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Abstract

All software is represented as source code in a programming language. The
programming language defines the meaning or semantics of the code, for example,
its operational behaviour. Computational source code is often accompanied by
additional specifications that define how the source code should be interpreted
or provide additional information about the software’s semantics. They make it
possible for programmers to express and verify that their software has the
intended semantics and to express inter-component semantic assumptions.
Good representations and specifications of software components are crucial
for efficiently producing software that is reliable, efficient and secure, and for
preserving these qualities during the software’s evolution.

Many types of software components and their desired semantic properties can be
challenging to represent and specify. In this work, I contribute novel functional
techniques for the representation and specification of four types of software
components:

• Ad hoc polymorphic functions: functions whose behaviour depends on
the types of their arguments or result. I present instance arguments:
a type system extension for representing ad hoc polymorphic functions
in the dependently-typed programming language Agda. Compared to
existing proposals, instance arguments do not introduce an additional
structuring concept and ad hoc polymorphic functions using them are
fully first-class. Furthermore, they avoid introducing a separate, powerful
form of type-level computation and existing Agda libraries using records
do not need modifications to be used with them. My implementation
has been part of Agda since version 2.3.0 and I demonstrate a variety of
applications of instance arguments.

• Context-free grammars: a standard way to define the syntax of formal
languages. I present a technique for representing context-free grammars in
an embedded domain-specific language (EDSL). It avoids the restrictions
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iv ABSTRACT

of existing parser combinator libraries using a novel explicit representation
of recursion based on advanced type system techniques in the Haskell
programming language. As a byproduct, grammars are decoupled from sets
of semantic actions. On the flip side, the approach requires the grammar
author to provide a type- and value-level encoding of the grammar’s domain
and I can provide only a limited form of constructs like many. I demonstrate
the approach with five grammar algorithms, including a pretty-printer,
a reachability analysis, a translation of quantified recursive constructs
to standard ones, and an implementation of the left-corner grammar
transform. This work forms the basis of my grammar-combinators parsing
library.1

• Meta-programs: programs that generate or manipulate other programs.
I present a novel set of meta-programming primitives for use in a
dependently-typed functional language. The meta-programs’ types provide
strong and precise guarantees about the meta-programs’ termination,
correctness and completeness. The system supports type-safe construction
and analysis of terms, types and typing contexts. Unlike alternative
approaches, meta-programs are written in the same style as normal
programs and use the language’s standard functional computational model.
I formalise the new meta-programming primitives, implement them as an
extension of Agda, and provide evidence of usefulness by means of two
compelling applications in the fields of datatype-generic programming and
proof tactics.

• Effect polymorphic software: programs that support arbitrary imple-
mentations of effectful APIs and only produce effects through those
implementations. Static effectful APIs and global mutable state in object-
oriented programming languages make it hard to modularly control effects.
Object-capability (OC) languages solve this by enforcing that effects can
only be triggered by components that hold a reference to the object
representing the capability to do so. I study this encapsulation of effects
through a formal translation to a typed functional calculus with higher-
ranked polymorphism (I use a subset of Haskell for presentation). Based
on an informal view of effect-polymorphism as the fundamental feature of
OC languages, I translate an OC calculus to effect-polymorphic Haskell
code, i.e. computations that are universally quantified over the monad
in which they produce effects. The types of my translations assert the
object-capability property and I can show and exploit this using Reynolds’
parametricity theorem. An important new insight is that current OC
languages and formalisations leave one effect implicitly available to all
code, without a capability: the allocation of new mutable state; adding a

1http://projects.haskell.org/grammar-combinators

http://projects.haskell.org/grammar-combinators


ABSTRACT v

capability for it has important theoretical and practical advantages. My
work establishes a new link between object-capability languages and the
well-studied fields of functional programming and denotational semantics.





Beknopte samenvatting

Alle software wordt voorgesteld als broncode in een programmeertaal. De
programmeertaal bepaalt de betekenis of semantiek van de code, bijvoorbeeld
haar operationeel gedrag. Uitvoerbare broncode wordt vaak vergezeld door
bijkomende specificaties die definiëren hoe de broncode moet geïnterpreteerd
worden of extra informatie geven over de semantiek van de software. Ze maken
het mogelijk voor programmeurs om uit te drukken en te verifiëren dat hun
software de bedoelde semantiek heeft en om semantische veronderstellingen uit
te drukken tussen componenten onderling. Goede representaties en specificaties
van softwarecomponenten zijn cruciaal om efficiënt software te produceren
die betrouwbaar, performant en veilig is en om deze kwaliteiten te blijven
garanderen tijdens de evolutie van de software.

Veel soorten softwarecomponenten en hun gewenste semantische eigenschappen
zijn moeilijk voor te stellen of te specifiëren. In deze thesis draag ik nieuwe
functionele technieken bij voor de voorstelling en specificatie van vier soorten
softwarecomponenten:

• ad hoc-polymorfe functies: functies wiens gedrag afhangt van het type
van hun argumenten of resultaat. Ik stel instance arguments voor: een
typesysteemuitbreiding voor het voorstellen van ad hoc-polymorfe functies
in de afhankelijk-getypeerde (dependently-typed) programmeertaal Agda.
In vergelijking met bestaande voorstellen, introduceren instance arguments
geen bijkomend structureel concept en zijn functies die instance arguments
gebruiken volwaardig ondersteund. Daarenboven vermijden ze de
toevoeging van een afzonderlijke en krachtige vorm van uitvoering op
type-niveau. Bestaande Agda libraries die records gebruiken hoeven ook
niet te worden aangepast om ze te gebruiken. Mijn implementatie is een
deel van Agda sinds versie 2.3.0 en ik toon verschillende toepassingen van
instance arguments.

vii
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• Contextloze grammatica’s: een standaardtechniek voor het definiëren van
formele talen. Ik stel een techniek voor om contextloze grammatica’s voor
te stellen in een ingebedde domein-specifieke programmeertaal (EDSL).
De techniek vermijdt de beperkingen van bestaande parser-combinator
bibliotheken met behulp van een vernieuwende expliciete voorstelling
van recursie, gebaseerd op geavanceerde typesysteemtechnieken in de
Haskell programmeertaal. Als bijkomend voordeel worden grammatica’s
losgekoppeld van semantische acties. Aan de andere kant vereist de aanpak
dat de grammatica-auteur een codering voorziet van het domein van de
grammatica op type- en waardeniveau, en kan ik slechts een beperkte
versie voorzien van constructies als many. Ik demonstreer de aanpak
met vijf grammatica-algoritmes, o.a. een weergeefalgoritme (pretty-
printer), een bereikbaarheidsanalyse, een vertaling van gekwantificeerde
recursieconstructies naar gewone en een implementatie van de linkerhoek-
of left corner-grammaticatransformatie. Dit werk vormt de basis van mijn
grammar-combinators parsing-bibliotheek.2

• Meta-programma’s: programma’s die andere programma’s genereren of
manipuleren. Ik stel vernieuwende meta-programmeerprimitieven voor
voor gebruik in een afhankelijk-getypeerde functionele programmeertaal.
De types van de meta-programma’s leveren sterke en precieze garanties over
hun terminatie, correctheid en volledigheid. Het systeem ondersteunt type-
veilige constructie en analyse van termen, types en typeringscontexten.
In tegenstelling tot andere aanpakken, worden ze geschreven in dezelfde
stijl als normale programma’s en gebruiken ze het standaard functioneel
uitvoeringsmodel van de programmeertaal. Ik formaliseer de nieuwe meta-
programmeerprimitieven, implementeer ze als een uitbreiding van Agda
en lever bewijs van hun nut met twee overtuigende toepassingen in de
domeinen van datatype-generisch programmeren en bewijstactieken (proof
tactics).

• Effect-polymorfe software. Statische APIs met neveneffecten en globale
wijzigbare toestandinformatie in object-georiënteerde programmeertalen
maken het moeilijk om effecten modulair te controleren. Object-
bekwaamheidsprogrammeertalen (Object-Capability of OC) lossen dit
probleem op door af te dwingen dat effecten alleen kunnen veroorzaakt
worden door componenten die een referentie hebben naar het object dat
de bekwaamheid voorstelt om dat te doen. Ik bestudeer deze inkapseling
van effecten door een formele vertaling naar een getypeerde functionele
calculus met hogere-rang polymorfisme (ik gebruik een beperkte versie
van Haskell voor de presentatie). Op basis van een informele visie
van effect-polymorfisme als het fundamentele kenmerk van OC-talen,

2http://projects.haskell.org/grammar-combinators

http://projects.haskell.org/grammar-combinators
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vertaal ik een OC calculus naar effect-polymorfe Haskell code, d.w.z.
berekeningen die uniform gekwantificeerd zijn over de monade waarin ze
effecten veroorzaken. De types van onze vertalingen drukken de object-
bekwaamheidseigenschap uit en we kunnen dit aantonen en gebruiken
met behulp van Reynolds’ parametriciteitsstelling. Een belangrijk nieuw
inzicht is dat bestaande OC talen en formalisaties één effect impliciet
beschikbaar laten: de allocatie van nieuwe wijzigbare toestandsinformatie;
hier een bekwaamheid voor toevoegen heeft belangrijke theoretische en
praktische voordelen. Mijn werk opent een belangrijke nieuwe verbinding
tussen object-bekwaamheidsprogrammeertalen en de goed onderzochte
velden van functioneel programmeren en denotationele semantieken.
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Chapter 1

Introduction

Software today has become vital in many areas of the economy and society and it
is applied to increasingly complex tasks. Programs are becoming larger and more
complex than before, and if software fails, the consequences can be increasingly
severe. Recent technological developments in other areas (e.g. smartphones,
voice-over-IP, 3D-printing, driverless cars, engine control computers or enterprise
resource planning software) increasingly rely on complex computers and software,
making it unlikely for this trend to change in the foreseeable future.

Software engineers have so far been able to manage this increasing complexity
and keep software failure reasonably uncommon. To achieve this, they
rely on software development techniques that facilitate the construction
of large software and ensure its correctness, specifically the use of higher-
level programming languages and libraries, modular development and various
specification techniques.

In this thesis, I study representations and specifications for software components
in four domains: ad hoc polymorphism, context-free grammars, meta-
programming and effect polymorphism. To introduce this work, I present
a helicopter overview of the domain of software development in Section 1.1 and
in Section 1.2, I zoom in on the techniques I build upon. My aim is to give the
reader an idea of how my contributions fit into a larger context. After that, I
will present the four domains of interest and the contributions I have made to
each of them in Section 1.3. Section 1.4 gives a short overview of research I
worked on that is not presented in this thesis and Section 1.5 gives an overview
of the following chapters.

1



2 INTRODUCTION

1.1 A semantic view on software development

All software is constructed as source code in a programming language. The
language comes equipped with a semantics that defines the meaning of the
code. This often consists of the operational behaviour of programs for arbitrary
input on a hypothetical computer. A programmer always works with a certain
language semantics in mind, even if it is just an informal understanding. His
goal is to construct a program whose semantics satisfies certain requirements.

To make this more concrete, consider the example of the first computer
program ever written: a series of instructions that female British mathematician
Ada Lovelace1 constructed for Charles Babbage’s Analytical Engine (see
Figure 1.1) [128, 77]. She wrote the program so that under the mechanical
functioning of Babbage’s device, the numbers of a certain mathematical series
would be printed. For this example, the programming language was the
convention under which the machine accepted the instructions (metal cards
with holes punched), the semantics was the behaviour produced by the machine
for the instructions and Lovelace’s requirement for her program’s semantics was
that it should print the desired series.

While Lovelace constructed her program and made it satisfy the requirements
by reasoning directly about the mechanical behaviour of the machine, software
engineers today have a wide range of techniques and tools at their disposal. At
a high level, we can distinguish three kinds of techniques: higher-level languages
and libraries, modular programming and specifications. In the next section, I
consider each in more detail.

1.1.1 Higher-level languages and libraries

By higher-level programming, I mean programming in a language whose
semantics is simpler and more abstract than the target semantics, and then
using a tool or library to map the simpler semantics to the target semantics.
One approach uses a higher-level programming language. An example of this
is Dijkstra’s recommendation in 1968 that programming languages should not
include a goto statement [62]. Instead, they should only provide structured
conditional and looping constructs like if and while and a compiler should
translate them into assembly language, in such a way that the meaning of a
higher-level program corresponds to the behaviour of its translation.

The removal of goto makes the programming language semantically simpler. A
standard understanding of programs using the primitive requires an in-memory

1By a coincidence of history, she was the daughter of famous poet Lord Byron.
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Figure 1.1: Trial model of a part of Babbage’s Analytical Engine, defining
the first programming language and its semantics. Displayed in the Science
Museum (London). © Bruno Barral, Wikimedia Commons, CC-BY-SA [26].

int fact1(int n) {
int res = 1;
loop:
res ∗= n−−;
if (n > 1)
goto loop;

return res;
}

int fact2(int n) {
int res = 1;
while( n > 1 )
res ∗= n−−;

return res;
}

int fact3(int n) {
if(n <= 1)
return 1;

else
return n ∗ fact3(n−1);

}

Figure 1.2: Three C implementations of the factorial function.

representation of code and a machine executing according to an instruction
pointer. Dijkstra’s structured constructs can instead be given simpler, more
abstract semantics as a reduction system where the code does not need to be
encoded in memory (see e.g. [187]). Scott and Strachey have shown that the
programs can also be given a denotational semantics; a more mathematical
meaning as elements of continuous function spaces between complete partial
orders of values (Scott-Strachey domains) [205].

As a concrete example, Figure 1.2 shows three C implementations of a factorial
function, the first one using goto and the second using the while construct
instead. The second code snippet can be given meaning as sequentially executed
instructions for a machine with just mutable memory, with each command
semantically independent of its predecessors and successors. The goto command
in the first implementation however, can only be given meaning in the context of
the remaining instructions, making the commands semantically interdependent.
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It’s hard to understand the first implementation without imagining a machine
executing the in-memory code according to an instruction pointer.

Since then, Dijkstra’s recommendation to drop the goto command has gained
wide acceptance. In his 1978 Turing award acceptance speech, John Backus
promoted another form of higher-level language that is still far from universally
accepted. Backus argued that programming languages should move away from
the von Neumann style where program semantics are defined by their behaviour
on abstract machines with mutable state. He instead recommended (what
we now know as) purely functional programming languages, where programs
can be given simpler meaning using a memory-less reduction-system [10]. The
denotational semantics of purely functional programs is also simpler; they
directly denote mathematical functions that do not have the entire state of the
memory before and after execution as an input argument and result value. As
a concrete example, consider the third implementation in Figure 1.2, which
simply corresponds to the recursive definition of the factorial.

Compilers from high-level languages to assembly are not the only example of
higher-level programming. Parser generators are separate tools that receive a
grammar as input. A grammar describes a formal language, a possibly infinite set
of strings of characters in a certain alphabet. Grammars are written in a special-
purpose language, often based on the Backus-Naur-Form (BNF) [109, 176]. A
parser generator translates such a grammar to the source code for a program that
parses sentences from a textual input, translating them to a more structured
form. Parser generators are a form of higher-level programming as the grammar
has a direct, more abstract meaning through the formal language it defines.
The generated parser semantically corresponds to that abstract meaning in the
sense that it parses only the strings in the formal language.

Even within a single language, we can apply higher-level programming. Writing
a regular expression (a grammar for a very simple formal language) and applying
it using a library is in principle not very different from using a parser generator.
Even when we use a simple structured representation of data, such as a URL
record with fields for the protocol, domain name and path, we are essentially
defining a range of terms with an abstract semantics that can be translated to
more primitive semantics (e.g. a string representation of URLs).

It is interesting to contrast the approach of compiling programs in a higher-level
language to a lower-level one (as done by compilers and parser generators) to
the approach of embedding a higher-level language by representing it inside
the lower-level language (as used by regular expression libraries and abstract
data types). The second type has been called Embedded Domain Specific
Languages (EDSLs) and they have important advantages. The higher-level
language can cheaply reuse features of the host language, e.g. abstraction
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mechanisms, specification techniques, debuggers. Those features are then often
more consistent across both languages. Nevertheless, the lower-level language
needs to be sufficiently powerful to accurately represent terms in the EDSL.
Finding such a representation can be non-trivial, especially for complex EDSLs.
One of the contributions of this text is the proposal and study of an accurate
representation of a grammar EDSL in the Haskell programming language (see
Chapter 3). EDSLs are often constrained to use less natural syntax within
the host language, but many programming languages include features designed
explicitly to facilitate this, e.g. Racket [224] and Scala [158].

1.1.2 Modular programming

The second approach to facilitate the construction of programs with a
desired semantics is modular programming: the sub-division of programs into
components. For the purpose of this introduction, I define components as those
parts of a program that can be given a semantics independently from the rest
of the program.2 This can include, for example, procedures, functions, classes,
traits, aspects and executables. The advantage of sub-dividing programs into
components is that they can be developed separately. This enables parallel
software development in large teams and the reuse of components over time
and across different programs. In many scenarios, program components can
even fall under the control of (partially) distrusting parties.

The structuring of a program into components is known as its architecture or
design. Good software architecture makes it easy to develop a program and
ensure its intended semantics, for example, by defining reusable, general and
high-quality components and by structuring the program so that a semantic
property of the program follows from the semantics of only one (or a few)
components (separation of concerns).

Generally, it’s advantageous for components’ semantics to be as independent
of each other as possible (loose coupling). Some programming languages
inherently make it hard to achieve such semantic independence. Consider,
for example, LATEX, which (among other problems) provides only dynamically
scoped variables, making it hard to construct components (in this case macros)
that are unaffected by the behaviour of other components [122]. Similarly,
JavaScript permits non-locally overriding the behaviour of primitive classes
like String (see e.g. [149]) and C and C++ suffer from buffer overflows (see
e.g. [4, 45]).

2So I will not use more restricted definitions of the terms modular programming and
components that are used in some other fields of computer science.
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Different programming styles or paradigms exist which prescribe the use of
components with certain types of individual semantics and certain ways of
combining the components’ semantics. I have already mentioned functional
programming, prescribing components that denote mathematical functions and
function composition, application and abstraction as composition constructs [10].

Of relevance to this thesis is the widely-used paradigm of object-oriented
programming [163, 114]. It recommends the use of objects: semantic entities
that couple a private piece of mutable state with a set of methods acting on
that state. Components called classes describe the private state and behaviour
of a set of objects; the class’s instances. One of the contributions of this thesis
is the identification and formalisation of the principle of effect polymorphism,
a property that is central to object-oriented programming (see Chapter 5).
Some other programming paradigms that I do not go into are aspect-oriented
programming [117] and logic programming [236].

Although it is beneficial to make components’ semantics maximally independent,
components are by nature intended to be combined and even well-designed
components have to rely on semantic assumptions about the components they
are combined with. For example, a function that sorts a list according to
a comparison criterion may only work correctly if the criterion produces a
boolean result for any two elements of the list, and if these results correspond
to a transitive and antisymmetric relation. Also, a web server may contain a
component responsible for network communication that is not permitted to
access the computer’s storage directly. As such, even though abstract reusable
components can help in the construction of software with an intended semantics,
the approach also requires the programmer to ensure that inter-component
semantic assumptions are fulfilled. In systems that contain components under
the control of different parties, components may actively try to violate other
components’ assumptions in order to influence their behaviour; such situations
are considered in the field of computer security.

1.1.3 Specifications

A third general approach to ensure programs and their components have a desired
semantics is the use of specifications: explicit statements in the source code of
their semantic properties and their semantic assumptions about components
they can be combined with. They can help ensure that a program satisfies
semantic requirements and find inter-component assumption violations even
before components are actually combined together. This is especially important
in large, multi-developer and multi-party systems and for programs that remain
used and under development for long periods of time. In a high-level language,
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semantic properties expressed by specifications can often help the compiler derive
better translations to the target language. Another purpose of specifications is
documentation: an additional explanation by the programmer of the intended
semantics of his code.

There exists a wide variety of techniques for the specification of programs and
components: informal documentation, design and naming conventions, unit
tests, static type systems, contract systems and program logics. For illustration,
Figure 1.3 shows specifications of sorting functions in a variety of programming
languages using a number of different specification techniques: types and semi-
formal documentation in Java (1.3a), a Java unit test (1.3b), C types and pre-
and postconditions in a separation logic-based program logic (1.3c), types and
the pre- and postconditions of Eiffel’s contract system (1.3d) and a semantic
proof in a dependent type system (1.3e) (you are not expected to understand
all of them in detail). Desirable qualities of specification techniques are

Precision Specifications should unambiguously correspond to the intended
semantic property.

Validation It should be possible to verify during development that components’
semantics correspond to specifications. Preferably validation should be
automatic, so that it can be repeated cheaply during development.

Modularity Validation of a component’s properties should depend only on
that component’s source code.

Overhead It should require little additional programmer effort to formulate
properties and make them validatable.

Unfortunately, there is no universal specification technique that achieves all
these goals for any given component. Rather, there is a variety of techniques that
can be used to state certain types of properties for certain types of components.
Therefore, software engineers need to consider the important semantic properties
of the components defined and the specification techniques that can be used to
specify them when defining a program’s architecture.

Some types of specifications are limited in one or more of the above dimensions.
Informal specification techniques like natural-language documentation (used,
for example, in Figure 1.3a), naming and design conventions are imprecise
and cannot be automatically validated. Unit tests, although precise, modular
and automatically validatable can specify only a finite subset of the typically
infinite semantics of a program, so that the specified properties are typically
much less general than desired. The unit test in Figure 1.3b, for example, only
specifies correct sorting behaviour for one particular list of strings. In (dynamic)
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class Collections {
/∗∗
∗ Sorts the specified list according to the natural ordering of its elements. ...
∗ @param list the list to be sorted.
∗ @throws ClassCastException if the list contains elements that are not
∗ mutually comparable (for example, strings and integers).
∗/

public static <T extends Comparable<? super T>> void sort(List<T> list) {
... }

}

(a) A sort function in Java, specified using a parametrically polymorphic type annotation with
subtyping constraints, and additionally natural language and semi-formal documentation.
They specify the intuitive behaviour and the types of lists supported by the function.

class CollectionsTest {
@Test public void testSort() {
String[] arr = {"c", "a", "b"};
String[] expected = {"a", "b", "c"};
sort(Arrays.asList(arr));
assertArrayEquals(expected, arr);

}
}
(b) A unit test specifying the behaviour of
the Java sort function in (a). It requires
that a particular array of strings should be
correctly sorted.

void sort(int n, int ∗xs)
//@ requires int_array(xs, n);
//@ ensures int_array(xs, n);

(c) A specification of an integer-only C
sort function in VeriFast [107]. The
specification is in a program logic extend-
ing Reynolds’ separation logic [195]. It
requires that other components cannot
simultaneously access the input array and
specifies that the length of the array does
not change.

deferred class DS_SORTABLE [G] inherit DS_CONTAINER [G]
feature sort (a_sorter: DS_SORTER [G])

−− Sort container using a_sorter’s algorithm.
require a_sorter_not_void: a_sorter /= Void
ensure sorted: sorted (a_sorter)

end

(d) An Eiffel specification of a sort function with pre- and postconditions, part of Eiffel’s
contract system. Eiffel optionally checks this contract during execution.

sort : List N → List N
sort−correct : (as : List N) → Sorted (sort as)

(e) A sort function for natural number lists in Agda. The sort-correct proof specifies that
sort must produce sorted lists, using Agda’s dependent type system.

Figure 1.3: Specification of sort functions, in different languages using different
types of specifications.
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contract systems (e.g. Figure 1.3d), validation is limited to the verification of
pre- and postconditions during executions of the program, leaving specifications
unvalidated for executions not seen during development. All of this does not
mean that these techniques are useless in practice, far from it. They are often
the most cost-effective way to specify certain properties. However, it is an
ongoing challenge for computer scientists to develop techniques that can do
better. It is in this process that this thesis should be situated.

Some very powerful specification techniques are based on program logics. They
descend from techniques proposed in the late 1960s, particularly by Hoare [97].
For proving properties about imperative programs, Hoare proposed to formulate
logical properties expected to hold before and after the execution of a command.
A command C together with its pre- and postconditions P and Q is written as
{P} c {Q} and known as a Hoare triple. Hoare defined a set of axiomatic rules
for proving the validity of a command’s specifications based on the command’s
syntactic form and the pre- and postconditions of its components (Hoare logic).
In 2002, Reynolds presented an extension of Hoare logic, called separation logic,
that essentially allows components to require sole access to parts of the heap
memory. For example, the separation logic specification of the C sort function
in Figure 1.3c says (implicitly) that it will not crash if the argument pointer
identifies an integer array in memory and no other thread can simultaneously
access the array. Separation logic enables modular reasoning about components
that use shared data structures [195].

In this text, I will not use program logics but a different class of techniques
known as type systems, used in Figures 1.3a, 1.3c, 1.3d and 1.3e. I will present
type systems in more detail further on.

1.1.4 The techniques used

The three above approaches to software development (higher-level programming,
modular programming and specifications) should not be interpreted as mutually
exclusive. Much to the contrary, they are complementary and the use of one class
of techniques may increase the need for another. Consider, for example, higher-
level programming. Higher-level EDSLs rely on the definition of sub-languages
with semantic sub-domains. Specifications can play a role in delineating such
sub-domains and specifying properties of their terms, as we will see for the
example of a Haskell grammar EDSL in Chapter 3. Higher-level languages may
also introduce new types of components and new ways of combining them, as
we will also see with the decoupling of grammars and sets of semantic actions
in the grammar EDSL. Similarly, modular programs with many components
typically feature many inter-component assumptions for specifications to keep
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track of. In Chapter 5, for example, I present specifications for properties about
the side-effects that imperative components produce.

This thesis deals with representing and specifying components in four domains.
I have chosen to use a number of techniques for representing those components
with the desired semantics and specifying their correct behaviour.

A first important choice is that I exclusively work with purely functional
programming languages, specifically Haskell and Agda. In three cases
(Chapters 2, 3 and 4), this is because the concerned components’ semantics did
not have an inherently imperative nature, so that their semantics can be best
approximated using a functional style. In the fourth case, I consider effectful
components in an imperative object-oriented programming language. However,
to study the discipline that is imposed on side-effects in these languages, I build
crucially on the use of monads: a representation for code with side-effects used
in the purely functional programming language Haskell.

Another choice is that I make use of only one type of specification technique:
type systems. However, I employ Haskell and Agda: two programming languages
whose type systems are significantly different, and I rely on some of their most
powerful features. In fact, before I present the contributions of this thesis in
Section 1.3, I present type systems in the next section, focusing specifically on
the features that my work builds on.

1.2 Type systems

Type systems are a widely used specification technique, based on the idea of
assigning a type to any component and value in the source code. This is done
in a compositional way, i.e. the type of a composed component is a combination
of the types of the components.

The type of a value or component expresses semantic facts about it. Like
for specification techniques in general, many different type systems exist that
can express different types of properties about different types of components.
Some type systems can only express simple properties such as “n is an integer
number” or “g is a function mapping booleans to strings” (e.g. the C type
system used in Figure 1.3c). Others can express more complex properties as
well: general properties like the parametricity of polymorphic functions (used
in Figure 1.3a and 1.3d), which I will discuss further on, but also more specific
properties, for example, related to the aliasing of object references [42], the
respect of information flow security policies [200], or the correct behaviour
of meta-programs (see Chapter 4). Very often, a programming language is
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designed to support one or several programming paradigms, and its type system
is designed to express desirable properties about the components recommended
by the paradigm (e.g. pure functions in Haskell, classes in Java or Eiffel).

Many programming languages include a type system as a vital part of the
language. This is, for example, the case in C [115], Java [87] or Haskell [101].
Often, the type of a component or value is not considered as an optional
specification of some of its semantic properties, but rather as an essential part of
its definition, determining its meaning together with the implementation. This
view is known as intrinsic or Church-style typing, as opposed to the extrinsic
or Curry-style typing that I have assumed before. One of the contributions of
this text applies to ad hoc polymorphic functions, which go especially far in this
direction. They are functions that behave differently when used at different
types (see Chapter 2).

It is interesting to note that the origin of type systems lies in the field of
mathematical logic, where they were used to prevent logical paradoxes in
the foundations of mathematics, notably by Russell [240] and Ramsey [190].
Alonzo Church proposed to use his lambda calculus as a notation for Ramsey’s
logic, producing the simply typed lambda calculus [39], an important system of
reference in the theory of type systems. So, from the beginning types were used
as a notation for propositions in mathematical logic, and terms in the typed
lambda calculus were considered as a notation for proofs of those theorems.
It is only later that the lambda calculus came to be used as a core part of a
programming language, with terms representing programs and types specifying
their behaviour, an idea notably promoted by McCarthy [146], Landin [123]
and Morris [159]. The observation that terms and types in typed lambda
calculi can be semantically interpreted both as programs/specifications and
proofs/propositions is known as the Curry-Howard correspondence [99, 46]. This
correspondence carries through for many useful type systems and corresponding
logics and it has motivated developments on both sides.

It is not my intention here to give a full overview of the research area of
type systems. I will instead restrict further discussion to three important
topics relevant to this thesis: the polymorphic lambda calculus (also known
as System F) and its parametric polymorphism, specifications for side-effects,
specifically using monads in Haskell, and dependent type systems, specifically
in Agda.
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1.2.1 System F and parametric polymorphism

Girard and Reynolds’ polymorphic lambda calculus or System F [80, 193] is
a typed lambda calculus that allows the definition of polymorphic functions:3
functions with a single general type that can be instantiated to an entire family
of more specific types. A prototypical example is the identity function λx.x,
which can be assigned the type a → a for any type a. This property can be
made explicit in System F with the polymorphic type ∀a.a → a. The sort
functions in Figures 1.3a and 1.3d also both have polymorphic types indicating
they can sort lists with arbitrary types of elements (although both require a
way of comparing values of the type).

A polymorphic type must be usable at any type in the family and there is no way
for a polymorphic function to find out which type it is being used at. As a result
of this, its semantics can be quite strongly restricted; for example, the above
polymorphic type ∀a.a→ a is only inhabited by the identity function. These
restrictions give rise to a formal property called parametricity that was first
described by Reynolds [192]. It states that a component with a polymorphic
type satisfies a certain semantic property that can be derived from the type.

Parametric polymorphism has found its way to several programming languages:
most famously ML [154], but also Haskell [101] and even Java [104]. Many
extensions of System F have seen the light in the process: for example, type-level
functions in Girard’s System Fω [80], type equality proofs in System FC [217],
or bounded quantification to support subtyping [29]. As a remarkable example
of keeping theory close to practice, the Glasgow Haskell Compiler uses the
System FC calculus as a typed intermediate language.

We should note that besides the study of parametric polymorphism, para-
metricity is also crucial in the study of abstract data types (ADTs). These are
user-defined types with an internal representation and an external interface
of functions implemented in terms of the internal representation. Programs
using only the external interface can be considered as programs that are
(parametrically) polymorphic in the representation type of the ADT, so that
parametricity states properties that they satisfy.

The property of parametricity has itself been the subject of a lot of research.
After proposing the parametricity theorem using a set-theoretic semantics of
polymorphic functions [192], Reynolds proved that such a semantics cannot in
fact exist [194]. Semanticists have since then proven versions of parametricity

3Note: we use the word polymorphism to indicate parametric polymorphism. This
should not be confused with the concept of subtype polymorphism, which is also sometimes
called polymorphism in the context of object-oriented programming. In OO languages,
(parametrically) polymorphic functions are often referred to as generics.
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of System F and many extensions, based on (often category-theoretical)
denotational semantics, e.g. [6, 14, 15, 230]. I recommend, for example, the
relatively accessible text by Atkey on a parametric model for System Fω
with some kind-level extensions [6]. Wadler has written a text popularising
parametricity towards a larger audience of functional programmers using the
slogan “Theorems for free” [231], demonstrating some compelling applications
of the property. Voigtländer has more recently done the same for parametricity
applied to monadic type functors in System Fω [228]. In chapter 5, I heavily
rely on parametricity in System Fω to prove the properties of effect polymorphic
functions, which I propose to use in the semantics of certain object-oriented
languages.

A downside of polymorphic type systems is that their validation often requires
quite a bit of programmer effort in the form of type annotations, i.e. explicit
assignments of types to components and terms or explicit annotations of the
type that a polymorphic function is being used at. In order to reduce this
effort, type inference (also known as type reconstruction) algorithms can be
used to automatically deduce (part of) the required type information from
the implementations. Hindley [94] and Milner [153] independently described a
polymorphic type system with an automatic type inference algorithm based on
the idea of unification. In most current type systems, fully automatic inference
is not a design goal, not in the least because it cannot be achieved for many of
the more powerful type systems (e.g. System F [239]). Nevertheless, even in
such languages, techniques based on Hindley-Milner type inference are in wide
use to reduce the amount of annotations needed to specify the types of programs.
This is, for example, the case in the Glasgow Haskell Compiler (GHC) [229].

1.2.2 Specifying side-effects, specifically in Haskell

The purpose of most software includes performing input/output (I/O):
interacting with the world outside the computer, e.g. communication
with other computers over a network, communication with the user over a
display or keyboard/mouse, or the operation of devices connected with the
computer, such as printers, GPS receivers or robot arms. Software performing
input/output is very often represented using imperative statements with side-
effects. Semantically, these statements correspond to procedures whose execution
— in addition to returning a value based on their input arguments — triggers
some form of additional side-effect, e.g. an interaction with the outside world.
For example, the Java statement System.out.println("Hello world!") is
a command that simply returns void, but additionally prints a message on a
textual output channel. The approach of using statements with side-effects
originates from low-level machine languages, where it is standard.
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Side-effects are often not limited to interactions with the outside world per
se. They may also consist of interactions with computer memory (reading or
writing of mutable memory cells), interactions with other execution threads
inside the program or with other programs (e.g. synchronisation primitives like
semaphores) etc. In some languages, statements may even modify or add source
code to the program currently executing, either in a textual representation (e.g.
JavaScript eval [196]) or in a bytecode or assembly language (e.g. code injection
in C [245] or code generation in Java [25]). With a little more imagination,
even the consumption of computation time [49], or potentially causing the
non-termination of a program [28, 50] have been treated as side-effects.

With some exceptions, the semantics of side-effecting statements are badly
supported by specification techniques. For example, most type systems for
languages with side-effecting statements leave the side-effects of components
completely free; for example, a C function4 or ML function that accepts no
arguments and returns void may perform arbitrary side-effects during execution.
This is a bad state of affairs, because in practical development, side-effects are
often the topic of important architectural requirements of components (e.g. all
network access is encrypted, the front-end can only access the database through
the business layer), of crucial security assumptions between components (e.g.
an advertisement in an online mail application cannot inspect e-mails [131]) or
functional properties of components or applications (e.g. all printed documents
should contain a company header).

In the Haskell programming language, the type system does allow specifications
about the side-effects of programs, through its use of monads. Monads are a
structure from category theory (a highly abstract field of mathematics) that
Moggi [156] proposed to use for representing the semantics of statements with
side-effects of different types. He showed that monads presented a unifying
notion of computation, covering side-effects like non-determinism, mutable state,
exceptions, partiality etc. The idea is to represent a computation that yields
a result of a type a as a value of type m a, where m is a monad representing
the kind of effects produced by the computation. The definitional requirements
for monads in category theory correspond nicely to natural requirements for
such an m: that there should be a way to embed values as non-side-effecting (or
pure) computations and a way to sequence two computations where the second
depends on the first’s result. Additionally, standard monad requirements imply
certain natural axioms about combinations of these primitives.

Haskell uses monads directly to represent side-effecting computations [232, 233]
and supports the do-notation [232] to write such computations in a natural

4Procedures in C are called “functions”, arguably a misnomer since they are semantically
quite different from mathematical functions.
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syntax. This approach allows it to strictly enforce purely functional
programming by default but still present an imperative API with side-effects
for when it is needed. More specifically, Haskell defines the built-in monad IO
in which essentially any side-effect can be produced (including input/output,
mutable state, invoking C functions and concurrency [180]), and the GHC
compiler adds more restricted monads for working with mutable memory (the
ST monad [124]) and software transactional memory (the STM monad [92]).
Additionally, programmers can define custom parameterised types and declare
them to be monads by instantiating the Monad type class [110].

Haskell essentially uses monads to separate purely functional components from
imperative computations. This was at least partly motivated by its semantics
of pure expressions, which uses a non-strict evaluation order incompatible with
side-effecting procedures [100]. Nevertheless, it is now clear that Haskell’s
type-level separation of pure expressions is a more beneficial characteristic than
its lazy evaluation order, because it creates the possibility of specifying the
side-effects (or at least the absence of side-effects). Evidence for this is the more
recent appearance of pure but strict programming languages (e.g. Chlipala’s
Ur [36] or Czaplicki and Chong’s Elm [47]).

Besides Haskell’s use of monads, we have to mention some other exceptions
to the rule that specification systems do not cover side-effects. In Reynolds’
separation logic, which we have mentioned before, specifications imply a strict
upper bound on the mutable memory locations that a component can access.
There is promising research on applying separation logic for other kinds of
side-effects as well (e.g. [98]), but this is much less mature than its use for
mutable memory locations. Current separation logic tools typically leave I/O
behaviour of components unspecified, e.g. VeriFast [107].

Another way to specify the side-effects of imperative procedures that we do
not go into is based on type and effect systems. They are a form of type
systems where a statement’s type includes a bound on the side-effects it
may produce [129]. In a sense, this definition encompasses Haskell’s use of
monads and the two approaches are indeed closely related, see e.g. [234]. Effect
types can describe many kinds of side-effects, including locking behaviour in
concurrent programs [71], aliasing in object-oriented programs [42] and region-
based automatic memory management [225]. Java’s checked exceptions [87]
are another well-known example. In the literature, effect type systems are
most often used as part of an automated analysis, especially in the context
of region-based memory management [225]. However, they are also useful for
specification purposes.

A rather different approach at managing the side-effects of components is
not based on specifications but rather on the definition of components with
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main : Signal Element
main = lift clock seconds

clock : Float → Element
clock t =
collage 400 400
[ filled black (circle 110)
, hand red 100 (t/60)
, hand grey 100 (t/(60∗60))
, hand grey 60 (t/(60∗60∗12)) ]

hand clr len t =
traced (solid clr) (segment (0,0)

(len ∗ sin a, len ∗ cos a))
where a = turns t

(a) An implementation using a Functional
Reactive Programming (FRP) style in the Elm
programming language. main is semantically
a time-varying GUI element, constructed by
applying the pure function clock to a time-
varying seconds signal.

everySecond(function (t,canvas) {
canvas.drawCircle(black,0,0,110);

drawHand(red, 100, t/60);
drawHand(grey, 100, t/(60∗60));
drawHand(grey, 60, t/(60∗60∗12));

function drawHand(clr, len, t) {
var a = turns(t);
canvas.drawLine(clr,0,0,
len∗cos(a), len∗sin(a));

}});

(b) An implementation using an imperative
callback in JavaScript. The code is understood
semantically by reasoning about the side-
effects of the event handler when executed
in response to a timer event.

Figure 1.4: Two implementations of an analogue clock, contrasting a higher-level
functional reactive programming representation to one based on side-effecting
statements. A screenshot of the clock is shown at the bottom.

alternative semantics. This includes the idea of algebraic effects: imperative
procedures whose side-effects can be reinterpreted by handlers [188]. Another
example is functional reactive programming (FRP) [69], a paradigm that
recommends components that semantically represent signals or behaviours
(time-varying values) and event streams (channels on which values arrive at
specific times). For illustration, Figure 1.4 contrasts two implementations of an
analogue clock, one using FRP and the other using a more traditional imperative
callback-based approach. Semantic properties can more easily be checked for
the first implementation, for example, the property that the current screen only
depends on the current time. For the second implementation, we need to inspect
the side-effects produced by each statement in the handler, while for the first,
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this already follows from just the implementation of main. Functional reactive
programming was first proposed for graphical user interface libraries [69] but
its use is investigated for other applications as well (e.g. [74]). The paradigm
is being popularised in the object-oriented community by Maier and Odersky
under the slogan “Deprecating the observer pattern” [135].

In Section 1.3.4, I will explain that the notion of encapsulation in object-
oriented languages is also a way of managing the side-effects of components
and that the principle is generalised to arbitrary effects in object-capability
languages. In Chapter 5, I will use Haskell monads as a crucial tool for studying
a property called effect polymorphism that I propose as a defining property for
such languages.

1.2.3 Agda: dependent types

Dependent type systems are advanced type systems that first appear in the work
of Martin-Löf [140], Howard [99] and in de Bruijn’s AUTOMATH system [55],
with further important contributions by Coquand and Huet [44] and Luo [130].
Characteristically, a dependent type system allows types that mention values
or components in such a way that the semantic property expressed by a type
depends on the semantics of those values or components. This makes the
type system so powerful that arbitrary semantic properties of components can
be expressed and — under the Curry-Howard correspondence — arbitrary
mathematical propositions can be formulated and their proofs verified.

Consider, for example, again the sort function from Figure 1.3e:

sort : List N → List N
sort−correct : (as : List N) → Sorted (sort as)

The function sort has a standard non-dependent type but sort-correct’s type
is more unusual. For any input list as, sort-correct returns a value of type
Sorted (sort as): a proof that the result of applying the function sort to as
produces a sorted list. We have omitted implementations, but for an appropriate
definition of the Sorted predicate, sort-correct can only be implemented if sort
always produces sorted lists.

This example shows that dependent types allow one to express both programs
and proofs about those programs’ semantics. On a much larger scale, this is
demonstrated by Leroy’s provably correct C compiler CompCert [126]. However,
dependent types can also be used for formal verification of purely mathematical
theory. This was demonstrated — on an equally large scale as CompCert —
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by Gonthier with verified proofs of the Four Colour Theorem about planar
graphs [83] and the Feit-Thompson theorem from group theory [84].

Unfortunately, a dependent type system imposes heavy requirements on the
programming language. In order for the type system to be consistent and its
type-checking problem decidable, its functions must typically all be total (i.e.
terminate successfully for all input). However, such restrictions do not make the
language Turing-incomplete; non-terminating programs can still be modelled,
albeit with a bit more care and effort [28, 50, 142].

Programming languages with dependent types include Coq (which Leroy and
Gonthier used for their developments) [223], a language which was mainly
designed as a mathematical proof assistant. Several other dependently-
typed languages have been developed in a similar spirit, but with different
design choices, for example, the Edinburgh Logical Framework [91] and
its descendants (e.g. [184, 185]), NuPRL [43], Isabelle [179] and Alf [134].
Other languages with dependent types are aimed more towards use as a
programming language, e.g. Cayenne [7], Idris [21], Epigram [142] and Agda [161].
Recently, other programming languages are introducing what one might call
lightweight dependent types: enriched type systems that share some features
with dependently-typed systems, without paying the cost of making the entire
language total, e.g. Dependent ML [242], Ur [36], F* [218], Ωmega [207],
Scala [165] and recent Haskell extensions like McBride’s SHE [141], data
kinds and kind-polymorphism [244] and closed type families [68]. Lightweight
dependent types have also been applied to assembly languages [243].

In Chapters 2 and 4, I work with the dependently-typed programming language
Agda [161]. As mentioned, it is mainly intended for use as a programming
language, although its design does not exclude use as a proof assistant. Some
of its characteristic features are its use of dependent pattern matching [44,
82] and its support for advanced constructs like induction-recursion [67]. In
Chapter 2, I propose an extension of Agda’s type system in order to support ad
hoc polymorphic functions. In Chapter 4, I propose novel dependently-typed
primitives to represent and specify strongly typed meta-programs in Agda.

1.3 Representing and specifying components in
four domains

The contributions of this thesis are the definition and study of novel functional
techniques for the representation and specification of software. Specifically,
we present techniques for four types of components and associated semantic
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properties: ad hoc polymorphism, context-free grammars, meta-programming
and effect-polymorphism. I will introduce them in the next four sections.

1.3.1 Ad hoc polymorphism

The first contribution of this text is the design and implementation of instance
arguments in Agda. They can be used for assigning types to functions that are
ad hoc polymorphic.

A component is ad hoc polymorphic or overloaded when it can be used at many
different types, but may behave differently for each of them. A typical example
is an equality decision procedure: a function that receives two arguments and
checks whether they are equal. Such a function is ad hoc polymorphic, since
equality can mean different things for different types of values. Often, ad hoc
polymorphic primitives are not or cannot be implemented for certain types.
Equality, for example, cannot be decided for functions on an infinite domain. To
make sure that ad hoc polymorphic functions are not used at unsupported types,
some type systems provide special support. They provide types specifying the
ad hoc polymorphic primitives used by a component, so that it is possible during
development to check for each component separately that ad hoc polymorphic
functions are only ever used at supported types.

Although Standard ML’s type system applied this idea specifically for the
overloaded built-in equality decision procedure with its eqtype variables [155],
Haskell was the first to extend the idea to arbitrary overloaded functions with its
type classes [235]. Later, alternative designs with different characteristics have
been made for programming languages like Scala [167], Coq [213], C++ [211,
212] and other languages.

Instance arguments are another alternative to type classes and these other
features, which we have designed and implemented for use in the Agda
programming language. Compared to existing systems, instance arguments are
based on some novel choices. Most importantly, they avoid the introduction
of type classes as a new kind of data type, ad hoc polymorphic functions are
treated as first class components and they avoid the introduction of a separate
powerful type-level computation primitive. More details follow in Chapter 2.

1.3.2 Context-free grammars

A formal language is a collection of strings in a certain alphabet, e.g., the set
of well-formed English sentences or the set of syntactically valid source code
in a programming language. Formal languages can be defined using formal
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Line → Expr EOF
Expr → Expr ‘+’ Term

→ Term
Term → Term ‘∗’ Factor

→ Factor
Factor → ‘(’ Expr ‘)’

→ Digit+
Digit → ‘0’ | ‘1’ | ‘2 ’ | ... | ‘8 ’ | ‘9 ’

Figure 1.5: A context-free grammar for arithmetic expressions.

grammars. The concepts have applications in the study of natural languages,
but for our purposes their most important application is the definition of the
syntax of programming languages. Backus was the first to describe the syntax
of ALGOL 58 as a formal language, in a grammar notation now known as the
Backus-Naur-Form (BNF) [11].

Formal grammars come in different shapes and forms, but an important class
are the context-free grammars, first studied by Chomsky [38]. Such grammars
define strings in the language using a set of recursive equations or rules, where
each rule defines how a certain sub-structure of the language (a non-terminal)
is obtained by sequencing characters and other non-terminals in a certain order.
Figure 1.5 shows an example context-free grammar for the language of arithmetic
expressions like (6 ∗ (4 + 2)) + 6. Its non-terminals include expressions, factors,
terms and digits. Every line in the grammar contains a rule defining how a
non-terminal can be formed from characters and/or other non-terminals. For
example, the term 6 ∗ (4 + 2) is formed from the term 6, the character ∗ and
the factor (4 + 2) according to the fourth rule of the grammar.

Rules in context-free grammars can be recursive, i.e. recursively define a non-
terminal in terms of itself, like the second and fourth rules in Figure 1.5.
They can also be mutually recursive, like the second, fourth and sixth rules in
Figure 1.5, defining non-terminals Expr, Term and Factor cyclically in terms of
each other. Such rules are common in grammars for programming languages,
where statements and expressions often contain other statements or expressions,
e.g. the C expression f() + 3 contains two sub-expressions: f() and 3.

Programs that interpret strings of a formal language (e.g. compilers that accept
source code in a programming language) generally use a parser : a component
that accepts arbitrary strings as input and checks whether they are in the formal
language. If they are, the parser typically returns a structured representation
that reveals how the strings can be constructed from the grammar. The
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construction of efficient parsers for formal grammars is a well-studied topic; a
wide variety of algorithms have been studied in the literature (see e.g. [3]).

Two standard requirements for parser components are that they should parse
the strings of a certain formal language and that they should do it reasonably
efficiently. The first requirement is especially hard to guarantee when writing
parsers as general string-processing functions in a general-purpose language.
From a semantic point of view, the problem is that the requirement is formulated
at a higher level of abstraction (formal grammars and languages) than the
semantics of the implementation (general string-processing functions). The
standard approach to solve this uses the parser generators mentioned before [109,
176]. In this approach, the parser is not written by the programmer, but rather
the intended grammar is specified in a special-purpose higher-level language
(often based on BNF). The higher-level semantics of a grammar is the formal
language it defines, and the correspondence to the intended language is much
easier to guarantee or verify. The grammar can also be more easily adapted to
changes in the formal language.

The parser generator will compile such a higher-level grammar to source code
for a parser in a target programming language. It typically uses a fixed
parsing algorithm and applies restrictions to the grammar to ensure the parsing
algorithm supports it. Often, the grammar contains a semantic action for every
rule: a piece of source code in the target language which is executed by the
parser when it successfully identifies an instance of the rule in the input text.
The results of semantic actions are called semantic values. The semantic action
receives semantic values for the components of the matched rule and returns a
semantic value for the resulting non-terminal. Sometimes, the semantic action
may perform side-effects in the process, but typically it will just generate an
in-memory representation of the parsed structure of the input file (the abstract
syntax tree or AST ).

Parser generators are often designed for use in programming language compilers.
In such scenarios, there is little need for modularity within the parser
specification: there is only a single language to be parsed and it doesn’t change
very often. Additionally, only a single set of semantic actions is used, producing
ASTs. As a result, the grammar specifications used by these tools generally
couple grammars with semantic actions in one component, although it could
be useful to separate the two. Similarly, most tools support only one parsing
algorithm although it would be useful to use different algorithms for a single
grammar (e.g. a very fast algorithm for batch compilation and a slower one
with high-quality error messages for interactive use). Multiple grammars can
often not be easily combined and the grammar DSL often does not support
abstraction in the definition of non-terminals. Furthermore, integration with
the target language is often limited to the translation performed by the parser



22 INTRODUCTION

generator. If the target language has a type system, the semantic actions are only
validated after translation. For most parser generator systems, there are limited
tools available for developing the grammar (e.g. for debugging or specifying the
semantics of the grammar), although some systems do fairly well in this respect
(e.g. the ANTLRWorks tool for the ANTLR parser generator [18]).

