*Manuscript
Click here to view linked References

Managing data dependencies in service compositions

Geert Monsiell*, Monique Snoedk Wilfried Lemahied

8The Leuven Institute for Research on Information Systeifrd %)
Faculty of Business and Economics, Katholieke Univetdiiiiven
Naamsestraat 69, 3000 Leuven, Belgium

Abstract

Composing services into service-based systems requieateign of coordination logic, which describes all service
interactions realising the composition. Coordination lbarefined as the management of dependencies; in a services
context we can discriminate between 'control flow’ that ngemsequence dependencies and 'data flow’ for managing
data dependencies. Current research fails to address thegeraent of data dependencies in a systematic way and
mostly treats it as subordinate to sequence dependenaidhislarticle a 'data flow’ pattern language is presented
that provides a systematic way of designing the data flowasps a coordination scenario, orthogonally to the
way in which the control flow is designed. Starting from a defumdamental and basic building blocks, each data
dependency will yield a data flow design that takes a set adfdesiteria (e.g. loose coupling, data confidentiality,
etc.) into account. The pattern language is evaluated @etivays. First, it is shown that every potential coordirmatio
scenario for managing a data dependency can be composed bgtthf patterns. Second, the pattern language was
applied in a real-life insurance case to show how it can gthidelesign of complex data flows. Third, the patterns were
implemented in a tool that provides configurable modelddectransformations for automatically generating BPEL
coordination scenarios. In this tool both the data flow antra flow can be designed separately usinjedtent sets

of patterns.

Keywords: data dependencies, data flow, service composition, sereimelination, coordination logic, patterns,
guided design

1. Introduction

To stay competitive, businesses are forced to constantijnige their performance and adapt flexibly and rapidly
to the evolution of business goals and requirements. Thergfany organisations transform from stable and mono-
lithic enterprises into dynamic and distributed serviciemted enterprises. Similarly, the underlying inforroati
systems that support the organisations’ business pracassanore and more built by combining software services
into loosely coupled, distributed, flexible, dynamic andjatilze service-based systems.

Service-based systems are mostly implemented using ac8edviented Architecture (SOA) (Metzger and Pohl,
2009). A central idea in an SOA is the (hierarchical) compmsiof multiple services. Such service compositions are
typically process-baseavhich means that a business process model serves as themifer the service composition
(Barros et al., 2005). Composing services into servicethagstems requires the designcobrdination logig that
describes all service interactions realising the comjousit

Coordination as a research topic is not limited to computEmnge. It is also studied in disciplines such as orga-
nization theory, operations research, economics, litiggisand psychology. Malone and Crowston (1994) created a
more generic coordination theory, which defines coordimedis thenanagement of dependencies between activities
This definition is based on the intuitive idea that there ithimy to coordinate without any interdependence. In the

*Corresponding author
Email addressesgeert .monsieur@econ.kuleuven.be (Geert Monsieur)ponique.snoeck@econ.kuleuven.be (Monique Snoeck),
wilfried.lemahieu@econ.kuleuven.be (Wilfried Lemahieu)

Preprint submitted to Journal of Systems and Software May 29, 2012

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=5170&rev=3&fileID=116583&msid={159A6EB1-8393-4175-9587-F9A3D5D41885}

context of process-based service composition, one cainglissh between two types of dependencies (Yanglet al.,
2002; Papazoglou etlal., 1997). Firsgeguence dependenogtween a servicg, and a services, indicates that the
start or continuation of the execution of servigadepends on the completion of the executiorspfSecond, alata
dependenclgetween a servicg and a service, indicates that the start or the continuation of the exeaufservice

s, depends on data that is provideddaylPapazoglou (2005) and Papazoglou and Van den Heuvel (886@jibe the
coordinationfunction that a composite service needs to perform as fatiégontrolling the execution of component
services, and manage data flow among them and to the outph# ebmponent service (e.g. by specifying workflow
processes and using a workflow engine for run-time contrgkeofice execution)”Controlling the execution of ser-
vices (‘control flow’) and coordinating the 'data flow’, is @stly what managing sequence and data dependencies is
about. Note that in this article the term sequence dependenised to refer to any kind of order dependency among
activities in a process model (e.g. sequential, concuredn)

At present, coordination logic is mostly defined in an ad hag,wased on the design knowledge and experience
of the individual designer. Rigorous and systematic degigdelines on how to design appropriate coordination logic
are still missingl(Monsieur, 2010). Moreover, in languafpespecifying coordination scenarios (e.g. BPEL (OASIS,
2007)) the control flow and data flow are typically intertwdpee. messages that represent a service request (control
flow) also hold the input data for the service they triggetddw). In this way, the scenario that is chosen to manage
the control flow is also imposed on the data flow. For examptesrdralized control flow implies that the data flow
is also centralized, with all data exchange passing thraugjhgle hub (e.g. the orchestration engine). The lack of a
systematic approach and the intertwining of control flow dath flow considerations hampers the development of a
systematic and automatable approach to service compositido hence hampers the evolution towards self-adaptive
systems. We advocate to address the issues of managingnseqiependencies and data dependencies separately.
Our previous research tackled the problem of managing segudependencies (Monsieur et lal., 2010). This article
presents a set of patterns that help to constraeta flowthat manages a given set of data dependencies in a service
composition in a systematic way, optimised according to mlmer of criteria. Examples of such criteria are data
confidentiality, performance, loose coupling and robusdrte change. Patterns are a means to capture and expose
design knowledge that otherwise resides in the head of Weisig As such, the use of this set of basic patterns
facilitates the definition of the initial coordination lagat design time and at the same time, facilitates the adaptat
process substantially as it provides a systematic way tldl lsoiordination protocols out of basic building blocks.
Ultimately, the patterns (both for data dependencies andesee dependencies) form the basis of configurable model-
to-code transformations that will enable the (semi)autineanstruction of coordination logic based on the evadumat
of the criteria taken into account by each pattern.

The next section presents the research problem by meane afinhing example for this article. Subsequently,
in Sectior 8 we describe the research methodology. Sddtfom#s the core of this article and proposes a pattern
language for managing data dependencies. In Seddtion 5atiarp language is evaluated. Related work is discussed
in Sectior 6. The article ends with a conclusion in Sedtion 7.

2. Running example and problem description

As a running example, we deliberately chose a hon-autonest@uple from the domain of hospital services so as
not to clutter the discussion with implementation issues tie approach and techniques presented in this article are
equally applicable to software services. A service contfpysexample with actual software services can be found in
the insurance case study discussed in Seftion5.2.2.

In a hospital nurses provide several (business) servicgatients, such as taking care of patients with high fever.
A business process that realizes this 'treating fever sehis shown in Figuréll and could consist of the following
tasks: check the patient’s previous febrifuge usage in théical records, obtain a febrifuge, give the febrifuge ® th
patient, measure the body temperature and register thetbotherature.

The business process can be implemented by consuming fdarseevices: the medical records service, the
pharmacist’s service, the doctor’s service and the nussaigice. In this example we assume that the nurse plays
the role of service composer. The medical records servicg beiconsumed for retrieving information concerning
previous usage of febrifuges, registering the febrifugegiand registering the current body temperature. To obtain
a febrifuge the nurse should request this service from trempacist. Hence, the nurse can be considered as a
service composer that needs to consume the service of a pbigtnBoth aspirin and paracetamol are fever reducers.

2

Risk for
stomach
bleeding

v

Obtain a Give the Register the
febrifuge to febrifuge

febrifuge the patient given

More usage is
acceptable

No more
high fever

Check the patient's Wait one Measure the Register the
previous febrifuge hour body body
usage Previous usage is temperature temperature
too recent

Fever
is still
high

Figure 1: A business process for taking care of patients igh fever (represented using BPMN_(OMG. 2010))

However, aspirin has the unpleasant siffea that it can cause stomach bleeding in certain circurostam herefore,

the pharmacist needs information concerning the risk fansich bleeding, before he or she can deliver an appropriate
febrifuge. The risk for stomach bleeding is only known to &éiguet’s doctor. This means that the doctor provides a
second service that needs to be consumed in order to suppaaisk of obtaining a febrifuge. We further assume that
the nurse can complete the ’'give the febrifuge to the pataérd 'measure the body temperature’ tasks without the
consumption of other services.

Even this rather simple service composition already detnates the need for coordination. For example, coordi-
nation is required to ensure that the registration of a fege in a patient’s medical record (consuming the medical
records service) only occurs when a febrifuge is succdggjiten to the patient (consuming the nurse’s service).
Service coordination guarantees that sequence consteaispecified in the business process are met by constructing
an appropriate control flow.

However, dealing with data needs is also part of servicedination. Services can require certain input data,
which may in turn be the output from another service. Serg@adination controls when which service is invoked,
how input data is delivered and what to do with a service’poutlanssen and Feenstra, 2008) and as such defines an
appropriate data flow. For example, the pharmacist needsfilvenation concerning the risk for stomach bleeding,
which is held by the doctor. Hence, there is a data dependenmanage between the pharmacist and the doctor:
service interactions between the pharmacist and doctarlmeusoordinated, such that the pharmacist obtains the right
information at the right time and in the right format.

Notice that that the structure of data objects and theiriakations, as part of an enterprise wide data model,
have direct influence on the set of data dependencies ttsttimxgervice compositions. However, deriving all data
dependencies from data models does not fall within the sobes article. The main goal of this article is to present
an approach that deals with the design of coordination stendo manage a set of data dependencies, whereas the
data (and sequence) dependencies themselves are codsidergiven.

Even in this small example of data needs, many coordinatienarios are possible. In figufes 2(a) fnd]2(b) two
ways of managing the data dependency between pharmacistoatar are shown. The question for the design of
service systems is: what are possible scenarios and whiksdhe most appropriate in our situation? In this article
we look for fundamental building blocks that allow consting any possible scenario and that allow us to determine
which coordination scenarios fulfill a component serviateda needs in the most appropriate way. We therefore
consider questions like: What are the fundamentiékénces between two coordination scenarios (e.g. flgule 2(a
versus figurg 2(h))? What are advantages and disadvantesggsaific coordination scenarios?

3. Research question and methodology

Coordination logic for managing data dependencies resatize data flow in a service composition. In the aca-
demic literature one can find several approaches that aatalternative data flows. In secti@h 6 we discuss these
approaches and compare them to the one presented in tlige.alost studies allow finding alternative data flows,

3

Information request
concerning the risk for
Request for @ stomach bleeding
@ notifying the pharmacist
of the risk for stomach bleeding

by
.

Doctor

| e

The risk for @
@ stomach bleeding

Risk for
stomach bleeding

»

.
L)
L
Request for
Doctor a medicine for

reducing fever

®

Request for
a medicine for
reducing fever

Risk for
stomach bleeding

®

The risk for
stomach bleeding

@) (b)

Figure 2: Two ways of coordinating the pharmacist and doctor

but do not provide aystematiavay of building diferent coordination styles nor do they analyze the advastage
disadvantages of alternatives. Because of the lack of arsyic way of discovering and assessing the alternatives, w
cannot be sure such approach exhaustively identifies ahpiat scenarios to manage a set of data dependencies and
does not overlook a potentially interesting scenario. lierrhore, as advantages and disadvantages are not discussed
in depth, these approaches do not provide any help in chgpbgitween alternative scenarios (if such alternatives are
present at all).

If we define acoordination scenari@s a specific set of service interactions constituting tleedination logic in
a service composition, we can formulate the following reseguestion:

Can we come up with a systematic way of composing coordmatienarios from fundamental building blocks
so that the coordination scenario takes all data depende=nand specific design criteria (e.g. service coupling, data
confidentiality, etc.) into account?

The building blocks proposed in this paper are patternsttgether form a so called pattern language. In its
simplest form a pattern can be defined as one or reolgion(s)to a recurringoroblemthat arises within a specific
context(Buschmann et al., 2007). The design of coordination logjia recurring problem in service composition,
which explains our choice for patterns. Furthermore, as illed@scribe in Sectiof 411 an SOA creates a context in
which several forces are present. These forces can be usedlaation criteria for constructing the most appropriate
coordination scenario in a particular context. Each sotuin a pattern balances these force®edently, which helps
developers to choose betweeffelient patterns.

The process of discovering and documenting patterns isccpkittern mining or pattern crafting. Usually pattern
languages are developed by mining current practice usiegobthe following techniques: mining by interviewing,
mining by borrowing, mining by teaching pattern writing,mmg in workshops, mining your own experience (Rising,
1998,1999). In this research we follow a slightlffdrent and innovative approach. On the one hand, we mined
current practice by looking at BPEL (OASIS, 2007) and WS-CW.3C,[2005) examples in academic and indus-
trial literature (e.g. the service interaction patternsBayros et al.|(2005) or related work discussed in Secflon 6),
running examples (e.g. in the BPEL standard (OASIS, 200W)generic scenarios identified in industry standards
(e.g. RosettaNet Partner Interface Protocols (RoseitaiN#)) (i.e. this could be labelled 'mining by borrowing’)
Additionally, since we look for a set of patterns that shoetdble us to build any possible scenario, we looked for
potential missing solutions (gaps in current practice) laperating the patterns from a theoretical perspective.

