
Managing data dependencies in service compositions

Geert Monsieura,∗, Monique Snoecka, Wilfried Lemahieua

aThe Leuven Institute for Research on Information Systems (LIRIS)
Faculty of Business and Economics, Katholieke Universiteit Leuven

Naamsestraat 69, 3000 Leuven, Belgium

Abstract

Composing services into service-based systems requires the design of coordination logic, which describes all service
interactions realising the composition. Coordination canbe defined as the management of dependencies; in a services
context we can discriminate between ’control flow’ that manages sequence dependencies and ’data flow’ for managing
data dependencies. Current research fails to address the management of data dependencies in a systematic way and
mostly treats it as subordinate to sequence dependencies. In this article a ’data flow’ pattern language is presented
that provides a systematic way of designing the data flow aspects of a coordination scenario, orthogonally to the
way in which the control flow is designed. Starting from a set of fundamental and basic building blocks, each data
dependency will yield a data flow design that takes a set of design criteria (e.g. loose coupling, data confidentiality,
etc.) into account. The pattern language is evaluated in three ways. First, it is shown that every potential coordination
scenario for managing a data dependency can be composed by the set of patterns. Second, the pattern language was
applied in a real-life insurance case to show how it can guidethe design of complex data flows. Third, the patterns were
implemented in a tool that provides configurable model-to-code transformations for automatically generating BPEL
coordination scenarios. In this tool both the data flow and control flow can be designed separately using different sets
of patterns.

Keywords: data dependencies, data flow, service composition, servicecoordination, coordination logic, patterns,
guided design

1. Introduction

To stay competitive, businesses are forced to constantly optimise their performance and adapt flexibly and rapidly
to the evolution of business goals and requirements. Therefore, many organisations transform from stable and mono-
lithic enterprises into dynamic and distributed service-oriented enterprises. Similarly, the underlying information
systems that support the organisations’ business processes are more and more built by combining software services
into loosely coupled, distributed, flexible, dynamic and adaptive service-based systems.

Service-based systems are mostly implemented using a Service Oriented Architecture (SOA) (Metzger and Pohl,
2009). A central idea in an SOA is the (hierarchical) composition of multiple services. Such service compositions are
typicallyprocess-based, which means that a business process model serves as the blueprint for the service composition
(Barros et al., 2005). Composing services into service-based systems requires the design ofcoordination logic, that
describes all service interactions realising the composition.

Coordination as a research topic is not limited to computer science. It is also studied in disciplines such as orga-
nization theory, operations research, economics, linguistics, and psychology. Malone and Crowston (1994) created a
more generic coordination theory, which defines coordination as themanagement of dependencies between activities.
This definition is based on the intuitive idea that there is nothing to coordinate without any interdependence. In the

∗Corresponding author
Email addresses:geert.monsieur@econ.kuleuven.be (Geert Monsieur),monique.snoeck@econ.kuleuven.be (Monique Snoeck),

wilfried.lemahieu@econ.kuleuven.be (Wilfried Lemahieu)

Preprint submitted to Journal of Systems and Software May 29, 2012

*Manuscript
Click here to view linked References

http://ees.elsevier.com/jss/viewRCResults.aspx?pdf=1&docID=5170&rev=3&fileID=116583&msid={159A6EB1-8393-4175-9587-F9A3D5D41885}

context of process-based service composition, one can distinguish between two types of dependencies (Yang et al.,
2002; Papazoglou et al., 1997). First, asequence dependencybetween a services1 and a services2 indicates that the
start or continuation of the execution of services2 depends on the completion of the execution ofs1. Second, adata
dependencybetween a services1 and a services2 indicates that the start or the continuation of the execution of service
s2 depends on data that is provided bys1. Papazoglou (2005) and Papazoglou and Van den Heuvel (2007)describe the
coordinationfunction that a composite service needs to perform as follows: ”controlling the execution of component
services, and manage data flow among them and to the output of the component service (e.g. by specifying workflow
processes and using a workflow engine for run-time control ofservice execution)”. Controlling the execution of ser-
vices (’control flow’) and coordinating the ’data flow’, is exactly what managing sequence and data dependencies is
about. Note that in this article the term sequence dependency is used to refer to any kind of order dependency among
activities in a process model (e.g. sequential, concurrent, etc.)

At present, coordination logic is mostly defined in an ad hoc way, based on the design knowledge and experience
of the individual designer. Rigorous and systematic designguidelines on how to design appropriate coordination logic
are still missing (Monsieur, 2010). Moreover, in languagesfor specifying coordination scenarios (e.g. BPEL (OASIS,
2007)) the control flow and data flow are typically intertwined, i.e. messages that represent a service request (control
flow) also hold the input data for the service they trigger (data flow). In this way, the scenario that is chosen to manage
the control flow is also imposed on the data flow. For example, acentralized control flow implies that the data flow
is also centralized, with all data exchange passing througha single hub (e.g. the orchestration engine). The lack of a
systematic approach and the intertwining of control flow anddata flow considerations hampers the development of a
systematic and automatable approach to service composition and hence hampers the evolution towards self-adaptive
systems. We advocate to address the issues of managing sequence dependencies and data dependencies separately.
Our previous research tackled the problem of managing sequence dependencies (Monsieur et al., 2010). This article
presents a set of patterns that help to construct adata flowthat manages a given set of data dependencies in a service
composition in a systematic way, optimised according to a number of criteria. Examples of such criteria are data
confidentiality, performance, loose coupling and robustness to change. Patterns are a means to capture and expose
design knowledge that otherwise resides in the head of designers. As such, the use of this set of basic patterns
facilitates the definition of the initial coordination logic at design time and at the same time, facilitates the adaptation
process substantially as it provides a systematic way to build coordination protocols out of basic building blocks.
Ultimately, the patterns (both for data dependencies and sequence dependencies) form the basis of configurable model-
to-code transformations that will enable the (semi)automatic construction of coordination logic based on the evaluation
of the criteria taken into account by each pattern.

The next section presents the research problem by means of the running example for this article. Subsequently,
in Section 3 we describe the research methodology. Section 4forms the core of this article and proposes a pattern
language for managing data dependencies. In Section 5 this pattern language is evaluated. Related work is discussed
in Section 6. The article ends with a conclusion in Section 7.

2. Running example and problem description

As a running example, we deliberately chose a non-automatedexample from the domain of hospital services so as
not to clutter the discussion with implementation issues, but the approach and techniques presented in this article are
equally applicable to software services. A service composition example with actual software services can be found in
the insurance case study discussed in Section 5.2.2.

In a hospital nurses provide several (business) services topatients, such as taking care of patients with high fever.
A business process that realizes this ’treating fever service’ is shown in Figure 1 and could consist of the following
tasks: check the patient’s previous febrifuge usage in the medical records, obtain a febrifuge, give the febrifuge to the
patient, measure the body temperature and register the bodytemperature.

The business process can be implemented by consuming four main services: the medical records service, the
pharmacist’s service, the doctor’s service and the nurse’sservice. In this example we assume that the nurse plays
the role of service composer. The medical records service must be consumed for retrieving information concerning
previous usage of febrifuges, registering the febrifuge given and registering the current body temperature. To obtain
a febrifuge the nurse should request this service from the pharmacist. Hence, the nurse can be considered as a
service composer that needs to consume the service of a pharmacist. Both aspirin and paracetamol are fever reducers.

2

Check the patient's

previous febrifuge
usage

Obtain a
febrifuge

Give the
febrifuge to

the patient

Measure the

body
temperature

Register the

body
temperature

Wait one

hour

Previous usage is

too recent

More usage is

acceptable

Fever

is still
high

No more

high fever

Register the
febrifuge

given

Risk for
stomach

bleeding

Figure 1: A business process for taking care of patients withhigh fever (represented using BPMN (OMG, 2010))

However, aspirin has the unpleasant side effect that it can cause stomach bleeding in certain circumstances. Therefore,
the pharmacist needs information concerning the risk for stomach bleeding, before he or she can deliver an appropriate
febrifuge. The risk for stomach bleeding is only known to a patient’s doctor. This means that the doctor provides a
second service that needs to be consumed in order to support the task of obtaining a febrifuge. We further assume that
the nurse can complete the ’give the febrifuge to the patient’ and ’measure the body temperature’ tasks without the
consumption of other services.

Even this rather simple service composition already demonstrates the need for coordination. For example, coordi-
nation is required to ensure that the registration of a febrifuge in a patient’s medical record (consuming the medical
records service) only occurs when a febrifuge is successfully given to the patient (consuming the nurse’s service).
Service coordination guarantees that sequence constraints as specified in the business process are met by constructing
an appropriate control flow.

However, dealing with data needs is also part of service coordination. Services can require certain input data,
which may in turn be the output from another service. Servicecoordination controls when which service is invoked,
how input data is delivered and what to do with a service’s output (Janssen and Feenstra, 2008) and as such defines an
appropriate data flow. For example, the pharmacist needs theinformation concerning the risk for stomach bleeding,
which is held by the doctor. Hence, there is a data dependencyto manage between the pharmacist and the doctor:
service interactions between the pharmacist and doctor must be coordinated, such that the pharmacist obtains the right
information at the right time and in the right format.

Notice that that the structure of data objects and their interrelations, as part of an enterprise wide data model,
have direct influence on the set of data dependencies that exist in service compositions. However, deriving all data
dependencies from data models does not fall within the scopeof this article. The main goal of this article is to present
an approach that deals with the design of coordination scenarios, to manage a set of data dependencies, whereas the
data (and sequence) dependencies themselves are considered as a given.

Even in this small example of data needs, many coordination scenarios are possible. In figures 2(a) and 2(b) two
ways of managing the data dependency between pharmacist anddoctor are shown. The question for the design of
service systems is: what are possible scenarios and which one is the most appropriate in our situation? In this article
we look for fundamental building blocks that allow constructing any possible scenario and that allow us to determine
which coordination scenarios fulfill a component service’sdata needs in the most appropriate way. We therefore
consider questions like: What are the fundamental differences between two coordination scenarios (e.g. figure 2(a)
versus figure 2(b))? What are advantages and disadvantages of specific coordination scenarios?

3. Research question and methodology

Coordination logic for managing data dependencies realizes the data flow in a service composition. In the aca-
demic literature one can find several approaches that cater for alternative data flows. In section 6 we discuss these
approaches and compare them to the one presented in this article. Most studies allow finding alternative data flows,

3

Nurse

Doctor

Pharmacist

Request for

a medicine for
reducing fever

Risk for

stomach bleeding

Request for

notifying the pharmacist
of the risk for stomach bleeding

The risk for
stomach bleeding

2

3

4

1

(a)

Nurse Doctor

Pharmacist

Request for
a medicine for

reducing fever
Risk for

stomach bleeding

Information request
concerning the risk for

stomach bleeding

The risk for

stomach bleeding

2

3

41

(b)

Figure 2: Two ways of coordinating the pharmacist and doctor

but do not provide asystematicway of building different coordination styles nor do they analyze the advantages and
disadvantages of alternatives. Because of the lack of a systematic way of discovering and assessing the alternatives, we
cannot be sure such approach exhaustively identifies all potential scenarios to manage a set of data dependencies and
does not overlook a potentially interesting scenario. Furthermore, as advantages and disadvantages are not discussed
in depth, these approaches do not provide any help in choosing between alternative scenarios (if such alternatives are
present at all).

If we define acoordination scenarioas a specific set of service interactions constituting the coordination logic in
a service composition, we can formulate the following research question:

Can we come up with a systematic way of composing coordination scenarios from fundamental building blocks
so that the coordination scenario takes all data dependencies and specific design criteria (e.g. service coupling, data
confidentiality, etc.) into account?

The building blocks proposed in this paper are patterns thattogether form a so called pattern language. In its
simplest form a pattern can be defined as one or moresolution(s)to a recurringproblemthat arises within a specific
context(Buschmann et al., 2007). The design of coordination logic is a recurring problem in service composition,
which explains our choice for patterns. Furthermore, as we will describe in Section 4.1 an SOA creates a context in
which several forces are present. These forces can be used asevaluation criteria for constructing the most appropriate
coordination scenario in a particular context. Each solution in a pattern balances these forces differently, which helps
developers to choose between different patterns.

The process of discovering and documenting patterns is called pattern mining or pattern crafting. Usually pattern
languages are developed by mining current practice using one of the following techniques: mining by interviewing,
mining by borrowing, mining by teaching pattern writing, mining in workshops, mining your own experience (Rising,
1998, 1999). In this research we follow a slightly different and innovative approach. On the one hand, we mined
current practice by looking at BPEL (OASIS, 2007) and WS-CDL(W3C, 2005) examples in academic and indus-
trial literature (e.g. the service interaction patterns byBarros et al. (2005) or related work discussed in Section 6),
running examples (e.g. in the BPEL standard (OASIS, 2007)) and generic scenarios identified in industry standards
(e.g. RosettaNet Partner Interface Protocols (RosettaNet, n.d.)) (i.e. this could be labelled ’mining by borrowing’).
Additionally, since we look for a set of patterns that shouldenable us to build any possible scenario, we looked for
potential missing solutions (gaps in current practice) by elaborating the patterns from a theoretical perspective.

The search for adequate patterns can be classified as design-science research (Hevner et al., 2004). An important
step in the Design Science Research Methodology (DSRM) (Peffers et al., 2007) is the definition of research objec-
tives that can be tested to evaluate the artifacts that are proposed in this article. In pattern literature, patterns are
mostly validated by presenting three known uses. We go beyond this rather weak form of validation. Next to defining
the practical utility of the patterns as guidelines for developers, we also demonstrate the completeness of the pattern

4

languages (i.e. no gaps due to incomplete (mining of) current practice) and the utility of patterns as basis for config-
urable model-to-code transformations. The following three testable research objectives describe what we expect from
a pattern language for managing data dependencies:

• By combining the building blocks in several ways, it should be possible to construct every potential coordination
scenario. In Section 5.1 we show how this objective is accomplished.