An alternative to parser generators is the use of parser combinators. These are
a type of functional library in which individual parsers are components that
can be combined using combinators. For example, a parser can be represented
as a function that takes an input string and either fails or returns a parse result
and the remaining input. In libraries based on the Applicative abstraction,
a sequencing combinator ~ combines parsers p1 and p2 into a parser p1 ~ p2
that first applies p1 on the full input and then applies p2 to the remaining
input, combining both parse results into a combined result. Similarly, the ��
disjunction combinator combines two parsers p1 and p2 into a parser p1 �� p2,
which first tries p1 on the full input and returns the remaining input and result
if p1 succeeds. If p1 fails, then p2 will be tried on the original input and its
results returned. Primitive parsers are provided which succeed if and only if
a certain character is present in the input and returns the remaining input.
To achieve the equivalent of semantic actions, a combinator #$ constructs a
parser f #$ p that behaves similarly to p, but applies the function f to its parse
result. Finally, recursive parsers can be modelled using the recursion of the host
language. In this way, a parser for a desired language can be constructed using
combinators and primitive parsers whose semantics are similar to those of the
language constructs in a grammar language like BNF.

Parser combinator libraries solve some of the problems of parser generators:
abstraction facilities from the programming language they are written in (the
host language) can typically be reused automatically for parsers. Similarly,
host language specification techniques like type systems can be used to specify
parsers’ semantics (e.g. their result types). Using higher-rank polymorphism in
languages like Haskell, one can even write parsers that support any library that
supports a certain set of combinators, so that one obtains a component that
does not really represent a parser but rather a grammar that can be used with
different parsing algorithms.

To build a grammar EDSL whose semantics closely correspond to that of context-
free grammars, one needs to use a purely functional language as grammars
semantically have no side-effects. However, we will explain in Chapter 3 that in
purely functional languages, parser combinators inherit an important limitation
from the host language’s recursion. The semantics of recursive parsers in such
languages corresponds does not correspond to that of context-free grammars, but
rather to what I call ω-regular grammars. The problem with this is that those
grammars cannot be used with many standard and efficient parsing algorithms
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such as those based on bottom-up LR algorithms, and do not permit many
other kinds of grammar analysis and transformation algorithms.

Chapter 3 presents my contribution to the problem of building a higher-level
grammar EDSL. I present a way to circumvent the limitations of Haskell’s
recursion by using an explicit representation of recursion in a parser combinator
library. Semantically, this representation closely models the recursion of context-
free grammars. It is based on a value- and type-level representation of non-
terminal identifiers that makes extensive use of advanced Haskell type system
features, particularly GADTs [183] and type families [204]. A side-effect of
my approach is that I am able to decouple grammars from semantic actions
into separate components, permitting a precise model of the complex semantic
interactions between a grammar, a parsing algorithm and a set of semantic
actions. On the flip side, the encoding of non-terminals imposes a certain
overhead on the programmer and certain combinators can only be provided in
a limited way.

In Chapter 3, I motivate and introduce our approach and present five grammar
algorithms exploiting my model. They form the basis of the publicly available
grammar-combinators parsing library.

1.3.3 Meta-programs

Meta-programs are programs that generate or manipulate other programs.
They are widely used in practice, with well-known examples including
parser generators [176, 109], reflection and byte-code generation in Java-like
languages [173, 25] and eval primitives in languages like JavaScript [196]. Very
often, meta-programs are used to implement features that would otherwise
require extending the programming language.

The semantics of meta-programs are intrinsically very complex, because they
are situated on two levels. Their semantics is to generate or manipulate other
programs, but those programs have their own semantics as well. Many of the
semantic properties that one would like to hold for a meta-program simply
require other properties to hold for the programs that it works with. A parser
generator, for example, should generate programs that are parsers, i.e., functions
or procedures that accept text as input and return the intended type of results.

Such two-level semantic properties are so complex that they are out of reach
for most specification techniques. Nevertheless, explicit statements of meta-
programs’ properties provide the same benefits as for normal programs: tracking
assumptions between them and other (meta-)programs, to prevent bugs and
facilitate modular development. Often, meta-program authors settle for what
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one might call weak correctness specifications: specifications about the generated
programs that are only validated after execution of the meta-program. Such
solutions are better than nothing, but they are not modular: meta-programs’
properties and assumptions cannot be specified for arbitrary executions, making
it hard to ensure their semantic correctness and track assumptions between
(meta-)programs that are combined together.

Chapter 4 presents the contribution of this thesis for meta-programming: the
definition and study of a novel set of meta-programming primitives in the
programming language Agda. The power of Agda’s dependent type system
allows the assignment of precise types to these primitives and meta-programs
that use them. One limitation is that I have not proved the foundational
correctness of the primitives themselves. Contrary to some other proposals,
meta-programs in my approach are written in the same (functional) style as
normal Agda programs. To demonstrate the power of the approach, I show
meta-programs in two application domains: datatype-generic programming (the
definition of algorithms that can be applied to an entire class of data types
and whose behaviour is defined in terms of the structure of the data type) and
tactics (programmer-written automated procedures for proving sub-theorems in
mathematical proof assistants). My example in the first domain is a function
that generates a serialisation function from the definition of a data type. In
the domain of tactics I show the implementation of an assumption tactic;
an elementary tactic that finds proofs for sub-theorems known to hold from
previous assumptions. In general, my approach is the first to support general
meta-programs in a standard functional style with types that express strong
correctness properties such as type correctness and termination.

1.3.4 Effect polymorphism

The fourth and final contribution of this thesis is related to the object-oriented
paradigm [163, 105]. Definitions of the paradigm depend somewhat on who you
ask, but we will describe some common characteristics following Pierce [187].
The paradigm recommends the use of objects: semantic entities that couple a
piece of private mutable state (instance state) with a set of procedures that have
access to that state (methods). An object’s methods implement an interface
and interfaces can be extended to form a hierarchy with often a subtyping
relationship between them in the type system (if there is one). Object methods
can be implemented using classes, components which define a type of instance
state and implement an interface in terms of it. One class can give rise to any
number of instances: objects sharing the class’s method implementations but
not the instance state. Classes allow inheritance: defining subclasses which
override and/or reuse superclass methods to implement a possibly extended
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interface. Under open recursion or late binding, calling an object’s method from
within a method of the same object invokes the same method as calls from
outside. This gives subclasses additional opportunity to override superclass
behaviour. Not all object-oriented languages use the concept of classes to
implement interfaces; some provide other mechanisms to implement objects
with corresponding notions of inheritance (e.g. prototypes in JavaScript [89]).
Many languages provide other forms of inheritance in addition to classes, e.g.
traits [202], aspects [117] or subobjects [226]. Other forms of inheritance can
sometimes be encoded, e.g. object algebras [170].

Encapsulation is the crucial object-oriented principle that instance state should
be private, i.e. only the object’s own methods can read it or write to it.5
As hinted previously, the principle should actually be regarded as a semantic
technique that limits the side-effects of components. In this view, it states that
methods and procedures may directly perform arbitrary side-effects except read
from or write to the instance state of other objects. Encapsulation is already a
very useful way to make components more semantically independent. This has
been formally demonstrated by Jeffrey and Rathke, who demonstrated that an
object in a certain language can be semantically fully described by the set of
all possible traces of incoming and outgoing method calls on the object [108].
This implies that the object’s mutable state is not directly observable from the
outside world.

The principle of encapsulation can be strongly strengthened by extending it
to other side-effects than just mutable state. This is the essential idea behind
the object-capability (OC) model [152]. According to this model, an object can
represent a capability: the ability or permission to perform certain side-effects.
There may, for example, be an object representing the ability to make outgoing
connections via the network, to read and write files on the file system or to
access the representation of a webpage [151]. Using wrapper objects, custom
restricted capabilities can be defined from existing ones, e.g. the ability to
connect to a certain host on the internet, or to read but not write from any file
below a certain file system location.

Using object capabilities, one can obtain precise bounds on the side-effects
that procedures can produce: the set of capabilities of all the objects it can
access. However, for this to work, procedures must not be able to perform
effects in other ways or bypass objects’ interfaces. Object-capability programming
languages therefore forbid the use of such features, most importantly static
functions with side-effects, globally accessible static mutable state variables
and features that allow access to objects’ private instance state (e.g. certain

5Often, the principle is relaxed a bit, so that, for example, other objects of the same class
can also access the instance state.
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uses of reflection in Java) [148, 151]. When side-effects need to be restricted for
security purposes, attackers must not be able to bypass such restrictions in any
way.

Chapter 5 presents my contribution to the study of object-capability languages.
It is related to their formal characterisation. Existing formalisations of object-
capability languages, notably by Maffeis et al. [131], essentially start from the
reference graph: the graph of all objects in a running program, connected by
references that the objects hold to each other. These formalisations (such as
Maffeis et al.’s capability safety and authority safety properties) restrict the way
in which the reference graph is allowed to evolve over time, depending on the
references held by the currently executing program. In this way, the properties
imply a restriction on the heap changes that the program may perform as
side effects. The downside of such formalisations is that they are very specific
to one type of side effect (write access to mutable heap variables), while the
object-capability model applies to other side effects just as well. They are also
quite operational in nature and do not provide great insight in the nature of
the necessary restrictions. Finally, they are hard to use for formal reasoning
about the enforced properties.

My contribution is a more denotational characterisation of the object capability
model. The main idea is that the use of object capabilities introduces effect
polymorphism: functions or methods that can only produce effects by invoking
methods of their argument objects, must necessarily be polymorphic in their side-
effects; if the function is invoked with objects producing certain effects, then the
function will produce those effects, and only those. To make this idea precise, I
define a translation of methods in an object-oriented language to Haskell,6 using
a monadic representation of side-effecting computations. Specifically, I translate
to computations that can be executed in an arbitrary monad, provided they
receive arguments which produce effects in that monad. Using the higher-rank
polymorphism of Haskell (and System Fω), these computations can be specified
to be polymorphic in the monad, so that the general parametricity property
(see Section 1.2.1) can be used to derive properties about them. A large part of
the work in Chapter 5 is a formal demonstration that the parametricity of the
method translations generalises Maffeis et al.’s capability safety.

In addition to this, Chapter 5 presents and explains some novel insights that
our new characterisation of object-capability languages offers. I show, for
example, that current OC languages and formalisations leave one effect implicitly
available: the allocation of new mutable state; adding a capability for it has
important theoretical and practical advantages. Furthermore, my translation

6Or a more principled calculus like System Fω, but we use Haskell as a convenient
type-inferenced notation for it.
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establishes a new link between object-capability languages and the well-studied
fields of functional programming and denotational semantics and this presents
opportunities for both fields to learn from each other. Concretely, I present
a form of local capabilities, inspired by Haskell’s ST monad and related to an
OO technique called borrowed references [41]. Additionally, I hope to elaborate
some other related tracks in future work, as I will discuss further in Section 5.9
and Chapter 6.

1.4 Other research conducted

The work presented in this thesis is a subset of the research I have done in the
past four years. I selected the work of which I was the principal author and
whose topic fits in the scope of this text. For completeness, the following is a
list of other research I have worked on, with a short description of the content,
references to publications and a description of my role in the research.

Secure multi-execution My first research project was a technique called secure
multi-execution, through which information flow policies can be enforced for
unmodified programs. The technique is based on a modified semantics which
executes a single program several times, once for each security level. The
behaviour of I/O commands is correspondingly modified so that the behaviour
of programs respecting the policy is indistinguishable from the original at any
security level and so that any program automatically respects the information
flow policy. I was the principal author of this publication, although my promotor
Frank Piessens is responsible for the original idea and contributed strongly to
the text.

Publication data:

Dominique Devriese and Frank Piessens. Non-interference through secure
multi-execution. In Proceedings of the IEEE Symposium on Security and
Privacy (SP 2010), pages 109–124. IEEE Computer Society, May 2010.

After this initial publication, I have collaborated with different researchers,
further researching the technique of secure multi-execution. Together with
Nataliia Bielova, Fabio Massacci and Frank Piessens, we studied applying the
technique to reactive programs in the Featherweight Firefox browser model.
Nataliia Bielova was the principal author of this work.

Publication data:
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Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens.
Reactive non-interference for a browser model. In Proceedings of the 5th
International Conference on Network and System Security (NSS 2011),
pages 97–104, September 2011.

Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens.
Reactive non-interference for the browser: extended version. CW Reports
CW602, Department of Computer Science, K.U.Leuven, February 2011.

Another collaboration started with Willem De Groef’s master thesis, which I
mentored. He constructed FlowFox, an implementation of secure multi-execution
in a real-world browser (Mozilla Firefox). This work continued during his PhD
under the supervision of Frank Piessens. Willem De Groef is the main author
of this work.

Publication data:

Willem De Groef, Dominique Devriese, and Frank Piessens. Better
security and privacy for web browsers: A survey of techniques, and a
new implementation. In Formal Aspects of Security and Trust (FAST 2011),
volume 7140 of Lecture Notes in Computer Science, pages 21–38. Springer,
2012.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
FlowFox: a web browser with flexible and precise information flow control. In
Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS 2012), pages 748–759. ACM, 2012.

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
Secure multi-execution of web scripts: Theory and practice. Journal on
Computer Security, 2014. Accepted.

The study of secure multi-execution continued in collaboration with Gilles
Barthe, Juan Manuel Crespo, Exequiel Rivas and Frank Piessens by showing
that the technique can also be implemented as a program transformation. My
contribution to this work was a formalisation and proof of the technique in
Agda. Juan Manuel Crespo made a formalisation on paper and Exequiel Rivas
was responsible for an implementation for JavaScript based on Google Caja.

Publication data:

Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens,
and Exequiel Rivas. Secure multi-execution through static program transfor-
mation. In Formal Techniques for Distributed Systems (FMOODS/FORTE
2012), volume 7273 of Lecture Notes in Computer Science, pages 186–202.
Springer Berlin Heidelberg, June 2012.
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Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens,
and Exequiel Rivas. Secure multi-execution through static program
transformation: extended version. CW Reports CW620, Department of
Computer Science, KU Leuven, April 2012.

Together with Willem De Groef, I mentored Tom Reynaert during his master
thesis on a privacy-enhanced social application platform (PESAP) which used
FlowFox and secure multi-execution for enforcing an information flow policy on
the client side. Tom Reynaert is the main author of this work.

Publication data:

Tom Reynaert, Willem De Groef, Dominique Devriese, Lieven Desmet, and
Frank Piessens. PESAP: a privacy enhanced social application platform. In
International Workshop on Security and Privacy in Social Networks (SPSN
2012), September 2012.

A side track of my research on information flow enforcement was the development
of a Haskell library implementing three different types of information flow
enforcement as monad transformers over an abstract underlying monadic library.
I am the main author of this work.

Publication data:

Dominique Devriese and Frank Piessens. Information flow enforcement in
monadic libraries. In Proceedings of the 7th ACM SIGPLAN workshop on
Types in language design and implementation (TLDI 2011), pages 59–72,
January 2011.

Functional Programming In collaboration with Ilya Sergey, Dave Clarke and
Frank Piessens, I worked out an alternative to the work presented in Chapter 3.
It is another approach to the representation of grammars and other recursive
DSLs based on a recursion primitive called afix in a type class ApplicativeFix.
The primitive has a rank-2 type ensuring a certain natural property of the
recursive DSL and we designed and implemented a form of syntactic sugar to
obtain a natural syntax. Ilya Sergey and I are the main authors of this work.

Publication data:

Dominique Devriese, Ilya Sergey, Dave Clarke, and Frank Piessens. Fixing
idioms: a recursion primitive for applicative DSLs. In Proceedings of
the ACM SIGPLAN 2013 workshop on Partial evaluation and program
manipulation (PEPM 2013), pages 97–106. ACM, January 2013.
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I also collaborated with Ilya Sergey, Matthew Might, Jan Midtgaard, David
Darais, Dave Clarke and Frank Piessens on monadic abstract interpreters: a
unifying representation of techniques in the field of abstract interpretation,
a theoretically supported framework for the static analysis of source code.
Using monads as a unifying notion for abstract machines, we were able
to implement abstract interpretation techniques like context sensitivity,
polyvariance, flow-sensitivity, reachability-pruning, heap-cloning and cardinality
bounding, independently from any particular programming language semantics.
The main authors for this work were Ilya Sergey, Matthew Might, Jan Midtgaard,
David Darais and myself. My contributions centred around the design of the
monadic representation.

Publication data:

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David
Darais, Dave Clarke, and Frank Piessens. Monadic abstract interpreters.
In Proceedings of the 34th ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI 2013)., pages 399–410. ACM,
June 2013.

I mentored Thomas Winant during his master thesis on partial type signatures
for Haskell. He designed and implemented this form of type signatures to allow
specifying a type partially and leaving other parts (indicated by wildcards)
to be inferred by the inference engine. He formalised this as an extension of
the OutsideIn(X) type inference framework and implemented it in the GHC
Haskell compiler. Thomas has currently started PhD research, where he will
develop this project further. Thomas is the main author of this work.

Publication data:

Thomas Winant, Dominique Devriese, Frank Piessens, and Tom Schrijvers.
Partial type signatures for Haskell. Symposium on Practical Applications
of Declarative Languages, 2014. Accepted.

Finally, I mentored Jesper Cockx during his master thesis on Overlapping and
Order-Independent Patterns for Agda. He designed and implemented a form of
overlapping and order-independent patterns for Agda. He designed this language
feature and formalised it, based on an existing formalisation of standard pattern
matching for dependently-typed languages. He implemented his design in an
extension of the Agda programming language. Jesper has currently started his
own PhD research. He is the main author of this work.

Publication data:
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Jesper Cockx, Frank Piessens, and Dominique Devriese. Overlapping and
order-independent patterns - definitional equality for all. In European
Symposium on Programming (ESOP). Springer-Verlag, 2014. Accepted.

1.5 Outline

In the next sections, I present the contributions of this thesis: novel functional
techniques for the representation and specification of software in four domains.
We have already introduced the four domains and our contributions in
Section 1.3, so we will be brief here. Chapter 2 discusses instance arguments
in Agda and Chapter 3 presents our Haskell representation for context-free
grammars. In Chapter 4, we explain our approach for typed syntactic
meta-programming and finally, in Chapter 5, we explain our work on effect
polymorphism as a defining feature for object-capability languages.

I have chosen to present original papers with only minor modifications w.r.t. the
original conference or journal publication. Each section starts with the original
title and abstract as well as details about the publication venue or journal. I
was the principal author of each of the four presented papers.

Finally, in Chapter 6, I conclude this thesis by taking a step back to reflect on
the results of my work and look forward on the directions it presents for future
research and practice.

Please note that this text uses per-chapter appendices so that, for example,
Appendix 2.A can be found on page 72, directly after Chapter 2 but before
Chapter 3.
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Abstract

We present instance arguments: an alternative to type classes and related
features. Instance arguments are a new, general type of function arguments,
resolved at the call-site scope in a type-directed way. The concept is inspired by
both Scala’s implicits and Agda’s existing implicit arguments, but differs from
both in important ways. Our mechanism is designed and implemented for the
dependently typed, purely functional programming language/proof assistant
Agda, but our design choices can be applied to other programming languages
as well.
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Like Scala’s implicits, we do not provide a separate structure for type classes and
their instances, but instead rely on Agda’s standard dependently typed records,
so that we can reuse standard language mechanisms to provide features that are
missing or expensive in other proposals. Like Scala, we support the equivalent
of local instances. Unlike Scala, functions taking our new arguments are first-
class citizens and can be abstracted over and manipulated in standard ways.
Compared to other proposals, we avoid the pitfall of introducing a separate
type-level computational model through the instance search mechanism. All
values in scope are candidates for instance resolution. A final novelty of our
approach is that existing Agda libraries using records gain the benefits of
instance arguments without any modification.

We discuss our implementation in Agda (part of Agda v2.3.0 onward) and we
use monads as an example to show how it allows existing concepts in the Agda
standard library to be used in a similar way as Haskell code uses type classes.
We also demonstrate and discuss equivalents and alternatives to some advanced
type class-related patterns from the literature and some new patterns specific
to our system.

2.1 Introduction

2.1.1 Type classes

Around 1989, a group of scholars on the Haskell Committee were facing the
problem of fixing the types of the numeric and equality operators in the
emerging Haskell programming language [100]. Such operators introduce a
natural requirement for overloading or “ad hoc” polymorphism. For example,
the == operator, of type t → t → Bool, should only be defined for certain
types t (e.g. Bool, Integer) and not for others (e.g. function types). Additionally,
different implementations are required for different types t.

The committee at the time recognized the issue as an instance of a more general
problem in need of a general solution and adopted Wadler’s proposal for what
became known as the Haskell type class system. For the == operator, the
approach is based on a type class Eq t, with instances for appropriate types
t. To avoid troubling this section with notations for infix operators, we write
equal for ==.

class Eq t where equal :: t → t → Bool
instance Eq Bool where equal = primEqBool
instance Eq Integer where equal = primEqInteger
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neq :: Eq t ⇒ t → t → Bool
neq a b = not (equal a b)
test :: Bool
test = neq (5 :: Integer) 5

Subclasses can also be defined:

data Ordering = LT | EQ | GT
class Eq t ⇒ Ord t where compare :: t → t → Ordering

An essential requirement for type classes to work is that for functions like neq
which use the equal operator for a universally quantified type t, this is made
explicit in their types. The compiler can then check that the required instances
are available when t is instantiated to a concrete type: in the definition of test
when neq is called on two Integer values, it finds an Integer instance of the type
class and calls neq with that instance.

Before we continue, we want to make clear that when talking about Haskell,
we will ignore the distinction between the type class concept in Haskell
proper and common and uncontroversial extensions of it like FlexibleContexts,
FlexibleInstances, MultiParamTypeClasses, TypeFamilies and RankNTypes.

Note also that when we mention ad hoc polymorphism, we mean open ad hoc
polymorphism. This means that additional instances of abstract concepts can
be added independently by users of functions that require the concept.

2.1.2 The downsides of an extra structuring concept

A disadvantage of Haskell’s type class system is that classes and instances form a
separate, special-purpose structuring concept, in addition to the more standard
algebraic data types (ADTs). Because of this duplication of functionality, many
of the features that have in the past been introduced as extensions of type classes
duplicate features that already existed for ADTs. Constraint families [174]
(allowing classes to have abstract constraints on type class parameters) and
associated type families [204] (allowing classes to specify abstract types) both
roughly correspond to how generalized algebraic data type [183] values can
carry types or type functors that are not parameters of the data type. In the
area of generic programming, successful techniques existed to build generic
algorithms over ADTs [120], but these have had to be adapted for use with type
classes [121, 237].

Similarly, higher-rank types [182] have long allowed ADTs to be abstracted over.
However, in a paper about a datatype-generic programming technique [121],
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Lämmel and Peyton Jones note that this is not possible for type classes. In
the following pseudo-code, they wanted to abstract over a type class using a
variable cxt of kind ∗ → Constraint (the meaning of these type classes is not
important here):

-- Pseudo-Haskell
class (Typeable a, cxt a)⇒ Data cxt a where

gmapQ :: (forall b.Data cxt b ⇒ b → r)→ a → [r ]

This pseudo-code is not legal Haskell so Lämmel and Peyton Jones provide a
solution based on a “generic” type class Sat parameterised by the type of a
dictionary record that it should carry. The abstraction over the variable cxt
of kind ∗ → Constraint is then replaced by abstraction over a variable cxtD of
kind ∗ → ∗.

class Sat a where dict :: a
class (Typeable a,Sat (cxtD a))⇒ Data cxtD a where

gmapQ :: (forall b.Data cxtD b ⇒ b → r)→ a → [r ]

This was a clever solution, but it amounts to replacing the type class cxt with an
ADT cxtD for which the desired feature (abstraction over it) is available. Only
recently, the new ConstraintKinds extension offers this kind of abstraction for
type class constraints, even though it has been available for data types for a
long time [244].

2.1.3 Dictionary translation

Wadler and Blott formalise type classes in their 1989 paper using a translation
to a standard Hindley-Milner typed functional language [235]. This translation
is known as the dictionary translation and not only serves as an implementation
strategy, but also gives an accurate semantic model of type classes. A type
class is modelled as a dictionary record type, with the type class operations as
record fields. Instances become record values containing the definitions in the
instance as fields. The above code translates to the following:

data Eq t = EqDict {equal :: t → t → Bool }
data Ord t = OrdDict {eqDict :: Eq t, compare :: t → t → Ordering}
boolEq :: Eq Bool
boolEq = EqDict primEqBool
intEq :: Eq Integer
intEq = EqDict primEqInteger
neq :: Eq t → t → t → Bool
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neq dict a b = not (equal dict a b)
test :: Bool
test = neq intEq 5 5

A striking property of this translation is that the resulting code is not actually
that far from the original. Apart from the additional naming of instances (which
has also been proposed for Haskell [112]), the translation only produces extra
verbiage in the implementation of functions that use the type class’s operations.
In the neq function, the dictionary of type Eq t is now passed around explicitly
where this happened implicitly before. Additionally, in the definition of test, we
need to explicitly specify the intEq dictionary as an extra parameter whereas it
was inferred by the compiler before.

Apart from the automatic inference of instances, the dictionary model has
many advantages over the standard type class system. All the power of normal
language record mechanisms is available, and they can be defined, manipulated
and abstracted over in standard ways.

2.1.4 Scala implicits

The Scala programming language provides an alternative approach to ad hoc
polymorphism called implicits that avoids the introduction of a special-purpose
structuring mechanism [167, 164]. Because of this, powerful mechanisms like
abstract type declarations [164, §4.3] can be used to model features that have
had to be specifically defined and implemented for type classes. Our running
example can be encoded in Scala as follows:

trait Eq [A] {def eq (x : A, y : A) : Boolean}
def equal [A] (x : A, y : A) (implicit eqA : Eq [A]) = eqA.eq (x, y)
implicit object boolEq extends Eq [Boolean ] { ...}
implicit object intEq extends Eq [Int ] {...}
def neq [A] (x : A, y : A) (implicit eqA : Eq [A]) = ! equal (x, y)
val test = neq (5, 5)

The type class Eq is modelled as a dictionary trait Eq [A ].1 Traits are a general
object-oriented structuring concept provided by Scala, similar for our purposes to
records. Two dictionary objects intEq and boolEq are introduced and annotated
with the implicit modifier. Both functions equal and neq take three arguments:
x and y of type A and eqA of type Eq A which carries the actual implementation

1Square brackets in Scala denote type application or abstraction.
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of equal. The third argument is marked as implicit. When the function neq is
called in test, and the implicit argument is not explicitly provided, its value is
inferred by the compiler.

Unfortunately, functions with implicit arguments are not first-class citizens in
Scala, mostly due to syntax-technical problems. Some important features of
Scala’s standard functions (currying, partial application, lambda expressions)
are not available for implicits; see Section 2.6.1 for more details.

2.1.5 Instance resolution

An aspect of type classes and implicits we have not yet touched upon is instance
resolution. Haskell allows parametric instances like

instance Eq a ⇒ Eq [a ] where
equal [ ] [ ] = True
equal (a : as) (b : bs) = equal a b ∧ equal as bs
equal = False

With this instance, Haskell will resolve constraints of the form Eq [a ] by
recursively resolving the constraint Eq a and then using that in the above
definition of equal. From the perspective of the dictionary translation, this
corresponds to functions from dictionaries to dictionaries that are implicitly
used to construct any needed dictionaries. This mechanism makes the instance
resolution algorithm more powerful and complex. A set of restrictions is
enforced on the structure of the types involved in instance contexts to ensure
that the instance resolution remains decidable. Two widely used Haskell
extensions (associated type families [204] and functional dependencies [111])
introduce further complexity by adding what are essentially decidable type-level
computation primitives, which can be triggered during the instance resolution
process. As an reviewer (of the conference version of this chapter) notes, these
extensions effectively expose an interpreter for a simple logic programming
language (no backtracking) which can reason about Haskell types.

The resolution algorithm that Scala uses to infer a value for implicit arguments
is similar. To resolve an implicit argument of type T , Scala will consider values
in scope that have been marked “implicit”, but also values defined in certain
modules related to T . It will consider values of type T , but also functions that
themselves take only implicit arguments and return a value of type T . This
makes the resolution recursive, like for Haskell. To ensure decidability, Scala
keeps track of the “call stack” of the resolution and detects infinite loops using
a conservative criterion.
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In non-dependently typed languages like Haskell or Scala, type-level computation
is not directly available in the base language. Therefore, the type-level
computation that can be achieved using these primitives fills a certain gap
in the language and various people have demonstrated the surprising amount of
power that these extensions offer [118, 141, 167]. However, the computational
model for these primitives differs strongly from the languages’ standard models:
a form of structural recursion is used instead of non-structural (although many
compilers provide an option to change this), pattern matching is open and
unification-based (similar to Prolog) instead of closed and functional and the
syntactic order of pattern matching and recursive calls is reversed.

2.1.6 Implicit function arguments in Agda

A final language feature we want to present before introducing our proposal, can
be found in our target language itself: Agda’s implicit or hidden arguments [161].
Agda allows function arguments to be marked as “implicit”, indicating that
they do not need to be provided explicitly at the call site. For example, a
polymorphic identity function is defined as follows:

id : {A : Set } → A → A
id v = v

When type checking the expression id true, Agda silently inserts a meta-variable
(as if the expression were id { } true), and Agda’s type inference will instantiate
this meta-variable to Bool. The argument may be specified explicitly, by writing
id {Bool } true. Implicit arguments are pervasive in most Agda code, and Agda
would be nearly unusable without it.

Unfortunately, Agda’s implicit arguments are of no help for implicitly passing
around and inferring type class dictionaries. The reason for this is that Agda
will only infer implicit arguments in two situations. Either the value is fixed
by the types of the other arguments or the result (consider how A = Bool
was fixed in the call id true above), or Agda can statically decide that only a
single value can exist of the required type. This makes the feature unsuitable
for passing type class dictionaries, because, for example, for a type t, many
values of type Eq t can typically be defined. For example, even for a simple
type like Bool, we can define a trivial equality operator equal = true in
addition to the standard one.

However, unlike Scala, functions taking an implicit argument in Agda are first-
class citizens. They can be abstracted over, their types can be spelled out,
anonymous functions with hidden arguments are no problem and syntax is
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available to keep a tight control over whether or not implicit arguments are
inferred or not. In some cases this requires writing an eta-expanded version of
a function call (e.g. λ {A} → id {A} instead of id) to make sure that Agda
does not try to infer the hidden argument.

2.1.7 Instance arguments

The feature we propose is inspired by both Agda’s implicit arguments and
Scala’s implicits. It is a new kind of function arguments, which we call
instance arguments. Like Haskell type classes and Scala implicits, they provide
open ad hoc polymorphism, i.e. instances of abstract concepts can be added
independently from the definition of the concept. If openness is not required,
Agda supports other solutions based on the definition of a universe representing
the complete set of types that satisfy the concept (see e.g. [5]).

To use instance arguments with our running example, we need to define a
standard Agda record Eq corresponding to the Eq type class, and instances for
the N and Bool type from the Agda standard library [51].

record Eq (t : Set) : Set where
field equal : t → t → Bool

eqBool : Eq Bool
eqBool = record {equal = primEqBool }
eqNat : Eq N
eqNat = record {equal = primEqNat }

All of this is standard Agda code. Our modified version of Agda allows us to
write the following:

equal : {t : Set } → {{eqT : Eq t}} → t → t → Bool

This type signature says that the function equal takes a Set (type) as its first
(implicit) argument t. The novelty is in the double braces which mark the
function’s second argument eqT of type Eq t as an instance argument. Next,
the function takes two standard arguments of type t and returns a Bool. In
equal’s definition, we simply take the implicitly passed dictionary and return
the equal function contained in it:

equal {{eqT}} = Eq.equal eqT

With this type signature, we can now use equal as if it were defined as the
method of a Haskell type class:
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test = equal 5 3 ∨ equal true false

In both calls to equal, equal’s instance argument is not explicitly given, so that
it is inferred by the compiler, like for Agda’s existing implicit arguments. The
difference with the latter is in how the values are resolved. We will explain our
resolution algorithm further on in the text, but for the example above, eqBool
and eqNat will be correctly resolved.

The fact that instance arguments closely resemble Agda’s existing implicit
arguments and only differ in how omitted arguments are inferred, means that
we can reuse many elements of the design of implicit arguments and inherit
some of their qualities. Specifically, functions with instance arguments are
first class citizens and there are no limitations on the position of the implicit
arguments within a function type.

2.1.8 Contributions

The contributions of this work are the proposal and study of instance arguments
and an implementation in Agda. Our proposal does not introduce a separate
structuring concept and ad hoc polymorphic functions are first-class citizens.
Our proposal can work with less or more powerful types of instance resolution,
but we choose a simple one that avoids the introduction of a separate
computational model.

To the best of our knowledge, no other proposal in the literature offers equivalents
to all of the following features: associated type families and constraint families,
multi-parameter type classes, local instances, abstraction over type classes and
first-class ad hoc polymorphic functions (although Coq, Haskell and Scala each
have almost all of them). No other proposal has explored an alternative to type
classes without introducing a separate computational model in the language.
Every other proposal has required “instances” to be somehow marked eligible
for implicit resolution. Finally, no other proposal has a mechanism that is
equivalent to how we automatically bring the benefits of instance arguments to
unmodified records.

We formally define the workings of our feature, and discuss our design choices.
We demonstrate the use of monads and present (often simpler) encodings of
some type class based patterns from the literature. We also present some novel
patterns of our own.
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2.2 Instance arguments

We have already briefly presented instance arguments in Section 2.1.7 above.
Let us provide some more details.

2.2.1 Resolving instance arguments

First, let us explain how a value for an omitted instance argument is inferred.
Generally, an instance argument is resolved by the compiler when only a single
identifier is bound to a value of the expected type in the call-site scope (more
details in Section 2.4 and Appendix 2.A.3). We do not require values to be
marked in a specific way to be eligible for this resolution. We take care to limit
the computational power of our instance search algorithm so that we do not
unwantedly introduce an alternative computational model.

Recall the example test from Section 2.1.7:

test = equal 5 3 ∨ equal true false

What happens underneath, for example, for the application equal 5 3 , is that
the Agda type-checker notices that in order to pass the normal argument 5
to function equal, it first needs to infer the implicit argument t and instance
argument eqT . It will assign a new meta-variable (see Norell [161, 162]) to
both, but for the second argument, a constraint will additionally be registered
indicating that that meta-variable needs to be resolved as an instance argument.
The argument 5 will then be passed to equal as the third argument, and Agda
will unify the first meta-variable with value N. Agda will now notice that there
is only one value of type Eq N in scope (eqNat) and assign it to the second
meta-variable.

Like for implicit arguments, it is also possible to provide the instance arguments
explicitly, should this be necessary:

test2 = equal {{eqNat}} 5 3 ∨ equal {{eqBool}} true false

Instance argument resolution will also consider values that are bound as the
arguments of a function. Consider, for example, our version of neq. Like equal,
it accepts a dictionary of type Eq t as an instance argument:

neq : {t : Set } → {{eqT : Eq t}} → t → t → Bool

We can implement neq by explicitly accepting the dictionary argument and
passing it to the equal function:
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neq {{eqT}} a b = ¬ (equal {{eqT}} a b)

However, this is unnecessarily verbose. If we leave out the dictionaries in
the definition, Agda will silently insert an unnamed instance argument in the
left-hand side and will silently infer equal’s instance argument to that unnamed
value:

neq a b = ¬ (equal a b)

Notice again how the mechanism is in many respects strikingly similar to Agda’s
existing implicit arguments. Only the resolution of the instance value is not
done by unification but by looking up a unique value of the right type in the
current scope.

There are some finer details about instance argument resolution that we go into
in Section 2.4, but let us first explain some more visible features.

2.2.2 Existing records as type classes

An important and novel feature of our proposed system is that we can
automatically bring its benefits to unmodified libraries that use standard
dependently-typed records. In the above example, it is the function equal
of type

equal : {t : Set } → {{eqT : Eq t}} → t → t → Bool

which allows us to use the Eq record in a more convenient, type-class-like way.

It turns out that this function is almost identical to a function in the record
module Eq,2 which Agda auto-generates. Let us explain this by repeating the
definition of record Eq and additionally assuming that it contains neq as an
associated function:

record Eq (t : Set) : Set where
field equal : t → t → Bool
neq : t → t → Bool
neq a b = ¬ (equal a b)

A module in Agda is a group of definitions that can be jointly parameterised
over (and applied to) arguments. The record module that is generated for the
above record definition will contain the function neq as well as a generated

2Note that record module Eq and record type Eq can share the same name because
module and term name spaces are disjoint in Agda.
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field projection function Eq.equal [161, 4.3 pp.82–83]. It is equivalent to the
following:

module Eq {t : Set } (eq : Eq t) where
equal : t → t → Bool
equal = {- extract field equal from record value eq -}
neq : t → t → Bool
neq a b = ¬ (equal a b)

Note that the module abstracts over arguments {t : Set } (eq : Eq t), which
results in all functions in the module abstracting over these arguments. As a
result, Eq.equal is available outside of the record module at the following type:

Eq.equal : {t : Set } → (eqT : Eq t) → t → t → Bool

The only difference between Eq.equal and our function equal above is that the
latter takes eqT as an instance argument instead of an explicit argument. This
observation has inspired us to automatically provide definitions like our equal,
by auto-generating new versions of the record projection functions which take
the record as an instance argument instead of a standard one. It is convenient
to do so by extending Agda’s module mechanism.

Agda modules or sections are a general scoping mechanism and there is a
mechanism called module application that allows us to bring in scope (part of)
a module’s contents and abstract or apply all functions in a module from/to
arguments. For our purpose, we can use a module application like the following:

open module EqInst {t : Set } {{eq : Eq t}} = Eq {t } eq

This defines a new module EqInst, containing all the definitions from module Eq,
in this case the field projector equal and function neq. The module application
ensures that they are available in a form that accepts the record value eq as
an instance argument instead of a normal argument. The function equal in the
new module EqInst is equivalent to our custom definition above. As we have
demonstrated in the introduction, such definitions allow them to be used in a
type-class-like way. By opening the module, we bring in scope the definitions
in the new module directly.

For module applications like the above, we provide a short-hand notation:

open Eq {{...}}

Like for Agda’s standard module applications, the modifiers public, using,
renaming and hiding can be used to control precisely what is brought in scope.
This new module application is equivalent to the above except for the fact that
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it doesn’t name the EqInst module. The new type of module application can in
fact be applied to any module taking at least one argument, turning the last
(normal or implicit) argument into an instance argument. Because of this, the
mechanism can also be used for modules that are not directly record modules,
but, for example, instances of one.

2.2.3 Subclasses

In dictionary models of type classes, a subclass dictionary typically carries a
superclass dictionary as one of its fields. The Agda standard library, for example,
uses such a model. In the context of a dependently typed language, there is
another possible model for subclasses, known as Pebble-style structuring or
sharing [?], recommended by Sozeau and Oury [213, §4.1]. In this style, subclass
dictionaries carry superclass dictionaries as parameters instead of fields.

Both models can be expressed with our system. Each has some specific
advantages and disadvantages, e.g. a requirement to explicitly bring superclass
dictionaries into scope or the need for an extra implicit superclass dictionary
parameter in the type of functions with a subclass constraint. In this section, we
demonstrate a Pebble-style model of an Ord subclass of our previously defined
Eq:

record Ord {A : Set } (eqA : Eq A) : Set where
field _ < _ : A → A → Bool

Let’s now suppose that we have values eqN : Eq N, ordN : Ord eqN and
eqBool : Eq Bool in scope, but no instance of Ord for Bools. We can now open
the Eq {{...}} and Ord {{...}} modules and use the appropriate methods on N
and Bools, with the correct dictionaries being resolved in the background.

open Ord {{...}}
open Eq {{...}}
test1 = 5 < 3
test2 = equal 5 3
test3 = equal true false

An ad-hoc polymorphic function _ 6 _ can be defined as:

_6_ : {A : Set } → {eqA : Eq A} → {{ordA : Ord eqA}} →
A → A → Bool

a 6 b = a < b ∨ equal a b

Note how the Pebble-style subclass model requires us to explicitly mention a
superclass constraint in the type signature of _6_. This argument eqA : Eq A
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is accepted as an implicit argument, not an instance, because it can typically
be inferred from the parameters of the chosen ordA parameter. Because we
require the superclass dictionary as an argument, it is automatically in scope
for resolution inside the method.

The above shows that our mechanism does not impose a choice as to how
subclasses are to be modelled by the programmer. We think this demonstrates
that instance arguments are a general mechanism, giving the programmer the
freedom to make his or her own design choices.

2.2.4 Considerations for instance arguments in other lan-
guages

An important question about our proposed instance arguments is how Agda-
specific they are. We believe that the mechanism is widely applicable, and that
many variations on our design choices are possible.

Let us consider the different modifications that we have made. A first step is
the introduction of a new, specially annotated type of arguments to functions,
which is likely to be unproblematic in many programming languages. Clearly,
in non-dependently typed languages the arguments’ type must be restricted to
not depend on earlier non-type arguments, but this reflects the rules for normal
arguments in those languages. However, care must be taken that functions with
the new type of arguments are fully first-class on the one hand and that the
programmer can tightly control the resolution of instance arguments on the
other hand.

To the best of our knowledge, Agda was the first language to demonstrate
that these two requirements can be combined with a natural syntax through a
careful balancing in the type checking rules which govern function applications,
lambda expressions, and the implicit insertion of implicit lambda’s. The rules in
Appendices 2.A.1 and 2.A.2 for our instance arguments are simply adaptations of
the corresponding rules for Agda’s existing implicit arguments [161]. We expect
that similar types of function argument and similar rules can be introduced for
any language which has some form of partial function application and lambda
expressions.

The choice of the algorithm for resolving instance arguments is orthogonal to the
rest of our design. We clearly choose a relatively restricted one (more explanation
in Section 2.4), but we think that other choices can also be combined with the
rest of our design. This can range from our relatively restricted inference to a
full-power automated proof-search like Coq’s [213]. An advantage of our current
algorithm is that we do not require values in scope to be specially annotated
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to be eligible, but an eligibility annotation similar to Scala’s implicit (see
Section 2.1.4) can be used to limit the complexity of a more powerful inference
mechanism. Another advantage of our approach is that it does not introduce a
separate type-level computational model in the language.

2.2.5 Formal developments

In Appendix 2.A, we formally develop instance arguments, based on the
formalism that Norell uses to present the Agda language [161]. We formally
define functions with instance arguments, how values for them are type-checked,
when values for instance arguments are inferred and the rules for this resolution.
We discuss various technical points and present a soundness result.

2.2.6 Implementation

We have implemented the above proposal in Agda. Our implementation is
surprisingly cheap, with a non-context-diff of the initial implementation of
about 750 lines. A comparison of line counts is not necessarily objective and
can only give a partial view, but for what it’s worth: the initial diff of Sozeau
and Oury’s Coq type classes [213] was ∼2k lines long. Our implementation is
part of Agda version 2.3.0 and later versions.

2.3 Monads case study

Instance arguments provide an alternative for type classes. Although they lift
some of the limitations of type classes, our inference algorithm is less powerful
than Haskell’s (see Section 2.4). To demonstrate that our mechanism is at
least powerful enough for common use cases of type classes, we take a look at
a typical type class example: monads. In this section, we demonstrate that
with our instance arguments, we can use an Agda version of Monads in a way
similar to Haskell.

We use a simplified version of the monads from Agda’s standard library.
Although instance arguments can also be used conveniently with the original
version, we do not use it here because it is complicated by its support for
indexed monads. We have kept the universe level argument f but it can be
safely ignored by readers not familiar with Agda’s universe polymorphism. The
∀ in the type signatures is Agda shorthand syntax for arguments whose name
is given but whose type is omitted. For example the type ∀ {A} → A → M A
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is shorthand for {A : } → A → M A, i.e. names between the ∀ symbol and
the first subsequent arrow are interpreted as names of arguments whose type
should be inferred.

record Monad {f : Level } (M : Set f → Set f ) : Set (suc f ) where
infixl 1 _>>=_ _>>_
field return : ∀ {A} → A → M A

_>>=_ : ∀ {A B} → M A → (A → M B) → M B
_>>_ : ∀ {A B} → M A → M B → M B
m1 >> m2 = m1 >>= λ → m2

We see that Monad contains the basic monadic operators return and _>>=_ as
fields and provides the _>>_ operation. In order to highlight correspondence
with Haskell’s monads, we include a syntax definition (a form of restricted
macro) for a form of do-notation. This addition is orthogonal to the use of
instance arguments.

bind : ∀ {A B} → M A → (A → M B) → M B
bind {A} {B} = _>>=_ {A} {B}
syntax bind m (λ x → c) = do x ← m then c

We will assume some type constructors and Monad instances for them (similar
to those defined in the Agda standard library): a state monad with mutable state
variable of fixed type N, a monad instance for a type constructor _⊥ : Set → Set
of partial computations and the list monad:

postulate stateMonad : Monad (State N)
partialityMonad : Monad _⊥
listMonad : Monad List

In current Agda, the most convenient way to use these monad instances, is to
apply the Monad module to the correct instance at the location where it is
used.

test1 : N → N ⊥
test1 k = let open Monad partialityMonad in

do x ← return k then
if (equal x 4 ) then return 10 else never

This code does not look too bad actually. Opening a monad instance’s module
brings into scope just the definitions of the monadic operations we need. However,
it becomes more difficult if we decide that we need to use, for example, the
monadic bind operator on a list, requiring monadic operations from two different
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instances. In this case, current Agda requires us to rename the operations for
one of the instances:

postulate nToList : N → List N
test2 : N → (List N) ⊥
test2 k =

let open Monad partialityMonad
open Monad listMonad using () renaming (_>>=_ to _>>=l_) in

do x ← return [k ] then
if (equal k 4 ) then return (x >>=l nToList) else never

We can improve upon this situation using instance arguments. First, we bring
the definitions from the Monad {{ ... }} module application into scope. As
explained in Section 2.2.2, the {{ ...}} syntax turns the Monad module’s last
non-implicit argument into an instance argument. We can then define our
examples in a simpler way and let Agda infer the correct values for the instance
arguments.

open Monad {{...}}
test1 : N → N ⊥
test1 k = do x ← return k then

if (equal x 4 ) then return 10 else never
test2 : N → (List N) ⊥
test2 k = do x ← return [k ] then

if (equal k 4 ) then return (x >>= nToList) else never

In the case of test1, one could argue that we don’t actually gain all that much.
Agda now automatically chooses the correct monad instance from the values
in scope instead of requiring the programmer to make this choice. However,
the second example shows that in a case where we use monadic operations
from different monad instances, instance arguments effectively spare us some
uninteresting bookkeeping, by inferring the instances in the background.

2.4 Instance resolution

We provide a precise definition of the resolution algorithm in Appendix 2.A.2,
but in this section, we discuss and motivate the primary design choices.
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2.4.1 Non-recursive

Our resolution algorithm is only a restricted analogue to Haskell’s. The
mechanism is designed such that a type-directed scope-based resolution will not
recursively trigger further resolutions (see Appendix 2.A.3). This limitation is a
deliberate choice. We thus avoid the introduction of a separate computational
model through the instance search mechanism, as for Scala implicits or Haskell
and Coq type classes. This decision however does unavoidably limit the
functionality of our mechanism. For example, for the Eq type introduced
in Section 2.2, we could have defined:

listEq : {A : Set } → Eq A → Eq (List A)
listEq {A} eqA = record {equal = eq′}

where eq′ : List A → List A → Bool
eq′ [ ] [ ] = true
eq′ (a :: as) (b :: bs) = equal eqA a b ∧ eq′ as bs
eq′ = false

With the eqBool value from Section 2.2 in scope, one might expect an instance
of Eq (List Bool) to be automatically inferred as listEq eqBool. This is not the
case for our system; we require the user to explicitly construct a value of the
correct type himself. It suffices to bring this value in scope at the call site, for
example, by placing it in a local where block.

test = equal (true :: false :: true :: [ ]) (true :: false :: [ ])
where listBoolEq = listEq eqBool

2.4.2 Resolving instances’ implicit arguments

In the previous section, we have used examples that were simplified from
definitions in the Agda standard library. Specifically, the types of the imported
values partialityMonad and listMonad were simplified from their definitions in
the Agda standard library:

partialityMonad : { l : Level } → Monad (_⊥ { l })
listMonad : { l : Level } → Monad (List { l })

These definitions exploit Agda’s universe polymorphism. The term _⊥ is not
a functor of type Set → Set, but instead, for any level l, _⊥ {l} is a functor
of type Set l → Set l. This means that partial computations can be defined
producing values (Set 0), types (Set 1), kinds (Set 2), and for each of these types
of partial computations, a monad instance is provided as partialityMonad { l }.
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There is a fine balance in the definition of the resolution mechanism that
allows us to use the same examples from the previous section with these more
complex types of monads, without compromising our choice for a limited-power
resolution mechanism. In the calls to the monadic operations return and
_>>=_, instance arguments would be resolved for types Monad (_⊥ {zero})
and Monad (List {zero}) even though no values of these types were in scope.
The reason that this works is that our instance resolution mechanism does
not only consider values that are of the correct type directly, but will also
consider values that are of the correct type after the application to a number of
implicit arguments. This choice in our resolution mechanism was made after
the appearance of the conference version of our paper and attempts to strike
a fine balance between our desire to limit the resolution mechanism’s power
but still minimise programmer work and confusion in using the feature. It is
important that only values expecting implicit arguments are considered, not
values expecting instance arguments, since that would make instance resolution
recursive and more powerful.