The search for adequate patterns can be classified as desggce research (Hevner et al., 2004). An important
step in the Design Science Research Methodology (DSRMJdReet al., 2007) is the definition of research objec-
tives that can be tested to evaluate the artifacts that amgoped in this article. In pattern literature, patterns are
mostly validated by presenting three known uses. We go liktros rather weak form of validation. Next to defining
the practical utility of the patterns as guidelines for depers, we also demonstrate the completeness of the pattern

4

languages (i.e. no gaps due to incomplete (mining of) cupeactice) and the utility of patterns as basis for config-
urable model-to-code transformations. The following éhiestable research objectives describe what we expect from
a pattern language for managing data dependencies:

e By combining the building blocks in several ways, it shoutddmssible to construct every potential coordination
scenario. In Sectidn 3.1 we show how this objective is acdisimgd.

e The set of patterns should guide developers in choosing amdicing the building blocks into a coordination
scenario that takes specific design criteria into accotiigniot our intention to focus on the criteria themselves
or to provide an exhaustive list of design criteria. Instegdexpect to come up with a generic framework that
contains an initial set of design criteria and helps to idelthese criteria (or any set of criteria) in the design
process of coordination scenarios. Secfiion 5.2 discussesve targeted this objective and demonstrates how
design guidelines can be used to apply the patterns in aoppate way.

e Based on the patterns it should be possible to semi-autotimateonstruction of a coordination scenario by
letting developers pick specific building blocks for depemcy management and automatically generate an
executable coordination from a business process speinficaBectiof 5.3 presents a tool for pattern-based
coordination of sequence and data dependencies. Thisrimepkation also demonstrates the practical utility of
the set of patterns presented in this article, which is aromamt evaluation aspect in design science Hevneri et al.
(2004).

4. A pattern language for managing data dependencies

4.1. Introduction

As discussed below, the problem of managing a data depeyidathivided into three subproblems, each addressed
by a separate pattern. Each pattern describes all potealigions to the subproblem and explains how each solution
addresses particular forces (or not). Although each patteals with a specific recurring problem in data dependency
management, the three patterns share a common contextesdititions described in a pattern are under influence
of the same set of forces.

Common context

In the context of a service request involving a data depenydimee relevant participants can be distinguished. We
refer to an entity that consumes a particular service fanesting the execution of a business process tasiSas\ace
RequesterIn a service composition this entity typically holds a ¢y description of the control flow, because it
knows when to consume a specific service. The service thaivescrequests for executing a business process task
is called aService Provider Possibly, a Service Provider needs certain data for psowgshe Service Requester’s
request. We refer to this kind of Service Provider aeadyService Provider. The service that can provide the data
needed is referred to as tBata Providell.

The previous definitions imply that a data dependency isydwalated to a Needy Service Provider and a Data
Provider. In the context of the hospital example we can cmrthe nurse as a Service Requester that sends a request
to the service provided by the pharmacist. Hence, the phasinglays the role of a Service Provider. Since the
pharmacist needs information that is known by the doctar,gharmacist can be considered as a Needy Service
Provider and the doctor can be labeled as a Data Provider.

Obviously the distinct roles dervice RequesteBervice ProvideandData Providerare relative. Depending on
the interaction at hand, each partner in the interactiopsgdae of the roles or even combines several roleSefvice
Requesterequests the execution of a particular business procdssTas Service Provideexecutes this task; such
task can be 1) update a state (e.g. confirm an order or procegse@st for a febrifuge), 2) deliver data (e.g. the price
of a product or the risk of stomach bleeding), or 3) call uptiveoservices to execute a subtask. In the second case
the service request is also a data request and henðize Providers also aData Provider In the third case the

1n the pattern language we abstract from the fact that a Daéd@r can be either the entity that owns the data or théyeti@t functions as
a data mediator (Gamma et al.. 1995) that can forward dateests|to the right entities (e.g. other Data Providers ax daners).

5

Service Providenlso becomes Service Reques&rWhen designing data flows it is important to know that each of
these kinds of tasks may need input data from a third pargD#ta Provider Obviously, theData Providercan also

be considered as$ervice Provideas "delivering data” can be considered as a service. Howgvére context of
this research, we wish to focus only on the perspective tresData Providershould deliver data and that this data
should attain theeedy Service Providesomehow. The request for data may be issued (depending gatieen) by
the Service Requestgthe Service Providepr even theéData Provider

The three role names are stable in the sense that they dorganarms of the chosen data provisioning scenario.
The Data Provider is always the Data Provider, indepengeitthe scenario. The roles of Service Provider and
Service Requester are also independent of the chosen datigipning scenario since they refer to aspects of the
service requeshdependent of the data request. Note, however, that whéneaoles are stable within an interaction
(i.e. a scenario in which Service Requesteends a service request to request the execution of bugiresss task),
they are 'relative’ across fierent interactions: e.g. the Data Provider in one intepactiay very well act as a Service
Requester in another interaction (or in a subtask that iggeared in the context of the first interaction).

Finally one should note that it is also possible to merge tie of the data provider with the role of the service
requester. In the further presentation of the patterns, iéawever assume that the roles are performed by three
different parties. Similarly, one can understand that mergieglata provider with the service provider means that the
service provider will have to consult its own data to delithe service. In a similar way merging the service requester
with the service provider would mean that the service reiguesquests a service from itself (while still needing data
from a data provider).

Three subproblems
By analyzing similarities and fferences between scenarios mined from current practicesameonclude that a
specific coordination scenario that manages a data depensleould answer three questions (see Figure 3):

1. Who decides that data is required from the Data Provid&at flow initiation
(e.g. Who decides that information on the risk for stomaeredting is required from the doctor?)

2. Who sends a request to the Data ProviddeRg request
(e.g. Who sends the actual request for the risk for stomaeddirig to the doctor?)

3. How does the data flow between the Data Provider and theyN&e&vice Provider?data transmission
(e.g. How does the risk information get from the doctor togharmacist?)

Different answers are possible for each of these questionsulstian, a pattern helps to answer the question in the
most optimal way by taking advantages and disadvantagesgtount. Answers to the questions can then replace
the cloud in figuré 3. As such these three patterns form theethuilding blocks for scenarios that manage a data
dependency between a Needy Service Provider and a DatadBroWhile related work on alternative data flows
in service compositions is mainly focused on optimizing pleeformance (i.e. reducing communication overhead,
etc.) (see Sectidd 6), the pattern-based approach propotes paper analyzes the advantages and disadvantages of
each design alternative by considerimgltiple evaluation criteria or pattern forces, including robusmt change,
loose coupling and data confidentiality. In each patteffedtnt solutions to the same subproblem are des€ibed
each solution forces are balanceételiently, resulting into dferent solution evaluations. By giving a weight to the
evaluation criteria, service composers can be guided tisxhe most appropriate coordination scenario in the contex
at hand.

Common forces (evaluation criteria)

In contrast to related work the approach presented in thpgpallows one to considenultiple advantages and
disadvantages of each design alternative based on a sealofgn criteria or pattern forces. In order to deter-
mine relevant forces, we studied the literature on servaraposition (e.g. | (Balasooriva et al., 2005; Barros et al.,

20f course, in practice, requests for thesiedient kinds of tasks are sometimes combined into one siegleest, implying that the consumed
service combines several roles.

3The pattern language we developed for managing sequenemdimpcies contains fiérent patterns that all describe one solution to one
and the same problem. In contrast, the pattern languagedoaging data dependencies consists of three patternsaddrdssing one specific
problem. Furthermore, each pattern describéemint solutions to one (pattern-specific) problem. In tledture one can find both kinds of
patterns|(Paikens and Arnicans. 2008).

1. Who decides that data is required from the Data Provider?
(data flow initiation)

Data 2. Who sends a request to the Data

Service request Provider?
Requester @ PR (data request)
’ .
S
Service request DaFa
(+data) Provider

Coordination logic

)

Data

Needy ‘
Service

Provider ~ @

Data 3. How does the data flow between the Data
Provider and the Needy Service Provider?
(data transmission)

Figure 3: Three questions that need to be answered by a spEwifidination scenario that manages a data dependency

2005; Erl, 2007; Goethals, 2008; Haesen et al., 2006; Zrefral.| 2004; Legner and Vogel, 2007; Paci ¢t al., 2008;
Habala et all, 2008)). This literature review yielded thghéforces mentioned below. This set of forces is complete
as far as literature is considered. Practical experiengerenaal other criteria in the future. This is not a fundanaént
problem as the same approach could be applied with a corhptitfierent set of forces. We discuss the forces briefly
below. More details about them, including references tditaeature, can be found A.

EC1 Robustness to changk a service-oriented environment it is critical that tmegmgation of changes due to the modification
of the interface of a service is minimized. Therefore, a deain the data requirements should have minimal impact on the
way in which the Service Provider is consumed.

EC2 Adjustability This criterion is about the ability to change which datagstgo the Service Provider in function of a specific
service request. For example, when managing the data depgntetween the pharmacist and the doctor, it could be that

only information regarding the patient at hand is sent topih@macist or it could be that each time the same fixed set of
patients and patient information is sent.

EC3 Coupling with Data Provider In some situations the data needed is not always providdtidogame Data Provider. Each
time there is a change of Data Provider the party that is sgritita requests to the Data Provider needs to be notified and
modified properly. Similarly, if the new Data Provider hasifietent interface, a change in the implementation of the party
that is interacting with the Data Provider is required.

EC4 Data provider accessibilitySometimes it is possible that the Service Provider or $eriequester does not knavhich
Data Provider can provide the required data (e.g. the phastdoes not know who is the patient’s doctor). In other sase
there can be access restrictions.

EC5 Confidentiality of data requirement#t can occur that a Service Provider's data requiremerg<anfidential (e.g. suppose
that nurses cannot have insight into the pharmacist'snatatecision processes), which means that only a limitedfset
services or even only the Service Provider itself knows Widata is needed in the process of delivering its service.

EC6 Data confidentiality When requesting a Data Provider to send the required dataéatity, it is important to realize that the
provided data can be confidential and therefore there cat @&xieed to limit the number of entities that the Data Pravide
can share the data with.

EC7 Data reusability In some business cases data provided by a Data Provideedshysmore than one Service Provider. In
such situations an optimal coordination scenario limiesrtamber of data requests that are sent to the Data Provider.

EC8 Data format When the Data Provider replies, the data provided is pbssitit in a form that is expected by the Service
Provider. For example, the data format needs to be adapték data should be made anonymous. In short, in some cases

data transformations are desirable before the data is/estby the Service Provider. Dealing withfeéirent data formats is
a common challenge when information is shared among setvice

As discussed in the related work section, there exist massareh papers focusing on optimizing the performance
of data flows, which mainly deal with the centralization werglecentralization question and the resulting number of

7

DATA FLOW INITIATION PATTERN

Active Service Provider Active Service Requester Active Data Provider

________~

SO L. W g g g, W R g gy

e . ————————

4
DIRECT-INDIRECT REQUEST PATTERN

t
|
L}
L}
: Direct request Indirect request
|
1

~ o = B

Direct transmission Indirect transmission

]
L}
[}
requires the application of :
l
\

*——»

__

Figure 4: Relationships between the three patterns

message exchanges. However, although performance ¢gitaam important force for data flow design, we feel it is
not a pure conceptual design issue, as dealing with perfacengequires a lot of knowledge about which implemen-
tation technology will be used. It is for example easy to datre the number of messages sent in a coordination
scenario, but this does not necessarily have to correldtetive performance. Indeed, if the implementation tech-
nology used to realize the data flow entails a lot of overheaegfch message exchange, however big or small the
message is, it would be favorable to opt for a scenario witle@snessage exchanges as possible, even if this results
in some data being sent that is actually not needed by thecgdpvovider (as in the Active Data Provider scenario,
cf. below). However, if it is mainly the size of the data trérs (rather than the number) that impacts performance,
the respective scenarios would be evaluated completé&iretly against this force. Other implementation related
factors may have an impact as well. Therefore, we decidetbrintlude this force in the evaluations. However, once
an implementation technology has been decided upon, tipoped pattern language is perfectly fit to evaluate the
different scenarios, as implemented through this technolggynst the performance forces.

4.2. Pattern overview

Three patterns are used to manage the three aspects of @ dataldncyvara FLow iNrTIATION (See Subsectidn4.3),
DIRECT-INDIRECT REQUEST (See Subsectidn 4.4) antkecT-INDIRECT DATA TRANSMISSION (See Subsectidn 4.5). Each pattern
consists of several solutions, among which a service coarmas choose by considering the evaluation criteria and
the solutions’ consequences. In Figlire 4 each patternusaized in a box (dashed line border) containing both the
pattern name and sub-boxes referring tbedlient solutions in that pattern. The relationships betweethree patterns
are indicated by arrows. An application of thera rFLow INITIATION pattern can function as a first necessary step in
managing data dependencies. The next steps toward a catiodiscenario is indicated by means of the arrows. An
arrow pointing from a pattern sub-bdxto a pattern box8 indicates that the pattern representedBghould be
applied next when a pattern is applied in the way represéntestib-boxA. Although theoretically the three patterns
can be applied in any order, the order shown in Figlire 4 is th&t imtuitive one and will therefore be used further on.

4.3. Data flow initiation pattern
4.3.1. Problem

If a Service Requester sends a request to a Service Pravicken,occur that the Service Provider does not possess
suficient data for completing its internal processing. Therefdditional input data should be collected from other

8

Data
request

Service

Service Data Service

REGIEN G REIEE Provider Requester

@ Data flow
iniation
Service Service Data

request request Provider

Data '1

request &
.

Needy

Needy
Service
Provider

Needy
Service
Provider

Service
Provider

(@ Active SERVICE (b) Active SerVICE REQUESTER (c) Acrive Dara ProviDER
PrOVIDER

Figure 5: DXta FLOW INITIATION

services, which requires a data flow. For example, when aeragiss the pharmacist a febrifuge for a certain patient,
the pharmacist may need more input data (e.g. the risk fonatb bleeding). This raises an important question
regarding the data collection proce¥gho decides that data is required from a Data Provider?