• The set of patterns should guide developers in choosing and combining the building blocks into a coordination
scenario that takes specific design criteria into account. It is not our intention to focus on the criteria themselves
or to provide an exhaustive list of design criteria. Insteadwe expect to come up with a generic framework that
contains an initial set of design criteria and helps to include these criteria (or any set of criteria) in the design
process of coordination scenarios. Section 5.2 discusses how we targeted this objective and demonstrates how
design guidelines can be used to apply the patterns in an appropriate way.

• Based on the patterns it should be possible to semi-automatethe construction of a coordination scenario by
letting developers pick specific building blocks for dependency management and automatically generate an
executable coordination from a business process specification. Section 5.3 presents a tool for pattern-based
coordination of sequence and data dependencies. This implementation also demonstrates the practical utility of
the set of patterns presented in this article, which is an important evaluation aspect in design science Hevner et al.
(2004).

4. A pattern language for managing data dependencies

4.1. Introduction

As discussed below, the problem of managing a data dependency is divided into three subproblems, each addressed
by a separate pattern. Each pattern describes all potentialsolutions to the subproblem and explains how each solution
addresses particular forces (or not). Although each pattern deals with a specific recurring problem in data dependency
management, the three patterns share a common context and the solutions described in a pattern are under influence
of the same set of forces.

Common context
In the context of a service request involving a data dependency three relevant participants can be distinguished. We

refer to an entity that consumes a particular service for requesting the execution of a business process task as aService
Requester. In a service composition this entity typically holds a (partial) description of the control flow, because it
knows when to consume a specific service. The service that receives requests for executing a business process task
is called aService Provider. Possibly, a Service Provider needs certain data for processing the Service Requester’s
request. We refer to this kind of Service Provider as aneedyService Provider. The service that can provide the data
needed is referred to as theData Provider1.

The previous definitions imply that a data dependency is always related to a Needy Service Provider and a Data
Provider. In the context of the hospital example we can consider the nurse as a Service Requester that sends a request
to the service provided by the pharmacist. Hence, the pharmacist plays the role of a Service Provider. Since the
pharmacist needs information that is known by the doctor, the pharmacist can be considered as a Needy Service
Provider and the doctor can be labeled as a Data Provider.

Obviously the distinct roles ofService Requester, Service ProviderandData Providerare relative. Depending on
the interaction at hand, each partner in the interaction plays one of the roles or even combines several roles. AService
Requesterrequests the execution of a particular business process task. TheService Providerexecutes this task; such
task can be 1) update a state (e.g. confirm an order or process arequest for a febrifuge), 2) deliver data (e.g. the price
of a product or the risk of stomach bleeding), or 3) call upon other services to execute a subtask. In the second case
the service request is also a data request and hence theService Provideris also aData Provider. In the third case the

1In the pattern language we abstract from the fact that a Data Provider can be either the entity that owns the data or the entity that functions as
a data mediator (Gamma et al., 1995) that can forward data requests to the right entities (e.g. other Data Providers or data owners).

5

Service Provideralso becomes aService Requester2. When designing data flows it is important to know that each of
these kinds of tasks may need input data from a third party: theData Provider. Obviously, theData Providercan also
be considered as aService Provideras ”delivering data” can be considered as a service. However, in the context of
this research, we wish to focus only on the perspective that theData Providershould deliver data and that this data
should attain theneedy Service Providersomehow. The request for data may be issued (depending on thepattern) by
theService Requester, theService Provideror even theData Provider.

The three role names are stable in the sense that they do not vary in terms of the chosen data provisioning scenario.
The Data Provider is always the Data Provider, independently of the scenario. The roles of Service Provider and
Service Requester are also independent of the chosen data provisioning scenario since they refer to aspects of the
service requestindependent of the data request. Note, however, that whereas the roles are stable within an interaction
(i.e. a scenario in which aService Requestersends a service request to request the execution of businessprocess task),
they are ’relative’ across different interactions: e.g. the Data Provider in one interaction may very well act as a Service
Requester in another interaction (or in a subtask that was triggered in the context of the first interaction).

Finally one should note that it is also possible to merge the role of the data provider with the role of the service
requester. In the further presentation of the patterns, we will however assume that the roles are performed by three
different parties. Similarly, one can understand that merging the data provider with the service provider means that the
service provider will have to consult its own data to deliverthe service. In a similar way merging the service requester
with the service provider would mean that the service requester requests a service from itself (while still needing data
from a data provider).

Three subproblems
By analyzing similarities and differences between scenarios mined from current practices, wecan conclude that a

specific coordination scenario that manages a data dependency should answer three questions (see Figure 3):

1. Who decides that data is required from the Data Provider? (data flow initiation)
(e.g. Who decides that information on the risk for stomach bleeding is required from the doctor?)

2. Who sends a request to the Data Provider? (data request)
(e.g. Who sends the actual request for the risk for stomach bleeding to the doctor?)

3. How does the data flow between the Data Provider and the Needy Service Provider? (data transmission)
(e.g. How does the risk information get from the doctor to thepharmacist?)

Different answers are possible for each of these questions. Per question, a pattern helps to answer the question in the
most optimal way by taking advantages and disadvantages into account. Answers to the questions can then replace
the cloud in figure 3. As such these three patterns form the three building blocks for scenarios that manage a data
dependency between a Needy Service Provider and a Data Provider. While related work on alternative data flows
in service compositions is mainly focused on optimizing theperformance (i.e. reducing communication overhead,
etc.) (see Section 6), the pattern-based approach proposedin this paper analyzes the advantages and disadvantages of
each design alternative by consideringmultipleevaluation criteria or pattern forces, including robustness to change,
loose coupling and data confidentiality. In each pattern different solutions to the same subproblem are described3. In
each solution forces are balanced differently, resulting into different solution evaluations. By giving a weight to the
evaluation criteria, service composers can be guided towards the most appropriate coordination scenario in the context
at hand.

Common forces (evaluation criteria)
In contrast to related work the approach presented in this paper allows one to considermultipleadvantages and

disadvantages of each design alternative based on a set of evaluation criteria or pattern forces. In order to deter-
mine relevant forces, we studied the literature on service composition (e.g. (Balasooriya et al., 2005; Barros et al.,

2Of course, in practice, requests for these different kinds of tasks are sometimes combined into one single request, implying that the consumed
service combines several roles.

3The pattern language we developed for managing sequence dependencies contains different patterns that all describe one solution to one
and the same problem. In contrast, the pattern language for managing data dependencies consists of three patterns, eachaddressing one specific
problem. Furthermore, each pattern describes different solutions to one (pattern-specific) problem. In the literature one can find both kinds of
patterns (Paikens and Arnicans, 2008).

6

Service

Requester

Data

Provider

Needy

Service

Provider

Data

Service request
(+data)

1

Data

Data

request

Coordination logic

2

3

2. Who sends a request to the Data

Provider?

(data request)

3. How does the data flow between the Data

Provider and the Needy Service Provider?

(data transmission)

1. Who decides that data is required from the Data Provider?

(data flow initiation)

Figure 3: Three questions that need to be answered by a specific coordination scenario that manages a data dependency

2005; Erl, 2007; Goethals, 2008; Haesen et al., 2006; Zirpins et al., 2004; Legner and Vogel, 2007; Paci et al., 2008;
Habala et al., 2008)). This literature review yielded the eight forces mentioned below. This set of forces is complete
as far as literature is considered. Practical experience may reveal other criteria in the future. This is not a fundamental
problem as the same approach could be applied with a completely different set of forces. We discuss the forces briefly
below. More details about them, including references to theliterature, can be found in Appendix A.

EC1 Robustness to change: In a service-oriented environment it is critical that the propagation of changes due to the modification
of the interface of a service is minimized. Therefore, a change in the data requirements should have minimal impact on the
way in which the Service Provider is consumed.

EC2 Adjustability: This criterion is about the ability to change which data is sent to the Service Provider in function of a specific
service request. For example, when managing the data dependency between the pharmacist and the doctor, it could be that
only information regarding the patient at hand is sent to thepharmacist or it could be that each time the same fixed set of
patients and patient information is sent.

EC3 Coupling with Data Provider: In some situations the data needed is not always provided bythe same Data Provider. Each
time there is a change of Data Provider the party that is sending data requests to the Data Provider needs to be notified and
modified properly. Similarly, if the new Data Provider has a different interface, a change in the implementation of the party
that is interacting with the Data Provider is required.

EC4 Data provider accessibility: Sometimes it is possible that the Service Provider or Service Requester does not knowwhich
Data Provider can provide the required data (e.g. the pharmacist does not know who is the patient’s doctor). In other cases
there can be access restrictions.

EC5 Confidentiality of data requirements: It can occur that a Service Provider’s data requirements are confidential (e.g. suppose
that nurses cannot have insight into the pharmacist’s internal decision processes), which means that only a limited setof
services or even only the Service Provider itself knows which data is needed in the process of delivering its service.

EC6 Data confidentiality: When requesting a Data Provider to send the required data toan entity, it is important to realize that the
provided data can be confidential and therefore there can exist a need to limit the number of entities that the Data Provider
can share the data with.

EC7 Data reusability: In some business cases data provided by a Data Provider is used by more than one Service Provider. In
such situations an optimal coordination scenario limits the number of data requests that are sent to the Data Provider.

EC8 Data format: When the Data Provider replies, the data provided is possibly not in a form that is expected by the Service
Provider. For example, the data format needs to be adapted, or the data should be made anonymous. In short, in some cases
data transformations are desirable before the data is received by the Service Provider. Dealing with different data formats is
a common challenge when information is shared among services.

As discussed in the related work section, there exist many research papers focusing on optimizing the performance
of data flows, which mainly deal with the centralization versus decentralization question and the resulting number of

7

DIRECT-INDIRECT REQUEST PATTERN

DATA FLOW INITIATION PATTERN

DIRECT-INDIRECT DATA TRANSMISSION PATTERN

Active Service Provider Active Service Requester Active Data Provider

Direct request Indirect request

Direct transmission Indirect transmission
requires the application of

Figure 4: Relationships between the three patterns

message exchanges. However, although performance certainly is an important force for data flow design, we feel it is
not a pure conceptual design issue, as dealing with performance requires a lot of knowledge about which implemen-
tation technology will be used. It is for example easy to determine the number of messages sent in a coordination
scenario, but this does not necessarily have to correlate with the performance. Indeed, if the implementation tech-
nology used to realize the data flow entails a lot of overhead for each message exchange, however big or small the
message is, it would be favorable to opt for a scenario with asfew message exchanges as possible, even if this results
in some data being sent that is actually not needed by the Service Provider (as in the Active Data Provider scenario,
cf. below). However, if it is mainly the size of the data transfers (rather than the number) that impacts performance,
the respective scenarios would be evaluated completely differently against this force. Other implementation related
factors may have an impact as well. Therefore, we decided notto include this force in the evaluations. However, once
an implementation technology has been decided upon, the proposed pattern language is perfectly fit to evaluate the
different scenarios, as implemented through this technology, against the performance forces.

4.2. Pattern overview
Three patterns are used to manage the three aspects of a data dependency:data flow initiation (see Subsection 4.3),

direct-indirect request (see Subsection 4.4) anddirect-indirect data transmission (see Subsection 4.5). Each pattern
consists of several solutions, among which a service composer can choose by considering the evaluation criteria and
the solutions’ consequences. In Figure 4 each pattern is visualized in a box (dashed line border) containing both the
pattern name and sub-boxes referring to different solutions in that pattern. The relationships betweenthe three patterns
are indicated by arrows. An application of thedata flow initiation pattern can function as a first necessary step in
managing data dependencies. The next steps toward a coordination scenario is indicated by means of the arrows. An
arrow pointing from a pattern sub-boxA to a pattern boxB indicates that the pattern represented byB should be
applied next when a pattern is applied in the way representedby sub-boxA. Although theoretically the three patterns
can be applied in any order, the order shown in Figure 4 is the most intuitive one and will therefore be used further on.

4.3. Data flow initiation pattern
4.3.1. Problem

If a Service Requester sends a request to a Service Provider,it can occur that the Service Provider does not possess
sufficient data for completing its internal processing. Therefore additional input data should be collected from other

8

Service

Requester

Needy

Service

Provider

Data

request

Service

request

1

(a) Active Service
Provider

Service

Requester

Needy

Service

Provider

Data

Provider

Data
request

Service

request

1

(b) Active Service Requester

Needy

Service

Provider

Service

Requester

Data

Provider

1 Data flow
iniation

(c) Active Data Provider

Figure 5: Data flow initiation

services, which requires a data flow. For example, when a nurse asks the pharmacist a febrifuge for a certain patient,
the pharmacist may need more input data (e.g. the risk for stomach bleeding). This raises an important question
regarding the data collection process:Who decides that data is required from a Data Provider?

4.3.2. Solutions
There are three possible data flow initiators in a coordination scenario (see Figures 5(a),5(b), and 5(c)). First, an

active Service Provider initiates the data flow by sending out a data request (see stepone in Figure 5(a)). It is not
specified to which entity the Service Provider sends the request; this is discussed in thedirect-indirect request pattern
described in Subsection 4.4. Second, anactive Service Requester initiates the data flow by sending a data request to
the Data Provider (see step one in Figure 5(b)). Third, whilein the previous two scenarios the Data Provider sends out
data upon request of another entity (i.e. the Service Provider or Service Requester respectively), in a scenario with an
active Data Provider it is the Data Provider itself that decides that it needs to send data (see Figure 5(c)).