2.4.3 When is a candidate instance rejected?

Another fine balance in our design is related to the fact that equality of types
is harder to decide in a dependently-typed language like Agda than in Haskell.
Let us reconsider the monads case study (see Section 2.3), where return and
_>>=_ have (essentially) the following types:

return : ∀ {M } {{Mon : Monad M}} {A} → A → M A
_>>=_ : ∀ {M } {{Mon : Monad M}} {A B} →

M A → (A → M B) → M B

When type-checking a term like return 3 >>= nToList, our version of Agda
will silently insert implicit and instance arguments. Specifically, it will insert
type functors M1 and M2 : Set → Set, monad instances m1 : Monad M1,
m2 : Monad M2 and result types A1, A2 and A3 : Set:

_>>=_ {M1} {{m1}} {A1} {A2} (return {M2} {{m2}} {A3} 3 ) nToList

From the function applications and the types of literal 3 : N and function
nToList : N → List N, Agda can determine the following equations:

A3 = N
M2 A3 = M1 A1
A2 = N
M1 A2 = List N
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In a similar situation, a Haskell compiler would be able to exploit properties
of Haskell type-constructor application to deduce M1 = List, A1 = N and
M2 = List, but the corresponding properties do not hold in more complex
dependent type-systems like Agda’s.

The reason that our modified version of Agda is able to type-check the term
return 3 >>= nToList is that it will try to instantiate instance arguments
m1 and m2 with the monad instances in scope and check that they do not
(immediately) invalidate constraints. When instantiating m1 with, for example,
partialityMonad, this will imply M1 = _⊥, violating the equality constraint
M1 A2 = List N. As a result, partialityMonad will be rejected as a candidate
value for m1, leaving only listMonad as a candidate. That unique candidate
will be chosen, it will imply a solution for M1 and type-checking can continue.

This example shows that even though instance resolution is inherently more
difficult in Agda, because of the inherently more complex notion of type equality,
the check that candidate values do not violate constraints during instance
resolution suffices to solve the problem for examples like our monads case study.

2.4.4 Why limit the computational power?

In the above example concerning list equality, our resolution algorithm was not
smart enough to automatically infer instance arguments that one might expect
it to. Help from the programmer is required to make it find the correct value,
although explicitly passing the instance arguments wherever they are used is
not necessary: it suffices to place the required value in scope.

First, we believe that instance arguments can be combined with a smarter
resolution algorithm if desired. Extensions can be imagined where functions
like listEq are annotated somehow to make the resolution consider them. Such
an extension would be largely orthogonal to the rest of our design.

However, introducing such an extension makes the instance search recursive.
Even if it can still be kept decidable with restrictions on the functions considered,
it inevitably exposes an additional computational model, similar to Haskell’s,
Scala’s or Coq’s instance resolution. In these other systems, the unification-
based Prolog-like computational models were added as a natural component
of the ad hoc polymorphism primitive. The fact that this added a separate
type-level computation primitive was a byproduct rather than a design goal.
Functional dependencies, an extension of Haskell’s type class resolution model
(see Jones [111] and our Section 2.5.2), at first seemed natural too, but many
now consider it preferable to use the more functional type families (see Schrijvers
et al. [204]) instead.
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The computational model exposed by a recursive instance search is programmer-
extensible, type-level and supports (open) pattern matching on types. We see
such a primitive as an important and powerful part of a programming language.
It is, for example, essential for datatype-generic programming. As such, we
argue that the design of such a feature should be made consciously and well
thought through. The fact that a Prolog-like model seems natural for an ad
hoc polymorphism feature, should not blind us to the fact that there could be
alternatives that can also be combined with an ad hoc polymorphism feature.
Foundational calculi like Girard’s System Fω [80] but also dependently-typed
calculi and languages (e.g. Martin-Löf’s type theory [140] or Coquand’s calculus
of constructions [44]) suggest that a suitable type-level computation model
is not necessarily Prolog-like, but can very well be functional (with possible
advantages like a better understood meta-theory, simpler implementations and
more consistency in the language).

Especially in the dependently-typed language Agda, where a powerful and
well-understood form of type-level computation is a core part of the language,
it would be preferable if we could combine an ad hoc polymorphism primitive
with this existing model instead of introducing a special-purpose additional
one. However, to support standard use cases of parametric instances, the model
would need to be extended with a way to pattern match on types. This implies
a form of typed meta-programming, a topic that is the subject of a lot of recent
research. We point the interested reader to some related work in this area
by Chapman et al. [33], Danielsson [48], Chapman [32], McBride [144] and
ourselves (see Chapter 4).

Because of this reasoning, our choice in this paper to not introduce a powerful
computational model as part of our resolution algorithm is a conservative one.
In summary, the main reasons for our choice are the following:

• We believe there are possible alternatives to the choice made in other
proposals (parametric instances with a (decidable or not) Prolog-like
computation model). By not committing to a Prolog-like model now,
we maintain the possibility of combining with better, alternative models
later.

• Our design and implementation shows that coupling ad hoc polymorphism
to a powerful type-level computation primitive is not essential; a useful
form of ad hoc polymorphism is possible without it (although it is more
limited).

• Our low-power resolution scheme has disadvantages (e.g. not automatically
producing instances like eqList eqNat) but also benefits, as we discuss in
the next section.
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2.4.5 Advantages and disadvantages

Note also that our simple resolution scheme has some advantages of its own.
We have used it for all of the examples in Section 2.3 and 2.5 and have found
the resolution practical, predictable, intuitive and sufficient. We do not need
to limit resolution complexity by requiring candidate values to be annotated
specially, but instead we consider all values in scope. This lowers the impact of
our feature on users’ code and makes, for example, the ellipsis in Section 2.5
more widely usable. Its intuitive meaning changes from “Fill in this value from
an annotated value in scope” to “Fill in this value from the scope”, which feels
more natural to us.

Note that because the entire scope is considered for resolution, it is up to the
programmer to make sure that only a single value of a correct type is in scope.
Instance arguments should only be used on types which are informative enough
so that they typically identify values uniquely. If there still is a conflict, existing
features in Agda’s module system (e.g. hiding and using modifiers) can be
used to control the scope. Values that can only be named using a qualified
reference are not considered for instance resolution. Finally, the programmer
must also remember that values may be implicitly used because of instance
resolution, despite the fact that they are never referenced from the actual code.
In our experiments, we find that instance arguments provide a solution (ad
hoc overloading) for many of the name conflicts that arise in typical use of
Agda’s standard library (e.g. _ ?= _ in Data.Nat, Data.Bool etc.) and that
type conflicts for reasonably typed instance arguments occur seldom.

In some cases, it is useful to limit the set of eligible values for instances to be
resolved. For example, Scala will in some contexts implicitly convert a value
of type A to type B if a value of type A → B is in scope and has been
marked as eligible for implicit resolution. Because we do not require an explicit
eligibility annotation, this would not work well in our system because there may
be functions of type A → B in scope that should not be used in such implicit
conversions. Nevertheless, an alternative for our system would be to do such
implicit conversion based on a value of type ImplicitConversion A B, a type
that simply wraps the actual conversion function. Instead of specially marking
a conversion function as eligible for instance resolution, we would then just
wrap it into a value of type ImplicitConversion A B to obtain the same effect.
This has the additional advantage that such functions are then not eligible
for situations where a function is needed for a purpose other than an implicit
conversion. Generally, this simple pattern can be used instead of eligibility
annotations when they are needed.
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2.5 Some advanced patterns

It turns out that our relatively simple extension of Agda can support analogues
or variants of many features which have required non-trivial implementation
efforts in Haskell, as well as some new patterns of its own. In this section, we
discuss a selection of such topics.

2.5.1 Standing on the shoulders of records

We discussed in the introduction how modelling type classes using an existing
powerful record mechanism such as Agda’s dependently typed records makes
certain features available “for free” where they require separate extensions for
Haskell type classes. Sozeau and Oury and Oliveira et al. have previously
demonstrated this observation for Coq type classes (which are Coq dependently
typed records underneath [213]) and Scala implicits (where type classes are
typically modelled as Scala traits [167]).

One such feature is the equivalent of Haskell’s associated type families [204].
An associated type family is essentially a type class member that is a type or
type functor. Using a dictionary model of a type class in a dependently typed
language, there is nothing special about records with members that are not
just values and we essentially get associated type families for free. We can,
for example, model the generic finite maps discussed by Chakravarty [31] after
Hinze [95] and Hinze et al. [96] as follows:

record GMapKey (K : Set) where
field GMap : Set → Set

empty : {V : Set } → GMap V
lookup : {V : Set } → K → GMap V → Maybe V
insert : {V : Set } → K → V → GMap V → GMap V

natGMapKey : GMapKey N
natGMapKey = record {GMap = NatMap

empty = NatMap.empty
lookup = NatMap.lookup k m
insert = NatMap.insert }

Another feature which we get for free has been described for Haskell by Orchard
and Schrijvers as constraint families [174]. A constraint (synonym) family in
Haskell is a member of a type class that represents a class constraint on a type
class’s parameters and/or other types. Using a dictionary model of type classes,
this concept actually reduces to type families. Orchard and Schrijvers’ example
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of constrained functors (functors whose fmap function is restricted to types in
a certain type class) can be modelled as follows:

record ConstrainedFunctor (F : Set → Set) : Set1 where
field Constraint : Set → Set

fmap : {A B : Set } → {{ctA : Constraint A}} →
{{ctB : Constraint B}} → (A → B) → F A → F B

listConstrainedFunctor : ConstrainedFunctor List
listConstrainedFunctor = record {Constraint = λ → >

; fmap = List.map}
postulate TreeSet : Set → Set

Ord : Set → Set
mapTreeSet : {A B : Set } {{ordA : Ord A}} {{ordB : Ord B}} →

(A → B) → (TreeSet A → TreeSet B)
treeSetConstrainedFunctor : ConstrainedFunctor TreeSet
treeSetConstrainedFunctor = record {Constraint = Ord

; fmap = mapTreeSet }

2.5.2 Multi-parameter type classes and functional dependen-
cies

A multi-parameter type class in Haskell is a type class with more than one
parameter. The equivalent in our approach would be an instance argument
of a record type with more than one parameter, something which is clearly
allowed in our system. Functional dependencies in a multi-parameter type class
are annotations which indicate that certain parameters of a type class can be
deduced from (a subset of) the others [111]. Such an annotation cannot directly
be provided in our framework. However, in this section, we highlight certain
behaviour of our system that is reminiscent of using functional dependencies,
even though it works differently under the hood.

Consider the following code, which uses the IsDecEquivalence record from
module Relation.Binary in the Agda standard library. We use explicit using
declarations to avoid certain name clashes, but also to make it more clear what
is happening implicitly.

open import Relation.Binary
using (module DecSetoid; module IsDecEquivalence)

open import Data.Bool using (false; true; decSetoid)
open DecSetoid decSetoid using (isDecEquivalence)
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open IsDecEquivalence {{...}} using (_ ?= _)

test = false ?= true

The IsDecEquivalence t _ ≈_ record is semantically a more developed version
of the record Eq from Section 2.1. It contains essentially an equality decision
procedure _ ?= _ for a binary predicate _ ≈_ on type t (as well as proof that
_ ≈_ is an equivalence relation). The field _ ?= _ has the following type:

_ ?= _ : (a : t) → (b : t) → Dec (a ≈ b)

A value of type Dec (a ≈ b) contains either a proof that a ≈ b or a proof that
a 6≈ b. We can bring a value of type IsDecEquivalence Bool _ ≡ _ in scope by
importing Data.Bool and opening the decSetoid record (this would be more
convenient if isDecEquivalence were exported directly by the Data.Bool module).
Finally, we bring the new record field projection operator (taking the record as an
instance argument) into scope by importing it from the IsDecEquivalence {{...}}
module application (see Section 2.2.2). From that point on, we can transparently
use the function _ ?= _ on Bools, as demonstrated in the definition of test.

A first thing to explain is that the IsDecEquivalence record takes two arguments,
making it the equivalent of a multi-parameter type class. It is interesting to
consider what happens when type-checking the definition of test. The function
_ ?= _ has the following type (ignoring universe polymorphism):

_ ?= _ : {A : Set } → {_ ≈_ : A → A → Set } →
{{isDE : IsDecEquivalence A _ ≈_}} →
(a : A) → (b : B) → Dec (a ≈ b)

When false ?= true is type checked, Agda infers that A = Bool from
the arguments of _ ?= _. It then infers the instance argument isDE from
the local scope. The only candidate value in scope is isEquivalence, typed
IsDecEquivalence Bool _ ≡ _. From unifying the type of this value with the
expected type of isDE , Agda infers that the implicit argument _ ≈_ must be
the binary predicate _ ≡ _.

In this case, we see that one argument of the IsDecEquivalence type constructor
already uniquely determines the value to be used from the scope. Its other
arguments can then be inferred from this value, producing an effect similar to
a hypothetical situation where IsDecEquivalence were a multi-parameter type
class with a functional dependency from type A to binary predicate _ ≈_.

Nevertheless, our mechanism works very differently from Haskell type classes
with functional dependencies. First of all, nowhere have we declared any
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functional dependencies between arguments of the IsDecEquivalence record
type, and these dependencies were not checked when we brought values of type
IsDecEquivalence into scope. Only when we actually needed to infer an instance
argument, was it checked that only a single suitably-typed value was in scope.

Declaring the equivalent of a functional dependency on the IsDecEquivalence
record type’s arguments would correspond to an assertion that only one decidable
equality predicate can exist for any given type A. Such an assertion would
be wrong here and would cause problems in scenarios where multiple such
predicates are used together. Our system manages to infer the value of the
_ ≈_ predicate without such a dependency, because only one value of type
IsDecEquivalence Bool _ ≈_ is in scope at the call site of _ ?= _, which is a
much weaker requirement.

Note finally that it is a value, not a type, that is being inferred in a functional
dependencies-like way. In fact, our mechanism does not make any fundamental
distinction between types or values, which is what one might expect in a
dependently-typed language like Agda. The mechanism will even happily infer
types from values, which is not possible in Haskell.

2.5.3 Implicit configurations

One pattern implemented in the context of type classes which is rendered
almost trivial in the context of our proposal is Kiselyov and Shan’s implicit
configurations [118]. The authors discuss a solution to what they call the
configurations problem: propagating run-time preferences throughout a program,
allowing multiple concurrent configuration sets to coexist safely under statically
guaranteed separation. Their main example concerns modular arithmetic:
they want to be able to build expressions in modular arithmetic which are
parameterised over a concrete modulus but without the need to pass the
modulus around explicitly. They also want static assurance that the same
modulus is used for all operations in such an expression.

Kiselyov and Shan’s solution is based on a mix of phantom types, type classes
and type-level computation. We demonstrate that a simpler encoding is possible
in our system, and that we can fully avoid one of the main difficulties in their
work: the reflection at type-level of run-time values. Let us suppose that we
have a signature like the following: we assume an Integral dictionary record and
add, mul and mod operations taking such a dictionary as an instance argument.
We also assume we have a type N containing values zero, one, two and three
and a dictionary nInt of type Integral N .
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postulate Integral : Set → Set
add : ∀ {A} {{intA : Integral A}} → A → A → A
mul : ∀ {A} {{intA : Integral A}} → A → A → A
mod : ∀ {A} {{intA : Integral A}} → A → A → A
N : Set
zero one two three : N
nInt : Integral N

Like Kiselyov and Shan, we define a wrapper data type M s A parameterised
by phantom token s (in our case not a type but a value of opaque type Token)
and type A. This wrapper represents a value of type A that is being considered
under an unspecified modulus. We also define a dictionary record Modulus s A
(also parameterised by token s and type A) representing a modulus of type A.

private postulate Token : Set
record Modulus (s : Token) (A : Set) : Set where

field modulus : A
data M (s : Token) (A : Set) : Set where

MkM : A → M s A
unMkM : ∀ {s A} → M s A → A
unMkM (MkM a) = a

The withModulus function, which instantiates a value M s A for a specified
modulus, is simpler in our setting than Kiselyov and Shan’s because we don’t
have to bother with constructing a type for which the Modulus instance returns
a certain value, but instead just pass the desired dictionary explicitly:

private postulate theOnlyToken : Token
withModulus : ∀ {A} → {{intA : Integral A}} → (modulus : A) →

(∀ {s} → {{mod : Modulus s A}} → M s A) → A
withModulus m f =

unMkM (f {theOnlyToken} {{record {modulus = m}}})

Similar to Kiselyov and Shan’s, the addition and multiplication functions unwrap
the values, apply the respective operation, apply the modulus m and re-wrap
the result:

normalise : ∀ {s A} {{intA : Integral A}} {{mod : Modulus s A}} →
A → M s A

normalise a = MkM (mod modulus a)
_ + _ : ∀ {s A} {{intA : Integral A}} {{mod : Modulus s A}} →
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M s A → M s A → M s A
(MkM a) + (MkM b) = normalise (add a b)
_ ∗_ : ∀ {s A} {{intA : Integral A}} {{mod : Modulus s A}} →

M s A → M s A → M s A
(MkM a) ∗ (MkM b) = normalise (mul a b)

These operators are used similarly to Kiselyov and Shan’s:

test1 : N
test1 = withModulus two (let o = MkM one in (o + o) ∗ (o + o))
testExpr : ∀ {s} → {{mod : Modulus s N}} → M s N
testExpr = let o = MkM one

t = MkM two
in (o + t) ∗ t

test2 : N
test2 = withModulus three testExpr

With this, our encoding of Kiselyov and Shan’s implicit configurations is
complete. We believe that we achieve the same goals as Kiselyov and Shan, but
we avoid their threading of values into types (through an involved type-level
reflection of values) and back again (through a form of type-level computation),
which seems unneeded, very complex and possibly inefficient (depending on what
optimisations the compiler can perform). Interestingly, the fact that we don’t
need to reflect values at the type level is not (as one might expect) a consequence
of Agda’s dependently typed nature. Instead, it is the value-level representation
of dictionaries which allows this greater simplicity. More concretely, in the
definition of withModulus above, we can construct the dictionary as a value
and pass it explicitly to the computation, whereas Kiselyov and Shan need to
jump through a lot of hoops to construct a type for which the correct instance
will be inferred. Kiselyov and Shan realise that this is non-ideal and propose
adding a restricted form of local instances to Haskell, which we support in a
more general form (see Section 2.5.5).

2.5.4 Implicit proof obligations

In the context of Agda, we believe that instance arguments are useful for a
pattern which is (to the best of our knowledge) novel: implicit proof obligations.
Consider the integer division operator in module Data.Nat.DivMod in Agda’s
standard library:

_div_ : (dividend divisor : N) { 6≡ 0 : False (divisor ?= 0 )} → N



SOME ADVANCED PATTERNS 61

This division operator requires a guarantee that the provided divisor is non-zero.
However, instead of requiring a normal argument of type divisor 6≡ 0 , the _div_
operator cleverly accepts a value of type False (divisor ?= 0 ). This type contains
a single value if and only if divisor is non-zero, but additionally, this value can
be automatically inferred if Agda knows that divisor is of the form suc n for
some n. For example, if we write 5 div 3 , then Agda will infer the non-zeroness
proof obligation. This pattern has been described by Norell [161, §3.7.1 p.71],
and critically depends on the fact that the property in question (non-zeroness)
can be decided. Proof obligations modelled using this pattern are not passed
on implicitly to other methods that require it. Finally, the _div_ operator
becomes somewhat clumsy to use in a situation where only a “normal” proof,
i.e. a value of type divisor 6≡ 0 is available.

We propose an additional operator _div′_ which takes the proof obligation as
an instance argument (we omit the definition in terms of the above _div_).
This operator does not have the limitations of the _div_ operator discussed
above, but does have some limitations of its own: for example, in the call
5 div′ 3 , Agda can only infer the implicit argument of our operator if a value of
type 3 6≡ 0 is in scope.

_divMod ′_ : (dividend divisor : N) {{6≡ 0 : divisor 6≡ 0}} → N × N
_divMod ′_ = -- omitted
_div′_ : (dividend divisor : N) {{6≡ 0 : divisor 6≡ 0}} → N
a div′ b with a divMod ′ b
a div′ b | (q, ) = q
postulate d : N

d 6≡ 0 : d 6≡ 0
test : N
test = 5 div′ d

Note how in the definition of _div′_, the proof obligation is implicitly passed on
to the _divMod ′_ function, which also requires it. We believe that this example
shows that our proposed instance arguments have uses that go beyond those of
type classes. Not only dictionary records can be usefully passed around implicitly
but also other values that are uniquely identified by their type in call-site scopes.
In a dependently typed language like Agda, implicit proof obligations are a
clear example of such values.

2.5.5 Local instances

A feature that is not supported by Haskell type classes are local type class
instances. Consider the following two equality functions on Strings: the first
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represents standard equality and the second only compares the lengths. The
first definition uses the standard string equality decision procedure and the
second applies the EqInst.equal operator after first applying a string length
function to its two arguments. Note that we assume a single, standard value of
type Eq N in scope.

eqString1 : String → String → Bool
eqString1 s1 s2 = b s1

?= s2 c
eqString2 : String → String → Bool
eqString2 = equal on length

Now suppose that we have a function whose behaviour depends on a
configuration argument, determining which type of equality it should use
throughout a series of calculations. We can support this by defining the
equivalent of a local instance eqLocal of the Eq type class, which uses the correct
string equality operator, depending on the configuration parameter.

test : Bool → Bool
test lengthEq = if equal "abcd" "dcba" then ... else ...

where eqLocal = record {
equal = if lengthEq then eqString2 else eqString1 }

The value eqLocal functions as a local type class instance, something which is
also supported by Scala implicits, but not by Haskell or Coq type classes, where
type class instances are always global.

It is interesting to note that Wadler and Blott already considered local instances
when they defined type classes in 1989. In fact, the simplified language in
their appendix, for which they present typing judgments (with an embedded
dictionary translation) supports local instances. However, Wadler and Blott
show that this calculus does not in general have the principal types property.
This property states that any expression e that can be typed in a given context,
must have a principal type t, i.e. a type t such that if e has any type t′, it must
be an instance of t.

In a hypothetical notation for local instances and using the Haskell Eq type
class from our introduction, this is Wadler and Blott’s counter-example e1:

e1 = let instance Eq Int where ...
instance Eq Char where ...

in equal

They show that (with no other instances available) e1 has types Int → Int →
Bool and Char → Char → Bool but no type generalising both. Wadler and
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Blott conjecture that the problem does not exist if no local instances or local
type class definitions are allowed, and this restriction has been adopted in the
Haskell language.

In their work about implicit configurations, Kiselyov and Shan recognise that a
major part of their development consists of “type system hackery” that works
around the lack of local instances in Haskell. As a remedy, they propose to
allow local instances under the restriction that their types must mention a
simultaneously introduced fresh type variable, a solution which they claim
salvages the principal types property, yet suffices for the purposes of their
implicit configurations paper.

Note, that a dependently-typed language like Agda typically does not have the
principal types property to begin with. An example is the term (3 , x) with x
of type Fin 3 . Since Agda has dependent sums, this term can be given the
type Σ N (λ n → Fin n) as well as Σ N (λ n → Fin 3 ). Agda will refuse to
type-check such terms unless the user provides additional information.

The above problem does not exist in our design because the analogue of the
above term e1 does not have any type at all in our system, so that it would
even (vacuously) satisfy the principal types property:

e1 = let eqInt : Eq Int
eqInt = ...
eqChar : Eq Char
eqChar = ...

in equal

This term e1 does not have any type, because there is no unique type-correct
value in scope for equal’s instance argument and Agda will produce a type error.
The term definitely does not have the type {t : Set } → {{eqT : Eq t}} →
t → t → Bool, because in our system we do not infer instance arguments
when an instance argument cannot be filled in. We can however change the
term so that it does have this type by preventing the instance argument from
being resolved as follows:

e1 = let ... in λ {t } {{eqT}} → equal {t } {{eqT}}

For this expression, Agda will not attempt to resolve the instance argument.

2.5.6 Overloaded literals

Another Haskell feature related to type classes that we have not yet discussed
are overloaded literals. This term refers to the fact that, for example, the integer
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literal 3 in Haskell source code does not have type Integer as one might expect,
but instead it has type ∀ a. Num a ⇒ a. More specifically, the Num class
has a method fromInteger :: Num a ⇒ Integer → a and integer literals are
interpreted to stand for an application of this function to the corresponding
Integer value and a similar system exists for rational literals. Numeric literals
are defined in this indirect way so that they may be interpreted as values of
any appropriate numeric type.

Let us consider an analogous system for Agda, based on instance arguments. The
Agda compiler currently parses four kinds of literals: positive integers (naturals),
(positive) floating points, characters and strings and they are considered of
builtin types N, Float, Char and String respectively.3 Like for Haskell, it seems
useful to define a system such that literals can be interpreted in any suitable
numeric type.

However, there is a problem with Haskell’s idea of overloaded literals that we
have to tackle first. Consider the example of natural literals. When such a
literal is interpreted in a numeric type a, a user might expect the compiler
to check that the literal value actually fits inside the type a. However, this
is not the case, as the reader can verify by executing the Haskell expression
print (4294967296 :: Int) or print (18446744073709551616 :: Int) on a 32- or
64-bit system respectively. Indeed, it compiles without any warning and because
of a machine integer overflow produces output 0 . The problem appears hard
to solve in general: for an arbitrary user-defined type, it is unclear how the
compiler should figure out whether a given value is reasonable.

In Agda, this problem is arguably worse, because Agda has a richer type system.
For example, Agda’s standard library defines a family of types Fin : N → Set
such that Fin n models the set of numbers between 0 and n − 1 . It would be
useful to be able to interpret integer literals at this type, but then we would
even more like to receive a compiler warning if, for example, the literal 5 is
interpreted in Fin 3 .

Luckily, there is an Agda programming idiom that we can use. We have
already encountered the technique in Section 2.5.4, where the _div_ function
was defined in such a way that the non-zeroness of its divisor argument was
statically checked. Similarly, the Agda standard library defines a function
#_ that statically checks that a natural m is strictly smaller than n before
converting it to a value of type Fin n.

#_ : ∀ m {n} {m < n : True (m N <? n)} → Fin n
#_ {m < n = m < n} = fromN 6 (toWitness m < n)

3These types need to be defined and specially marked in the user’s code or an imported
file. Agda’s standard library currently defines suitable versions of N, Char and String but
not Float.
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This type signature of #_ ensures that when we type-check, for example,
# 2 : Fin 3 , Agda will infer a value of type True (2 N <? 3 ). This works
because the type reduces to True (yes prf ) for some prf : 3 6 3 which reduces
further to the unit type >. For this type, Agda infers the single value tt : >.
Conversely, if we type-check # 5 : Fin 3 , then the type True (5 N <? 3 ) will
reduce to the bottom type ⊥, and the compiler will report that it cannot infer
a value for it.

This technique can be generalised to a type-class for types that support natural
literals as follows:

record HasNatLiterals (t : Set) : Set1 where
field ValidLiteral : N → Set

decideValid : (n : N) → Dec (ValidLiteral n)
fromN : (n : N) → {valid : True (decideValid n)} → t

This record models a type class of types t that support natural literals. It is
required to contain a predicate ValidLiteral identifying what values can legally
be used as literals, a decision procedure decideValid for this predicate (a function
that returns, for any n, a value of Dec (ValidLiteral n), i.e. a proof of either
ValidLiteral n or its negation ¬ ValidLiteral n) and a function fromN that takes
a natural n, a proof that n satisfies the predicate and returns a value of type t.

With this design, the Agda compiler can give a natural literal the type

{t : Set } {{hnl : HasNatLiterals t}}
{ : True (HasNatLiterals.decideValid hnl n)} → t

The literal n would then be equivalent to λ {t } {{ hnl }} {prf } →
fromN {t } {{ hnl }} n {prf }. This would require users to define or bring
into scope a value of type HasNatLiterals t for any type t for which they use
natural literals. We give two examples of such values for types N and Fin n.
The instance for Fin uses the previously defined function #_.

wnlN : HasNatLiterals N
wnlN = record {ValidLiteral = λ → >;

decideValid = λ → yes tt;
fromN = λ x → x }

wnlFin : {k : N} → HasNatLiterals (Fin k)
wnlFin {k } = record {ValidLiteral = λ n → n < k;

decideValid = λ n → n <? k;
fromN = λ n {prf } → #_ n {k } {prf }}

We believe that this design for natural literals can be generalised to other kinds
of literals (floating point and strings). Note that Haskell strings are not normally
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overloaded but there is a GHC extension that changes this. It is interesting to
point out that for strings the technique allows statically parsed and checked
string literals, something which might be a fruitful avenue for the modelling
of deep DSLs within Agda. This could form the basis for a nice alternative to
GHC’s quasi-quotes [136].

We have implemented the above design of overloaded natural literals for Agda
but it has not been adopted in the released version of Agda. In a discussion
on the Agda mailing list [57], it was noted that HasNatLiterals could be used
without compiler modifications by writing fromN 3 instead of 3 and there was
doubt about whether the additional advantage of being able to write 3 instead
was important enough to warrant a compiler modification.

In Haskell, numeric literals are also overloaded during pattern matching, and
we think our design can be adapted to support that as well.

2.5.7 Two final examples

As a small encore in this section, we can’t resist discussing two code snippets
using instance arguments. The first is an example of a function abstracting over
functions with implicit arguments. It demonstrates the first-class nature of our
new type of arguments: functions with instance arguments can be abstracted
over, their types can be written out etc.

explicitise : ∀ {A : Set } {B : A → Set } →
({{x : A}} → B x) → (x : A) → B x

explicitise f x = f {{x}}

Our final example is small, but very useful: it is an analogue of Agda’s standard
underscore construct for instance arguments, similar to Scala’s implicitly or ?.
Like in Scala, we don’t need to introduce special syntax for this: the following
definition suffices. This ellipsis can be used as a shorthand in any situation
where only a single type-correct value is in scope. Because our resolution
algorithm does not require candidates to be specially annotated to be eligible,
our ellipsis is more generally useful than Scala’s implicitly.

· · · : {A : Set } → {{a : A}} → A
· · · {{a}} = a
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2.6 Related work

There exists a lot of literature about type classes, extensions of them and
alternatives to them [235, 112, 204, 174, 111, 237, 65, 181, 167, 63, 213, 90, 223,
61, 211, 212, 168]. We have already discussed Haskell type classes and Scala
implicits in Section 2.1 and later and we do not repeat that information here.
We also do not further discuss Lewis et al.’s implicit parameters, implemented
in Hugs and GHC [127], as they use a name-based resolution, instead of the
type-based resolution of our design and are thus not suited for our use cases.

2.6.1 Scala implicits

We have already discussed Scala implicits in Section 2.1.4, so we only provide
some more details here.

As mentioned before, functions that take implicit arguments are restricted in
Scala. To be more specific, Scala implicits have the following restrictions. In
the first place, a function can accept several implicit arguments, but they are
required to occur after the conventional arguments. Abstracting over functions
taking implicit arguments is not syntactically possible but requires encoding
such functions as objects with an apply method taking an implicit argument.
There is no user syntax for the type of a function accepting implicit arguments.
Anonymous functions cannot accept implicit arguments.4 Full and tight control
on the insertion of implicit arguments does not seem to be available and it
seems impossible to partially apply a given function with implicit arguments to
any chosen subset of its (implicit and ordinary) arguments (while keeping the
implicit arguments implicit).

More details about Scala’s resolution algorithm, like the termination criterion
for implicit resolution or the precise set of candidates for resolving a certain
implicit argument can be found in the Scala specification [164].

2.6.2 Coq type classes

Sozeau and Oury have recently presented Coq type classes [213]. Like Agda,
Coq is a dependently typed, purely functional programming language/proof
assistant. Compared to Agda, Coq has a longer history, a larger user base, and

4The Scala syntax (implicit x ⇒ x) defines an anonymous function that takes a normal
argument x, but makes x eligible for implicit resolution in the function body [164, §6.23].
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a principled core language and associated type-checker.5 On top of that, Coq
offers a variety of language features and meta-programming/proof automation
facilities.

Sozeau and Oury’s type classes are a new form of dependently typed record
types. If a function has an implicit argument of such a record type, and its
value cannot be inferred through Coq’s standard unification, then Coq will try
to infer a value through an instance search. This instance search is implemented
as an automated proof search using a special-purpose port of the eauto tactic.
This tactic performs a bounded breadth- or depth-first search using the type
class’s instances as lemmas. Both direct instances (objects of the record type)
and parameterised instances (functions which take certain arguments and return
such an object) are supported.

Sozeau and Oury further discuss syntax extensions and models of superclasses
and substructures and then provide a discussion of various aspects of their
system, most importantly their instance search tactic. They think their current
instance search tactic is not sufficient in the context of multi-parameter type
classes and arbitrary instances (which their system currently allows). They
state the algorithm’s non-determinism and unpredictability as problems which
they hope to address in the future by restricting the shape of allowed instances
and using a more predictable algorithm.

Sozeau and Oury’s instance search is currently at least as powerful as Haskell’s
or Scala’s instance/implicit search: it can be used as a separate computational
model (see Section 2.4). Sozeau and Oury’s mechanism is limited to record types
that were defined as a type class, so existing libraries need to be adapted to
benefit from it. Type class instances can be defined locally, but it seems that the
local instance will not be considered for automatic resolution. In comparison,
instance arguments provide a weaker computational model, can be used with
unmodified existing libraries and provides an equivalent of local instances, as
we discussed previously.

2.6.3 Coq canonical structures

Coq features another type system concept which can be exploited as an
alternative to type classes: canonical structures [13, 223]. This feature allows
certain values of a record type to be marked as canonical structures. These are
then automatically considered when the Coq type inferencer tries to infer a
value of the record type from the value of one of its fields. Canonical structures

5Contrary to Coq, Agda does not at the moment have a clearly demarcated and formalised
core language.
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have existed for some time in Coq, but have recently attracted the attention of
authors looking to provide easy to use libraries of complex concepts, exploiting
canonical structures as a powerful meta-programming feature that implicitly
resolves values in the background. There are some similarities in the design to
ours, as it does not introduce a separate type of structure and does a form of
implicit resolution from call-site scope.

The precise workings of the feature are tightly coupled to the inner workings
of Coq’s type inferencer. A precise formal description does not appear to be
available but Gonthier et al. have reverse-engineered an operational semantics
for the mechanism in Coq 8.3 [85]. It is not clear if any termination guarantees
are offered/required regarding canonical structure resolution.

Coq’s instance resolution presents a powerful computational model. The best
illustration of this fact is presented by Gonthier et al. [86] who present an
assortment of design patterns that allows one to exploit the model in a logic
programming style, with support for recursion, backtracking and syntactic
pattern matching on types. This makes the resolution very powerful, and the
authors demonstrate how it enables a form of proof automation (“overloaded
lemmas”) that is a compelling alternative to Coq’s tactics.

The canonical structures resolution mechanism and Gonthier et al.’s patterns for
it are powerful, but they seem to require expertise and understanding of Coq’s
type inferencer to use. The computational model is Prolog-like: unification-
based with support for backtracking, not functional like Coq’s underlying logic.

2.6.4 Isabelle type classes

The Isabelle/HOL proof assistant also features a form of type classes which have
been described by Haftmann and Wenzel [90]. Haftmann and Wenzel explain
these type classes in terms of existing Isabelle concepts like locales and top-level
polymorphic functions, together with a form of extra-logical constraints checking,
thus avoiding an extension of the logic. Isabelle type classes are restricted to a
single parameter and this parameter must be a type (not a type constructor,
not a value). The resolution mechanism is comparable in computational power
to Haskell’s, so more powerful than that of instance arguments.

2.6.5 Modular type classes

Dreyer et al. discuss an alternative to type classes in the context of ML [63].
They share our view that Haskell type classes duplicate functionality by
introducing a separate structuring concept, and they argue that ML modules
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already provide functionality akin to associated type families and type class
inheritance (like we do for ADTs). They propose to model single-parameter type
classes as class signatures: module signatures with a single abstract type named t.
Instances become modules and functors. Their primitive overload fun from sig
returns a version of function fun from class signature sig that will resolve the
appropriate module implementing sig from call-site scope. Another primitive
canon (sig) resolves and returns the module as a whole.

Resolution of such a module takes into account modules and functors that
have been annotated in the current scope with a using declaration. Since
functors are considered, the instance search is recursive. They do not support
the equivalent of multi-parameter type classes. It is not clear to us if and how
their type class modules can be abstracted over.

2.6.6 Explicit Haskell

In an unpublished technical report, Dijkstra and Swierstra describe an implicit
arguments system which they have implemented in a Haskell variant called
Explicit Haskell [61]. Their motivation is that Haskell does not provide a way
to override the automatic resolution of instances (dictionaries) for functions
with a type class constraint. They extend Haskell with named instances, local
instances, and a way to explicitly provide an instance to a function with a type
class constraint, either by naming the instance or by lifting a value of a record
type corresponding to the type class. They also allow type class constraints
to appear anywhere in a type, not just at the beginning. For resolving type
class constraints, they use a resolution close to Haskell’s (their design is a
conservative extension of Haskell). The only difference is that instances can be
annotated to not take part in this resolution (in which case they can only be
used by name). In the same text, Dijkstra and Swierstra discuss a system for
partial type signatures, with independent value. The system allows the user to
partially specify types for values and leave the rest to be inferred.

This design has many similarities to our system. Their extensions to the concept
of type class constraints effectively transform them into a special form of function
arguments similar to our instance arguments. Their design offers some of the
same benefits as ours (e.g. local instances, named instances), and they discuss
some of the same examples as we do in Section 2.5. However, they make some
different choices: their constraints remain limited to arguments whose type was
defined as a type class instance and their resolution is similar to Haskell’s. They
do not fully unify type classes with their associated record types, so that some
of the advantages we can offer are not available (e.g. abstracting over a type
class).
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2.6.7 Concepts in C++

C++ features a form of polymorphic functions known as template functions. For
a long time, templates were only type-checked after they were instantiated with
concrete (type and/or compile-time value) arguments. When the community
started looking for a type system that could type-check templates before
instantiation, they set out to add language support for the semi-formal concepts
that were used in the documentation of the Standard Template Library. Over
the years, a variety of proposals was defined but due to an ongoing disagreement
about elements of the design, concepts have not been included in the latest
version of the C++ standard [211]. We do not try to discuss all proposals and
their differences here, let alone the details of the disagreements, but we only
discuss one of the most principled designs that originates from this effort: Siek
and Lumsdaine’s G programming language [212].

The G language is a variation of C++, with concepts as the most significant
addition. Concepts are closely related to type classes and G supports a wide
variety of features including analogues of type families, multi-parameter type
classes, equality constraints and local instances as well as some non-standard
features like concept-based overloading; the equivalent of allowing parametric
instances to overlap if they have different constraints and resolving them by
choosing the most specific applicable instance.

In G, it is not possible to abstract over constraints as described in Section 2.1.2.
Siek and Lumsdaine chose not to restrict the shape of parameterised
instances, so that termination of constraint resolution is not guaranteed
and the computational model is comparable to that of Haskell with the
UndecidableInstances extension [210].

2.6.8 The implicit calculus

Oliveira et al. present the implicit calculus, intended as a minimal and general
core calculus for studying and informing implementations of type-class like
mechanisms in other languages [168]. The authors and the calculus focus on
the two questions of instance (or in their terms rule) scope and the resolution
mechanism. Our system does not seem fully supported by their calculus. For
example, our system (but also e.g. Scala) allows values in the implicit context
to be referred to by name, while in their calculus it is only possible to refer
to them by type. Regarding resolution, they support higher-order rules and
partial resolution of class constraints. They present a theorem that connects
resolution explicitly to a form of Prolog-style logic programming, a connection
that we have strived to avoid. An extended version of the paper discusses a
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possible restriction on instances that ensures termination of the search [171],
which would lead to a computational power similar to that of Haskell’s type
class resolution.

2.6.9 Agda Prelude

Instance arguments have been used in Kettelhoit’s master thesis to construct a
Prelude for Agda [116]. His aims were to solve the problem of name clashes in
Agda’s standard library, to construct an analogue of Haskell’s Prelude for Agda
and to try everything out on a number of IO-based programs. He uses instance
arguments as an essential tool to solve name clashes. In the conclusions, he
disagrees with our choice for a non-recursive instance search, because they are
needed to automatically derive Show instances and expresses the hope that this
will be changed in Agda in the future.
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2.A Under the hood

In this appendix, we discuss the precise changes we make in more detail. The
definitions in this section are extensions and adaptations of Norell’s rules for
Agda’s type system and standard implicit arguments [161, 3.5 pp. 69–70, 5.1.5
pp. 99–100]. They should be read in the context of Norell’s developments and
may not be fully clear without them.

2.A.1 Implicit lambdas

We add another function space {{x : A}} → B in addition to the existing
{x : A} → B and (x : A) → B. Like the existing implicit functions, the new



UNDER THE HOOD 73

functions are semantically equivalent to the corresponding ordinary functions.
Values of type {{x : A}} → B can be introduced as (typed or untyped) lambda
values λ {{x}} → e or λ {{x : A}} → e or they can be defined as constants (at
the top-level or in where-clauses).

For type-checking values of this type, we extend the rules for Agda’s standard
implicit arguments [161, 3.5 pp. 69–70] as follows. If a value does not explicitly
mention an instance argument from the type it is checked against, rule (2.2)
infers implicit lambdas, like for normal implicit arguments.

Γ, x : A ` e ↑ B ; s

Γ ` λ{{x}}.e ↑ {{x : A}} → B ; λ{{x}}.s
(2.1)

Γ, x : A ` e ↑ B ; s e 6= λ{{x}}.e′

Γ ` e ↑ {{x : A}} → B ; λ{{x}}.s
(2.2)

2.A.2 Instance arguments

Next, we need to determine when instance arguments of a function are not
provided explicitly and should be inferred. This mechanism is governed by the
inference rules for argument checking judgements of the form Γ ` A@ ē ↓ B ; s̄.
Such a judgment means that the values ē can be passed as arguments to a value
of type A, producing a value of type B. The full list of arguments to be applied
to the function (including implicitly inserted ones) is “returned” in s̄.

We extend the corresponding rules for implicit arguments [161, 3.5 p. 70]
as follows. For a non-provided instance argument, we do not just insert a
meta-variable α, but we additionally add a constraint FindInScopeα. This
is a special kind of constraint that indicates that α should be resolved as an
instance argument. To do this, we need to extend the form of argument checking
judgements to additionally return a set of constraints C: Γ ` A @ ē ↓ B ;
s̄, C. This adapted form actually corresponds more closely to Agda’s existing
implementation of the rules. Existing rules in the old form of the judgment
should now be read as producing no constraints or passing through generated
constraints if they recurse.

Γ ` e ↑ A; s Γ ` B[x := s] @ ē ↓ B′ ; s̄, C
Γ ` {{x : A}} → B @ {{e}}; ē ↓ B′ ; s; s̄, C

(2.3)

AddMeta(α : Γ→ A) ē 6= {{e}}; ē′
Γ ` {{x : A}} → B @ {{α}}; ē ↓ B′ ; s̄, C

Γ ` {{x : A}} → B @ ē ↓ B′ ; s̄, C ∪ {FindInScopeα}
(2.4)
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We change the last rule on page 70 of [161, ] to the following:

A 6= {{x : A1}} → A2 A 6= {x : A1} → A2

Γ ` A@ ε ↓ A; ε, {}
(2.5)

A somewhat technical point here is that at the moment, we do not allow meta-
variables introduced for instance arguments to be η-expanded, as this is done for
Agda’s normal implicit arguments. We take a conservative approach because we
currently do not have a good understanding of possible interactions between η-
expansion and instance resolution. During our experiments, we have established
that all of them (see Section 2.3 and 2.5) have worked well without η-expansion.
It is future work to get a better understanding of the issues involved.

2.A.3 Resolution algorithm

The resolution of a constraint FindInScopeα in context Γ and scope S with
Γ ` α : A tries to infer a value from either the values in the current context Γ
or the constants in scope S. If only one candidate is found in both sets, it is
selected. If there is more than one candidate, resolution of the constraint is
postponed in the hope that more type information will become available further
on, reducing the set of candidates further. If the constraint is not resolved when
type checking finishes, this is reported to the user. If there are no candidates,
then the constraint cannot be solved and this is also reported.

To formalise these rules, we need some extra information about meta variables
introduced through inference rule (2.4) above: the context and scopes at the
point where they were defined. We do not make this change explicit because
the context is actually already implicitly being maintained throughout Norell’s
development [161], and because both the scope and the context are already
being kept in the Agda implementation. For a meta variable α, we write MScpα
and MCtxα for the scope resp. the context in which a meta variable α was
introduced.

With these nuances, we can formally define how we solve constraints
FindInScopeα as follows:

Lookup(α : A)
Candidates(MCtx(α),MScp(α), α,A) = {(n,An)}

Γ ` A ' An ; C α := n

Γ ` FindInScopeα; C (2.6)

This definition says that if we have a meta-variable α typed A, that is to be
inferred as an instance argument, then it is resolved if there is a unique solution.
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In this case, we require convertibility of the types and assign the value to the
meta-variable. The set of candidates in context Γ and scope S, for meta-variable
α, of type A is defined by predicate Candidates:

Candidates(Γ, S, α,A) =

{(n′, An) | Cand(Γ, S, n,An) and ValidCand(α,A, n, n′, An)} (2.7)

For terms n, of type An, that are potential candidates in the current context
and scope (predicate Cand below), the candidates are the terms n′ that result
from validity checking n with respect to the current meta-variable and its type.
This last property is defined by the ValidCand predicate.

〈Σ〉CheckCand(α,A, n, n′, A′) ; C =⇒ 〈Σ′〉
〈Σ〉ValidCand(α,A, n, n′, A′) =⇒ 〈Σ〉

(2.8)

In the definition of this predicate, we perform a check, but if this check makes
changes to the current signature, we do not yet carry them through here. This
is formalised using the explicit notation of the signatures in the judgements [161,
3.3.1 p. 54].

The check that a certain term is valid for a certain meta-variable consists of
two parts:

Γ ` A′ @NI ε ↓ A; s̄, C α := n s̄ CurrentConstraints(C)
∀C ∈ C : C 6= FindInScopeα′ ⇒ ¬(0 C ; C′)

CheckCand(α,A, n′, A′) ; C
(2.9)

First, we use the judgment Γ ` A′ @NI ε ↓ A ; s̄, C to require that the type
A′ of n is convertible to type A after potentially applying a number of implicit
(but not instance) arguments. The rules for judgment Γ ` A @NI ē ↓ B ; s̄, C
are identical to the ones for judgment Γ ` A @ ē ↓ B ; s̄, C except that our
additional rule (2.4) is not allowed and rule (2.5) is changed back to its original
version.

Second, if we assign the resulting value to the meta-variable, no other constraint
must be immediately invalidated. For this last check, we do not recursively
consider other FindInScope constraints, since this would introduce recursion
in the instance search. This check is necessarily incomplete: in Norell’s words,
the type checker will give one of three answers [161, Note p. 65]: “yes it is
type correct”, “no it is not correct” or “it might be correct if the meta-variables
are instantiated properly”. Only if we get the second answer, we reject the
candidate under scrutiny.

Rule (2.9) strikes a fine balance. On the one hand, the resolution algorithm
needs to be powerful enough to be usable, but we avoid making it too powerful
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(see discussion in Section 2.4). The intuition behind the criterion above is
that we consider any value that is type-correct in the sense that it has the
correct type, but also in the sense that it does not immediately invalidate
constraints. The criterion has proven sufficient for all use cases discussed in this
text, but also necessary: without the check for invalidated constraints, monad
instances, for example, are often not resolved. Note that we have used a new
CurrentConstraints operation, which works on the signature that is implicit in
the typing judgements:

〈Σ〉 CurrentConstraints(C) =⇒ 〈Σ〉 where C = {C | C ∈ Σ} (2.10)

We still need to define the potential candidates in a given context and scope.
The Cand property formalises this:

Γ = Γ1;n : A; Γ2

Cand(Γ, S, n,A)
(2.11)

Visiblepri(n, S) Lookup(n : A)
Cand(Γ, S, n,A)

(2.12)

The somewhat technical predicate Visiblep(n, S) asserts that name n is publicly
or privately (defined by p) in scope stack S. The name must either be available
at visibility p or pub in the scope at the top of the stack S or publicly visible in
one of the scopes below the top. The predicate VisibleNSα(n, σ) asserts that
name n is available in the α-visible namespace (nsα) of scope σ. Its definition
requires that n is in the domain of the first part of that namespace, i.e. the part
containing values (the second part contains modules).

VisibleNSα(n, σ) ∨VisibleNSpub(n, σ)
Visibleα(n, S I σ)

(2.13)

Visiblepub(n, S)
Visibleα(n, S I σ)

(2.14)

n ∈ dom(fst(nsα))
VisibleNSα(n, 〈M,nspub, nspri〉)

(2.15)

From rules (2.6) and (2.9) above, it is clear that resolution of constraints
FindInScopeα only compares types that have already been type checked,
and does not trigger extra type checking. Therefore, only one constraint
FindInScopeα will be resolved per occurrence in the user’s code of a function
taking an instance argument without a value being provided explicitly. This
means that, contrary to other proposals, the computational power of our
resolution algorithm is fundamentally limited, in the sense that it does not allow
any form of recursion, looping or backtracking. It therefore does not introduce a
separate computational model in the language (see Section 2.4).
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2.A.4 Soundness

Intuitively, soundness of the rules above is easily guaranteed, because all we
do is assign terms of the correct type to meta-variables. The following lemma
reflects this intuition, supplementing Norell’s Lemma 3.5.13:

Lemma 2.A.1 (Instance resolution preserves consistency). If Γ `|Σ| valid, Σ
is consistent and

〈Σ〉 Γ ` FindInScopeα =⇒ 〈Σ′〉

then Σ′ is consistent.