4.3.2. Solutions

There are three possible data flow initiators in a coordimegicenario (see Figures §(a),5(b), nd]5(c)). First, an
active Service Proviper initiates the data flow by sending out a data request (seeostefin Figurd 5(&)). It is not
specified to which entity the Service Provider sends theestjthis is discussed in tlerREcT-INDIRECT REQUEST pattern
described in Subsectidn 4.4. Secondaanve Service RequEsTER initiates the data flow by sending a data request to
the Data Provider (see step one in Figure]5(b)). Third, wihitee previous two scenarios the Data Provider sends out
data upon request of another entity (i.e. the Service PevwidService Requester respectively), in a scenario with an
active Dara Proviper it is the Data Provider itself that decides that it needs mistata (see Figufe 5(c)).

4.3.3. Consequences (evaluation of the solutions)
The solutions presented in Sectlon 41.3.2 should be evalaatainst each force discussed in Sedfioh 4.1. Tdble 1
summarizes all consequences of taex FLow INrTIATION pattern without prioritizing any force or consequence. Whe
applying the pattern in practice the context at hand willedhtavbe considered to determine the most relevant forces to
retain for developing the solution for the case at hand.
For detailed discussion on these consequences we réfepens

4.3.4. Relationship with other patterns

An acTive SErvICE ProviDER Sends out data requests in order to receive the missing dgiat(see step one in
Figure[5(d)). Therect-INDIRECT REQUEST pattern shows who contacts the actual Data Provider withetheest (see
Subsectio4]4). Aactive Service RequesTer sends data requests to the Data Provider (see step one ie[5i)).
As a consequence the Data Provider sends out data. In casecfwa Dara Proviber the Data Provider itself decides
if it needs to send out data. In each of these casesuther-INpIRECT TRANSMISSION pattern shows how the data flows
from the Data Provider to the Needy Service Provider (ses&ioi4b).

4.4. Direct-Indirect request pattern
4.4.1. Problem

If a Service Provider is active, then the Service Providadseut data requests in order to receive missing input
data. This raises the following questioWwhere can an active Service Provider send its data request®?® For
example, if a pharmacist wants to inform himself about tek for stomach bleeding, the pharmacist needs to know
who he can ask this question to. Should he ask the nurse orecaskithe doctor?

9

Active SR Active SP Active DP

Robustness to change - + -
Adjustability + + -
Coupling with Data Provider SR coupled SP or SR coupled n@laog!
Data provider accessibility SR needs access SP or SR neasissac no access required
Confidentiality of data requirements - depends on request depends on data transmission

Data confidentiality depends on data transmission
Data reusability depends on data transmission
Data format depends on data transmission

SR = Service Requester
SP= Service Provider
DP = Data Provider

Table 1: Summary of the consequencesof FLow INITIATION

Data
request
ceccccccadP

Service Data
Requester Provider

Service

Requester

Service Data Service s Data
request Provider request o request
.
.
.
4 S
J

Data ’
request .
q .

Needy
Service
Provider

Needy
...... L Service

@ Provider

(2) DIRECT REQUEST (b) INDIRECT REQUEST

Figure 6: DRECT REQUEST VEI'SUSINDIRECT REQUEST

4.4.2. Solutions

An acTive Service Proviper can send its data requests to two entities, as shown in B{ed and 6(B). First,
anactive ServiCE ProviDEr can send alirect requestwhich means that the data request is sent directly to tha Dat
Provider. Second, attive Service Proviper can send its data request to the Service Requester (sewsstigpRigure
[6(B)), which is supposed to forward the data request to tipeogpiate Data Provider (see step three in figure]6(b)).
This alternative is referred as ardirect request

4.4.3. Consequences (evaluation of the solutions)

The solutions presented in Section 414.2 should be evalwzagainst each force discussed in Sedfioh 4.1. Table
[2 summarizes all consequences of tirect-INpIRECT pattern without prioritizing any force or consequence. Whe
applying the pattern in practice the context at hand willehtovbe considered to determine the most relevant forces
to retain for developing the solution for the case at hand.aFaetailed discussion on these consequences we refer to

Appendix B.2.

4.4.4. Relationship with other patterns

In both scenarios the Data Provider receives a data regsestsfep one in Figufe 6(a) and step two in Figure
[6(B)). As a consequence, data should be received by thecBéPviovider. The@RECT-INDIRECT TRANSMISSION pattern
shows how the data flows from the Data Provider to the Needyi@eProvider (see Subsectionl4.5).

10

Directrequest Indirect request

Robustness to change +)((+)
Adjustability (+) (+)
Coupling with Data Provider SP coupled SR coupled
Data provider accessibility SP needs access SR needs access
Confidentiality of data requirements + -

Data confidentiality depend on data transmission
Data reusability depend on data transmission
Data format depend on data transmission
SR = Service Requester
SP= Service Provider
DP = Data Provider
(+) is inherited from Active SP

Table 2: Summary of the consequence®RECT-INDIRECT REQUEST

Service
Requester

Service

REIE G

@

Data Data

Service Data Service

request Provider request Provider
Needy Needy
Serv.lce Data Semce
Provider Provider
(a) DIRECT DATA TRANSMISSION (b) INDIRECT DATA TRANSMISSION

Figure 7: DRECT DATA TRANSMISSION VEI'SUSINDIRECT DATA TRANSMISSION

4.5. Direct-Indirect transmission pattern
4.5.1. Problem

If a Data Provider received a data request, the requestadstiauld be delivered to the Service Provider. If an
AcTive Data Proviper is used in a coordination scenario, the Service Providarlghadso receive data sent by the Data

Provider. In both cases, the following question comesHigw does the data flow from the Data Provider to the
Service Provider?

4.5.2. Solutions

Data can flow from the Data Provider to the Service Providéwmways. First, the Data Provider can initiate a
direct data transmissigrwhich means that the data is sent directly to the Serviceitkeo(see Figurg 7(h)). Second,
the data can be transmitted from the Data Provider to thei@eRequester and subsequently to the Service Provider.
This alternative is referred to as amlirect data transmissio(see Figurg 7(b)).

4.5.3. Consequences (evaluation of the solutions)

The solutions presented in the previous section should hle@ed against each force discussed in Seffidn 4.1.
Table[3 summarizes all consequences oftiRecT-INDIRECT DATA TRANSMISSION pattern without prioritizing any force
or consequence. When applying the pattern in practice theegkbat hand will have to be considered to determine
the most relevant forces to retain for developing the sofufor the case at hand. One can see for example that

11

issues with confidentiality will favor a direct transmissiolssues on the data format will on the other hand favor
indirect transmission. As a result, in case both transftionand confidentiality are issues (or neither of them)adat
reusability may be the discriminating factor to choose leetwvthe alternatives. For a detailed discussion on these

consequences we referfto Appendix|B.3.

Direct transmission Indirect transmission
Robustness to change depend on initiatiomequest
Adjustability depend on initiatioflequest
Coupling with Data Provider depend on initiatiomequest
Data provider accessibility depend on initiatiomequest
Confidentiality of data requirementsdepends on initiatighequest -
Data confidentiality + -
Data reusability - +
Data format - +

SR = Service Requester
SP= Service Provider
DP = Data Provider

Table 3: Summary of the consequencesRfCT-INDIRECT DATA TRANSMISSION

4.6. Combining the patterns into coordination scenarios

As described in the introduction to the pattern language Ggbsectiof 411) the three patterns discussed above
are building blocks that need to be combined to build coatitim scenarios that manage data dependencies.

Since thepara rLow INITIATION pattern has three solutions, and theecT-INDIRECT REQUEST pattern anchirect-
INDIRECT TRANSMISSION pattern have two solutions, it is, in theory, possible to bora the patterns in twelve fiigrent
ways. However, by following the pattern relationships tvate discussed in Subsectionl4.2 and shown in figlre 4
only eight combinations are possible. This makes sensaubechy definition, only in a coordination scenario with
anactive SErvICE ProviDER it is relevant to decide whether the data request shouldtarsa direct or indirect way.

An acTive ServICE REQUESTER Sends data requests to the Data Provider in a direct manoaxeMara Provipers do
not receive data requests. Figures8(d) to]8(h) represergigfint possible combinatidhsCapitalized words in the
figures’ captions indicate which patterns have been applied

5. Evaluation

Sectior B defined three testable research objectives.disélction we evaluate how the pattern language achieves
these objectives. First, Subsectionl5.1 demonstratethdieoretical elaboration of the pattern language indkkd
to completeness of the language, meaning that it is possildempose every potential coordination scenario using
the patterns that constitute the language. Subsequentge$tion 512 demonstrates the practical utility by degugi
how the pattern language can be used to guide the design afication logic. Finally, Subsectidn 5.3 demonstrates
the practical utility of the patterns in a model-driven evegring approach: it describes how the pattern language was
implemented in a tool that supports and automates the g@ecd BPEL coordination logic.

4As described in the introduction of this section (G&é 4.&)rties ofService RequestgBervice ProvidemndData Providerare stable in these
different scenarios. It is always tBervice Requesténat sends aervice requesb theService Providerwhile thedata requesfdepending on the
scenario) is sent by theervice RequesteBervice Provideor (implicitly) by the Data Provider(i.e. no arroimessage representinglata request
is drawn, meaning that theata Provideritself triggers the data flow.)

12

Service

Requester

Service
request

D:
Y, O™
Needy Rt

Service
Provider

Data
Provider

NG

(a) Active SP withpirect REQUEST andpi-
RECT DATA TRANSMISSION

Data
request

eeeeeep

Data
Provider

Service
Requester

Service

request Data

Provider

(c) Acrive SP with inpirecT REQUEST and
INDIRECT DATA TRANSMISSION

Data
request

et

Data
Provider

Service
Requester

Service Data

request

Needy
Service
Provider

(e) Active SR with INDIRECT DATA TRANS-
MISSION

Service

Requester

Service
request

)/

Needy
Service
Provider

Data

D ———— N
Data @ Provider

(9) Active DP with DIRECT DATA TRANSMIS-
SION

13

Service
Requester

Data

Data
Provider

A

.
Data A

request _ o
a rd

Service
request

Needy
Service
Provider

-
FE TR A

(b) Active SP with DIRECT REQUEST
aNdINDIRECT DATA TRANSMISSION

@
request

ceccccs,
-
-

Service
Requester

. .
. '
. '
Service ¢ Data DaFa
request o request Provider
. '
. '
. '
O ®

Needy
Service
Provider

Data

(d) Active SP with INDIRECT REQUEST
aNdDIRECT DATA TRANSMISSION

@ Data
S request
ervice KRR

Requester .~

Data
Provider

©)

Service
request

Needy
Service
Provider

Data

(f) Acrive SR with DIRECT DATA TRANS-
MISSION

@

Data
Provider

Service Data
Requester

Service
request

Needy
Service
Provider

(h) Active DP with INDIRECT DATA TRANS-
MISSION

Figure 8: Eight possible combinatiofSP= Service Provider, SR Service Requester, DPData Provider)

5.1. Completeness confirmation

The patterns are innovative in the sense that they reprbasittbuilding blocks that can be combined to compose
executable 'coordination scenarios’. A coordination secenshows the actions taken by all involved parties to get
the data from the Data Provider to the Needy Service Providence, the real value of the patterns depends on an
evaluation of thecompositionof the patterns into concrete coordination scenarios. igaction we show thatll
potential coordination scenarios can be composed by cangptihe patterns (cfr. first research objective). In order to
determine the set of all possible coordination scenarioshwéously cannot start from the three questions that form
the basis for the three patterns (see SubseLiidn 4.1). &r tzdndependently calculate the universe of coordination
scenarios, we declaratively specified what a coordinatienario should accomplish and in which message exchanges
a Service Requester, Service Provider and Data Providdoeam/olved. For example, it is easy to understand that
in every coordination scenario there needs to flow data fitenData Provider to the Service Provider.

We have used Prolog (Clocksin and Mellish, 2003; WielemzR863), a general purpose logic programming
language, to calculate the complete universe of coordinacenarios. This declarative language has its roots in
formal logic. Typically, a Prolog program logic is expredsa terms of relations, represented as facts and rules.
A computation is initiated by running a query over thesetia@fs. This allows us to declaratively specify what
a coordination scenario should accomplish (e.g. the semiovider must receive data from an entity; the data
provider must send data to an entity; etc.), so that an execaf the Prolog program (i.e. a query that calculates or
derives all solutions) results into all possible coordimascenarios. The coordination scenarios found by theoBrol
predicate exactly match the coordination scenarios thmbeacomposed by combining the patterns, which confirms
the completeness of the pattern language (cfr. first reBednjective).

contains the complete Prolog program.

5.2. Guided design

In this subsection we describe how the pattern language earséd to guide the design of coordination logic.
More specifically, we show how the pattern language helpstsituct the most appropriate coordination scenarios
in the running example and a real-life insurance case.

