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Nobody said it was easy

No one ever said it would be so hard.
– Coldplay, The Scientist
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Abstract

Biomechanical analyses of human motion (e.g. gait) often rely on computer simulations based on

musculoskeletal models. A musculoskeletal model describes how muscles produce force, how this

force is transferred by the tendons to the skeleton, and how the skeleton moves as a result. The

better a musculoskeletal model is in agreement with a certain subject/patient, the more reliable

the outcomes of simulations will be. This is of huge importance when clinical decisions would be

based on these simulations. A long term goal of the biomechanical society is to evolve to subject-

specific modeling: creating a musculoskeletal model of any patient would obviously be beneficial.

Yet, it is not straightforward to collect the information necessary to build these subject-specific

models. Currently, most analyses are based on a generic model constructed using data collected

in cadavers of old subjects. Musculoskeletal geometry can be extracted in vivo using Magnetic

Resonance imaging, but it is not possible to determine the parameters describing the force gen-

erating capacity of the muscle-tendon (MT-) actuators in vivo in Hill-type models. Hence, these

parameters should be obtained through optimization techniques which rely on experimentally ob-

tained subject-specific information on the angle-moment relationship of specific muscle groups.

This relationship typically results from dynamometer experiments.

It has been shown that dynamometer data contain information about the muscle-tendon parame-

ters that are important to accurately simulate gait. This is the starting point of this thesis. The

focus in this thesis is on the actuators of the knee joint. A first pair of contributions are made

towards more accurate experimental measurements of the knee joint moment based on dynamome-

try. To this end, geometry-based knee axes of rotation and motion-based (functional) knee axes of

rotation resulting from different algorithms are compared. The estimated axes’ poses are validated

based on imaging techniques. It resulted that motion-based axes better represent the actual knee

joint axis than geometry-based axes. As a second contribution, an extended dynamometer setup

allowing more accurate measurement of the knee angle-moment relationship has been developed:
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Abstract

segment kinematics are tracked based on (skin mounted) markers, while a load cell gives infor-

mation on three dimensional (3D) reaction forces and moments. This allows us to perform a 3D

inverse dynamic analysis to obtain the reaction moment in the knee joint. Calculations are based

on a model of the lower limb in which the knee joint axis is defined as a motion-based axis. Knee

moments resulting from the inverse dynamic analysis are compared to 2D dynamometer data.

Maximum differences between the calculated moments and the moments as registered by the dy-

namometer were between 10Nm and 25Nm for isometric dynamometry, which shows the relevance

of this contribution.

The third contribution is the description of the inter-dependency of the two most crucial (for

a motion simulation point of view) muscle-tendon parameters for the knee joint actuators, being

the tendon slack length and the optimal muscle fiber length. This finding turns out to be crucial

for the fourth contribution of this thesis, being the development of an estimation method for these

parameters.

The fourth contribution is the development and validation (in a simulation environment) of a

method for the estimation of muscle-tendon parameters of the knee joint actuators based on iso-

metric dynamometry. The algorithm aims at estimating the tendon slack length and the optimal

muscle fiber length. The method relies on the use of a priori physiological knowledge to define a

physiologically feasible set and constraints for the optimization. A new set of optimization variables

is introduced which greatly improves the numerical condition of the optimization. The estimation

method comprised a heuristic phase to determine the physiologically feasible set and the hot start

for the non-linear constrained optimization problem. The optimization minimizes the difference

between the experimentally obtained moment and the simulated moment. The influence of the

initial guess and measurement noise was studied in simulation and compared to the performance of

the method presented by Garner and Pandy (2003). The new method shows a low dependency on

the initial guess, and outperformed the method of Garner and Pandy (2003) in terms of accuracy

by at least one order of magnitude when parameters were estimated from noisy data.

A last contribution of the thesis describes the added value of subject-specific parameters for simula-

tion of human movements based on two case studies. The subjects were power athletes, hence they

belonged to a specific sub-group of the population. For both subjects four musculoskeletal models

are constructed: a model with linearly scaled geometry and muscle-tendon parameters, a model

with linearly scaled geometry and identified MT-parameters , a model with image-based geometry

and linearly scaled MT-parameters, and finally a model with image-based geometry and identified

MT-parameters. Three movements are evaluated for each model: isokinetic dynamometry at 30◦/s,
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Abstract

a gait trial at 4km/h, and a countermovement jump. The dynamometry allowed us to investigate

the effect of including subject-specific parameters of knee joint actuators on the level of the knee

joint alone, whereas walking and jumping allowed us to study the influence of local improvements

on other joints (as joints are linked by bi-articular muscles). The main finding of this study was

that musculoskeletal modeling benefits more from including the subject-specific MT-parameters

than from subject-specific geometric features. Also, the importance was more pronounced for the

motions which require more force. It was also the first time that the performance of musculoskele-

tal models including image-based geometry and subject-specifically estimated MT-parameters has

been evaluated.
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Samenvatting

Biomechanische analyses van menselijke beweging (zoals bijvoorbeeld gaan) steunen vaak op

computersimulaties dewelke steunen op musculoskeletale modellen. Een musculoskeletaal model

beschrijft de krachtproductie in spieren, hoe deze spierkrachten via de pezen worden overgedragen

op het skelet, en op welke manier het skelet hierdoor gaat bewegen. Hoe beter de specifieke eigen-

schappen van een patiënt beschreven zijn in het musculoskeletale model, hoe meer betrouwbaar de

resultaten van de simulaties zullen zijn. Het belang hiervan is groot wanneer klinische beslissingen

gebaseerd zouden worden op de simulaties. Biomechanici streven ernaar om op lange termijn te

evolueren naar subject-specifieke modellering omdat het definiëren van een musculoskeletaal model

van elke patiënt uiteraard ten voordele is van de patiënt zelf. Het is echter niet vanzelfsprekend alle

informatie te verzamelen die nodig is om zulke subject-specifieke modellen op te stellen. Daarom

zijn de meeste analyses nog steeds gebaseerd op een generisch model dat is opgesteld aan de hand

van data van kadavers van oudere personen.

Daar waar musculoskeletale geometrie wel in vivo kan afgeleid worden uit magnetische-

resonantiebeelden, is het erg moeilijk tot zelfs onmogelijk om in vivo de parameters van spier-

peesmodellen, te achterhalen. Een manier om deze parameters te bepalen is door gebruik te

maken van optimalisatietechnieken. Optimalisatietechnieken maken gebruik van experimenteel

opgemeten subject-specifieke informatie over de moment-hoekrelatie van specifieke spiergroepen.

Deze moment-hoekrelatie kan bijvoorbeeld bekomen worden via dynamometrie.

Er is reeds aangetoond dat dynamometriedata informatie bevatten over de spier-peesparameters

dewelke de nauwkeurigheid van gangsimulaties het meeste bëınvloeden.

De twee eerste bijdragen zijn gemaakt met het oog op het bekomen van nauwkeurigere ex-

perimentele metingen van het kniemoment gebruikmakend van dynamometrie. Hiervoor werden

geometriegebaseerde rotatie-assen en bewegingsgebaseerde (functionele) rotatie-assen berekend via

verschillende algoritmes vergeleken. De geschatte poses van de assen zijn vervolgens gevalideerd
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Beknopte Samenvatting

met beeldvormingstechnieken. De resultaten toonden dat de bewegingsgebaseerde assen een betere

schatting opleverden dan geometrie-gebaseerde assen van de werkelijke knie-as. Daarnaast werd

een uitgebreide dynamometer-testopstelling ontwikkeld dewelke toelaat nauwkeurigere metingen

van de moment-hoekrelatie ter hoogte van het kniegewricht te bekomen. De testopstelling omvatte

het registreren van de segmentale kinematica gebaseerd op huidmarkers terwijl een krachtsensorin-

formatie registreerde met betrekking tot drie-dimensionale reactiekrachten en -momenten. Dit liet

ons toe een volledige 3D-inverse analyse uit te voeren om het reactiemoment in het kniegewricht

te berekenen. De berekeningen zijn gebaseerd op een model van het been waarin het kniegewricht

gedefinieerd is als een bewegingsgebaseerde as. Kniemomenten volgen uit de inverse dynamische

analyse en werden vergeleken met de 2D-dynamometer data. Maximale verschillen tussen de berek-

ende momenten en de geregistreerde momenten varieerden tussen 10Nm en 25Nm voor isometrische

dynamometrie. Dit toont het belang van deze bijdrage aan.

De derde bijdrage in deze thesis is de beschrijving van de afhankelijkheid tussen de twee meest

cruciale spier-peesparameters voor de actuatoren van het kniegewricht. Deze parameters zijn de

optimale spiervezellengte en de pees-slacklengte (de lengte van de pees waarbij krachtoverdracht op

het skelet begint). Deze bevinding is in eerste instantie belangrijk geweest voor de vierde bijdrage

in deze thesis. De afhankelijkheid zou echter ook meer algemeen aangewend kunnen worden bij

het schalen van spier-peesparameters.

De vierde bijdrage in deze thesis is de ontwikkeling en validatie (in een simulatie omgeving) van

een methode voor de schatting van de spier-pees parameters van de actuatoren van het kniegewricht

op basis van isometrische dynamometrie. Het algoritme tracht de pees slack-lengte en de optimale

spiervezellengte te schatten. De methode steunt op a priori kennis met betrekking tot fysiologis-

che eigenschappen van de spieren om een fysiologische oplossingsruimte en de beperkingen voor

de optimalisatie te definiëren. De introductie van een nieuwe set van optimalisatievariabelen heeft

geleid tot een betere numerieke conditie van de optimalisatie. Het schattingsalgoritme omvat een

heuristiek waarmee de fysiologische oplossingsruimte en de warme start voor het niet-lineaire opti-

malisatieprobleem worden bepaald. De optimalisatie minimaliseert het verschil tussen synthetisch

gereproduceerde experimentele gewrichtsmomenten en een model-gebaseerd gewrichtsmomenten.

De invloeden van de beginschatting van de MT-parameters en meetruis zijn bestudeerd en de

prestatie van het nieuwe algoritme is vergeleken met het algoritme zoals beschreven door Garner

and Pandy (2003). Het nieuwe algoritme is slechts beperkt afhankelijk van de beginschatting en is

in termen van nauwkeurigheid meer dan een grote orde beter dan het algoritme van Garner and

Pandy (2003) wanneer de MT-parameters worden geschat op basis van ruizige data.
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De laatste bijdrage van deze thesis licht de toegevoegde waarde van het gebruik van subject-

specifieke spier-pees parameters toe voor simulaties van menselijke beweging op basis van twee

cases. De subjecten waren kracthsporters en behoorden dus tot een specifieke subgroep in de

populatie. Voor elk van hen werden vier musculoskeletale modellen opgesteld: een model waar-

van de geometrie en de spier-pees parameters lineair geschaald waren, een model waarvan de

geometrie gebaseerd was op beeldvorming en de spier-pees parameters lineair geschaald waren, een

model waarvan de geometrie linear geschaald was en de spier-pees parameters van de actuatoren

van de knie subject-specifiek geschat (functioneel geschaald), en een model waarvan de geome-

trie gebaseerd was op beeldvorming en waarvan de spier-pees parameters van de actuatoren van

de knie subject-specifiek functioneel geschaald waren. Er werden drie bewegingen geëvalueerd:

isokinetische dynamometrie aan een snelheid van 30◦/s, gaan aan 4km/u, en een krachtsprong.

De belangrijkste bevinding van deze studie was dat de simulaties doorgaans voordeel hebben bij

de functionele schaling van spier-pees parameters. Het was de eerste keer dat de mogelijkheden

van musculoskeletale modellen met beeldgebaseerde geometrie en functioneel geschaalde spier-pees

parameters werden geëvalueerd tijdens dynamische simulaties.
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Abbreviations and symbols

General abbreviations1

2D, 3D, 6D two-, three-, or six-dimensional

(f)AoR (functional) Axis of Rotion

BMI Body Mass Index

CE Contractile Element

CIA Classic Inverse Approach

COM Centre of Mass

DOF Degree Of Freedom

EA Equivalent Axis

EPI transepicondylar axis

EMG electromyography

FD Forward Dynamics

FHA Finite Helical Axis

Fim Fisher information matrix

GaL sphere fitting technique of Gamage and Lasenby [41]

GEO geometry-based

GRF Ground Reaction Force

ID Inverse Dynamics

IK Inverse Kinematics

ISB International Society of Biomechanics

1General abbreviations are listed below. Those abbreviations appearing only locally are left out of this list.
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List of symbols

M2D,M3D moment resulting from 2D, 3D inverse dynamics

Mdyn moment resulting from the dynamometer

MR(I) Magnetic Resonance (Imaging)

MS Musculoskeletal

MT Muscle-tendon

MVC Mean Voluntary Contraction

NLP Non-linear Optimization Problem

PCSA Physiological Cross Sectional Area

PE Passive Element

PIA Physiological Inverse Approach

RMS Root Mean Square

ROM Range of Motion

SARA Axis transformation algorithm of Ehrig et al. [37]

STA Soft Tissue Artefacts
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List of symbols

General symbols2

(.) prediction of (.)