4.3.3. Consequences (evaluation of the solutions)
The solutions presented in Section 4.3.2 should be evaluated against each force discussed in Section 4.1. Table 1

summarizes all consequences of thedata flow initiation pattern without prioritizing any force or consequence. When
applying the pattern in practice the context at hand will have to be considered to determine the most relevant forces to
retain for developing the solution for the case at hand.

For detailed discussion on these consequences we refer to Appendix B.1.

4.3.4. Relationship with other patterns
An active Service Provider sends out data requests in order to receive the missing inputdata (see step one in

Figure 5(a)). Thedirect-indirect request pattern shows who contacts the actual Data Provider with therequest (see
Subsection 4.4). Anactive Service Requester sends data requests to the Data Provider (see step one in figure 5(b)).
As a consequence the Data Provider sends out data. In case of an activeData Provider the Data Provider itself decides
if it needs to send out data. In each of these cases, thedirect-indirect transmission pattern shows how the data flows
from the Data Provider to the Needy Service Provider (see Subsection 4.5).

4.4. Direct-Indirect request pattern
4.4.1. Problem

If a Service Provider is active, then the Service Provider sends out data requests in order to receive missing input
data. This raises the following question:Where can an active Service Provider send its data requests to? For
example, if a pharmacist wants to inform himself about the risk for stomach bleeding, the pharmacist needs to know
who he can ask this question to. Should he ask the nurse or can he ask the doctor?

9

Active SR Active SP Active DP

Robustness to change - + -
Adjustability + + -

Coupling with Data Provider SR coupled SP or SR coupled no coupling
Data provider accessibility SR needs access SP or SR needs access no access required

Confidentiality of data requirements - depends on request depends on data transmission
Data confidentiality depends on data transmission

Data reusability depends on data transmission
Data format depends on data transmission

SR= Service Requester
SP= Service Provider
DP= Data Provider

Table 1: Summary of the consequences ofdata flow initiation

Service

Requester

Needy

Service

Provider

Data
request

Service
request

1

Data

Provider

(a) Direct request

Service

Requester

Needy

Service

Provider

Service
request

Data

Provider

Data

request

Data

request

1

2

(b) Indirect request

Figure 6: Direct request versusindirect request

4.4.2. Solutions
An active Service Provider can send its data requests to two entities, as shown in Figures 6(a) and 6(b). First,

anactive Service Provider can send adirect request, which means that the data request is sent directly to the Data
Provider. Second, anactive Service Provider can send its data request to the Service Requester (see step two in Figure
6(b)), which is supposed to forward the data request to the appropriate Data Provider (see step three in figure 6(b)).
This alternative is referred as anindirect request.

4.4.3. Consequences (evaluation of the solutions)
The solutions presented in Section 4.4.2 should be evaluated against each force discussed in Section 4.1. Table

2 summarizes all consequences of thedirect-indirect pattern without prioritizing any force or consequence. When
applying the pattern in practice the context at hand will have to be considered to determine the most relevant forces
to retain for developing the solution for the case at hand. For a detailed discussion on these consequences we refer to
Appendix B.2.

4.4.4. Relationship with other patterns
In both scenarios the Data Provider receives a data request (see step one in Figure 6(a) and step two in Figure

6(b)). As a consequence, data should be received by the Service Provider. Thedirect-indirect transmission pattern
shows how the data flows from the Data Provider to the Needy Service Provider (see Subsection 4.5).

10

Direct request Indirect request

Robustness to change (+) (+)
Adjustability (+) (+)

Coupling with Data Provider SP coupled SR coupled
Data provider accessibility SP needs access SR needs access

Confidentiality of data requirements + -
Data confidentiality depend on data transmission

Data reusability depend on data transmission
Data format depend on data transmission

SR= Service Requester
SP= Service Provider
DP= Data Provider
(+) is inherited from Active SP

Table 2: Summary of the consequences ofdirect-indirect request

Service

Requester

Needy

Service

Provider

Service

request

Data

Provider

Data

1

(a) Direct data transmission

Service

Requester

Needy

Service

Provider

Service

request

Data

Provider

Data

1
2

Data

(b) Indirect data transmission

Figure 7: Direct data transmission versusindirect data transmission

4.5. Direct-Indirect transmission pattern

4.5.1. Problem
If a Data Provider received a data request, the requested data should be delivered to the Service Provider. If an

active Data Provider is used in a coordination scenario, the Service Provider should also receive data sent by the Data
Provider. In both cases, the following question comes up:How does the data flow from the Data Provider to the
Service Provider?

4.5.2. Solutions
Data can flow from the Data Provider to the Service Provider intwo ways. First, the Data Provider can initiate a

direct data transmission, which means that the data is sent directly to the Service Provider (see Figure 7(a)). Second,
the data can be transmitted from the Data Provider to the Service Requester and subsequently to the Service Provider.
This alternative is referred to as anindirect data transmission(see Figure 7(b)).

4.5.3. Consequences (evaluation of the solutions)
The solutions presented in the previous section should be evaluated against each force discussed in Section 4.1.

Table 3 summarizes all consequences of thedirect-indirect data transmission pattern without prioritizing any force
or consequence. When applying the pattern in practice the context at hand will have to be considered to determine
the most relevant forces to retain for developing the solution for the case at hand. One can see for example that

11

issues with confidentiality will favor a direct transmission. Issues on the data format will on the other hand favor
indirect transmission. As a result, in case both transformation and confidentiality are issues (or neither of them), data
reusability may be the discriminating factor to choose between the alternatives. For a detailed discussion on these
consequences we refer to Appendix B.3.

Direct transmission Indirect transmission

Robustness to change depend on initiation/request
Adjustability depend on initiation/request

Coupling with Data Provider depend on initiation/request
Data provider accessibility depend on initiation/request

Confidentiality of data requirementsdepends on initiation/request -
Data confidentiality + -

Data reusability - +

Data format - +

SR= Service Requester
SP= Service Provider
DP= Data Provider

Table 3: Summary of the consequences ofdirect-indirect data transmission

4.6. Combining the patterns into coordination scenarios

As described in the introduction to the pattern language (see Subsection 4.1) the three patterns discussed above
are building blocks that need to be combined to build coordination scenarios that manage data dependencies.

Since thedata flow initiation pattern has three solutions, and thedirect-indirect request pattern anddirect-
indirect transmission pattern have two solutions, it is, in theory, possible to combine the patterns in twelve different
ways. However, by following the pattern relationships thatwere discussed in Subsection 4.2 and shown in figure 4
only eight combinations are possible. This makes sense because, by definition, only in a coordination scenario with
anactive Service Provider it is relevant to decide whether the data request should be sent in a direct or indirect way.
An active Service Requester sends data requests to the Data Provider in a direct manner. Active Data Providers do
not receive data requests. Figures 8(a) to 8(h) represent the eight possible combinations4. Capitalized words in the
figures’ captions indicate which patterns have been applied.

5. Evaluation

Section 3 defined three testable research objectives. In this section we evaluate how the pattern language achieves
these objectives. First, Subsection 5.1 demonstrates thatthe theoretical elaboration of the pattern language indeedled
to completeness of the language, meaning that it is possibleto compose every potential coordination scenario using
the patterns that constitute the language. Subsequently, Subsection 5.2 demonstrates the practical utility by describing
how the pattern language can be used to guide the design of coordination logic. Finally, Subsection 5.3 demonstrates
the practical utility of the patterns in a model-driven engineering approach: it describes how the pattern language was
implemented in a tool that supports and automates the generation of BPEL coordination logic.

4As described in the introduction of this section (see 4.1) the roles ofService Requester, Service ProviderandData Providerare stable in these
different scenarios. It is always theService Requesterthat sends aservice requestto theService Provider, while thedata request(depending on the
scenario) is sent by theService Requester, Service Provideror (implicitly) by theData Provider(i.e. no arrow/message representing adata request
is drawn, meaning that theData Provideritself triggers the data flow.)

12

Service

Requester

Data

Provider

Needy

Service

Provider

Service

request

Data

request

Data

1

2

(a) Active SP withdirect request anddi-
rect data transmission

Service

Requester

Data

Provider

Needy

Service

Provider

Data

request

Data

DataService

request

1

2
3

(b) Active SP with direct request
andindirect data transmission

Service

Requester

Data

Provider

Needy

Service

Provider

Service
request

Data

request

Data

DataData

request

1

2

3
4

(c) Active SP with indirect request and
indirect data transmission

Service

Requester

Data

Provider

Needy

Service

Provider

Service

request
Data

request

Data

request

Data

1

2

3

(d) Active SP with indirect request
anddirect data transmission

Service

Requester

Data

Provider

Needy

Service

Provider

Service
request

Data

request

Data

Data

1

2
3

(e) Active SR with indirect data trans-
mission

Service

Requester

Data

Provider

Needy

Service

Provider

Service

request

Data
request

Data

1

2

(f) Active SR withdirect data trans-
mission

Service

Requester

Data

Provider

Needy

Service

Provider

Service

request

Data 1

(g) Active DP with direct data transmis-
sion

Service

Requester

Data

Provider

Needy

Service

Provider

Service

request

Data

Data

1

2

(h) Active DP with indirect data trans-
mission

Figure 8: Eight possible combinations(SP= Service Provider, SR= Service Requester, DP= Data Provider)

13

5.1. Completeness confirmation

The patterns are innovative in the sense that they representbasic building blocks that can be combined to compose
executable ’coordination scenarios’. A coordination scenario shows the actions taken by all involved parties to get
the data from the Data Provider to the Needy Service Provider. Hence, the real value of the patterns depends on an
evaluation of thecompositionof the patterns into concrete coordination scenarios. In this section we show thatall
potential coordination scenarios can be composed by combining the patterns (cfr. first research objective). In order to
determine the set of all possible coordination scenarios weobviously cannot start from the three questions that form
the basis for the three patterns (see Subsection 4.1). In order to independently calculate the universe of coordination
scenarios, we declaratively specified what a coordination scenario should accomplish and in which message exchanges
a Service Requester, Service Provider and Data Provider canbe involved. For example, it is easy to understand that
in every coordination scenario there needs to flow data from the Data Provider to the Service Provider.

We have used Prolog (Clocksin and Mellish, 2003; Wielemaker, 2003), a general purpose logic programming
language, to calculate the complete universe of coordination scenarios. This declarative language has its roots in
formal logic. Typically, a Prolog program logic is expressed in terms of relations, represented as facts and rules.
A computation is initiated by running a query over these relations. This allows us to declaratively specify what
a coordination scenario should accomplish (e.g. the service provider must receive data from an entity; the data
provider must send data to an entity; etc.), so that an execution of the Prolog program (i.e. a query that calculates or
derives all solutions) results into all possible coordination scenarios. The coordination scenarios found by the Prolog
predicate exactly match the coordination scenarios that can be composed by combining the patterns, which confirms
the completeness of the pattern language (cfr. first research objective).

Appendix C contains the complete Prolog program.

5.2. Guided design

In this subsection we describe how the pattern language can be used to guide the design of coordination logic.
More specifically, we show how the pattern language helps to construct the most appropriate coordination scenarios
in the running example and a real-life insurance case.

5.2.1. Running example
By following the pattern relationships as described in 4.2 and shown in figure 4 we can construct an appropriate

coordination scenario for the hospital example (see Section 2 for problem description):

• Data flow initiation: Since neither nurses nor doctors want to keep track of whichinput data is required by
the pharmacist, it is probably more desirable to choose anactive pharmacist. Nurses simply want to use some
services provided by the pharmacist. Furthermore, it is notpreferred that changes in data requirements result in
changes to how the nurses work (or consume the pharmacist’s services).

• Direct-indirect request: This pattern needs to be applied, because pharmacists are considered as active service
providers. Since the pharmacist does not know which doctor is treating the patient, it is preferred that the
pharmacist asks the nurse for more information concerning the risk for stomach bleeding (see step two in figure
9). Subsequently, the nurse can forward the request to the right doctor (see step three in figure 9). Hence, an
indirect request is the most appropriate choice.

• Direct-indirect data transmission: Suppose the risk for stomach bleeding is quite confidentialinformation that
can not be shared with the nurse. Then, thedirect data transmission scenario is the best solution. Hence, the
doctor should send the information concerning the risk for stomach bleeding directly to the pharmacist (see step
four in figure 9).

The complete solution for this example is shown in figure 9.

