers close to 1.35 mentioned above. It could well be there is no 

reason to distinguish the ratios χ, ψ and c in actual applications, as they all lay within 

Markowsky’s tolerance of ±1% (see [5]). However, the right angle construction does 

seem a (modest) contribution to the discussion about the use of proportions in 

architecture and painting: interior divisions and partitions into similar rectangles are 

often applied compositional intents. Perhaps χ (and ψ and c) can all be seen as ‘creative’ 

approximations of 4/3, the ‘sesquitertia’, a classical proportion, known to Vitruvius, 

Pacioli, Leonardo and many others.  
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