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Abstract

In this addendum, we present the EM algorithm of |[Lee and Lin (2010)| custimized for fit-
ting mixtures of Erlang distributions with a common scale parameter to uncensored and

untruncated data. We work out the details with zero-one component indicators inspired by
McLachlan and Peel (2001)| and [Lee and Scott (2012)!

1 Likelihood

Let « = (x1,...,2,) be an observed sample from the mixture of Erlang distributions with
density given by

i~ 1le —xz/0

flz;a,r,0) = Z%Hﬁr—l Zajfxrj, forz > 0. (1)

The parameters to be estimated are the mixing proportions or weights a = (au, ..., apr) with
aj > 0 and Z _,a; = 1 and the common scale parameter ¢, which are bundled by denotlng
O = (a,0). The number of Erlangs M in the mixture and the corresponding positive integer
shapes r are fixed. The value of M is, in most applications, however unknown and has to be
inferred from the available data, along with the shape parameters. The log likelihood is given
by
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which is difficult to numerically optimize due to logarithm of a summation.

2 Construction of the complete data vector

The EM algorithm provides a computationally much easier way for fitting this finite mixture.
The main clue is to regard the observed sample © = (x1, ..., x,) as being incomplete since their
associated component-indicator vectors z = (21, ..., 2,) with

(2)

{1 if observation x; comes from jth component density f(x;r;,0)
ij =

0 otherwise
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for i = 1,...,n and j = 1,..., M, are not available (McLachlan and Peel (2001)). The
component-label vectors z1, ..., z, are taken to be realized values of the random vectors

Z1,. . Zy R Multy (1, ).
The log likelihood of the complete data vector (x, z) equals

n M
l((ﬁ;m’z) = ZZZ’U’ In (aij(xi;rj,H)) . (3)

i=1 j=1

The EM algorithm exploits the simpler form of the complete data log likelihood to compute the
maximum likelihood estimators based on the observed data.

3 Initial step

Initialization of # and e = (a1, ..., ap) is based on the denseness property (see Appendix [A)):
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with r9 = 0 for notational convenience. These starting values ensure that the initial guess is
immediately quite decent.

4 E-step

In the E-step, we take the conditional expectation of the complete log likelihood given the

observed data x and using the current estimate ok for ©. Define, for ¢ = 1,...,n and
(k)

j=1,..., M, the posterior probability 2 that observation i belongs to the jth component in

the mixture,
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Then
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n M )
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7 In(8) = In((r; = Y] , (6)

The E-step hence reduces to calculating all posterior probabilities.
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5 M-step

The M-step requires the global maximization of @ obtained in the E-step with respect to
® = (a,f) with a; > 0, Z —,0; = 1 and 0 > 0. We first maximize @ with respect to the
mixing proportions a. This can be done separately of the updated estimate for 6 as it requires
the maximization of
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with respect to aq,...,ap—1. Note that we implement the restriction Z]Ail aj = 1 by setting

ay =1-— Z;j\i Il «j. Setting the partial derivatives at a® equal to zero yields
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=0 forj=1,....M —1.
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This implies that the optimizer satisfies
n L H)
a(k)—&#a(m forj=1,...,M —1. (7)
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Using the restriction that the mixing weights must sum to one, we obtain
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and by plugging this expression in , the same form also follows for j =1,...,M — 1:
n oo H
agk)zizl_l Y forj=1,...,M.
n
This solution has a nice intuitive interpretation. The new estimate for the prior probability o;
is the average over all observations i of the posterior probability z( ) of belonging to the jth
component in the mixture. The optimizer indeed corresponds to a max1mum since
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forj=1,...,M and m =1,..., M, implying that the matrix of second order partial derivatives
is negative definite matrix with a compound symmetry structure.

We next maximize @ with respect to 6:
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which is a maximum since
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The new estimate %) in for the common scale parameter 6 equals the sample mean divided
by the weighted average shape parameter in the mixture. The updating scheme for the
scale parameter makes intuitively sense since the expected value of a mixture of Erlangs equals

E(X) =Y, ajrj.

The E- and M-steps are iterated until the difference in log likelihood values Z(G(k);X ) —
1@~V X) is sufficiently small.

Appendix A Denseness

In this Appendix, we formulate the theorem stating that the class of mixtures of Erlang distri-
butions with a common scale parameter is dense in the space of distributions on R* (see Tijms
(1994, p. 163))).

Theorem A.1l. The class of miztures of Erlang distributions with a common scale parameter
is dense in the space of distributions on RY. More specifically, let F(z) be the cumulative
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distribution function of a positive random variable. Define the following cumulative distribution
function of a mizture of Erlang distributions with a common scale parameter 8 > 0,

F(x;0) = aj(0)F(x:4,0),
j=1

where F(x; j,0) denotes the cumulative distribution function of an Erlang distribution with shape
j and scale 0,

Jj—1 n
) =1 S e @0
F(.’I;,j, 9) 1 ;e n' b

and the mizing weights are given by
a;(0) = F(j0) — F((j —1)0) forij=1,2,....
Then

lim F(z;6) = F(z),

for each point x at which F(-) is continuous.
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