14

Nurse

Doctor

Pharmacist

Request for

a medicine for

reducing fever

Risk for
stomach bleeding

Request for
notifying the pharmacist

of the risk for stomach bleeding

The risk for

stomach bleeding

2

3

4

1

Figure 9: Active pharmacist with indirect request anddirect data transmission

5.2.2. Insurance case study
We validated the patterns by means of a real-life business case at a Belgian banking & insurance company

(Haesen et al., 2006). As the case involves multiple data providers and a large set of data to which different forces
apply in different ways, the case goes beyond the construction of a singlecoordination scenario: it will require mul-
tiple applications of the pattern language to different subsets of data. The case is therefore suited to demonstrate the
practical utility in complex real life situations. The casecan be considered a situation in which a consumer wants
his house to be insured together with the house content. A simplified version of the business process consists of the
following tasks: processing the customer’s request, presenting an offer to the customer, making the contract, sending
the insurance policy to the customer, and payment by the customer. In the context of this article we only consider the
first task, which deals with the processing of customer requests. The system supporting this task, which we refer to
as theinsurance request management (IRM) service, is composed of several (component) services: insurance quote
service, sales service, customer information service, blacklist service and external information service. The main
service that is consumed for this task is theinsurance quote service. This service accepts or rejects the request and
needs to calculate the insurance premium in case of acceptance. This yields a two-staged approach. The acceptance
step investigates whether or not to accept the request for insurance. The second step is the tarification step which
generates a price offer. The first step requires a substantial amount of data in order to evaluate all possible reasons for
rejection. On the other hand, a minimum of data may be sufficient to provide the customer with a first, rough estima-
tion of the price, purely for informational purposes. Thesedata requirements explain why, besides the insurance quote
service, several other services are involved when composing the IRM service. The insurance quote service needs to
be combined with other services because of specific (data) needs:

a Information about existing customers: The person who wants to have an object insured can be an existing or
a new customer of the insurance company. For an existing customer most data will be available at thecustomer
information service.

b Data concerning descriptions of expensive items: The premium of the house content depends on the fact
whether the customer possesses exclusive and expensive goods, such as jewelry or special stamp collections.
The premium increases proportionally to the value of those possessions. The data used to calculate the premium
for the house content can be altered after the construction of the application. For example the premium for a
stamp collection may initially only depend on the number of stamps in the collection. After examining past
insurance claims, the insurance company may wish to consider also the exact kind of stamps for the premium
calculation. This means further communication with the customer or interactions with anexternal information
servicecontaining price information of expensive objects, are needed.

c Information about new customers: All data about a new customer will have to be retrieved by thesales
service, which interactively questions the customer.

d Information about blacklisted customers or fraudulent family members: Before the insurance request is
accepted, the insurance quote service needs information about possible fraudulent family members. Further-
more, the insurance quote service needs to check whether thecustomer is present on any blacklists of untrusted

15

payers. This information can be retrieved from a third partyservice which is referred to as the blacklist service
in the rest of this section.

e Base insurance quote: Simplified, an insurance quote can be determined using a base insurance quote which is
raised or reduced depending on the specific risk estimations. These risk estimations and the effect on the quote
are calculated by the insurance quote service. The base insurance quote, however, is set by the sales service.
Hence, in order to calculate the complete insurance quote, the base insurance quote must be retrieved from the
sales service.

In summary, we can consider five main data needs, which all require some interaction with a service that needs to be
included in the service composition. In terms of the terminology as used in this article, the insurance quote service
plays the role of a Needy Service Provider, while the other services (e.g. sales service or third party service to check
blacklists) play the role of the Data Providers. The entity that composes the IRM service is considered as the Service
Requester, since it requests the insurance quote service. For each of the data needs, we follow the process described in
Figure 4.1. For each step, we evaluate the criteria as described in see Subsections 4.3.3, 4.4.3 and 4.5.3, which leads
to the selection of the optimal solution. Finally, for each data need the resulting coordination scenario is linked to one
of the eight combinations that were discussed in Subsection4.6.

a Information about existing customers: Information about existing customers can be retrieved from the cus-
tomer information service of the insurance company. In order to choose the way to initiate the data flow, we
need to consider criteria EC1-EC4 (seedata flow initiation pattern in Subsection 4.3.3). We are in a situation of
rather stable data, so robustness to change (EC1) is not so much of an issue. In terms of adjustability (EC2), we
consider that the data is strongly related to the specific insurance quote request and that we therefore will prefer
a solution that favors adjustability. Furthermore, we prefer loose coupling (EC3) with the data provider, that is
to say between the insurance quote service and the customer information service. As a result of this evaluation
of criteria EC1-EC4, we conclude thatactive insurance quote Service Requester provides the best solution of
data flow initiation. This means the insurance quote servicesimply expects to receive this information, which
is acceptable because it is rather stable data and consumersdo not have to worry that the interface and required
data are changing frequently. The loose coupling between the insurance quote service and other services is guar-
anteed, because the Service Requester, which is responsible for triggering the insurance quote service, should
send out a request for customer data to the customer information service. In the case of an Active Service Re-
quester the pattern of Direct-Indirect Request can be skipped. The next step is thus to determine the best way
of data transmission. Two alternatives remain possible. Here we need to additionally consider criterion EC6-8
about the confidentionality of data requirements. If the customer information needed is evaluated as confiden-
tial, thendirect data transmission is better than indirect data transmission (see EC6 evaluation in Subsection
4.5.3). However, in case data format (EC8) is an issue (e.g. when the customer information service does not
provide the data in the correct form, transformation by the Service Requester is needed), the evaluation of this
criterion justifiesindirect data transmission via the Service Requester. Assuming that data reusabilityis not an
issue and that in addition data confidentiality is important, the combined application of the patterns results in
the coordination scenario represented in Figure 10(a) (based on direct data transmission).

b Data concerning descriptions of expensive items: For some customers additional data might be needed. For
example, customers that have large collections of stamps need to be treated in a different way. A precise esti-
mate of the value of the collection is needed to calculate theinsurance premium. Therefore, an insurance quote
service requires detailed descriptions of the stamps. Since this information is only needed in certain cases - only
when the customer has exceptionally expensive items in his house we need to favor a solution that is robust to
changes (EC1). For data flow initiation, this leads us to opting for an Active Provider. When using an Active
Provider, the second step is to evaluate whether one needs a direct or indirect request. Since the insurance
quote service does not have any knowledge on where to get thisinformation, anindirect request is necessary
(see EC4, data provider accessibility). Next, as with the other types of data above, for this data two sorts of data
transmission are possible too. First, in the case of confidential information (EC6) (e.g. the value of the items
is extremely high), it is better to choosedirect data transmission. Second, when transformation of the infor-
mation (EC8) is a priority above confidentiality,indirect data transmission via the Service Requester is more
appropriate. Assuming that data about the expensive items may need to be converted and that confidentiality is

16

not a primary issue, the application of these patterns results in the coordination scenarios represented in Figure
10(b) (based on indirect data transmission).

c Information about new customers: For the information about new customers the patterns are applied in a
similar way. The main difference is thedata provider, which can be either a sales service or perhaps the Service
Requester itself (e.g. collected when coordinating a previous process task). In any way, the insurance quote
service prefers to have a loose coupling with this Data Provider (EC3), which (again) motivates the choice
for an active insurance quote Service Requester for data flow initiation. Similar to the previous data need,
both direct data transmission and indirect data transmission can be useful in certain situations. Assuming
(again) that data reusability is not an issue and that in addition data confidentiality is important, the combined
application of the patterns results in the coordination scenario represented in Figure 10(c) (based on direct data
transmission).

d Information about blacklisted customers or fraudulent family members: Checking whether or not a cus-
tomer (or a family member) is on any blacklist, is only a thingthat the insurance quote service can do, because
only this service knows where to get this information. Furthermore, only the insurance quote service has access
to the blacklist service. The evaluation of EC4, data provider accessibility, hence motivates the use of anactive
service provider (insurance quote service), usingdirect requests. Since this data is highly confidential (EC6),
direct data transmission is also more appropriate in this case. These choices also support the fact that the insur-
ance quote service prefers not to share its business rules (checking blacklists and/or family members) with its
consumers (i.e. a Service Requester) (see EC5, confidentiality of data requirements, in 4.3.3). The application
of these patterns results in the coordination scenario represented in Figure 10(d).

e Base insurance quote: For each type of insurance (car, house, etc.) there exists abase insurance quote, that
is set by the sales service. Both the insurance quote serviceand the insurance quote Service Requester prefer
a loose coupling (EC3) with the sales service who acts as a data provider in this case. Therefore, it is better to
choose anactive data provider (sales service) that sends a set of base insurance quotes to the insurance quote
service from time to time (e.g. each time the sales service decides to modify base insurance quotes). In case
of an active data provider no choice needs to be made about direct or indirect requests. Based on potential data
transformation requirements (EC8), one can make a choice betweendirect data transmission andindirect data
transmission. Assuming that no data transformation is required, the application of these patterns results in the
coordination scenarios represented in Figure 10(e) (basedon direct data transmission).

Hence, a final solution for the management of the data dependencies is constructed by combining several coordi-
nation scenarios, each taking care of a particular set of data (see Figure 11). As explained above, the insurance quote
Service Requester takes the role of anactive Service Requester with respect to customer data, while the insurance
quote service takes the role of anactive Service Provider when it comes to information about the insured items or
confidential background data about customers. In the next subsection (see 5.3) we present a tool for pattern-based
coordination and show how this tool uses the patterns to generate an executable coordination scenario.

The conclusion of this validation exercise demonstrates that at least seven out of eight combinations prove to be
useful in practice. Moreover, it also demonstrates that there is no ’one size fits all’ solution. The ideal solution can only
be obtained by considering the specific characteristics of data and applying the suitable pattern for each different set of
data. This allows one to balance the different requirements and meet several criteria at once. The solution developed
by applying the patterns has been implemented at the banking& insurance company as a new version in replacement
of the existing version because of its improved stability (robustness to change), its capability of handling confidential
data and its satisfying performance level. Furthermore, when data requirements are changing at the company, the use
of the patterns, including the guiding criteria, makes it easier to adapt the coordination scenarios than before when
coordination logic was designed in an ad-hoc fashion. However, more research is needed to quantitatively evaluate
that the use of the patterns contributes to a more efficient and effective development of coordination scenarios.

One combination of patterns, namely the scenario represented in Figure 8(b), has not been used in this real life
case. Nevertheless, this does not imply that this pattern isuseless. Since it is the result of a logical deduction step
on the possible combination of the three basic patterns (active Service Provider with direct request and indirect
data transmission), it has its place in the overview of potential solutions andmight still prove useful in future real life
cases.

17

Insurance
Request

Management
Service

Customer
Information

Service

Insurance
Quote
Service

Request
information about
existing customer

information about
existing customer

a1

a2

Process
Insurance Request

(a) Active SR withdirect request (existing cus-
tomer information)

Insurance
Request

Management
Service

External
Information

Service

Insurance
Quote
Service

Process
Insurance Request

Request
value information

Value information

Value information

Re-
quest
value
Infor-

mation

b1

b2

b3

b4

(b) Active SP withindirect request andindirect data
transmission (value information

Insurance
Request

Management
Service

Sales
Service

Insurance
Quote
Service

Request
information about

new customer

information about
new customer

c1

c2

Process
Insurance Request

(c) Active SR with direct request (new cus-
tomer information)

Insurance
Request

Management
Service

Blacklist
Service

Insurance
Quote
Service

Request
blacklist

information

Blacklist
information

d1

d2

Process
Insurance Request

(d) Active SP withdirect request anddirect data
transmission (blacklist information)

Insurance

Request

Management

Service

Sales

Service

Insurance

Quote

Service Base

insurance quote
e1

Process

Insurance Request

(e) Active DP with direct data transmission (base
insurance quote)

Figure 10: Coordination scenarios required to manage all data dependencies in the insurance case

18

Insurance
Quote
Service

Request information about
existing customer

Customer
Information

Service

Sales
Service

External
Information

Service

Blacklist
Service

Information about
existing customer

Request information
about new customer

Information about
new customer

Request
value

information

Value
information

Base
insurance

quote

Request
blacklist

information

Blacklist
information

Value
infor-
mation

Process
Insurance Request

a1

a2

b2

b3

c1

c2

e1

d1

d2

b1

Request
value
Infor-

mation

b4

Insurance
Request

Management
Service

Figure 11: Combining coordination scenarios from Figure 10(a) to 10(d) into a final solution

19

5.3. Implementation

In order to demonstrate the practical utility of the approach, the pattern language was implemented into a tool for
pattern-based coordination in process-based service compositions. This tool also supports the pattern language for se-
quence dependencies, which helps service engineers to construct (partially) centralized or decentralized coordination
scenarios for triggering of task execution in the appropriate order. Since the tool supports both pattern languages, it
enables to design control logic and data flow separately, which means that, for example, a central control flow does
not necessarily have to imply a central data flow. Before discussing the tool in detail, we briefly highlight the main
ideas behind pattern-based service composition and coordination.

5.3.1. Pattern-based service composition and coordination
Pattern-based service composition and coordination starts from the idea that the services in a service composition

support business process tasks. This means that a service needs to be able to receive business requests (e.g. for
triggering the execution of a business process task) and send out event notifications about the execution of the business
process task it supports (e.g. the completion of the task). Furthermore, a service supporting a business process also
needs the ability to acquire all data that is necessary to execute this process. Moreover, if the business process task
results into task data output, then the service is supposed to send out this data. All the control logic concerning a
service supporting a business process task can be describedin an orchestration (e.g. a BPEL process). A skeleton for
this orchestration can be generated automatically based onthe business process specification (e.g. a BPMN diagram).
Hence, developers only need to add logic so that, for example, business requests are translated into the appropriate
actions to start a business process execution.

The main advantage of this approach is that all orchestrations forming the global interaction and coordination sce-
nario are automatically generated from a business process specification after selecting specific coordination patterns.
Afterwards, it is relatively easy to apply other solutions for managing data (and sequence) dependencies so that a
different coordination scenario is composed, e.g. because of a changed context with a different tradeoff of forces.

Since this article presents the pattern language for managing data dependencies, the discussion in this subsection
is mainly about how the patterns allow one to automatically generate coordination scenarios that deal with data depen-
dencies. However, designing coordination logic for process-based service compositions also requires the application
of the pattern language for managing sequence dependencies. That pattern language is also supported by the tool.
Additionally, the tool supports more complex coordinationscenarios in which the required data is provided as the
result of business task execution or in which input data is needed to make a decision on different possible branches
for business process continuation. The presentation of these extra functionalities is however beyond the scope of this
paper as this would require the description of the sequence coordination pattern language.