(̃.) normalized (.)

α(opt) (optimal) pennation angle

∆ (.) change in (.)

δmax (maximum) distance to regression line

εt tendon strain

τ(de)act (de)activation time constant

a activation

Fact active muscle force

Fknee reaction forces at the knee

Fm/t muscle/tendon force

Fmax
m maximum isometric muscle force

Fmt muscle-tendon force

Fpas passive muscle force

Ftc interaction force between tibia and crank

fv velocity-dependent force

L(opt)
m (optimal) muscle fiber length

Lt muscle-tendon length

Lt(s tendon (slack) length

m mass

p parameter

q, q̇, q̈ generalized position, velocity, acceleration
b
aR rotation/orientation from frame a to frame b

2General symbols are listed below. Those symbols appearing only locally are left out of this list.
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List of symbols

(M)Se(rel) (relative) (Moment-) sensitivity
b
aT transformation from frame a to frame b

at
a,b translation from frame b to frame a expressed in frame a

u exciation

vmax
m (maximum) muscle contraction velocity

wm muscle width

y measurement output

d = 1 . . . D number of degrees of freedom included

i = 1 . . . I number of time instants

j = 1 . . . J number of muscles included

k = 1 . . .K number of experiments included

p = 1 . . . P number of parameters included

s = 1 . . . S number of segments included

MUSCLES

BFL/S m. biceps femoris long/short head

Gas m. gastrocnemius

GL/M m. gastrocnemius lateral/medial

GRA m. gracilis

HamLat/Med lateral/medial hamstrings

RF m. rectus femoris

SM m. semimembranosus

SOL m. soleus

ST m. semitendinosus

TFL m. tensor fascia latae

VI,VL,VM m. vastus intermedius, lateralis, medialis
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Chapter 1

Introduction

In this introduction biomechanical analysis of human motion is placed in a general framework, and

the motivation for this research is given. Furthermore, an overview and the scope of the different

chapters in this thesis are given.

1.1 Motivation

Biomechanical analysis for the evaluation of human motion is a valuable tool. The potential ap-

plications are very diverse. Probably the applications with the highest added value from a social

point of view are the treatments of mobility impairments in order to enhance the individual’s

quality of life. Yet, up till now, the applicability is restricted to e.g. the design of prostheses or

implementation techniques for prostheses (e.g. [45]) or to evaluate post-operatively the effect of

skeletal reconstruction (e.g. [98]). Other applications are found in the field of sports and optimi-

sation of sports performances. The tool is used to investigate and gain insight into the influence

of orthotics or techniques on specific injuries (e.g. [36; 74]). Although in none of these clinically

oriented applications biomechanical analyses are used to make predicitions, in one specific case the

tool has been used for this purpose to solve an ethical issue: the specific case of South-African

double transtibial amputee and blade runner Oscar Pistorius. Here, biomechanical scientists had

to provide an answer to the question whether the blades would being an advantage when competing

in regular competition.

This case is worth mentioning, because the different scientists made different conclusions [18;

108]. This is an illustration of the shortcomings in the field of biomechanicals as well as it is

an illustration of the challenges biomechanical research faces to evolve from a useful tool to gain

general insights in human motion to a valuable and a reliable tool for the evaluation of specific cases.
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1 Introduction

Typically, biomechanical analyses rely on musculoskeletal models which include the description

of anatomical features and the description of physiological features. The anatomical features com-

prise the lengths of the actuators (muscle-tendon lengths), the moment arms, the geometry of the

bones, and the lines of action of the actuators. The physiological features comprise description

of how muscles produce force and how tendons transfer force. These days, many analyses are

still based on the generic model presented by Delp et al. in 1990 [32]. This model represents an

average adult male. The data to construct the model’s features are extracted from a limited set

of cadavers [16; 113]. Obviously, this model cannot provide accurate results for any analysis: both

the anatomical as well as the physiological features depend on age, level of activity, and gender

of the subject. To compensate for differences in length, often an anthropometric scaling of the

different features to the length of the specific segments is done. However, aspects such as bone

deformities are not captured, neither does morphologic scaling result in a good representation of

the muscle and tendon characteristics [112]. Therefore, biomechanical researchers put many efforts

in the development of methodologies which step-by-step allow them to construct subject-specific

musculoskeletal models. The ambition of many biomechanical researchers is to come to a moment

in time where virtual treatments can be performed based on personalized models. Accurate a

priori evaluation of the outcome of an intervention would enable clinicians to work out optimal

treatment plans. In the mean time, the quest to find methods to increase objective predictions

continues. Much progress has already been made concerning the anatomic features (e.g. [84; 100]).

Subject-specific definition of anatomic features relies on imaging techniques like magnetic resonance

(MR) or computer tomography (CT). This thesis however focuses on describing subject-specific

physiological features of muscles and tendons. The difficulty inherent to this aim is that most of

these features cannot be obtained from in vivo nor from in vitro data. Therefore, identification

techniques should be applied [62]. Until today, only Garner and Pandy in 2003 [42] and Lloyd and

Besier also in 2003 [63] described a method for estimating the muscle-tendon paramters of muscles

and tendons of the upper limb and lower limb based on individual strength data. The methods

however have not been validated.

This thesis contributes to subject-specific modeling in biomechanical analysis by (i) designing

an experimental setup to obtain a more accurate subject-specific angle-moment relationship of the

knee joint (chapters 4 and 5), (ii) developing an algorithm for the estimation of the muscle-tendon

parameters of the actuators of the knee joint in a simulation environment and comparing its per-

formance to the performance of the algorithm of Garner and Pandy (2003), and (iii) validating the
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outcomes of the algorithm using forward and inverse simulation techniques for different types of

movement based on two case studies.
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1.2 Chapter-by-chapter overview and contributions

Chapter 2: Muscle-tendon modeling and parameter estimation

This chapter explains the general concepts of muscle-tendon modeling and parameter estimation,

in order to provide the required background for the remainder of this thesis. Furthermore, the

relation between the remaining chapters is explained.

Chapter 3: Sensitivity of dynamic simulations of gait and dynamometer

experiments to hill muscle model parameters of knee flexors and extensors

This chapter presents the results of a sensitivity analysis which relies on moment-angle relation-

ships obtained by dynamometry. Dynamometry is a useful experimental setup, because muscle

group specific angle-moment relationships can be obtained in a controlled way per individual. The

study revealed that dynamometer experiments contain information on muscle-tendon (MT-) pa-

rameters. Also, an hierarchy is found in the MT-parameters. As the hierarchy was equivalent for

dynamometry and dynamic simulations of gait, dynamometry can be used to obtain experimental

data in order to identify the most sensitive parameters to enhance the accuracy of the simulations

(further explained in chapters 6 and 7).

This chapter is based on my master thesis [29], and hence it is not a contribution

of this thesis. However, it is the foundation for the work presented in the next chap-

ters.

Chapter 4: Functional knee axis based on isokinetic dynamometry data:

Comparison of two methods, MRI validation, and effect on knee joint

kinematics

This chapter presents the first step towards obtaining more accurate dynamometer data. Exper-

imental dynamometry typically faces problems when it comes to data accuracy. These problems

result from the assumption that the moment generated around the joint axis of rotation corresponds

to the measured moment around the axis of rotation of the dynamometer. This assumption does

not hold for following two reasons: (i) the fixation between the dynamometer device and the body

segments is not rigid, and (ii) the pose of the joint axis of rotation is not known. The consequences

of the former are that the joint axis of rotation moves relative to the dynamometer axis of rotation,
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and the pose of the joint axis of rotation is not known in time. The overall consequence is that

the registered moment is not a good representation of the joint moment generated by the muscles

around the joint axis of rotation and hence, the strength of the actuators.

In reality, the knee joint axis of rotation is an instantaneous axis i.e. its pose depends on the

segmental kinematics and on the load (amount of force produced by the muscles and the external

load) [109]. It is however not possible to estimate the joint axis of rotation instanteneously using

conventional measurement techniques: kinematic data of the segments (being the postion of the

tibia relative to the femur) are typically obtained by skin mounted markers which implies that

the data are noisy due to soft tissue artefacts [22]. Alternatively, the joint axis of rotation can be

determined based on bone geometry or for a certain range of motion.

The contribution in this thesis is that the validity of geometry-based axes and func-

tional axes (which are motion-based axes) is verified. Many algorithms have already

been presented for the estimation of functional knee axes of rotation, none of them

have been validated on real data. Therefore, the best performing sphere fitting algo-

rithm and axis transformation algorithm according to simulation studies are applied

on real data. The validation relies on the comparison with the pose of equivalent

axes which are calculated based on magnetic resonance images (MRI) of the knee in

different knee flexion angles and hence, directly reflect the position of the bones.

Chapter 5: An extended dynamometer set-up to improve the accuracy

of knee joint moment assessment

This chapter describes a new dynamometer setup which allows us to perform a full three dimen-

sional (3D) inverse dynamic analysis resulting in an improvement of the accuracy of the experi-

mental data for knee joint dynamics.

The contributions in this thesis are twofold. First, the introduction of the combi-

nation of 3D motion tracking and the 3D external forces and moments registration

allows us to perform the inverse dynamic analysis. Second, the limb model con-

tains a knee joint axis of rotation defined as a functional axis of rotation instead of a

geometry-based axis of rotation.
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Chapter 6: A new method for estimation of subject-specific muscle-

tendon parameters of the knee joint actuators: a simulation study

This chapter describes the identifiability of the muscle-tendon parameters and a new estimation

procedure to obtain two subject-specific muscle-tendon parameters per muscle being the optimal

muscle fiber length and the tendon slack length. Here, the focus is on the subject-specific definition

of the features of the actuators of the knee joint in a simulation environment.

By optimal experimental design, a trade-off between deterministically chosen experimental sets

is made. To this end, the experimental cost has to be evaluated in light of the information on the

actuators contained in the experiments. In addition, the use of different transformations of the

muscle-tendon parameters as variables to be estimated is evaluated.

The estimation procedure is two-phased. In phase I, the feasible set and the initial guess for

the non-linear optimisation problem in phase II is defined. In phase II, a constrained non-linear

problem is solved by fitting simulated moments and synthetically generated joint moments (sim-

ulation of dynamometer experiments). An important feature of the estimation procedure is that

the operating range of the muscles is preserved in combination with the use of subject-specific

strength-information. The operating ranges are obtained from literature [26]. The strength infor-

mation is obtained via (simulated) dynamometry experiments. The influence of the initial guess

and measurement noise is quantified. The performance of the new algorithm and the algorithm

presented by Garner and Pandy [42] are evaluated and compared.

Following contributions are made: (i) a new transformation of muscle-tendon parame-

ters is proposed which enhances the numerical properties of the parameter estimation,

and hence allows us to estimate the most crucial muscle-tendon parameters from a

minimum set of experiments, (ii) a new estimation algorithm is proposed which per-

formance is evaluated in a simulation environment, and (iii) the performance of the

previously presented algorithm of Garner and Pandy [42] is evaluated in a simulation

environment to allow a comparison between both methods.

Chapter 7: The added value of the estimation of subject-specific muscle-

tendon parameters in musculoskeletal modeling of the knee joint actua-

tors: two case studies
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This chapter describes the validation of the parameter estimation procedure as described in chapter

6 on experimental data. To this end, the optimal muscle fiber lengths and tendon slack lengths of

the most sensitive knee joint actuators according to De Groote et al. [29] are estimated based on

five isometric dynamometer experiments. The input to the optimisation is: the muscle activations

which are registered via surface electromyography (EMG), the total length of the actuators and

the moment arms, and the remaining MT-parameters (maximum isometric muscle force, pennation

angle, and maximum contraction velocity) which are adopted from the generic model [32]. Four

musculoskeletal (MS-) models are evaluated for two subjects. The first model includes linearly

scaled geometry and linearly scaled MT-parameter values [32; 33]. The second model includes

image-based, hence subjec-specific, geometry [84] and linearly scaled MT-parameter values. The

third model includes linearly scaled geometry and estimated MT-parameters for the knee joint

actuators. The fourth model includes image-based geometry and estimated MT-parameter values

for the knee joint actuators. The performances of the MS-models are studied for three condi-

tions being isokinetic dynamometry at 30 ◦/s, treadmill walking at 4km/h, and countermovement

jumping. A forward dynamic analysis is performed (only isokinetic dynamometry) resulting in

a predicted knee joint moment which is compared to the experimentally obtained moment, and

an inverse dynamic analysis is performed resulting in muscle activations which are compared to

experimentally obtained activations.