5.2.1. Running example
By following the pattern relationships as describeflin 4@ shown in figur€l4 we can construct an appropriate
coordination scenario for the hospital example (see Se&tior problem description):

e Dara rLow INITIATION: Since neither nurses nor doctors want to keep track of wimipht data is required by
the pharmacist, it is probably more desirable to chooseane paarmacisT. Nurses simply want to use some
services provided by the pharmacist. Furthermore, it ipnefierred that changes in data requirements result in
changes to how the nurses work (or consume the pharmaestisss).

o DIRECT-INDIRECT REQUEST: This pattern needs to be applied, because pharmacistemsiglered as active service
providers. Since the pharmacist does not know which dostdreating the patient, it is preferred that the
pharmacist asks the nurse for more information concertiagisk for stomach bleeding (see step two in figure
[9). Subsequently, the nurse can forward the request toghédbctor (see step three in figlide 9). Hence, an
INDIRECT REQUEST iS the most appropriate choice.

o DIRECT-INDIRECT DATA TRANSMISSION: Suppose the risk for stomach bleeding is quite confideintiaimation that
can not be shared with the nurse. Then,ifecr pata TRANSMISSION Scenario is the best solution. Hence, the
doctor should send the information concerning the risktfmmach bleeding directly to the pharmacist (see step
four in figurel9).

The complete solution for this example is shown in figdre 9.

14

Request for
@ notifying the pharmacist

of the risk for stomach bleeding
ceeq

v

»

®

Request for
a medicine for
reducing fever

Risk for
stomach bleeding

® ®

Doctor

The risk for
stomach bleeding

Figure 9: ACTIVE PHARMACIST With INDIRECT REQUEST 8NUDIRECT DATA TRANSMISSION

5.2.2. Insurance case study

We validated the patterns by means of a real-life businese af a Belgian banking & insurance company
(Haesen et all, 2006). As the case involves multiple dataighecs and a large set of data to whiclitdient forces
apply in diferent ways, the case goes beyond the construction of a siagteination scenario: it will require mul-
tiple applications of the pattern language tffelient subsets of data. The case is therefore suited to déterthe
practical utility in complex real life situations. The cas@n be considered a situation in which a consumer wants
his house to be insured together with the house content. Aliied version of the business process consists of the
following tasks: processing the customer’s request, ptesgan dter to the customer, making the contract, sending
the insurance policy to the customer, and payment by theest In the context of this article we only consider the
first task, which deals with the processing of customer rstguel he system supporting this task, which we refer to
as theinsurance request management (IRM) servis&composed of several (component) services: insurang&qu
service, sales service, customer information serviceskb service and external information service. The main
service that is consumed for this task is theurance quote serviceThis service accepts or rejects the request and
needs to calculate the insurance premium in case of acaeptadhis yields a two-staged approach. The acceptance
step investigates whether or not to accept the request $aramce. The second step is the tarification step which
generates a pricefer. The first step requires a substantial amount of data ierdodevaluate all possible reasons for
rejection. On the other hand, a minimum of data may bgaent to provide the customer with a first, rough estima-
tion of the price, purely for informational purposes. Thdata requirements explain why, besides the insurance quote
service, several other services are involved when compdbaIRM service. The insurance quote service needs to
be combined with other services because of specific (dataane

a Information about existing customers The person who wants to have an object insured can be aimexist
a new customer of the insurance company. For an existingmmestmost data will be available at thestomer
information service

b Data concerning descriptions of expensive itemsThe premium of the house content depends on the fact
whether the customer possesses exclusive and expensids,gutch as jewelry or special stamp collections.
The premium increases proportionally to the value of thassessions. The data used to calculate the premium
for the house content can be altered after the construcfitirecapplication. For example the premium for a
stamp collection may initially only depend on the numbertafigps in the collection. After examining past
insurance claims, the insurance company may wish to conaige the exact kind of stamps for the premium
calculation. This means further communication with thet@oner or interactions with aexternal information
servicecontaining price information of expensive objects, aredeeke

¢ Information about new customers All data about a new customer will have to be retrieved by shkes
service which interactively questions the customer.

d Information about blacklisted customers or fraudulent family members. Before the insurance request is
accepted, the insurance quote service needs informatimut glessible fraudulent family members. Further-
more, the insurance quote service needs to check whetheust@mer is present on any blacklists of untrusted

15

payers. This information can be retrieved from a third paggvice which is referred to as the blacklist service
in the rest of this section.

e Base insurance quoteSimplified, an insurance quote can be determined usingeibasrance quote which is
raised or reduced depending on the specific risk estimatiimsse risk estimations and thezt on the quote
are calculated by the insurance quote service. The basmmmiquote, however, is set by the sales service.
Hence, in order to calculate the complete insurance quweydse insurance quote must be retrieved from the
sales service.

In summary, we can consider five main data needs, which alimegome interaction with a service that needs to be
included in the service composition. In terms of the terrtigy as used in this article, the insurance quote service
plays the role of a Needy Service Provider, while the otherises (e.g. sales service or third party service to check
blacklists) play the role of the Data Providers. The entigttcomposes the IRM service is considered as the Service
Requester, since it requests the insurance quote servaiceakh of the data needs, we follow the process described in
Figure 4.1. For each step, we evaluate the criteria as thestinm see Subsections 4)3.3, 4.4.3[and #.5.3, which leads
to the selection of the optimal solution. Finally, for eachianeed the resulting coordination scenario is linked & on
of the eight combinations that were discussed in Subsddifin

a Information about existing customers Information about existing customers can be retrievethftbe cus-
tomer information service of the insurance company. In otdehoose the way to initiate the data flow, we
need to consider criteria EC1-EC4 (sa® rLow INITIATION pattern in Subsectidn 4.3.3). We are in a situation of
rather stable data, so robustness to change (EC1) is notagoohan issue. In terms of adjustability (EC2), we
consider that the data is strongly related to the specificrarece quote request and that we therefore will prefer
a solution that favors adjustability. Furthermore, we grébose coupling (EC3) with the data provider, that is
to say between the insurance quote service and the custofaamation service. As a result of this evaluation
of criteria EC1-EC4, we conclude thatrive INsURANCE QuoTE SErVICE REQUESTER provides the best solution of
data flow initiation. This means the insurance quote sersiitgly expects to receive this information, which
is acceptable because it is rather stable data and consdmeod have to worry that the interface and required
data are changing frequently. The loose coupling betwezimtturance quote service and other services is guar-
anteed, because the Service Requester, which is respofailitiggering the insurance quote service, should
send out a request for customer data to the customer infanmsdrvice. In the case of arcAve Service Re-
QUESTER the pattern of kect-InpiREcT REQUEST Can be skipped. The next step is thus to determine the best way
of data transmission. Two alternatives remain possiblee & need to additionally consider criterion EC6-8
about the confidentionality of data requirements. If the@mer information needed is evaluated as confiden-
tial, thenpirect paTA TRANSMISSION iS better than indirect data transmission (see EC6 evaluati Subsection
[4.5.3). However, in case data format (EC8) is an issue (etgenvthe customer information service does not
provide the data in the correct form, transformation by teevise Requester is needed), the evaluation of this
criterion justifieSINDIRECT DATA TRANSMISSION Via the Service Requester. Assuming that data reusabitityi an
issue and that in addition data confidentiality is importém combined application of the patterns results in
the coordination scenario represented in Fifure 10(ap(bas direct data transmission).

b Data concerning descriptions of expensive itemd-or some customers additional data might be needed. For
example, customers that have large collections of stamgd toebe treated in a filerent way. A precise esti-
mate of the value of the collection is needed to calculatérthigrance premium. Therefore, an insurance quote
service requires detailed descriptions of the stamps eShis information is only needed in certain cases - only
when the customer has exceptionally expensive items indusédwe need to favor a solution that is robust to
changes (EC1). For data flow initiation, this leads us torgptor an Active Proviper. When using an Arive
ProviDEr, the second step is to evaluate whether one needs a direndioedt request. Since the insurance
quote service does not have any knowledge on where to gehthisnation, anNpiREcT REQUEST iS hecessary
(see EC4, data provider accessibility). Next, as with theotypes of data above, for this data two sorts of data
transmission are possible too. First, in the case of conti@énformation (EC6) (e.g. the value of the items
is extremely high), it is better to chooseect pata TRANSMIssION. Second, when transformation of the infor-
mation (ECB8) is a priority above confidentialitypirect pata TRANSMISSION Via the Service Requester is more
appropriate. Assuming that data about the expensive iteaysn@ed to be converted and that confidentiality is

16

not a primary issue, the application of these patternst®buthe coordination scenarios represented in Figure
[I0(b) (based on indirect data transmission).

¢ Information about new customers For the information about new customers the patterns gpéeabin a
similar way. The main dierence is theara proviber, Which can be either a sales service or perhaps the Service
Requester itself (e.g. collected when coordinating a prevprocess task). In any way, the insurance quote
service prefers to have a loose coupling with this Data Blev{EC3), which (again) motivates the choice
for an AcTIVE INSURANCE QUOTE SERVICE REQUESTER for pata FLow INITIATION. Similar to the previous data need,
both DIRECT DATA TRANSMISSION aNnd INDIRECT DATA TRANSMISSION can be useful in certain situations. Assuming
(again) that data reusability is not an issue and that int@edilata confidentiality is important, the combined
application of the patterns results in the coordinatiomade represented in Figure 14(c) (based on direct data
transmission).

d Information about blacklisted customers or fraudulent family members. Checking whether or not a cus-
tomer (or a family member) is on any blacklist, is only a thihgt the insurance quote service can do, because
only this service knows where to get this information. Farthore, only the insurance quote service has access
to the blacklist service. The evaluation of EC4, data prevatcessibility, hence motivates the use okatve
SERVICE PROVIDER (INSURANCE QUOTE SERVICE), USINGDIRECT REQUESTS. Since this data is highly confidential (EC6),
DIRECT DATA TRANSMISSION IS also more appropriate in this case. These choices algpwmeithe fact that the insur-
ance quote service prefers not to share its business riilesking blacklists andr family members) with its
consumers (i.e. a Service Requester) (see EC5, confidgntibtlata requirements, [0 4.3.3). The application
of these patterns results in the coordination scenari@sgprted in Figufe T0(d).

e Base insurance quote For each type of insurance (car, house, etc.) there exisés@ insurance quote, that
is set by the sales service. Both the insurance quote seamit¢he insurance quote Service Requester prefer
a loose coupling (EC3) with the sales service who acts aseapavider in this case. Therefore, it is better to
choose ancTIvE DATA PROVIDER (SALES SERVICE) that sends a set of base insurance quotes to the insuraote qu
service from time to time (e.g. each time the sales servicalds to modify base insurance quotes). In case
of an active data provider no choice needs to be made ab@at dir indirect requests. Based on potential data
transformation requirements (EC8), one can make a choloeeB@pIRECT DATA TRANSMISSION @NCINDIRECT DATA
TRANSMISSION. Assuming that no data transformation is required, theiegiibn of these patterns results in the
coordination scenarios represented in Figure 10(e) (baselitect data transmission).

Hence, a final solution for the management of the data depereteis constructed by combining several coordi-
nation scenarios, each taking care of a particular set af @ae Figure_11). As explained above, the insurance quote
Service Requester takes the role ofsamve Service ReQuEsTER With respect to customer data, while the insurance
guote service takes the role of anrive Service Proviper When it comes to information about the insured items or
confidential background data about customers. In the néogesiion (seE 5.3) we present a tool for pattern-based
coordination and show how this tool uses the patterns torgéman executable coordination scenario.

The conclusion of this validation exercise demonstratasdhleast seven out of eight combinations prove to be
usefulin practice. Moreover, it also demonstrates thattlseno 'one size fits all’ solution. The ideal solution camyon
be obtained by considering the specific characteristicataf dnd applying the suitable pattern for eadfedént set of
data. This allows one to balance théféient requirements and meet several criteria at once. Tatoodeveloped
by applying the patterns has been implemented at the badkingurance company as a new version in replacement
of the existing version because of its improved stabilipb(rstness to change), its capability of handling confidénti
data and its satisfying performance level. Furthermoremdata requirements are changing at the company, the use
of the patterns, including the guiding criteria, makes #ieato adapt the coordination scenarios than before when
coordination logic was designed in an ad-hoc fashion. Hewewore research is needed to quantitatively evaluate
that the use of the patterns contributes to a mdéieient and &ective development of coordination scenarios.

One combination of patterns, namely the scenario repregéntFigurd 8(B), has not been used in this real life
case. Nevertheless, this does not imply that this pattenseésess. Since it is the result of a logical deduction step
on the possible combination of the three basic pattefeisvg Service ProviDER With DIRECT REQUEST and INDIRECT
DATA TRANSMISSION), it has its place in the overview of potential solutions amght still prove useful in future real life
cases.