5.3.2. Tool implementation and its application in the insurance case study
Figure 12 visually summarizes the idea of pattern-based coordination by showing the input and output for the tool5.

One should note that the tool is conceived as a proof-of-concept that demonstrates the feasibility of the approach
rather than as a full-fledged BPEL generator. In its current implementation, little attention has been devoted to
user friendliness, performance issues, etc. Nevertheless, the present architecture can be used as a basis for a more
elaborated environment.

Below we will discuss each aspect by explaining how the tool can be used in the real-life insurance case described
in Subsection 5.2.2.

The input for the tool consists of two parts. First, the tool requires input models that describe sequence and data
dependencies. In aBPMN modelthe tool reads all sequence dependencies between business process tasks (e.g. a
customers insurance request needs to be processed before aninsurance contract is set up). Additionally, it can contain
BPMN data input associations, which link BPMN data objects to BPMN tasks (OMG, 2010). Such a BPMN data
input association implicitly defines a data dependency, because it specifies which data is required to execute a busi-
ness process task (e.g. processing an insurance request requires blacklist information). As mentioned in Subsection
5.2.2 the data dependencies defined in the real-life insurance case can be situated in a larger business process that
consists of tasks such as processing the customer’s request, presenting an offer to the customer, making the contract,

5The source code of a prototype implementation can be downloaded from http://www.econ.kuleuven.be/geert.monsieur/public/phd/

20

Output files

Selected patterns for managing
sequence and data dependencies

Input models specifying sequence and data dependencies

Tool for pattern-based coordination in
process-based service compositions

Process Order Arrange payment

Processed
order

Ship to customer

Customer’s

address

BPMN Model
(XML)

Data Dependencies
Model (XML)

Data Providers
(WSDL)

Coordination
Model
(XML)

Independent coordinator

Finance Service

Customer Service

Hotel
Booking Service

Flight

Booking Service

Car Rental

Booking Service

Online Payment
Service

Mail Service

Customer’s

Travel

requirements

Customer’s request

Enquire about
unpaid invoices

Number of

unpaid invoices

One or more
unpaid invoices

No

unpaid

invoices

Request for
booking

a car

Request for

booking

a flight

Request for

booking

a hotel

Hotel ack

Flight ack

Car ack

Request for

arranging

online payment

Payment

completed

Request for

registering

payment

Request for

mailing tickets

Coordination Scenario
(BPEL and WSDL files)

ProcessinsurancerequestCustomerinformation New customerinformationBlacklist information Price information forexpensive itemsCustomerinsurance requestreceived ...<task completionQuantity="1" id="sid¬5699C13D¬950E¬47F4¬96D9¬B14CB32EFC87"isForCompensation="false" name="Process insurance request" startQuantity="1"><incoming>sid¬09C7E5A8¬8B24¬4264¬B0BE¬EBD25AF1F9A8</incoming><outgoing>sid¬FBE3F617¬1A00¬4D36¬95B3¬5B5107A1A7F7</outgoing><dataInputAssociation id="sidÒC2DB3BE9Ò7448Ò46C1Ò9578Ò12BD768C1F03"><sourceRef>sidÒ574502FDÒDA7AÒ4F54ÒAC0AÒAF2DB4BC3AD8</sourceRef><targetRef>sidÒ5699C13DÒ950EÒ47F4Ò96D9ÒB14CB32EFC87</targetRef></dataInputAssociation><!¬¬ other dataInputAssociations follow here ¬¬></task>Blacklist informationrrequestived

Figure 12: Input and output for pattern-based coordination

21

ProcessinsurancerequestCustomerinformation New customerinformation
Blacklist information Price information forexpensive itemsCustomerinsurance requestreceived <task completionQuantity="1 " id="sidz5699C13Dz950Ez47F4z96D9zB14CB32EFC87"isForCompensation="false" name="Process insurance request" startQuantity= "1"><incoming>sidÆ09C7E5A8Æ8B24Æ4264ÆB0BEÆEBD25AF1F9A8</incoming><outgoing>sidäFBE3F617ä1A00ä4D3 6ä95B3ä5B5107A1A7F7</outgoing><dataInputAssociation id="sid�C2DB3BE9�7448�46C1�9578�12BD768C1F03"><sourceRef>sid,574502FD,DA7A,4F54,AC0A,AF2DB4BC3AD8</sourceRef><targetRef>sidJ5699C13DJ950EJ47F4J96D9JB14CB32EFC87</targetRef></dataInputAssociation><!pp other dataInputAssociations follow here pp></task>

Figure 13: Partial BPMN model for insurance case study (including data input association)

sending the insurance policy to the customer, and payment bythe customer. In this article we are only interested
in the execution of the first task that is about processing a customer’s request and the data dependencies that come
with this task. Therefore, we can limit the business processdescription to one task that requires several data objects
(see BPMN model in Figure 13). In this subsection we omitted the data requirement about the base insurance quote.
This data dependency is managed using anactive Data Provider, which implies that the Insurance Quote Service is
also involved in another process that receives updates on the base insurance quote. This coordination process is in-
dependent from the coordination process managing the otherdependencies. Coordination processes withactive Data
Providers are considered trivial and therefore not generated by the tool. In a separate XML file, thedata dependencies
model(see Figure 14), data dependencies are explicitly defined bylinking the BPMN data input associations to Data
Providers (e.g. the blacklist information that is requiredfor processing an insurance request needs to be retrieved from
the Blacklist service or data provider with idDP4). These Data Providers are also defined in the data dependencies
model by specifying WSDL details (e.g. in Figure 14 it is specified that blacklist information can be requested from a
data provider with idDP4by invoking the operation with the namerequestDataas defined in the WSDL fileBlacklist-
Service.wsdl). The second part of the input for the tool is thecoordination model(XML file), which specifies which
patterns need to be used to generate an executable coordination scenario. This model is the result of following the
design guidelines and applying the evaluation criteria that are included in the patterns (see Subsection 5.2 on guided
design). For each data dependency defined in the data dependencies model the coordination model specifies which
pattern solutions are to be used in the generated code to manage the data dependency (e.g. the data dependency about
blacklist information is managed using aactive service provider with direct request anddirect data transmission)6.

Generated BPEL processes for the Service Requester and the Insurance Quote Service (i.e. Service Provider) are
shown in Figure 16 and Figure 17. In order to test the correctness of the generated BPEL processes we deployed
several test examples, including the example described in this section, to several instances of the OW2 Orchestra
BPEL engine7. All generated BPEL processes were successfully executed.

6. Related work

Zirpins et al. (2004) propose to make a distinction between the logical dependenciesthat are modeled by the

6With respect to the sequence dependencies the coordinationmodel specifies which BPMN tasks (as defined in the BPMN model)are to be
coordinated by a singlecoordinator (i.e. a single BPEL process orchestrating multiple BPMN tasks). Since this article mainly focuses on data
dependencies the coordination model shown in 15 only specifies one coordinator, executing one task (i.e. process insurances request).

7http://orchestra.ow2.org/

22

<?xml version="1.0" encoding="UTF¢8"?><dd :dataDependenciesModel bpmnLocation="DataDependenciesProcessBankingCase .xml" xmlns:dd="http ://servicecoordination .org/dataDependencies" xmlns:xsi="http ://www .w3.org/2001/XMLSchema¢instance" xsi:schemaLocation="http ://servicecoordination .org/dataDependencies DataDependencies_v3.xsd "><dd :dataProviders><dd :dataProvider id="DP1" name="CRMService"partnerLinkTypeName="DataProviderLink"receiveOperationName="receiveData" receiveRoleName="DataReceiver"requestOperationName="requestData" requestRoleName="DataProvider"wsdlLocation="CRMService .wsdl"/><dd :dataProvider id="DP2" name="ExternalInformationService"partnerLinkTypeName="DataProviderLink" receiveOperationName="receiveData"receiveRoleName="DataReceiver"requestOperationName="requestData" requestRoleName="DataProvider"wsdlLocation="ExternalInformationService .wsdl"/><dd :dataProvider id="DP3" name="SalesService"partnerLinkTypeName="DataProviderLink"receiveOperationName="receiveData" receiveRoleName="DataReceiver"requestOperationName="requestData" requestRoleName="DataProvider"wsdlLocation="SalesService .wsdl"/><dd :dataProvider id="DP4" name="BlacklistService"partnerLinkTypeName="DataProviderLink"receiveOperationName="receiveData" receiveRoleName="DataReceiver"requestOperationName="requestData" requestRoleName="DataProvider"wsdlLocation="BlacklistService .wsdl"/></dd :dataProviders><dd :dataDependencies><dd :externalDataDependency bpmnTaskId="sid¢5699C13D¢950E¢47F4¢96D9¢B14CB32EFC87"dataInputAssociationId="sid¢C2DB3BE9¢7448¢46C1¢9578¢12BD768C1F03"dataProviderId="DP1" id="DDa" name="Customer_Information_Required"/><dd :externalDataDependency bpmnTaskId="sid¢5699C13D¢950E¢47F4¢96D9¢B14CB32EFC87"dataInputAssociationId="sid¢C2DB3BE9¢7448¢46C1¢9578¢12BD768C1F03"dataProviderId="DP2" id="DDb" name="Value_Information_Required"/><dd :externalDataDependency bpmnTaskId="sid¢5699C13D¢950E¢47F4¢96D9¢B14CB32EFC87"dataInputAssociationId="sid¢C2DB3BE9¢7448¢46C1¢9578¢12BD768C1F03"dataProviderId="DP3" id="DDc" name="New_Customer_Information_Required"/><dd :externalDataDependency bpmnTaskId="sidð5699C13Dð950Eð47F4ð96D9ðB14CB32EFC87"dataInputAssociationId="sidðC2DB3BE9ð7448ð46C1ð9578ð12BD768C1F03"dataProviderId="DP4" id="DDd" name="Blacklist_Details_Required"/></dd :dataDependencies></dd :dataDependenciesModel>
Excplicit Data Dependencies definitions (i.e. links between BPMN dataInputAssociations and Data Providers defined above)

Data Providers definitions (i.e. WSDL
information on Data Providers)

Figure 14: Data Dependencies model specifying Data Providers and data dependencies

23

<?xml version="1.0" encoding="UTF�8"?><cm :coordinationModel xmlns:cm="http ://servicecoordination .org/coordinationModel" xmlns:xsi="http ://www .w3.org/2001/XMLSchema�instance" xsi :schemaLocation="http ://servicecoordination .org/coordinationModel coordinationModel_v2 .xsd "><cm :sequenceDependenciesManagement bpmnModel="DataDependenciesProcessBankingCase .xml"><cm :coordinator name="ServiceRequester"><cm :bpmnTaskId>sid�5699C13D�950E�47F4�96D9�B14CB32EFC87</cm :bpmnTaskId></cm :coordinator></cm :sequenceDependenciesManagement><cm :dataDependenciesManagement dataDependenciesModel="dataDependenciesModel .xml"><cm :dataDependencyManagement dataDependencyId="DDa" initiationPattern="active_service_requester"transmissionPattern="direct_data_transmission"/><cm :dataDependencyManagement dataDependencyId="DDb" initiationPattern="active_service_provider"requestPattern="indirect_request" transmissionPattern="direct_data_transmission"/><cm :dataDependencyManagement dataDependencyId="DDc" initiationPattern="active_service_requester"transmissionPattern="direct_data_transmission"/><cm :dataDependencyManagement dataDependencyId="DDd" initiationPattern="active_service_provider"requestPattern="direct_request" transmissionPattern="direct_data_transmission"/></cm :dataDependenciesManagement></cm :coordinationModel>
For each data dependency it is specified
which pattern solutions need to be used

for code generation

Figure 15: Coordination model specifying selected coordination patterns

interaction logic and theoperational coordinationthat refers to the procedure or method that is utilized to enforce
the logical dependencies. We make a distinction between sequence and data dependencies. Similarly, the opera-
tional coordination matches our vision on coordination, which is about managing the sequence and data dependencies.
Zirpins et al. (2004) argued that while workflow processes represent the logical dependencies of interactions (i.e.
causal and data relationships of message exchanges) they often simultaneously act as instructions for their coordi-
nation on the execution-level by distributed workflow management systems. As such, the coordination procedure
emerges only implicitly as a side-effect of dependencies from the interaction logic and not because of application-
specific reasons.

However, there are in most cases multiple alternatives for the enforcement of the abstract interaction logic. There-
fore Zirpins et al. (2004) suggest that a technical solutionfor service composition should consist of a combination
of design and implementation patterns. Adesign patterncorresponds to the interaction logic that only specifies the
generic process characteristics, while animplementation patternrefers to the refinement of the interaction logic that
is needed for the concrete coordination of services. Zirpins et al. (2004) state that the criteria for the choice of the
most appropriate coordination pattern must be specified by so called coordination policies. Acoordination policyde-
scribes the effect of a coordination variant in terms of specific (non-functional) service properties and thereby controls
the choice of alternatives. In summary, we can conclude thatin this article we are looking for both implementation
patterns and coordination policies (Zirpins et al., 2004; Zirpins and Lamersdorf, 2004). The implementation patterns
allow us to systematically construct coordination scenarios, and the coordination policies make it possible to construct
the most appropriate coordination scenario in a certain business context.