The main contributions of this study are the evaluation of MS-models including

subject-specifically estimated MT-parameters (of knee joint actuators), and the com-

parison of the performance of MS-models which are subject-specific to a smaller or

a greater extent. It is the first time that MS-models including functionally scaled

MT-parameters in combination with image-based geometry have been evaluated.

A general schematic overview is provided on the next page.
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Aim
Subject-specific estimation of muscle-tendon parameters of the knee joint actuators
based on experimental strength measurements.

Experimental set-up

Choice: dynamometry.

- limited reliability

Solution

3D inverse dynamic analysis.

Marker trajectories.

6D load cell data.

9 DOF crank-leg model.

Knee joint axis:

motion-based.

Chapter 5

Joint axis of rotation:

description.

Geometry-based
versus

motion-based.

Chapter 4

Estimation procedure

Development and validation:

simulation environment.

Solution

Nonlinear optimization:

A priori physiological insight.

Influence initial guess, noise.

Compare to benchmark.

Chapter 6

Chapter 3

Descission on

Evaluation of procedure in experimental environment through musculo-skeletal modelling

Models: four MS-models/subject.

1. Geometry: linear + MT-parameters: linear.

2. Geometry: image-based + MT-parameters: linear.

3. Geometry: linear + MT-parameters: estimated.

4. Geometry: image-based + MT-parameters: estimated.

Evaluation:

Forward:
predicted joint moment versus inverse dynamics.

Inverse:
predicted activations versus EMG.

Chapter 7

Tranformation of variables.

parameters included.
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Chapter 2

Background on musculoskeletal modeling and simulation, ex-

perimental design and experimental system identification

This chapter gives an introduction to muscle-tendon modeling, experimental design, and system

identification. The section on muscle-tendon modeling first describes the function and structure

of muscles and tendons, then describes different types of muscle-tendon models and modeling

techniques. The section on experimental design first describes the concept of dynamometry, its

advantages and shortcomings, then describes the concept of experimental design in light of dy-

namometry and parameter estimation. The last section discusses the basic principles of system

identification.

2.1 Muscles and tendons from a physiological perspective

There are three types of muscles in the human body: smooth muscles (e.g. in the organs), cardiac

muscles and skeletal muscles. What follows is mainly valid for skeletal muscles.

2.1.1 Muscle function

The function of muscles is twofold. On the one hand muscles produce force which induces motion

or resists motion. On the other hand muscles produce heat as a result of their contractile activity to

maintain the body temperature. The capacity of muscles to produce force is diverse and depends on

the number of fibers, the cross-sectional area, and the pennation angle, which defines the orientation

of the muscle fibers with respect to the tendon. In general, the higher the pennation angle, the

more powerful a muscle is, because more fibers are arranged in parallel. In contrast, the parallel

arrangement of muscle fibers allows larger changes in length. The calf muscle m. gastrocnemius is
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Bone

Tendon

Muscle

Bundle

Fiber

Figure 2.1: A muscle is attached to the bone by a tendon. Muscle fibers form muscle bundles. Muscle
bundles and the extracellular matrix form the muscle (figure cfr. [17]).

a highly pennated muscle, whereas the fibers of m. sartorius, which supports hip motion and knee

flexion, are parallel.

2.1.2 Cellular structure

Intracellular contractile proteins generate force in the muscle fibers. The proteins are arranged into

so-called myofilaments which are grouped in bundles (myofibrils). The myofilaments are arranged

in sarcomeres, which are the contractile units of a muscle. Sarcomeres contain thin actin filaments

at the outer regions, and thick myosin filaments in the inner regions. The heads of the myosin

form cross bridges with the actin. The contraction process relies on the interaction between actin

and myosin (see figure 2.1).

2.1.3 Contractile process

The change occuring in muscle fiber length is a result of a change in the length of the sarcomeres.

During muscle contraction, the myosin cross bridges attach to the actin filaments and flex towards

the center of the sarcomere. The muscle shortens, and force is produced (if there is a resistance).

Figure 2.2 is a schematic representation of a contracting muscle.

Muscle contraction is regulated by the concentration of calcium in the cytoplasma (the inside

of the myofibrils), which enters (contraction) or leaves (relaxation) through the membrane. The

binding between actin and myosin relies on the concentration of calcium. There are basically three
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Actin

Myosin

cross-bridge

z-line

Figure 2.2: Schematic representation of a muscle fiber contracting. Actin and myosin filaments form
cross-bridges. By flexing inwards the muscle shortens (figure cfr. [17]).

requirements for contraction: (i) interaction between actin and myosin, which is calcium regulated;

(ii) the myosin heads have to flex inwards; and (iii) the system must convert chemical energy to

mechanical energy.

Muscle contraction is initiated by the transmission of an action potential, an electrical signal

which propagates through the nerves, from motor nerves to the muscle. This transmission causes

a local depolarisation. The transmission takes place at the neuromuscular junction, which forms

the connection between the neural system and the muscular system. The action potential triggers

the influx of calcium, which causes the excitation of the muscle fibers.

2.1.4 Tendon function and structure

Tendons consist of fibrous connective tissue called collagen fibers. In contrast to muscles, tendons

are not innervated, hence they are a passive structure. The main function of tendons is the

transmission of the force produced in the muscles to the bones. This force transfer causes motion.

2.2 Muscle-tendon actuators from a modeling perspective

Muscle-tendon modeling aims at realistically representing muscle forces, hence changes in mus-

cle fiber lengths, due to neural stimulations (muscle excitations). Neural stimulations trigger the

influx (and efflux) of calcium, which concentration determines the amount of contraction in the

muscle and the force transfer by the tendon to the skeleton. Hence, activation and contraction

dynamics are described. Two main model-types are distinguished to describe muscle contraction:

the Huxley-type models and the Hill-type models. First in this section, the activation dynam-

ics are explained. Activation and contraction dynamics are the first two submodels in dynamic
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musculoskeletal modeling.

2.2.1 Activation dynamics

Muscle fiber activation results from excitation by the central nervous system. The neural excita-

tions determine the number of fibers which will activate, and the level of their activation. The

excitation of a muscle is indicated by u. u is a dimensionless measure which reflects the relative

number of fully excited muscles. u varies from 0, when a muscle is not excited, to 1, when a muscle

is fully excited.

The activation of a muscle, indicated by a, is also dimensionless, and reflects the amount of

force a muscle can produce. a varies from 0, when a muscle is not activated, to 1, when a muscle

is fully activated. An excited muscle does not instantaneously produces force nor instantaneously

stops producing force. Neural excitation of a fiber causes a passive Ca++ influx in the fiber. Ca++-

influx is a relatively fast process. Ca++ enables the muscle to contract. However, the influx of

Ca++ introduces a time delay between excitation and contraction, because of a limited number

of diffusion channels. τact describes the time delay. When stimulation stops, Ca++ is actively

transported out of the muscle fiber. Again, there is a time delay between the decay in muscle

excitation and the decay in muscle force. This time delay is described by τdeact. As the efflux of

Ca++ is a relatively slow process, τdeact is larger than τact.

Hence, activation dynamics describe the transport of calcium through the cell membrane. Two

frequently used models are the model of Zajac [120]:

da

dt
=

1

τact
u− 1

τdeact
a+

(
1

τdeact
− 1

τact

)
u a, (2.1)

and the model of Raasch et al. [79]:

da

dt
=


(u− a)

(
u

τact
+

1− u
τdeact

)
u ≥ a

u− a
τdeact

u < a.
(2.2)
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Both models are nonlinear first-order differential equations. τact and τdeact are assumed equal

for all muscles. The latter model describes the influx and the efflux of Ca++ separately in contrast

to the former model.

2.2.2 Huxley-type models

The Huxley model is a mechanistic model which is based on the cross bridge theory for contraction.

Hence, the model tries to explain the biochemical reactions which underly the attachement and

deattachement of actin and myosin. The base model is described in 1957 by Andrew Huxley [50].

Two states are defined to describe the system: either the cross-bridges are attached or the cross-

bridges are de-attached. Each attached cross-bridge acts like a spring. The muscle force is then

the sum of the contribution of all attached cross-bridges, represented by its stiffness multiplied by

the displacement of the spring. Typically, the inputs to the model are the fraction of attached

cross-bridges, the muscle fiber lengths and the contraction velocities. The model parameters are

the muscle attachement and de-attachement rates. The model equations are partial differential

equations which are typically computationally expensive to solve. In practice, the most common

used Huxley model is the Distribution Model, which assumes that the spatial distribution of the

cross-bridges is Gaussian. This leads to a computational simplification as the model equations are

now ordinary differential equations.

Because the base Huxley model assumes a rigid attachement of the contractile elements to the

attachement points on the bone, model extensions have been proposed (e.g. [114]) with an added

serial elastic element in order to capture the elasticity of the tendon and the muscle itself.

Parameter estimation in cross-bridge models is a complicated problem. Therefore, these mod-

els are not often used in musculoskeletal modeling. van den Bogert et al. [107] compared the

performance of a Huxley-type model to the performance of a Hill-type model for the simulation

of running. Their conclusion was that the Hill-type model was better suited to describe muscle

behaviour. The Huxley-type models are also used for studies at the level of single muscle fibers

(e.g. [61]).

2.2.3 Hill-type models

The Hill model is a phenomenological model, describing a known relationship between input and

output without trying to describe the biochemical mechanisms underlying muscle force production.

The base model is described in 1938 by Hill [120]. Commonly, the Hill muscle model has three
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Ft

Fm

α

CE

PET

Lt

Lmcos α

Figure 2.3: A schematic representation of the Hill-model. The tendon T is represented by a non-linear
spring and has length Lt. The muscle is represented by a contractile element CE in parallel with a passive
element PE and has length Lm. The pennation angle is α.

components: a nonlinear spring representing the tendon, a contractile element representing the

active properties (actin-myosin interaction) of the muscle fibers, and a passive elastic element

representing the passive properties of the muscle tissue. A schematic representation of the Hill-

model is given in figure 2.2.3. The length of the muscle fiber is Lm, the length of the tendon is Lt,

and the length of the muscle-tendon (MT-) actuator is Lmt. The angle between the orientation

of muscle and tendon fibers is called the pennation angle α. The contraction velocity vm of the

muscle fiber is the change of the fiber length over time, i.e.
dLm

dt
.

Model parameters

In general, the properties of the muscles and the tendons are captured in four characteristcs

describing the relation between the generated (muscle) or transferred (tendon) force in function

of the fiber lenght or tendon strain, and the relation between the generated (muscle) force and

the contraction velocity. The characteristics are dimensionless as they are scaled by five MT-

parameters:

Fmax
m is the maximum isometric force a muscle can produce;

Lopt
m is the fiber length at which the muscle produces maximum isometric force;

vmax
m is the maximum contraction velocity of a muscle;

αopt is the pennation angle at optimal fiber length;
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2.2 Muscle-tendon actuators from a modeling perspective

Ls
t is the tendon slack length representing the tendon length at which force transfer starts, hence

at which the tendon starts to act as a non-linear spring.

The values of the MT-parameters are muscle-dependent, and subject-specific. In general, the values

of the parameters are obtained from cadaver studies [16; 112; 113] and are linearly scaled to the

length of the segments [33].

Model parameters as determined by Delp et al. [32]

The frequently used lower limb model of Delp et al. [32] relies on the cadaver studies of [39; 113].

The five model parameters describing Hill-type MT-models are determined as follows:

Fmax
m equals the scaled physiological cross-sectional area of the muscle. The scaling factor is the

muscle stress which is set to 25N/cm2 for young cadavers [113] and to 61N/cm2 for old

cadavers [16]. The physiological cross-sectional area is derived from the muscle’s volume.