Proof. A consequence of Norell’s Lemma 3.5.12 (Refinement preserves consistent
signatures), together with the observation that rule (2.6) will only ever perform
a type correct assignment of a meta-variable (a signature refinement).

This lemma suffices to establish that Norell’s Lemma 3.5.14 (Constraint solving
is sound) stays valid in the context of our new kind of constraints, as well as
the main result, Theorem 3.5.18 (Soundness of type checking).

Like Norell for normal implicit arguments, we provide formal rules for the
insertion of instance arguments and the insertion of instance lambdas, but do
not prove any formal results about them.

Some of the rules above may give the impression that this resolution algorithm
is sensitive to the order in which type-checking is interleaved with constraint
solving. However, this sensitivity actually only exists for error reporting.
Remember that during type-checking, constraints will only be added and solved
(after a correct meta-variable assignment), but they cannot otherwise be removed.
As a consequence of this, the candidates set for a given instance argument
meta-variable α, defined by rule (2.7) above, form a descending series during
type-checking: later sets are subsets of previous ones. Furthermore, if a value
in scope can be assigned to α such that the entire Agda expression successfully
type checks, then this value will be contained in all of these candidate sets. All
non-valid candidates will eventually be removed. Therefore, if no other valid
candidates are available, the valid value will inevitably be chosen.

Note that this notion of candidates set is also useful for efficiently implementing
instance argument resolution. In fact, the current Agda implementation
maintains this set explicitly during type checking such that instance argument
candidates that have already been discarded are not reconsidered afterwards.

For erroneous programs, the order of constraint solving may determine the
kind of error message that is generated. Depending on whether a constraint
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C is registered after a certain instance argument is already resolved, or before,
an error will be reported for the FindInScope constraint or the constraint
C. This influence of type-checking on error reporting also exists for standard
Hindley-Milner type inferencing [93], so we consider it acceptable.

One possible extension of the current resolution scheme that we have considered
in detail is based on a prioritisation of candidates, e.g. by giving precedence to
values defined closer to the call site. However, contrary to our current resolution
algorithm, such a prioritisation does make the result of instance resolution
depend on the order of constraint resolution. Suppose there is a value in the
highest priority set which is valid except for a constraint produced late during
type checking and suppose this is the only candidate at the highest priority,
but a lower priority candidate is also valid, and does not invalidate the late
constraint. Since we don’t know upfront which constraints will be produced
during the rest of type-checking, we have to decide at some point which value
to use. If the late constraint has then not yet been produced, the highest
priority candidate will be selected and a type error will be reported when the
late constraint is finally encountered. However, if the resolution occurs after
the production of the late constraint, the valid low-priority candidate is chosen
instead of the invalid high-priority one, and all goes well.

We currently do not see a solution for this problem, so we keep the introduction
of a prioritised resolution algorithm as future work. Our experiments (see
Section 2.3 and 2.5) show that the current non-prioritised resolution scheme
suffices for real use.
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Abstract

We define shallow embedding of a typed grammar language in Carette et
al.’s finally tagless style. In order to avoid the limitations of traditional
parser combinator libraries (no bottom-up parsing, no full grammar analysis
or transformation), we need object-language recursion to be observable in
the meta-language. Since existing proposals for recursive constructs are
not fully satisfactory, we propose new finally tagless primitive recursive
constructs to solve the problem. To do this in a well-typed way, we require
considerable infrastructure, for which we reuse techniques from the multirec
generic programming library. Our infrastructure allows a precise model of
the complex interaction between a grammar, a parsing algorithm and a set of
semantic actions. On the flip side, our approach requires the grammar author
to provide a type- and value-level encoding of the grammar’s domain and we
can provide only a limited form of constructs like many.

We demonstrate five meta-language grammar algorithms exploiting our model,
including a grammar pretty-printer, a reachability analysis, a translation of
quantified recursive constructs to the standard one, and an implementation
of the left-corner grammar transform. The work we present forms the basis
of the grammar-combinators parsing library,1 which is the first to work with
a precise, shallow model of abstract context-free grammars in a classical (not
dependently-typed) functional language and which supports a wide range of
grammar manipulation primitives.

From a more general point of view, our work shows a solution to the well-studied
problem of observable sharing in shallowly embedded domain specific languages
and specifically in finally tagless DSLs.

1http://projects.haskell.org/grammar-combinators

http://projects.haskell.org/grammar-combinators
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3.1 Introduction

Parser combinator libraries are a prime example of using functional languages
to embed a Domain-Specific Language (DSL) in a shallow way, i.e. reusing many
facilities from the host language. Nevertheless, despite their advantages, current
mainstream purely functional parser combinator libraries are not satisfactory
from a parsing theory point of view. While many other parsing tools employ
more powerful bottom-up parsing algorithms, parser combinators are naturally
restricted to top-down algorithms. Unlike other tools, they do not employ much
grammar analysis or precalculate tables; grammar authors are not provided
with standard implementations of well-known grammar analysis, transformation
or visualization techniques.

In this paper, we work towards the aim of functional parsing libraries which
combine the advantages of parser combinators with the power that is standard
in parser generators and associated tooling. In this paper, we focus on a major
problem that needs to be solved for this to happen: removing the limitations of
the grammar model currently used by parser combinators.

It turns out that many of the limitations of purely functional parser combinator
libraries are caused by the direct encoding of recursion in the grammar object
language using meta-language recursion. We show that we can do better with
a new encoding of recursive constructs. Our constructs are parametric in the
interpretation of the grammar’s recursion.

Our object-language recursive constructs use the finally tagless style as described
by Carette et al. [30].2 This style of modelling a DSL allows grammar algorithms
to interpret a grammar’s production rules in the way they need to and to
distinguish regular, context-free and extended context-free grammars in a
natural way. We use an alternative to the fix construct of Carette et al., that
seems better suited for the parsing domain. The main technical challenge we
face is ensuring that our constructs remain well-typed, for which we employ
techniques from the multirec generic programming library [197]. We show that
our infrastructure allows for a precise and modular modelling of the complex
interaction between grammar, parsing algorithm and semantic actions.

A limitation of our representation of recursion is that it crucially depends
on the grammar author providing a type- and value-level encoding of the
grammar’s domain. Additionally, the encoding of some constructs becomes more
difficult: we will discuss how we need to restrict the standard many operator
(corresponding to Kleene-*) to non-terminal references to allow algorithms to

2The word finally refers to the final style of the approach, in which a DSL is quantified
over all possible interpretations of its primitives. This contrasts to other, initial encodings.
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interpret the constructs in the way they need. We have no detailed measurements
of parsing performance for our grammars, but with current compilers, our
additional indirection and our use of generic programming techniques introduces
significant performance costs.

We show that our approach does bring important additional expressivity by
demonstrating five well-known grammar algorithms from the parsing literature,
including a grammar pretty-printer, a reachability analysis, a translation of
quantified recursive constructs to the standard one, and an implementation
of the left-corner grammar transform. In our grammar-combinators library,
we provide implementations of a range of other algorithms. These include
an implementation of the packrat parsing algorithm [73] and a grammar
transformation which induces a bottom-up matching order on the original
grammar using a top-down parsing of the transformed grammar.

More generally, the problem of observing recursion and sharing in Embedded
DSL (EDSL) terms has triggered a lot of research. Our approach presents a
novel solution applied to a parsing DSL. Our solution does not compromise
referential transparency or unnecessarily force the user to resort to models of
code with side-effects. We keep the validation of our approach in other domains
(like the typical example of hardware description DSLs) as future work. Our
design also extends the set of known programming patterns for finally tagless
models of DSLs.

3.1.1 Contributions

In this chapter, we make the following contributions:

• Evidence that observably recursive constructs are needed for full power,
purely functional parsing DSLs.

• Primitive recursive constructs enabling a shallow embedding of a purely
functional grammar DSL.

• A proper typing for our constructs using techniques from the multirec
generic programming library.

• A deforestation, enabled by our infrastructure, that precisely models the
complex interaction between grammar, parsing algorithm and semantic
actions, independent from the matching order.

• Five grammar algorithms, including the left-corner grammar transfor-
mation, showing that our encoding provides significant and important
additional expressivity over traditional parser combinator libraries.
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An earlier account of some of the results in this chapter was presented at the 2011
PADL conference [59]. This chapter is based on a different presentation of the
material that appeared in the Journal of Functional Programming [60], which
highlights the relation with finally tagless encodings, uses a more standard
notation and type classes for applicative functor operations and presents a
rationale for our techniques. The content of Section 3.5 was not presented at
PADL. It is partly new and partly appeared in a technical report [58].

3.1.2 Outlook

In Section 3.2, we introduce an example grammar, and a standard encoding of
abstract parser combinators in a finally tagless style. We take a brief look at
the problem of left-recursion, and then explain the problem with the standard
modelling of object-language recursion using direct meta-language recursion.

We introduce new recursive constructs in Section 3.3 and we show how they
can be properly typed in Section 3.4. We present this through gradual (initially
untyped) transformations of the first definition of our example grammar. This
allows us to tackle technical problems one at a time and to show the rationale
of our encoding.

In Section 3.5, we demonstrate the increased power of our grammar model with
the definition of five grammar algorithms:

• In Section 3.5.1, we show that the recursive structure can be observed in
our model by implementing a grammar pretty-printer.

• In Section 3.5.2, we show the equivalence between our final recursive
constructs and an alternative encountered in Section 3.3. The resulting
algorithm is also a useful technical aid for what follows.

• We show that our recursive constructs permit complex analyses, by
implementing a reachability analysis in Section 3.5.3.

• In order to prove that our grammar model supports simple grammar
transformations introducing new non-terminals, and provides tight control
of the constructs allowed in a grammar, we define a translation of quantified
recursive constructs into the standard one in Section 3.5.4.

• Finally, in Section 3.5.5, we show that our technique supports complex,
realistic grammar transformations with the implementation of the standard
left-corner grammar transform.

We discuss related work in Section 3.6.
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Much of the Haskell code in this text relies on a set of Haskell extensions that
is currently only supported by the GHC Haskell compiler.3 However, these are
all well-accepted extensions that do not make type-checking undecidable. Our
library optionally supports the use of Template Haskell [208] for performing
grammar transformations at compile-time.

3.2 Finally tagless parser combinators

In this section, we will present an example grammar and encode it in a finally
tagless parser combinator library. Using this example, we will discuss in detail
why the standard representation of recursion is unsatisfactory.

3.2.1 Arithmetic expressions

We start our presentation with a standard example from the parser literature: a
simple grammar describing arithmetic expressions of the form “(6 ∗ (4 + 2))+6”,
in a formalism similar to (E)BNF (see [3, Section 2.2]).

Line → Expr EOF
Expr → Expr ‘+’ Term

→ Term
Term → Term ‘∗’ Factor

→ Factor
Factor → ‘(’ Expr ‘)’

→ Digit+
Digit → ‘0’ | ‘1’ | ‘2 ’ | ... | ‘8 ’ | ‘9 ’

The definitions of Expr and Term are such that “a+b∗c” can only be interpreted
as “a + (b ∗ c)” and “a + b + c” only as “(a + b) + c”. This modelling of
operator precedence and left-associativity is idiomatic for LR-style grammars,
but fundamentally relies on left-recursion: one of the productions of non-terminal
Expr, for example, refers back to Expr in the first position.

In order to obtain a parser for this grammar (without manually writing it
ourselves), parser generators like Yacc [109] and ANTLR [176] are typically used
to translate the grammar (provided in an EBNF-like formalism) into source code
in the developer’s programming language. This technique has proven successful
in practice, but suffers from various downsides: little assurance for syntax-
and type-correctness of generated code, little reuse of the developer’s existing

3TypeFamilies, GADTs, MultiParamTypeClasses, FunctionalDependencies, Flexible-
Contexts and RankNTypes.
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programming environment (editor, type-checker, build system etc.), limited
support for abstraction, no support for grammars constructed at runtime etc.

3.2.2 Finally tagless parser combinators

Parser combinator libraries provide an elegant alternative, modelling the
grammar directly in a general-purpose programming language. These libraries
treat parsers as first-class values that can be combined, extended, reused,
abstracted from etc. Many of these libraries only provide a single parsing
algorithm, even though there is no immediate technical reason for this. In this
section, we define a more abstract grammar model, without this coupling. This
abstraction also saves us the trouble of actually explaining a concrete parsing
algorithm; our abstract model can be used with many of the well-known parser
combinator libraries (e.g. uu-parsinglib [219] or Parsec [125]).

The technique we use to achieve this decoupling was already used by Swierstra
and Duponcheel [220] and has been described and popularised by Carette et
al. [30] as the finally tagless modelling of domain-specific languages. In this
style, we define our grammars abstractly over a parsing algorithm with parser
types p a, where p has instances for a set of type classes containing primitive
parsing operators. The type constructor p is parameterised by the type of
parsing results.

We define the necessary primitive parser operators in a type class called
CharProductionRule. Since parser combinators were a motivating example
for the development of the concept of applicative functors [145] and the type
classes Applicative and Alternative (repeated below), it is no coincidence that
they map perfectly to our needs.4 Standard applicative functor laws apply,
but they may only be valid morally in some of our examples (e.g. for the
pretty-printer in Section 3.5.1: equivalent expressions might be pretty-printed
in different but equivalent ways).

class Functor f ⇒ Applicative f where
pure :: a → f a
(~) :: f (a → b)→ f a → f b

class Applicative f ⇒ Alternative f where
empty :: f a
(�) :: f a → f a → f a

4In the grammar-combinators library, we can unfortunately not use the Applicative or
Alternative type classes, due to a technical reason related to an advanced feature that we
do not discuss in this text (Template Haskell lifting of grammars). The library also uses a
different notation for the applicative operators, for historical reasons.
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(#$ ) :: Functor f ⇒ (a → b)→ f a → f b
(#$ ) = fmap
(⊂∗ ) :: Applicative f ⇒ f a → f b → f a
ma ⊂∗ mb = const #$ ma ~mb
(∗⊃) :: Applicative f ⇒ f a → f b → f b
ma ∗⊃mb = flip const #$ ma ~mb
(⊂$ ) :: Functor f ⇒ a → f b → f a
f ⊂$ m = const f #$ m

Figure 3.1: Definitions of standard related and derived Applicative operators #$ ,
⊂∗ , ∗⊃ and ⊂$ .

class Alternative p ⇒ CharProductionRule p where
endOfInput :: p ()
token :: Char → p Char

In our setting, the Applicative operator ~ consecutively applies two given parsers.
It produces a parsing result by applying the first parser’s result to the second
parser’s. The pure primitive parser matches the empty string, producing the
value provided as argument as its parsing result. The Alternative disjunction
operator � models a choice between two parsers producing the same result
type and returns the result of the parser that matched. The Alternative empty
primitive parser never matches anything, and can therefore return an arbitrary
result type.

We will use only two operators that are specific to the parsing domain: the
endOfInput and token parsers. The first matches the end of the input string,
returning a unit result and the latter matches a single, specified character in
the input stream and returns it on success.

Figure 3.1 shows the definitions of standard related and derived applicative
operators #$ , ⊂∗ , ∗⊃ and ⊂$ , which respectively apply a given function to the
result of a rule, ignore a sequenced rule’s result, and replace a rule’s result with
a given value. We temporarily omit operators many and some which apply
a given parser any (resp. any non-zero) number of times, but we come back
to them in Section 3.3.3. Note that #$ is a synonym for fmap in the Functor
type class and for Applicative functors, it is required to satisfy the (defining)
property fmap f m = pure f ~m. In the rest of the paper, we will consistently
regard it as a derived operator and not discuss its instances.
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The gist of the finally tagless technique is visible in the type signature of the
parsing functions:5

line, expr , term, factor :: CharProductionRule p ⇒ p Integer
digit :: CharProductionRule p ⇒ p Char

The functions are defined abstractly over any type constructor p which is an
instance of the class CharProductionRule. Because of this constrained universal
quantification over p, parametricity ensures that these functions can only
construct values of type p a through the primitive operators defined in class
CharProductionRule and its parent classes. The finally tagless style allows us to
extend or restrict the primitive constructs which a grammar definition has access
to. This allows us to write, for example, regular expressions and context-free
grammars using the same primitives, and still be able to distinguish them at the
type level. Later on, we will similarly make the distinction between extended
and normal context-free grammars.

The functions can be defined as follows in terms of the primitive constructs:

line = expr ⊂∗ endOfInput
expr = (+)#$ expr ⊂∗ token ’+’~ term

� term
term = (∗)#$ term ⊂∗ token ’*’~ factor

� factor
factor = read #$ some digit

� token ’(’ ∗⊃ expr ⊂∗ token ’)’
digit = token ’0’� token ’1’� . . .� token ’9’

For every non-terminal, a grammar function is defined directly as a Haskell
value using the primitive parsing and combinator operators from the
CharProductionRule type class and its parents. The definitions look fairly
standard for an applicative parser combinator library, even though they
are in fact abstract over the parsing algorithm used. The code is fairly
concise and reasonably close to the original grammar. Note that we use the
some :: CharProductionRule p ⇒ p a → p [a ] combinator that will try to match
the argument rule one or more times and return the list of results (some r
is often written as r+ in grammar definitions) . We will discuss the some
combinator in more detail in Section 3.3.3.

Note that the above definitions of the parser functions incorporate semantic
actions; all parsers return the semantic value of the non-terminal they represent:
the integer or char value of the matched string. We consider this coupling of
grammar and semantics non-ideal and we will come back to this in Section 3.4.4.

5The parsing functions all return the calculated Integer value of matches, except for digit
which just returns a Char . It would be slightly cleaner to make digit also return a numeric
value, but this would be a bit more verbose throughout the text.
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3.2.3 Left-recursion

Readers familiar with parser combinator libraries will however have noticed
an important problem in the above code. With a mainstream applicative
parser combinator library like uu-parsinglib, it does not actually work. The
problem is caused by the left-recursion in the definition: expr , term and factor
all immediately refer to themselves in the leftmost position of one of their
alternatives. A simple top-down parsing algorithm asked to parse an expr ,
would at some point try to match the first alternative for expr . The first thing
it then needs is a parse of expr at the location where it just started looking
for an expr . Less naive parser combinator libraries exist that can handle left
recursion to a certain extent during top-down parsing [76, 53, 150]. However,
other libraries like uu-parsinglib and Parsec require the programmer to manually
transform the grammar to a non-left-recursive form, such as:

line, expr , term, factor :: CharProductionRule p ⇒ p Integer
exprTail, termTail :: CharProductionRule p ⇒ p (Integer → Integer)
digit :: CharProductionRule p ⇒ p Char
line = expr ⊂∗ endOfInput
expr = foldr ($) #$ term ~many exprTail
exprTail = (+) ⊂$ token ’+’~ term
term = foldr ($) #$ factor ~many termTail
termTail = (∗) ⊂$ token ’*’~ factor
factor = read #$ some digit

� token ’(’ ∗⊃ expr ⊂∗ token ’)’
digit = token ’0’� token ’1’� . . .� token ’9’

This transformed version of the grammar uses an alternative modelling of
operator precedence and associativity which does not rely on left-recursion
and can be used with naive top-down parsing algorithms. In fact, standard
combinators exist (e.g. pChainL in uu-parsinglib) which implement this pattern
generically. But even with these combinators, properly identifying and dealing
with left recursion remains the responsibility of the programmer.

There is however also a more fundamental problem with the grammar model
we have defined so far.
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3.2.4 ω-regular grammars considered harmful

The problem lies in the modelling of recursion between non-terminals using
recursively defined Haskell values. Haskell supports this thanks to its call-by-
need (lazy) evaluation strategy. At first sight, it seems that this allows a faithful
representation of the recursive structure of the original grammar. However,
closer inspection reveals that what the Haskell values represent is in fact not so
much a graph as an infinite tree. We can see this by considering, for example,
the most recent definition of the expr parser function. Because of Haskell’s
purely functional nature [201], expr is observationally equivalent to what we
get if we expand it to its definition, and likewise if we expand subexpressions to
their definitions (highlighting the term being expanded in each step):

expr ≡ foldr ($)#$ term ~many exprTail
≡ foldr ($)#$ (foldr ($)#$ factor ~many termTail)~many exprTail
≡ foldr ($)#$ (foldr ($)#$

(read #$ some digit � pSym ’(’ ∗⊃ expr ⊂∗ pSym ’)’)
~many termTail)~many exprTail

Figure 3.2 shows a graphical representation of the expr parser after some
further expansions.

In this way, we find an expansion of the definition of expr containing expr itself
as a subexpression. We can continue expanding forever, obtaining an infinite
number of expanded expressions, growing in size, and each indistinguishable
from the original definition of expr . In fact, for any n, it is even possible to
construct a different expression which cannot be distinguished from the original
in less than n evaluation steps: take the original definition of expr , perform
n+ 1 expansions, and then make a change in the result of the final expansion.

This observation has very real practical consequences. A parser library working
with our parser definitions (or those in most parser combinator libraries, which
model recursion the same way), and respecting referential transparency (see
Section 3.6.3), is fundamentally limited. It cannot, for example, print a
representation of the grammar in any finite number of evaluation steps n,
because it might be looking at another grammar that can only be distinguished
from the original after more than n computation steps. Similarly, no parsing
library using this grammar model can calculate parsing tables completely
upfront, fully execute a grammar transformation, or ever perform a sanity check
for LL(1)-ness.
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Figure 3.2: A graphical representation of the expr parser after some expansions
of its definition (see Section 3.2.4). The expr node at the right (as well as some
of the other nodes), can be expanded further, arbitrarily deep.

Because of the similarity of these “infinite-tree” grammar definitions to what
one might see as infinite regular grammars, we will refer to this grammar model
as ω-regular, rather than context-free.6

3.3 A different modelling of recursion

These fundamental limitations are in fact an instance of a more general problem.
For many DSLs, object language terms feature a mutually recursive structure and
it is often advantageous to be able to observe this structure in the metalanguage.
For example, Sheard [206] cites the problem as one of the main reasons to build
a special-purpose hardware design language instead of embedding the DSL in a
general-purpose programming language.

6Our usage of the term ω-regular grammars is related to, but not the same as other usages
in the literature. For some insights from language theory, we refer to Park [175], who proves
a relation between functions using ∗ and † operators and minimal and maximal fixpoints. In
those terms, what we call ω-regular grammars correspond to expressions generated by the
regular operators with ∗ replaced by †.
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So, what could be a better way to represent recursion? In this section and the
next, we first consider the fix construct which Carette et al. use in their finally
tagless modelling of a typed lambda calculus [30], and show that it is not perfect
for our needs. After that, we present our approach, which we introduce step by
step. We incrementally transform the parser combinators grammar introduced
before, at first postponing well-typedness concerns until we are ready to show
the solution for this. We will clearly mark all untyped pseudo-code as such in
what follows.

3.3.1 Fixing recursion?

In their finally tagless model of a typed lambda calculus, Carette et al. use a fix
construct to model recursion. In our setting, such a construct would resemble
the following:

class FixProductionRule p where
fix :: (p v → p v)→ p v

Recursive production rules could then be defined as follows:

expr :: (CharProductionRule p,FixProductionRule p)⇒ p Integer
expr = fix $ λself → (+)#$ self ⊂∗ token ’+’~ term

� term

This fix operator employs a finally tagless style and effectively makes object
language recursion observable in the meta-language, allowing meta-language
algorithms to interpret the recursion in the way that they need to. However,
if we consider the above definition more closely, it turns out that we missed
a recursive occurence of expr . Indeed, the grammar is mutually recursive,
with term referencing factor , and factor referencing expr again. Indeed, what
we require is an encoding of this mutual recursion, allowing us to model the
combined fixpoint of the following functions. The example uses an omitted
primitive fix3 which can be defined in terms of fix:

expr , term, factor :: CharProductionRule p ⇒
p Integer → p Integer → p Integer → p Integer

digit :: CharProductionRule p ⇒ p Char
expr e t f = (+)#$ e ⊂∗ token ’+’~ t

� term e t f
term e t f = (∗)#$ t ⊂∗ token ’*’~ f

� factor e t f
factor e t f = read #$ some digit

� token ’(’ ∗⊃ e ⊂∗ token ’)’
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digit = token ’0’� token ’1’� . . .� token ’9’
line′ :: (FixProductionRule p,CharProductionRule p)⇒ p Integer
line′ = e ⊂∗ endOfInput where (e, t, f ) = fix3 expr term factor

This approach seems successful, although the syntax is somewhat verbose. In a
typical lambda calculus, we could make it more concise by defining a object-
language record type containing three fields expr , term and factor . We could
then construct a value of that record type as the fixpoint of a single function
based on the above functions. However, to do this, we need record types in our
object language, and adding them to our parsing DSL purely for this technical
reason is not our preferred solution. We conjecture that the above syntax can
also be made more concise with a superficial Haskell extension similar to the
recursive do notation by Erkok and Launchbury [70]. In fact, we think that our
FixProductionRule type class can be seen more generally as analogous to their
MonadRec (later renamed to MonadFix) for applicative functors.

However, we can also choose a different way to define a mutual recursion
construct: we model the record suggested above as a function from a finite
domain to production rules:

warning: untyped pseudo-code...
data Domain = Line | Expr | Term | Factor | Digit
type Grammar = Domain → p ?
class FixGramProductionRule p where

fixG :: ((dom → p ?)→ (dom → p ?))→ dom → p ?

It turns out that this idea can be elaborated to a workable solution; there are
ways to properly type this fixG construct (we will encounter such techniques
further on). However, this fixG construct deviates from standard practice in
grammar definitions, since it can be used multiple times in different locations
in the same grammar. In standard context-free grammar (CFG) formalisms, all
the recursion occurs at the top level. Our proposal therefore does not introduce
an actual fix construct, but instead, we model the grammar as the function of
which it is the fixed point.

3.3.2 Toward context-free grammars

The idea to model the grammar in that way corresponds to a classic technique
from the functional programmer’s bag of tricks: defining the grammar with
open recursion. We factor out all recursive calls in the definition by calls to a
self function that it receives as an argument.



A DIFFERENT MODELLING OF RECURSION 93

warning: untyped pseudo-code...
garith :: CharProductionRule p ⇒ (Domain → p ?)→ Domain → p ?
garith self Line = self Expr ~ endOfInput
garith self Expr = self Expr ~ token ’+’~ self Term

� self Term
...

Even though it is not clear how to type this solution, this model does effectively
solve the problem of unobservable recursion. Algorithms working with the
grammar can provide custom interpretations of recursion to suit their needs.
However, the self parameter obscures the definition while its role is fairly
technical and as a model of a primitive object language recursion primitive, it
stylistically differs from the other object language primitives which are defined
in type classes.

A more finally tagless recursion primitive can be defined by replacing the
self parameter by a primitive 〈·〉7, defined in an additional type class
RecProductionRule. Production rule types p become linked to the domain
for which recursive calls are allowed, which we reflect in the RecProductionRule
class’s parameters and its functional dependencies:

warning: untyped pseudo-code...
class CharProductionRule p ⇒ RecProductionRule p dom | p → dom where
〈·〉 :: dom → p ?

garith :: RecProductionRule p Domain ⇒ Domain → p ?
garith Line = 〈Expr〉~ endOfInput
garith Expr = 〈Expr〉~ token ’+’~ 〈Term〉

� 〈Term〉
...

This modelling is equivalent to the one using open recursion using the self
parameter. In fact, we will define a translation algorithm in Section 3.5.2,
turning the representation using RecProductionRule into the one using a self
parameter. This algorithm will be useful for technical reasons.

3.3.3 Extended context-free grammars

There is actually one thing still missing in this definition: we have craftily hidden
the use of the some operator in the production rule for Factor by including it
in the ellipsis above:

7We use 〈·〉 as a notation for a one-argument function with the dot as the placeholder for
the argument. This means that 〈Term〉 denotes 〈·〉 applied to the argument Term.
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warning: untyped pseudo-code...
garith Factor = token ’(’~ 〈Expr〉~ token ’)’

� some 〈Digit〉

The some operator is defined as follows (together with its sibling many):

many, some :: CharProductionRule p ⇒ p a → p [a ]
many p = pure [ ]� some p
some p = (:)#$ p ~many p

These definitions essentially rely on unobservable meta-language recursion,
which we need to replace with an observable form of recursion as well. In
addition to the 〈·〉 primitive recursion operator RecProductionRule type class,
we define restricted versions of many and some in the LoopProductionRule type
class, as follows:

warning: untyped pseudo-code...
class RecProductionRule p dom ⇒

LoopProductionRule p dom | p → dom where
〈·〉∗ :: dom → p ?
〈·〉+ :: dom → p ?

The grammar type and the production rules for factor now become:

warning: untyped pseudo-code...
garith :: LoopProductionRule p Domain ⇒ Domain → p ?
...
garith Factor = token ’(’~ 〈Expr〉~ token ’)’

� 〈Digit〉+
...

Note that the operators 〈·〉∗ and 〈·〉+ are less powerful than the many and some
operators which allow any production rule (not just recursive references) to be
quantified. This restriction is needed to make it possible for grammar algorithms
to interpret these object-language constructs appropriately. However, we think
the new constructs are still general enough for most purposes. Grammar authors
may sometimes need to split out a production rule to be quantified into an
additional non-terminal.

Note also that we are in fact replacing library algorithms (many and some)
by what are essentially new builtin operators in our object language. This
is unfortunate, but it is part of the cost we pay in our approach to rule out
ω-regular grammars. We will show in Section 3.5.4 that 〈·〉∗ and 〈·〉+ support
standard grammar transformations.
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3.3.4 Typing context-free grammars

So, this last representation is promising in the sense that algorithms can
instantiate the abstract grammar with their own interpretations of recursion
and the primitive parser combinator operations. Unfortunately, it is not clear
how to properly define the value that each of the production rules produce. In
a typical implementation, our example grammar above produces result values
of the following Abstract Syntax Tree (AST) type:

newtype Line = SExpr Expr
data Expr = Sum Expr Term

| STerm Term
data Term = Product Term Factor

| SFactor Factor
data Factor = Paren Expr

| Number [Digit ]
newtype Digit = MkDigit Char

When we now try to define the type of garith, we run into another problem. It
turns out that our modelling of the grammar as a function from the grammar
domain to production rules forces all production rules to produce the same type
of values:

warning: untyped pseudo-code...
garith :: CharProductionRule p ⇒ Domain → p ?

Similarly, if we try to define the type of the 〈·〉 operator, we cannot express
that the parser result of 〈idx〉 should vary based on the value of idx.

warning: untyped pseudo-code...
class CharProductionRule p ⇒ RecProductionRule p dom | p → dom where
〈·〉 :: dom → p ?

garith Line = SExpr #$ 〈Expr〉~ endOfInput
garith Expr = Sum #$ 〈Expr〉 ⊂∗ token ’+’~ 〈Term〉

� STerm #$ 〈Term〉
...

The essential problem here is that all our non-terminals are of type Domain,
so that all references 〈idx〉 must share a single result type (because Haskell
is not dependently typed, see Section 3.6.2). Therefore, we cannot express
that non-terminal Line corresponds to a different type of semantic values than
non-terminal Expr .
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3.4 Typing our recursion model

It turns out that we can define precise types for the untyped pseudo-code in
the previous section by using a representation of non-terminals not sharing a
single type.

3.4.1 Representing non-terminals

We model the set of non-terminals (the domain) as a “subkind” with witnesses,
using the technique employed by Rodriguez et al. [197] to model indices into
a set of mutually recursive data types in multirec. The Generalized Algebraic
Data Type (GADT) [207] φarith is a “subkind”; a family of singleton types
that represents the domain of our arithmetic expressions grammar. Note
that Haskell’s separation between type and value name spaces allows the data
constructor Expr and the type Expr to share the same name.

data φarith ix where Line :: φarith Line
Expr :: φarith Expr
Term :: φarith Term
Factor :: φarith Factor
Digit :: φarith Digit

We use the previously defined AST types Line, Expr , Term, Factor and Digit
to represent the non-terminals at the type-level. The GADT φarith introduces,
for every non-terminal ix , a term of type φarith ix , serving as a proof that ix is
part of the domain φarith . With this “subkind” representation, the compiler will
guarantee that a function f typed ∀ix.φ ix → . . . is polymorphic over precisely
the five non-terminal types in the domain.

3.4.2 A first typing of our grammars and the recursion
operator 〈·〉

This representation of our domain as a subkind with witnesses allows us to
present a first proper typing of our grammars and the recursion operator 〈·〉,
which we introduced as untyped pseudo-code before.

We first consider the primitive recursion construct 〈·〉, defined in the
RecProductionRule type class. Within a grammar with domain φ (e.g. type
constructor φarith above), we can now declare that 〈·〉 can be invoked on
any value idx of type φ ix for some ix. The expression 〈idx〉 represents a
parser for that non-terminal, and returns a value of type ix: the AST type
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of the non-terminal. The constructs 〈·〉∗ and 〈·〉+ are defined analogously in
the LoopProductionRule type class. We use functional dependencies to couple
production rules with the domain for which recursive references can be made.

class CharProductionRule p ⇒ RecProductionRule p φ | p → φ where
〈·〉 :: φ ix → p ix

class RecProductionRule p φ⇒ LoopProductionRule p φ | p → φ where
〈·〉∗ :: φ ix → p [ix ]
〈·〉+ :: φ ix → p [ix ]

garith :: LoopProductionRule p φarith ⇒ φarith ix → p ix
garith Line = SExpr #$ 〈Expr〉 ⊂∗ endOfInput
garith Expr = Sum #$ 〈Expr〉 ⊂∗ token ’+’~ 〈Term〉

� STerm #$ 〈Term〉
garith Term = Product #$ 〈Term〉 ⊂∗ token ’*’~ 〈Factor〉

� SFactor #$ 〈Factor〉
garith Factor = Paren ⊂$ token ’(’~ 〈Expr〉 ⊂∗ token ’)’

� Number #$ 〈Digit〉+
garith Digit = MkDigit #$ (token ’0’� token ’1’� . . .� token ’9’)

3.4.3 Semantic value families

With this typed version of our grammars, we are making good progress, but this
representation of recursion in our object language is still not fully satisfactory.
The problem is in the result types of the recursive calls. Algorithms are now
free to plug in their own interpretation of object-language recursion, but they
are still forced to work with the full AST types as result types of the recursive
calls. In many cases, we want to be able to plug in different representation
types, often a different type for every non-terminal.

We can make this more concrete for the example of our grammar language. There,
the AST result types might at first sight seem satisfactory, since conceptually,
the AST is part of the definition of the grammar and practically, we can apply
any set of semantic actions once we have the AST, by implementing them as a
structural fold (a catamorphism) over the AST. However, this approach also
allows semantics that are not formulated as such catamorphisms. For example,
the following semantics negates all literals that are inside an uneven number of
parentheses:

weirdSem :: φarith ix → ix → Int
weirdSem idx v = go False idx v
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where unMkDigit (MkDigit c) = c
neg :: Bool → Int → Int
neg True x = −x
neg False x = x
go :: Bool → φarith ix → ix → Int
go inv Line (SExpr e) = go inv Expr e
go inv Expr (STerm t) = go inv Term t
go inv Expr (Sum e t) = go inv Expr e + go inv Term t
go inv Term (SFactor f ) = go inv Factor f
go inv Term (Product t f ) = go inv Term t ∗ go inv Factor f
go inv Factor (Paren e) = go (¬ inv) Expr e
go inv Factor (Number n) = neg inv (read (map unMkDigit n))
go Digit d = read (unMkDigit d : [ ])

A disadvantage of semantics like weirdSem (which are not formulated as
catamorphisms) is that they are inherently coupled to a top-down matching
order: the semantics has to be applied to the top AST node once it is available.
A bottom-up parser already reduces production rules before it is sure at which
depth the production will fit in the final AST and it might want to force
the semantics to already be applied at such times during parsing, e.g. for
optimization purposes.8 However, this is inherently not possible for semantics
like weirdSem, whose behaviour depends on the depth of the match in the final
AST. Also for semantic reasons, we find it preferable to define grammar semantics
as catamorphisms over the abstract syntax trees and exclude definitions like
weirdSem.

We can achieve this by abstracting our model even further, this time over
semantic value families. These are data families [204] indexed by the non-
terminal types we’ve seen before. A semantic value family r associates each
non-terminal type ix with the type of its semantic value r ix. We define one
such family for the φarith domain, written JKvalue

· . For clarity, in the notation
JKvalue
· , the dot is a placeholder for the type argument ix and, for example, in

the constructor J·Kvalue
Line , the dot is a placeholder for the integer argument of the

constructor, so that for example J3Kvalue
Line is a value of type JKvalue

Line .

data family JKvalue
· ix

newtype instance JKvalue
· Line = J·Kvalue

Line Integer
newtype instance JKvalue

· Expr = J·Kvalue
Expr Integer

newtype instance JKvalue
· Term = J·Kvalue

Term Integer
newtype instance JKvalue

· Factor = J·Kvalue
Factor Integer

newtype instance JKvalue
· Digit = J·Kvalue

Decimal Char
8Such a parser would typically use Haskell’s seq function to force the semantics to actually

be evaluated at such moments.
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This semantic value family specifies that all of our non-terminals have Integer
semantic values (their calculated value), except for Digit, which has a character
as its semantic value.

We can now redefine the primitive recursion operator to return values of some
semantic value family r , which (like the domain φ) is required to be the same
throughout the grammar by the RecProductionRule type class’s functional
dependencies. Note that we provide default definitions of operators 〈·〉∗ and
〈·〉+ in terms of each other and the 〈·〉 operator. However, we expect instances
of LoopProductionRule to provide custom definitions of at least one of both
operators, otherwise they will behave as their ω-regular analogs.

class CharProductionRule p ⇒
RecProductionRule p φ r | p → φ, p → r where

〈·〉 :: φ ix → p (r ix)
class RecProductionRule p φ r ⇒

LoopProductionRule p φ r | p → φ, p → r where
〈·〉∗ :: φ ix → p [r ix ]
〈idx〉∗ = pure [ ]� 〈idx〉+

〈·〉+ :: φ ix → p [r ix ]
〈idx〉+ = (:)#$ 〈idx〉~ 〈idx〉∗

In the next section, we will show how this definition allows us to decouple the
grammar from a semantic value family. Here we can already show how we can use
the new definition of 〈·〉 to make the grammar work for the family JKvalue

· . Like
before, the mixing of semantic values in the grammar hampers the grammar’s
readability:
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garith :: LoopProductionRule p φarith JKvalue
· ⇒ φarith ix → p JKvalue

ix
garith = gram

where gram Line = saExpr #$ 〈Expr〉 ⊂∗ endOfInput
gram Expr = sa+ #$ 〈Expr〉 ⊂∗ token ’+’~ 〈Term〉

� saTerm #$ 〈Term〉
gram Term = sa∗ #$ 〈Term〉 ⊂∗ token ’*’~ 〈Factor〉

� saFactor #$ 〈Factor〉
gram Factor = sa() ⊂$ token ’(’~ 〈Expr〉 ⊂∗ token ’)’

� salit #$ 〈Digit〉+

gram Digit = J·Kvalue
Decimal #$
(token ’0’� token ’1’� . . .� token ’9’)

saExpr JvKvalue
Expr = JvKvalue

Line
sa+ Jv1Kvalue

Expr Jv2Kvalue
Term = Jv1 + v2Kvalue

Expr
saTerm JvKvalue

Term = JvKvalue
Expr

sa∗ Jv1Kvalue
Term Jv2Kvalue

Factor = Jv1 ∗ v2Kvalue
Term

saFactor JvKvalue
Factor = JvKvalue

Term
sa() JvKvalue

Expr = JvKvalue
Factor

salit = J·Kvalue
Factor ◦ read ◦map (λJcKvalue

Decimal → c)

3.4.4 Semantic value family polymorphism

So, the next question is: can we decouple the grammar from its semantics?
Clearly, there are reasons other than aesthetic ones for doing this. For our
arithmetic expressions, we have already seen a grammar producing AST values
and a grammar calculating integer values for them. Other useful semantic
processors (a set of semantic actions for the non-terminals in a grammar)
transform the same expressions into reverse polish notation, construct an AST
or perform some form of side effects in a Monad. It is clear that we can improve
the modularity of our grammar language by decoupling a grammar from sets of
semantic actions.

Our solution for this decoupling here uses (again) techniques from the multirec
generic programming library [197], which uses a representation of mutually
recursive data types as the fixed point of a pattern functor to manipulate them
in generic algorithms. The AST data types shown previously are an example
of such a family of mutually recursive data types. To understand the pattern
functor for this family, it is instructive to define it in two steps. First, we define
a single indexed data type that represents the entire family of AST types:
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data AST arith ix where
SExprAST :: AST arith Expr → AST arith Line
SumAST :: AST arith Expr → AST arith Term → AST arith Expr
STermAST :: AST arith Term → AST arith Expr
ProductAST :: AST arith Term → AST arith Factor → AST arith Term
SFactorAST :: AST arith Factor → AST arith Term
ParenAST :: AST arith Expr → AST arith Factor
NumberAST :: [AST arith Digit ]→ AST arith Factor
MkDigitAST :: Char → AST arith Digit

This AST arith data type has constructor analogous to those of all the AST data
types (see Section 3.3.4 p. 95). It is indexed by the type of terms represented,
so that we can still distinguish a Expr from a Term value through their type.

For generic programming purposes, it is then useful to be able to work with
a version of this data type that does not represent an arithmetic term as a
full tree of sub-terms, but rather only represent its top-level structure where
sub-trees are represented in a parametrisable way. We can obtain such a data
type from the AST arith type above, by replacing recursive positions of type
AST arith ix with values r ix of an argument semantic value family r . This
amounts to rewriting AST arith in an open recursive manner, and gives us the
family’s pattern functor :

data PFarith r ix where
SExprF :: r Expr → PFarith r Line
SumF :: r Expr → r Term → PFarith r Expr
STermF :: r Term → PFarith r Expr
ProductF :: r Term → r Factor → PFarith r Term
SFactorF :: r Factor → PFarith r Term
ParenF :: r Expr → PFarith r Factor
NumberF :: [r Digit ]→ PFarith r Factor
MkDigitF :: Char → PFarith r Digit

In this definition, the semantic value family r defines what values to keep for
subtrees of AST nodes. We will therefore sometimes refer to it as the subtree
representation functor (our terminology). The PFarith pattern functor values
are still tagged with the AST node type they represent. For example, the
constructor SumF constructs a pattern functor value corresponding to the first
constructor of the Expr AST type, so the result of SumF is tagged with the
Expr type.

Note that we do not use the type functor combinators that Rodriguez et al. [197]
define to build pattern functors. This is because we do not require the generic
operations which can be derived over these combinators and because we think
our direct presentation of the pattern functor is clearer.
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They also define a type family PF mapping domains φ to their pattern functor
PF φ. The following type family instance registers PFarith as the pattern
functor for domain φarith:

type instance PF φarith = PFarith

Like for simply recursive types, data types isomorphic to our original AST data
types can be recovered from this pattern functor by taking its fixed point using a
type-level fixpoint combinator. But the pattern functor allows doing more with
the AST values. Rodriguez et al. demonstrate how to go back and forth between
a type ix in a domain φ and its one-level unfolding of type PF φ I∗ ix (with I∗
a wrapping identity functor: I∗ ix ∼ ix). In this way, a value of the AST type
Expr can be converted into an unfolded value of type PFarith I∗ Expr , exposing
the top-level of its structure (similar to the unfold operation for iso-recursive
types, see [187, pp. 276–277]). Generic operations on instances of the pattern
functor can then be used to implement various generic algorithms. All of this
gives impressive, elegant and powerful generic programming machinery, but for
our purposes, the pattern functor is useful in another way.

A powerful feature of the pattern functor is that it abstracts over the
subtree representation functor r , allowing subtrees to be represented differently
than as full subtrees. If we take our semantic value family JKvalue

· as this
subtree representation functor (instead of the wrapping identity functor I∗),
then subtrees in the one-level unfolding of an AST are represented just by
their calculated value (instead of a full sub-AST). For example, the value
(SumF J15Kvalue

Expr J3Kvalue
Term) of type (PFarith JKvalue

· Expr) represents an Expr
value, constructed as the sum of another Expr and a Term, where we only
know that the arithmetic value of the left hand side Expr and the right hand
side Term are respectively 15 and 3. In general, the pattern functor PFarith
allows us to represent an AST where subtrees have already been processed into
a semantic value, and this turns out to be precisely the vehicle we need for
modelling the collaboration between a grammar, a parsing algorithm and a
semantic processor.

Let us consider production rule Expr → Expr ‘+’ Term as an example.
Figure 3.3 shows a graphical illustration of this collaboration (for a semantic
processor working with a semantic value family r). In Figure 3.3a, the parser has
matched the right-hand side elements of the production rule and has obtained
their semantic values, typed r Expr , Char and r Term. In Figure 3.3b, the
grammar specifies how to combine these three values to the single-layer top
of an AST, constructing a value of type PFarith r Expr . For this production
rule, the SumF constructor is used, throwing away the parse result for the
token ’+’. Note that the grammar does not make any assumptions about the
semantic value family r . In Figure 3.3c, the semantic processor accepts the
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· · · Expr
Expr · · ·
’+’ · · ·

Term · · ·

r Expr
Char
r Term

(a) Parser.

· · · Expr
Expr · · ·
’+’ · · ·

Term · · ·

r Expr
Char
r Term

PFarith r Expr

SumF

(b) Grammar.

· · · Expr
Expr · · ·
’+’ · · ·

Term · · ·

r Expr
Char
r Term

PFarith r Expr

r Expr
(c) Semantic Processor.

Figure 3.3: A graphical representation of the collaboration between parser,
grammar and semantic processor, using φarith ’s pattern functor over a semantic
value family r as an intermediate representation. The parser matches the
right-hand side elements of a production rule and obtains their semantic values.
The grammar specifies how to combine these three values to the single-layer top
of an AST, constructing a value of type PFarith r Expr . It does not make any
assumptions about the semantic value family r . The semantic processor accepts
the constructed PFarith r Expr value, calculates the combined semantic value
and returns a processed value of type r Expr to the parser for use in subsequent
matches.

constructed PFarith r Expr value, calculates the combined semantic value and
returns a processed value of type r Expr to the parser for use in subsequent
matches. Note that nothing here assumes any specific matching order (top-down
vs. bottom-up).

For readers who are familiar with the terminology [147], it is interesting to
note that the grammar’s action on the semantic values is an anamorphism from
concrete parsing trees to our mutually recursive data types. Correspondingly,
the semantic processor specifies a catamorphism for the mutually recursive data
types, and multirec’s pattern functor machinery allows the parser to explicitly
fuse the two together according to its own matching order.

With this machinery, we can effectively decouple grammars from their semantic
processors and vice versa. In the next section, we take a look at the resulting
code to see how it all fits together.
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3.4.5 So what do we get?

So, our finally tagless model of observable recursion is completed; we know how
to abstract from the representation of return values of recursive calls, and we
can even model the interaction between a grammar and its semantic processors,
and abstract the grammar from the processors. We finally show the resulting
definition of our running example grammar:

type ExtendedCFG φ = ∀p r ix.LoopProductionRule p φ r ⇒
φ ix → p (PF φ r ix)

garith :: ExtendedCFG φarith

garith Line = SExprF #$ 〈Expr〉 ⊂∗ endOfInput
garith Expr = STermF #$ 〈Term〉

� SumF #$ 〈Expr〉 ⊂∗ token ’+’~ 〈Term〉
garith Term = SFactorF #$ 〈Factor〉

� ProductF #$ 〈Term〉 ⊂∗ token ’*’~ 〈Factor〉
garith Factor = NumberF #$ 〈Digit〉+

� ParenF ⊂$ token ’(’~ 〈Expr〉 ⊂∗ token ’)’
garith Digit = MkDigitF #$ (token ’0’� token ’1’� ...� token ’9’)

We first define a general ExtendedCFG type synonym (CFG for context-
free grammar), expressing that an extended context-free grammar is a
function returning a production rule for every non-terminal. The ∀·
quantification expresses that it must be defined for any production rule
interpretation type p supporting the context-free grammar operations of
type class LoopProductionRule (and its parents Applicative, Alternative,
CharProductionRule, RecProductionRule). It must also work for any semantic
value family r , producing values of the pattern functor PF φ with r as the
subtree representation type.

Our grammar garith is an extended context-free grammar for the domain φarith .
Its production rules are defined using the combinators we saw before, and values
of PFarith r are produced using the pattern functor’s constructors. Stylistically,
the pattern functor constructors end up at the beginning of each production rule,
giving a nice visual tagging of the rules, and defining for each production rule
what kind of AST node it corresponds to. This final definition of our grammar
is not linked to any parsing algorithm, matching order or set of semantic actions.
As such, it is about as close as it gets to the formal definition of the grammar
in Section 3.2.1.

