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Abstract

In this addendum, we present the EM algorithm of Lee and Lin (2010) custimized for fit-
ting mixtures of Erlang distributions with a common scale parameter to uncensored and
untruncated data. We work out the details with zero-one component indicators inspired by
McLachlan and Peel (2001) and Lee and Scott (2012).

1 Likelihood

Let x = (x1, . . . , xn) be an observed sample from the mixture of Erlang distributions with
density given by

f(x;α, r, θ) =
M∑
j=1

αj
xrj−1e−x/θ

θrj (rj − 1)!
=

M∑
j=1

αjf(x; rj , θ) for x > 0 . (1)

The parameters to be estimated are the mixing proportions or weights α = (α1, . . . , αM ) with
αj > 0 and

∑M
j=1 αj = 1 and the common scale parameter θ, which are bundled by denoting

Θ = (α, θ). The number of Erlangs M in the mixture and the corresponding positive integer
shapes r are fixed. The value of M is, in most applications, however unknown and has to be
inferred from the available data, along with the shape parameters. The log likelihood is given
by

l(Θ;x) =

n∑
i=1

ln

 M∑
j=1

αj
x
rj−1
i e−xi/θ

θrj (rj − 1)!

 .

which is difficult to numerically optimize due to logarithm of a summation.

2 Construction of the complete data vector

The EM algorithm provides a computationally much easier way for fitting this finite mixture.
The main clue is to regard the observed sample x = (x1, . . . , xn) as being incomplete since their
associated component-indicator vectors z = (z1, . . . ,zn) with

zij =

{
1 if observation xi comes from jth component density f(x; rj , θ)

0 otherwise
(2)
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for i = 1, . . . , n and j = 1, . . . ,M , are not available (McLachlan and Peel (2001)). The
component-label vectors z1, . . . ,zn are taken to be realized values of the random vectors

Z1, . . . ,Zn
i.i.d.∼ MultM (1,α) .

The log likelihood of the complete data vector (x, z) equals

l(Φ;x, z) =

n∑
i=1

M∑
j=1

zij ln (αjfX(xi; rj , θ)) . (3)

The EM algorithm exploits the simpler form of the complete data log likelihood to compute the
maximum likelihood estimators based on the observed data.

3 Initial step

Initialization of θ and α = (α1, . . . , αM ) is based on the denseness property (see Appendix A):

θ(0) =
max(x)

rM
and α

(0)
j =

∑n
i=1 I

(
rj−1θ

(0) < xi 6 rjθ
(0)
)

n
, for j = 1, . . . ,M , (4)

with r0 = 0 for notational convenience. These starting values ensure that the initial guess is
immediately quite decent.

4 E-step

In the E-step, we take the conditional expectation of the complete log likelihood (3) given the
observed data x and using the current estimate Θ(k−1) for Θ. Define, for i = 1, . . . , n and

j = 1, . . . ,M , the posterior probability z
(k)
ij that observation i belongs to the jth component in

the mixture,

z
(k)
ij = E(Zij | x; Θ(k−1)) =

α
(k−1)
j f(xi; rj , θ

(k−1))∑M
m=1 α

(k−1)
m f(xi; rm, θ(k−1))

. (5)

Then

Q(Θ; Θ(k−1)) = E(l(Θ;x,Z) | x; Θ(k−1))

=

n∑
i=1

M∑
j=1

E(Zij | x; Θ(k−1)) ln (αjfX(x; rj , θ))

=
n∑
i=1

M∑
j=1

z
(k)
ij

[
ln(αj) + (rj − 1) ln(xi)−

xi
θ

− rj ln(θ)− ln((rj − 1)!)
]
, (6)

The E-step hence reduces to calculating all posterior probabilities.
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5 M-step

The M-step requires the global maximization of (6) obtained in the E-step with respect to
Θ = (α, θ) with αi > 0,

∑M
i=1 αi = 1 and θ > 0. We first maximize (6) with respect to the

mixing proportions α. This can be done separately of the updated estimate for θ as it requires
the maximization of

n∑
i=1

M∑
j=1

z
(k)
ij ln(αj) =

n∑
i=1

M−1∑
j=1

z
(k)
ij ln(αj) +

n∑
i=1

z
(k)
iM ln

1−
M−1∑
j=1

αj


with respect to α1, . . . , αM−1. Note that we implement the restriction

∑M
j=1 αj = 1 by setting

αM = 1−
∑M−1

j=1 αj . Setting the partial derivatives at α(k) equal to zero yields

∂Q(Θ; Θ(k−1))

∂αj

∣∣∣∣∣
α=α(k)

=
n∑
i=1

z
(k)
ij

αj
−

n∑
i=1

z
(k)
iM

αM

∣∣∣∣∣
α=α(k)

= 0 for j = 1, . . . ,M − 1 .