17

Request
TS information about
R N existing customer
equest ccea,
Management
B .
Sel L)
v
Customer
Process Information
Insurance Request :
Service

Insurance

Quote
Service existing customer

information about

(a) Active SR with pirect REQUEST (eXisting cus-
tomer information)

Request
information about
new customer

Insurance @

Request ®a
e
Management [N
Yt .
Service Y
v
Process Sal§s
Insurance Request Service

@

Insurance
Quote
Service

information about
new customer

(c) Active SR with piRect REQUEST (New cus-
tomer information)

Insurance
Request
Management
Service

Process
Insurance Request

Insurance
Quote

Request
value information

Insurance s==== } External
Request Information
Management :
Service

Service

Value information

Process

Insurance Request Value information

Insurance
Quote
Service

(b) Active SP withiNDIRECT REQUEST aNdINDIRECT DATA
TRANsMIssION (value information

Insurance
Request
Management
Service

Process
Insurance Request

Request

blacklist
information

-y

Insurance
Quote
Service

Blacklist
Service

Blacklist
information

(d) Active SP with DIRECT REQUEST @nd DIRECT DATA
TraNsMissioN (blacklist information)

Sales

f oo Service
Service insurance quote

(e) Active DP with piRecT pata TRANSMISSION (base
insurance quote)

Figure 10: Coordination scenarios required to manage &l digpendencies in the insurance case

18

Request

value
information coooee
..-""" » External
L 4 .
o’ Information
' .
P Service

’
Value
[. .
information
Request information about

Insurance eSS ccccca. o EXisting customer
-

Request e
Management Request information e
3 e about new customer \‘
ervice
ceccccacaa, - A
[[}
% S [
' \4 v
P : Value
rocess infor-
Insurance Request (] mation Sales CUStom.Er
0 - Information
Request g Service :
value g Service
Infor-
mation : Information about
0 new customer
Base

: insurance

0 quote Information about

existing customer
Insurance ¥

Quote & &

Service

---------..---

Request e S
blacklist)

information v

Blacklist

BlacKlist Service
information

Figure 11: Combining coordination scenarios from Figurga} @[I0(d) into a final solution

19

5.3. Implementation

In order to demonstrate the practical utility of the apptgdhbe pattern language was implemented into a tool for
pattern-based coordination in process-based serviceasitigms. This tool also supports the pattern languagedor s
guence dependencies, which helps service engineers toucir(partially) centralized or decentralized coordioat
scenarios for triggering of task execution in the apprdpraader. Since the tool supports both pattern languages, it
enables to design control logic and data flow separatelyghvimieans that, for example, a central control flow does
not necessarily have to imply a central data flow. Beforeudising the tool in detail, we briefly highlight the main
ideas behind pattern-based service composition and ctairoin.

5.3.1. Pattern-based service composition and coordimatio

Pattern-based service composition and coordinatiorsstarn the idea that the services in a service composition
support business process tasks. This means that a senéds teebe able to receive business requests (e.g. for
triggering the execution of a business process task) artiadrevent notifications about the execution of the business
process task it supports (e.g. the completion of the taslgthErmore, a service supporting a business process also
needs the ability to acquire all data that is necessary toutgehis process. Moreover, if the business process task
results into task data output, then the service is suppasedrtd out this data. All the control logic concerning a
service supporting a business process task can be desitriararchestration (e.g. a BPEL process). A skeleton for
this orchestration can be generated automatically baséuedousiness process specification (e.g. a BPMN diagram).
Hence, developers only need to add logic so that, for exgrbpkness requests are translated into the appropriate
actions to start a business process execution.

The main advantage of this approach is that all orchestrafiirming the global interaction and coordination sce-
nario are automatically generated from a business propesifisation after selecting specific coordination patern
Afterwards, it is relatively easy to apply other solutiolms fmanaging data (and sequence) dependencies so that a
different coordination scenario is composed, e.g. becausetafraged context with a fierent tradefy of forces.

Since this article presents the pattern language for magafgita dependencies, the discussion in this subsection
is mainly about how the patterns allow one to automaticadiyarate coordination scenarios that deal with data depen-
dencies. However, designing coordination logic for preeeased service compositions also requires the applicatio
of the pattern language for managing sequence dependefdias pattern language is also supported by the tool.
Additionally, the tool supports more complex coordinatgmenarios in which the required data is provided as the
result of business task execution or in which input data eded to make a decision onfiirent possible branches
for business process continuation. The presentation eéthgtra functionalities is however beyond the scope of this
paper as this would require the description of the sequenmalmation pattern language.

5.3.2. Tool implementation and its application in the iresuwre case study

Figurd 12 visually summarizes the idea of pattern-basediawation by showing the input and output for the ol
One should note that the tool is conceived as a proof-of@phnihat demonstrates the feasibility of the approach
rather than as a full-fledged BPEL generator. In its curremglémentation, little attention has been devoted to
user friendliness, performance issues, etc. Neverthdlesgpresent architecture can be used as a basis for a more
elaborated environment.

Below we will discuss each aspect by explaining how the taallze used in the real-life insurance case described
in Subsection 5.212.

The input for the tool consists of two parts. First, the tamjuires input models that describe sequence and data
dependencies. In BPMN modelhe tool reads all sequence dependencies between busioessptasks (e.g. a
customers insurance request needs to be processed befosai@nce contract is set up). Additionally, it can contain
BPMN data input associations, which link BPMN data objeot8PMN tasks|(OMG|, 2010). Such a BPMN data
input association implicitly defines a data dependencyabse it specifies which data is required to execute a busi-
ness process task (e.g. processing an insurance requeisesdgjacklist information). As mentioned in Subsection
[5.2.2 the data dependencies defined in the real-life inseraase can be situated in a larger business process that
consists of tasks such as processing the customer’s reguesénting anfber to the customer, making the contract,

5The source code of a prototype implementation can be dowatbrom httpywww.econ.kuleuven.ligeert. monsieypubligphd

20

Input models specifying and data depend

BPMN Model Data Dependencies Data Providers
(XML) Model (XML) (WSDL)
0o D ﬁj
Tool for pattern-based coordination in Selected patterns for managing
process-based service compositions sequence and data dependencies
Coordination
Model
(XML)

Output files

Coordination Scenario
(BPEL and WSDL files)

B

Figure 12: Input and output for pattern-based coordination

21

Customer . - New customer
information . . information

Process

> insurance P
request

Price information for
expensive items

(&task completionQuantity="1" id="sid-5699C13D-950E-47F4-96D9-B14CB32EFC87"
| isForCompensation="false" name="Process insuran request" startQuantity="1">
| <incoming>sid-09C7E5A8-8B24-4264-BOBE-EBD25AF1F9A8</incoming>
I}
|
|

<outgoing>sid-FBE3F617-1A00-4D36-95B3-5B5107A1A7F7</outgoing>

<dataInputAssociation id="sid-C2DB3BE9-7448-46C1-9578-12BD768C1F03">
<sourceRef>sid-574502FD-DA7A-4F54-ACOA-AF2DB4BC3AD8</sourceRef>
<targetRef>sid-5699C13D-950E-47F4-96D9-B14CB32EFC87</targetRef>

</dataInputAssociation>

other datalnputAssociations follow here --

Figure 13: Partial BPMN model for insurance case study (ificlg data input association)

sending the insurance policy to the customer, and paymettidogustomer. In this article we are only interested
in the execution of the first task that is about processingssocoer’s request and the data dependencies that come
with this task. Therefore, we can limit the business prodeseription to one task that requires several data objects
(see BPMN model in Figufe13). In this subsection we omitteddata requirement about the base insurance quote.
This data dependency is managed usingarnve Dara Proviper, which implies that the Insurance Quote Service is
also involved in another process that receives updatesehabe insurance quote. This coordination process is in-
dependent from the coordination process managing the ddpandencies. Coordination processes witive Data
Providers are considered trivial and therefore not geadiay the tool. In a separate XML file, thlata dependencies
model(see Figuré14), data dependencies are explicitly defindihking the BPMN data input associations to Data
Providers (e.g. the blacklist information that is requif@dprocessing an insurance request needs to be retriewed fr
the Blacklist service or data provider with 9P4). These Data Providers are also defined in the data deperdenc
model by specifying WSDL details (e.g. in Figlird 14 it is Sfied that blacklist information can be requested from a
data provider with idP4 by invoking the operation with the namequestDataas defined in the WSDL filBlacklist-
Service.wsdl The second part of the input for the tool is ttwordination mode{XML file), which specifies which
patterns need to be used to generate an executable coardise¢nario. This model is the result of following the
design guidelines and applying the evaluation criteria #ne included in the patterns (see Subsediioh 5.2 on guided
design). For each data dependency defined in the data deméeslenodel the coordination model specifies which
pattern solutions are to be used in the generated code togaémadata dependency (e.g. the data dependency about
blacklist information is managed using\@ive SERVICE PROVIDER With DIRECT REQUEST andDIRECT DATA TRANSMISSIONE.

Generated BPEL processes for the Service Requester anastirahce Quote Service (i.e. Service Provider) are
shown in Figuré_16 and Figufell7. In order to test the coresstof the generated BPEL processes we deployed
several test examples, including the example describehlisnsection, to several instances of the OW2 Orchestra
BPEL enginE. All generated BPEL processes were successfully executed.

6. Related work

Zirpins et al. [(2004) propose to make a distinction betwéwrnldgical dependenciethat are modeled by the

Swith respect to the sequence dependencies the coordirmatioiel specifies which BPMN tasks (as defined in the BPMN maatel)to be
coordinated by a singleoordinator (i.e. a single BPEL process orchestrating multiple BPMNd#s Since this article mainly focuses on data
dependencies the coordination model shown in 15 only speaifie coordinator, executing one task (i.e. process insesaequest).

"httpy/orchestra.ow2.0fg

22

Data Providers definitions (i.e. WSDL
information on Data Providers)

<?xml version="1.0" encoding="UTF-8"?>

<dd:dataDependenciesModel bpmnLocation="DataDependenciesProcessBankin

"http://servicecoordination.org/dataDependencies” xmlns:xsi=

"http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation=

"http://servicecoordination.org/dataDependencies DataDependenci

/2dd:dataProviders>

<dd:dataProvider id="DP1l" name="CRMService"

partnerLinkTypeName="DataProviderLink"

receiveOperationName="receiveData" receiveRoleName="DataReceiver"

requestOperationName="requestData" requestRoleName="DataProvider"

wsdlLocation="CRMService.wsdl"/>

<dd:dataProvider id="DP2" name="ExternalInformationService"

partnerLinkTypeName="DataProviderLink" receiveOperationName="receiveData"

receiveRoleName="DataReceiver"

requestOperationName="requestData" requestRoleName="DataProvider"

wsdlLocation="ExternalInformationService.wsdl"/>

<dd:dataProvider id="DP3" name="SalesService"

partnerLinkTypeName="DataProviderLink"

receiveOperationName="receiveData" receiveRoleName="DataReceiver"

requestOperationName="requestData" requestRoleName="DataProvider"

wsdlLocation="SalesService.wsdl"/>

<dd:dataProvider id="DP4" name="BlacklistService"

partnerLinkTypeName="DataProviderLink"

receiveOperationName="receiveData" receiveRoleName="DataReceiver"

requestOperationName="requestData" requestRoleName="DataProvider"

wsdlLocation="BlacklistService.wsdl"/>

\s/dd:dataProviders>

/?dd:dataDependencies>
<dd:externalDataDependency bpmnTaskId="sid-5699C13D-950E-47F4-96D9-B14CB32EFC87"
dataInputAssociationId="sid-C2DB3BE9-7448-46C1-9578-12BD768C1F03"
dataProviderId="DP1" id="DDa" name="Customer Information Required"/>
<dd:externalDataDependency bpmnTaskId="sid-5699C13D-950E-47F4-96D9-B14CB32EFC87"
dataInputAssociationId="sid-C2DB3BE9-7448-46C1-9578-12BD768C1F03"
dataProviderId="DP2" id="DDb" name="Value Information Required"/>
<dd:externalDataDependency bpmnTaskId="sid-5699C13D-950E-47F4-96D9-B14CB32EFC87"
dataInputAssociationId="sid-C2DB3BE9-7448-46C1-9578-12BD768C1F03"
dataProviderId="DP3" id="DDc" name="New Customer Information Required"/>
<dd:externalDataDependency bpmnTaskId="sid-5699C13D-950E-47F4-96D9-B14CB32EFC87"
dataInputAssociationId="sid-C2DB3BE9-7448-46C1-9578-12BD768C1F03"
dataProviderId="DP4" id="DDd4" name="Blacklist_Details_Required"/>

</dd:dataDependencies>

</dd:dataDependenciesModel \

ase.xml" xmlns:dd=

v3.xsd ">

Excplicit Data Dependencies definitions (i.e. links between BPMN datalnputAssociations and Data Providers defined above)

Figure 14: Data Dependencies model specifying Data Proviled data dependencies

23

<?xml vers
<cm:coordinationModel xmln ttp://servic ination.org/coordinationModel" xmlns:xsi=
"http:// 0

.org/200
ecoordina

"http://servi g
<cm:sequenceDependenciesManagement
<cm:coordinator name="S

<cm:bpmnTaskId>sid-5699C13D-950E-47F4-96D9-B14CB32EFC87</cm:bpmnTaskId>
</cm:coordinator>

Model v2.xsd ">

ankingCase.

-/

m;sequenceDependenciesManagement
<cm:dataDependenciesManagement dataDependenciesModel="dataDependenciesModel.xml">
<cm:dataDependencyManagement dataDependencyId="DDa" initiationPattern="active_service_ requester"
transmissionPattern="direct_data_transmission"/>
<cm:dataDependencyManagement dataDepender d="DDb" initiationPattern="active service provider"
requestPattern="indirect request" transmissionPattern="direct data trar
<cm:dataDependencyManagement dataDependencyId="DDc" initiationPattern="active_service_requester"

transmissionPattern="direct_data_transmission"/>
<cm:dataDependencyManagement dataDependencyId="DDd" initiationPattern="active service provider"
requestPattern="direct request" transmissionPattern="direct data transmission"/>
</cm:dataDependenciesManagement>
</cm:coordinationModel>

For each data dependency it is specified
which pattern solutions need to be used
for code generation

Figure 15: Coordination model specifying selected coatitim patterns

interaction logic and theperational coordinatiorthat refers to the procedure or method that is utilized t@eef

the logical dependencies. We make a distinction betweeneseg and data dependencies. Similarly, the opera-
tional coordination matches our vision on coordinationichiis about managing the sequence and data dependencies.
Zirpins et al. [(2004) argued that while workflow processgmesent the logical dependencies of interactions (i.e.
causal and data relationships of message exchanges) teeysirinultaneously act as instructions for their coordi-
nation on the execution-level by distributed workflow magragnt systems. As such, the coordination procedure
emerges only implicitly as a sidefect of dependencies from the interaction logic and not beead application-
specific reasons.