Our semantic processors are algebra’s over the pattern functor. In fact, our type
synonym Processor is identical to multirec’s Algebra as defined by Rodriguez
et al. [197]. Note also that syntactically, they look remarkably similar to
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syntax-directed definitions traditionally used with parser generators (see [3, pp.
303–323]):

type Processor φ r = ∀ix.φ ix → PF φ r ix → r ix
calcarith :: Processor φarith JKvalue

·
calcarith Line (SExprF JeKvalue

Expr ) = JeKvalue
Line

calcarith Expr (SumF JeKvalue
Expr JtKvalue

Term) = Je + tKvalue
Expr

calcarith Expr (STermF JtKvalue
Term) = JtKvalue

Expr
calcarith Term (ProductF JeKvalue

Term JtKvalue
Factor) = Je ∗ tKvalue

Term
calcarith Term (SFactorF JtKvalue

Factor) = JtKvalue
Term

calcarith Factor (ParenF JeKvalue
Expr ) = JeKvalue

Factor
calcarith Factor (NumberF ds) =

Jread (map (λJdKvalue
Decimal → d) ds)Kvalue

Factor
calcarith Digit (MkDigitF c) = JcKvalue

Decimal

This processor implements the direct calculation of Integer values for
subexpressions that we have previously described. Its type expresses that
it is a processor for domain φarith, producing semantic values of family JKvalue

· .
Like in traditional parser combinator libraries, a semantic processor can also
produce side effects, simply by working with monadic calculations as semantic
values instead of simple values.

Another example of a semantic processor, for which we do not need to provide
any code, has been defined by Rodriguez et al. [197]. Their function to ::φ ix →
PF φ I∗ ix → ix in the Fam type class transforms a single-level unfolding
of an AST (as described earlier) back into the traditional AST data type.
Serendipitously, composing to with the I∗ constructor yields a ready-to-use
and important semantic processor for our grammars. The function (I∗◦) ◦ to
(applying I∗ to the result of applying to to two arguments) is precisely the
semantic processor that produces a wrapped version of the AST as its semantic
value. This direct correspondence illustrates that our use of multirec pattern
functors to abstract semantic actions is a natural and powerful fit.

A processor and a grammar can be combined using the following function. It
takes an extended context-free grammar for domain φ, and a processor for
domain φ and semantic value family r and turns it into an extended context-free
grammar which produces values of semantic value family r .

type ProcessingExtendedCFG φ r =
∀p ix.LoopProductionRule p φ r ⇒ φ ix → p (r ix)

applyProcessor :: Processor φ r →
ExtendedCFG φ→ ProcessingExtendedCFG φ r

applyProcessor proc g idx = proc idx #$ g idx
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Some of the algorithms we define in Section 3.5 will be able to work on grammars
of types ExtendedCFG and ProcessingExtendedCFG. It is therefore useful to
define a more general type of grammars as follows:

type GeneralExtendedCFG φ r rr =
∀p ix.LoopProductionRule p φ r ⇒ φ ix → p (rr ix)

Note that ProcessingExtendedCFG φ r and GeneralExtendedCFG φ r r
designate the same type and ExtendedCFG φ can also be written as
∀r .GeneralExtendedCFG φ r (PF φ r). For non-extended and regular CFGs,
we introduce analogous type synonyms:

type GeneralCFG φ r rr = ∀p ix.RecProductionRule p φ r ⇒
φ ix → p (rr ix)

type ProcessingCFG φ r = GeneralCFG φ r r
type CFG φ = ∀r .GeneralCFG φ r (PF φ r)

There are ways to abstract this even further to remove the duplication between
the extended and non-extended type synonyms. We do not go into that here,
but they can be studied in our online library.

3.4.6 Grammar ingredients

In summary, our approach requires the grammar author to provide five things.

1. The standard AST data types from Section 3.3.4 (the types Line, Expr
etc. for our example).

2. The domain “subkind” with the witness constructors as in Section 3.4.1
(φarith for our example), defining the collection of non-terminals for the
grammar. Various grammar algorithms require extra information about
the domain, which needs to be provided through instances of the type
classes ShowFam, FoldFam and EqFam that we will encounter further on.

3. The pattern functor from Section 3.4.4 (PFarith for our example), defining
the recursive structure of the relations between the non-terminals, and
the corresponding instance of the multirec PF type family. As discussed
in Section 3.4.4, it can also be useful to implement multirec’s Fam type
class which defines the link between the domain, the pattern functor and
the AST types.

4. A grammar for the domain (garith in our example), defining the concrete
syntactic structure. Various algorithms allow the programmer to analyse
and/or transform the grammar. Multiple grammars can even be defined
for the same domain.
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5. If the programmer wants to create a parser, he probably also requires one
or more semantic processors as defined in Section 3.4.4 (e.g. calcarith for
our example). These define how to combine parsed non-terminals to a
value needed. Standard processors exist (e.g. a constant processor which
leads to a recognizer for the grammar or the AST constructing processor
(I∗◦) ◦ to we encountered in Section 3.4.4).

However, of these five, the second and third consist of boilerplate code, which
could be mechanically derived from the definition of the AST data types. In fact,
the multirec library provides Template Haskell functions which mechanize this
translation. The concepts we defined in addition to multirec (like the instances
for the ShowFam, FoldFam and EqFam type classes) could be generated in a
similar way.

Finally, we note again that we do not use Rodriguez et al.’s [197] type functor
combinators to define the pattern functor. These combinators allow them to
derive certain generic operations over it, reducing the amount of boilerplate
code required. We avoid them for presentation reasons: we find they make
pattern functor and semantic processor definitions more difficult to read and
we do not need the automatically derived generic operations.

3.5 The proof of the pudding

Carette et al. show how a finally tagless encoding allows them to interpret a
DSL for a simple higher order typed object language in different ways [30]. They
demonstrate an evaluator, a compiler, a partial evaluator and call-by-name and
call-by-value continuation-passing style transforms. In Sections 3.3 and 3.4, we
have extended their approach with a model of recursion in the object language
such that it is observable in the meta-language.

We will now demonstrate that we can define different interpretations for
the recursive constructs. In fact, these interpretations will work similarly
to Carette et al.’s different interpretations of object language primitives: a
suitable production rule interpretation type is defined, and the behaviour
of primitive parsing and recursion constructs supported by the algorithm is
defined in the instances of the Applicative, Alternative, CharProductionRule,
RecProductionRule and/or LoopProductionRule type classes. Transformations
are possible using a production rule interpretation parametric in an abstract
underlying interpretation type p. In this section, we demonstrate this approach
with a couple of such algorithms, both analyses and transformations.
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The algorithms we discuss will have varying requirements on the grammars
they work for (and for transformations: the grammars they produce), either for
fundamental reasons (e.g. foldLoops and transformLeftCorner will be defined
only for processing grammars and cannot straightforwardly be extended
to abstract grammars) as for reasons of conciseness (e.g. isReachable and
foldReachable will be defined for normal grammars only but can trivially be
generalised to extended context free grammars).

3.5.1 Pretty-printing grammars

A first grammar algorithm that requires a custom interpretation of recursion is
pretty-printing. The implementation is not terribly difficult but it is instructive
as a first demonstration of how to work with our recursion model. Furthermore,
as a first test bed, it will also motivate some further infrastructure we need
to put in place. This algorithm is a simplified version of the one in our
grammar-combinators library.

To compute textual representations, we use a custom production rule
interpretation type PrintRuleInterp, containing simply a String representation
of the rule. It needs to carry the domain type φ and semantic value family r
along in its type for a technical reason related to the functional dependencies of
the production rule interpretation type classes.

newtype PrintRuleInterp (φ :: ∗ → ∗) (r :: ∗ → ∗) v =
MkPRI {printRule :: String}

We implement the ProductionRule operations by simply constructing a proper
String representation of the rule. Note that this is in fact the first time in this
chapter that we provide instances for these classes.

instance Applicative (PrintRuleInterp φ r) where
pure = MkPRI "pure"
a ~ b = MkPRI (printRule a ++ " " ++ printRule b)

instance Alternative (PrintRuleInterp φ r) where
empty = MkPRI "empty"
a � b = MkPRI ("(" ++ printRule a ++ " | " ++ printRule b ++ ")")

instance CharProductionRule (PrintRuleInterp φ r) where
endOfInput = MkPRI "endOfInput"
token t = MkPRI (show t)
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For the RecProductionRule instance, we need to know how to represent a non-
terminal as a String. We therefore require our domain φ to be an instance of
a new type class called ShowFam, telling us how to convert a domain witness
into a String.

class ShowFam φ where showIdx :: φ ix → String
instance ShowFam φ⇒

RecProductionRule (PrintRuleInterp φ r) φ r where
〈idx〉 = MkPRI ("<" ++ showIdx idx ++ ">")

instance ShowFam φ⇒
LoopProductionRule (PrintRuleInterp φ r) φ r where
〈idx〉∗ = MkPRI ("<" ++ showIdx idx ++ ">*")
〈idx〉+ = MkPRI ("<" ++ showIdx idx ++ ">+")

Given this interpretation for production rules, we can define how to print the
production rules for a single non-terminal:

printNT :: ShowFam φ⇒ GeneralExtendedCFG φ r rr → φ ix → String
printNT gram idx =

"<" ++ showIdx idx ++ ">" ++ " ::= " ++ printRule (gram idx)

This printNT function takes a grammar, a non-terminal witness, and produces
a string representation of the grammar’s production rules for that non-terminal.
Note that it takes our most general form of grammar GeneralExtendedCFG.

To print a full grammar, all that is left to do, is to consecutively apply this
printNT function to all non-terminals in a grammar. To do this, we again need
information from the domain, and we define this as another general requirement
for domains in the FoldFam type class. Since we can’t require that there exist
a list of all non-terminals (because their witnesses all have a different type), the
FoldFam class contains a function foldFam, which folds a given function over
all non-terminals in the domain.

class FoldFam (φ :: ∗ → ∗) where foldFam :: (∀ix.φ ix → b → b)→ b → b
printGrammar :: (FoldFam φ,ShowFam φ)⇒

GeneralExtendedCFG φ r rr → String
printGrammar gram = foldFam ((++) ◦ (++"\n") ◦ printNT gram) ""

One might have the impression that we are defining ad hoc XFam classes for all
of our algorithms, but this impression would be false. The type classes FoldFam
and ShowFam (and EqFam which we will encounter further on) express general
requirements for domains. Only for presentation purposes, we have chosen
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ghci> putStr (printGrammar garith)

<Line> ::= <Expr> EOI
<Expr> ::= <Term> | (<Expr> ’+’ <Term>)
<Term> ::= <Factor> | (<Term> ’*’ <Factor>)
<Factor> ::= <Digit>+ | (’(’ <Expr> ’)’)
<Digit> ::= ’0’ | ’1’ | ’2’ | ’3’ | ... | ’8’ | ’9’

Figure 3.4: Printing out an (E)BNF-like representation of the arithmetic
expressions grammar with the library grammar printing algorithm (result
manually indented).

to define them when we first encountered the need. The instances for our
domain φarith are trivial:

instance ShowFam φarith where showIdx Line = "Line"
showIdx Expr = "Expr"
showIdx Term = "Term"
showIdx Factor = "Factor"
showIdx Digit = "Digit"

instance FoldFam φarith where
foldFam f = f Line ◦ f Expr ◦ f Term ◦ f Factor ◦ f Digit

A more polished version of this algorithm produces output as given in Figure 3.4.

3.5.2 Open recursion

In Section 3.3.2, our first attempt at a better representation of recursion used a
form of open recursion, different from the 〈·〉 construct which we introduced later.
It is in fact easy to formalize the equivalence between these two representations
of grammars. In this section, we define a function called openRecursion that will
turn out to be a useful technical aid in the implementation of other algorithms.
It has the following type signature:

openRecursion :: CharProductionRule p ⇒
GeneralCFG φ r rr → (∀ix.φ ix → p (r ix))→ φ ix → p (rr ix)

This function turns a grammar using the RecProductionRule type class’ 〈·〉
construct into a grammar taking a self parameter instead. To implement this,
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we define a production rule type ORRule which wraps a production rule taking
a self parameter.

newtype ORRuleInterp p φ r v =
MkORR {unORR :: (∀ix.φ ix → p (r ix))→ p v}

We omit instances for classes Applicative, Alternative and CharProductionRule
for this type. They simply pass through the self parameter to their components
(if any). The RecProductionRule instance replaces calls 〈idx〉 with calls to
self idx.

instance CharProductionRule p ⇒
RecProductionRule (ORRuleInterp p φ r) φ r where
〈idx〉 = MkORR (λself → self idx)

In the implementation of openRecursion, we construct the production rule for
non-terminal idx in the new grammar by interpreting the grammar with our
ORRuleInterp production rule type and unwrapping the result.

openRecursion g self idx = unORR (g idx) self

Note, by the way, that the reverse transformation is even easier to define:

closeRecursion :: RecProductionRule p φ r ⇒
(∀p.CharProductionRule p ⇒

(∀ix.φ ix → p (r ix))→ φ ix → p (rr ix))→
φ ix → p (rr ix)

closeRecursion g idx = g 〈·〉 idx

3.5.3 Reachability

The previous transformation is sometimes a useful technical tool in the
implementation of other algorithms. In this section, we implement a simple
non-terminal reachability analysis. We perform a depth-first search while
keeping track of an environment of non-terminals already encountered, which
we represent as a function from non-terminals to Bools. The environment
nothingSeen represents the empty set:

newtype SeenEnv φ = MkSG {seenIdx :: ∀ix.φ ix → Bool }
nothingSeen :: SeenEnv φ
nothingSeen = MkSG (\_→ False)
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To mark a non-terminal as seen in an environment, we need to be able to
override the wrapped function for a single non-terminal and leave it unmodified
for the others. In fact, overriding polymorphic functions in this way is another
general requirement on domains, which we model in the EqFam type class:

class EqFam φ where
overrideIdx :: (∀ix.φ ix → r ix)→ φ oix → r oix → (∀ix.φ ix → r ix)

This type class models a general notion of domains with a decidable equality
between non-terminals. However, unlike a simpler equality test (like the derived
eqIdx below), the overrideIdx function allows us to exploit this decidable equality
to override a polymorphic function over a domain φ for one of the non-terminals
φ oix.

We need to instantiate the EqFam type class for all of our domains:

instance EqFam φarith where overrideIdx Line v Line = v
overrideIdx Expr v Expr = v
overrideIdx Term v Term = v
overrideIdx Factor v Factor = v
overrideIdx Digit v Digit = v
overrideIdx f idx = f idx

Using the general overrideIdx function, we can define a specialisation
overrideIdxK for functions returning values of a constant type. We use a
standard constant type functor K∗ from multirec. We can also use it to define
equality of non-terminal witnesses.

overrideIdxK :: EqFam φ⇒ (∀ix ′.φ ix ′ → v)→ φ oix → v → φ ix → v
overrideIdxK f idx v = unK∗ ◦ overrideIdx (K∗ ◦ f ) idx (K∗ v)
eqIdx :: EqFam φ⇒ φ ix1 → φ ix2 → Bool
eqIdx idx1 = overrideIdxK (const False) idx1 True

With this additional infrastructure, we can update our sets of non-terminals as
follows:

setSeen :: EqFam φ⇒ φ ix → SeenEnv φ→ SeenEnv φ
setSeen idx s = MkSG (overrideIdxK (seenIdx s) idx True)

We implement our reachability analysis as a foldReachable function. Like the
foldFam we’ve seen before, this function folds a function over a set of non-
terminals. However, unlike that function, it does not fold the function over all
non-terminals in the domain. The folding is restricted to the non-terminals
reachable from a given start non-terminal in a given grammar:
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type Folder φ n = ∀ix.φ ix → n → n
foldReachable :: ∀φ ix n r rr .EqFam φ⇒

GeneralCFG φ r rr → φ ix → Folder φ n → n → n

The implementation of this function uses an interpretation type wrapping an
algorithm with the set of encountered non-terminals SeenEnv φ as a mutable
state variable. The wrapped algorithm takes the function to be folded and the
start value and its return type is the result type of the fold.

newtype FoldReachableRuleInterp φ n v = MkFRRI {
foldRule :: Folder φ n → n → State (SeenEnv φ) n}

putSeen :: EqFam φ⇒ φ ix → State (SeenEnv φ) ()
putSeen idx = modify (setSeen idx)

The algorithm is simple. For leaf rules in the grammar, the algorithm doesn’t
need to do anything, and for branch nodes, it simply iterates over subnodes.
We omit the instances for Applicative, Alternative and CharProductionRule,
which simply translate all operations into the following foldLeaf or foldBranch
as appropriate:

foldLeaf :: FoldReachableRuleInterp φ n v
foldLeaf = MkFRRI (λ n → return n)
foldBranch :: FoldReachableRuleInterp φ n v →

FoldReachableRuleInterp φ n v′ → FoldReachableRuleInterp φ n v′′
foldBranch ra rb = MkFRRI (λf n → do n′ ← foldRule ra f n

foldRule rb f n′)

The only magic of the algorithm is in the handling of references to non-terminals.
For a reference to a non-terminal idx , we need to check if we have encountered
the non-terminal idx already and if so, terminate the recursive search. If not,
we fold the fold function over the non-terminal and subsequently recurse over
the production rules of this non-terminal:

foldRef :: EqFam φ⇒ φ ix → FoldReachableRuleInterp φ n v →
FoldReachableRuleInterp φ n v′

foldRef idx r = MkFRRI (λf n →
do seen ← gets (λseenSet → seenIdx seenSet idx)

if seen then return n else putSeen idx >> foldRule r f (f idx n))

In order to define an instance of the type class RecProductionRule for our
FoldReachableRuleInterp using foldRef , we need to modify that type to carry
the rules for the entire grammar along. By using the previously introduced
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openRecursion function as a technical aid, we avoid a bit of this verbiage. The
self parameter we provide to that algorithm is constructed using the foldRef
function. We then evaluate the fold in the start non-terminal’s production rule
with an initially empty set of seen non-terminals:

foldReachable g idx f n =
let g′ :: ∀ix.φ ix → FoldReachableRuleInterp φ n (rr ix)

g′ = openRecursion g (λidx → foldRef idx (g′ idx))
in evalState (foldRule (g′ idx) f n) nothingSeen

Checking whether a non-terminal end is reachable from a non-terminal start is
easy to implement in terms of foldReachable:

isReachable :: ∀φ r rr ix ix ′.EqFam φ⇒
GeneralCFG φ r rr → φ ix → φ ix ′ → Bool

isReachable g start end = foldReachable g start ((∨) ◦ eqIdx end) False

3.5.4 Production rule origami

In Section 3.3.3, we introduced the 〈·〉∗ and 〈·〉+ operators, and defined their
types in Section 3.4.4. Formally, these operators are very similar to the other
recursive operator 〈·〉, and our modelling of them in the LoopProductionRule
type class allows us to define different interpretations, like for the 〈·〉 operator.

From a parsing point of view, these operators are less fundamental than
〈·〉. In this section, we implement a standard transformation, known as the
recursive interpretation of regular right part grammars (see Grune and Jacobs [88,
§2.3.2.4]), which transforms grammars using 〈·〉∗ and 〈·〉+ into grammars which
only use 〈·〉.

The grammar transformation works by replacing calls to 〈idx〉∗ for non-
terminal idx with normal references 〈idx∗〉 to newly introduced non-terminals
idx∗. We define suitable production rules for these new non-terminals in the
transformed grammar. This transformation is implemented in our library as
the foldLoops algorithm.

In a first step, we define the domain of the transformed grammar:

data ·1 ix
data ·∗ ix
data ·fl φ ix where ·1 :: φ ix → φfl ix1

·∗ :: φ ix → φfl ix∗



THE PROOF OF THE PUDDING 115

We introduce new non-terminal types ix1 and ix∗, parameterised over an
underlying non-terminal type ix . The new non-terminal ix1 represents the base
non-terminal ix, and ix∗ its quantified *-variant.9 Both types ix1 and ix∗ are
strictly needed on the type-level and they do not contain any values. The new
domain φfl , parameterised over an underlying domain φ (the dot is a placeholder
for φ in the definition), contains witnesses for ix1 and ix∗ given a proof that ix
is a non-terminal in the underlying domain φ. We use the names ·1 and ·∗ in
Haskell’s namespace for types and values as respectively the non-terminal types
and the constructors of the witnesses.

All necessary type classes (like FoldFam and ShowFam, and others which we
haven’t encountered yet) can be implemented for this new domain. As an
example, we show the FoldFam instance, which simply uses the underlying
domain φ’s foldFam function to iterate over both types of non-terminals in the
domain φfl :

instance FoldFam φ⇒ FoldFam φfl where
foldFam f n = foldFam (λidx → f idx∗) (foldFam (λidx → f idx1) n)

For representing semantic values for the new domain, we introduce a semantic
value family adapter rflv, parameterised over an underlying semantic value
family r . As you might expect, rflv wraps a value of type r ix for the new
non-terminal ix1 and a value of type [r ix ] for the non-terminal ix∗.

data family ·flv (r :: ∗ → ∗) ix
newtype instance ·flv r ix1 = FLBV {unFLBV :: r ix }
newtype instance ·flv r ix∗ = FLMV {unFLMV :: [r ix ]}
consFLV :: rflv ix1 → rflv ix∗ → rflv ix∗
consFLV (FLBV v) (FLMV vs) = FLMV (v : vs)

In a second step, we define the foldLoops algorithm, which turns an extended
context-free grammar over a domain φ into the equivalent non-extended context-
free grammar over the larger domain φfl . The algorithm only supports grammars
which have already been combined with a semantic processor, i.e. grammars of
type ProcessingExtendedCFG. This leads to the following type signature:

foldLoops :: ProcessingExtendedCFG φ r → ProcessingCFG φfl rflv

The transformed grammar is defined by the production rules for both types of
non-terminals in domain φfl . The production rules for a non-terminal idx∗ are

9We do not require values for the ix1 and ix∗ types, so we define them using the
EmptyDataTypes GHC Haskell extension.
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straightforward. Such a non-terminal must either be the corresponding base
non-terminal idx1 followed by another instance of non-terminal idx∗ itself, or it
must be empty. In both cases, we make sure to produce the correct semantic
value.

foldLoops bgram idx∗ = consFLV #$
〈
idx1〉~ 〈idx∗〉

� pure (FLMV [ ])

The production rules for a base non-terminal idx1 are obtained by taking the
production rules of the unmodified grammar and replacing all references to
〈idx〉∗ with calls to 〈idx∗〉. We perform this substitution by instantiating the
original grammar’s production rules with a special production rule interpretation
type FLW . The type FLW implements a production rule for the original
context-free grammar over domain φ, in terms of an underlying production
rule for the transformed context-free grammar over the extended domain φfl.
The classes Applicative, Alternative and CharProductionRule are implemented
by just passing the call through to the underlying production rules and
wrapping/unwrapping the results as appropriate (not shown for brevity). The
RecProductionRule instance transforms a reference 〈idx〉 into a reference

〈
idx1〉

and the LoopProductionRule instance transforms a quantified reference 〈idx〉∗
into the desired normal reference 〈idx∗〉. The default definition of 〈·〉+ transforms
〈idx〉+ into (:)#$ 〈idx〉~ 〈idx〉∗, which is perfect for our purposes.

data FLRuleInterp p (φ :: ∗ → ∗) (r :: ∗ → ∗) v = MkFLRI {unFLRI :: p v}
instance RecProductionRule p φfl rflv ⇒

RecProductionRule (FLRuleInterp p φ r) φ r where
〈idx〉 = MkFLRI (unFLBV #$

〈
idx1〉)

instance RecProductionRule p φfl rflv ⇒
LoopProductionRule (FLRuleInterp p φ r) φ r where
〈idx〉∗ = MkFLRI (unFLMV #$ 〈idx∗〉)

We can now finish our algorithm with the definition of the transformed
grammar’s production rules for non-terminals idx1. These simply unwrap
the FLRuleInterp production rule interpretation type:

foldLoops bgram idx1 = FLBV #$ unFLRI (bgram idx)

In Figure 3.5, we show the result of applying the foldLoops algorithm to the
arithmetic expressions grammar. We omit the base rules which are identical to
the ones in Figure 3.4.
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ghci> putStr (printGrammar (foldLoops (applyProcessor calcarith garith)))

<Line*> ::= (<Line> <Line*>) | pure
<Expr*> ::= (<Expr> <Expr*>) | pure
<Term*> ::= (<Term> <Term*>) | pure
<Factor*> ::= (<Factor> <Factor*>) | pure
<Digit*> ::= (<Digit> <Digit*>) | pure
...
<Factor> ::= (<Digit> <Digit*>) | ’(’ <Expr> ’)’
...

Figure 3.5: A printed version of the added production rules for ·∗ non-terminals
added by the foldLoops algorithm. We omit the ·1 production rules which are
identical to Figure 3.4.

3.5.5 The left-corner transform, declaratively...

As a final demonstration of a special interpretation of recursive constructs, we
show by example that our framework allows the definition of non-trivial general
grammar transformations. We develop an implementation of the left-corner
transform as defined (among others) by Moore [157]. It removes left-recursion
from a grammar, solving the problem we saw in Section 3.2.3.

Figure 3.6 partially shows the result of applying the left-corner transformation
to the arithmetic expressions grammar. What happens is that for, for example,
the Expr non-terminal, the transformation has analysed the set of terminals
and the set of non-terminals that a match of Expr can possibly start with.
The second set is called the set of left corners of Expr . New non-terminals
define what remains of the Expr non-terminal after one of these terminals (e.g.
Expr − ’(’) or non-terminals (e.g. Expr − Factor) has been matched. The
new rules are not (directly or mutually) left-recursive but they define the same
language as the original grammar.

In the literature, the left-corner transform is typically presented in an algorithmic
style (e.g. [157, 16, 9]): an initial grammar is analysed, and step-by-step, new
rules are added to obtain a final transformed grammar. We conjecture that
such an implementation can be supported in our framework using techniques
similar to Baars et al. [9]. They define transformation arrows to generate new
type-level identifiers as well as keep track of a modifiable typing environment
for non-terminal references.
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ghci> putStr (printReachableGrammar (filterDiesE
(transformLeftCornerE calcGrammarArith)) (LCBase Expr))

(...)
<Expr> ::= (’(’ <’(’\Expr>) | (’0’ <’0’\Expr>)

| (’1’ <’1’\Expr>) | (’2’ <’2’\Expr>) | ...
| (’7’ <’7’\Expr>) | (’8’ <’8’\Expr>)
| (’9’ <’9’\Expr>)

<’(’\Expr> ::= <Expr> ’)’ <Factor\Expr>
<Factor\Expr> ::= <Term\Expr>
<Term\Expr> ::= ((’*’ <Factor>) <Term\Expr>) | <Expr\Expr> | pure
<Expr\Expr> ::= ’+’ <Term> (<Expr\Expr> | pure) | (EOI <Line\Expr>)
<Line\Expr> ::= empty
<’9’\Expr> ::= <Digit\Expr>
<Digit\Expr> ::= <Digit>* <Factor\Expr>
(...)

Figure 3.6: Some rules from the printed version of the arithmetic expressions
grammar after applying the left-corner transform and dead-branch removal.
Output reformatted, reordered and selected.

However, we prefer to give a more declarative account of the transformation.
It turns out that by analysing the algorithmic description, we can identify
the three different forms of production rules that will be generated, and the
production rules for all three can be derived from the rules in the original
grammar. For any given domain φ, we define a new domain φlc, containing
three types of non-terminals: for given non-terminals a and b and terminal t, we
have non-terminals a1 (representing the base non-terminal a), b\NT a (matching
the remainder of non-terminal a when non-terminal b has already been matched)
and t \T a (matching the remainder of non-terminal a when character t has
been matched). Note that the latter is related to Brzozowski’s derivatives of
regular expressions [27]. Note again the · as placeholder in the notations.

data ·1 ix
data (· \NT ·) ix ′ ix
data (\T ·) ix
data ·lc φ ix where ·1 :: φ ix → φlc ix1

· \NT · :: φ ix ′ → φ ix → φlc (ix ′ \NT ix)
· \T · :: Char → φ ix → φlc (\T ix)



THE PROOF OF THE PUDDING 119

For a semantic value family r for the underlying domain φ, we define a new
semantic value family rlc for our new domain φlc, with appropriate semantic
values for the newly introduced non-terminals. For example, since a non-
terminal b \NT a represents the remainder of a non-terminal a starting with a
non-terminal b that has already been parsed, we define the type of its semantic
value as r b → r a: a function that returns the semantic value of non-terminal a
when given the value of the already parsed non-terminal b.

data family ·lc (r :: ∗ → ∗) ix
newtype instance rlc ix1 = LCV 1 {unLCV 1 :: r ix }
newtype instance rlc (ix ′ \NT ix) = LCV ·\NT · {unLCV ·\NT · :: r ix ′ → r ix }
newtype instance rlc (\T ix) = LCV ·\T · {unLCV ·\T · :: Char → r ix }

In order to construct the production rules for these new non-terminals, we
need to analyse the existing rules in the grammar. The information we need is
collected in the four fields of production rule interpretation type TLCRuleInterp:

data TLCRuleInterp p φ r v =
MkTLCRI {tlcEmpty :: Maybe v,

tlcFull :: p v,
tlcNTMinNT :: ∀ix ′.φ ix ′ → p (r ix ′ → v),
tlcNTMinT :: Char → p (Char → v)}

The field tlcEmpty keeps track of whether the production rule can (directly)
match the empty string and if so, what value it produces. Under tlcFull, we
keep an unmodified version of the original production rule. Under tlcNTMinNT ,
we keep the original production rule with leading (direct) references to a given
base non-terminal removed (or, in the absence of such a leading reference, a
never-matching empty rule) and tlcNTMinT provides the original production
rule with leading (direct) references to a given terminal removed.

We omit the instances for the Applicative, Alternative and CharProductionRule
type classes for brevity. In the Applicative instance, we need to make sure
to properly handle empty and non-empty left hand sides in the sequencing
operator (to make sure we properly detect leading tokens and references). In
the CharProductionRule instance, we interpret a call to token tt specially under
the tlcNTMinT interpretation, replacing it with a pure id rule, that simply
passes through the already matched token.

The RecProductionRule instance is the most interesting one. Under the
tlcNTMinNT interpretation of the base production rule (where the current rule
has to consume a given already matched non-terminal), we need to interpret a
call to a base non-terminal 〈idx〉 as a pure rule that simply passes through the
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already matched semantic value, but only if the already matched non-terminal
is the requested non-terminal idx. Otherwise, the tlcNTMinNT interpretation
must fail. To do this in a well typed way, we use the function overrideIdx,
defined in Section 3.5.3:

overrideIdx :: EqFam φ⇒
(∀ix.φ ix → r ix)→ φ oix → r oix → (∀ix.φ ix → r ix)

The RecProductionRule instance above defines the tlcNTMinNT interpretation
of an underlying production rule as a function that will fail for all non-terminals
except for the requested non-terminal, in which case it is an empty rule passing
through the already matched result. A technical problem is that the overrideIdx
function requires the result type of the overridden function to be directly
parametric in the non-terminal type ix, requiring us to wrap and unwrap the
returned rules in a wrapper type WrapNTMinNTP. The other interpretations
are straightforward.

instance (RecProductionRule p φlc rlc,EqFam φ)⇒
RecProductionRule (TLCRuleInterp p φ r) φ r where
〈idx :: φ ix〉 = MkTLCRI {tlcEmpty = Nothing,

tlcFull = unLCV 1 #$ 〈idx1〉 ,
tlcNTMinNT = rNTMinNT ,
tlcNTMinT = const empty}

where rNTMinNT :: ∀ix ′.φ ix ′ → p (r ix ′ → r ix)
rNTMinNT idxm = unWNMNP

(overrideIdx (\_→WNMNP empty)
idx (WNMNP (pure id)) idxm)

newtype WrapNTMinNTP p r ix ix ′ =
WNMNP {unWNMNP :: p (r ix ′ → r ix)}

With these instances, we have the machinery we need to analyse a grammar’s
production rules, and we can proceed to the actual transformation of the
grammar in the function transformLeftCorner . This function is restricted
to processing grammars because the left-corner transform inherently mixes
transformed versions of rules from the original grammar and new rules of
standard forms, making it difficult to work with non-processing grammars.

transformLeftCorner ::
(FoldFam φ,EqFam φ)⇒ ProcessingCFG φ r → ProcessingCFG φlc rlc

To define the production rules of the transformed grammar, we need to know the
FIRST sets of the non-terminals (see [3, pp.188–189]): the set of terminals that
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a match of a given non-terminal can start with. To obtain this information, we
make use of a general algorithm calcFirst, which performs the standard FIRST-
set analysis. We omit its implementation, which is relatively straightforward
(~70 LOC in the library). With this extra information, we call another function
transformLeftCorner ′ which will generate the actual production rules for our
new non-terminals.

transformLeftCorner gram idx =
transformLeftCorner ′ gram (calcFirst gram) idx

The production rules for non-terminals idx1 are of the following form: they first
expect to see one of the tokens of the FIRST set of the non-terminal idx and
then pass on the work to the non-terminal t \T idx, properly wrapping and
unwrapping values along the way:

transformLeftCorner ′ bgram firstSet idx1 =
let ruleT tt = flip ($)#$ token tt ~ (unLCV ·\T · #$ 〈tt \T idx〉)
in LCV 1 #$ Set.fold ((�) ◦ ruleT ) empty (firstSet idx)

Omitting the production rules for non-terminals ix ′\NT ix (which are technically
similar to those that follow), all that is still required for the left-corner grammar
transformation are the rules for non-terminals t \T idx. These rules come in
two forms, because the non-terminal idx can start with character t in two
ways. Either one of the original production rules for the non-terminal idx starts
with character t directly, and in that case, the remainder of that production
rule becomes the production rule for t \T idx. This remainder of the original
production rule is precisely what is represented by its interpretation under
tlcNTMinT t.

The other possibility is that a production rule of idx starts with a (direct
or indirect) reference to another non-terminal idxB, and that non-terminal
directly starts with character t. This is captured by a production rule for
non-terminal t \T idx that starts with the remainder of the production rules
for non-terminal idxB starting with character t (which we again get using
that production rule’s interpretation under tlcNTMinT) and then references
non-terminal idxB \NT idx. Because non-terminal idxB \NT idx represents the
remainder of a base non-terminal idx after a non-terminal idxB has been
matched, its production rules will properly match the remainder of non-
terminal idx.

transformLeftCorner ′ bgram (t \T (idx :: φ ix1 )) =
let bMinT :: φ ix2 → p (Char → r ix1 )

bMinT idxB = flip (◦)#$ tlcNTMinT (bgram idxB) t ~
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(unLCV ·\NT · #$ 〈idxB \NT idx〉)
bMinTs = foldFam ((�) ◦ bMinT ) empty

in LCV ·\T · #$ bMinTs
� LCV ·\T · #$ tlcNTMinT (bgram idx) t

Note that we don’t actually check whether character t is in the FIRST set of
non-terminal idxB, nor that idxB is a left corner of idx. These would both be
worthwhile optimisations, but they are not necessary, because in those cases,
subsequent parts of the production rule in question become empty rules and
can be removed using general postprocessing algorithms (dead-branch removal
and dead non-terminal unfolding).

3.5.6 The grammar-combinators library

The above algorithms show that our grammar model adds useful expressiveness
to parser combinator libraries in a finally tagless style: we can do more grammar
analyses and transformations. The limitation of parser combinator libraries to
top-down parsing algorithms is also lifted: after the left-corner transform, a
top-down matching order in the transformed grammar corresponds to a left-
corner matching order for the original grammar [198]. Our semantic processors
can be applied during parsing, independently of the matching order.

In addition to what we’ve shown, we have implemented an elaborate grammar
analysis, transformation and parsing library called grammar-combinators. This
library is designed as a collection of independently usable grammar algorithms.
The library provides a combination of various features that, to the best of our
knowledge, are unavailable in any existing parser EDSL library.

Practical features include a powerful transformation library (including the left-
corner transform and a uniform version of Paull’s left-recursion removal (see [3,
p. 177]), support for performing grammar transformations at compile time using
Template Haskell [208]), a generic packrat parser [73] and basic interfaces to
uu-parsinglib [219] and Parsec [125] as backend parsers. The library is open
source and available online.

3.5.7 Limitations

Notwithstanding its advantages, the typing of recursive constructs entails a
certain overhead in defining concepts such as the domain, its witnesses and
pattern functor, and semantic value families, when compared to standard parser
combinators (see Section 3.4.6). On top of that, some limitations need to be
taken into account.
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Our recursive constructs are clearly more verbose than the almost trivial
recursion in typical parser combinator libraries. However, we believe that a
certain verbosity is unavoidable if we wish to support a wide range of standard
algorithms from the parsing literature, many of which require observable
recursion. Also, supporting additional recursive constructs requires quite a
bit of work. In this chapter, we can see that supporting quantified recursive
constructs on top of normal recursive constructs (which is again almost trivial in
normal parser combinators) required an extra type class, a translation algorithm
involving a model of the modified domain and semantic value families etc.

A compelling feature of parser combinators that we have not looked at, is
the ease with which you can combine unrelated parsers into new ones. An
example is the definition of grammar patterns like typical comment styles or
standard number notations. We require a full view of grammars, and this makes
us lose some of the simple compositionality of parser combinators. We are
experimenting with a grammar combination primitive that partly recovers this,
but it is not ready for inclusion in the library.

Another limitation is that the added abstraction unfortunately has a performance
cost. In some initial tests, we have effectively noticed an important performance
impact, even though general optimizations for generic code [133] appear to
reduce it considerably. The performance impact could also be reduced by
performing grammar transformations at compile-time using Template Haskell.
A more detailed performance analysis remains future work, but we expect that
compiler improvements are needed (like better inlining heuristics and more
control over partial evaluation) to improve performance of generic code in
general and our code in particular.

3.6 Related work

For background material on context-free grammars, parsing and grammar
transformations, we refer to Aho et al. [3].

3.6.1 Finally tagless DSLs

The finally tagless style for modelling a typed object language in a meta-
language was identified and popularised by Carette, Kiselyov and Shan [30].
They demonstrate a model of a higher-order typed lambda calculus in a typed
functional metalanguage (they use both Haskell and ML). Their model is
parameterised by an interpretation of the primitive operations of their object



124 FINALLY TAGLESS OBSERVABLE RECURSION

language. It uses metalanguage typing to statically ensure type-correctness
of the modeled object language terms. Carette et al. demonstrate a set of
different interpretations of their lambda calculus variant: an evaluator, a staged
interpreter, a partial evaluator, and call-by-name and call-by-value continuation
passing style transformations.

In this text, we have described why the standard fix operator is not a perfect
fit for our requirement for metalanguage-observable recursion in our parsing
DSL and we have defined an alternative model. It is interesting however,
that for any grammar AST, we can also consider the AST as a representation
type for terms of a separate embedded typed object language, representing
the semantics of the grammar. In Carette et al.’s terminology, the standard
AST types from Section 3.4 is an “initial” embedding of this language, but
we could have used a “finally tagless” model for it as well. In this model,
the Sum constructor would, for example, correspond to a sum function in a
grammar-specific ArithSemantics type class. Such a finally tagless encoding
is more extensible than the naive AST representation, but our representation
using the multirec pattern functor actually features this extensibility as well;
because the pattern functor is parametric in the representation of recursive
sub-data, we can apply the same technique as Swierstra [221]. In this sense,
the pattern functor offers an alternative “initial” modelling, less naive than the
standard GADT representation, and lacking its inextensibility. Additionally, it
offers some benefits of its own that seem unavailable in a finally tagless style
(e.g. it supports generic algorithms using multirec [197]). A more detailed study
of this correspondence is interesting future work.

3.6.2 Parser combinators

Parser combinators have a long history (see [125] for references), but most
work employs an ω-regular representation of grammars, with the associated
downsides that we have discussed in Section 3.1. Here, we limit ourselves to
work that uses a representation of grammars in which recursion is observable.
Even then, almost all libraries are tied to a single parsing algorithm.

TTTAS

Baars et al. [9, 8] implement the left-corner grammar transform [157] using
type-level naturals as the representation of non-terminals. They ensure type-
safety using a type environment encoded as a list of types. They propose
a transformation library based on the arrows abstraction, which they use
essentially for the generation of fresh type-level identifiers. Like ours, their
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grammar representation explicitly represents the grammar’s recursion in a well-
typed way and allows them to implement the left-corner transform and support
left-recursive grammars.

Nevertheless, we believe our work provides advantages over theirs. Our
representation of non-terminals as a “subkind with proof terms” [197] and
type environments as data families is less complex. We provide semantic value
family polymorphism, which they do not. They use stateful Trafo transformation
arrows to allow for generation of fresh non-terminal identifiers. This is more
powerful than the way we introduce new non-terminals (e.g. in Section 3.5.5),
since algorithms in our approach need to define statically (potentially in terms of
an argument domain) the non-terminals that will be used, while their algorithms
can decide at run-time how many non-terminals are needed. This allows
them to implement the standard, imperative-style descriptions of grammar
transformations and imperatively extend domains step by step during the
transformation. Our algorithms work with fixed domains, which we found
beneficial in the sense that it has forced us to formulate the algorithms in a
more functional style. However, there may be algorithms that do not lend
themselves well to such a reformulation (although we have not encountered
them in the parsing domain), in which case more complex techniques like Baars
and Swierstra’s extensible domains are required.

Finally, Baars and Swierstra’s grammars seem designed to be generated by the
compiler in Viera et al.’s alternative for the standard Haskell read-function [227].
They are less easily human-readable than our grammars. In the parsing domain,
Baars and Swierstra only discuss an implementation of the left-corner grammar
transform, while we show the importance of our approach for a wider parsing
library, discussing implementations of a variety of useful algorithms for grammar
analysis, transformation and parsing.

Dependently typed parser combinators

Brink, Holdermans and Löh describe a dependently typed parser combinator
library [24], implemented in the Agda programming language [161]. Agda’s
dependently typed nature strongly simplifies the requirements on the repre-
sentation of non-terminals (types of production rules can more simply depend
on non-terminals). They implement the left-corner transformation in their
formalism, and they provide a machine-checkable proof of a language-inclusion
property for the transformation.

The proof of correctness properties beyond type-safety is out of range in our
Haskell implementation. In addition to making such proofs possible, the power
of dependent types also lets the authors get away with very simple models of
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grammars (a list of production rules) and production rules (a LHS non-terminal
and a list of RHS symbols). Types are simply recalculated from these simple
models when needed instead of going through a lot of trouble to model them and
carry them around. Our use of Haskell limits us to a more restricted formalism,
but this does make our ideas more portable and our approach more disciplined.
Our use of a finally tagless model allows us to define different sets of primitives
that can be mixed and matched (keeping, for example, extended CFGs separate
from normal CFGs), whereas Brink et al. restrict themselves to standard CFGs.

Danielsson and Norell [53] use Agda to define a provably terminating parser
combinator library of total parser combinators. They use unobservable (co-
)recursion,10 limiting them to a top-down parser algorithm. They manage to
support left-recursion (although their approach does not seem suited for online
parsing) with an algorithm based on Brzozowski derivatives and they provide a
static termination guarantee using dependent types and a mixture of induction
and coinduction. It is interesting that in an unpublished draft, seemingly a
pre-cursor of their total parser combinators, Danielsson and Norell investigate
a model of grammars with observable recursion, using an operator ! similar
to our 〈·〉. They discuss it as one of two alternative modellings of grammars
which solves certain technical modularity problems of a more standard parser
combinator model. Brink et al. authors do not discuss the fact that their
“grammar-based” model makes recursion observable or the additional power this
provides to the model.

3.6.3 Observable recursion

In order to model and work with recursive structures in a pure language like
Haskell, several approaches have been explored in the literature. One branch
of research has focused on introducing a varying amount of impurity, ranging
from observing sharing within the IO monad [79] to adding referential identity
as a fundamental language feature [40]. We do not go into these approaches
in detail, as it is our goal to model the recursion in the parsing EDSL with
a representation that is observable in Haskell without compromising purity.
Much of this research focuses on the application domain of hardware description
languages and we would be interested to see if our approach can be successfully
applied in this field as well.

Carette et al. [30] provide a form of observable recursion through the fix primitive
which we have discussed in detail in Section 3.3, so we do not go into that
further. Another interesting proposal is the recursive do notation as proposed

10What we’ve been calling recursion throughout this paper is actually corecursion in their
terminology.
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by Erkok and Launchbury [70], who add a primitive recursive operator for
monads in a type class MonadRec (later renamed to MonadFix):

class Monad m ⇒ MonadRec m where
mfix :: (α→ m α)→ m α

Instances are supposed to obey three laws (strictness, purity and left-shrinking).
Analogous to the translation of Haskell’s do-notation to pure code involving the
monadic operators, Erkök and Launchbury define a recursive mdo-notation and
a translation to pure code involving monadic operators and the mfix primitive.
Erkök and Launchbury’s proposal could be used to provide observable recursion
in a monadic parser EDSL, but unfortunately, a monadic parser EDSL is more
difficult to analyse for other reasons (see e.g. Swierstra and Duponcheel [220,
§5.2]). As discussed in Section 3.3, we believe that the FixProductionRule type
class and its fix method (based on the fix method defined by Carette et al. [30])
are analogous to MonadRec and mfix for applicative functors and we think it is
interesting future work to extend the bracket notation for applicative code by
McBride and Paterson [145] with a notation for recursion.

The do-notation for arrows by Paterson [178] also translates recursion to a
recursion primitive in the ArrowLoop class, which seems to support observable
recursion. Allowing for the (limited-depth) LL(1) analysis performed by uu-
parsinglib [220] was a motivation for the development of arrows [102], so together
with the observable recursion primitive provided by the ArrowLoop type class
and the recursive do-notation, arrows may allow for the more elaborate kinds
of grammar analysis and transformation that we perform, but we are not aware
of any work that investigates this in more detail.
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Abstract

We present a novel set of meta-programming primitives for use in a dependently-
typed functional language. The types of our meta-programs provide strong and
precise guarantees about their termination, correctness and completeness. Our
system supports type-safe construction and analysis of terms, types and typing
contexts. Unlike alternative approaches, they are written in the same style as
normal programs and use the language’s standard functional computational
model. We formalise the new meta-programming primitives, implement them
as an extension of Agda, and provide evidence of usefulness by means of two
compelling applications in the fields of datatype-generic programming and proof
tactics.
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4.1 Introduction

Meta-programming means writing programs that write or manipulate other
programs. It is an important software engineering technique that is widely used
in practice. The term covers a wide variety of techniques and applications,
including parser generators [109], reflection and byte-code generation in Java-
like languages [173, 25], macro’s in Lisp-like languages [224], eval primitives
in languages like JavaScript [196], special-purpose meta-programming or
generic programming primitives [34, 208, 222, 132, 36, 86, 20], tactics in
proof assistants [56, 214, 215] and term representations in advanced type
systems [72, 48, 32, 144]. Meta-programming jargon distinguishes between the
meta-language, which meta-programs are written in, and the object language,
which the programs being manipulated are in.

Meta-programming can often be used to implement features in a library that
would otherwise require ad hoc compiler support. This ranges from meta-
programs that generate small amounts of boilerplate code to give libraries a
more native feel (e.g. [120, 137, 197]) to languages built from the ground up
using meta-programming [224].

In many applications, meta-programs must not only be able to produce new
code but also analyse existing terms, types or type contexts. Applications in, for
example, datatype-generic programming or tactics for proof assistants involve
meta-programs that analyse the syntactic structure of object language data
types [132, 36], types [86, 214], types and contexts [56]. Some systems allow
analysing terms [34], terms and types [208] or all three [215, 48, 32, 144].

Type-safety in the context of meta-programming can mean different things.
In some approaches, generated code is type-checked upon completion of the
meta-program, either at compile-time or run-time [56, 208, 25]. This can be
sufficient to guarantee type-correctness of the resulting program. In this text, we
are interested in a stronger form of type-safety, in which a meta-program’s type
can guarantee type-correctness of all programs it will ever generate (e.g. [222,
132, 34, 214, 215, 86]). This stronger form of type-safety provides meta-program
authors and users with greater correctness assurance. Sometimes, it also enables
additional applications. For example, MetaML runs meta-programs and compiles
the generated code at run-time, but type errors during this run-time compilation
are ruled out by its strong type-safety [222]. In the context of a dependently-
typed proof assistant, where proofs and programs are equated, Chlipala argues
that the stronger form of type-safety has a performance advantage because
proofs generated by meta-programs do not need to be calculated as long as they
can be trusted to exist [37]. Note that for this last application, the meta-program
must be guaranteed to terminate, as well as produce well-typed code.



INTRODUCTION 131

However, this stronger form of type-safety puts a high demand on representations
of object code and the meta-language type system, especially for object languages
with strong (e.g. dependent) type systems and if meta-programs can construct
and analyse both terms, types and typing contexts. Most approaches use
an explicit syntactic representation of object language terms and/or types.
To achieve strong type safety, they employ advanced type-system features
of the meta-language, including GADTs [222, 34], strong type systems with
powerful type-level languages [72, 36, 214, 215] and an advanced feature of
dependent type systems called induction-recursion [48, 32, 144]. However, even
the most powerful approaches have to make certain compromises, simplifying
the resulting system at the cost of expressivity. For example, many approaches
provide syntactic models of only types [132] or only terms [222, 34] or types
and terms but not typing contexts [214].

Particularly technically ambitious are those meta-programming systems that
use a syntactic model of a dependently-typed language within another
one [48, 32, 144]. Their term encoding represents type-correctness internally,
i.e. only well-typed terms are represented. To support this, they require an
advanced dependent type system with support for induction-recursion in the
meta-language and even then have trouble fitting the interpretation function
(which translates encoded object terms to the values they represent) in it [48, 32].
McBride presents a model that is accepted by Agda but has to significantly limit
the dependent nature of the object language’s type system in the process [144].
The objective of these meta-programming systems is generally to prove meta-
theory for the object language and the authors work hard to fit their encodings
into the advanced, but general and previously studied schema of inductive-
recursive definitions.

However, beside their meta-theoretical value, syntactic models of a typed object
language with a well-typed interpretation function are also promising for meta-
programming applications. Unfortunately, the full potential of this has not
been explored or demonstrated so far because researchers have not yet managed
to build syntactic models of dependently-typed programming languages that
support a big enough subset of a dependently-typed language and still have
provably sound interpretation functions. In this paper, we ignore the aim of
building meta-theory for dependent type theories within themselves and instead
focus on applying such techniques to meta-programming. We will explain this
in more detail further on and show that this approach has some very compelling
qualities.