This implies that the optimizer satisfies

α
(k)
j =

∑n
i=1 z

(k)
ij∑n

i=1 z
(k)
iM

α
(k)
M for j = 1, . . . ,M − 1 . (7)

Using the restriction that the mixing weights must sum to one, we obtain

1 =
M∑
j=1

α
(k)
j =

∑n
i=1

(∑M
j=1 z

(k)
ij

)
α
(k)
M∑n

i=1 z
(k)
iM

=
nα

(k)
M∑n

i=1 z
(k)
iM

.

Hence

α
(k)
M =

∑n
i=1 z

(k)
iM

n
and by plugging this expression in (7), the same form also follows for j = 1, . . . ,M − 1:

α
(k)
j =

∑n
i=1 z

(k)
ij

n
for j = 1, . . . ,M .

This solution has a nice intuitive interpretation. The new estimate for the prior probability αj

is the average over all observations i of the posterior probability z
(k)
ij of belonging to the jth

component in the mixture. The optimizer indeed corresponds to a maximum since

∂2Q(Θ; Θ(k−1))

∂α2
j

∣∣∣∣∣
α=α(k)

= −
n∑
i=1

z
(k)
ij

α2
j

−
n∑
i=1

z
(k)
iM

α2
M

∣∣∣∣∣
α=α(k)

= − n2∑n
i=1 z

(k)
ij

− n2∑n
i=1 z

(k)
iM

for j = 1, . . . ,M and

∂2Q(Θ; Θ(k−1))

∂αj∂αm

∣∣∣∣∣
α=α(k)

= −
n∑
i=1

z
(k)
iM

α2
M

∣∣∣∣∣
α=α(k)

= − n2∑n
i=1 z

(k)
iM

,
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for j = 1, . . . ,M and m = 1, . . . ,M , implying that the matrix of second order partial derivatives
is negative definite matrix with a compound symmetry structure.

We next maximize (6) with respect to θ:

∂Q(Θ; Θ(k−1))

∂θ

∣∣∣∣∣
θ=θ(k)

=

n∑
i=1

M∑
j=1

z
(k)
ij

(xi
θ2
− rj
θ

)∣∣∣∣∣∣
θ=θ(k)

=
1

θ2

n∑
i=1

 M∑
j=1

z
(k)
ij

xi −
n

θ

M∑
j=1

(∑n
i=1 z

(k)
ij

n

)
rj

∣∣∣∣∣∣
θ=θ(k)

=
1

θ2

n∑
i=1

xi −
n

θ

M∑
j=1

α
(k)
j rj

∣∣∣∣∣∣
θ=θ(k)

= 0 .

Hence

θ(k) =

∑n
i=1 xi/n∑M
j=1 α

(k)
j rj

, (8)

which is a maximum since

∂2Q(Θ; Θ(k−1))

∂θ2

∣∣∣∣∣
θ=θ(k)

=
−2

θ3

n∑
i=1

xi +
n

θ2

M∑
j=1

α
(k)
j rj

∣∣∣∣∣∣
θ=θ(k)

= n
M∑
j=1

α
(k)
j rj

[
−2
∑n

i=1 xi/n

θ3
∑M

j=1 α
(k)
j rj

+
1

θ2

]∣∣∣∣∣∣
θ=θ(k)

= n

M∑
j=1

α
(k)
j rj

[
−1(
θ(k)
)2
]
< 0 .

The new estimate θ(k) in (8) for the common scale parameter θ equals the sample mean divided
by the weighted average shape parameter in the mixture. The updating scheme (8) for the
scale parameter makes intuitively sense since the expected value of a mixture of Erlangs equals
E(X) =

∑M
j=1 αjrjθ.

The E- and M-steps are iterated until the difference in log likelihood values l(Θ(k);X ) −
l(Θ(k−1);X ) is sufficiently small.

Appendix A Denseness

In this Appendix, we formulate the theorem stating that the class of mixtures of Erlang distri-
butions with a common scale parameter is dense in the space of distributions on R+ (see Tijms
(1994, p. 163)).

Theorem A.1. The class of mixtures of Erlang distributions with a common scale parameter
is dense in the space of distributions on R+. More specifically, let F (x) be the cumulative
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distribution function of a positive random variable. Define the following cumulative distribution
function of a mixture of Erlang distributions with a common scale parameter θ > 0,

F (x; θ) =
∞∑
j=1

αj(θ)F (x; j, θ) ,

where F (x; j, θ) denotes the cumulative distribution function of an Erlang distribution with shape
j and scale θ,

F (x; j, θ) = 1−
j−1∑
n=0

e−x/θ
(x/θ)n

n!
,

and the mixing weights are given by

αj(θ) = F (jθ)− F ((j − 1)θ) for j = 1, 2, . . . .

Then
lim
θ→0

F (x; θ) = F (x) ,

for each point x at which F (·) is continuous.
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