However, there are in most cases multiple alternativeg®enforcement of the abstract interaction logic. There-
fore|Zirpins et al. |(2004) suggest that a technical soluf@mservice composition should consist of a combination
of design and implementation patterns.d@sign patterrcorresponds to the interaction logic that only specifies the
generic process characteristics, whileimuplementation patterrefers to the refinement of the interaction logic that
is needed for the concrete coordination of services. Zérpiral. [(2004) state that the criteria for the choice of the
most appropriate coordination pattern must be specifiedmalied coordination policies. Aoordination policyde-
scribes the #ect of a coordination variant in terms of specific (non-fimal) service properties and thereby controls
the choice of alternatives. In summary, we can concludeiththiis article we are looking for both implementation
patterns and coordination policies (Zirpins etlal., 2004pifis and Lamersdorf, 2004). The implementation patterns
allow us to systematically construct coordination scesnd the coordination policies make it possible to comstr
the most appropriate coordination scenario in a certaimbas context.

Barros et al..(2005) have proposed a sedarvice interaction patterngiming to consolidate recurrentinteraction
scenarios in orchestrations and choreographies, ancabtftem in a way that provides reusable knowledge. Further-
more, the service interaction patterns are intended f@saggg an orchestration or choreography language for-its in
teraction modeling capabilities. In the past such evabmativere conducted for BPEL (Barros etlal., 2005), WS-CDL
(Decker et al., 2006), BPMN (Decker and Puhlmann, 2007; Peakd Barros, 2008) and BPEL4Chor (Decker ét al.,
2007). Although the service interaction patterns may bepmsad through operators expressing flow dependencies
(e.g. sequence, choice, etc.) (Barros and Borger, 20@5juidelines exist on how to combine the patterns to con-
struct coordination logic that manage data dependencies.

Zdun et al.|(2006) have proposed a pattern-based archis¢frmmework for SOAs. In their reference architecture
the coordination logic in service compositions is refen@és theprocess integration logicSince both a business
process and coordination logic are represented using gsdlmvs, Zdun et al. (2006) propose to make a distinction
between two general types of process flomsicroflowrepresenting the higher-level business process, and fiaaro

24

& | receive_Receive_Customer_Request_completed_event

= J’

= Processing_Customer_Request-controller

= prepare_business_request_for_Processing_Customer_Request

......

& send_business_request_for_Processing_Customer_Request

Customer_Information_Required

.

ACTIVE SERVICE
= prepare_data_request_for_Customer_Information_Required BEQUESTER
sending request for
i i Customer
§> request_for_Customer_Information_Required Information
! New_Customer_Information_Required 5
= ACTIVE SERVICE
REQUESTER
= prepare_data_request_for_New_Customer_Information_Required sending request
Parallel for
! §> request_for_New_Customer_Infoermation_Required New Custqmer
Information
{ Value_Infermation_Required

.
Y

Service Requester
@ | receive_indirect_request_for_Value_Information_Required

receiving and
= prepare_data_request_for_Value_Infoermation_Required

forwarding
INDIRECT REQUEST
for Value
Information
-4 request_for_Value_Information_Required
=

Figure 16: Generated BPEL process for the Service Requester

25

ISIPOR[G SUIAISOSI + UOTIBULIOU]

anbsysIawoIsNo sassa00.d 1ey) 801AI8S 810Nb 8oURINSYUSPINOIG 82IAIBS 8U) 10} Ssao0id T3dg parelsuss /T ainbi4

UOREdIIOUTURAS T PUIS %

uonedyoNuaAa asedaud =

uonRIYNONIUAS

uoneurroju]

ISTPRR 10J LSHNOHY IDIMIQ

Burpuss YA1SANOHY ADIANHS HALLOY

uuSuommSmm04|uxO>:_ &

Buibbojasedaid =

UONBULIOJU] SN[BA SUIATII +

UODeULIOJU] an[eA I0J ISANOTY LOTIIAN]

Burpuss WHLSANOTY HDIAYAS HALLOY

paanbayTs|Ie3 @ ISR g 105 |eAIRIA T RIRp [

pauinbayTs|ielagTisIpoe|g 0y sanbas &

paunnbayTs|ie3agTIsIPPe|g 105 3sanbasTelep T panpTasedaid =

paunnbayTspeagTisipe|g 2beusw

paninbay uonewuou aNRATI0) |eAIRD3ITRIRP [
pannbay uonewuour anjep 105 353nbas \m_

pasnnbay uonewuojuranjep 10§ 35anbas elepTPanpualedand =

pasnbay uonewuojuranjep abeuew

pa1inbay uoneWIO UL I3WO0ISN) M3\ 104 |eAaIadal elep (&

paunbay uonewoul IRWoSN)" MaN 3beuew

paninbay uonewIoulI3W0ISNY) 104 |eAadal elep (&

pasnnbay uonewuojur IRWoIsN) abeusw

UOTBULIOJUJ ISWIOISND) MAN
BurATeDaI 19p1AOI] JDIAISS

uonnIR"sanbay 1awosny BuissaroigTisanba a3

UOTINIRXD
[emered

sanuapuadageieq |ewepg abeuepy puyisanbay ssausng aME0ay o

UORULIOJU] JUIOISND)
SUTAISDaI ISPIAOIJ JDIAISS

3duanbag =

26

N
-

@ Nurse @
(:) Nurse Rl
< —
P ~ .
. . Request for Request for
\ r k for
. r
in
nach bleedin;
Doctor
Doctor
@ The risk for

stomach bleeding

5

€--ne

4-.'-"‘-

(a) Central data flow (b) Decentral data flow

Figure 18: Two possible data flows for hospital example

addressing the process flow within a macroflow activity. Tiséirtttion between micro- and macroflow is a concep-
tual decision in order to be able to design process stepsatght level of granularity when designing at the long
running business process level (macroflow) or the shortingnmore technical level (microflow) (Hentrich and Zdun,
2006). Typically, a microflow consists of coordinated seevinteractions. However, no patterns were referenced for
constructing such service interactions systematicatlywere patterns referenced fofférent sorts of microflow (i.e.
templates or coordination styles).

Data dependencies are related to tlada flowconcept in service compositions. In general, data flow can be
defined as the service interactions that are necessaryrfdingedata from one service that can provide certain data to
another service that needs that data (Barker et al., 20081),Y2003; Weber et al., 2003; Charfi and Mezini, 2007).
A data flow thus specifies how data dependencies are manadetefdre, we also compare our work to studies
that specifically contain approaches to identify data ddpanies and realise data flows (possibly proposifigint
alternatives) in a service composition. We illustrate thsutts of these studies by means of the running example
presented in Sectidn 2. We will show that these studies doowar all aspects that are important for the design of an
appropriately coordinated service-based system.

In the descriptions below, we use two coordination scesdnothe hospital example, which are represented in
figured18(g) and I8(b). Each arrow corresponds to a messagbetween two entities. The dashed arrows refer to
service invocations, while the solid arrows denote thedfiemof data between two entities. The semi-dashed arrow
(as used in figurg I8(a)) indicates that the data is includele invocation message. While in figlire I8(a) all data
passes via the nurse (central data flow), the data flow in fjj8fe} is decentral, since data flows directly from one
service to the other. As we will show below, the contribusa@i many studies can be easily explained by means of
this small example consisting of two possible coordinasicenarios.

Barker et al.|(2008b) and Barker et al. (2008a) have predent¥eb services based architecture that allows cen-
tralizing component invocations (centralized control fJamd decentralizing data flows (similar to figlire I8(b)).sThi
architecture consists of a centralized orchestrationrentfiat issues control flow messages to Web services taking
part in service composition. However, enrolled Web servizan pass data messages among themselves, as in a peer
to peer model. The architecture is mainly based on the idea oélledproxies which are deployed in the vicinity of
Web services. These proxies realize the mdiieient data flow between component services.

Liu et all (2002&a/b) have published a mathematical modeishomuilt to compare the data flow performances. They
concluded that decentralized data flow is in general supariperformance (i.e. the service composition in figure
[18(b) outperform§ I8(R)). Subsequently, they developetbwa-Based Infrastructure for Composing Autonomous
Services (FICAS) (Liu et al., 2002a,b). Autonomous serwvigee built to support the service access protocol, which
enforces the explicit separation of data flows from contmkfl. In FICAS the so called autonomous services are
implemented by wrapping each software application or seriito an autonomous service with a mediator.

The infrastructure based on so called service invocatiggérs, introduced by Binder etlal. (2006), is very sim-
ilar to FICAS. In this infrastructure service invocatioiggers also act as proxies for individual service invoaadio
Triggers collect the required input data before they invthie service. Moreover, they forward service outputs to
exactly those services that need the output. In order to mséef triggers, business processes are decomposed into

27

sequential fragments, and the data dependencies are enwidbim the triggers. Once the trigger of the first service
in a business process has received all input data, the éxeafithat service is started and the outputs are forwarded
to the triggers of subsequent services. Consequentlyetivéece composition is implemented in a fully decentralized
way, the data is transmitted directly from the producer ke@hsumers.

Balasooriya et al.l (2005) use the same ideas for decemi@gldata flows. In particular, they create a proxy
wrapper around each Web service. The proxy wrappers emleecbtirdination logic so that instances of wrapped
Web services become stateful self-coordinating web abjgdbwever, the proxy wrappers need to interact with the
actual Web service to complete each method invocation.

We can conclude that several approaches exists that cataitéonative data flows. The proposed architectural
infrastructures for such data flows often use the same idessoping each component service with additional logic that
decides where to send input or output data. Obviously, tidssstructures are valuable and useful when one wants
to implement a specific data flow. However, the focus on thelpro of designing the data flow itself is rather limited.
Furthermore, as we will show below, it remaingidiult for a service composer to construct a well coordinagedice
composition. There are two main reasons why the currentagpies are not entirely adequate for this purpose:

1 As most approaches have only a limited focus on designiagl#tta flow, these studies fail to systematically
analyze the coordination problem. Most approaches allogirfqalternative data flows, but do not provide a
systematic way of building éierent coordination scenarios nor do they analyze the adgasatand disadvan-
tages of alternatives. As a consequence, they fail to exialysidentify all possible coordination scenarios.
The approaches mostly propose techniques for decentiglifdta flows in service compositions. Applied to
the hospital example, this would mean that a scenario sush@sn in figurd I8(%) can be transformed into
a scenario such as shown in fig{ire IB(b). However, one caly sasi that there are more possibilities. For
example, the scenario represented in figuie 19 containfexatit coordination scenario. In this scenario the
pharmacist requests and receives the risk informatioriljréom the doctor, which can be considered as yet
another diferent way of managing the data dependency between the ptiatramad the doctor. Other possible
scenarios were illustrated in the section discussing theing example (see Figuries 3(a) and R(b)).

2 The main motivation behind existing approaches are pmdace issues (i.e. communication overhead, etc.).
Only the work by Balasooriya et al. (2005) recognizes thaedéral data flow can be required due to security,
privacy, or licensing imperatives. However, when evahtheir infrastructure, they only focus on the perfor-
mance aspect. To the best of our knowledge, no studies abtaitldpendency management take into account
other aspects that could influence the choice of a specifecftat solution such as data confidentiality, loose
coupling or robustness to change. This can result in badsuboptimally coordinated service compositions
and service-based systems. For example, the pharmacistoaar in the decentralized data flow scenario
shown in figurd 2(§) are not optimally coordinated. This i® da the fact that nurses probably should not
need to understand which data is required by the pharma&disses simply want to consume the pharmacist's
services, and it is to be avoided that changes in data regairs on behalf of the pharmacist result in changes
in how nurses need to work (or consume the pharmacist’'scsiHence, the scenarios represented in figures
[2(@) andIP are probably more appropriate, because in tbesargos the nurse does not have to know which
data is needed by the pharmacist. This example illustratggdbustness to change is another useful criterion
to be considered next to performance issues.

7. Conclusion

When services are composed into service-based systenagdigm of a data flow is a crucial part of the service co-
ordination. This often occursin an ad hoc fashion withoyttanl supporti(Papazoglau, 2005; Papazoglou and Van dereieu
2007). The pattern language and tool presented in thideagiovide a systematic way of composing coordination
scenarios from fundamental building blocks so that the dioation scenario manages all data dependencies.

While related work on the (alternative) design of data flowsarvice compositions is mainly focused on optimiz-
ing the performance, the pattern-based approach propesked paper analyzes the advantages and disadvantages of
each design alternative by considerimgltiple evaluation criteria or pattern forces, including robustt® change,
loose coupling and data confidentiality. The approach dwitthe problem of managing a data dependency into three

28

©)

Request for
for

Doctor
The risk for
stomach bleeding

Figure 19: An alternative data flow for the scenarios repreeskin figure§ I8(%) arjd 18]b)

subproblems, each addressed by a separate pattern. Inatatibrspresented in a particular pattern forces are bal-
anced diterently. By giving a weight to the forces, service composars be guided towards the most appropriate
coordination scenario in the context at hand.