Barros et al. (2005) have proposed a set ofservice interaction patterns, aiming to consolidate recurrent interaction
scenarios in orchestrations and choreographies, and abstract them in a way that provides reusable knowledge. Further-
more, the service interaction patterns are intended for assessing an orchestration or choreography language for its in-
teraction modeling capabilities. In the past such evaluations were conducted for BPEL (Barros et al., 2005), WS-CDL
(Decker et al., 2006), BPMN (Decker and Puhlmann, 2007; Decker and Barros, 2008) and BPEL4Chor (Decker et al.,
2007). Although the service interaction patterns may be composed through operators expressing flow dependencies
(e.g. sequence, choice, etc.) (Barros and Börger, 2005), no guidelines exist on how to combine the patterns to con-
struct coordination logic that manage data dependencies.

Zdun et al. (2006) have proposed a pattern-based architectural framework for SOAs. In their reference architecture
the coordination logic in service compositions is referredto as theprocess integration logic. Since both a business
process and coordination logic are represented using process flows, Zdun et al. (2006) propose to make a distinction
between two general types of process flows:macroflowrepresenting the higher-level business process, and microflow

24

Parallel
execution

ACTIVE SERVICE

REQUESTER

sending request
for

New Customer
Information

Service Requester
receiving and
forwarding

INDIRECT REQUEST
for Value

Information

ACTIVE SERVICE
REQUESTER

sending request for
Customer

Information

Figure 16: Generated BPEL process for the Service Requester

25

P
a
ra

ll
e
l

e
x
e
cu

ti
o
n

S
e
rv

ic
e
 P

ro
v
id

e
r

re
ce

iv
in

g

C
u

st
o
m

e
r

In
fo

rm
a
ti

o
n

A
C

T
IV

E
 S

E
R

V
IC

E
 R

E
Q

U
E

S
T

E
R
 s

e
n

d
in

g

I N
D

IR
E

C
T
 R

E
Q

U
E

S
T
 f

o
r

V
a
lu

e
 I

n
fo

rm
a
ti

o
n

+

 r
e
ce

iv
in

g
 V

a
lu

e
 I

n
fo

rm
a
ti

o
n

A
C

T
IV

E
 S

E
R

V
IC

E
 R

E
Q

U
E

S
T

E
R
 s

e
n

d
in

g

D
IR

E
C

T
 R

E
Q

U
E

S
T
 f

o
r

B
la

ck
li

st

In
fo

rm
a
ti

o
n

 +
 r

e
ce

iv
in

g
 B

la
ck

li
st

I n

fo
rm

a
ti

o
n

S
e
rv

ic
e
 P

ro
v
id

e
r

re
ce

iv
in

g

N
e
w

 C
u

st
o
m

e
r

In
fo

rm
a
ti

o
n

F
ig

ur
e

17
:

G
en

er
at

ed
B

P
E

L
pr

oc
es

s
fo

r
th

e
S

er
vi

ce
P

ro
vi

de
r

(
i.e

.
in

su
ra

nc
e

qu
ot

e
se

rv
ic

e
th

at
pr

oc
es

se
s

cu
st

om
er

re
qu

e
st

s

26

Nurse

Doctor Pharmacist

Request for

the risk for

stomach bleeding

The risk for

stomach bleeding

Request for

a medicine for
reducing fever

(includes the risk for

stomach bleeding)

1

2

3

(a) Central data flow

Nurse

Doctor Pharmacist

Request for

the risk for

stomach bleeding

Request for

a medicine for
reducing fever

1 2

The risk for

stomach bleeding

(b) Decentral data flow

Figure 18: Two possible data flows for hospital example

addressing the process flow within a macroflow activity. The distinction between micro- and macroflow is a concep-
tual decision in order to be able to design process steps at the right level of granularity when designing at the long
running business process level (macroflow) or the short running, more technical level (microflow) (Hentrich and Zdun,
2006). Typically, a microflow consists of coordinated service interactions. However, no patterns were referenced for
constructing such service interactions systematically, nor were patterns referenced for different sorts of microflow (i.e.
templates or coordination styles).

Data dependencies are related to thedata flowconcept in service compositions. In general, data flow can be
defined as the service interactions that are necessary for sending data from one service that can provide certain data to
another service that needs that data (Barker et al., 2008b; Yang, 2003; Weber et al., 2003; Charfi and Mezini, 2007).
A data flow thus specifies how data dependencies are managed. Therefore, we also compare our work to studies
that specifically contain approaches to identify data dependencies and realise data flows (possibly proposing different
alternatives) in a service composition. We illustrate the results of these studies by means of the running example
presented in Section 2. We will show that these studies do notcover all aspects that are important for the design of an
appropriately coordinated service-based system.

In the descriptions below, we use two coordination scenarios for the hospital example, which are represented in
figures 18(a) and 18(b). Each arrow corresponds to a message sent between two entities. The dashed arrows refer to
service invocations, while the solid arrows denote the transfer of data between two entities. The semi-dashed arrow
(as used in figure 18(a)) indicates that the data is included in the invocation message. While in figure 18(a) all data
passes via the nurse (central data flow), the data flow in figure18(b) is decentral, since data flows directly from one
service to the other. As we will show below, the contributions of many studies can be easily explained by means of
this small example consisting of two possible coordinationscenarios.

Barker et al. (2008b) and Barker et al. (2008a) have presented a Web services based architecture that allows cen-
tralizing component invocations (centralized control flow) and decentralizing data flows (similar to figure 18(b)). This
architecture consists of a centralized orchestration engine that issues control flow messages to Web services taking
part in service composition. However, enrolled Web services can pass data messages among themselves, as in a peer
to peer model. The architecture is mainly based on the idea ofso calledproxies, which are deployed in the vicinity of
Web services. These proxies realize the more efficient data flow between component services.

Liu et al. (2002a,b) have published a mathematical model that is built to compare the data flow performances. They
concluded that decentralized data flow is in general superior in performance (i.e. the service composition in figure
18(b) outperforms 18(a)). Subsequently, they developed a Flow-based Infrastructure for Composing Autonomous
Services (FICAS) (Liu et al., 2002a,b). Autonomous services are built to support the service access protocol, which
enforces the explicit separation of data flows from control flows. In FICAS the so called autonomous services are
implemented by wrapping each software application or service into an autonomous service with a mediator.

The infrastructure based on so called service invocation triggers, introduced by Binder et al. (2006), is very sim-
ilar to FICAS. In this infrastructure service invocation triggers also act as proxies for individual service invocations.
Triggers collect the required input data before they invokethe service. Moreover, they forward service outputs to
exactly those services that need the output. In order to makeuse of triggers, business processes are decomposed into

27

sequential fragments, and the data dependencies are encoded within the triggers. Once the trigger of the first service
in a business process has received all input data, the execution of that service is started and the outputs are forwarded
to the triggers of subsequent services. Consequently, the service composition is implemented in a fully decentralized
way, the data is transmitted directly from the producer to all consumers.

Balasooriya et al. (2005) use the same ideas for decentralizing data flows. In particular, they create a proxy
wrapper around each Web service. The proxy wrappers embed the coordination logic so that instances of wrapped
Web services become stateful self-coordinating web objects. However, the proxy wrappers need to interact with the
actual Web service to complete each method invocation.

We can conclude that several approaches exists that cater for alternative data flows. The proposed architectural
infrastructures for such data flows often use the same idea: wrapping each component service with additional logic that
decides where to send input or output data. Obviously, theseinfrastructures are valuable and useful when one wants
to implement a specific data flow. However, the focus on the problem of designing the data flow itself is rather limited.
Furthermore, as we will show below, it remains difficult for a service composer to construct a well coordinated service
composition. There are two main reasons why the current approaches are not entirely adequate for this purpose:

1 As most approaches have only a limited focus on designing the data flow, these studies fail to systematically
analyze the coordination problem. Most approaches allow finding alternative data flows, but do not provide a
systematic way of building different coordination scenarios nor do they analyze the advantages and disadvan-
tages of alternatives. As a consequence, they fail to exhaustively identify all possible coordination scenarios.
The approaches mostly propose techniques for decentralizing data flows in service compositions. Applied to
the hospital example, this would mean that a scenario such asshown in figure 18(a) can be transformed into
a scenario such as shown in figure 18(b). However, one can easily see that there are more possibilities. For
example, the scenario represented in figure 19 contains a different coordination scenario. In this scenario the
pharmacist requests and receives the risk information directly from the doctor, which can be considered as yet
another different way of managing the data dependency between the pharmacist and the doctor. Other possible
scenarios were illustrated in the section discussing the running example (see Figures 2(a) and 2(b)).

2 The main motivation behind existing approaches are performance issues (i.e. communication overhead, etc.).
Only the work by Balasooriya et al. (2005) recognizes that decentral data flow can be required due to security,
privacy, or licensing imperatives. However, when evaluating their infrastructure, they only focus on the perfor-
mance aspect. To the best of our knowledge, no studies about data dependency management take into account
other aspects that could influence the choice of a specific data flow solution such as data confidentiality, loose
coupling or robustness to change. This can result in badly orsuboptimally coordinated service compositions
and service-based systems. For example, the pharmacist anddoctor in the decentralized data flow scenario
shown in figure 2(b) are not optimally coordinated. This is due to the fact that nurses probably should not
need to understand which data is required by the pharmacist.Nurses simply want to consume the pharmacist’s
services, and it is to be avoided that changes in data requirements on behalf of the pharmacist result in changes
in how nurses need to work (or consume the pharmacist’s services). Hence, the scenarios represented in figures
2(a) and 19 are probably more appropriate, because in these scenarios the nurse does not have to know which
data is needed by the pharmacist. This example illustrates that robustness to change is another useful criterion
to be considered next to performance issues.

7. Conclusion

When services are composed into service-based systems, thedesign of a data flow is a crucial part of the service co-
ordination. This often occurs in an ad hoc fashion without any tool support (Papazoglou, 2005; Papazoglou and Van den Heuvel,
2007). The pattern language and tool presented in this article provide a systematic way of composing coordination
scenarios from fundamental building blocks so that the coordination scenario manages all data dependencies.

While related work on the (alternative) design of data flows in service compositions is mainly focused on optimiz-
ing the performance, the pattern-based approach proposed in this paper analyzes the advantages and disadvantages of
each design alternative by consideringmultipleevaluation criteria or pattern forces, including robustness to change,
loose coupling and data confidentiality. The approach divides the problem of managing a data dependency into three

28

Nurse

Doctor Pharmacist

Request for

the risk for

stomach bleeding

The risk for

stomach bleeding

Request for

a medicine for

reducing fever

2

1

3

Figure 19: An alternative data flow for the scenarios represented in figures 18(a) and 18(b)

subproblems, each addressed by a separate pattern. In each solution presented in a particular pattern forces are bal-
anced differently. By giving a weight to the forces, service composerscan be guided towards the most appropriate
coordination scenario in the context at hand.

In Section 3 three objectives were defined that were used to evaluate the pattern language in Section 5. First,
we demonstrated the practical utility of the pattern language as guidelines for developers by applying it in a real-life
insurance case. As the case involves a large set of data to which different forces apply in different ways and multiple
data providers, it demonstrated the practical utility in complex real life situations that require multiple applications of
the pattern language. Second, we showed thatall potential coordination scenarios for managing a data dependency
can be composed by combining the patterns of the pattern language. The fact that the pattern language presented
in this paper is complete, has important consequences for the way in which coordination logic is constructed in
the future. In the past researchers argued that an over-emphasis on service interactions is at the expense of other
aspects like business goals (Ko et al., 2009; Koubarakis andPlexousakis, 1999; Andersson et al., 2005). However,
since all potential coordination scenarios can be composedfrom the patterns, it makes no sense anymore to spend
expensive time designing coordination scenarios at the level of service interactions and message exchanges. Third,
the patterns proved to form a good basis for configurable model-to-code transformations (Zimmermann et al., 2006),
making it possible to automatically generate executable BPEL coordination scenarios. In line with the principles
of the Model-Driven Architecture (Kleppe et al., 2003) it contributes to an efficient (e.g. automatically generated
coordination scenarios) and effective (e.g. less errors and more consistency) developmentof service composition.
Developers do not need to repeatedly re-encode the same implementation patterns, resulting in an increased reuse. The
patterns presented in this paper were successfully implemented in a tool for pattern-based service composition and
coordination. This showed that the patterns can be combinedwith the patterns for managing sequence dependencies,
which makes it possible to design data flows independently from the control flow (e.g. central control flow combined
with a decentral data flow).

The core results presented in this paper were written as patterns constituting a pattern language. The use of pat-
terns as a description technique immensely facilitates thecommunication of the research results. Although we have
successfully applied the patterns to automatically generate coordination logic from business process specifications,
people are the prime audience for patterns. Patterns form a specialized but common vocabulary that software archi-
tects and developers can use to discuss particular problemsthat arise in their projects, resulting into a better joint
understanding of specific problems and solutions to these problems (Buschmann et al., 2007). Furthermore, previous
research has shown that patterns improve the repeatability, usability and reuse of design practices (Ng et al., 2006;
Prechelt et al., 2001).

References

Andersson, B., Bider, I., Johannesson, P., Perjons, E., 2005. Towards a formal definition of goal-oriented business process patterns. Business
Process Management Journal 11, 650–662.

Balasooriya, J., Padhye, M., Prasad, S.K., Navathe, S.B., 2005. Bondflow: A system for distributed coordination of workflows over web services,
in: Proceedings of the 19th IEEE International Parallel andDistributed Processing Symposium (IPDPS 2005) - Workshop 1, IEEE Computer
Society, Washington, DC, USA. p. 121.1.

29

Barker, A., Weissman, J.B., Van Hemert, J., 2008a. Eliminating the middleman: peer-to-peer dataflow, in: Proceedings of the 17th international
symposium on High performance distributed computing (HPDC2008), ACM, New York, NY, USA. pp. 55–64.