Lopt
m are derived from the raw fiber lengthts as reported by [113] which are scaled by the ratio

of the optimal sarcomere length (2.8µm) as used by [32] and the optimal sarcomere length

(2.2µm) as used by [113].

vmax
m is derived from experimental force-length relationships at different fiber length. The maxi-

mum contraction velocity is defined at the optimal muscle fiber length [120].

αopt is measured as the angle formed by the muscle fibers with the line of force exerted by the

muscle.

Ls
t is initially chosen so that the muscle is slightly longer than the optimal fiber length at joint an-

gles where passive moment start to develop. Because Ls
t determines the joint angle where the

muscle develops peak moment, Ls
t is adapted so that the moment peaks at the corresponding

angle obtained through dynamometer experiments (maximum voluntary contractions).

Model parameters as determined by Arnold et al. [7]

The more recently presented lower limb model of Arnold et al. [7] relies on the cadaver study (18

cadavers) of [112]. The five model parameters describing Hill-type MT-models are determined as

follows:

Fmax
m is considered to be proportional to the physiological cross-sectional area of the muscle and a

maximum isometric muscle stress of 61N/cm2. The physiological cross-sectional area of the
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muscle results from the muscle mass, the pennation angle, the density of the muscle and the

fiber length.

Lopt
m is calculated as the raw muscle fiber length of the muscle multiplied by the ratio of the

optimal sarcomere length (2.7µm) and the mean sarcomere length of the respective muscle

fiber.

vmax
m is equivalent to [32].

αopt is measured as the angle between the fibers and the distal muscle tendon.

Ls
t is determined according to [32].

Model parameters as determined by Modese et al. [69]

The London lower limb model relies on the single cadaver study of [56]. The five model parameters

describing Hill-type MT-models are determined as follows:

Fmax
m is considered to be proportional to the physiological cross-sectional area of the muscle and

a maximum isometric muscle stress of 37N/cm2.

Lopt
m is calculated as the actual muscle fiber length of a muscle-part multiplied by the ratio of the

optimal sarcomere length (2.7µm) and the mean sarcomere length of the respective muscle

fiber.

vmax
m is not applicable as no force-velocity characteristics are implemented.

αopt is determined by calculating the angle of the direction of the muscle fibers and the estimated

line of action of the muscle.

Ls
t is set to the measurend length of the tendon.

Model parameters versus muscle-tendon anatomy

For αopt and Fmax
m it is obvious that there is a direct relationship between the value of the parameter

in the MT-model and the anatomy of the muscle as both can be measured (or can be related to

measurable) anatomical features of the muscle-tendon actuator. This holds to a lesser extent for the

value of Lopt
m , as a prediction of the optimal sarcomere length is needed (see e.g. [26; 60]). However
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for Ls
t, there is no reflection of an anatomical feature into the determination of the parameter value,

which in turn makes it impossible to obtain a physical measurement for the parameter value. As

seen in the models of [7; 32], Ls
t is the MT-parameter which is adapted so that the maximum joint

moment is produced at a specified joint angle.

Model equations

Muscle contraction dynamics are described by a first order differential equation. The muscle

activations are the inputs to the model. The MT-lengths Lmt are considered as known features as

they follow from skeletal kinematics. The muscle fiber lengths or the muscle-tendon forces are the

model states.

The total muscle force Fm is the sum of the active muscle force Fact and the passive muscle force

Fpas:

Fm = Fact(a, Lm, vm) + Fpas(Lm). (2.3)

Fact depends on the activation a, the fiber length Lm, and the contraction velocity vm:

Fact(a, Lm, vm) = a Fmax
m f l

act(
Lm

Lopt
m

) fv
act(

vm

vmax
m

), (2.4)

with f l
act the active force-length characteristic, and fv

act the active force-velocity characteristic. In

case the muscle fiber velocity is zero, fv
act equals one.

Fpas only depends on the fiber length Lm:

Fpas(Lm) = Fmax
m f l

pas(
Lm

Lopt
m

), (2.5)

with f l
pas the passive force-length characteristic.

The tendon force Ft depends on the tendon strain εt:

Ft(Lt) = Fmax
m f l

t(εt). (2.6)

Lt determines the tendon strain:

εt =
Lt − Ls

t

Ls
t

. (2.7)
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The interaction between muscle and tendon is described as follows:

Ft = Fmt, (2.8)

Ft = Fm cos α, (2.9)

Lmt = Lt + Lm cos α, (2.10)

cos α =

√
1−

(
wm

Lm

)2

, (2.11)

wm = Lopt
m sin αopt. (2.12)

wm is the width of the muscle (the distance between proximal and distal aponeuroses, which are

the transition from muscle to tendon) which is assumed to be constant.

Equations 2.3 to 2.12 are combined into the non-linear first order differential equation given as:

vm = f(Lm, a, Lmt), (2.13)

or, equivalently:
dLm

dt
= f−1

v (Lm, a, Lmt), (2.14)

where f−1
v is the inverse of fv.

Model simplifications

The same dimensionless force-length-velocity and force-strain characteristics are used for all mus-

cles and tendons. However, physiologically there are different muscles types with different dynamic

characteristics. Also the tendons exhibit a higher (short tendons) or lower stiffness (long tendons).

Assumptions are made for reasons of simplicity. The dynamic behaviour of a muscle is assumed

to be a representative upscale of the force production in a muscle fiber. The force production is

assumed to depend on the activation (the input signal), the fiber length, and the contraction ve-

locity.

The geometry of the muscle is simplified in three ways: within a muscle the muscle fibers are

assumed to run in parallel in a plane from aponeurosis to aponeurosis. The muscle is attributed

a particular area which is kept constant. This means that during contraction the tendons move

along their axes which causes a change in the pennation angle.

Hence, compared to the biological muscles and tendons, the characteristics are generalisations and
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2.2 Muscle-tendon actuators from a modeling perspective

the MT-models are simplifications [120].

Model alternatives

The Hill-model is often represented as in figure 2.2.3. However, some alternatives to this represen-

tion are also commonly used.

In this thesis, it has been opted to work with the model as presented in figure 2.2.3. The es-

timation procedure is based on isometric experiments, hence contraction velocity is zero. Millard

et al. [68] indicate this model as the equilibrium muscle-tendon model. However, when performing

dynamic simulations, equation 2.14 should be solved in order to find a unique solution for a given

fiber length, and singularities occur when α equals 90◦, and f−1
v , a, and Fact equal 0.

Schutte [89] and Millard et al. [68] avoid the singularities by adding passive damping (a damper in

parallel with the contractile element). The damped model is referred to as the damped equilibrium

model. By choosing a low damping constant, the model generates similar force profiles as the

equilibrium model [68].

In case the tendon is very stiff, the tendon strain is negligible. In this case, Lm directly results from

equation 2.10, and vm directly results from
dLm

dt
(2.10), the muscle force can directly be calculated

from equation 2.9. Millard et al. [68] refer to this mode as the rigid-tendon musculoskeletal model.

Klein-Horsman et al. [56] also used this model, regardless of the tendon properties.

Model characteristics

Different approaches for the implementation of the model characteristics have been described. Fig-

ure 2.4 shows three different force-length-velocity characteristics. The model characteristics are

according to Schutte [89], Thelen [99], and Millard et al. [68]. These characteristics are available

through OpenSim, a software package for dynamic simulations of human motion [33] which is

widely used (hence these characteristics are also widely used).

Active force-length

Active force - length curves are shown in figure 2.4a. Schutte [89] does not describe a mathematical

formulation of the active-force length curve. Active force values corresponding to a given Lm are

extracted by interpolation. Thelen [99] describes a Gaussian function (with an adaptable shape

factor) which approximates the upscaled force-length characteristics of sarcomeres. A Gaussian
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Figure 2.4: Force-length-velocity characteristics from top to bottom: active force - length, passive force
- length, tendon force - strain, and active force velocity are shown. The characteristics according to
Schutte [89] are in solid grey, according to Thelen [99] are in dashed grey, and according to Millard et
al. [68] are in solid black.
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2.2 Muscle-tendon actuators from a modeling perspective

rather than a piecewise polynomial is used for numerical reasons. Millard et al. [68] describe the

active force-length characteristic as an upscaled sarcomere force-length characteristic, but so that

it is continuous in its second detivative by applying Bezier splines.

Passive force - length

Passive force - length curves are shown in figure 2.4b. The passive-force length characteristic is

described by an exponential function. Schutte [89] describes an exponential function with passive

muscle strain at maximal isometric force of 0.5 (which is related to the stiffness of a muscle).

Thelen [99] describes an hyperbolic-like function with an adaptable passive muscle strain at max-

imal isometric force which is generically set to 0.6. Shape factors in both descriptions are equal.

Millard et al. [68] describe a curve using Bezier-points so that the curve of Thelen is approximated

as closely as possible with continuous second derivatives.

Tendon force - strain

Tendon force - strain curves are shown in figure 2.4c. Schutte [89] describes a piecewise function

which is zero whenever the tendon strain εt is smaller than or equal to zero, which is quadratic for

the region in which the tendon acts as a non-linear spring (εt < 0.013), and linear for the remaining

values of εt. Thelen [99] also describes a piecewise function with an hyperbolic-like part when εt

is smaller than or equal to 0.04, and with a linear part otherwise. At the amount of strain smaller

or equal to 0.04, one unit of normalized force is generated in the tendon. Millard et al. [68] fit a

curve with continuous second derivative on the curve of Thelen so that the slope at strain 0.04 is

equal, and the curves match as closely as possible for all strains smaller than 0.04.

Active force - velocity

Active force - velocity curves are shown in figure 2.4d. Schutte [89] and Thelen [99] provide differ-

ent analytical descriptions of the function based on experimental data. The formulations comprise

a concentric part and an eccentric part. Millard et al. [68] describe the Thelen-curve so that the

second derivative is continuous.

In this thesis, the implementation according to Millard et al. [68] has been chosen, because (i)

these characteristics have a continuous second derivative which is beneficial for the estimation pro-

cedure as will be explained later, and (ii) the curves are validated on experimental data ([67], [117]).

Additionnally, the implementation allows for easy adaptations of the characteristics to e.g. aging.

However, here, the generic implementation [68] has been used.
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2.3 Skeleton dynamics

In dynamic musculoskeletal modeling, contraction dynamics is the second submodel out of three.

The first submodel describes the activation dynamics, which relates muscle excitation to muscle

activation. The third submodel describes the skeleton dynamics which relates muscle forces and

external forces to the motion of the skeleton.

Skeleton dynamics describe the dynamic relation between internal and external forces acting on

the skeleton and the resulting motion. In case of gait, the external forces are the ground reaction

forces and moments acting on the foots, and gravity. The internal forces are the muscle-tendon

forces and the passive forces resulting from stretching soft tissues as ligaments.

The skeleton equations of motion then become [24]:

M(q) q̈ + c(q, q̇) + g(q) +R(q) Fmt + E(q, q̇) = 0, (2.15)

with q, q̇, q̈ the generalized coordinates, velocities and accelerations, describing the motion of

the body segments along the 1...D degrees of freedom, M(q) ∈ RD×D the generalized inertia

matrix, c(q, q̇) ∈ RD the vector of generalized coriolis and centrifugal forces, g(q) ∈ RD the vector

of generalized gravitational forces, R(q) Fmt the joint moments formed by the product of the

moment arms R(q) ∈ RD×J (with j = 1 . . . J the number of actuators) and the muscletendon

forces Fmt ∈ RJ , and E(q, q̇) ∈ RD the vector of generalized external forces and moments.
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2.4 Dynamic motion simulations

2.4 Dynamic motion simulations

In this section the data acquisition and data processing for dynamic simulations of motion are

described. Dynamic motion analyses comprise data aqcuisition, scaling, inverse kinematics, and

inverse or forward dynamics. In this word, dynamic motion analyses is used to validate MS-models

which include subject-specifically estimated MT-parameters (see also chapter 7).

2.4.1 Data acquisition

In general, data acquisition comprises registration of marker trajectories, external forces, and

muscle activations. Specific analyses also obtain bone and muscle geometric data from imaging,

e.g. MRI, and muscle specific strength information through e.g. dynamometry for calibration of

MT-parametes [38].

Marker trajectories

Typically, skin-mounted markers are placed on anatomical landmarks to measure the motion of

body segements. Markers are either active in case they emit light, or passive in case they reflect

light. Camera systems, e.g. Vicon (Vicon Motion Systems Ltd. UK) or Krypton (Krypton

Electronic Engineering n.v.), register the 3D-trajectories of the markers which reflect the motion

of the bones.