In Section B three objectives were defined that were useddluae the pattern language in Sectidn 5. First,
we demonstrated the practical utility of the pattern largguas guidelines for developers by applying it in a real-life
insurance case. As the case involves a large set of data th difierent forces apply in dierent ways and multiple
data providers, it demonstrated the practical utility imgdex real life situations that require multiple applicais of
the pattern language. Second, we showeddhgtotential coordination scenarios for managing a data digresy
can be composed by combining the patterns of the patterruéaygg The fact that the pattern language presented
in this paper is complete, has important consequences éowHy in which coordination logic is constructed in
the future. In the past researchers argued that an overasispbn service interactions is at the expense of other
aspects like business goals (Ko etal., 2009; Koubaraki®émbusakis, 1999; Andersson et al., 2005). However,
since all potential coordination scenarios can be compéreed the patterns, it makes no sense anymore to spend
expensive time designing coordination scenarios at thel l&vservice interactions and message exchanges. Third,
the patterns proved to form a good basis for configurable iriodeode transformations (Zimmermann et al., 2006),
making it possible to automatically generate executablEIBBoordination scenarios. In line with the principles
of the Model-Driven Architecture (Kleppe et/al., 2003) itntobutes to an ficient (e.g. automatically generated
coordination scenarios) andfective (e.g. less errors and more consistency) developafesgrvice composition.
Developers do not need to repeatedly re-encode the samenraptation patterns, resulting in an increased reuse. The
patterns presented in this paper were successfully impltaden a tool for pattern-based service composition and
coordination. This showed that the patterns can be combiitadhe patterns for managing sequence dependencies,
which makes it possible to design data flows independerain fthe control flow (e.g. central control flow combined
with a decentral data flow).

The core results presented in this paper were written asrpattonstituting a pattern language. The use of pat-
terns as a description technique immensely facilitatesdmemunication of the research results. Although we have
successfully applied the patterns to automatically gegaeraordination logic from business process specifications
people are the prime audience for patterns. Patterns foymeaadized but common vocabulary that software archi-
tects and developers can use to discuss particular prolileanhsrise in their projects, resulting into a better joint
understanding of specific problems and solutions to thesiglgms|(Buschmann etlal., 2007). Furthermore, previous
research has shown that patterns improve the repeatahiipility and reuse of design practices (Ng et al., 2006;
Prechelt et all, 2001).

References

Andersson, B., Bider, I., Johannesson, P., Perjons, E5.200wards a formal definition of goal-oriented businesscess patterns. Business
Process Management Journal 11, 650-662.

Balasooriya, J., Padhye, M., Prasad, S.K., Navathe, SOB5.2Bondflow: A system for distributed coordination of witokvs over web services,
in: Proceedings of the 19th IEEE International Parallel Bigtributed Processing Symposium (IPDPS 2005) - WorkshdgBE Computer
Society, Washington, DC, USA. p. 121.1.

29

Barker, A., Weissman, J.B., Van Hemert, J., 2008a. Elinmigathe middleman: peer-to-peer dataflow, in: Proceedirighen17th international
symposium on High performance distributed computing (HFIDA8), ACM, New York, NY, USA. pp. 55-64.

Barker, A., Weissman, J.B., Van Hemert, J., 2008b. Orchtisg data-centric workflows, in: Proceedings of the 200ghEi IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 20@8tH Computer Society, Washington, DC, USA. pp. 210-217.

Barros, A., Borger, E., 2005. A compositional framework $ervice interaction patterns and interaction flows, inu,Ll& K., Banach, R. (Eds.),
Formal Methods and Software Engineering. Springer-VeBadin Heidelberg. volume 3785 dfecture Notes in Computer Sciengp. 5-35.
Barros, A., Dumas, M., ter Hofstede, A.H., 2005. Servicerattion Patterns, in: Van der Aalst, W.M.P., Benatallah,@sati, F., Curbera, F.
(Eds.), Business Process Management. Springer-Verldm Btgidelberg. volume 3649 dfecture Notes in Computer Scienpp. 302—-318.
Binder, W., Constantinescu, |., Faltings, B., 2006. Dewgized orchestration of composite web services, in: Rrdicgys of the IEEE International

Conference on Web Services (ICWS 2006), IEEE Computer 8ptMashington, DC, USA. pp. 869-876.

Buschmann, F., Henney, K., Schmidt, D., 2007. Pattermtetesoftware architecture: On patterns and pattern layggualohn Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex, Edglan

Charfi, A., Mezini, M., 2007. AO4BPEL: An Aspect-oriented tErsion to BPEL. World Wide Web 10, 309-344.

Clocksin, W., Mellish, C., 2003. Programming in PROLOG {friEdition). Springer-Verlag Berlin Heidelberg, New YoiXY, USA.

Decker, G., Barros, A., 2008. Interaction modeling usingnbpin: Proceedings of the 2007 international conferencéBosiness Process
Management (BPM 2007), Springer-Verlag Berlin Heidelbgm 208—-219.

Decker, G., Kopp, O., Leymann, F., Weske, M., 2007. BPEL4CHgtending BPEL for Modeling Choreographies, in: Prodegs of IEEE 2007
International Conference on Web Services (ICWS 2007), IEBEputer Society, Washington, DC, USA. pp. 296 —303.

Decker, G., Overdick, H., Zaha, J., 2006. On the SuitabdftyVS-CDL for Choreography Modeling, in: Proceedings of Meten, Konzepte und
Technologien fiir die Entwicklung von dienstebasierteiorimationssystemen (EMISA 2006), Citeseer.

Decker, G., Puhimann, F., 2007. Extending bpmn for modelomgplex choreographies, in: Proceedings of the 2007 OTMéZienated interna-
tional conference on On the move to meaningful interneesyst(OTM 2007), Springer-Verlag Berlin Heidelberg. pp. 23—

Erl, T., 2007. SOA Principles of Service Design. Prenticdl &R, Upper Saddle River, NJ, USA.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Desadterns: elements of reusable object-oriented softwadedison-wesley Reading,
MA.

Goethals, F., 2008. Important Issues for Evaluating I@teganizational Data Integration Configurations. Eledgalournal Information Systems
Evaluation 11, 185-196.

Habala, O., Simo, B., Gatial, E., Hluchy, L., 2008. Autornatata reuse in grid workflow composition, in: Proceedingthef8th international
conference on Computational Science, Part |, SpringeeayeBerlin, Heidelberg. pp. 194-202.

Haesen, R., De Rore, L., Snoeck, M., Lemahieu, W., Poelnan2006. Active-passive hybrid data collection, in: Peaiegs of the 11th
European Conference on Pattern Languages of ProgramsREaifd2006), pp. 565-577.

Hentrich, C., Zdun, U., 2006. Patterns for process-orgefitéegration in service-oriented architectures, in: Beatings of the 11th European
Conference on Pattern Languages of Programs (EuroPLoB.2006

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Desigmse in information systems research. MIS Quarterly 28105.

Janssen, M., Feenstra, R., 2008. Socio-technical desigereice compositions: a coordination view, in: Proceeslinfjithe 2nd International
Conference on Theory and Practice of Electronic Governd@EGOV 2008), ACM, New York, NY, USA. pp. 323-330.

Kleppe, A.G., Warmer, J., Bast, W., 2003. MDA Explained: TWedel Driven Architecture: Practice and Promise. Addistiesley Longman
Publishing Co., Inc., Boston, MA, USA.

Ko, R.K.L., Lee, S.S.G., Lee, E.W.,, 2009. Business procemsagement (BPM) standards: a survey. Business Procesgybtaeat Journal 15,
744-791.

Koubarakis, M., Plexousakis, D., 1999. Business procesieftiog and design - a formal model and methodology. BT Tetdgy Journal 17,
23-35.

Legner, C., Vogel, T., 2007. Design principles for b2b seesi- an evaluation of two alternative service designs, imcéedings of IEEE
International Conference on Services Computing 2007 (STZR pp. 372-379.

Liu, D., Law, K.H., Wiederhold, G., 2002a. Analysis of intajon models for service composition, in: Proceedingshef 3rd international
workshop on Software and performance (WOSP 2002), ACM, Newk,YNY, USA. pp. 158-165.

Liu, D., Law, K.H., Wiederhold, G., 2002b. Data-flow diswiipn in FICAS service composition infrastructure, in: &edings of the 15th
International Conference on Parallel and Distributed Cating Systems (PDCS 2002), ISCA, Louisville, Kentucky USA.

Malone, T., Crowston, K., 1994. The interdisciplinary stud coordination. ACM Computing Surveys (CSUR) 26, 119.

Metzger, A., Pohl, K., 2009. Towards the Next Generationef/f£e-Based Systems: The S-Cube Research FrameworlanrEek, P., Gordijn,
J., Wieringa, R. (Eds.), Advanced Information Systems Begjing. Springer-Verlag Berlin Heidelberg. volume 5569 ecture Notes in
Computer Scien¢ep. 11-16.

Monsieur, G., 2010. Pattern-based Coordination in Prebased Service Compositions. Ph.D. thesis. Faculty ofr&ssi and Economics,
Katholieke Universiteit Leuven.

Monsieur, G., Snoeck, M., Lemahieu, W., 2010. Managing erqgel dependencies in service compositions, in: Procezdintipe 15th European
Conference on Pattern Languages of Programs (EuroPL0oB.2010

Ng, T.H., Cheung, S.C., Chan, W.K., Yu, Y.T., 2006. Work eigece versus refactoring to design patterns: a contreligetriment, in: Proceed-
ings of the 14th ACM SIGSOFT International Symposium on Faiions of Software Engineering (SIGSOFT /BSE-14), ACM, New York,
NY, USA. pp. 12-22.

OASIS, 2007. Web Services Business Process Execution bgegWS-BPEL) Version 2.0. OASIS Standard.

OMG, 2010. Business Process Model and Notation (BPMN) wargi0. OMG Document (di2010-06-05).

Paci, F., Ouzzani, M., Mecella, M., 2008. Verification of @ss control requirements in web services choreographyrimceedings of the 2008
IEEE International Conference on Services Computing - v, IEEE Computer Society, Washington, DC, USA. pp. 5-12.

Paikens, A., Arnicans, G., 2008. Use of Design Patterns iR-Bledsed Web Application Frameworks. Scientific Papers éftgity of Latvia,
Computer Science and Information Technologies 733, 53-71.

30

Papazoglou, M., 2005. Extending the service-orienteditathre. Business Integration Journal 7, 18-21.

Papazoglou, M., Delis, A., Bouguettaya, A., Haghjoo, M.9719 Class library support for workflow environments and mgpilons. |IEEE
Transactions on Computers 46, 673—686.

Papazoglou, M., Van den Heuvel, W.J., 2007. Service orikatehitectures: approaches, technologies and reseatgsisThe VLDB Journal -
The International Journal on Very Large Data Bases 16, 415.

Pdters, K., Tuunanen, T., Rothenberger, M., Chatterjee, 8728 design science research methodology for informatysiesns research. Journal
of Management Information Systems 24, 45-77.

Prechelt, L., Unger, B., Tichy, W., Brossler, P., Votta, 2001. A controlled experiment in maintenance comparingjgiepatterns to simpler
solutions. |IEEE Transactions on Software Engineering 4+1344.

Rising, L., 1998. The patterns handbook: Techniques,egfies, and applications, Cambridge University Press.meld3 ofSIGS reference
library series

Rising, L., 1999. Patterns: a way to reuse expertise. |EEBEhtonications magazine 37, 34-36.

RosettaNet, n.d. RosettaNet Partner Interface Procg$Bé&Rs0). RosettaNet Standard.

W3C, 2005. Web Services Choreography Description Lang(& CDL) Version 1.0. W3C Candidate Recommendation.

Weber, R., Schuler, C., Neukomm, P., Schuldt, H., Schek, BOD3. Web service composition with O’'GRAPE and OSIRIS Hroceedings of
the 29th international conference on Very large data badeBB 2003), VLDB Endowment. pp. 1081-1084.

Wielemaker, J., 2003. An overview of the SWI-Prolog progmaing environment, in: Proceedings of the 13th Internatiédlarkshop on Logic
Programming Environments, Department of Computer Scigfdé.Leuven, Leuven, Belgium. pp. 1-16.

Yang, J., 2003. Web service componentization. Communicsitof the ACM 46, 35-40.

Yang, J., Papazoglou, M., Van den Heuvel, W.J., 2002. Tagkte Challenges of Service Composition in E-MarketplagesProceedings of
the 12th International Workshop on Research Issues in DaginEering: Engineering E-CommefEeBusiness Systems (RIDE 2002), IEEE
Computer Society, Washington, DC, USA. p. 125.

Zdun, U., Hentrich, C., Van der Aalst, W.M., 2006. A surveyafterns for service-oriented architectures. Internafidournal of Internet Protocol
Technology 1, 132-143.

Zimmermann, O., Koehler, J., Leymann, F., 2006. The rolercifiiiectural decisions in model-driven soa construction,Proceedings of the
4th International Workshop on SOA and Web Services, codutatlst International Conference on Object-Oriented Rrogring, Systems,
Languages, and Applications.

Zirpins, C., Lamersdorf, W., 2004. Service Co-operatiottdPas and their Customised Coordination, in: Proceedaighe Second European
Workshop on Object Orientation and Web Service (EOOWS 2004)

Zirpins, C., Lamersdorf, W., Baier, T., 2004. Flexible atioation of service interaction patterns, in: Proceedinfshe 2nd international
conference on Service oriented computing (ICSOC 2004), AN& York, NY, USA. pp. 49-56.

Appendix A. Pattern forces (evaluation criteria)

EC1 Robustness to changk a service-oriented environment it is critical that thegagation of changes due to the
modification of the interface of a Service Provider is mirded. Consumers prefer to rely on a Service Provider
that only rarely changes its interface. A change in the dadairements should minimally change the way the
Service Provider is consumed. This evaluation criteriaeliated to the service design principle called service
reusability, because a service can be considered morebleus has a relatively simple and stable interface
(Erl,12007).