We use Agda [161], a pure functional dependently-typed language, as both the
meta- and object language and we start from a conventional representation of
the object language based on de Bruijn-encoded lambda terms and an external
typing judgement. We make a set of interpretation functions available as
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new meta-programming primitives. This puts us on shakier ground, because
the soundness of the primitive is not guaranteed by existing meta-theory, but
it allows us to side-step the unsolved problem of syntactically representing a
dependent type theory within itself with a provably sound interpretation function.
As such, we gain the ability to explore and demonstrate our approach’s potential
for meta-programming and present novel techniques for it.

Our choice to keep the meta- and object language the same (known as
homogeneous meta-programming [208, 222]) contrasts with systems where meta-
programs use a different computational model than object programs. Often this
is an imperative model [56, 214, 215, 208], but some systems even use a logic
programming-like model derived from the meta-programs’ interaction with type
inference [132, 86]. Our meta-programs use the same functional model as normal
programs and dependent pattern matching [82] for syntactically analysing
terms, types and typing contexts. This choice keeps the system smaller, makes
techniques, tools and knowledge for normal programming directly reusable in
meta-programs and it allows meta-programs to use other meta-programs to do
their work. It does not exclude imperative, generally recursive, non-deterministic
or unification-based reasoning in meta-programs. Research has demonstrated
functional models of such algorithms [28, 50, 119, 124] and such ideas could be
combined with our work.

In the dependently typed meta-language, meta-programs have strong and precise
types that guarantee termination and correctness. Termination is standard for
Agda functions (Agda is total). For strong type safety, our primitives require
meta-programs to provide type-correctness proofs together with generated code
and they can exploit type-correctness proofs for the code they analyse.

Some homogeneous meta-programming systems couple meta-programming with
multi-stage programming [222, 20, 208], which allows object code programs
to explicitly invoke meta-programs and use the generated expressions as if
they were hand-written (splicing or evaluation) and allows meta-programs to
include references to existing terms in generated code (quoting, cross-stage
persistence). A linear hierarchy of staging levels exists when meta-programs
may unquote expressions generated by other meta-programs. The bottom stage
is the program executed at run-time, while other stages execute at compile-time
or run-time, depending on the system. Our set of interpretation functions for
encoded terms is analogous to an evaluation primitive and we will demonstrate
how object-level terms can be referenced in generated code. The question of
when meta-programs are executed becomes a matter of choice and a special
case of partial evaluation.

We demonstrate the properties of our system by applying it to two important
application domains: datatype-generic programming and proof tactics. For the
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first, we define a syntactic representation SimpleDT of inductive data types
that can be used to write general datatype-generic meta-programs. As proof-
of-concept, we present a meta-program deriveShow that syntactically derives a
serialisation function show : A→ String for a data type A.

deriveShow : (A : Set)→ SimpleDT A→A→ String

SimpleDT and deriveShow do not require compiler support beyond our (general)
meta-programming primitives, although the value of type SimpleDT A could be
provided by the compiler for additional convenience. The type of deriveShow
guarantees its correct termination and well-typedness of generated programs
(modulo the primitives’ soundness). To the best of our knowledge, this is the
first demonstration of strongly typed, general datatype-generic meta-programs,
with support for syntactic analysis of terms and types and using the language’s
standard computational model.

The second application domain is proof tactics. A tactic is a meta-program
that analyses the type of a proof obligation and produces a proof term (possibly
including remaining proof obligations) using general or domain-specific reasoning.
Several proof assistants provide special-purpose languages for writing custom
tactics [56, 214, 215]. These are often imperative and only guarantee weak
type-safety (generated code is checked after execution of meta-program) or
partial strong type-safety (generated code is guaranteed type-correct but meta-
programs may not terminate). Gonthier et al. argue that tactics without strong
type-safety can be hard to maintain and compose [86]. Chlipala discusses a
performance advantage of precisely-typed and terminating meta-programs since
generated proofs do not need to be calculated if they are known to exist [37].
We present an account of Coq’s assumption tactic with a very precise type,
guaranteeing that it will always terminate and produce a guaranteed type-correct
term under a precise condition. The tactic uses a functional computational
model and dependent pattern matching for syntactic analysis of terms, types
and typing contexts.

We have implemented our primitives in Agda and our example meta-programs
are accepted by Agda’s type-checker.1 Unfortunately, this does not mean
our work is readily usable. The practicality of our implementation is currently
hampered by long compilation times. However, we will argue that this problem is
not intrinsic, but caused by the inefficient evaluation strategy of Agda’s compile-
time evaluator. The soundness of our approach depends on the soundness of our
primitives, which we can currently not provide guarantees about. We believe that
our work gives a strong motivation to investigate both of these aspects further,
since we provide strong evidence for the additional power that the system offers

1Code available on http://people.cs.kuleuven.be/dominique.devriese/permanent/
tsmp.zip.

http://people.cs.kuleuven.be/dominique.devriese/permanent/tsmp.zip
http://people.cs.kuleuven.be/dominique.devriese/permanent/tsmp.zip
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for meta-programming in general and the hard problems of datatype-generic
programming and well-typed tactics in particular.

4.1.1 Contributions

Our first contribution in this work is the definition of novel meta-programming
primitives in a dependently-typed language, starting from a partial formalisation
of the language’s meta-theory. We also contribute the (to our knowledge
first) demonstration of using such a formalisation for meta-programming, with
compelling examples in two important application domains: datatype-generic
programming and proof tactics. Our meta-programming model works with
the language’s standard functional computational model, and meta-programs
are written in the same way as normal programs. Modulo the soundness of
our primitives, meta-programs can be given strong and precise guarantees of
termination and correctness of the generated code. Finally, our proof-of-concept
applications in these two application domains are interesting in their own
right. For both datatype-generic programming and proof tactics, the prospect
of writing general meta-programs with strong and precise guarantees about
termination, correctness and completeness and using the language’s standard
computational model is compelling and novel.

4.1.2 Outlook

We present the representation of our object language in Section 4.2. In
Section 4.3, we show how the represented terms and types are brought to life in
the meta-language using our meta-programming primitives. In Section 4.4, we
present applications to the fields of datatype-generic programming and proof
tactics. We discuss issues like soundness and performance in Section 4.5, related
work in Section 4.6 and we conclude in Section 4.7.

4.2 Self-representation

As discussed, we start from a representation of Agda terms in Agda using a
notion of lambda expression representing terms as well as their types and a
typing judgement linking terms and types together.

Terms Figure 4.1 shows the definition of Expr , our representation of Agda
terms and types as lambda terms, using de Bruijn indices. We represent
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data Constant : (arity : N)→ Set where (empty for now)
data Binder : Set where Π : Binder

Λ : Binder
data Expr (n : N) : Set where

set : Expr n
var : Fin n→ Expr n
appl : Expr n→ Expr n→ Expr n
constant : {arity : N}→ Constant arity→Vec (Expr n) arity→ Expr n
bind : Binder → Expr n→ Expr (suc n)→ Expr n

pi : {n : N}→ Expr n→ Expr (suc n)→ Expr n
pi = bind Π
lambda : {n : N}→ Expr n→ Expr (suc n)→ Expr n
lambda = bind Λ

Figure 4.1: The representation of terms.

de Bruijn indices as integers between 0 and n − 1 using the Agda standard
library type Fin n [51]. The type Expr is parameterised by the number of free
variables in scope. It is defined as a standard inductive data type [66], with an
enumeration of its constructors and their types. The set constructor represents
the type of types in the object language and free variables are embedded through
var . There is a standard function application constructor appl and constants
applied to a fixed number of arguments (as determined by the constant’s arity)
through term constructor constant. Vec A n is another Agda standard library
type representing a vector of precisely n values of type A. In what follows, we
use [ ] for the empty vector and, for example, [x, y ] for the vector with elements
x and y. Similarly, we write literal Fins as numbers.

The final Expr constructor in Figure 4.1, bind, is a common representation of two
separate binding constructs: lambda expressions λ(x : T )→ b2 and dependent
function types (x : T) → T ′, constructed as bind Λ and bind Π respectively.
They take two arguments: the type T of the bound variable and the body of
the construct (b or T ′ respectively) with the bound variable additionally in
scope in the body. Note by the way that a standard non-dependent function
type s→ t can be represented as dependent function ( : s)→ t. Finally, note
in the type of constant, pi and lambda that some arguments are bound using
curly brackets, indicating that they can be omitted in calls. Agda will then
infer their value from the types of the remaining arguments.

2We use Agda notation for lambdas λ(x : T)→ b, not the more standard λx : T .b.
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Sub : N→ N→ Set
/_ : {m n : N}→ Expr m→ Sub m n→ Expr n

weaken : {n : N}→ Expr n→ Expr (suc n)
[ ] : {n : N}→ Expr (suc n)→ Expr n→ Expr n

Figure 4.2: Substitutions (implementations omitted).

data _;0_ {n} : Expr n→ Expr n→ Set where
reduceApplication : ∀ {s} b val → appl (lambda s b) val ;0 b [val ]

data _;_ {n} : Expr n→ Expr n→ Set where
· · · (congruence closure of _;0_)

_;∗_ : {n : N}→ Expr n→ Expr n→ Set
_;∗_ = · · · (transitive-reflexive closure of _;_)
≈_ : {n : N}→ Expr n→ Expr n→ Set

x ≈ y = ∃ (λ z → x ;∗ z × y ;∗ z)

Figure 4.3: Full β-reduction and β-equivalence for untyped terms.

Substitutions We use a library of substitutions that is part of the Agda
standard library [51], based on a technique by McBride [143]. Figure 4.2 shows
a type of substitutions Sub m n that will substitute terms with n free variables
for all m free variables of other terms. More concretely, the function /_ applies
a substitution φ of type Sub m n to a term t typed Expr m to obtain term
t / φ, typed Expr n. Note that, for example, /_ is Agda notation for a mixfix
operator that is applied to two arguments t and φ in the form t / φ [52]. The
function weaken uses the substitution infrastructure to increase free de Bruijn
indices by one and [ ] substitutes term v for de Bruijn variable 0 in term t, to
obtain term t [v ], shifting other free de Bruijn indices downward in the process.

Convertibility The next thing we define is an untyped notion of strong β-
reduction and β-equivalence of terms in Figure 4.3. It is technically convenient
to define primitive reductions in judgement _;0_, a congruence closure of it in
_;_ and a transitive-reflexive closure of that in _;∗_. The reduceApplication
rule uses the substitution function [ ] we saw before. In the type of
reduceApplication we use Agda’s ∀ shorthand notation, which desugars to a
normal dependent type. For example, ∀ {n} → · · · or ∀n → · · · is short for
{n : }→ · · · and (n : )→ · · · respectively, i.e. an implicit or normal argument
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data Telescope (i : N) : N→ Set where
ε : Telescope i i
/ _ : {n : N}→ Expr n → Telescope i n→ Telescope i (suc n)

Context : (n : N)→ Set
Context = Telescope 0
lookup : ∀ {n}→ Fin n→ Context n→ Expr n
lookup zero (t / ) = weaken t
lookup (suc n) ( / Γ) = weaken (lookup n Γ)

Figure 4.4: Telescopes and Contexts

n whose type is inferred by Agda. One ∀ symbol can apply to more than one
argument. In ≈ , we use the ∃ and × types: for a type A and predicate P
typed A→ Set, ∃P represents a dependent sum type containing tuples (v, pv)
with v of type A and pv of type P v. For types A and B, A× B represents the
cartesian product type of A and B (containing (a, b) with a of type A and b
of type B). Two terms t and t′ are defined to be convertible (t ≈ t′) iff there
exists a third term n that both t and t′ reduce to.

Typing Contexts Figure 4.4 contains the definition of typing contexts and
the more general notion of telescopes. A telescope is a sequence of expressions,
each representing the type of a bound variable. The entries may refer to a
number of free variables, assumed to be bound outside the telescope. The first
index i of the Telescope type indicates how many such initial variables are
assumed. Telescopes are dependent: subsequent types can mention variables
bound earlier in the telescope. This allows us to represent e.g. the telescope
(n : N) (t : Expr n), where the type of t depends on the value of n. As a
consequence of this dependence, each additional entry in a telescope has an
additional variable in scope. The second index n of the Telescope type is the
number of final variables: if i variables are initially bound, and we add the
bindings of a Telescope i n, then in total n variables will be bound, so the
telescope contains precisely n − i entries. A typing context Context n is a
telescope with zero initial and n final bound variables. The lookup function
looks up the type of a variable in a context. lookup’s dependent type ensures
that only de Bruijn variables lower than the length of the context can be looked
up.
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data `_ ::: _ {n} (Γ : Context n) : Expr n→ Expr n→ Set where
typeSet : Γ ` set ::: set
typeVar : ∀ {i}→ Γ ` var i ::: lookup i Γ
typePi : ∀ {s t}→ Γ ` s ::: set → (s / Γ) ` t ::: set → Γ ` pi s t ::: set
typeLam : ∀ {s b t}→

Γ ` s ::: set → (s / Γ) ` b ::: t → Γ ` lambda s b ::: pi s t
typeAppl : ∀ {s f t val}→ (s / Γ) ` t ::: set →

Γ ` f ::: pi s t → Γ ` val ::: s → Γ ` appl f val ::: appl (lambda s t) val
typeConv : ∀ {e t t′}→ t ≈ t′ → Γ ` e ::: t′ → Γ ` t ::: set → Γ ` e ::: t

Figure 4.5: Typing Judgements.

Typing Judgements In Figure 4.5, we show the typing judgement Γ ` v ::: t
stating that term v has type t in typing context Γ . The typing judgement
models a fairly standard dependent type system, except for the first rule typeSet.
This rule expresses that set has type set in any context, a rule which is known
as type-in-type and a known source of paradox in dependent type theories [103].
However, we use this rule only for ease of presentation. Our full code avoids
type-in-type using a predicative hierarchy of universes similar to Agda’s [161].
It uses a level-indexed setl, the typing rule that setl ::: setsuc l for all l, and a
level-indexed typing judgement Γ `l v ::: t with l such that Γ `suc l t ::: set l must
hold.

In the remaining typing rules in Figure 4.5 we have typeVar , stating that the
type of a variable is given by the corresponding entry in the typing context and
typePi, stating that (x : S)→T is a type if S and T are types, with x : S added
to the context for T . For lambda expressions, typeLam says that λ (x : S)→ b
is typed (x : S)→T if b has type T in a context extended with x : S . According
to typeAppl, a function application f val has type ((λ (x : S)→ T ) val) if f has
type (x : S)→T and val has type S . Note that we could equivalently have given
such an application the type T [val ]. Finally, the rule typeConv states that a
type t can be substituted for a convertible type t′ in any typing judgement.

In the full version of our code, we extend the calculus with built-in dependent
sum types (like the ∃ type we have already seen), identity types x ≡ y : A (which
contain proofs that x and y of type A are definitionally equal) and the empty
type ⊥ (which does not contain any value). These are modelled by adding
suitable constructors for the types, their constructors and eliminators to the
Constant data type, together with appropriate typing and reduction rules.
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data `_ : ∀ {n}→ Context n→ Set where
tyε : ` ε
ty/ : ∀ {n e} {Γ : Context n}→ `Γ → Γ ` e ::: set → `(e / Γ)

data `_ ::: _ {n} (Γ : Context n) :
{m : N} (ρ : Sub m n) (tel : Context m)→ Set where
· · · (omitted)

Figure 4.6: Well-typed Contexts

More typing judgements In addition to the typing judgement for terms above,
we also define typing judgements for contexts and for substitutions. Figure 4.6
shows the judgement ` Γ expressing that context Γ is well-typed, i.e. that all
context entries are sets. Its rule tyε states that the empty context is always well-
typed and ty/ says that subsequent entries should be types in their preceding
context. We omit the definition of judgement Γ ` φ ::: tel,3 which expresses
that the terms substituted by substitution φ satisfy the type requirements of
telescope tel in context Γ .

Meta-theory and helper functions We have proved quite some meta-theory
about the reduction, convertibility and typing judgements. For full detail we
refer to the full version of our code, but to give you an idea of what is there,
Figure 4.7 shows the types of the most important results. weaken − inj− ≈
shows that weakening is injective with respect to convertibility. ≈−trans
shows that convertibility is transitive. ≈−trans is a consequence of the
Church-Rosser-property for our reduction rules, which we have proved using a
technique for untyped lambda calculi by Tait, described by Martin-Löf [139].
Theorem ≈−/ states that convertibility is invariant under substitutions.
Theorems weakenJudgementTop, substJudgementTop, substContext and `−/
state roughly that typings are preserved under weakening, instantiating a
variable in the context, replacing a type in the context by a convertible one
and applying a substitution to term and type. −̀var is a simple proof that
entries in a well-typed context must be sets. By theorem typesAreSets, the
type of a judgement in a well-typed context must in fact be a type. Finally,
substJudgementType is not a theorem but a simple helper function that replaces
a judgement’s type by a provably equal type (it is a special case of subst, the
standard eliminator of Agda’s singleton type t ≡ t′).

3For ease of presentation, we overload the notation `_ ::: _ in this text.
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weaken−inj−≈ : ∀ {n} {x y : Expr n}→ weaken x ≈weaken y → x ≈ y
≈−trans : ∀ {n} {x y z : Expr n}→ x ≈ y → y ≈ z → x ≈ z
≈−/ : ∀ {n} {x y} {m} (ρ : Sub Expr n m)→ x ≈ y → x / ρ≈ y / ρ
weakenJudgementTop : ∀ {n} {Γ : Context n} {v t t′}→

Γ ` v ::: t′ → t / Γ ` weaken v ::: weaken t ′
substJudgementTop : ∀ {n} {Γ : Context n} {t′ e t v}→

t′ / Γ ` e ::: t → Γ ` v ::: t′ → Γ ` e [v ] ::: t [v ]
substContext : ∀ {n} {Γ : Context n} {e t} {t′ t′′}→

t′ ≈ t′′ → Γ ` t′ ::: set → t′ / Γ ` e ::: t → t′′ / Γ ` e ::: t
`−/ : ∀ {m n} {e t} Γ1 Γ2 → (φ : Sub m n) →

Γ2 ` φ ::: Γ1 → Γ1 ` e ::: t → Γ2 ` e / φ ::: t / φ
−̀var : ∀ {n} {Γ : Context n}→

` Γ → (i : Fin n) → Γ ` lookup i Γ ::: set
typesAreSets : ∀ {n} {Γ : Context n} {e t} {l}→

` Γ → Γ ` e ::: t → Γ ` t ::: set
substJudgementType : ∀ {n} {Γ : Context n} {e t t′}→

t ≡ t′ → Γ ` e ::: t → Γ ` e ::: t′

Figure 4.7: Meta-theoretic properties of our typing judgements.

Some example terms Let us consider the encoding of a simple example term:
the following polymorphic identity function:

id : ∀ (A : Set)→A→A
id = λ (A : Set)→ λ (v : A)→ v

The definition and type of this function are given by closed expressions idTm
and idTyTm.

idTm : Expr 0
idTm = lambda set (lambda (var 0) (var 0))
idTyTm : Expr 0
idTyTm = pi set (fun (var 0) (var 0))

We can prove that the term idTm satisfies type idTyTm using the typing rules
from Figure 4.5.

tyidTm : ε ` idTm ::: idTyTm
tyidTm = typeLam typeSet (typeLam typeVar typeVar)

By the typesAreSets theorem, it follows that idTyTm is a type.
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tyidTyTm : ε ` idTyTm ::: set
tyidTyTm = typesAreSets tyε tyidTm

4.3 Bringing terms to life

With this infrastructure in place, we can define our meta-programming primitive
interp together with auxiliary primitives interpCtx and interpSet. Their types
are:

interpCtx : {n : N} {Γ : Context n}→ `Γ → Set
interpSet : {n : N} {Γ : Context n} {A : Expr n}→

Γ `A ::: set → (tyΓ : `Γ) → interpCtx tyΓ → Set
interp : {n : N} {Γ : Context n} {v t : Expr n}→

(tyv : Γ ` v ::: t) → (tyΓ : `Γ) → (asmpts : interpCtx tyΓ) →
interpSet (typesAreSets tyΓ tyv) tyΓ asmpts

interpCtx turns the types in a well-typed context into a dependent sum type
of the context entries’ interpretations. It is used by the two other judgements
to require values for all of a context’s assumptions. interpSet interprets an
encoded type, yielding a Set, and interp interprets a term v typed t. In the
result type of interp for a proof tyv of judgement Γ ` v ::: t, we use the previously
mentioned theorem typesAreSets to calculate typesAreSets tyΓ tyv, a proof that
Γ ` t ::: set. The result of interp is then of type t, interpreted using interpSet
and this derived judgement.

Interpreting examples Before we go into more details, consider again the
previously encoded polymorphic identity function. Remember that the closed
terms idTm and idTyTm encode the function and its type and the proofs
tyidTm and tyidTyTm witness the typing judgements ε ` idTm ::: idTyTm and
ε ` idTyTm ::: set. Both proofs assume only an empty context, which is always
well typed according to the rule tyε in Figure 4.6. We will discuss the reduction
behaviour of our primitives further, but interpCtx tyε (the assumptions in the
empty context) reduces to unit type > (with canonical inhabitant tt). With all of
this, we can interpret the encoded type idTyTm to obtain the type intrpidTyTm :

intrpidTyTm = interpSet tyidTyTm tyε tt

More details follow, but intrpidTyTm reduces to (x : Set) (x1 : x)→ x, which is
alpha-equivalent to the intended type (A : Set)→ A→ A. Similarly, we can
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interpret term idTm and its typing proof tyidTm to obtain intrpidTm of type
intrpidTyTm.

intrpidTm = interp tyidTm tyε tt

As intended, intrpidTm reduces to λ (x : Set)→ (x1 : x)→ x1 , alpha-equivalent
to our intended λ (A : Set)→ λ (x : A)→ x.

Interfacing with the real world In real examples, generated code needs to
interface with existing types and values. In staging meta-programming systems,
this is supported with a built-in quoting primitive, but we use an alternative
approach. Suppose, for example, that we want a meta-program to construct
the term suc 2 from the pre-existing value 2 and function suc. To do this, the
meta-program clearly needs to refer to the type N, the function suc and the
value 2 in the generated object code, but our term encoding does not provide a
way to refer to such outside definitions. One solution would be to build natural
numbers into our calculus as primitives, but this is not a scalable approach,
since we cannot expect to do this for all types we will ever need, let alone a
user’s custom types.

A better solution lets the meta-program construct the object term in a suitable
context, postulating values of the correct types. Real values can then be provided
in the interpretation of this context. For our example, we need the context Γex :

Γex = (pi (var 1) (var 2)) / (var 0) / set / ε

This definition should be read right-to-left: / is right-associative and the left-
most context entries are added last and may refer to the values of entries to
their right. It starts with the empty context ε and lists the types for which
we want to postulate values. In order, these are a type (of type set), a value
of this type (of type var 0) and a function from this type to itself (of type
pi (var 1) (var 2)). The context is intended to be instantiated to values N,
2 and suc respectively. Note that the de Bruijn variables var 0, var 1 and
var 2 in the context all refer to the value of the rightmost context entry of type
set; subsequent context entries have an additional variable in scope and the
body of a pi as well. Proof tyΓex of judgement `Γex shows that context Γex is
well-typed, i.e. all entries are in fact sets:

tyΓex = ty/ (ty/ (ty/ tyε typeSet) typeVar) (typePi typeVar typeVar)

We will fill in the appropriate values for this context’s assumptions with the
value asmptsΓex of type interpCtx tyΓex :

asmptsΓex = ((tt,N), 1), suc
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In context Γex , we can now construct the value suc 2 as a term ex. It is an
Expr 3, since it may refer to Γex ’s three assumptions, and applies the postulated
suc function to the postulated value 2.

ex = appl (var 0) (var 1)

We construct a proof tyex of judgement Γex ` ex ::: var 2, i.e. that the constructed
term ex has the first postulated value (N) as its type, in three steps. First
typing rules typeAppl and typeVar give us proof ty′ex , showing that ex has a
more complicated type. We then prove this type convertible to var 2 in (partly
omitted) proof convex . tyex then uses typing rule typeConv to replace the
convertible type.

ty′ex : Γex ` ex ::: appl (lambda (var 2) (var 3)) (var 1)
ty′ex = typeAppl typeVar typeVar typeVar
convex : appl (lambda (var 2) (var 3)) (var 1)≈ var 2
convex = · · · (reduceApplication (var 3) (var 1))
tyex : Γex ` ex ::: var 2
tyex = typeConv convex ty′ex typeVar

We can then interpret the object program ex to obtain a value of type
interpSet (typesAreSets tyΓex tyex) tyΓex asmptsΓex :

exInt = interp tyex tyΓex asmptsΓex

The reduction behaviour of our primitives that we will talk about next ensures
that exInt’s type and exInt itself reduce to N and suc 2 respectively, precisely
as we intended.

Sometimes, a meta-program does not just need to refer to an external function
f in generated code, but also depends on information about such a function’s
reduction behaviour to prove well-typedness of the generated code. Without
going into much detail, the ideas of this section can support this if we add
singleton types to the object calculus. Concretely, a context could postulate the
external function f together with proofs of its reduction behaviour. Such proofs
could then be used in the typing of generated programs and the invocation
of the interpretation primitive would require actual proofs of the reduction
behaviour in the context interpretation.

Reduction behaviour The reduction behaviour of our primitives is an
important part of their definition and crucial for the functioning of the previous
examples. We present the reduction rules in Figure 4.8. In general, these rules
interpret encoded types, terms and contexts, but only when the well-typedness
of the result can be guaranteed. To achieve the latter, we need to ascertain that
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the provided well-typedness proofs are valid and do not rely on assumptions
that might not hold. This is non-trivial because a language like Agda applies
strong reductions during type-checking, i.e. reductions can be applied to open
terms as well as closed. Non-closed proofs are not necessarily valid, since they
may rely on invalid assumptions. We will provide more insight further on and
discuss our solution based on the value patterns in Figure 4.8. These are the
patterns written in typewriter font in the left-hand sides of some reduction
rules. Such a value pattern indicates that the rule must only be applied if the
corresponding argument is a value. The types of these arguments are conversion
or typing judgements and their values are finite trees of constructor applications
(see Figures 4.3 and 4.5). As such, the property of value-ness can easily be
checked in the primitives’ implementation. But before we discuss the role of
the value patterns further, let us take a better look at the reduction rules.

Recall the type of our most important primitive interp.

interp : {n : N} {Γ : Context n} {v t : Expr n}→
(tyv : Γ ` v ::: t) → (tyΓ : `Γ) → (asmpts : interpCtx tyΓ) →
interpSet (typesAreSets tyΓ tyv) tyΓ asmpts

The primitive takes a context Γ , a term v and a type t as hidden arguments,
followed by proofs tyv, tyΓ of typing judgements Γ ` v ::: t and `Γ and a value
asmpts of the context’s interpretation type interpCtx tyΓ. The reduction rules
in Figure 4.8 specify that for certain forms of the judgement tyv, the primitive
application reduces to appropriate right-hand sides. For tyv = typeSet, which
implies4 v = set and t = set, the first rule returns interpretation Set. For
tyv = typeVar , an interpretation of the ith context assumption is given by
primitive interpVar , discussed below.

The rules for tyv = typePi tys tyt and typeLam tys tyb interpret terms pi s t
and lambda s b as respectively the corresponding Agda Π -type and lambda
term, recursively constructed from interpretations of s, t and b. The bound
variable x is made available for the interpretation of t and b by placing it in the
interpretation of the extended context s / Γ . For an application of a function to
a value, we apply the interpretation of the function to the interpretation of the
value. Note the value patterns on the left-hand side that we will come back to
further on. Finally, the interpretation of a typeConv is simply the interpretation
of the judgement whose type it substitutes, on the condition that the arguments
are values.

Recall also the type of primitive interpCtx:

interpCtx : {n : N} {Γ : Context n}→ `Γ → Set
4Note: pattern matches that imply equalities about other arguments are standard for

dependent pattern matching [82].
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The primitive takes a context Γ as a hidden argument and a well-typedness proof
for it and returns its interpretation, i.e. a type that contains all the context’s
assumptions. We saw in interp’s reduction rules for typeLam and typePi, how
an extended context s / Γ is interpreted by a tuple of the s value and the
interpretation of Γ . This corresponds to interpCtx’s reduction behaviour, that
we look at now. The first reduction rule interprets an empty context by the unit
type >. More interestingly, a context Γ extended with a type t is interpreted
by an interpretation asmpts of Γ , and an interpretation of the type t. We
use a dependent sum ∃ to specify the interpretation of t with respect to the
interpretation asmpts of the rest of the context.

Now that we know how to interpret a context, we can define reduction rules
for interpVar , to project out a context’s ith entry. Its reduction rules are not
surprising, projecting out the top assumption for variable zero and recursing
for suc i. The primitive interpSet is a version of interp that works on types
only. Its role is to break the circularity in the types of the primitives. It is
implemented in terms of helper primitives interpSet′ and interpVarSet. We do
not discuss their reduction behaviour as it is similar to interp and interpVar
except that we require proof that the judgement’s type is convertible to set and
that this proof is a value in some cases.

Although the reduction rules in Figure 4.8 superficially resemble a definition
by dependent pattern matching [82] (as supported by Agda), they should not
be understood as such a definition, because they do not satisfy several of the
criteria for such a definition. A first problem is that Agda does not have value
patterns, but this is a technical problem, since it is possible to simulate their
behavior using pattern matching. A second, more fundamental problem is that
the clauses are not structurally recursive, so that Agda’s termination checker
would not accept them. Furthermore, not all clauses satisfy the criteria for
Agda’s type-checker. One problem here is the peculiar recursion structure,
where interp’s type mentions the interpSet function, which uses interp in its
definition. Another problem is that type-safety of the clauses sometimes relies
on the fact that for tyΓ : `Γ , asmpts : interpCtx tyΓ and prf : Γ ` A : set,
interpSet prf tyΓ asmpts will produce the same result as interp prf tyΓ asmpts.
All these problems would be hard to solve, and because of them, the rules in
Figure 4.8 should be interpreted as defining the reduction behavior of primitives.

Soundness in the presence of open terms To understand the value patterns
in five of the reduction rules in Figure 4.8, we have to explain the powerful form
of type-level computation that a dependently typed language like Agda uses.
It uses a strong form of reductions: reductions can be applied even inside the
body of lambda or pi terms. The term λ x → 0 + x, for example, is considered
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equal to λ x → x, because 0 + x is reduced to x despite the open variable x.
However, such strong reductions can be dangerous because, in the presence of
open variables, we may be reasoning under absurd assumptions. Consider the
following function:

absurdTerm = λ (prf : Int ≡ Bool)→ cast prf 3 ∨ false

The function absurdTerm takes a proof prf that Int ≡ Bool, modelling an
equality proof of types Int and Bool. This proof type is of course empty, but the
type-checker is not aware of that. With prf and an appropriate cast function, we
can use a value 3 as a Bool. However, this is not problematic, because a correct
definition of the cast function will never reduce cast prf 3 to 3. Instead, it will
block on the open variable prf until a value (i.e. refl) is somehow substituted
for it. This mechanism effectively protects values like 3 from being used at
wrong types like Bool.

For our primitives, similar issues arise. We can, for example, assume a proof
tyabsurd of judgement ε` set ::: pi set set even though this type of proofs is empty.
Clearly, interp tyabsurd tyε tt should then not reduce to Set at type Set→ Set,
but instead block on the open variable tyabsurd . Similarly, if we assume a proof
prf of judgement pi set set ≈set, and use it with typeConv to construct a proof
ty′absurd of judgement ε ` set ::: pi set set, then our primitives should block on
open variable prf .

By the value patterns in Figure 4.8, some rules require that certain arguments
are values. We have checked for each rule that the right-hand side’s type was
equal to the declared type, assuming just the information from the left-hand side
patterns, similar to how dependent pattern matching can be type-checked [82].
For the five rules with value patterns, this was not the case. In, for example,
the rule for interp (typeConv t∼t′ tye tyt) tyΓ asmpts, the right-hand-side is
of type

interpSet (typesAreSets tyΓ tye) tyΓ asmpts

i.e. the interpretation of t′, not t and the convertibility assumption t ∼ t′ is
essential for returning a value of type t′ as one of type t. We believe that the
value patterns in Figure 4.8 solve this problem, because they prevent the clause
from applying when the primitives are applied to non-closed arguments and
for closed arguments, the right-hand-side’s type will match the declaration.
Nevertheless, this is clearly not a very formal argument and the general question
of soundness remains open.

The primitives’ properties In addition to the reduction behaviour of our
primitives, some of our meta-programs require additional properties about them
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castInterp−≈ ′ : ∀ {n} {Γ : Context n} {A A′}→
(tyA : Γ `A ::: set) → (ty′A : Γ `A′ ::: set) → A≈A′ →
(tyΓ : `Γ) → (asmpts : interpCtx tyΓ) →

interpSet tyA tyΓ asmpts ≡ interpSet ty′A tyΓ asmpts
interpCompSubCtx : ∀ {m n} {Γ1 Γ2} {φ : Sub Expr m n}→

Γ2 ` φ ::: Γ1 → (tyΓ1 : `Γ1 ) → (tyΓ2 : `Γ2 ) →
interpCtx tyΓ2 → interpCtx tyΓ1

interpCompSubSet′ : ∀ {m n t} {Γ1 Γ2} {φ : Sub Expr m n}→
(comp : Γ2 ` φ ::: Γ1 ) → (tyΓ1 : `Γ1 ) → (tyt : Γ1 ` t ::: set) →
(tyΓ2 : `Γ2 ) → (asmpts2 : interpCtx tyΓ2 ) →
interpSet (`−/comp tyt) tyΓ2 asmpts2 ≡

interpSet tyt tyΓ1 (interpCompSubCtx comp tyΓ1 tyΓ2 asmpts2 )

Figure 4.9: Primitive properties

(Figure 4.9). Property castInterp−≈ ′ states that for convertible types A and A′,
the interpretations under interpSet must be the same. The next two properties
are related to the interpretation of a type after a well-typed substitution Γ2 `
φ ::: Γ1 between well-typed contexts Γ1 and Γ2 . interpCompSubCtx says that an
interpretation of Γ1 can be constructed from one of Γ1 and interpCompSubSet′
says that the interpretation of a type t in Γ2 is the same as that of t / φ in Γ1
using the interpretation of Γ1 constructed by interpCompSubCtx.

We are currently using stub proofs of these properties, based on an Agda
primitive called primTrustMe. primTrustMe is an unsafe primitive that proves
equalities a ≡ b for any set A and values a, b of type A. However, during
type-checking, primTrustMe only reduces to refl when a and b are definitionally
equal. It is future work to ascertain that these properties follow from the
reduction rules of Figure 4.8 and the proofs of theorems like `−/.

In summary, the primitives we introduce are interpCtx, interpSet and interp.
Their types are listed in Section 4.3 on page 141 and their reduction behavior
is specified in Figure 4.8 on page 144. Additionally, we are currently using stub
proofs of the primitives’ properties in Figure 4.9.

4.4 Applications

Our approach allows definitions of powerful meta-programs, manipulating both
code and types, in a functional style and with very precise types. In this
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section, we demonstrate this for two important applications: datatype-generic
programming and tactics.

4.4.1 Datatype-generic programming

The field of datatype-generic programming studies the definition of algorithms
that work for a wide variety of data types. An example is Haskell’s
deriving Show mechanism [138, §4.3.3, §11], which allows a data type A
to be annotated with the directive deriving Show to make the compiler derive
an instance of the Show type class. Such an instance consists essentially of a
function show :: A→ String, derived syntactically by the compiler from the data
type’s constructors and their types. The goal of datatype-generic programming
is to allow functions like show to be defined in a generic way, i.e. such that they
can be defined once but used with a wide variety of data types.

Representing data types To apply our techniques to the field of datatype-
generic programming, we start from a syntactic representation of an inductive
data type:

record SimpleDT (A : Set) : Set where
constructor simpleDT
field constructors : List (Constructor A)

folder : folderType A constructors

According to this definition, a data type A is syntactically described by a list of
its constructors and a folder or induction principle (List is a standard type of
finite lists). To keep things simple, we omit well-formedness requirements (like
positivity of the definition) and proofs about the reduction behaviour of the
folder function, which are required to completely describe a data type, but not
needed for our example application. Constructor is the syntactic representation
of a single constructor:

data Constructor (A : Set) : Set where
mkConstructor : String→ (n : N)→

(tel : Telescope 1 (n + 1)) → (tytel : Γset ` tel)→
let ctorT = funCtx n tel (var 0)

tyctorT : Γset ` ctorT ::: set
tyctorT = typeFunCtx n tytel typeVar

in interpSet tyΓset tyctorT (tt,A) → Constructor A

We describe a constructor by its name as a String, its arity n and a telescope
tel containing the types of its arguments. The telescope has one initial variable
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in scope: the data type A itself, so that it can be referenced in the types of
constructor arguments. The telescope tel must be well-typed in the context
Γset = set / ε, i.e. with the premise that A is a set. From tel, we can calculate
the full type ctorT of the constructor as the function that takes the arguments
given by tel and produces a value of type A (using omitted helper function
funCtx). We prove that ctorT is a set (using omitted lemma typeFunCtx),
interpret it and require a value of it, i.e. the actual constructor. For interpreting
the type, we crucially rely on the interpSet primitive, which provides the link
between the syntactically represented types and the normal type of the actual
constructor.

In addition to the list of Constructors, SimpleDT contains an eliminator or
folder for the data type. Every inductive data type comes with such an induction
principle, which models a general way of perform structural induction over
the data type. The function folderType syntactically derives the type of this
induction principle from the types of the constructors and their interpretations.

folderType : (A : Set)→ List (Constructor A)→ Set
folderType A constructors = (P : A→ Set)→

underFolderAsmpts A P constructors ((x : A)→ P x)

Given a set A and a list of A’s constructors, folderType returns the type for
a corresponding induction principle: it takes a predicate P : A → Set (the
motive [82], describing what the induction principle should produce) and returns
a function of type (x : A)→ P x under a number of assumptions. For every
constructor, the function underFolderAsmpts syntactically derives the type of
an assumption from the constructor’s type. This is fairly involved, but presents
no fundamental difficulties and we omit it for space reasons.

Let us immediately show some data types and their representations. The
simplest example is the empty type, which has zero constructors. Its definition
and induction principle look as follows:

data ⊥ :Set where
foldBot : (P :⊥→ Set)→ (t :⊥)→ P t
foldBot P ()

Note the use of an absurd pattern () in the definition of foldBot. This pattern
communicates to Agda that no value can ever be given for the argument of
type ⊥, so that a right-hand-side is not needed. It is easy to provide a value of
SimpleDT for ⊥:

botDT : SimpleDT ⊥
botDT = simpleDT [ ] foldBot



APPLICATIONS 151

botDT specifies that ⊥ has no constructors and foldBot is its induction principle.
Agda successfully type-checks foldBot against the folder type calculated for the
empty list of constructors.

For a more complex example, consider the standard definition of natural numbers
and its induction principle:

data N : Set where zero : N
suc : N→ N

foldN : (P : N→ Set)→ P zero →
(∀n→ P n→ P (suc n)) → (n : N)→ P n

foldN P Pz Ps zero = Pz
foldN P Pz Ps (suc n) = Ps n (foldN P Pz Ps n)

The constructors zero and suc of data type N are described by zeroConstr and
sucConstr of type Constructor N:

zeroConstr = mkConstructor "zero" 0 ε tyε zero
sucConstr = mkConstructor "suc" 1 (var 0 / ε) (ty/ tyε typeVar) suc

The constructor zero is of arity 0, with the empty telescope describing its
arguments. The actual constructor zero is then provided and Agda checks its
type against the one calculated from the syntactic description. Constructor
suc is of arity 1, taking one value of type N as its argument (recall that var 0
in the constructor telescope refers to the data type itself). The constructor
telescope is well-typed under Γset’s assumption that var 0 is a set. Again, the
actual constructor is given and checked against the type calculated from the
description. We can now describe N with natDT : SimpleDT N.

natDT = simpleDT [zeroConstr , sucConstr ] foldN

natDT lists N’s constructors and provides induction principle foldN, checked
against the type calculated from the constructors.

Derive Show The type SimpleDT is a general syntactic description of inductive
data types that permits a general form of datatype-generic meta-program. As a
proof-of-concept, we show the function deriveShow that derives a show function
for a data type A.

deriveShow : ∀ {A}→ SimpleDT A→A→ String
deriveShow (simpleDT constructors folder) = omitted

We omit the algorithm’s implementation, which takes the description of data
type A and exploits the induction principle with motive P = λ → String. It



152 TYPED SYNTACTIC META-PROGRAMMING

syntactically derives arguments for the folder, specifying how values constructed
using the different constructors are to be serialised. The hardest part of the
code is to convince the type-checker that the folder arguments we construct
for the concrete motive λ → String correspond to their expected types
for a general predicate P when P is instantiated to λ → String through
the context interpretation. This essentially uses the interpCompSubCtx and
interpCompSubSet primitive properties shown in Figure 4.9.

For our example data types, deriveShow derives an (admittedly not very useful)
show function for ⊥:

showBot : ⊥→String
showBot = deriveShow botDT

showBot’s definition reduces to foldBot (λ →String), the code that deriveShow
syntactically generates. From natDT , we can derive the function showNat of
type N→ String.

showNat = deriveShow natDT

Like for showBot, showNat’s definition reduces to the generated function
showNat′ = foldN (λ → String) "zero" (...) (final argument omitted). We
can apply it to numbers with, for example, showNat 2 producing the string
"(suc (suc zero))".

Discussion This account of datatype-generic programming is rudimentary,
lacking support for indices and parameters and non-recursive and more general
recursive constructor arguments [66]. It does not exclude non-strictly-positive
data types and does not contain proofs about the induction principle’s reduction
behaviour (required to construct proofs about inductive functions). However,
we do not see fundamental obstacles for adding any of this.

From a methodological point of view, our account of datatype-generic
programming is compelling: meta-programs are written in the language itself,
using the language’s standard functional computational model. The syntactic
description of a data type in SimpleDT is general and could be automatically
generated by the compiler. Modulo correctness of our primitives, the meta-
programs come with strong guarantees about termination, well-typedness of the
generated programs and completeness.

SimpleDT and deriveShow are implemented in ±1200 lines of code and can be
studied in the full version of our code (see the footnote on Page 133). This is
still much more than what we would like, and in Section 4.5 we discuss how
this could be improved.
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4.4.2 Tactics

Tactics are a form of meta-programs that solve or refine proof obligations in
proof assistants. In proof assistants based on dependent type theory, solving
a proof obligation is equivalent to producing a program of a specified type
in a specified context. Several proof assistants provide support for writing
tactics, often in the form of a special-purpose sub-language. Such tactics are
generally untyped and provide little upfront guarantees about their correct
operation. Even though the correctness of the generated proofs can be checked
after generation, Gonthier et al. argue that untyped tactics can be hard to
maintain and compose and giving them more precise types is a good approach
to solve this issue [86]. There are also performance advantages to tactics that
can be guaranteed to terminate correctly without running them, as argued by
Chlipala [37].

Our meta-programming primitives show promise for this field, and they lend
themselves to a typed form of tactics written in a standard functional style. The
input for a tactic is just a syntactic representation of the proof obligation, i.e. a
certain type in a certain context. By additionally requiring a typing judgement
for the type and interpretations for the context’s values, we can use interpSet
to specify the expected result type of the tactic.

Consider the following analogue of Coq’s assumption tactic, a simple tactic that
solves proof obligations which appear literally in the context. Our account of it
enjoys a very precise type:

assumptionTactic : ∀ {n T} {Γ : Context n}→
(tyT : Γ ` T ::: set) → (tyΓ : `Γ) → (asmpts : interpCtx tyΓ)→
ifYes (inContext? Γ T ) (interpSet tyT tyΓ asmpts)

The tactic takes a type T , a well-typed context Γ and values for its assumptions.
The return type will be explained further, but it specifies exactly what the
tactic will return in all cases: either a value of type T if T is present in the
context or a value of the unit type otherwise. Let us explain this in more detail.

We use the Agda standard library’s Dec P type. It models a decision of
proposition P, i.e. either a proof of P or a proof of ¬P:

data Dec (P : Set) : Set where yes : P →Dec P
no : ¬ P →Dec P

Based on a decision of some property, the ifYes function returns either an
argument type or unit type >:
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ifYes : {P : Set}→Dec P → Set→ Set
ifYes (yes ) P ′ = P ′
ifYes (no ) = >

The inContext? algorithm decides whether or not a certain type t is present in
context Γ , i.e. if the ith entry in the context is equal to t for some i. It uses a
general decision procedure any?, which simply tries all i of the bounded type
Fin n. For a given variable i, we use a general equality decision procedure for
terms ?= _ to check whether the ith context entry is equal to t.

InContext : {n : N} (Γ : Context n) (t : Expr n)→ Set
InContext Γ t = ∃λ i → lookup i Γ ≡ t
inContext? : {n : N} (Γ : Context n) (t : Expr n)→Dec (InContext Γ t)
inContext? Γ t = any? (λ i → lookup i Γ ?= t)

In our assumptionTactic, we use a with pattern match to make a case distinction
based on the decision from inContext?. If the type t is not found, we can simply
return > value tt. If it is found at position i, we essentially want to return the
ith entry in the context but we need to convince Agda that it has the desired
type.

assumptionTactic {n} {t} {Γ} tyΓ tyt asmpts with inContext? Γ t
assumptionTactic {n} {t} {Γ} tyΓ tyt asmpts | yes (i, eqΓid) =

let tyvari : Γ ` var i ::: t
tyvari = substJudgementType eqΓid typeVar

in castInterp (typesAreSets tyΓ tyvari) tyt
tyΓ asmpts (interp tyvari tyΓ asmpts)

assumptionTactic {n} {t} {Γ} tyΓ tyt asmpts | no = tt

The first step is to use the proof eqΓid that lookup i Γ ≡ t from inContext? and
the typeVar typing rule to produce a proof tyvari of judgement Γ ` var i ::: t.
We can then obtain the interpretation of the ith variable through the value
interp tyvari tyΓ asmpts. Unfortunately, that value’s type is

interpSet (typesAreSets tyΓ tyvari) tyΓ asmpts

What we need is a value of type interpSet tyt tyΓ asmpts, i.e. an interpretation
of the same type t, but for a different proof that t is a set. castInterp, an
omitted special case of property castInterp−≈ from Figure 4.9, is precisely what
we need to cast one to the other.

Tactic usage Currently, our tactics can be manually invoked with a context
and goal type and well-formedness proofs. The tactic invocation appears as an
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expression in the code where the goal is needed. In future systems, compiler
support can increase convenience by automatically providing the goal type,
context and their typing proofs. This could, for example, extend Agda’s
experimental and underdocumented quoteGoal construct. This construct
allows the invocation of a reflective solver with the compiler providing a syntactic
representation of the goal type. It does not however provide a syntactic
representation of the context or a guarantee about well-formedness of the
provided type. Also, a more developed tactic API could support returning
unsolved sub-goals and tactic combinators like Coq’s ";".

4.5 Discussion

There are some more aspects of our approach that we believe deserve further
discussion: the representation of the object language, the performance of our
meta-programs, the overhead for writing meta-programs in our system and the
soundness of our primitives.

Types and Guarantees Considering our example meta-programs deriveShow
and assumptionTactic, an important feature of our meta-programming approach
is the strong guarantees that the meta-programs’ types provide, modulo the
soundness of our primitives. First, meta-programs are strongly type-safe: any
object code they generate must be well-typed, since they are required to provide
a proof of well-typedness to the interpretation primitive. Second, our meta-
language Agda checks termination and completeness of pattern matches for all
function definitions to guarantee that all functions are total. This guarantee also
applies to our meta-programs, so that additionally we automatically get a totality
guarantee for our meta-programs. However, this does not completely exclude
the use of general recursion in tactics, techniques like Capretta’s partiality
monad [28, 50] can be used to model such algorithms.

The representation Meta-programming implies the syntactic analysis and
construction of source code and/or types, and we have chosen a fairly well-
understood representation to support this: a lambda calculus with de Bruijn
indices and a standard separate encoding of typing judgements. However,
many different encodings are equally possible, such as those based on more
advanced representations of binders [35]. It is future work to investigate the
advantages that these alternatives might offer for our purposes. We also want to
investigate merging interpSet and interp, but we cannot currently try this for
technical reasons. Finally, we currently represent typing judgements externally,
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i.e. as a property that can be true or not for an untyped lambda term. This
corresponds to standard presentations of type theory, but it may be interesting
to explore the benefits of an internal encoding (defining terms in such a way
that only well-typed terms can be represented) like Danielsson, Chapman or
McBride’s [48, 32, 144] in our setting.

Performance We do not currently consider our implementation practical,
because of performance reasons. For example, type-checking just the deriveShow
example for the type of natural numbers currently takes about 2 minutes
and 3GB of memory on our system. Such performance likely prohibits all
practical applications. However, we do not think this bad performance is
inherent to our approach, but rather a consequence of the inefficient call-by-
name execution strategy that Agda uses during type-checking. Remember
how we previously defined showNat using our deriveShow function. As we
mentioned, showNat is definitionally equal to the generated program showNat′ =
foldN (λ → String) "zero" (...). Nevertheless, applying showNat to the
numbers 0 and 1 under Agda’s evaluator (which is also used during type-
checking) takes 2.5 resp. 11 minutes while for showNat′, it is instantaneous for
numbers up to at least 100. For larger numbers, showNat quickly runs out of
memory.