External forces

During gait or jumping or any motion where only the feet make contact with the environment,

the ground reaction forces between the supporting foot (both feet in case of double support) are

measured using force plates.

Electromyography

Electromyography (EMG) allows us to obtain information on the excitation signal. To this end,

surface electrodes are placed above the skin on top of the muscle of interest. The placement of

the electrodes is crucial, as it determines which motor units will contribute to the recorded signal.

This implies that the EMG signal of a specific muscle can be biased by neigbouring motor units

of other muscles [73]. Also, EMG is only applicible to superficial muscles.

The raw EMG signals need processing as they are very noisy. First, the EMG signal is high-pass

filtered, the cut-off (Nyquist frequency) frequencies are function of the sample frequency (Nyquist
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Figure 2.5: A rectified unfiltered EMG signal is shown left, a filtered and scaled EMG signal is shown
right.

frequency = sample frequency/2). Second, the EMG signal is rectified and the root mean square

over a certain window is calculated. Third, the EMG signal is low-pass filtered.

For validation of muscle activations, EMG signals are often scaled. However, there is no consen-

sus about which technique should be used for scaling. In this thesis, the normalization is relative

to the maximum signal values within a recorded motion. This is called the peak dynamic method,

but this choice is open for discussion. Alternatively, signals can be scaled by the peak EMG from

an isometric or isokinetic mean voluntary contraction (MVC) (isometric/isokinetic MVC method)

or by a mean value recorded during a motion (mean dynamic method), (see e.g. [19; 43]).

In this thesis, activation dynamics are neglected when EMG recordings are used for validation

purposes. Hence, it is assumed that the recorded signals are muscle activation. This is a sim-

plification, as the activation dynamics basically act as a low-pass filter which introduces a delay

between neural excitation and muscle activation [75].

2.4.2 Scaling

Scaling refers to the adaptation of a generic MS-model (e.g. [7; 32]) to the subject’s anthropometry.

Scaling is applied to MS-geometry, and to MT-parameters.
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2.4 Dynamic motion simulations

Musculoskeletal geometry

A common approach for scaling of geometry is based on a static measurement of skin mounted

markers. Markers are mounted on anatomical landmarks, and hence reflect the segmental lenghts.

The MS-model is scaled according to a scaling factor which is the ratio of the distance between

the skin-mounted markers and the model markers. This is called anthropometrical scaling.

Imaging techniques allow to adapt musculoskeletal geometry, for example muscle paths, hence

moment arms and actuator lengths (e.g. [84; 100]), according to subject-specific information ex-

tracted from the images.

MT-parameters

Cadaver studies [16; 112; 113] provide generic values for the MT-parameters in generic mod-

els [7; 32]. Calibration or scaling of these parameters is one of the big issues in biomechanical

research [38].

In general, linear scaling of the generic values is applied to adapt the MT-parameter values.

Hence, the ratio between the lengths of the respective segments of the generic model and the sub-

ject’s model is applied to the values of the MT-parameters of the actuators spanning the segments.

However, it has been shown that this linear scaling does not maintain the muscle’s operating range,

i.e. the joint angles at which a muscle delivers force [115]. Winby et al. [115] showed that anthro-

pometric methods which preserve the operating length perform best.

Functional scaling is an alternative method for anthropometric scaling which aims at reflecting

the subject-specific force generating capacities. Two methods have been published previously.

Garner and Pandy [42] estimated the optimal fiber length and the tendon slack length for each

actuator of the upper limb based on isometric dynamometry (see section 2.5). Lloyd and Be-

sier [63] focussed on obtaining the tendon slack lengths together with three parameters related to

activation dynamics (to adapt the scaling of the muscle activations) and two parameters which

regulate the relative strength between flexors and extensors. However, neither of these approaches

studied (i) the sensitivity of the experimental set to the parameters, nor (ii) the identifiability

of the parameters. Additionnaly, the inaccuracy of the experimental protocol was ignored and

the validations have not been performed properly. Yet, these are important issues in parameter

estimation (see 6.2.3).
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2.4.3 Inverse Kinematics

Inverse kinematics (IK) is the estimation of joint kinematics (position, velocity, acceleration) based

on marker trajectory data, which for human motion analysis are obtained through skin-mounted

markers. If the tracked body segment is rigid, the segment’s pose (orientation and location) can be

directly calculated from a minimum set of three non-collinear points (markers). Obviously, body

segments are non-rigid. What we want to obtain, is the pose of the bone from the skin-mounted

markers. Between the bone and the markers there are muscles and other soft tissues such as

fat, which move relative to the bone. As a consequence, the trajectories as obtained from the

skin-mounted markers are biased by the motion of these intermediary tissues. This error source is

referred to as soft tissue artefacts (STA) [57]. Additional errors are instrumental errors (related

to the accuracy of the camera system) [23], but STA are the most critical. STA are in the range

of centimeters [3], which is easily one order of magnitude larger than the range of instrumental

errors. STA have a systematic component, they are subject-dependent and task-specific.

Different techniques have been developed to reduce the sensitivity of IK to instrumental errors

and STA ( [21; 28; 64; 96]). In this thesis, IK is performed through a Kalman smoothing algo-

rithm [28]. The main drawback of the other techniques is that only part of the trajectories is used

to estimate joint kinematics at a time instant whereas Kalman smoothing calculates the estimates

(generalized coordinates) at each time instant based on the whole trajectory, a process model and

a measurement model. The process model predicts the expected time evolution of the generalized

coordinates. To guarantee a smooth motion, it is assumed that the fourth derivative of the gen-

eralized coordinates is constant. This is based on the a priori knowledge that the acceleration of

the segement cannot change abruptly. The model errors introduced by this assumption, are taken

into account by the process noise. The measurement model relates the joint kinematics to the

measured marker trajectories. The measurement model is based on a biomechanical model with

a number of degrees of freedom (DOFs). Each marker in the model is weighted to indicate its

reliability: the more the marker position is corrupted by STA, the lower the weight. The higher

the weight, the more the estimate is based on the measurement model.

2.4.4 Inverse and Forward Dynamics

Inverse dynamics (ID) refer to the calculation of joint reaction forces and moments using equa-

tion 2.15 for a recorded motion with generalized coordinates q and generalized external forces

E(q, q̇).
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Forward dynamics (FD) refer to the calculation of the motion resulting from a given time-trajectory

of the excitations u, initial values of the activations, initial positions and velocities of the general-

ized coordinates, and MT-forces for each actuator. The motion is obtained by integration of the

activation, contraction, and skeleton dynamics.

2.4.5 Muscle-tendon force calculation

The human body contains more actuators than degrees of freedom, hence the body is overactuated.

This means that an infinite number of combinations of muscle-tendon forces can generate the joint

moments underlying a given motion. As it is hardly possible to measure individual MT-forces in

vivo, techniques have been developed to calculate the MT-forces based on a MS-model. Typically,

an optimization problem with a certain goal criterion is solved, which assumes that muscle force

distribution results from the optimisation of a performance criterion. In general, the solution

approaches are either inverse or forward.

Inverse approach

An inverse approach solves an optimisation problem (e.g. [4], but there are many other references)

which is often a static optimisation problem. The optimisation is called static because it starts

from joint reaction moments, and the MT-forces are calculated at discrete time instants. No

time-dependency is taken into account which makes the approach numerically efficient, but which

does not allow to take muscle physiology (activation and contraction dynamics) into account. ID

underlies the static optimisation, as MT-forces are calculated so that the resulting joint moment

matches the ID result. The optimisation problem can be represented as follows:

The goal criterion is the sum of the activations at a time instant ti to a power n:

min

J∑
j=1

(aj(ti))
n, (2.16)

or equivalently if n = 2 [80]

min

J∑
j=1

‖aj(ti)‖2 , (2.17)
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and if n =∞ [1]

min

J∑
j=1

‖aj(ti)‖∞ . (2.18)

Squaring the activations penalizes high activations and rewards low activations. The rationale

behind this is that humans try to be as energetically efficient as possible, hence try to activate

their muscles as little as possible. Alternatively stated, the higher the norm, the more muscles

are activated.

The optimisation variables are the activations of every muscle j at every time instant i. Al-

ternatively, MT-forces can be chosen as optimisation variables, because when assuming that

the MT-actuators are ideal force generators, activations and MT-forces are related by Fmax
m ,

the maximal isometric force a muscle can produce:

Fmt = Fmax
m a. (2.19)

As a consequence, the goal criterion can also be restated as [80]:

min

J∑
j=1

(
Fmt,j(t)

Fmax
m,j

)n

. (2.20)

The constraints impose that the muscle forces are larger than or equal to zero, and that the

estimated joint moments, which result from the estimated MT-forces and the moment arms

according to the geometry of the MS-model, match the ID joint moments.

Inverse Physiological Approach

General inverse approaches neglect muscle physiology in favor of calculation time. Obviously, this

modeling error influences the results of the optimisation. Therefore, De Groote et al. [30] developed

the physiological inverse approach (PIA) which combines the numerical efficiency and the inclusion

of the muscle physiology.

The approach of the PIA is that a large-scale optimisation problem is solved from which MT-

forces, activations, and excitations result at discrete time instants while skeleton dynamics are

imposed as a penalty function. This turns the goal criterion into a bi-objective criterion which

allows deviations between the predicted joint moments, and the joint moments resulting from the

ID. Activation dynamics are imposed by a set of linear equalities and inequalities obtained via a
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nonlinear transformation of variables [30]. The contraction dynamics are imposed at each discrete

time instant by discretizing and linearizing the Hill-model which allows us to calculate an acti-

vation and update the current activation iteratively until the optimum activation, the activation

minimizing the goal criterion, is reached.

In this thesis, the PIA is used for MT-force calculations.

Forward approach

A forward approach solves a large-scale optimisation problem for the global time trajectory of a

given motion at once. At each iteration, muscle excitations are updated. As activation dynamics

couples muscle excitations and activations, contraction dynamics couple activations and MT-forces,

and skeleton dynamics couple MT-forces and the resulting motion, a set of nonlinear differential

equations has to be integrated each iteration. Hence, calculations are time expensive (see e.g. [4])

without guarantee that the global optimum is reached. The optimisation problem can be presented

as follows:

The goal criterion is a physiologically inspired criterion which often aims at minimizing the

metabolic energy consumption [80].

The optimisation variables are the excitations of every actuator j at every time instant i.

The constraints impose activation dynamics, contraction dynamics, and skeleton dynamics as

equality constraints, bounds on the optimisation variables as inequality constraints.
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2.5 Dynamometry

Dynamometry refers to a set-up for strength assessment of selective muscle groups. The set-up is

used for rehabilitation, training, and research purposes. Figure 2.6 shows a Biodex dynamometer

(Biodex 3 Medical Systems, Inc., New York, USA). For this thesis, a dynamometer set-up is used for

the acquisition of subject-specific strength profiles of the right knee joint actuators being mainly

quadriceps, the muscle group on the frontside of the thigh, and mainly hamstrings, the muscle

group on the backside of the thigh.

Figure 2.6: A standard Biodex dynamometer [14].

The convenience of dynamometry is that the relation between joint moment and joint angle can

be measured in a controlled way. The experimental conditions are either isometric or isokinetic.

Isometric indicates that the joint angle is fixed, hence the actuator lengths are constant. Isokinetic

indicates that the joint angle changes at a constant velocity. The muscle contractions are either

concentric or eccentric. During a concentric contraction the muscle is shortening. During an ec-

centric contraction the muscle is lengthening. When strength profiles of a certain muscle group
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are acquired, they are influenced by the position of other joints. For example, when the strength

of the quadricps is measured, the position of the hip joint should remain fixed (or be known) as

the rectus femoris is a bi-articular muscle spanning both hip and knee. Hence, its position on the

force-length characteristic and thus its force generating capacity is determined by both hip and

knee angle. As the regular fixations are chest belts, it is not obvious to guarantee that other joints

apart from the joint of interest maintain their position.

Much research has been performed related to the validity and reliability of dynamometer ex-

periments. The main findings are summarized below.

2.5.1 Validity

The validity of the set-up refers to the accuracy of the measurements. Drouin et al. [34] studied

the validity of a dynamometer by using calibrated weights during isometric and isokinetic mea-

surements. They concluded that the results of the dynamometer are valid. This is in agreement

with my own findings, performing similar experiments (results not published). In fact, this type

of experiments shows that the dynamometer correctly registers the moment exerted around the

dynamometer’s axis of rotation and that the dynamometer correctly takes gravitional effects into

account.