Barker, A., Weissman, J.B., Van Hemert, J., 2008b. Orchestrating data-centric workflows, in: Proceedings of the 2008 Eighth IEEE International
Symposium on Cluster Computing and the Grid (CCGRID 2008), IEEE Computer Society, Washington, DC, USA. pp. 210–217.

Barros, A., Börger, E., 2005. A compositional framework for service interaction patterns and interaction flows, in: Lau, K.K., Banach, R. (Eds.),
Formal Methods and Software Engineering. Springer-VerlagBerlin Heidelberg. volume 3785 ofLecture Notes in Computer Science, pp. 5–35.

Barros, A., Dumas, M., ter Hofstede, A.H., 2005. Service Interaction Patterns, in: Van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F.
(Eds.), Business Process Management. Springer-Verlag Berlin Heidelberg. volume 3649 ofLecture Notes in Computer Science, pp. 302–318.

Binder, W., Constantinescu, I., Faltings, B., 2006. Decentralized orchestration of composite web services, in: Proceedings of the IEEE International
Conference on Web Services (ICWS 2006), IEEE Computer Society, Washington, DC, USA. pp. 869–876.

Buschmann, F., Henney, K., Schmidt, D., 2007. Pattern-oriented software architecture: On patterns and pattern languages. John Wiley & Sons Ltd,
The Atrium, Southern Gate, Chichester, West Sussex, England.

Charfi, A., Mezini, M., 2007. AO4BPEL: An Aspect-oriented Extension to BPEL. World Wide Web 10, 309–344.
Clocksin, W., Mellish, C., 2003. Programming in PROLOG (Fifth Edition). Springer-Verlag Berlin Heidelberg, New York,NY, USA.
Decker, G., Barros, A., 2008. Interaction modeling using bpmn, in: Proceedings of the 2007 international conference onBusiness Process

Management (BPM 2007), Springer-Verlag Berlin Heidelberg. pp. 208–219.
Decker, G., Kopp, O., Leymann, F., Weske, M., 2007. BPEL4Chor: Extending BPEL for Modeling Choreographies, in: Proceedings of IEEE 2007

International Conference on Web Services (ICWS 2007), IEEEComputer Society, Washington, DC, USA. pp. 296 –303.
Decker, G., Overdick, H., Zaha, J., 2006. On the Suitabilityof WS-CDL for Choreography Modeling, in: Proceedings of Methoden, Konzepte und

Technologien für die Entwicklung von dienstebasierten Informationssystemen (EMISA 2006), Citeseer.
Decker, G., Puhlmann, F., 2007. Extending bpmn for modelingcomplex choreographies, in: Proceedings of the 2007 OTM Confederated interna-

tional conference on On the move to meaningful internet systems (OTM 2007), Springer-Verlag Berlin Heidelberg. pp. 24–40.
Erl, T., 2007. SOA Principles of Service Design. Prentice Hall PTR, Upper Saddle River, NJ, USA.
Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: elements of reusable object-oriented software. Addison-wesley Reading,

MA.
Goethals, F., 2008. Important Issues for Evaluating Inter-Organizational Data Integration Configurations. Electronic Journal Information Systems

Evaluation 11, 185–196.
Habala, O., Simo, B., Gatial, E., Hluchy, L., 2008. Automatic data reuse in grid workflow composition, in: Proceedings ofthe 8th international

conference on Computational Science, Part I, Springer-Verlag, Berlin, Heidelberg. pp. 194–202.
Haesen, R., De Rore, L., Snoeck, M., Lemahieu, W., Poelmans,S., 2006. Active-passive hybrid data collection, in: Proceedings of the 11th

European Conference on Pattern Languages of Programs (EuroPLoP 2006), pp. 565–577.
Hentrich, C., Zdun, U., 2006. Patterns for process-oriented integration in service-oriented architectures, in: Proceedings of the 11th European

Conference on Pattern Languages of Programs (EuroPLoP 2006).
Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information systems research. MIS Quarterly 28, 75–105.
Janssen, M., Feenstra, R., 2008. Socio-technical design ofservice compositions: a coordination view, in: Proceedings of the 2nd International

Conference on Theory and Practice of Electronic Governance(ICEGOV 2008), ACM, New York, NY, USA. pp. 323–330.
Kleppe, A.G., Warmer, J., Bast, W., 2003. MDA Explained: TheModel Driven Architecture: Practice and Promise. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.
Ko, R.K.L., Lee, S.S.G., Lee, E.W., 2009. Business process management (BPM) standards: a survey. Business Process Management Journal 15,

744–791.
Koubarakis, M., Plexousakis, D., 1999. Business process modelling and design - a formal model and methodology. BT Technology Journal 17,

23–35.
Legner, C., Vogel, T., 2007. Design principles for b2b services - an evaluation of two alternative service designs, in: Proceedings of IEEE

International Conference on Services Computing 2007 (SCC 2007), pp. 372–379.
Liu, D., Law, K.H., Wiederhold, G., 2002a. Analysis of integration models for service composition, in: Proceedings of the 3rd international

workshop on Software and performance (WOSP 2002), ACM, New York, NY, USA. pp. 158–165.
Liu, D., Law, K.H., Wiederhold, G., 2002b. Data-flow distribution in FICAS service composition infrastructure, in: Proceedings of the 15th

International Conference on Parallel and Distributed Computing Systems (PDCS 2002), ISCA, Louisville, Kentucky USA.
Malone, T., Crowston, K., 1994. The interdisciplinary study of coordination. ACM Computing Surveys (CSUR) 26, 119.
Metzger, A., Pohl, K., 2009. Towards the Next Generation of Service-Based Systems: The S-Cube Research Framework, in: van Eck, P., Gordijn,

J., Wieringa, R. (Eds.), Advanced Information Systems Engineering. Springer-Verlag Berlin Heidelberg. volume 5565 of Lecture Notes in
Computer Science, pp. 11–16.

Monsieur, G., 2010. Pattern-based Coordination in Process-based Service Compositions. Ph.D. thesis. Faculty of Business and Economics,
Katholieke Universiteit Leuven.

Monsieur, G., Snoeck, M., Lemahieu, W., 2010. Managing sequence dependencies in service compositions, in: Proceedings of the 15th European
Conference on Pattern Languages of Programs (EuroPLoP 2010).

Ng, T.H., Cheung, S.C., Chan, W.K., Yu, Y.T., 2006. Work experience versus refactoring to design patterns: a controlledexperiment, in: Proceed-
ings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14), ACM, New York,
NY, USA. pp. 12–22.

OASIS, 2007. Web Services Business Process Execution Language (WS-BPEL) Version 2.0. OASIS Standard.
OMG, 2010. Business Process Model and Notation (BPMN) Version 2.0. OMG Document (dtc/2010-06-05).
Paci, F., Ouzzani, M., Mecella, M., 2008. Verification of access control requirements in web services choreography, in:Proceedings of the 2008

IEEE International Conference on Services Computing - Volume 1, IEEE Computer Society, Washington, DC, USA. pp. 5–12.
Paikens, A., Arnicans, G., 2008. Use of Design Patterns in PHP-Based Web Application Frameworks. Scientific Papers University of Latvia,

Computer Science and Information Technologies 733, 53–71.

30

Papazoglou, M., 2005. Extending the service-oriented architecture. Business Integration Journal 7, 18–21.
Papazoglou, M., Delis, A., Bouguettaya, A., Haghjoo, M., 1997. Class library support for workflow environments and applications. IEEE

Transactions on Computers 46, 673–686.
Papazoglou, M., Van den Heuvel, W.J., 2007. Service oriented architectures: approaches, technologies and research issues. The VLDB Journal -

The International Journal on Very Large Data Bases 16, 415.
Peffers, K., Tuunanen, T., Rothenberger, M., Chatterjee, S., 2007. A design science research methodology for information systems research. Journal

of Management Information Systems 24, 45–77.
Prechelt, L., Unger, B., Tichy, W., Brössler, P., Votta, L., 2001. A controlled experiment in maintenance comparing design patterns to simpler

solutions. IEEE Transactions on Software Engineering , 1134–1144.
Rising, L., 1998. The patterns handbook: Techniques, strategies, and applications, Cambridge University Press. volume 13 ofSIGS reference

library series.
Rising, L., 1999. Patterns: a way to reuse expertise. IEEE communications magazine 37, 34–36.
RosettaNet, n.d. RosettaNet Partner Interface Processesc©(PIPsc©). RosettaNet Standard.
W3C, 2005. Web Services Choreography Description Language(WS-CDL) Version 1.0. W3C Candidate Recommendation.
Weber, R., Schuler, C., Neukomm, P., Schuldt, H., Schek, H.J., 2003. Web service composition with O’GRAPE and OSIRIS, in: Proceedings of

the 29th international conference on Very large data bases (VLDB 2003), VLDB Endowment. pp. 1081–1084.
Wielemaker, J., 2003. An overview of the SWI-Prolog programming environment, in: Proceedings of the 13th International Workshop on Logic

Programming Environments, Department of Computer Science, K.U.Leuven, Leuven, Belgium. pp. 1–16.
Yang, J., 2003. Web service componentization. Communications of the ACM 46, 35–40.
Yang, J., Papazoglou, M., Van den Heuvel, W.J., 2002. Tackling the Challenges of Service Composition in E-Marketplaces, in: Proceedings of

the 12th International Workshop on Research Issues in Data Engineering: Engineering E-Commerce/E-Business Systems (RIDE 2002), IEEE
Computer Society, Washington, DC, USA. p. 125.

Zdun, U., Hentrich, C., Van der Aalst, W.M., 2006. A survey ofpatterns for service-oriented architectures. International Journal of Internet Protocol
Technology 1, 132–143.

Zimmermann, O., Koehler, J., Leymann, F., 2006. The role of architectural decisions in model-driven soa construction,in: Proceedings of the
4th International Workshop on SOA and Web Services, colocated 21st International Conference on Object-Oriented Programming, Systems,
Languages, and Applications.

Zirpins, C., Lamersdorf, W., 2004. Service Co-operation Patterns and their Customised Coordination, in: Proceedingsof the Second European
Workshop on Object Orientation and Web Service (EOOWS 2004).

Zirpins, C., Lamersdorf, W., Baier, T., 2004. Flexible coordination of service interaction patterns, in: Proceedingsof the 2nd international
conference on Service oriented computing (ICSOC 2004), ACM, New York, NY, USA. pp. 49–56.

Appendix A. Pattern forces (evaluation criteria)

EC1 Robustness to change: In a service-oriented environment it is critical that the propagation of changes due to the
modification of the interface of a Service Provider is minimized. Consumers prefer to rely on a Service Provider
that only rarely changes its interface. A change in the data requirements should minimally change the way the
Service Provider is consumed. This evaluation criterion isrelated to the service design principle called service
reusability, because a service can be considered more reusable if it has a relatively simple and stable interface
(Erl, 2007).

EC2 Adjustability: A specific coordination scenario consists of a set of service interactions so that data available at
the Data Provider is sent to the Service Provider. This criterion is about the ability to change which data is sent
to the Service Provider in function of a specific service request. For example, in coordination scenarios to man-
age the data dependency between the pharmacist and the doctor this criterion can be used to make a distinction
between coordination scenarios in which information regarding aspecificpatient is sent to the pharmacist and
coordination scenarios in which information regardingmultiplepatients are sent to the pharmacist. Depending
on the specific business context, a certain level of adjustability can be desired. For example, in the hospital
setting efficiency issues can motivate coordination scenarios with high adjustability, so that pharmacists only
receive information they really need (e.g. patient specificinformation instead of information regarding multi-
ple patients). This evaluation criterion is derived from the service design principle called service granularity
(Legner and Vogel, 2007; Erl, 2007). Low adjustability implies a fine-grained data transmission, while high
adjustability results into more coarse-grained data exchanges.

EC3 Coupling with Data Provider: In some situations the data needed is not always provided bythe same Data
Provider. Each time a service takes over the role of Data Provider the party that is sending data requests to
the Data Provider needs to be notified and modified properly. Similarly, each change in the interface of the
Data Provider, requires a change in the implementation of the party that is interacting with the Data Provider.

31

Therefore, a common principle in service design called loose coupling is often applied (Erl, 2007). This means
that preferably a Service Provider’s implementation does not have to rely on several other services.

EC4 Data provider accessibility: Sometimes it is possible that the Service Provider does notknowwhichservice can
provide the required data (e.g. the pharmacist does not knowwho is the patient’s doctor). In other cases it can
occur that the Service Provider does not haveaccessto the specific Data Provider (e.g. the pharmacist does not
have the phone number of the patient’s doctor or is not allowed to call the doctor directly). However, it can also
occur that only the Service Provider has access to the right Data Provider (e.g. only the pharmacist can request
information concerning a potential risk for stomach bleeding). This evaluation criterion is inspired by research
on the verification of access control requirements in choreographies (e.g. Paci et al. (2008)).

EC5 Confidentiality of data requirements: In order to complete its internal processing, a Service Provider needs
data. It can occur that these data requirements are confidential (e.g. suppose that nurses cannot have insight
into the pharmacist’s internal decision processes), whichmeans that only a limited set of services or even
only the Service Provider itself knows which data is needed in the process of delivering its service. This
evaluation criterion is related to the service design principle called service abstraction, because it is about
hiding information about the Service Provider’s data requirements (Erl, 2007).

EC6 Data confidentiality: When requesting a Data Provider to send the required data toan entity, it is important
to realize that the provided data can be confidential and therefore there can exist a need to limit the number
of entities that the Data Provider can share the data with (Goethals, 2008). For example, a Data Provider can
demand that the provided data is only sent to the entity (e.g.a Service Provider) that needs the data and that it
cannot be shared with other Service Providers or the ServiceRequester.