This behaviour is a consequence of Agda’s call-by-name evaluation strategy,
which repeats the normalisation of showNat for every reduction of foldN. If Agda
were to use a more efficient strategy like call-by-need, then the normalisation
of showNat to showNat′ would occur only once. Very likely, there is a lot
more work being duplicated inside the normalisation of showNat and we believe
the call-by-name evaluation strategy is responsible for the long execution and
type-checking times there as well.

Overhead Writing meta-programs in our approach entails a certain amount
of programming overhead. The full code of our datatype-generic meta-
programming application deriveShow is ±1200 lines of code (including the
SimpleDT encoding and some reusable parts). This is a lot more than what it
would take to write a corresponding untyped meta-program. A significant part
is the correctness proof of the meta-program (i.e. the proof that it generates
correct code for all inputs).

However, a big part of our deriveShow implementation consists of a rather
tedious proof specific to our meta-programming primitives. It concerns the
correspondence of a type in a context with a general predicate P of type
A→ String, with the value λ → String provided through the interpretation of
this context and the same type with an encoding of λ → String already filled
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in. We expect quite some work can be saved in this proof, but long compilation
times have prevented further investigation. On the bright side, our assumption
tactic is only about 50 lines in total, for a big part because it reuses general
functions like the decision procedure for syntactic term equality. It is likely that
additional reusable functions can reduce the meta-programming effort further.
For example, a verified type-inference algorithm can be combined with our
primitives to obviate the need for manual typing proofs in many cases.

Finally, we also expect that more experience with the definition of interpretation
primitives could provide further opportunities to reduce meta-programming
effort. For example, it would likely simplify some things to merge interp and
interpSet, but we currently cannot do so for technical reasons. Additionally, the
irrelevant arguments [1] that Agda support offer the potential to make Agda
understand that the type correctness proofs that our primitives require are only
required to exist but do not influence the result value of the primitives. We
expect this could make a big difference for shortening tedious proofs like the one
in our definition of deriveShow, where quite some work is spent on convincing
Agda of properties that would directly follow if the functions used irrelevant
arguments.

Soundness The soundness of our primitives remains an open question, at least
if we consider the full version that does not have the unsound Γ ` set ::: set rule
that we discussed in Section 4.2. However, we do think there is a relation to
the field of foundational logic that we will try to informally explain here. What
we are essentially doing is reasoning about Agda terms within Agda itself. In
foundational mathematical logic, Gödel’s second incompleteness theorem has
something to say about a similar situation for first-order logic [81]. An informal
statement of the theorem (found on Wikipedia [241]) reads

Theorem 4.5.1 (Gödel’s Second Incompleteness Theorem). For any formal
effectively generated theory T including basic arithmetical truths and also certain
truths about formal provability, if T includes a statement of its own consistency
then T is inconsistent.

A standard proof of this theorem constructs a proposition T in the object theory
such that T asserts the unprovability of its own Gödel-encoding. In vague
terms, it can be proven that such a term exists as soon as the object language
is powerful enough to reason about natural numbers. Such a term leads to a
contradiction in combination with the self-consistency proof of the theory.

It is fair to assume the theorem can be generalised to type theory, and applied
to our object theory, perhaps after adding singleton types, an empty type and a
type of natural numbers. Consistency of a dependent type theory is equivalent
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with the non-existence of a closed term of type ⊥. Using our primitives, it is
not hard to construct a function of type ∀ {t} → ε ` t ::: constant bot [ ]→⊥,
which means that our meta-level primitives imply the consistency of our object
theory. This begs the question whether Agda extended with our primitive must
therefore necessarily be inconsistent, by the second incompleteness theorem,
since it implies its own consistency. We conjecture that this implication is not
there, for the reason that our object calculus does not contain the primitive
itself, making it a fundamentally weaker theory. What we do is reminiscent of
extending a first-order logical theory T with an axiom asserting T ’s consistency,
to obtain a new theory T ′. Such an extended theory T ′ does not in fact prove
its own consistency, just that of T , so that the second incompleteness theorem
does not apply. Another question that Gödel’s result suggests is whether
primitives like ours could in principle be implemented as normal functions
within the bounds of a meta-language. Even with sufficient additional features
like induction-recursion [67], this might not be possible as it would prove the
language’s own consistency within itself.

For these reasons, we expect that our primitives are not implementable in pure
Agda but do not compromise consistency. Because of Gödel incompleteness, we
think there are only two options to gain more confidence in them: either prove
consistency of the extended calculus in a strictly stronger logical system such as
Zermelo-Fraenkel set theory or implement our primitives in pure Agda, relying
on axioms that are easier to trust than our primitives. A non-computational
axiom asserting strong normalisation of the calculus (as used by Barras [12]) is
a good candidate, but it isn’t practical in our current implementation because
Agda lacks a Prop universe like Coq’s.

We think these logical aspects of our work deserve further attention.
Nevertheless, even if our primitives were to be proven unsound, we do not
think our work would be useless. Our application of interpretation primitives to
meta-programming remains relevant as long as the primitives can be restricted
to regain soundness. Also, in some applications of a dependently-typed language
for programming (rather than proof checking), full certainty about soundness
can be less important than powerful meta-programming support.

Staging As discussed in the introduction, our meta-programming primitives
do not use the concept of staging like some other solutions [208, 222, 34, 20].
Nevertheless, our interp primitive performs the same function as an unquote
primitive in such systems, allowing object programs to invoke a meta-program
and use generated code as if it were normal code. The quote primitive in a
staging meta-programming system allows to include references to object-level
terms in generated code, something which we support in a different way, as
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discussed in Section 4.3. Finally, while in these systems, code at all staging
levels runs at either compile-time or run-time, but not both. In our system,
the question of when to execute meta-programs is an orthogonal matter, not
different from the partial evaluation of normal functions. Conveniently, partial
evaluation is relatively cheap in total dependently-typed languages and is, for
example, well supported in the language Idris [23].

We see the orthogonality of our meta-programming primitives w.r.t. staging
considerations as an advantage. If desired, it is technically possible to require
at compile-time that all invocations of the primitives be unfoldable (producing
errors if arguments are not statically known). However, like for partial evaluation,
executing a meta-program upfront is not always a good idea, especially if we
are already sure that the generated code will be well-typed (see, for example,
Chlipala’s arguments about the performance advantages of reflective meta-
programs [37]). It seems that annotations for partial evaluation as in Idris would
combine well with our primitives to conveniently let the programmer control
when meta-programs are executed. For example, a version of deriveShow with
the SimpleDT A argument annotated as [static ] would generate show functions
at compile time instead of run-time.

4.6 Related work

In the literature, we find different forms of programming language support for
meta-programming. We discuss them according to the guarantees that are
provided about object programs.

Many approaches represent code in an untyped way, i.e. without guarantees
that the represented source code is well-typed. These techniques have no way of
providing strong type-safety of meta-programs, i.e. a guarantee that all the code
a meta-program will ever produce is well-typed. In this category, we include
approaches that represent code textually, like parser generators [109, 176], C
macro’s, eval primitives like JavaScript’s [196], Java’s pluggable annotation
processors [54] (at least on the output side). Some approaches generate untyped
bytecode [25]. Also in this category are macro approaches which receive and
produce an untyped data structure representation of programs and types, like
Template Haskell [208], Ltac proof tactics in Coq [56] and macro systems in
Lisp-related languages (e.g. Racket [224]). Some provide specific language
features for working with such representations. These systems provide the
power of meta-programming at a comparatively low cost, but they make it hard
to provide upfront guarantees of (strong) type-safety.
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Not all meta-programming approaches are based on an explicit syntactic
representation of terms or types. Some exploit type system features like Haskell
type classes [132], Coq canonical structures [86] or C++ templates [2] to
analyse types and produce code as part of the type inference process. These
features provide (intentionally or not) a form of type-level computation with at
least a notion of type analysis and structural recursion. Gonthier et al. even
exploit canonical structures (non-trivially) to obtain a form of syntactic pattern
matching and non-determinism with backtracking [86]. Meta-programming
systems based on such primitives only support analysing types (but dependent
types in Coq may contain terms). The computational model of these primitives is
quite different from the underlying language’s (unification-based vs. functional),
so that meta-programming requires special expertise and techniques. For
canonical structures, the computational model is not so well understood [85]
and the resulting meta-programs are tightly coupled to the precise behaviour of
the inferencer. An advantage of using primitives exposed by the type inferencer
is that strong type-safety can be guaranteed comparatively easily [132, 86]. The
type class instance search always terminates (with common extensions), but not
so for C++ templates and Coq canonical structures. Completeness of pattern
matching is not statically checked in any system. More or less in this category,
we also have Chlipala’s language Ur, which provides value-level folder functions
for record types to support a practical form of meta-programming [36] with a
form of syntactic analysis of record types, no explicit representation of object
code and a functional computational model. Syntactic analysis of terms or
general types is not supported.

Other approaches to meta-programming with strong type safety are based on
explicit typed representations of code. This requires a powerful meta-language
type system, as determined by the complexity of the object language and
whether terms, types and typing contexts can all be syntactically constructed
and analysed or only some of those. We discuss the related work according to
the type system feature used in this representation.

Rudolph and Thiemann represent typed JVM bytecode generators in the Scala
Mnemonics library [199], exploiting various features of Scala’s type system.
Taha and Sheard [222], Chen and Xi [34], Pašalić and Linger [177] and Sheard
and Pašalić [209]’s systems are based on GADTs or explicit type equality proofs.
Terms of a non-dependently-typed object language are syntactically represented
as values of a data type indexed with the meta-level type of the term they
represent. Without analysis of types, these techniques appear unsuitable for
applications like proof tactics.

In VeriML, Stampoulis and Shao [214, 215] use a contextual type system,
inspired by Beluga [186] and Delphin [189], in the meta-language to model a
dependently-typed object language. They provide a syntactic model of terms
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and types, with a certain level of support for parameterising over and pattern
matching on typing contexts. Nevertheless, contexts do not seem first class
in VeriML’s type system. For example, tactics cannot have contexts as their
return type, so meta-programs cannot construct them, only start from the ones
they receive and extend them locally. Stampoulis and Shao use an imperative
meta-language with general recursion because certain tactics use algorithms that
are inherently imperative. We agree that such tactics exist, but we do not see
why they cannot be modelled in a pure and/or total functional setting like ours,
using models like those found in the literature [50, 124, 119]. VeriML tactics
are partial: they can fail or loop forever. This has modularity disadvantages:
if a tactic t1 invokes another tactic t2, then t1’s author cannot be sure that t2
will actually succeed when it is invoked at t1’s run-time. Stampoulis and Shao
partially solve this with a letstatic staging construct that forces tactic t2 to
be evaluated at t1’s compile time instead. This works under certain restrictions
on t2’s arguments. Because our tactics’ types imply termination guarantees by
default, we do not need such a system, while potential non-termination can still
be modelled, e.g. using the non-termination monad [50]. Stampoulis and Shao
link a proof assistant’s type checker with custom tactics to obtain the effect of
a sound user-extensible conversion rule in the logic [215], allowing a term t of
type A to be used at type A′ if the equality decision procedure (potentially a
custom tactic) can find a proof that A = A′. This form of automatic triggering
of tactics for solving constraints is interesting and could perhaps be combined
with our work as well.

In a dependently-typed meta-language, it is possible to model non-dependent
object languages with standard inductively-defined universes using the technique
of reflection [17, 37]. Altenkirch and McBride [5] and Chapman et al. [33]
provide syntactic models of data types, together with interpretation functions.
Chapman et al.’s universe even describes itself as a data type. These authors
do not consider syntactic models of terms or types that are not data types.
Brady and Hammond [20] provide a universe that models a non-dependent
object language. Terms, types as well as contexts are modelled and can be
syntactically constructed and analysed.

This universe-based approach can be extended to dependently-typed object
languages using the advanced type-theoretic concept of inductive-recursive
definitions [67]. This has been studied by Danielsson [48], Chapman [32] and
McBride [144]. These authors provide typed syntactic models of dependently-
typed calculi in dependently-typed calculi, with different objectives than ours.
Where we focus on the applicability of such a model in meta-programming
primitives, they aim to prove properties of the modelled language in the
meta-language. They use models based on advanced type-theory features
like induction-recursion and mutual induction. All three authors use a model
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of the object calculus with terms indexed by encodings of their types, instead
of an external typing judgement like ours. The models that they use are
specifically tailored to enable proofs of deep properties like normalisation, and
it is unclear if their models also fit our more practical objectives. Finally, these
approaches generally try to stay within the limits of the features of an existing
dependently typed language (albeit one with powerful features like inductive-
recursive definitions). They try hard to fit their models and interpretation
functions (more or less equivalent to the normalisation proof of the object
language) in a known inductive-recursive schema, not fully successfully [48, 32].
McBride’s encoding is accepted by Agda but he has to significantly limit the
dependent nature of his object language [144]. As discussed in the introduction,
our use of interpretation primitives allows us to side-step the interesting but
hard problems that these authors tackle, leaving us free to study the application
of related techniques to concrete meta-programming applications. It also allows
us to use a more conventional encoding of the object language based on external
typing judgements.

4.7 Conclusion

Our primitives present a novel meta-programming model with several desirable
characteristics. Our meta-programs use the same functional style and well-
understood computational model as normal programs. They can be given
precise types that guarantee termination and strong type-safety. Finally, they
can construct and analyse terms, types and typing contexts in a type-safe way.
Our proof-of-concept applications in the two important application domains of
datatype-generic programming and tactics, demonstrate the generality of our
approach. Still, we feel this work is only a first exploration of a new approach
to meta-programming. Quite some interesting questions remain to be answered
in future work.
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Abstract

Static effectful APIs and global state in object-oriented programming languages
make it hard to modularly control effects. Object-capability (OC) languages
solve this by enforcing that effects can only be triggered by components that
hold a reference to the object representing the capability to do so. We study
this encapsulation of effects through a formal translation to a typed functional
calculus with higher-ranked polymorphism (we use a subset of Haskell for
presentation). Based on an informal view of effect-polymorphism as the
fundamental feature of OC languages, we translate an OC calculus to effect-
polymorphic Haskell code, i.e. computations that are universally quantified over
the monad in which they produce effects. The types of our translations assert
the object-capability property and we can show and exploit this using Reynolds’
parametricity theorem. This text contains a simple OC calculus, the formal
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translation to effect-polymorphic Haskell code, proofs that effect parametricity
generalises and strengthens capability-safety, some applications and discussions.
An important new insight is that current OC languages and formalisations leave
one effect implicitly available: the allocation of new mutable state; adding a
capability for it has important theoretical and practical advantages. In summary,
we propose effect parametricity (parametricity applied to effect-polymorphic
functions) as a formal property that generalises and strengthens capability-
safety. This establishes a new link between object-capability languages and the
well-studied fields of functional programming and denotational semantics.
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5.1 Introduction

Object-oriented (OO) programming is a paradigm that is important in theory,
practice and teaching of programming and programming languages. Especially
in large systems with complex interaction patterns and components from several
parties, an object-oriented design can fill the need for strong modularity. A
key feature for this is encapsulation, a property that restricts the parts of the
code that can access and modify an object’s state variables. By and large,
the property asserts that such variables can only be read or written from the
object’s own methods, not from elsewhere.

Encapsulation can be seen as a discipline imposed on the use of store side-
effects. It enables a form of modular reasoning; if we ascertain that an object’s
own methods treat its state variables in a certain way, we are sure that any
program will access them that way since other code can access the object’s
state only through its methods. In some languages, this is true even in the
presence of malicious code that actively tries to subvert encapsulation. Enforcing
invariants about objects’ state variables is a common and useful application of
encapsulation.

However, in most OO languages no similar discipline is imposed for other kinds
of side-effects than the interaction with object state. For example, in Java or
C++, any code may read files or open network connections when executed.
Even when we intend such effects to only be produced in specific parts of
the code, there is no way to enforce this restriction without inspecting all
components. Generally speaking, modular control over effects is not available
in such languages.

A notable exception are object-capability languages [152, 148, 216, 191, 151].
These make the capabilities to perform certain side-effects explicit as objects.
They guarantee that effects can only be produced by invoking the methods of
such an object. For example, if we have a static method like the following:

int calculateSth(Logger l) = ...;

then it can only produce effects by invoking methods of its argument object l.
An object-capability language has no static methods that allow the function to
perform effects like reading a file or connecting to the network directly. As a
result, if a component possesses the only reference to a capability (for example,
because the main method gets the only reference to primitive capabilities as an
argument), then it can control which parts of the code get to perform the effect
and which do not. Code with a reference can pass on the capability to other
code that it invokes and wrapper objects can be used to restrict or subdivide
capabilities or enforce properties.
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This modular control over effects is very useful. It can be used to enforce
architectural properties of an application (e.g. all network access is encrypted,
the front-end can only access the database through the business layer), to
securely isolate mutually distrusting components in a web page (e.g. an ad in
an online mail application cannot inspect e-mails [131]) or to enforce functional
properties (e.g. all file access uses a transaction journal).

Motivated by the security applications of OC languages (specifically component
isolation in JavaScript), Maffeis et al. have proposed the first formalisation of
capability-safety (the key property of object-capability languages) [131]. For an
abstract language with a certain form of small-step operational semantics, they
define two language properties: authority-safety and capability-safety. Both
require that for a given term in a given run-time heap, there should be an
upper bound on the memory it can access and that this bound is preserved by
evaluation steps. The second property additionally requires that such a bound
is given by the set of addresses that the term (directly or indirectly) references.
As a limitation, the formalisation only supports one kind of effects: read and
write access to mutable heap variables. Also, the definitions are tied to an
operational semantics and are themselves rather operational in nature, making
it hard to derive, for example, in-language equivalences.

In this paper, we give a more denotational account of object capabilities. From
a helicopter perspective, our main idea is that the use of object capabilities
introduces what we call effect polymorphism. A function or method that can
only produce effects by invoking methods of objects received as arguments, is
necessarily polymorphic in its side-effects; by invoking the function with objects
producing certain effects, we can make the function produce those effects (and
only those).

To make our informal notion of effect polymorphism more precise, we use a
model of effects well-known from the functional programming (FP) community:
monads [156, 232]. We present a translation of capability-safe object-oriented
code into Haskell functions whose effect polymorphism is explicit in their type.
Those types are of the form ∀m.Monad m ⇒ ... → m (...), declaring that a
function can be executed in an arbitrary monad m, producing effects in that
monad. For example, the above example would be translated to a function of
the following type:

calculateSth :: ∀m.Monad m ⇒ Logger m → m Int

It turns out that such effect-polymorphic types yield a good denotational
interpretation of code in an object-capability language and existing reasoning
techniques make the property exploitable in a well-understood theoretical
framework. Let us take a closer look.
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Haskell’s parametric polymorphism implies that a function inhabiting a type
of the form ∀m.Monad m ⇒ ... → m (...) is restricted in its behaviour. The
language provides no way for the function to determine the concrete monad m
it is executed in. Therefore, whatever the function does, it must be able to do
in an arbitrary monad m. The function implicitly has access to the standard
monadic operators but these do not allow it to produce effects. Therefore, the
only way for it to produce effects is to use the operations it can invoke through
its arguments. Our example function calculateSth could, for example, call the
log method on its logger argument. We will demonstrate that this corresponds
precisely to the restrictions that exist in object-capability languages.

Under our proposal, the language-level property of all methods and functions
in the object-capability language corresponds to a property implied by the
type of their Haskell translations. In Haskell, powerful reasoning principles
are available to exploit this. Specifically, polymorphic types imply properties
about their inhabitants and this is formally stated using Reynolds’ parametricity
property [192, 231]. Parametricity for types universally quantified over a monad,
has been studied by Voigtländer [228] and Oliveira et al. [169]. We will show
that the parametricity of the translations of our object-oriented calculus is a
more general and stronger formulation of the calculus’ object-capability. Like
Maffeis et al., we can derive results about the memory locations that a piece of
code can access, but we also prove a non-memory-access control property: the
preservation of object invariants.

However, the benefits of our account of object-capability do not end there.
Our translation also teaches valuable lessons for the design of programming
languages and APIs, both on the OO side and the FP side. On the OO side, we
show how a well-known FP technique for the embedding of side-effecting code
in a pure calculus can be extended to provide the notion of local capabilities,
which can be given to a function without allowing it to store or otherwise
leak them. We propose a simple OO type system extension to make this
technique available in an object-capability language and highlight a relation
to a technique from the field of ownership typing. On the FP side, the use of
effect polymorphism is a valuable design pattern for the modular composition of
effectful components. FP languages are sometimes said to be especially suitable
for compilers, with characteristically simple effect-level component interactions
(the collaboration between parser, type-checker, optimizer, code-generator etc.
is often just sequential execution of the components). A general design pattern
for the modular composition of effects could extend the application domain
of FP towards more complex effectful architectures. Finally, our work can
also be seen as a new kind of denotational semantics for OO languages and
it is useful for the design of OO-to-FP foreign language interfaces and for the
implementation of a new kind of hybrid OO-FP languages.
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Contributions The contributions of this text are:

• The novel view of effect polymorphism as the crucial property of object-
capability languages.

• A sound, semantics-preserving translation of an OO calculus to effect-
polymorphic Haskell code, i.e. functions that are universally quantified
over the monad in which they produce effects.

• Effect parametricity of the translations as the semantic property through
which capability-safety can be formulated and exploited. This moves away
from traditional presentations of capability safety as a property of the
reference graph and generalises the property in two directions: (a) the
property’s formulation is not restricted to a single type of effects and (b)
it allows proving properties beyond access control over memory locations.

• The identification of mutable state allocation as a remaining effect that is
kept implicit in current OC languages.

• A discussion of applications and consequences of the above, such as the
back-translation of a Haskell technique for local capabilities.

The above establishes a new and exciting, formal and practical link between
object-capabilities and the fields of functional programming and denotational
semantics.

Outline In this chapter, we will first define a simple OO calculus (Section 5.2),
present our translation of the calculus to effect-polymorphic Haskell code
(Section 5.3), provide some background on Reynolds’ parametricity property
(Section 5.4) and show formally that the parametricity of our translations implies
more traditional object-capability properties for a store (Section 5.5). Next, we
discuss how to treat the mutable state allocation effect in either the traditional
implicit or a novel explicit way (Section 5.6), show an application of effect
parametricity beyond memory access control: object invariants (Section 5.7) and
discuss a back-translation of functional techniques to provide local capabilities
(Section 5.8). Finally, we discuss and provide an overview of related work
in Section 5.9 and conclude in Section 5.10. Proofs of the theorems are in
Appendices 5.A and 5.B..
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5.2 A calculus with objects

We start with a simple imperative calculus with objects. It has a Java-like syntax,
a simple static type system and includes only interfaces, objects implementing
them and static methods. For simplicity, we do not include all features that are
required or desirable for an actual OO language (such as inheritance, classes,
subtyping), but just those that we need for our presentation. In Section 5.9.2,
we discuss extensions to more realistic OO languages.

The following is an example program in our model language, defining an
interface Logger with one method called log that takes a String and returns
void. Additionally, there is a static method called doStuff taking a Logger
and returning void. The method logs a message by invoking a method on the
provided logger and returns the void result of the log call.

interface Logger { void log(String); }
void doStuff(Logger l) = l.log("Hello world?");

Objects are constructed using a simple new construct, reminiscent of Java’s
anonymous inner classes:1

Logger nullLogger(void _) = new Logger { log(_) = void; };

We model instance state as interaction of the object’s methods with a mutable
store variable, which are accessed through objects implementing a Statet
interface for some type t. The following example defines dynamic logger objects
with an object reference of type Logger as instance state, which they interact
with through an object implementing the primitive StateLogger interface. This
interface has put and get methods of appropriate types and it is the only way
to access mutable state in our language.

interface DynamicLogger { void log(String);
void setLogger(Logger); }

DynamicLogger dynamicLogger(StateLogger logger) =
new DynamicLogger {
log(msg) = let lg = logger.get(void) in lg.log(msg);
setLogger(l) = logger.put(l);
}

New mutable state variables can be allocated using a primitive object alloc
implementing the Alloc interface. This primitive interface has methods

1nullLogger has a void argument because static methods (as well as interface methods)
must have precisely one argument for simplicity.
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P ::= id; sm; (Programs)
id ::= interface Iv {t m(t);} (Interface Definitions)
t ::= tbase | I (Types)

tbase ::= bool | void | ... (Base types)
I ::= Statet | Alloc | Iv (Interface names)
s ::= let x = s in s | if e then s else s (Statements)
| p(e) | e.m(e) | e

e ::= x | vbase (Expressions)
v ::= new I { m(x) = s; } | true | false | void | ... (Base values)

sm ::= tr p(t x) = s (Static methods)

Figure 5.1: Syntax of our imperative OO calculus.

Statet alloct(t v0) which allocates a new reference cell of type t with a specified
initial value v0. We demonstrate its use in the following example:

DynamicLogger newDynamicLogger(Alloc alloc) =
let nl = nullLogger(void) in
let s = alloc.allocLogger(nl) in dynamicLogger(s)

Note that the newDynamicLogger method allocates a fresh mutable state
variable and ensures that only the object is given access to it. This corresponds
to the rules governing instance state in OO language, where instance state is
often only accessible from inside an object’s own methods by default.

For simplicity, our calculus does not include interface inheritance/subtyping,
so DynamicLogger is not actually a subtype of Logger . However, subtyping
can be modeled using explicit upcasting, as demonstrated by the following
DynamicLogger .

Logger upcastDynamicLogger(DynamicLogger dl) =
new Logger { log(msg) = dl.log(msg); }

Figure 5.1 presents the syntax of our calculus. Programs P contain a list
of interface definitions id and static methods sm. Types are base types
tbase or interfaces I. Interfaces are either user-defined interfaces Iv or the
primitive interfaces Statet and Alloc that we saw before. Pure expressions are
distinguished from (potentially side-effecting) statements.

The typing rules in Figure 5.2 depend on contexts I and P for tracking defined
interfaces and static methods respectively. I maps user-defined interface names
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Expressions

Γ(x) = t

I,P,Γ `e x : t
`base vb : tb

I,P,Γ `e vb : tb

methodsI(I) = tr m(t) I,P,Γ[x : t] `s s : tr
I,P,Γ `e new I {m(x) = s} : I

Statements

I,P,Γ `s s1 : t1
I,P, (Γ, x : t1) ` s2 : t2

I,P,Γ `s let x = s1 in s2 : t2
I,P,Γ `e e : t
I,P,Γ `s e : t

I,P,Γ `e e : Bool I,P,Γ `s s1 : t I,P,Γ `s s2 : t
I,P,Γ `s if e then s1 else s2 : t

I,P,Γ `e e : I I,P,Γ `e e′ : t′
(t m(t′)) ∈ methodsI(I)
I,P,Γ `s e.m(e′) : t

(t p(t′)) ∈ P
I,P,Γ `e e : t′

I,P,Γ `s p(e) : t

Static methods

I,P, [x : t] `s s : tr
I,P `sm tr p(t x) = s;

Programs

I,P `P ε

I,P `sm tr p(t x) = s;
I, (P ∪ {tr p(t)}) `P sm
I,P `P tr p(t x) = s; sm

Figure 5.2: Typing rules for statements and programs
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Evaluation states

ES ::= (S, sr) (Evaluation states)
vr ∈ Vr ::= · · · | o (Runtime values)
er ∈ Er ::= ... (Runtime expressions)
sr ∈ Sr ::= ... (Runtime statements)

o ::= a | alloc (Primitive objects)
a ∈ Addr
S ::= Addr ↪→ Vr (The Store)

Statement execution

E ::= · | let x = E in s (Evaluation Contexts)
P ::= {p(x) = s} (Static Method Implementations)

P 
 (S,E[if v then strue else sfalse])→ (S,E[sv])

P 
 (S,E[let x = v in s2])→ (S,E[[x 7→ v]s2])

S(a) = v

P 
 (S,E[a.get(void)])→ (S,E[v])

S′ = S[a 7→ v]
P 
 (S,E[a.put(v)])→ (S′, E[void])

a 6∈ dom(S) S′ = S[a 7→ v]
P 
 (S,E[alloc.alloct(v)])→ (S′, E[a])

(m(x) = s; ) ∈ {md}
P 
 (S,E[(new I {md}).m(v)])→ (S,E [[x 7→ v] s])

(p(x) = s; ) ∈ P
P 
 (S,E[p(v)])→ (S,E[[x 7→ v]s])

Figure 5.3: Execution judgements.
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I to their set of methods: I(I) = {tr m(t)}. P contains a list of the static
methods seen so far, with their types: P = {tr p(t)}. The context Γ contains the
types of variables in scope. Before type-checking, I is filled with the program’s
interface definitions. During type-checking, P is filled incrementally with
every static method that passes type-checking. There are typing judgements
for expressions I,P,Γ `e e : t, statements I,P,Γ `s s : t, static methods
I,P `sm tr p(t x) = s; and programs I,P `P sm with standard rules. The
methods defined by an interface are as follows:2

methodsI(I) = I(I)
methodsI(Statet) = {t get(void), void put(t)}
methodsI(Alloc) = {Statet alloct(t) | t type}

Note that the typing rules do not allow static methods to be recursive: the
typing judgement for a static method p does not have p itself in P. This
restriction allows us to translate to a calculus without general recursion later
on.

In Figure 5.3 we define evaluation judgements. We use an evaluation state ES
consisting of a store and a runtime statement (S, s), where a runtime statement
is a statement that may additionally contain runtime-only values o. Runtime
addresses a represent a mutable variable reference in the store, typed Statet for
the appropriate t. Value alloc is the canonical instance of the Alloc interface
through which new reference cells can be allocated. A store S is a partial map
of addresses to runtime values. The small-step reduction rules for statements
P 
 (S, s) → (S′, s′) use evaluation contexts. They refer to a set of static
method implementations P = {p(x) = s}, collected from the program text. The
method calls on our primitive objects a and alloc form the only interactions
with the store. get and put calls on a mutable variable reference a read or write
the value at address a and an alloct call on primitive object alloc allocates and
initializes a new reference cell. Method invocations e.m(e′) where e evaluates to
a non-primitive object new I {md} evaluate to the implementation of method
m in md with the method argument substituted.

The calculus is generally well-behaved and type-safe. We show progress and
preservation results in Appendix 5.A.

2We avoid polymorphism in the calculus by giving Alloc an infinite number of methods.
Note that this is not allowed for user-defined types.
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5.3 Translating objects to Haskell

The most important tool in this paper is a translation of our OO calculus
to a functional calculus. We use Haskell as a well-known, readable and type-
inferenced notation for System Fω [80], extended with (nominal) recursive
types.

Our calculus is capability-safe. Side-effects can only be triggered by invoking
the methods of an object. It is lexically scoped and references cannot be forged.
The key property of our translation is that we maintain these good qualities
and make them explicit in the Haskell type system. Let us explain how this
works.

Consider the doStuff method we’ve seen previously:

interface Logger { void log(String ); }
void doStuff(Logger l) = l.log("Hello world?");

We use monads to model the imperative code. However, it is not enough to
translate our methods to the IO Monad like this:

data Logger = Logger { log :: String → IO ()}
doStuff :: Logger → IO ()
doStuff l = log l "Hello world?"

Such a translation does maintain the semantics of the code, but the Haskell
type of doStuff becomes Logger → IO (), a type that allows much more effects
than those that can be triggered through l. From its implementation, we can
still see that doStuff only performs effects through l, but the type permits more.
In fact, this translation could just as well support a non-capability-safe calculus,
showing that the types are not very restrictive.

A better solution is to use a technique that has been described and studied by
Voigtländer [228] and Oliveira et al. [169], They use types that are universally
quantified over the monad in which effects are produced. Concretely, our Logger
is translated as follows:

data Logger m = Logger { log :: String → m ()}
doStuff :: ∀m.Monad m ⇒ Logger m → m ()
doStuff l = log l "Hello world?"

doStuff ’s type now requires it to support an arbitrary monad m. The function
is a computation in m, but can only produce effects in m through the primitives
it receives as part of the object l :: Logger m. Effectively, this means that the
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function can only produce effects through methods of argument objects, i.e. the
type states the OC property we want.

This connection is not just informal: the restrictions implied by the universal
quantification over m can be made formal and precise using Reynolds’
parametricity theorem [192]. It states that any polymorphic type implies certain
properties about its inhabitants. The properties can be derived mechanically
from the type. Wadler has used the slogan Theorems for free! to refer to
such properties [231]. Our types are complicated by the quantification over
the monad m of rank ∗ → ∗ and the Monad constraint on it, but Voigtländer
has explained in detail how parametricity can be applied for such types. As
the polymorphism of our types is over the monad m in which the computation
produces effects, we use the terms effect polymorphism and effect parametricity.

The value l of type Logger m corresponds to the Logger object in the object-
oriented code. Like that object, it plays a dual role: on the one hand, it
serves as a witness value proving that a certain capability is available (in OO
terminology) or that the monad m supports certain primitive operations (in a
more functional terminology). On the other hand, the value/object also provides
the implementation of the capability, i.e. its method implementations specify
how the capability is executed when it is invoked. On the functional side, we can
say that the value l of type Logger m contains implementations of the primitive
Logger operations for the (otherwise unknown) monad m. Understanding the
object/value in this second role, it is important to notice that we can have
multiple implementations of a single capability, which implement the primitive
operations of the capability in different ways.

In general, it is this effect parametricity that we propose as a generalisation of
capability safety. The property is not coupled to a specific type of effects and
we will show in Section 5.5 that it generalises capability safety.

First, let us look at our translation, defined formally in Figure 5.4.

Interfaces and methods We translate interfaces to monad dictionaries like
Logger above. A user-defined interface Intf corresponds to a data type bIntf cII
containing the methods as fields. The data type is parameterised over a monad
m, in which the results of the methods are produced. Argument and result
types ty are translated to Haskell types btycIt m, in which all interface types
are replaced by their translations for monad m and base types translated to
their Haskell counterparts.

The primitive interfaces Alloc and Statet correspond to the following AllocD
and StateD monad dictionaries:
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Interfaces:

bAlloccII m = AllocD m

bStatetcII m = StateD (btcIt m) m
bIcII m = I m when I(I) = tr md(t)

where data I m = I

{
md :: btcIt m 7→ m

(
btrcIt m

)}
Types:

btbasecIt m = tbase

bIcIt m = bIcII m

Static methods:

btr p(t x) = s;cIsm ={
p :: ∀ m. Monad m⇒ btcIt m→ btrc

I
t m

p = λx→ bscIs

Statements:

blet x = s1 in s2cIs = bs1cIs >>= (λx→ bs2cIs )
becIs = return becIe

bif e then s1 else s2cIs = if becIe then bs1cIs else bs2cIs
be.md(e′)cIs = md becIe be

′cIe
be.put(e′)cIs = putM becIe be

′cIe
be.alloct(e′)c

I
s = allocM becIe be

′cIe
be.get(_)cIs = getM becIe
bp(e)cIs = p becIe

Expressions:

bxcIe = x bvbasecIe = vbase

⌊
new I {md(x) = s;}

⌋I
e

= I {md = λx→ bscIs }

when I(I) = tr md(t)

Figure 5.4: The translation of our OO calculus to Haskell.
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data StateD t m = StateD {getM :: m t
, putM :: t → m ()}

data AllocD m = AllocD {allocM :: t → m (StateD t m)}

Static methods We translate static methods as discussed for doStuff above.
In general, the translation btr p(t x) = s;cIsm of a static method p is a Haskell
function whose type is universally quantified over a monad m. It receives
arguments and produces a result value instantiated for m and the computation
runs in m. The translation of a statement stmt is written as bstmtcIs . A
let statement let x = s1 in s2 is translated to a monadic bind (>>=) that
executes s1, binds the result to x and continues with s2. Statements that are
(pure) expressions correspond to monadic returns, method calls project out
the implementation of the appropriate method and static method invocations
call the procedure’s translation. The translation bexpcIe of an expression exp
is unsurprising for variables, base values. The translation of a new expression
constructs a value of the monad dictionary for the specified interface from
translations of the method implementations.

As an example, recall the nullLogger function:

Logger nullLogger(void _) = new Logger { log(_) { void } }

This function is translated as follows:

nullLogger :: ∀m.Monad m ⇒ ()→ m (Logger m)
nullLogger = λ . return (Logger { log = λ . return ()})

The function’s implementation is a pure expression, so the translation uses return
to construct a pure computation in monad m. It returns an implementation of
the Logger interface containing the translation of the log implementation.

Typing correspondence Our translation is sound in the sense that it will
translate well-typed terms in the OO calculus to well-typed Haskell code.
To make this precise, we use an additional translation function for contexts
bΓcIctx m that will replace every type ty with btycIt m. Similarly, we translate
the static method context P = {tr p(t)} to a Haskell context bPcIP =
p :: ∀m.Monad m ⇒ btcIt m → m (btrcIt m).

We make the soundness claim about our translation function more precise by
formulating the intended type correspondence. Our choice for using Haskell
instead of a more principled calculus like System Fω is disadvantageous here,
because it is unclear which type system we can use. A good candidate could be
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Vytiniotis et al.’s constraint-based natural typing rules [229], but they do not
support type variables of ranks beyond ∗. In this paper, we choose to ignore
such technical problems, and choose to just formulate, without a proof, our
intended typing relations in a hypothetical (natural) type system for Haskell
where the judgement C; Γ ` e :: t asserts that expression e is well-typed in
context Γ under constraints C. Our translation is simple enough to make this
sufficiently credible. If necessary, the translation could be elaborated to, for
example, System Fω with recursive types, although that would imply a loss in
legibility.

The following are the typing correspondences we postulate for our translation:

• If I,P,Γ `e expr : ty, then we have on the Haskell side that

Monad m; (bPcIP ; bΓcIctx m) ` bexprcIe :: btycIt m

• If I,P,Γ `s stmt : ty, then we have that

Monad m; (bPcIP ; bΓcIctx m) ` bstmtcIs :: m (btycIt m)

Semantics correspondence To show that our translation preserves the
semantics of the calculus, we need a way to execute the translations. For
simplicity, we use a model with a fixed heap (so no allocation) based on a State
monad. That means that this part of our work does not support the primitive
alloc object.

To do this, we use a store typing Σ (as used in the type preservation proof in
Appendix 5.A) that assigns a type to all run-time addresses. We translate a
store typing to a Haskell data type:

data bΣcIΣ m = Heap
{

a :: bΣ(a)cIt m
∣∣∣ a ∈ dom(Σ)

}
We then define the FSΣ monad as a state monad carrying a heap of this type:

data FSΣ a = FS {unFS :: State (bΣcIΣ FSΣ) a}

We omit the Monad instance for FSΣ, which simply lifts the standard instance
for State. We can execute a computation in FSΣ with runFS :

runFS :: FSΣ a → bΣcIΣ FSΣ → (bΣcIΣ FSΣ, a)
runFS c s = runState (unFS c) s

In this monad, we can provide primitive state dictionaries for all addresses a as
follows:
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statea :: StateD (bΣ(a)cIt FSΣ) FSΣ
statea = StateD
{getM = FS (do {s ← get; return (a s)})
, putM = λv.FS (get >>= λh. put (h {a = v}))}

We can then translate the stores and run-time values from the semantics to
translations with monad m instantiated to FSΣ:

b(S, s)cIES = runFS bsrcIs bSc
I
S

bScIS = Heap
{
a = bS(a)cIvr

∣∣∣ a ∈ dom(S)
}

balloccIvr
= not supported

bacIvr
= statea

We can then prove the following theorem.

Theorem 5.3.1 (Semantics correspondence). If ES → ES′ and ES does not
contain alloc, then bEScIES u bES′cIES.

In Section 5.6, we will take a closer look at mutable state allocation which we
have ignored here.

5.4 Parametricity

We have translated our object-oriented code to Haskell functions quantified over
an arbitrary monad m because this corresponds to the properties of our object
calculus, where effects can only be triggered through objects. Our translation
makes this property evident in the types. Haskell then provides tools to make
this property more precise. Specifically, we exploit the parametricity property of
Haskell’s polymorphism and the associated technique of deriving free theorems.
In the next section, we recapitulate these tools, based on an explanation by
Voigtländer [228].

5.4.1 Background

Parametricity is a language property that tells us something about the semantics
of polymorphic functions, based solely on their type. Intuitively, when a function
is polymorphic in a type t, then it is limited in what it can do with values of
type t. The function must support t to be instantiated to any concrete type
and there is no way for it to find out what type that is. This effectively leads
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to a strong restriction for the implementation of the function and conversely
provides strong guarantees about its behaviour. For example, a function f of
type ∀t.t → t has so little information about the type t that it has no other
choice than to return the value it receives, i.e. the type is only inhabited by the
identity function λx. x (at least, in a total calculus).

Formally, (relational) parametricity can be exploited through an interpretation
of types as relations. Voigtländer [228] explains that for a type like ∀t.t → t, we
would first replace all quantified type variables by quantified relation variables:
∀R.R → R. Then, there is a systematic way of reading such expressions over
relations as relations themselves. In particular,

• Base types like Int are read as identity relations

• For relations R and S, we have

R → S = {(f, g) | ∀(a, b) ∈ R.(f a, g b) ∈ S}

• For types τ and τ ′ with at most one free variable, say α, and a function
F on relations such that every relation R between closed types τ1 and τ2
(denoted R : τ1 ⇔ τ2) is mapped to a relation F R : τ [τ1/α]⇔ τ ′[τ2/α],
we have

∀R. F R = {(u, v) | ∀τ1, τ2,R : τ1 ⇔ τ2 . (uτ1 , vτ2) ∈ F R}

(uτ1 :: τ [τ1/α] is the instantiation of u :: ∀α.τ to type τ1 and similarly for
vτ2 . Elsewhere, type instantiation is left implicit.)

• Fixed type constructors are read as appropriate constructions on relations.
For example, the list type constructor maps a relation R : τ1 ⇔ τ2 to the
relation [R] : [τ1]⇔ [τ2] defined by:

[R] = {([], [])} ∪ {(a : as, b : bs) | (a, b) ∈ R, (as, bs) ∈ [R]}

In his seminal paper about parametricity [192], Reynolds’ insight was that any
relation that can be constructed in this way as the interpretation of a closed
type, must be the identity relation. He called this theorem the abstraction
theorem, but it became better known as the parametricity theorem.

For example, for a function id inhabiting our example type ∀a.a → a, this
means that (id, id) ∈ ∀R.R → R. By the above, this means that for any τ1, τ2,
R : τ1 ⇔ τ2, v1 :: τ1, v2 :: τ2, (v1, v2) ∈ R implies that (id v1, id v2) ∈ R. Now
take τ1 = τ2 = τ and choose a fixed v0 :: τ . We can define a relation Rv0 : τ ⇔ τ
as {(v0, v) | v :: τ}. If we then choose arbitrary v1, v2 :: τ , we obtain that v1 = v0
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implies that id v1 = v0. Because v0 was chosen arbitrarily, id must be the
identity function.

In order to study the parametricity properties of the types of our translated
functions, we need to deal with two complications. In the type ∀m.Monad m ⇒
Logger m → m (), m does not represent a type (kind ∗), but a type constructor
(kind ∗ → ∗). Additionally, it is not clear how to interpret the type class
constraint Monad m. Luckily, precisely these extensions are treated by
Voigtländer [228]. The first problem is solved by introducing relational actions
F . Similar to the interpretation of quantified type variables as relations between
types instantiating the variable, a type constructor variable like m is interpreted
as relational action F : m1 ⇔ m2 between type constructors m1 and m2: a
function mapping a relation R : a1 ⇔ a2 between arbitrary types a1 and a2
to a relation F R : m1 a1 ⇔ m2 a2. Voigtländer mentions the example of
F : Maybe ⇔ [] which maps a relation R : a1 ⇔ a2 to F R:

F R = {(Nothing, [])} ∪ {(Just a, b : bs) | (a, b) ∈ R, bs :: [a2]}

For class constraints, Voigtländer extends Wadler’s treatment of ML eq-type
constraints to arbitrary type classes. He explains how the constraint in an
expression like ∀F .Monad F ⇒ ... can be read as a constraint on the relational
action F . For F : m1 ⇔ m2, the constraint Monad F requires that there are
Monad instances for both m1 and m2 and additionally that their methods are
related according to an F -interpretation of their type. More specifically, for the
Monad type class’s methods return :: ∀a.a → m a and (>>=) :: ∀a b.m a → (a →
m b)→ m b, we get the following requirements:

• (returnm1 , returnm2) ∈ ∀R.R → F R

• ((>>=)m1
, (>>=)m2

) ∈ ∀RS.F R → (R → F S)→ F S

Voigtländer defines a relational action F : m1 ⇔ m2 to be a Monad-action
when the above conditions are satisfied.

It turns out that Voigtländer’s example above is not a Monad-action as
(>>=Maybe, >>=[]) are not in ∀R.∀S.F R → (R → F S) → F S. As an
exercise, convince yourself of his counterexample: R = S = idInt , m1 = Just 1,
m2 = [1, 2], k1 = λi. if i > 1 then Just i else Nothing and k2 = λi.reverse [2..i].
He mentions a different relational action F ′ that is a Monad-action, defined by

F ′ R = {(Nothing, [])} ∪ {(Just a, [b]) | (a, b) ∈ R}
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5.4.2 Effect parametricity

Voigtländer shows how to apply the above techniques to two applications, one
of which is reasoning about monadic programs. For our purposes, it turns out
that we can use very similar reasoning for deriving results about programs in
our calculus.

Consider, for example, a static method that takes only a non-object argument:

bool isEven(int x) = ...

The method takes an int and returns a bool. Since it only gets access to an int,
a primitive value through which no effects can be produced, the object capability
of our calculus informally tells us that isEven must be a pure function. Using
effect parametricity, we can make this property more precise.

We know that isEven translates to a Haskell function of type ∀m.Monad m ⇒
Int → m Bool and Theorem 5.3.1 tells us that (S, isEven(n)) evaluates to (S′, v)
if runFS (isEven n) bScIS equals runFS (return v) bS ′cIS , i.e. (v, bS′cIS).

Parametricity now allows us to prove that computation isEven must equal
a pure computation λn. return (f n). The proof works similarly to that of
Voigtländer’s Theorem 1. It uses the Id monad:

data Id a = Id {runId :: a}
instance Monad Id where return = Id

(Id a)>>= k = k a

We can then use the Monad-action F : FSΣ ⇔ Identity between our monad
FSΣ and the Id monad, defined as

F R = return−1
FSΣ

;R; Id

where the semicolon denotes (forward) relation composition and f−1 gives the
inverse of f ’s function graph. We do not repeat Voigtländer’s proof that this
is a Monad-action. It uses the left identity law for monad FS . Parametricity
now gives us that (isEvenFSΣ , isEvenId) ∈ idInt → F idBool , from which we
can derive that isEvenFSΣ equals λn. return (runId (isEvenId n)). Therefore,
we have that runFS (isEven n) bScIS must be equal to runId (isEvenId n, bScIS)
which is equal to (v, bScIS). Therefore, v = runId (isEvenId n) and bScIS =
bS′cIS .

So we know that a static method whose argument and return value are not
objects must be pure. But parametricity has more to say about our calculus.
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5.5 Object capability for a store

We have already informally discussed object capability languages in the
introduction, but here we take a closer look. In general, a language that
uses the object-capability model only allows the production of an effect through
references to objects that represent the capability to perform the effect. However,
this statement is a simplified version of the property. Let’s make it more precise.

In the object-capability literature, one often considers the reference graph of an
evaluation state. This graph represents objects in an application as nodes and
the references that they have to one another as edges. One then defines what
it means for a language to be capability-safe as a restriction on the way that
the graph can change during execution. The authority of a run-time term is
defined as the set of objects that it has a direct or indirect reference to.

Before explaining the restriction that is imposed, we need to explain a way
for the authority of a term to increase during execution that does not violate
capability-safety. Consider the following example:

void pushcap(Alloc alloc) =
let l1 = alloc.allocBool(true) in
let l2 = alloc.allocBool(true) in
let lindirect = alloc.allocStateBool(l1) in
let comp = buildComponent(lindirect) in
lindirect .put(l2)

This example features two boolean state variables l1 and l2 and a third variable
lindirect containing a reference to one of the state variables, initially l1. A
component comp is constructed with only a reference to lindirect, so that l2
is initially outside of comp’s authority. However, the execution of the last
statement makes lindirect reference l2, so that comp’s authority changes to
include l2.

Standard presentations of object-capability are formulated in terms of the
reference graph, focusing on heap-based effects. These presentations generally
formalise terms’ authorities, and require them to not increase except in the way
that we just explained. The following properties are often taken as defining:

Only connectivity begets connectivity A subject can influence the author-
ity of only those subjects whose authority influence its own authority.

No authority amplification The change in authority of a subject due to
actions performed by another subject is bounded by the authority of the
acting subject.
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Maffeis et al. [131] formalise these definitions in terms of a heap-passing
operational semantics. We will see that similar properties follow from effect
parametricity, when we specialise it to a heap-passing semantics.

5.5.1 Heap-locality

Consider our store-passing semantics from Section 5.3. We will define a notion of
heap-locality for run-time terms and stores on the Haskell-side of the translation.

We assume a fixed store typing Σ. For any A ⊆ dom(Σ), we write Σ |A for the
limitation of Σ to domain A and we define the following Haskell function:

projectStoreA :: bΣcIΣ m → bΣ |AcIΣ m
projectStoreA store = Heap {a = a store | a ∈ A}

Definition 5.5.1. For a set of addresses A ⊆ dom(Σ), we define that a
computation cmp :: FSΣ t is A-local iff for any monad action F : FSΣ ⇔ FSΣ,
the following implication holds: if (statea, statea) is in StateD (bΣ(a)cIt F) F
for all a ∈ A, then (cmp, cmp) is in F t.