2.5.2 Reliability

The reliability of the setup refers to the extent the measurements are repeatable, and the desired

data are obtained. Among many others Sole et al. [95], Lund et al. [65], and Impellizzeri et al. [51]

studied the reliability of dynamometers for knee extension and flexion. Reliability is categorized

as being relative or absolute.

The relative reliability indicates to which degree an individual maintains its position in a sam-

ple with repeated measurements and is therefore also referred to as between-subjects measure [9].

It is quantified by Intra Class Correlation coefficients (ICC) [88]. ICC’s are reported to be high

by all three studies. The relative reliability is often used for large-scale clinical follow-up studies:

e.g. how does the strength of the population relates before and after training?

The absolute reliability indicates to which degree the repeated measurements vary for an indi-

vidual and is therefore also referred to as within-subject measure [9]. It is quantified for example

by the standard deviation of the measurements (relative to the mean of the measurements). Lund

et al. [65] and Impellizzeri et al. [51] reported both values between 7% and 20%. Whereas the
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former claims the measurements are highly reliable, the latter states that is not straightforward to

judge based on these results whether the reliability is high. Indeed, a value may be acceptable for

rehabilitation studies, but might fail for training programs. Accuracy of experiments, as wanted

for this thesis, is quantified by the absolute reliability.

To complete this discussion on reliability, some attention is dedicated to gravitational and in-

ertial effects, learning effect, fatigue and settings of the dynamometer which are also issues of

concern.

Gravitational effects

Gravitational effects are compensated by the dynamometer through a calibration where the seg-

mental weight is determined in a passive condition at a chosen position. For example Biodex

corrects for gravity throughout the range of motion by applying a sine function. Inertial effects

have been reported to be minor [55]. This is in agreement with our own results.

Learning effect

Learning effect explains the apparant improvement of strength in time, which is a result from

accomodation of the subject with the experiment. However, Lund et al. [65] report that during

their experimental session, no effect of learning was observed. They attributed this to the fact

that good instructions were given and a learning phase was added to the protocol. Impellizzeri et

al. [51] report a learning effect for the hamstrings’ peak moment to some extent, and attribute this

to the fact that while seated, the force-length relationship common during gait is not respected.

Fatigue

Fatigue refers to the decay in strength which can be linked to a decay in the maximum activation

by the amplitude of the EMG signal [13]. Bilodeau et al. [13] describe a progressive increase in

the EMG amplitude with increasing muscle force and clear decrease in amplitude with fatigue.

Sagnier [82] report a decay of 10% in quadriceps and hamstrings strength after ten consequetive

repetitions (velocity 180 ◦/s).

Dynamometer settings

The impact of dynamometer settings including position (e.g. height) of the seat, alignment of

the dynamometer axis of rotation and the joint axis of rotation, tightness of the fixation belts,
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positioning of other joints have been no subject of papers as far as I am aware. Yet, they all

influence the data as recorded by a standard setup. For example, fixation of the body segments

prevents them from moving relative to the dynamometer and to each other because otherwise the

alignment of the axes of rotation is disturbed and an offset is introduced which is not accounted for.

However, fixation cannot be too tight, as this will influence muscle contraction. Apart from the

fixation, the alignment is an issue. Considering the knee joint for simplicity, Assume perfectly rigid

fixation, a strict alignment between the dynamometer axis of rotation and the joint axis of rotation

is impossible as the former is a fixed axis in time and space whereas the latter is an instantaneous

axis which pose is not accurately known because the pose is instantaneous [109]. The next section

will come back to this. It is also common practice to align the axis based on palpable geomet-

ric features. Joints as the knee rely on ligaments and muscles to guide the kinematics such that

rotation is achieved without undesirable translation [109]. Later on in this thesis (chapter 4), it

is shown that bone geometry is not a good nor the best representation of the actual knee joint axis.

Altogether, clinicians and researchers who rely on experimental dynamometer data should be

aware that the measurement data as given by the dynamometer in its regular setup do not re-

flect the moments muscles generate around the joint axis, but the moment generated around the

dynamometer axis of rotation. In every situation where the alignment between joint axis and

dynamometer axis is not maintained, joint moment and dynamometer moment do not correspond.

Some extended setups have been described in literature. Kaufman et al [55] used a load cell to

obtain reaction forces and moments, Arampatzis et al. [5] tracked the positions of the markers

mounted on femur, tibia and crank, and Tsaopoulos et al. [101] used fluoroscopy to obtain the

positions of the bones. A solution to assess more accurate joint moments is presented in chapters 4

and 5.
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2.6 Knee joint

Figure 2.7 shows an MR-image representing a knee joint. Figure 2.8 shows some conventional

terms to indicate anatomical directions and motions.

Figure 2.7: An MR-image of the knee joint. The bones composing the joint are the femur, the tibia,
and the patella.

2.6.1 The knee joint from a physiological perspective

The joint comprises the patello-femoral joint between the patella and the lower end of the femur

(thigh), and the tibio-femoral joint between the femoral condyles (further refered to as epicondyles)

and the two menisci resting on the tibial (lower leg) plateau. The menisci are concave cartilogeneous

structures which disperse friction. Ligaments in and around the joint guide the joint kinematics.

The ligaments prevent hyperextension and secure the articulating bones. The main motion of the

knee joint is flexion (bending of the knee) and extension (stretching of the knee), but there are

also some smaller rotational (ab/adduction, internal/external rotation) motion components.

Joint mechanics

What follows, is valid for the tibio-femoral joint.

Assume a knee joint which is extending, e.g. when a person is sitting and stands up. What
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Figure 2.8: From left to right (i) the terms used for anatomical directions, (ii) flexion and extension
of the knee joint, (iii) abduction and adduction (illustrated for hip joint), and (iv) internal and external
rotation (illustrated for hip joint) are illustrated [33].

happens in the joint is the following: the epicondyles start making a backward sliding movement

followed by a rolling movement, which brings the epicondyles into full contact with the menisci.

At the last 20 ◦ of extension (hence near full extension), the tibia rotates externally, which is a

consequence of the asymmetry in the knee joint (the lateral epicondyle is wider in the front than

in the back). The medial articulating surface is longer, hence the lateral movement stops before

the medial movement. This phenomenon is known as the screw home mechanism. During flexion,

the joint axis of rotation moves backwards.

Axis of rotation

The axis of rotation (AoR) is defined as a set of points on a bone which have no velocity relative

to the other bone at a given time instant. For human motion analysis, internal forces, moment

arms and moments are expressed with respect to the joint axis of rotation. This stresses the

importance of the defination of this axis. In general the knee joint axis of rotation is defined as the

line connecting the epicondyles [32]. As a result, the AoR is fixed in time and space. However, as

mentioned before, the femur makes a roll-back motion relative to the tibia. This implies that the

AoR is not fixed. The pose of the AoR depends on the flexion angle, but also on the loading due to

muscle and external forces [109]. In fact, the knee joint axis of rotation is an instanteneous axis of

rotation describing the displacement between femur and tibia at every instant in time [22; 92; 109].
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2.6.2 Knee joint from a modeling perspective

Given the complexity of the knee joint, modelling of the joint is not straightforward. Different mod-

eling approaches for the knee joint are finite helical axis [22; 92; 109], planar displacing axis [119],

and functional axis of rotation (e.g. [37; 41; 66]). Before going into these modelling approaches,

some background is provided on the calculation of 3D kinematics for those readers who are not

familiar with this matter.

3D kinematics

A rigid body in a 3D space has six degrees of freedom. This means that the body can translate

along three (orthogonal) axes and rotate about three (orthogonal) axes to move from one position

to another. The motion of one body relative to another body is described equivalently with three

translations and rotations. To describe the motion of a rigid body, frames are attached to the

body as illustrated in figure 2.9. Hence, whenever the displacement of the frames is known, the

displacement of the body is known.

θ2

θ1

Y1

X1

Y2 X2

Y3

X3

L1

L2

Figure 2.9: Each body has been assigned a local frame. By rotating frame XY3 with θ1 and θ2

around Z1, and translate it with L1 along X1 and L2 along X2, frame XY3 coincides with frame
XY1.

Transformation matrices

A transformation matrix T is a way to describe the relative position and orientation (pose) of a

frame b with respect to a frame a:

b
aT =

(
b
aR at

a,b

01x3 1

)
, (2.21)
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2.6 Knee joint

with b
aR the orientation matrix of b with respect to a, and ta,b the position vector of b with respect

to a expressed in a.

Considering figure 2.9, two transformations are needed to express the pose of link 3 in the frame

of link 1: 3
2T describes the transformation from body 3 in frame 3 to frame 2, 2

1T describes the

transformation from body 2 in frame 2 to frame 1, hence the transformation from body 3 in frame

3 to body 3 in frame 1 is 3
1T = 2

1T
3
2T.

Composition of rotations

Relative rotation can be expressed by only three angles. In case the rotations take place around

the axis of the moving frame, these values are called Euler angles. Assume that the rotation of

frame b with respect to frame a is described by a rotation θx around the X-axis, followed by a

rotation θy around Y-axis and eventually θz around the Z-axis, then the total rotation around the

axis of the moving frame is expressed as:

b
aR = R(Z, θz) R(Y, θy) R(X, θx). (2.22)

Otherwise, if the rotation takes place around the axis of the fixed frame, these values are called

roll, pitch and yaw for which the total rotation is expressed as:

b
aR = R(X, θx) R(Y, θy) R(Z, θz). (2.23)

Anatomical reference frames

In human motion analysis, an anatomical reference frame is defined for each body segment. The

frames are attached to the bones. The orientation and location of the frames is according to

the conventions of ISB (International Society of Biomechanics) [118]. In theory, the location and

orientation can be chosen randomly. However, a random choice does not allow to clinically interpret

the motions. Figure 2.10 shows the anatomical frames for tibia and femur. For the tibia, the origin

of the frame is placed at the middle of the transepicondylar axis, the Y-axis connects the middle

of the transepicondylar axis and the middle of the malleolar axis, the Z-axis coincides with the

transepicondylar axis, the X-axis completes the right-handed frame. For the femur, the origin of

the frame is placed at the hip joint center of rotation, the Y-axis is along the femur shaft in the

plane defined by the hip center of rotation and the transepicondylar axis, the Z-axis coincides with

the transepicondylar axis, the X-axis completes the right-handed frame.
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YfYf

XfZ f

Yt

XtZt

Figure 2.10: Illustration of the anatomical reference frames for femur (f ) and tibia (t).

Finite helical axis

A finite helical axis (FHA) describes a finite displacement between two rigid bodies, here the

displacement between femur and tibia. According to Chasles’ theorem the displacement of a rigid

body between two time instants can be described by a rotation around an axis and a translation

along the same axis. FHA’s are an approximation of instanteneous axes of rotation. FHA is

calculated based on the registered position of at least three points fixed on each body. Knee joint

axes of rotation can be expressed in the femoral or tibial reference frame.

The orientation and position of the FHA is calculated from the rotational part of the total trans-

formation. The transformations can be obtained by the algorithms of Soderkvist [94] or De Groote

et al. [28] via the generalized coordinates resulting from the segmental measurement models.

Whenever only data on the axis’ pose at discrete time instants is available, the displacement

of the bodies is described by an equivalent axis.

The theory as descibred above is valid for rigid bodies, hence for the displacements of the bones.

Actual bone displacement as input for the FHA calculations can be obtained via markers placed on

bone pins [109] or dynamic imaging techniques [92]. However, when using skin-mounted markers

the kinematic data are corrupted by STA as explained in section 2.4. Cheze et al. [22] report that

no accurate results are obtained whenever the two positions are not sufficiently distinct (about
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2.6 Knee joint

25◦). They suggest to model the knee joint axis of rotation as a mean axis between two distinct

joint positions.

Models for axis displacement

Yamaguchi and Zajac [119] describe a planar model of the knee. The knee joint axis is modeled as a

transepicondylar axis which translates in anterior-posterior direction and proximal-distal direction

as a function of the flexion angle. The orientation of the axis remains constant. The reference

position is according to the position of the transepicondylar axis when femur and tibia are aligned

(zero knee flexion). This planar model is widely used as it e.g. defines the knee joint in the generic

model of Delp et al. [32]. The functions describing the translations are shown in figure 2.11.
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Figure 2.11: Planar knee joint model by Yamaguchi and Zajac [119]. Displacements in proximal-
distal directions are shown in function of the anterior-posterior displacement of the axis of rotation.