EC7 Data reusability: In some business cases data provided by a Data Provider is used by more than one Service
Provider. In such situations an optimal coordination scenario limits the number of data requests that are sent to
the Data Provider. This evaluation criterion is often used in grid workflow composition (Habala et al., 2008).

EC8 Data format: When the Data Provider replies, the data that is provided ispossibly not in a form that is ex-
pected by the Service Provider. For example, the data formatneeds to be adapted, or the data should be made
anonymous. In short, in some cases data transformations aredesirable before the data is received by the Ser-
vice Provider. Dealing with different data formats is a common challenge when information isshared among
services (Goethals, 2008).

Appendix B. Pattern consequences

Appendix B.1. Data flow initiation

EC1 Robustness to change: In case of anactive Service Requester or anactive Data Provider every change in the
Service Provider’s data requirements results in a change inthe implementation of the Service Requester or Data
Provider. In contrast, in theactive Service Provider scenario these changes are only reflected in modified data
requests sent by the Service Provider itself. Therefore, consumption ofactive Service Providers is considered
to be rather stable.

EC2 Adjustability: An active Service Requester sends both a service request to the Service Provider and a data
request to the Data Provider. Hence, it is obvious that anactive Service Requester can adjust the data request
to a specific service request. Anactive Service Provider can also adjust the data request to a specific service
request, because it receives, per definition, service requests from the Service Requester. In contrast, inactive
Data Provider scenario control and data flow are always separated (i.e. neither the Service Requester nor the
Service Provider is sending data requests to the Data Provider), which means the data sent by the Data Provider
can not be changed in function of a specific service request.

EC3 Coupling with Data Provider: It is clear that anactive Service Provider is coupled with the external world,
because it needs to send out data requests to known external parties. In contrast, in a case of anactive Service
Requester andactive Data Provider the Service Provider simply expects that the data is provided at some

32

point in time. In such scenarios Service Providers do not have to initiate interactions with external parties (for
input data purposes). Anactive Service Requester has a coupling with the Data Provider, but this can possibly
be considered more acceptable because Service Requesters are also strongly coupled with Service Providers
that need to be triggered. Anactive Data Provider implies a looser coupled Service Requester and Service
Provider. However, as a consequence anactive Data Provider is more coupled with the external world, because
it autonomously sends out data instead of sending data upon request.

EC4 Data provider accessibility: Since anactive ServiceRequester needs to send a data request to the Data Provider,
anactive Service Requester is not appropriate when only the Service Provider has accessto the Data Provider.

EC5 Confidentiality of data requirements: As discussed in the previous evaluation criterion, anactive Service Re-
quester needs to send a data request to the Data Provider. However, ifthe data requirements are confidential
and are only known by the Service Provider itself, anactive Service Requester is not appropriate. As discussed
in the adjustability criterion, anactive Data Provider cannot send data that is adjusted to a specific service re-
quest. As a consequence, anactive Data Provider often needs to send a larger amount of data (e.g. information
regarding multiple patients). This can be favorable because in this way thespecificdata requirements are not
known by the Data Provider.

EC6-8 Data confidentiality, reusability and format: This pattern only deals with the initiation of the data flow (see
problem definition in 4.3.1). It does not describe anything about the data itself or the data transmission between
services. Therefore, evaluation criteria EC6-8 are not relevant for the evaluation of this pattern.

Appendix B.2. Direct-Indirect request

EC1-2 Robustness to changeandadjustability: This pattern deals withactive Service Providers (see problem defi-
nition in 4.3.1). Hence, both solutions presented in this pattern, which both includeactive Service Providers,
score equally on these evaluation criteria. As discussed inthe evaluation of thedata flow initiation pattern (see
section 4.3.3),active Service Providers lead to robust and adjustable coordination scenarios.

EC3 Coupling with Data Provider: In the direct request scenario there is a strong coupling between the Service
Provider and the Data Provider. Sending data requests to theService Requester, as in the indirect request
scenario, removes this coupling. However, note that in the indirect request scenario there is a coupling between
the Service Requester and the Data Provider. Perhaps this can be considered more acceptable because Service
Requesters are also strongly coupled with Service Providers that need to be triggered. In the direct request
scenario only the Service Provider needs to know which service plays the role of Data Provider, while the
indirect request scenario requires that the Data Provider is known by the Service Requester.

EC4 Data provider accessibility: The direct request scenario requires that the Data Provider is known by the Service
Provider, while in the indirect request scenario only the Service Requester needs to know which service plays
the role of Data Provider. Similarly, the direct request scenario requires that the Data Provider can be accessed
by the Service Provider, while in the indirect request scenario only the Service Requester needs to have access
to the Data Provider.

EC5 Confidentiality of data requirements: In the indirect request scenario the Service Requester needs to send a data
request to the Data Provider. However, if the data requirements are confidential and are only known by the
Service Provider itself, an active Service Provider with indirect request is not appropriate.

EC6-8 Data confidentiality, reusability and format: This pattern only deals with data requests (see problem definition
in 4.4.1). It does not describe anything about the data itself or the data communication between services.
Therefore, evaluation criteria EC6-8 are not relevant for the evaluation of this pattern.

33

Appendix B.3. Direct-Indirect transmission

EC1-4 Robustness to change, adjustability, coupling with Data Provider and Data Provider accessibility: When
evaluating a complete coordination scenario using these evaluation criteria, this pattern has no influence on the
evaluation. In other words, an evaluation of the solutions in this pattern totally depends on the specific solutions
chosen in the other two patterns. For an evaluation regarding these criteria for thedata flow initiation pattern
and thedirect-indirect request pattern, we refer to sections 4.3.3 and 4.4.3.

EC5 Confidentiality of data requirements: In the indirect data transmission scenario, all data that needs to be trans-
mitted to the Service Provider is passed through the ServiceRequester. However, if the Service Provider’s data
requirements are confidential and can only be known by the Service Provider itself,indirect data transmission
is not appropriate.

EC6 Data confidentiality: When the provided data is confidential,direct data transmission is the best scenario, since
indirect data transmission implies that the data is passed through the Service Requester before it is received by
the Service Provider.

EC7 Data reusability: Indirect data transmission facilitates the reuse of the provided data. For example, theService
Requester only receives the specific data once, before distributing the same data to several Service Providers it
interacts with.

EC8 Data format: Indirect data transmission allows data transformations, since all data that need to be transmitted
to the Data Provider is passed through the Service Requester. As such, the Service Requester can be responsible
for data transformations. However, in adirect data transmission scenario the Service Requester is not involved
when the data needs to be transmitted from the Data Provider to the Service Provider. As a consequence,
intermediary data transformations are not possible.

Appendix C. Prolog program for completeness confirmation

% d e f i n i n g p a r t i c i p a n t s in a c o o r d i n a t i o n s c e n a r i o
p a r t i c i p a n t (s e r v i c er e q u e s t e r) .
p a r t i c i p a n t (s e r v i c ep r o v i d e r) .
p a r t i c i p a n t (d a t ap r o v i d e r) .

% d e f i n i n g two t y p e s o f messages
message (d a t ar e q u e s t) .
message (d a t a) .

% d e f i n i n g a message exchange between two p a r t i c i p a n t s
messageexchange (P a r t i c i p a n t 1 , P a r t i c i p a n t 2 , Message) :−

p a r t i c i p a n t (P a r t i c i p a n t 1) ,
p a r t i c i p a n t (P a r t i c i p a n t 2) ,
P a r t i c i p a n t 1\= P a r t i c i p a n t 2 ,
message (Message) .

% C1 . 1 : The s e r v i c e p r o v i d e r can on ly send data r e q u e s t s or r ec e i v e data
p o s s i b l e m e s s a g ee x c h a n g e (s e r v i c ep r o v i d e r ,Y, d a t a r e q u e s t) :−

messageexchange (s e r v i c ep r o v i d e r , Y, d a t a r e q u e s t) .
p o s s i b l e m e s s a g ee x c h a n g e (X, s e r v i c ep r o v i d e r , d a t a) :−

messageexchange (X, s e r v i c ep r o v i d e r , d a t a) .

% C1 . 2 : The data p r o v i d e r can on ly r e c e i v e data r e q u e s t s or send data
p o s s i b l e m e s s a g ee x c h a n g e (d a t ap r o v i d e r , Y, d a t a) :−

messageexchange (d a t ap r o v i d e r , Y, d a t a) .
p o s s i b l e m e s s a g ee x c h a n g e (X, d a t ap r o v i d e r , d a t a r e q u e s t) :−

messageexchange (X, d a t ap r o v i d e r , d a t a r e q u e s t) .

c o o r d i n a t i o n s c e n a r i o (C o o r d i n a t i o n S c e n a r i o) :−
% C1 : A c o o r d i n a t i o n s c e n a r i o needs to be a proper i n t e r a c t i on s c e n a r i o
f i n d a l l (X, i n t e r a c t i o n s c e n a r i o (X) , L i s t O f I n t e r a c t i o n S c e n a r i o s) ,

34

member (C o o r d i n a t i o n S c e n a r i o , L i s t O f I n t e r a c t i o n S c e n a ri o s) ,
% C2 : t h e s e r v i c e p r o v i d e r must r e c e i v e data from ano ther e n ti t y
member ((, s e r v i c e p r o v i d e r , d a t a) , C o o r d i n a t i o n S c e n a r i o) ,
% C3 : t h e data p r o v i d e r must send data to an e n t i t y
member ((d a t ap r o v i d e r , , d a t a) , C o o r d i n a t i o n S c e n a r i o) ,
% C4 : The r e s u l t i n g data f low must be comp le te
c o m p l e t e d a t a f l o w (C o o r d i n a t i o n S c e n a r i o) ,
% r e q u e s t s or data can on ly be s e n t once per p a r t i c i p a n t
not (m u l t i p l e r e q u e s t s o r d a t a s e n t (C o o r d i n a t i o n S c e n a r i o)) ,
% r e q u e s t s or data can on ly be r e c e i v e d once per p a r t i c i p a n t
not (m u l t i p l e r e q u e s t s o r d a t a r e c e i v e d (C o o r d i n a t i o n S c e n a r i o)) .

i n t e r a c t i o n s c e n a r i o (MessageExchanges) :−
s e t o f ((P a r t i c i p a n t 1 , P a r t i c i p a n t 2 , Message) , p o s s i b l em e s s a g ee x c h a n g e (P a r t i c i p a n t 1 , P a r t i c i p a n t 2 ,

Message) ,L) ,
s u b l i s t (MessageExchanges , L) .

% C4 : The data f low i s comp le te
% S p e c i f i c a t i o n as t h e n e g a t i o n o f no t C4 . 1 or no t C4 . 2
c o m p l e t e d a t a f l o w (C o o r d i n a t i o n m e s s a g e s) :−

not (i n c o m p l e t e d a t a f l o w (C o o r d i n a t i o n m e s s a g e s)) .

% C4 . 1 : The s e r v i c e r e q u e s t e r must forward any data r e q u e s t to t h e data p r o v i d e r .
% S p e c i f i c a t i o n o f a c o o r d i n a t i o n in which C4 . 1 i s no t t r u e
i n c o m p l e t e d a t a f l o w (C o o r d i n a t i o n m e s s a g e s) :−

member ((s e r v i c ep r o v i d e r , s e r v i c e r e q u e s t e r , d a t ar e q u e s t) , C o o r d i n a t i o nm e s s a g e s) ,
not (member ((s e r v i c er e q u e s t e r , d a t ap r o v i d e r , d a t a r e q u e s t) , C o o r d i n a t i o nm e s s a g e s)) .

% C4 . 2 : An e n t i t y can on ly send data i f t h i s e n t i t y i s t h e data pr o v i d e r or has r e c e i v e d data
from ano ther e n t i t y .

% S p e c i f i c a t i o n o f a c o o r d i n a t i o n in which C4 . 2 i s no t t r u e
i n c o m p l e t e d a t a f l o w (C o o r d i n a t i o n m e s s a g e s) :−

member ((P a r t i c i p a n t 1 , P a r t i c i p a n t 2 , d a t a) , C o o r d i n a t i on m e s s a g e s) ,
not (member ((, P a r t i c i p a n t 1 , d a t a) , C o o r d i n a t i o nm e s s a g e s)) ,
P a r t i c i p a n t 1\= d a t a p r o v i d e r .

m u l t i p l e r e q u e s t s o r d a t a s e n t (C o o r d i n a t i o nm e s s a g e s) :−
member ((P a r t i c i p a n t 1 , P a r t i c i p a n t 2 a , Message) , C o o r d i na t i o n m e s s a g e s) ,
member ((P a r t i c i p a n t 1 , P a r t i c i p a n t 2 b , Message) , C o o r d i na t i o n m e s s a g e s) ,
P a r t i c i p a n t 2 a\= P a r t i c i p a n t 2 b .

m u l t i p l e r e q u e s t s o r d a t a r e c e i v e d (C o o r d i n a t i o nm e s s a g e s) :−
member ((P a r t i c i p a n t 1 a , P a r t i c i p a n t 2 , Message) , C o o r d i na t i o n m e s s a g e s) ,
member ((P a r t i c i p a n t 1 b , P a r t i c i p a n t 2 , Message) , C o o r d i na t i o n m e s s a g e s) ,
P a r t i c i p a n t 1 a\= P a r t i c i p a n t 1 b .

s u b l i s t ([] ,) .

s u b l i s t ([A|B] , [C |D]) :−
(

A = C,
s u b l i s t (B ,D)
;
s u b l i s t ([A|B] ,D)
) .

Listing 1: Prolog program completeness confirmation

35