We define that a store S :: bΣcIΣ FSΣ is A-local iff for any monad action
F : FSΣ ⇔ FSΣ, the following implication holds: if (statea, statea) is in
StateD (bΣ(a)cIt F) F for all a ∈ A, then (projectStoreA S , projectStoreA S) is
in bΣ |AcIΣ F .

The following lemma is useful to work with this notion.

Lemma 5.5.2. If a computation cmp :: FSΣ t is A-local and A ⊆ B, then cmp
is also B-local.

If cmp can be written as f statea1 ... statean
for A = {a1 · · · an}, then cmp is

A-local if

f :: ∀m.Monad m ⇒ StateD (bΣ(ai)cIt m) m → m (btcIt m)

If projectStoreA S can be written as f statea1 ... statean for A = {a1 · · · an},
then cmp is A-local if

f :: ∀m.Monad m ⇒ StateD (bΣ(ai)cIt m) m → bΣ |AcIΣm

Proof. The first result follows from the definition and the other two directly
from parametricity of the f in question.
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Following Maffeis et al. [131], we define tCap(s) for a run-time statement s (or
tCap(e) for an expression e) as the set of all addresses that s (or e) syntactically
contains. In a heap S, we define hCap(S, s) (or hCap(S, e)) as the least
set of addresses such that tCap(s) ⊆ hCap(S, s) and tCap(S(hCap(S, s))) ⊆
hCap(S, s). This means that hCap(S, s) is the set of addresses that expression
s directly or indirectly has a reference to.

We have the following lemmas about our translation function:

Lemma 5.5.3. The translation of any run-time statement s such that I,Σ `sr

s : t is equivalent to an expression of the form f statea1 · · · statean for
{a1, · · · , an} = tCap(s) with

f :: ∀m.Monad m ⇒ StateD (bΣ(ai)cIt m) m → m (btcIt m)

The translation of any run-time expression e such that I,Σ `er
e : t is equivalent

to an expression of the form f statea1 · · · statean
for {a1, · · · , an} = tCap(e)

with

f :: ∀m.Monad m ⇒ StateD (bΣ(ai)cIt m) m → btcIt m

If tCap(S(A)) ⊆ A, then there exists a function f such that

f :: ∀m.Monad m ⇒ StateD (bΣ(ai)cIt m) m → bΣ |AcIt m

and (with A = {a1, · · · , an}):

projectStoreA bSc
I
Sr

= f statea1 · · · statean

Proof. Structural induction on s and e. For the heap value at address a, we
note that tCap(S.a) ⊆ A and can then apply the first result and the previous
lemma.

A result of Lemmas 5.5.2 and 5.5.3 is that the translations of any S and t are
A-local for A = hCap(S, t).

5.5.2 Capability safety results

We can show that our notion of locality implies results similar to those of Maffeis
et al. Their results are rather tied to the operational semantics, but we show
that those parts of the results that imply facts about the behaviour of terms
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can be transferred to our setting. Their authority safety property essentially
requires that there exist an authority map auth that assigns to any term t and a
heap H an authority auth(H, t). Authority safety of the language then consists
of four requirements:

• auth is a valid authority map:

– Any read or write action executed by term t in heap H must be in
auth(H, t) or apply to a freshly allocated variable.

– The authority is preserved by an evaluation step.

• The language is authority safe:

– Only connectivity begets connectivity: If the authority of a term t in
heap H cannot write to addresses that a different term u has the
authority to read, then u’s authority is unchanged after a step of t.

– No authority amplification: If the authority of a term t in heap H
can write to addresses that a different term u has the authority to
read, then u’s authority after an evaluation step of t is bounded by
the combined authority of both terms and freshly allocated variables.

We will prove an analogous result to the first two properties with an additional
semantics that makes the read and write actions of a computation explicit, so
that we can reason about them. The result says that executing an A-local term
in an A-local heap will only produce read or write actions to addresses in A,
after any number of evaluation steps. We define the alternative semantics and
prove the theorem in Section 5.5.3.

For the last two properties, we prove two analogous results:

• If a term t and heap H are A-local, then the heap after executing term t
is equal to the original heap for addresses not in A.

• If a term t1 and heap H are A1-local and term t2 and H are A2-local, then
they are all (A1 ∪A2)-local and so is the resulting heap after executing
the second.

This is explained in Section 5.5.4.

5.5.3 From locality to authority

To formalise and prove the first result, we need a semantics that makes it clear
what it means to read from or write to a memory location. This is difficult under
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the semantics from Section 5.3 because for the execution of a term in a heap, it
only considers the final result and the final heap, not how the term got there.
For example, it does not distinguish the terms runFS (getM a1) {a1 = 2, · · ·}
and runFS (return 2) {a1 = 2, · · ·}. In this section, we define an alternative
semantics that fills this gap and use parametricity to prove its correspondence
to the previous semantics.

We write A for the set of possible actions. It contains tuples (a, r) and
(a, w) representing the actions of reading from and writing to address a. For
practicality, we implicitly overload Haskell values like statea for use in both
monads FSΣ and the new FSexpl

Σ .

data FSexpl
Σ a =

FS {unFS :: StateT (bΣcIΣ FSexpl
Σ ) (Writer [A ]) a}

instance Monad FSexpl
Σ where ...

runFSexpl :: FSexpl
Σ a → bΣcIΣ FSexpl

Σ → ([A], (bΣcIΣ FSexpl
Σ , a))

runFSexpl c s = runStateT (runWriter (unFS c)) s
statea :: StateD (bΣ(a)cIt FSexpl

Σ ) FSexpl
Σ

statea = StateD {getM = FS (do s ← get
tell (a, r)
return (a s))

, putM = λv.FS (do x ← get
put (x {a = v})
tell (a, w))}

The monad FSexpl
Σ uses a monad state transformer over a writer monad to

represent computations. If you do not know monad transformers, it suffices to
understand that StateT s (Writer [ l ]) a represents a computation that carries
an implicit state variable of type s and can add values of type l to a log. The
list of all logged values is returned upon execution of the computation. The
new implementation of statea reads and writes to state variables as before, but
additionally logs the actions performed using the Writer monad’s tell primitive.
Let us first prove that this new semantics corresponds to the old one. To do that,
we define a monad action Fexpl : FSΣ ⇔ FSexpl

Σ as follows. Take R : a1⇔ a2.
(cmp1, cmp2) is in FexplR if and only if for all (H1,H2) in bΣcIΣ Fexpl , we have
that (runFS cmp1 H1, snd (runFSexpl cmp2 H2)) is in R× bΣcIΣ Fexpl .

To use this relational action, we need to prove the following lemmas. Proofs are
in Appendix 5.B.
Lemma 5.5.4. Fexpl is a monad action.
Lemma 5.5.5. For any a, (statea, statea) is in the relation Fexpl.
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From these lemmas, we can obtain the following theorem.

Theorem 5.5.6. For any t, e and H, we have that

• (btcIsr
, btcIsr

) is in Fexpl (btcIt Fexpl).

• (btcIsr
, btcIsr

) is in btcIt Fexpl

• (bHcISr
, bHcISr

) is in bΣcIΣ Fexpl

This seems like a rather abstract result, but it is more useful than it may appear.
Consider, for example, the following consequence:

Consequence 1. If I,P,Γ0 ` t : ty and ty is a base type (e.g. Bool), then
for any H with I,P,Γ0 ` H : Σ, we have that

snd (runFS btcIsr
bHcISr

) = snd (snd (runFSexpl btcIsr
bHcISr

))

Rephrasing this consequence: a statement with a base result type produces
the same result value under both semantics. Note that this consequence also
implies something about statements t with a non-base result type or about the
contents of the final heap: we can extend any statement t with a test statement
ttest to let r = t in ttest and apply the previous consequence to deduce that the
test result must be the same. As such, the consequence shows the power of the
previous, more general result.

This new semantics, shown to correspond to our original semantics, allows us
to reason about the actions produced by a computation, as they are explicitly
logged. We can now show that the actions produced by an A-local computation
in an A-local heap are restricted to the addresses in A.

Theorem 5.5.7. For cmp :: FSexpl
Σ t and S :: bΣcIΣ FSexpl

Σ , if both cmp and S
are A-local, then for (as, (v,S ′)) = runFSexpl cmp S, we have that (a, ) in as
implies that a ∈ A.

The proof is based on the definition of another monad action, but for space
reasons, we defer it to Appendix 5.B.

5.5.4 Capability safety

In this section, we show results akin to Maffeis et al.’s authority safety with
proofs in Appendix 5.B. The first states that a computation cannot write to
addresses it does not have access to.
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Theorem 5.5.8. For cmp :: FSexpl
Σ t and S :: bΣcIΣ FSexpl

Σ , if both cmp and
S are A-local, then for (as, (v,S ′)) = runFSexpl cmp S, we have that (a S ′) is
equal to (a S) for all a 6∈ A.

This first theorem in this section implies that an A-local computation cmp1
will be unaffected by executing other actions with disjunct authorities. Note
that it follows from the theorem that if we have an A′ disjunct from A and S is
A′-local, then so is S′.

Theorem 5.5.9. If a computation cmp1 and heap H are A1-local and cmp2 and
the same heap H are A2-local, then cmp1, cmp2 and H are all (A1 ∪A2)-local.

This theorem can be applied when we have two computations cmp1 and cmp2
with non-disjunct authorities (over addresses in A1 and A2), in the same heap
H. This theorem tells us, for example, that if we sequence the computations
in some order (e.g. cmp1 >> cmp2), then the result will still be (A1 ∪A2)-local
and we can draw conclusions about, for example, the read and write operations
they can perform using the result from the previous section.

5.6 The pervasiveness of state allocation

Our account of store capabilities above shows that we can derive powerful
properties from the translation to effect-polymorphic monadic computations.
However, compared to other accounts of such properties, our results are
suspiciously simple. This is because of the fact that in the previous section we
have for simplicity omitted mutable state allocation effects.

In this section, we take a look at memory allocation and show how it can be
modelled in our model. Importantly, we point out that while other accounts
of object capability all choose to make allocation effects implicitly available
throughout all code, it is possible to treat this allocation in a more object-
capability-based way, using an allocation capability. There are two important
advantages to this: (a) the formulation of effect parametricity is simpler, and
(b) we obtain additional guarantees about code that is not given access to the
alloc object.

We can model mutable state allocation in our Haskell code using an allocator
method of the following type:

type Allocator m = ∀s.s → m (StateD s m)}

This type synonym defines an allocator method (of type Allocator m for a
monad m) as a method that allocates a new mutable reference cell of type s
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with a given initial value. The mutable reference cell is returned as an object of
type StateD s m.

Such an allocator method can be easily given for monads like IO in terms of
more traditional APIs:

ioRefStateD :: IORef s → StateD s IO
ioRefStateD r = StateD (writeIORef r) (readIORef r)
allocIO :: Allocator IO
allocIO v = ioRefStateD #$ newIORef v

In other accounts of object capability, allocating new mutable state is implicitly
allowed in all code. This corresponds to standard OO practice, where classes
can define a set of mutable state variables (instance state or instance variables)
and allocating new instances of a class does not require an explicit capability
to do so. We can encode this design using a MonadAlloc type class:

class Monad m ⇒ MonadAlloc m where
alloc :: Allocator m

Previously, we have translated our OO code to monadic computations that can
run in an arbitrary monad, i.e. values of type ∀m.Monad m ⇒ .... If we want
to implicitly allow the allocation effect, we can instead use types of the form
∀m.MonadAlloc m ⇒ ..., so that any functions can allocate mutable state.

The downside of this choice is that parametricity is weakened. Whereas we
were previously able to instantiate the parametricity with any monad action
F , we are now more restricted. For types with a MonadAlloc constraint on
m, we need to additionally require that F be a monad action with allocation,
a new notion that we define as follows. A monad action F : m1 ⇔ m2,
with instances of MonadAlloc available for type constructors m1 and m2, is a
monad action with allocation iff (alloc, alloc) is in Allocator F , i.e. ∀R.R →
F (StateD R F). Intuitively, this additional requirement means that for a
relational action F between computations to be preserved by a function of
type ∀m.MonadAlloc m ⇒ ..., it must consider as related any allocations of
mutable state with related initial values. The produced StateD instances must
also respect the relationship.

Our calculus uses an alternative, more object-capability-style design that has
(to the best of our knowledge) not been explored before. The basic idea is to
make the allocation effect controlable using an explicit capability. That is: code
is only allowed to allocate additional mutable state if it has a reference to an
alloc object that represents the capability to do so. This is also easy to encode
in our system: the idea is to continue working with standard effect-polymorphic
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code of type ∀m.Monad m ⇒ ... and translate the alloc object to an object of
the following dictionary type:

data AllocD m = AllocD {allocM :: Allocator m}

An advantage of this alternative approach is that we can continue using standard
monadic actions with the effect parametricity property. When we apply this to
a function of type ∀m.Monad m ⇒ AllocD m → ..., the parametricity property
applied to monad action F we employ will automatically get an assumption
that (allocM alloc1, allocM alloc2) be in Allocator F , so that for such functions
we obtain the same results. The parametricity property is thus less specialised
to mutable state allocation without losing expressiveness.

Another advantage of this alternative choice is that we obtain additional
properties for our code. For example, for a calculation that does not have
access to the alloc object, we can prove that it cannot allocate additional
mutable state. Similarly, explicit allocators would allow code to produce its own
custom instances of the AllocD interface, to run external code with alternative
allocators, which could, for example, allocate transactional reference cells or
reference cells backed by files instead of the memory. Finally, we can also
combine an explicit allocation capability with the technique for temporary
capabilities that we will explain in Section 5.8 to obtain a form of regions, that
can be implemented using Haskell’s ST monad [124] (we cannot provide more
details because of space constraints).

5.7 Beyond memory access: invariants

A major advantage of the use of effect-parametricity w.r.t. object-capability
à la Maffeis et al. is that the former is more general. The latter deals purely
with what are essentially memory access properties; it essentially formalises the
notion that a piece of code has (read and/or write) access to a memory location
if it has a direct or indirect reference to the capability for this access (typically,
an appropriate reference to the memory cell).

However, object capability languages are intended to cover much more ground
than just memory access. To demonstrate this, this section applies effect-
parametricity to prove a property of OO code beyond memory access: the
preservation of object state invariants.

An object with mutable instance variables may enforce invariants on the values
of those variables. Such invariants are a form of modular reasoning: to ascertain
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that the invariant will always hold, it suffices to inspect the source code of only
the class’s own methods, and verify that they maintain the invariant.

As an example, consider a simple interface Counter and doubleCounter : an
implementation of it in terms of a mutable state variable of type Int.

data CounterD m = CounterD {countM :: m ()
, getCountM :: m Int }

modifyM :: Monad m ⇒ StateD s m → (s → s)→ m ()
modifyM ref f = do v ← getM ref

putM ref (f v)
dblCounter :: Monad m ⇒ StateD Int m → CounterD m
dblCounter ref = CounterD {countM = modifyM ref (λx. x + 2)

, getCountM = getM ref }
nDblCounter :: Monad m ⇒ AllocD m → m (CounterD m)
nDblCounter alloc = do r ← allocM alloc 0

return (dblCounter r)

The dblCounter methods maintain an invariant on its instance variable of type
Int, namely that if it is initially 0, its value will always remain even.

We can prove the preservation of this invariant from effect parametricity:

Theorem 5.7.1. For a base return type r and some base types si, consider a
function f :: Monad m ⇒ CounterD m → StateD si m → m r. Then define

data H = H {a1 :: s1, ..., an :: sn, a :: Int }

Then for any h :: H such that a h is even, we have that

a (execState (f (dblCounter statea) statea1 ... statean
) h)

is still even.

Proof. Define a monad action Feven
a : State H ⇔ State H such that forR : a1 ⇔

a2, (cmp1, cmp2) is in Feven
a R iff (runState cmp1, runState cmp2) is in H →

(R, H) and additionally, for any h such that a h is even, a (execState cmp1 h)
and a (execState cmp2 h) are both even.

Feven
a can be easily checked to be a monad action and we can easily check

that (stateai
, stateai

) is in StateD si Feven
a for all i. Furthermore, while

(statea, statea) is not in StateD idInt Feven
a , (dblCounter statea, dblCounter statea)

is in CounterD Feven
a (as can be easily checked).

We can then use f ’s parametricity to conclude that
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(f (dblCounter statea) statea1 ... statean
,

f (dblCounter statea) statea1 ... statean
)

must be in Feven
a r and the result follows.

5.8 Local capabilities

Our proposal to use effect parametricity as the fundamental property of
languages with an object capability model is interesting for theoretical reasons
and for reasoning purposes. However, there are also some more practical
applications. One such application is a design pattern on the Haskell side
that can be translated back to the object-oriented world. More specifically,
our Haskell translation suggests a way to introduce type-system-enforced local
capabilities to typed, capability-safe OO languages. Such a local capability is
provided to a function under the type-system enforced proviso that the capability
can be used only during the execution of the function and must not leak to the
store or the function’s return value. The technique is based on the ST monad:
a well-known technique by Launchbury and Peyton Jones that provides mutable
state primitives that can be used inside pure Haskell expressions [124]. The
technique is related to existing proposals from the field of ownership types [41].

In this section, we first briefly introduce Launchbury and Peyton Jones’ technique
and then explain our local capabilities.

5.8.1 The ST monad

Launchbury and Peyton Jones [124] consider the use of algorithms that rely on
mutable store variables from inside pure code. They start from the observation
that some algorithms inherently rely on mutable heap variables. Their work
allows the invocation of such algorithms from pure code in a safe way, by
modelling the algorithm in a specific monad and using a type-level guarantee
that the result of the algorithm contains no reference to the mutable variables
that have been allocated. For consistency with the rest of the paper, we will
describe Launchbury and Peyton Jones’ design in a modified but equivalent
form that uses our state and allocator dictionaries.

Launchbury and Peyton Jones introduce a monad ST in which mutable state
variables can be allocated and used through a primitive allocator dictionary.
The monad is parameterised by an opaque type token s:

allocST :: AllocD (ST s)
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Launchbury and Peyton Jones’ provide a way to invoke an ST computation
from pure code. A naive API to allow this would look as follows:

runST :: ST s a → a

When runST is invoked, it executes the provided computation as a sequential
program, allocating the necessary mutable state on the heap. When the
computation is finished, the mutable state is deallocated and the result value is
returned.

The problem with this naive API is that the result value of a computation cmp
can very well contain references to the mutable state that was allocated:

crash = let badref = runST (alloc allocST ())
in runST (readM badref )

Problematically, the mutable reference from the first computation escapes and
is used in the second. Not only can the mutable variable already have been
deallocated by then (since it is not supposed to be referenced any more), but
Haskell’s lazy semantics could even execute the second computation before
the first. Such problems are consequences from the fact that our naive runST
primitive violates Haskell’s purity.

Launchbury and Peyton Jones propose to solve this by giving runST a type
that prevents mutable references from escaping their scope by exploiting the
opaque type parameter s of the ST monad and change runST ’s type:

runST :: ∀a.(∀s.ST s a)→ a

Intuitively, this type means that runST will only execute a computation if the
computation can support any concrete type s that runST may choose to give it.
If the computation’s result contains references allocated during the computation,
then these references’ types will mention the variable s that runST gave it.
However, the type of s does not allow the result type a to mention this s because
that would violate the scope of s’s quantification. Such scope violations are
caught and reported by the type-checker. Effectively, this prevents the leaking
of references allocated by the computation.

5.8.2 Generalising the ST monad idea

The ST monad uses a rank-2 type to enforce a functional property. In our
setting, it makes sense to change the API further:

withHeap :: (∀m.Monad m ⇒ AllocD m → m a)→ a
withHeap cmp = runST (cmp allocST )
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That is, the runST API can be reformulated elegantly as an application of effect
parametricity of the argument computation. The AllocD m argument can be
interpreted as an allocation capability given to the callback cmp and withHeap’s
type then enforces that the capability is provided as a local capability. This
means that the capability or the references allocated through it, can be used
within cmp but are guaranteed not to leak outside of the computation.

Local capabilities readily extend to other settings. Consider the following API
function from Haskell’s standard IO library.

withFile :: FilePath → IOMode → (Handle → IO r)→ IO r

Ignoring the IOMode argument for brevity, this API opens a specified file,
calls the user-specified callback with a handle to the opened file and closes the
file when the callback returns, returning the callback’s result. The following
example correctly uses withFile to read the first line of a file:

correct f = do firstLine ← withFile f (λh. hGetLine h)
...

However, it is not statically enforced that the handle is used correctly, i.e. only
when the file is open. Consider the following problematic code which leaks the
handle outside withFile:

crash f = do h ← withFile f return
hGetLine h

The callback even has another way to leak the handle, by storing it in a mutable
reference cell, and fetching it there afterwards.

crash2 f = do ref ← alloc allocIO Nothing
withFile f (λh. putM ref (Just h))
Just h ← getM ref
hGetLine h

Local capabilities can statically prevent this problem. Concretely, we can give
withFile and hGetLine the following types:

hGetLine :: ∀n.Handle n → n String
withFile :: FilePath → (∀n.Monad n ⇒

Handle n → n a)→ IO a

With these new types, correct will still work, but crash and crash2 both produce
an error that the quantified monad n escapes its scope.
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The above types strongly restrict the callback. It cannot leak the handle, but
also cannot perform IO actions that are unrelated to the file handle. Without
going into the details, we can additionally allow the latter by changing withFile’s
type to the following:

data LiftD m n = LiftD { liftM :: m a → n a}
withFile2 :: FilePath → (∀n.Monad n ⇒

LiftD IO n → Handle n → n a)→ IO a

5.8.3 Closed types

Inspired by these techniques from the Haskell side, we can add language support
to make local capabilities available in the OO calculus. For inspiration, we
discuss closed types: a simple type construct and associated rules that could be
used.

For a given type t and base type (e.g. Bool) tr, we can define a type closed[t→
tr] and a form of lambda with the following additional typing rule. A function
can accept an argument of such a type when it wishes to give a callback access
to only a set of capabilities and not let it leak them. The following typing rules
allow defining and using values of such types.

I,P, [x : t] `s s : tr
I,P,Γ `e λx.s : closed[t→ tr]

I,P,Γ `e f : closed[t→ tr] I,P,Γ `e x : t
I,P,Γ `s f(x) : tr

Values of a closed type can be constructed as lambda functions according to
the first rule. The body of the lambda has access to its argument, but not the
outer context (note that the typing derivation in the premise of this rule needs
to hold for a context containing only the argument x ; the context Γ is not made
available). This corresponds to a requirement that the callback is implemented
without any of the local capabilities that it would normally have access to.

Soundness of such a feature is guaranteed because we can adapt our translation
to accomodate the new feature:

bclosed[t→ tr]cIt m = ∀n.Monad n ⇒ btcIt n → btrcIt n
bλx.scIe = λx. bscIs
bf(x)cIs = bfcIe bxc

I
e
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Closed types allow the definition and use of APIs like withFile above, taking
callbacks that have access only to the local capabilities that we give them. If
we want to be able to define APIs like withFile2, whose callbacks have access to
all their own capabilities plus the additional local capability we give them, then
we need something like Clarke and Wrigstad’s borrowed references [41]. Their
borrow construct takes essentially a callback that is universally polymorphic
in an owner type parameter. Such a construct would combine well with OC
languages and translate to functions like our withFile2 above.

5.9 Discussion and related work

In this section, we provide some more background information and discuss
related work about four topics: parametricity (Section 5.9.1), extensions to
more realistic OO languages (Section 5.9.2), some lessons that our work offers
for the design of OO and FP languages (Section 5.9.3) and object-capability
languages (Section 5.9.4).

5.9.1 Parametricity

The calculus we have presented in Section 5.2 is very limited as an OO language.
Most crucially, we have omitted interface inheritance and subtyping and the
only way to implement an interface is using the new construct. These choices
keep the presentation small and limit the features that we exploit on the Haskell
side of our translation. In this section, we take a closer look at the features that
we use on the Haskell side and how parametricity applies to them.

We have used Haskell as a type-inferenced notation for System Fω [80], extended
with only a limited set of additional features. Most importantly, we use recursive
types for the translation of interfaces and the implementation of the monads in
our heap-passing semantics. We have avoided the use of some features, although
they would be needed for extensions of our work. Specifically, to accomodate
more realistic OO calculi (see below), we will need general recursion and for
a semantics that treats allocation, we need a realistic model of a store with
allocation.

There is quite some work by different authors on the foundational study of
extensions of System F and System Fω and the study of parametricity in them.
We list some papers as a starting point for interested readers without striving
for completeness. Birkedal et al. study a parametric model of impredicative
polymorphism with general recursion and recursive types based on domain
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theory [14]. Atkey shows parametricity of System Fω using a model in the
impredicative calculus of inductive constructions [6]. Birkedal and other authors
study a model of impredicative polymorphism with general recursion, general
references and recursive types [15]. Vytiniotis et al. prove parametricity for an
extension of System Fω with type equality proofs [230].

5.9.2 Extending the calculus

Even though we have kept our calculus small, our ideas apply to more realistic
OO languages too. In order to properly support object-oriented programming,
we should add at least a form of interface inheritance, and an interface
implementation construct with late binding, such as classes. However, these
do not pose fundamental problems, except that they may increase the features
required in the subset of Haskell that our translation targets. Specifically, the
translation of an account of classes would probably require general recursion.
Interface inheritance can be translated without additional requirements by
translating implicit upcasts to explicit dictionary projections.

Composition primitives like classes, prototype-based inheritance or aspects can
all be modelled as building blocks that can be combined to obtain functions that
construct objects. Schrijvers et al. have already shown how this can be done
for aspects and advice in an effect-polymorphic model of aspects that would
combine well with our development [172]. In a draft of the current chapter,
we used similar techniques to model a form of classes with single inheritance
and private instance state. Other forms of inheritance are also encodable, such
as prototype-based inheritance or family polymorphism (using techniques like
Oliveira et al.’s [170]).

5.9.3 Lessons for language design

Both our new account of object capability and our translation of an object-
oriented calculus to effect-polymorphic Haskell functions present interesting
lessons for OO and FP language designers‘.

First, our work shows that object capability languages are similar in nature to
pure functional languages like Haskell, in the sense that they enforce a strict
discipline for the use of effects. A good way to exploit the discipline to obtain
formal results is through our translation to effect-polymorphic code in a pure
calculus. Techniques from the functional world can be translated back to OC
languages, as we have explained in Section 5.8.
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On the functional side, APIs in pure programming languages like Haskell are
still lacking a general modular treatment of effects, while this is a solved problem
in the OO world. Our translation shows how this knowledge from the OO world
can be reused on the FP side with an effect-polymorphic model. Oliveira et
al. [169] have studied a similar style without looking at the connection to object
capabilities.

Our translation also presents interesting possibilities as the basis for foreign
language interfaces between object-oriented and pure functional languages or
for adding OO support to pure functional languages. In previous work (e.g.
Nordlander’s O’Haskell [160]) all OO code was either pure or only usable from
the IO monad, but we can allow more precise types for effectful code that
respects the object-capability model.

5.9.4 Object capability

Object capability languages have their roots in the research on operating systems
and their security models. A thorough overview of the field is outside the scope
of this text, and we refer to Miller’s Ph.D. thesis instead [152]. Object-capability
languages exist in several forms, for example, Miller’s E3 (a subset of Java), Joe-
E [148] (idem), Emily [216] (a subset of OCaml), W7 [191] (based on Scheme)
and Caja [151] (a subset of JavaScript).

We are aware of only one formalisation of object capability as a language feature
that can be used to reason about code written in the language: Maffeis et al.’s
formulation of authority safety and capability safety as language properties for
an abstract language with an operational semantics and store-based effects [131].
We have discussed and contrasted their approach to ours throughout this text
and we will not repeat this here.

5.10 Conclusion

In this chapter, we identify effect parametricity as a formal property that
generalises object capability. We formalise it with a translational semantics of
an object-oriented calculus with effects to Haskell, which we take as a convenient
notation for System Fω. We no longer see object capability as a property of the
reference graph, but a form of effect polymorphism. In the process, we identify
mutable state allocation as an effect that is still left implicit in existing OC
treatments and discuss advantages of making it controllable. This establishes

3http://erights.org/elang/index.html

http://erights.org/elang/index.html
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an exciting new link between OO and the fields of functional programming and
denotational semantics and presents a large potential for applications.

5.A Calculus properties: progress and preservation

We define a store typing Σ as a mapping of addresses to types.

Evaluation state correctness: extra typing judgements for runtime values. Note:
only for closed values.

I,Σ `er Σ(a) = t

I,Σ `er a : Statet I,Σ `er alloc : Alloc

We define I,Σ `Sr S : Σ iff I,Σ `vr S(a) : Σ(a) for all a ∈ dom(Σ).

I,Σ `Sr
S : Σ I,Σ `sr

s : void
I,Σ `exec (S, s)

Theorem 5.A.1 (Initial state typing). Assume I, [alloc : Alloc] `p s : void.
Then I,Σ0 `exec (S0, s).

Proof. By its typing judgement, statement s may only contain a reference to
runtime value alloc so it is well-typed in the context of the empty store typing
Σ0.

Theorem 5.A.2 (Type preservation). If I,Σ `exec ES and ES →∗ ES ′ then
there exists a Σ′ that extends Σ such that I,Σ′ `exec ES ′.

Proof. Induction on evaluation judgement.

Theorem 5.A.3 (Progress). Assume ES = (S, s) with I,Σ `exec ES. Then
either s is a pure expression or ES → ES ′ for some ES′.

Proof. Case analysis.
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5.B Proofs

Proof of Theorem 5.3.1. Case analysis on evaluation rules. Uses iota reduction
for if+Bool, iota for data type projectors, monadic Left Identity law, standard
equational reasoning, some properties of the State monad:

runState (getM statea >>= f ) S u runState (f (a S)) S
runState (putM statea e >>= f ) S u

runState (f ()) (S{a 7→ e})

Proof of lemma 5.5.4. • For any R : a1 ⇔ a2, (return, return) is in R →
FexplR.
It suffices to note that runFS (return v1) H1 is equal to (v1,H1) and
runFSexpl (return v2) H2) is equal to ([ ], (v2,H2)).

• For any Ra : a1 ⇔ a2, Rb : b1 ⇔ b2, ((>>=), (>>=)) is in FexplRa →
(Ra → FexplRb)→ FexplRb.
If runFS cmp1 H1 = (v1,H ′1), runFSexpl cmp2 H2 = (as, v2,H ′2),
runFS (f1 v1) H ′1 = (v1 ′,H1 ′′) and runFSexpl (f2 v2) H ′2 =
(as′, v2 ′,H2 ′′), then we know that runFS (cmp1 >>= f1 ) H1 = (v1 ′,H1 ′′)
and runFSexpl (cmp2 >>= f2 ) H2 = (as ++ as′, v2 ′,H2 ′′). The required
result then follows easily from the relations between the values involved.

Proof of lemma 5.5.5. • (getM statea, getM statea) is in Fexpl (bΣ(a)cIt Fexpl).

For (H1,H2) in bΣcIΣ Fexpl , we know that (a H1, a H2) is in bΣ(a)cIt Fexpl .
The result follows after noting that runFS (getM statea) H1 is
equal to (a H1,H1) and runFSexpl (getM statea) H2) is equal to
([(a, r)], (a H2,H2)).

• (putM statea, putM statea) is in bΣ(a)cIt Fexpl → Fexpl ().

Assume that (v1, v2) is in bΣ(a)cIt Fexpl and (H1,H2) is in bΣcIΣ Fexpl .
Then (H1 {a = v1},H2 {a = v2}) is still in bΣcIΣ Fexpl . The result follows
after noting that runFS (putM statea v1) H1 is equal to ((),H1 {a = v1})
and runFSexpl (putM statea v2) H2) is equal to ([(a, w)], ((),H2 {a =
v2})).

Proof of Theorem 5.5.6. With A = dom(H), we get from lemma 5.5.3 functions
f and fH such that for all a:
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f :: ∀m.Monad m ⇒ StateDbΣ(ai)cIt m → m (btcIt m)
fH :: ∀m.Monad m ⇒ StateDbΣ(ai)cIt m → bΣc

I
Σm

and

btcIsr
= f statea1 · · · statean

bprojectStoreAHc
I
er

= fH statea1 · · · statean

From parametricity of f and fa, and because of lemmas 5.5.4 and 5.5.5, we get
that

(btcIsr
, btcIsr

) =
(f statea1 · · · statean

, f statea1 · · · statean
)

is in Fexpl(btcIt Fexpl).

The result for expressions follows similarly and the result for heaps follows from
that for each of its values.

Proof of consequence 1. This follows from lemma 5.5.3, the definition of Fexpl ,
the fact that the translation of a base type does not involve the monad and
the fact that the relational interpretation of such a translated base type is the
identity relation on that type.

We define a relational action on FSexpl
Σ for use in the proof of theorems 5.5.7

and 5.5.8.

Definition 5.B.1. We define monad action Frestr
A on monad FSexpl

Σ as follows.
Given a relation R : a1 ⇔ a2 and cmpi :: FSexpl

Σ ai, we define that (cmp1, cmp2)
is in Frestr

A R iff for any heaps H1, H2 with (projectStoreA H1, projectStoreA H2)
in bΣ |AcIΣ Frestr

A , we have that if runFSexpl cmp1 H1 = (as1, (v1,H ′1))
and runFSexpl cmp2 H2 = (as2, (v2,H ′2)), then (v1, v2) is in R and
(projectStoreA H ′1, projectStoreA H ′2) is in bΣ |AcIΣ Frestr

A . Additionally, for
equal-length finite prefixes as′1 and as′2 of as1 and as2, we require that
as′1 = as′2 and for all (a,_) ∈ as′1, a is in A. Finally, for B = dom(Σ) \ A,
we have that projectStoreB H ′1 ≡ projectStoreB H1 and projectStoreB H ′2 ≡
projectStoreB H2.

For this relational action, we have the following lemma’s:

Lemma 5.B.2. Frestr
A is a monad action.
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Proof. • If (v1, v2) is in R, then (return v1, return v2) is in Frestr
A R: the

conditions from the definition of Frestr
A are easy to check.

• If (m1,m2) is in Frestr
A Ra and (k1, k2) is in Ra → Frestr

A Rb then (m1 >>=
k1,m2 >>= k2) is in Frestr

A Rb: the conditions from the definition of Frestr
A

are easy to check.

Lemma 5.B.3. (statea, statea) is in Frestr
A for any a ∈ A.

Proof. • (getM statea, getM statea) is in Frestr
A (bΣ(a)cIt Frestr

A ). Condi-
tions easily checked.

• (putM statea, putM statea) is in bΣ(a)cIt Frestr
A → Frestr

A (). Conditions
easily checked.

Based on these lemmas, we have:

Proof of Theorem 5.5.7. If cmp and S are A-local, then lemmas 5.B.2, 5.B.3 and
the definition tell us that (cmp, cmp) is in Frestr

A t and (S, S) is in bΣcIΣ Frestr
A .

By the definition of Frestr
A , we then get the result about as.

Proof of theorem 5.5.8. If cmp and S are A-local, then lemmas 5.B.2, 5.B.3 and
the definition tell us that (cmp, cmp) is in Frestr

A t. The result follows from the
definition of Frestr

A .

Proof of theorem 5.5.9. The result for cmp1 and cmp2 follows easily from
lemma 5.5.2. For the heap, take a monad action F : FSΣ ⇔ FSΣ, and assume
that (statea, statea) is in StateD (bΣ(a)cIt F) F for all a in A1 ∪A2. Then the
A1- and A2-locality of H give us that (projectStoreA1 S , projectStoreA1 S)
is in bΣ |A1c

I
Σ F and (projectStoreA2 S , projectStoreA2 S) is in bΣ |A2c

I
Σ F .

From the definition of the translation function, the definition of projectStoreA
and the relational interpretation of the heap data type, we then get that
(projectStoreA1∪A2 S , projectStoreA1∪A2 S) is in bΣ |A1∪A2c

I
Σ F .



Chapter 6

Conclusion

In this final section, I want to take a step back to consider the results of the work
in this thesis and look forward on directions for future research and practice. I
present them separately for the four domains considered in the text.

Future work In my opinion, there is interesting further research to be done in
all four domains that I discussed in this text. I will discuss some ideas for each
of the four fields covered in this text in the following sections.

Instance arguments My work on instance arguments fits in a tradition started
by eqtype variables in Standard ML [155] and Haskell’s type classes [235]. In
this approach, ad hoc polymorphism is treated in a type system by adding
a sort of phantom arguments, whose value can be inferred from the type at
which the ad hoc polymorphic function is used. Like many of the related work,
instance arguments build further on this tradition, extending the basic idea to
new types of programming languages and exploring alternatives to some of the
initial design choices.

Let’s take a look at some important aspects of the design of instance arguments.
First, the values that ad hoc polymorphic functions can implicitly accept (which
we called phantom arguments above) can be values of arbitrary types. Unlike
type classes, they are not restricted to structures that were specially declared
for use with ad hoc polymorphism. A similar choice was previously made in the
design of Scala’s implicit arguments, Coq’s canonical structures and Dreyer et
al.’s modular type classes. The design choice allows reusing existing structuring
mechanisms and our work confirms previous evidence that it brings clear benefits

204
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and few downsides. I think the evidence has by now become sufficiently strong
to make Haskell follow this direction as well. This can be done concretely by
making dictionary records for all type classes available to the user as data types
and by providing some form of local instances. The incoherence problems with
local instances that were described among others by Kiselyov et al. [118] can
be avoided by requiring sufficient type information from the programmer. I am
currently mentoring a student who is investigating a practical design of such a
Haskell extension for his master thesis.

A second important design choice of instance arguments is more controversial.
Most related work exposes a logic programming (Prolog-like) computational
model on the type-level through equivalents of parametric instances. The use of a
Prolog-like form of type-level computation is not a good design choice, because
it differs from established practice in formal calculi (including System FC ,
underlying GHC’s type system [244, 217, 238]) and from the value-level model of
functional languages. Prolog-like type-level computation is less well understood,
as indicated e.g. by the fact that current formalisations of the Haskell type
system keep the type-level computation of parametric instances (and type
families) out of the underlying formal language System FC , but instead model
them using equality axioms that are added to the code by the type inferencer. I
expect this will become increasingly problematic as the type system of Haskell
gains more power (as it has in recent years).

A result of my work in this context is evidence that this logic programming-based
form of type-level computation is not essential for typing ad hoc polymorphism.

Context-free grammars Grammars are a classic application of higher-level
programming; the use of a higher-level grammar language for writing parsers is
almost universally accepted. External DSLs (where an external tool compiles
the grammar to a parser) are most often used, but they suffer from limitations
like poor integration with tools, specification techniques etc. in the host
language and often a lack of features (like abstraction) in the grammar language.
Embedded DSLs offer an alternative, but a good representation for the recursion
in grammars has proved hard to come by. The goal is to define a DSL such that
its semantics closely corresponds to that of context-free languages, but as we
have explained, the host language recursion semantically does not correspond
to recursion in context-free grammars. The approach presented in Chapter 3,
but also the approach I studied together with Ilya Sergey, Frank Piessens and
Dave Clarke and the approach studied by Oliveira et al. [166], are all based on a
functional approach and start from a fixpoint primitive and Baars and Swierstra
have explored typed references for use with imperative grammar algorithms [9].
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Despite the advances in this line of work, it is my impression that we have not
yet found the perfect representation of grammars and recursion. The above
approaches all succeed in the sense that the EDSLs’ semantics correspond to
that of grammars or grammars coupled with semantic actions, but grammars
remain unnecessarily hard to work with or hard to combine with one another.
To this date, the grammar-combinators approach reported on in this text is
the first one to decouple grammars from semantic actions, without necessarily
passing through an abstract syntax tree representation. Perhaps it is worth
further investigating whether its overhead can be reduced and grammars made
easier to combine, perhaps reusing Baars and Swierstra’s idea of using type-level
lists of types [9] and modernising it to use recent extensions of the GHC type
system (specifically data kinds [244] and closed type families [68]).

Typed meta-programming As explained in the introduction, meta-programs
inherently feature a very complex two-level semantics, making it very hard to
properly specify their properties. Perhaps the only specification technique that
is up to the task are the very powerful dependent type systems. Meta-programs
are not imperative by nature, so in order to not complicate matters further, it is
advantageous to represent them as functional programs . As such, the starting
point for the work presented in Chapter 4 is quite natural: applying dependent
types to the specification of functional meta-programs.

On the other hand, the goal of the work is rather ambitious. Rather than writing
meta-programs that manipulate programs in a comparatively simple language
like Haskell, it reaches directly for higher-hanging fruit: a dependently-typed
object language. As discussed in Chapter 4, this choice implies representing
terms in a very complex type system and even finding a way around Gödel’s
second incompleteness theorem. Nevertheless, this work achieves just that,
albeit by side-stepping the important soundness problem. By introducing meta-
programming support through primitives in the language, soundness remains
an open question but we can already explore the potential of the approach.

And its potential has turned out substantial. The demonstration meta-
programs in the fields of datatype-generic programming and proof tactics
improve significantly over the state of the art in their respective domains.
They are strongly typed and functional and do not feature any obvious
fundamental limitations. Unfortunately, that does not mean they are readily
applicable for practical programming or computer-assisted proof engineering:
their performance is currently prohibitive.

All in all, I think this work shows great potential for applying dependently-typed
languages to writing well-typed meta-programs. Even for the very complex
object language considered, the approach is successful and in future work, I
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want to try to make it perform acceptably in a dependently-typed language
with efficient compile-time evaluation. The soundness problem appears trickier.
As explained in the introduction, the fundamental logical limitations of Gödel’s
second incompleteness theorem imply that one shouldn’t expect to construct
powerful meta-programming primitives within a language itself. My approach
of using primitives therefore seems warranted. However, it would be better
to use primitives whose soundness is more credible, like the axiom of strong
normalisation for typed terms in the object language suggested by a reviewer
and used by Barras [12]. Implementing meta-programming primitives by relying
on such a normalisation axiom is therefore important future work.

Another topic that I believe deserves further study is applying this approach
to meta-programming for simpler languages. Strongly typed meta-programs
written in Agda for an object language like Haskell or Java seem a very
compelling and novel aim. For such a simpler language, the meta-programs
themselves can probably be kept simpler and the overhead of correctness proofs
significantly reduced. There is possibly a link to the work on instance arguments
as such meta-programming could perhaps be integrated into Haskell as a
replacement for the logic-programming based type-level computation primitives
currently exposed by parametric type class instances..

Effect polymorphism Although the work in Chapter 5 has not yet been
published and the presentation could still be significantly improved, I see it as
the most significant contribution in this thesis. The object-capability approach
is in my opinion currently one of the most promising techniques for improving
software quality in industrial applications. The scientific literature mainly sees
it as a security technique (see e.g. [64, 216, 191, 151, 148]), and a contribution of
the work presented in Chapter 5 is already that we consider it as a much more
general semantic approach for reasoning about side-effecting imperative code. It
is hard to overestimate the importance of better control over the side-effecting
behaviour of components, as this behaviour is crucial for architectural properties
(e.g. all network access is encrypted, the front-end can only access the database
through the business layer), inter-component security assumptions (e.g. an ad
in an online mail application cannot inspect e-mails) or functional properties of
components or applications (e.g. all file access uses a transaction journal).

Such properties are generally hard to guarantee in current programming
languages, as most specification techniques and those that do remain largely
academical (see section 1.2.2). The object-capability approach on the other hand
can be used in the existing object-oriented languages that are widely used in the
industry, simply by avoiding certain features (e.g. static mutable state and other
static effectful APIs) and respecting certain rules. For security applications,
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language modifications can enforce the respect of such rules [148, 216, 191, 151]
and such limitations have even been added (optionally) to the most recent
version of JavaScript [106].

Despite the fact that the importance of object-capability systems seems well
understood in computer security circles, it is still poorly understood. One
generally starts from the notion of the reference graph: the directed graph
consisting of all objects in a system, linked by the references that they hold to
one another. Object capability is then understood as a restriction on how a
currently executing statement is allowed to change the reference graph, based
on the references it holds into the graph. The best current formalisation of
this idea is by Maffeis et al. [131]. In chapter 5, we have proposed the novel
view that we should instead use the notion of effect polymorphism. The basic
idea is that code respecting object capabilities is restricted to the effects it can
perform through methods of the objects it has access to. As such, by providing
the code only with access to objects producing certain effects, it can produce
those effects and only those. This novel view upgrades object-capabilities from
a security-related technique to a general approach for managing the side-effects
of imperative code.

To support this view, we have developed a translation from a simple object-
capability calculus to monadic functions in Haskell, where we use Haskell as
a type-inferenced notation for a formal calculus close to System Fω. This
puts us in line with a well-established tradition of using monads to reason
about arbitrary side-effects [156]. It also puts forward a new link between the
fields of formal security (where object-capabilities are generally studied) and
the foundations and formal semantics of (functional) programming languages
(where System Fω is an important technical tool). A tool from the second field
(the formal property of parametricity) then allows us to derive properties of
effect-polymorphic code that we have shown in Chapter 5 to generalise previous
characterisations of object-capability languages based on the reference graph.

The identification of effect polymorphism as the defining property of object-
capability languages yields a very general and useful characterisation. It provides
a clear criterion to decide if a language feature satisfies the object-capability
model: can it be translated to our effect-polymorphic computations? The
characterisation is useful in the sense that the language property can more
easily be exploited for concrete components than previous characterisations, by
applying the parametricity property.

Effect polymorphism also establishes a novel link between the field of object-
oriented and object-capability programming languages on the one hand and
functional programming, polymorphism and denotational semantics on the other
hand. This link provides an opportunity for both fields to learn from each other.
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In functional programming, a modular treatment of side-effects is still the topic
of ongoing research [203, 22, 113, 169] and effect polymorphic functions (such
as the results of our translation) provide an unexplored track that builds on
the experience of OO programming. Conversely, the field of object-oriented
programming and object capabilities would benefit from functional programming
ideas; an example are the local capabilities that we present in Section 5.8.

A limitation of the presentation in Chapter 5 is that it focuses on effect
polymorphism and its relation to previous characterisations of object-capability
languages and, as a result, the translation only covers a minimal object-oriented
calculus, without features like interface extension and subtyping, classes and
inheritance. However, the translation can be extended to support features like
the above, and an earlier version of the work actually does this for interface
inheritance, subtyping with explicit upcasts and classes. With such extensions,
one obtains a novel denotational semantics for object-oriented languages. It
looks promising for studying the interaction of instance state and other effects
with various forms of inheritance like family polymorphism, multiple inheritance,
aspects etc. Despite the fact that dealing with mutable instance state is known
to be problematic in many situations, effects are disregarded in models like
Featherweight Java [104]. Nevertheless, a detailed comparison with related
research remains future work. Another direction for future work comes from the
observation that my semantics of OC languages as effect-polymorphic functions
would also work in languages other than Haskell. For example, I intend to study
effect polymorphic functions in dependently-typed languages like Agda, which
I expect will produce object-capability systems with richer type systems that
allow for verifiable specifications of objects’ contracts.

Practically, I want to emphasize the importance of the object-capability model
for object-oriented programming. Unlike other techniques for managing side-
effects (see Section 1.2.2), the approach is ready for real-world use. For
example, the latest version of the JavaScript programming language [106]
has already been strongly influenced by industry practice and research around
capability-safe subset languages for security applications (specifically Google
Caja [151]), although it remains a bit unclear if the resulting language (in
its strict mode) is actually capability-safe. Bringing the object-capability
model to mainstream languages has important benefits, not just for security
applications (e.g. [148, 151]), but also to make architectural properties
realistically reviewable [148], for explicitising inter-component assumptions
about side-effects (see e.g. Bracha’s story about re-entrancy of javac [19]) and
for informing compiler and middleware of side-effect-related properties of the
code (enabling applications like composable transactions in Haskell’s STM
monad [92]).
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Finally, I want to put forward the opinion that the object-capability model
should not be regarded as an optional feature that builds on the object
oriented programming paradigm. Rather, it should be seen as one of the
defining characteristics of object-oriented programming1, replacing the more
specific notion of encapsulation. This is because the approach is essentially a
generalisation of the object-oriented principle of encapsulation. From a discipline
on producing side-effects involving objects’ instance states, the principle becomes
a more general discipline on the production of arbitrary side-effects. In a
simplified setting, one can imagine that the outside world is made the instance
state of a new World object, and other code is not allowed to touch it unless
(directly or indirectly) invoking that object’s methods. Language features, APIs,
designs and design patterns that are in conflict with effect polymorphism, such
as mutable static state, static effectful APIs (e.g. Java’s System.out.println)
and patterns like Gamma et al.’s Singleton [78] are remnants of other paradigms
(particularly structured programming) that should be avoided. I realise that
this view is currently not sufficiently supported by the work presented in this
thesis, but in future work I intend to develop this argument further.

It is worth noting though, that many people in the object-oriented community
seem to have reached similar conclusions already, recommending object-
capability-based designs as best practice. Their recommendations are
sometimes influenced by object-capability research (e.g. Bracha [19]) and
sometimes independent and using other terminology (e.g. Fowler’s dependency
injection [75]). They are typically motivated by specific applications of the
object-capability treatment of side-effects. Such motivations include the fact that
effect polymorphism enables independent testing of side-effecting components,
because these components only have access to objects whose side-effects can
be controlled [75]. Another motivation is that the interaction of components
with mutable state variables is important to control in concurrent or distributed
settings [19]. Finally, another reason is that dependencies between components
that interact using side-effects are often hard to detect and such dependencies
can be made explicit using an object-capability-based design [75].

1Together with the orthogonal features of subtyping for interfaces and inheritance with
open recursion.
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