For gait and jump simulations in this work, this planar knee joint model is used (see chapter7).

Walker described an alternative spatial knee joint model [111]. Therefore, five degrees of free-

dom were described in function of the knee flexion angle based on experimental data: internal

rotation, ab/dduction, and translation along X-, Y-, Z-axis. This model allows to model abnormal

motions of the knee joint.

Functional axis

A functional axis of rotation (fAoR) is the axis of rotation that best explains a recorded motion

over a certain range. There are two main techniques to calculate functional axes of rotation.
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Transformation techniques (e.g. [37; 87]) rely on 3D rigid body mechanics, and therefore can make

use of anatomical coordinate systems.

Transformation technique

The transformation technique assumes that the axis of rotation is stationary in each local reference

frame. As the axis is defined by its position and its orientation, a transformation should map the

local points of the AoR’s on both segments onto the same global points. Positions of tibial markers

and femoral markers are input. Again, [28] or [94] can be applied to obtain the transformation

matrices.

Transformation methods solve for the line best fitting both local sets of points.

Fitting technique

The circle fitting technique assumes that the markers move in circles relative with respect to the

axis of rotation, and that the circle centers define the functional axis of rotation. Therefore, the

distance from the registered marker positions to the center of the circles lying on the fAoR should

equal the circle radius. Equivalently, the velocity vector resulting from the rotation of the marker

around the axis of rotation should be perpendicular to the orientation of the axis of rotation.

Fitting techniques solve for the axis which best minimizes the deviations from the circles.

In this thesis, the functional axes of rotation are calculated according to Ehrig et al. [37] and

Gamage and Lasenby [41]. This choice was based on the findings of MacWilliams [66] and Ehrig

et al. [37] that these algorithms were respectively the best performing transformation and fitting

techniques in simulation: when noise was applied to all markers the deviation from the actual axis

was less than 1cm in the simulation environment.
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2.7 System identification

2.7 System identification

Parameter estimation is the experimental determination of parameter values that govern the be-

haviour of a model. It is part of system identification which involves experimental design and data

acquisition, model selection, parameter estimation, and model validation [62].

2.7.1 Optimal experiment design

Experiment design involves making choices so that the data become maximally informative subject

to the constraints inherent to the experimental set-up [62]. For the dynamometer experiments, the

constraints are that the excitation of the system (the muscles) is hard to control, and the number of

experiments is limited. Therefore, it should be verified whether the experiments of interest contain

information on the parameters. Additionally, it should be verified whether it is possible to extract

parameter values from the experiments. The former can be studied by a sensitivity analysis, the

latter can be studied by an identifiability study.

Sensitivity analysis

Model predictions depend differently on different parameters. Hence, it is more crucial to improve

the accuracy of the values of the parameters with the highest influence on the model predictions.

A senstivity analysis evaluates the influence of a parameter on the model prediction and allows to

obtain a hierarchy in the parameters with respect to the experiments.

The local sensitivity Se of an experiment e to a parameter p is calculated as follows:

Se =
∂ŷ

∂p
, (2.24)

with ŷ the model prediction for a certain experiment, and p = 1...P a model parameter.

The relative sensitivity Se
rel is defined as:

Se
rel =

∆ŷ/ŷ

∆p/p
, (2.25)

with ∆ŷ the change in the model prediction due to the change ∆p in the model parameters.

For non-linear models, sensitivities might depend on the nominal parameter value. Hence, ide-

ally, the sensitivity to the parameters should be determined for a number of nominal parameters
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spanning the whole parameter space. Techniques for sampling of the parameter space rely on

the relative likelyhood that a parameter has a certain value. Examples are the computationally

demanding Monte Carlo Analysis [12], which generates combinations of parameter values, or Latin

Hypercube Sampling, which divides the parameter space in equal intervals [12].

Identifiability study

Identifiability of parameters relies on data quality (including how the system is excited) and data

quantity. The importance lies in making a trade-off between the amount of information and the

experimental burden. In this thesis, humans are performing the experiments. Hence, because of

fatigue the experimental burden is an issue, and the amount of excitation is limited.

For simple problems, the identifiability of parameters can be checked visually by drawing the

contours of the objective function. Locally optimum solutions become visible, and the shapes of

the contours give information on the identifiability of a parameter. A valley-like shape typically

indicates a poor identifiability.

However, in an n-dimensional parameter space, contour plots are not as straightforward to

interpret. The richness of the experiments can then be quantified by the Fisher information matrix

Fim which gives the expected value of the observed information for the estimated value p̂ [110]:

Fim = E

[(
∂ŷ(p)

∂p

)T

P−1
v

(
∂ŷ(p)

∂p

)]
|p̂, (2.26)

= E

(∂ŷ(p)

∂p

)T (
P−1
v

) 1
2︸ ︷︷ ︸

a

(
P−1
v

) 1
2

(
∂ŷ(p)

∂p

) |p̂ (2.27)

with P−1
v the uncertainty on the measurements expressed in terms of covariance. The inverse of

Fim reflects the covariance on p̂.

By a singular value decomposition of expression a in equation 2.27, the best identifiable part

of the parameter space is extracted [110]. The singular values indicate the number of identifi-

able parameter combinations. The number of parameters is deduced from the singular values:

whenever there is a jump in the decrease between two consecutive singular values, the number of

identifiable parameter combinations is the number of singular values before the jump.The larger

the singular value, the better the identifiability of the respective parameter combination, which is

defined by the singular vector. Typically, all singular values close to zero show low identifiability.

The identifiability is valid for the chosen nominal parameter values as the Fim is deduced from
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equation 2.25.

Scaling

The parameters of interest do not necessarily have the same units, nor are they in the same order

of magnitude. Scaling of parameters makes the parameters independent of their units [110]. Obvi-

ously, scaling influences the numerical values of the singular values, and hence the interpretation

of the identifiability.

Scalarization of Fim

Often a scalar measure of the Fim is used to judge the identifiability of parameters. Scalarizations

rely on the eigenvalues of the Fim. The three most popular scalarizations are [12; 15]:

• The D-criterion which maximizes (minimizes) the determinant of the Fim (the inverse of

Fim):

D-crit = max det(Fim) = min det(Fim−1), (2.28)

det(.) calculates the product of the eigenvalues of (.).

• The E-criterion which maximizes (minimizes) the minimum (maximum) eigenvalue λmin(max)

of the Fim (the inverse of Fim):

E-crit = max λmin(Fim) = min λmax(Fim−1). (2.29)

• The A-criterion which maximizes (minimizes) the trace of the Fim (the inverse of Fim):

A-crit = max tr(Fim) = min tr(Fim−1). (2.30)

tr(.) calculates the sum of the eigenvalues of (.).

The criteria can be interpreted in terms of the confidence region. The D-criterion minimizes the

volume of the confidence region. The E-criterion minimizes the length of the major axis of the

confidence region. The A-criterion minimizes the dimensions of the enclosing box on the confidence

region. A geometrical visualisation of the criteria is provided in figure 2.12.
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Figure 2.12: In a 2D space, the confidence region is given as an ellipse. The enclosing box is
shown in dotted lines. D-, E, and A-criteria are indicated.

2.7.2 Parameter estimation

Model selection

In case the parameters in a model have no physical meaning, but are just adjusted to fit the data,

a set of models is often available from which the best model has to be selected. In this work,

the model is constructed based on physical insight into the MT-complex. In case of MT-models,

the parameters have a physical interpretation. Hence, no model selection was performed. Or

equivalently, it is correct to state that the model selection is done based on physical insight.

Estimation procedure

The aim of the estimation procedure is to minimize the error ε(p) between a measured output y,

and a predictor sequence ŷ(p) [62]:

min
p

ε(p) = y − ŷ(p). (2.31)
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Typically, the estimation procedure is formulated as an optimisation problem. The solution ap-

proach can be local or global. The estimation problem can be linear or non-linear (and when

non-linear, convex or non-convex).

Definition of optimisation problems

An optimisation problem describes an objective function fo(x) : Rn → R which value has to be

minimized, a set of optimisation variables x ∈ Rn, and a set of constraints which can be equality

constraints ci(x) : Rn → R or inequality constraints gi(x) : Rn → R:

min
x

fo(x) , (2.32)

s.t. ci(x) = 0 i = 1...neq, (2.33)

gi(x) = 0 i = 1...nineq, (2.34)

with n(in)eq the number of (in)equality constraints. The solution corresponds to the vector x that

yields the smallest value of the objective function of all points that satisfy the constraints. The

feasible set represents the set of all variables x that satisfy the constraints of the problem.

Convex versus non-convex problems

An optimisation problem is convex when the objective function and the inequaltity constraints are

convex in the optimisation variables, and the equality constraints are linear. A convex function is

defined as follows [15]:

f(αx + βy) ≤ αf(x) + βf(y), (2.35)

for all α, β ∈ R, 0 ≤ α, β, α + β = 1. Geometrically, the inequality means that the line between

any two points on the graph, lies above the graph. Hence, the curvature of the graph is positive.

For convex optimisation problems every locally optimal point is globally optimal. Hence, any local

optimum is also the global optimum. The main challenge in convex optimisation is recognizing the

problem rather than solving it. Efficient solution approaches exist (e.g. interior point methods) to

solve convex problems with a limited number of iterations [15].

A special group of convex problems are linear problems of which the objective function and

constraints are linear.

An optimisation problem is non-linear (non-convex) if the objective function and constraints are
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non-linear, but not known to be convex or known to be non-convex. Typically, these optimisa-

tion problems suffer from local optima. No simple solution approach is available for this kind of

problems. The challenge regarding non-linear problems once the formulation is done, is solving

the problem by e.g. providing/finding a good initial guess close to the optimal solution, and the

choice of the algorithm.

(x, f(x))

(y,f(y))
x∗

x∗

Figure 2.13: Geometric illustration of a convex function (left) and a non-linear (non-convex) function
(right). The global optima are indicated with black disks, the local optima are indicated with circles.

Figure 2.13 illustrates the difference between a convex problem and a non-linear (non-convex)

problem.

Global versus local optimisation

A global optimisation approach aims at finding the global optimum by searching the complete

parameter space. Global optimisation methods generate and include randomness in the optimisa-

tion procedure e.g. in the search procedure. Popular global optimisation techniques are genetic

algorithms and simulated annealing, which mimic natural phenomena (e.g . [70]). The main draw-

back of these global optimisation techniques is that they are time expensive. Although it might

be garantueed that the true solution is found, the amount of time needed might be unrealistically

large, which in real life might involve let’s say a 1000 of years (-Stephen Boyd).

A local optimisation approach aims at finding a solution to the problem that is locally optimal.

Hence, the solutions results in the smallest error in the goal function compared to all possible fea-

sible solutions that are near. There is however no guarantee that the lowest possible value of the

goal function has been obtained [15]. Local optimisation techniques rely on analytical properties

of the problem (curvature information). Many algorithms assume second order continuity [76].
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Model validation

Model validation aims at evaluating the performance of the model. Typically, it is verified whether

the model can reproduce recorded data, hence whether the model is valid for its purpose. In

this thesis, system identification is applied on the complete muscle-tendon model describing the

contraction dynamics. Validation of the MT-model on its own is not possible. Therefore, in

this thesis the performance of the musculoskeletal model including the MT-model is evaluated.

In biomechanical motion analysis, model validation is often done by comparing recorded muscle

activations by EMG and predicted muscle activations in the dynamic simulation.

2.7.3 Solution approach

The objective of this thesis was to determine the parameters of the Hill-model based on subject-

specific data for the calculation of subject-specific muscle-tendon forces. Therefore, following steps

have been taken:

1. Experimental data are obtained via dynamometry. To enhance data quality, a conventional

dynamometer has been extended with motion tracking and external force registration. These

extra data allow us to perform a full 3D inverse dynamic analysis. Hence, a more accurate

estimate of the moment generated by the muscles around the joint axis of rotation is obtained.

The joint axis of rotation in the knee model is defined by a functional axis of rotation instead

of a geometry-based axis of rotation. The performance of functional axes versus geometry-

based axes has been validated.

2. An estimation procedures is developed to solve the non-linear optimization problem from

which subject-specific MT-parameter values are obtained by mapping experimental dy-

namometer data to MS-model predictions. The solution approach is a local non-linear op-

timization. Therefore, a lot of attention is paid to problem formulation, obtaining a good

initial guess, and defining the feasible set.