EC2 Adjustability A specific coordination scenario consists of a set of seriiiteractions so that data available at
the Data Provider is sent to the Service Provider. Thisrioites about the ability to change which data is sent
to the Service Provider in function of a specific service esjuFor example, in coordination scenarios to man-
age the data dependency between the pharmacist and the thigtriterion can be used to make a distinction
between coordination scenarios in which information rdey aspecificpatient is sent to the pharmacist and
coordination scenarios in which information regardingltiple patients are sent to the pharmacist. Depending
on the specific business context, a certain level of adjigyaban be desired. For example, in the hospital
setting dficiency issues can motivate coordination scenarios with hjustability, so that pharmacists only
receive information they really need (e.g. patient spedificrmation instead of information regarding multi-
ple patients). This evaluation criterion is derived frone #ervice design principle called service granularity
(Legner and Vogel, 2007; Erl, 2007). Low adjustability inesl a fine-grained data transmission, while high
adjustability results into more coarse-grained data exgés.

EC3 Coupling with Data Provider In some situations the data needed is not always providethidpame Data
Provider. Each time a service takes over the role of Datai@eothe party that is sending data requests to
the Data Provider needs to be notified and modified propeiiyil&ly, each change in the interface of the
Data Provider, requires a change in the implementationep#urty that is interacting with the Data Provider.

31

EC4

EC5

EC6

EC7

ECS8

Therefore, a common principle in service design calleddammsupling is often applied (Etl, 2007). This means
that preferably a Service Provider's implementation dagshave to rely on several other services.

Data provider accessibilitySometimes it is possible that the Service Provider doekmm# whichservice can
provide the required data (e.g. the pharmacist does not kvfumis the patient’s doctor). In other cases it can
occur that the Service Provider does not haveesdo the specific Data Provider (e.g. the pharmacist does not
have the phone number of the patient’s doctor or is not alibiwesall the doctor directly). However, it can also
occur that only the Service Provider has access to the rigtd Brovider (e.g. only the pharmacist can request
information concerning a potential risk for stomach bleggli This evaluation criterion is inspired by research
on the verification of access control requirements in chgnashies (e.d. Paci etlal. (2008)).

Confidentiality of data requirementdn order to complete its internal processing, a Servicevidey needs
data. It can occur that these data requirements are conéilémy. suppose that nurses cannot have insight
into the pharmacist’s internal decision processes), whiglans that only a limited set of services or even
only the Service Provider itself knows which data is needethe process of delivering its service. This
evaluation criterion is related to the service design ppieccalled service abstraction, because it is about
hiding information about the Service Provider’s data reguients|(Erl, 2007).

Data confidentiality When requesting a Data Provider to send the required daa entity, it is important

to realize that the provided data can be confidential ancttber there can exist a need to limit the number
of entities that the Data Provider can share the data witletlazds, 2008). For example, a Data Provider can
demand that the provided data is only sent to the entity @Sgrvice Provider) that needs the data and that it
cannot be shared with other Service Providers or the SeRacgiester.

Data reusability In some business cases data provided by a Data Provideedshysmore than one Service
Provider. In such situations an optimal coordination sderlamits the number of data requests that are sent to
the Data Provider. This evaluation criterion is often usegrid workflow composition (Habala etlal., 2008).

Data format When the Data Provider replies, the data that is providgmbssibly not in a form that is ex-
pected by the Service Provider. For example, the data fonerds to be adapted, or the data should be made
anonymous. In short, in some cases data transformatiordeaiable before the data is received by the Ser-
vice Provider. Dealing with dlierent data formats is a common challenge when informatishased among
services|(Goethals, 2008).

Appendix B. Pattern consequences

Appendix B.1. Data flow initiation

EC1

EC2

EC3

Robustness to changkn case of amcrive Service REQUESTER Or anactive Data Proviper every change in the
Service Provider’s data requirements results in a chantpeiimplementation of the Service Requester or Data
Provider. In contrast, in thective Service Proviper scenario these changes are only reflected in modified data
requests sent by the Service Provider itself. Therefomeswmption ofactive Service Provipers is considered

to be rather stable.

Adjustability. An active Service ReQUESTER sends both a service request to the Service Provider andaa dat
request to the Data Provider. Hence, it is obvious thatcatve Service ReQuester can adjust the data request
to a specific service request. Aorive Service Proviper can also adjust the data request to a specific service
request, because it receives, per definition, service stgfiom the Service Requester. In contrastdnve

Dara ProviDer scenario control and data flow are always separated (i.thenghe Service Requester nor the
Service Provider is sending data requests to the Data RnQyighich means the data sent by the Data Provider
can not be changed in function of a specific service request.

Coupling with Data Provider It is clear that amcrive Service Proviper is coupled with the external world,
because it needs to send out data requests to known extartiabp In contrast, in a case of arive SErVICE
Requester and active Data Proviper the Service Provider simply expects that the data is pravatesome

32

point in time. In such scenarios Service Providers do notthainitiate interactions with external parties (for
input data purposes). Aerive Service ReQuesTER has a coupling with the Data Provider, but this can possibly
be considered more acceptable because Service Requestatsastrongly coupled with Service Providers
that need to be triggered. Awtive Data Proviper implies a looser coupled Service Requester and Service
Provider. However, as a consequenceatve Dara Proviper is more coupled with the external world, because
it autonomously sends out data instead of sending data @woprest.

EC4 Data provider accessibilitySince amcrive Service ReQuEsTER Needs to send a data request to the Data Provider,
anactive ServiCE REQUESTER iS not appropriate when only the Service Provider has adogbg Data Provider.

EC5 Confidentiality of data requirement#\s discussed in the previous evaluation criterionaanve Service Re-
QUESTER Needs to send a data request to the Data Provider. Howetee, dfata requirements are confidential
and are only known by the Service Provider itselfaanve Service ReQuESTER iS hot appropriate. As discussed
in the adjustability criterion, amctive Data Proviper cannot send data that is adjusted to a specific service re-
quest. As a consequence,amve Dara ProviDer often needs to send a larger amount of data (e.g. information
regarding multiple patients). This can be favorable besanshis way thespecificdata requirements are not
known by the Data Provider.

EC6-8 Data confidentiality, reusability and formaTt his pattern only deals with the initiation of the data flose¢
problem definition i 4.3]1). It does not describe anythingwt the data itself or the data transmission between
services. Therefore, evaluation criteria EC6-8 are netesit for the evaluation of this pattern.

Appendix B.2. Direct-Indirect request

EC1-2 Robustness to changmdadjustability This pattern deals witActive Service ProviDers (See problem defi-
nition in[4.3.1). Hence, both solutions presented in thisgoa, which both includacrtive Service PROVIDERS,
score equally on these evaluation criteria. As discussétkievaluation of theara FLow INITIATION pattern (see
sectiof4.3.B)sctive Service Provipers lead to robust and adjustable coordination scenarios.

EC3 Coupling with Data Provider In the direct request scenario there is a strong couplirigyden the Service
Provider and the Data Provider. Sending data requests t8¢héce Requester, as in the indirect request
scenario, removes this coupling. However, note that infid@éct request scenario there is a coupling between
the Service Requester and the Data Provider. Perhaps thiseceonsidered more acceptable because Service
Requesters are also strongly coupled with Service Provitfet need to be triggered. In the direct request
scenario only the Service Provider needs to know which serplays the role of Data Provider, while the
indirect request scenario requires that the Data Provédeméwn by the Service Requester.

EC4 Data provider accessibilityThe direct request scenario requires that the Data Proid@own by the Service
Provider, while in the indirect request scenario only theviee Requester needs to know which service plays
the role of Data Provider. Similarly, the direct requestsa® requires that the Data Provider can be accessed
by the Service Provider, while in the indirect request sderanly the Service Requester needs to have access
to the Data Provider.

EC5 Confidentiality of data requirementkm the indirect request scenario the Service Requestelsitessend a data
request to the Data Provider. However, if the data requirgsnare confidential and are only known by the
Service Provider itself, an active Service Provider witthiiact request is not appropriate.

EC6-8 Data confidentiality, reusability and formaThis pattern only deals with data requests (see problemitiefi
in £.4.3). It does not describe anything about the datafitsethe data communication between services.
Therefore, evaluation criteria EC6-8 are not relevanttierdvaluation of this pattern.

33

Appendix B.3. Direct-Indirect transmission
EC1-4 Robustness to change, adjustability, coupling with DataviRter and Data Provider accessibility When

EC5

EC6

EC7

ECS8

evaluating a complete coordination scenario using theskeiation criteria, this pattern has no influence on the
evaluation. In other words, an evaluation of the solutiorthis pattern totally depends on the specific solutions
chosen in the other two patterns. For an evaluation regattiese criteria for theara rLow INITIATION pattern
and thepRECT-INDIRECT REQUEST pattern, we refer to sections 4.8.3 &and 4.4.3.

Confidentiality of data requirementin the INDIRECT DATA TRANSMISSION SCenario, all data that needs to be trans-
mitted to the Service Provider is passed through the SeRécpiester. However, if the Service Provider's data
requirements are confidential and can only be known by thei&eProvider itselfiNDIRECT DATA TRANSMISSION

is not appropriate.

Data confidentiality When the provided data is confidentiakect para TRANSMISsION IS the best scenario, since
INDIRECT DATA TRANSMISSION implies that the data is passed through the Service Requestae it is received by
the Service Provider.

Data reusability INpiRecT paTa TRANSMISsION facilitates the reuse of the provided data. For exampleSthgice
Requester only receives the specific data once, beforédisty the same data to several Service Providers it
interacts with.

Data format InpirecT paTA TRANSMISSION allows data transformations, since all data that need todmsmitted

to the Data Provider is passed through the Service Requéststch, the Service Requester can be responsible
for data transformations. However, im®EcT DATA TRANSMISSION Scenario the Service Requester is not involved
when the data needs to be transmitted from the Data Prowid#ret Service Provider. As a consequence,
intermediary data transformations are not possible.

Appendix C. Prolog program for completeness confirmation

% defining participants in a coordination scenario
participant(servicerequester).
participant(serviceprovider).
participant(dataprovider).

% defining two types of messages
message(dataequest).
message(data).

% defining a message exchange between two participants
messageexchange (Participantl , Participant2 , Message)
participant(Participantl),
participant(Participant2),
Participantl\=Participant2 ,
message (Message) .

% C1.1: The service provider can only send data requests orceie data

possiblemessageexchange (serviceprovider ,Y, datarequest) =
messageexchange (serviceprovider ,Y, datarequest).

possiblemessageexchange (X, serviceprovider ,data) +
messageexchange (X, serviceprovider , data) .

% C1.2: The data provider can only receive data requests omdedata
possiblemessageexchange (datgrovider ,Y,data) =+
messageexchange (dataprovider ,Y, data) .
possiblemessageexchange (X, datagrovider ,datarequest) =
messageexchange (X, datgprovider , datarequest).

coordinationscenario(CoordinationScenario)-:
% C1: A coordination scenario needs to be a proper interacriccenario
findall (X, interactionscenario (X),ListOflnteractionScenarios),

34

member(CoordinationScenario , ListOflnteractionSceioesr) ,

% C2: the service provider must receive data from another igpnt
member ((_, serviceprovider ,data),CoordinationScenario) ,

% C3: the data provider must send data to an entity

member ((dataprovider ,_, data),CoordinationScenario),

% C4: The resulting data flow must be complete
completedataflow (CoordinationScenario) ,

% requests or data can only be sent once per participant
not(multiple_requestsor_datasent(CoordinationScenario)),

% requests or data can only be received once per participant
not(multiple_requestsor_datareceived (CoordinationScenario)).

interactionscenario (MessageExchanges} :
setof ((Participantl , Participant2 ,Message) ,possilmiessageexchange (Participantl , Participant2 ,
Message) ,L),
sublist (MessageExchanges,L).

% C4: The data flow is complete

% Specification as the negation of not C4.1 or not C4.2

completedataflow (Coordinationmessages) =
not(incompletedataflow (Coordinationmessages)).

% C4.1: The service requester must forward any data requeet the data provider.
% Specification of a coordination in which C4.1 is not true
incompletedataflow(Coordinationmessages) =
member ((serviceprovider ,servicerequester ,dataequest),Coordinatiormessages),
not(member((servicerequester ,datgrovider ,datarequest),Coordinatiormessages)).

% C4.2: An entity can only send data if this entity is the dataopider or has received data
from another entity.
% Specification of a coordination in which C4.2 is not true
incompletedataflow(Coordinationmessages) =
member ((Participantl , Participant2 ,data),Coordinatimessages) ,
not(member ((C, Participantl ,data),Coordinatiamessages)),
Participantl\=data provider.

multiple_.requestsor_datasent(Coordinationomessages) =
member ((Participantl , Participant2a ,Message), Cooadion_.messages),
member ((Participantl , Participant2b ,Message),Cooredion_messages),
Participant2a=Participant2b .

multiple.requestsor_datareceived (Coordinatiobrmessages) =
member ((Participantla , Participant2 ,Message), Cooadion_.messages),
member ((Participantlb , Participant2 ,Message),Cooredion_messages),
Participantla=Participantlb.

sublist([], -).

sublist ([AIB],[C|D]) :—

A =C,
sublist (B,D)

sublist ([AIB],D)
).

Listing 1: Prolog program completeness confirmation

35