3. The calculated MT-parameters are validated based on isokinetic dynamometry, walking and

jumping by comparing estimated muscle activations to experimentally obtained muscle ac-

tivations. For the isokinetic experiments, also the predicted joint moments are obtained by

performing forward dynamic analysis.
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Chapter 3

Sensitivity of dynamic simulations of gait and dynamometer

experiments to Hill muscle model parameters of knee flexors

and extensors

Abstract1

We assessed and compared sensitivities of dynamic simulations to musculotendon (MT) parameters

for gait and dynamometer experiments. Our aim with this comparison was to investigate whether

dynamometer experiments could provide information about MT-parameters that are important to

reliably study MT-function during gait. This would mean that dynamometer experiments could be

used to estimate these parameters. Muscle contribution to the joint moment (MT-moment) rather

than relative MT-force primarily affects the resulting gait pattern and moment measured by the dy-

namometer. In contrast to recent studies, therefore, we assessed the sensitivity of the MT-moment,

rather than the sensitivity of the relative MT-force. Based on sensitivity of the MT-moment to a

parameter perturbation, MT-parameters of the knee flexors and extensors were classified in three

categories: low, medium, and high. For gait, classification was based on the average sensitivity

during a gait cycle. For isometric and isokinetic dynamometer experiments, classification was

based on the highest sensitivity found in the experiments. The calculated muscle contributions

to the knee moment during gait and dynamometer experiments had a high sensitivity to only a

limited number o fMT-parameters of the knee flexors and extensors, suggesting that not all MT-

1This chapter has been published as a full article in Journal of Biomechanics: F. De Groote, A. Van Campen,
I. Jonkers, J. De Schutter. Sensitivity of dynamic simulations of gait and dynamometer experiments to Hill muscle
model parameters of knee flexors and extensors. 2010, vol. 43, pp. 1876-1883. Only minor changes concerning
notational consistency and lay-out have been performed.
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parameters need to be estimated. In general, the highest sensitivity was found for tendon slack

length. However, for some muscles the sensitivity to the optimal fibre lengthorthemaximalisomet-

ricmuscleforcewasalsohighormedium.Theclassificationofthe individual MT-parameters for gait and

dynamometer experiments was largely similar. We therefore conclude that dynamometer experi-

ments provide information about MT-parameters important to reliably study MT-function during

gait, so that subject-specific estimates of MT-parameters could be made based on dynamometer

experiments.

3.1 Introduction

Direct measurement of musculotendon (MT) forces during motion is currently infeasible. MT-force

distribution is therefore calculated from a dynamic musculoskeletal model comprising activation,

contraction, and skeleton dynamics. Activation dynamics [59] describe the nonlinear relation

between muscle excitation and muscle activation based on the activation and deactivation time

constants, τact and τdeact. Contraction dynamics describe the nonlinear relation between muscle

activation and MT-force. The commonly used Hill model is based on five muscle-specific param-

eters: tendon slack length Ls
t, optimal muscle fibre length Lopt

m , maximal isometric muscle force

Fmax
m , optimal pennation angle αopt, and maximal muscle fibre velocity vmax

m . Skeleton dynamics

relate MT-forces and external forces to the resulting motion based on the musculoskeletal geome-

try. Hence, the accuracy of any analysis based on the dynamic musculoskeletal model depends, in

part, on the MT-parameters describing activation and contraction dynamics.

State of the art analyses are based on a generic set of MT-parameters sourced from the litera-

ture. However, parameters reported in the literature vary widely (for an overview see [91]) and

must often be compiled from different sources. These parameters are thus not subject-specific, al-

though muscle properties are known to vary with age, gender and activity level [16; 39]. Therefore,

the aims of this study are twofold: to investigate (1) which MT-parameters of the knee extensors

and flexors have a considerable effect on the calculated MT-force distribution during gait and (2)

whether it is feasible to make a subject-specific estimate of these MT-parameters based on dy-

namometer experiments measuring the anglemoment relation at the knee.

The effect of MT-parameters on the calculated MT-force distribution during gait has been in-

vestigated previously. Scovil and Ronsky (2006) studied the sensitivity of a forward simulation of

gait and running to the parameters of a Hill-type muscle model. Redl et al. (2007) studied the
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sensitivity of a static optimisation procedure to calculate the MT-force distribution underlying gait

to Ls
t, L

opt
m , and muscle physiological cross-sectional area (PCSA), which is proportional to Fmax

m .

Both studies evaluated sensitivity using the ratio between the relative change in MT-force and the

relative change in the MT-parameter. Both studies showed the highest sensitivity to Ls
t, a smaller

sensitivity to Lopt
m , and a small sensitivity to PCSA during gait.

These studies, however, do not demonstrate which MT-parameters are important to analyse gait

reliably for two reasons. Firstly, sensitivities reported by [91] were averaged over 14 muscles,

but [81] have shown large differences between the sensitivities of four muscle groups, indicating

the need to assess sensitivity in muscles individually. Secondly, both [91] and [81] investigated the

relative effect of parameter perturbations on the MT-force production. However, it is the absolute

muscle contribution to the joint moment (not the relative MT-force), which primarily affects the

resulting motion. This follows from the human bodys equations of motion in which the absolute

MT-forces appear in a product with the muscle moment arms. In our study, therefore, we inves-

tigated which MT-parameters of the knee extensors and flexors affected the calculated MT-force

distribution during gait, by assessing sensitivity in individual muscles at the joint moment level.

Estimating MT-parameters based on dynamometer experiments is only feasible if these param-

eters affect the measured anglemoment relation. The effect of MT-parameters on the isometric

anglemoment relation has been investigated by [49], who found that Ls
t and Lopt

m have a profound

influence on the joint angle at which an actuator develops peak isometric force. Out et al. (1996)

investigated the sensitivity of the isometric momentangle relation at the ankle to MT-parameters

of m. soleus (SOL), m. gastrocnemius lateralis (GL), and m. gastrocnemius medialis (GM). They

found that the maximal moment and the angle at which this maximal moment is delivered are

most sensitive to Ls
t. However, [49] did not report the effect of individual MT-parameters and [77]

only studied the ankle plantar flexors. The effect of MT-parameters on the isokinetic anglemoment

relation has not yet been investigated.

In our study, we simultaneously assessed the effect of the MT-parameters of knee flexors and

extensors on the individual muscle contributions to the knee moment during gait and on the

measured anglemoment relation during isometric and isokinetic dynamometer experiments. To

quantify this effect we introduced a new sensitivity measure. The calculated sensitivities during

gait determined a ranking in the MT-parameters. MT-parameters with higher sensitivity require

higher accuracy to reliably calculate muscle contributions to the joint moment.
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3 Sensitivity analysis

Different analysis methods imply different relations between the MT-force distribution and the

MT-parameters, and hence may result in different sensitivities. To evaluate how parameter sensi-

tivity depends on the applied method, we determined sensitivities for muscle contributions calcu-

lated using three analysis methods: a forward simulation (cfr. [91]), a static optimisation (cfr. [81]),

and a dynamic optimisation. The calculated sensitivities were then used to help answer the two

research questions we have raised: (1) which MT-parameters of the knee extensors and flexors

need to be accurately known to analyse the individual muscle contributions to the knee moment

during gait (i.e. which MT-parameters have a high sensitivity during gait) and (2) do these MT-

parameters affect the isometric or isokinetic anglemoment relation measured using dynamometry

(i.e. do these MT-parameters also have a high sensitivity during at least one of the dynamometer

experiments)?

3.2 Methods

3.2.1 Dynamic musculoskeletal model

The body model comprised eight segments and had 19 degrees of freedom (DOF) (see figure 3.1).

Each leg was articulated by 43 muscles. Activation dynamics were described by a first order

model [79] with τact = 11ms and τdeact = 68ms [116]. Contraction dynamics were described by

the Hill model (see figure 2.2.3)( [90; 120]). The MT-specific parameters Lopt
m , Ls

t, F
max
m , αopt and

vmax
m , scaled the generic, dimensionless model.

3.2.2 Experimental setup and input data

Experimental data was collected for three subjects (26.5y, ±1.5): one male and one female recre-

ational runner, and one male elite runner. Instrumented gait analysis was performed using a 3D

motion capture system (Krypton, Metris) and a synchronised force plate (Bertec, Columbus, OH,

USA). A modified Cleveland Clinic marker protocol was used (38 markers).

Each subject was tested in a Biodex Dynamometer (Biodex Medical Systems). Firstly, isometric

knee flexion and extension moments during maximal voluntary contraction were measured at knee

flexion angles of 15 ◦, 30 ◦, 60 ◦, 90 ◦, and 105 ◦, with 0 ◦ corresponding to full extension. Sec-

ondly, maximal voluntary knee flexion and extension moments were measured over the full range

of motion of the knee at constant velocities of 60 ◦/s, 90 ◦/s, and 180 ◦/s. All experiments were
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3.2 Methods

Figure 3.1: The body model. The body model comprised eight segments: a head - arms - trunk
(HAT) segment, the pelvis, left and right thigh, lower leg and foot [32]. The model had 19 degrees of
freedom (DOF): spherical joints connected the HAT-segment to the pelvis and the pelvis to the thighs.
The knee joints were modelled as sliding hinges [119]. The ankle joints were modelled as simple hinges
(metatarsal joints were not included in the model). The remaining six DOF corresponded to the position
and orientation of the pelvis.

repeated at two different hip angles: a high flexion between 60 ◦ and 70 ◦ and a low flexion between

40 ◦ and 50 ◦, with 0 ◦ corresponding to full extension. The ankle was fixed in the neutral position

by a rigid ankle foot orthosis.

Musculoskeletal models, scaled to each subject’s dimensions, were generated using OpenSim [33]

based on marker information collected during a static trial. The MT-parameters of the scaled

musculoskeletal models were taken as the nominal values (see table 3.1). For each gait trial, joint

kinematics and joint moments were calculated based on the measured ground reaction forces and

marker trajectories by subsequently applying (1) a Kalman smoothing algorithm [28] for inverse

kinematics and (2) an inverse dynamic analysis [33]. During the dynamometer experiments, joint

kinematics and moments were measured directly. The moment arms of the MT-actuators during

gait and the dynamometer experiments were calculated based on the scaled musculoskeletal model

and the kinematic input.

3.2.3 Calculation of MT-force distributions

We assumed maximal static contraction of the agonists and complete relaxation of the antagonists

during the isometric experiments. Activations of knee flexors were therefore 1 and activations of
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3 Sensitivity analysis

knee extensors 0, when a knee flexor moment was exerted and vice versa when a knee extensor

moment was exerted. Corresponding MT-forces were calculated using the Hill model.

The MT-force distribution during gait and the isokinetic experiments was calculated using two

optimisation methods: the ’classical’ inverse approach (CIA) ( [4; 25]) and the physiological in-

verse approach (PIA) ( [30; 78]). Both methods enforce the MT-force distribution to be consistent

with the joint moments using the instantaneous moment arms of the MT-actuators. However, they

differ in the way the performance criterion is minimised and muscle physiology is imposed.

CIA solves at each recorded time instant i = 1 . . . I a static optimisation problem minimising

the sum of squared activations of all muscles j, while constraining the MT-forces by:

Fij = aij F
max
ij for j = 1 . . . J, (3.1)

where muscle activations aij must lie between 0 and 1, minimal and maximal activation respectively,

and Fmax
ij denotes the instantaneous maximal MT-force, calculated from the force-length-velocity

curve and the kinematic input [4].

PIA solves a dynamic optimisation problem minimising the sum of squared activations of all

muscles over all time instants. Muscle activations are constrained to comply with activation dy-

namics. Contraction dynamics are imposed by a linearized Hill-model, neglecting muscle fibre

contraction speed [30].

Activations and MT-forces were calculated by CIA and PIA for the 43 muscles in the model

during the full gait cycle and for the 13 knee flexors and extensors during the isometric exper-

iments. Nominal MT-forces were obtained based on the musculoskeletal model with nominal

parameters. Perturbed MT-forces were obtained based on the musculoskeletal model in which

each MT-parameter of the knee flexors and extensors was alternately perturbed by ±5%. τact,

τdeact, and the normalized muscle fibre velocity
vmax

m

Fmax
m

was perturbed in all muscles simultaneously,

since these parameters are not muscle-specific [120]. Perturbing MT-parameters influences the

constraints of the optimisation underlying the MT-force calculation in both CIA and PIA.τact,

τdeact only influence PIA.

3.2.4 Forward simulation of the Hill-model

Nominal activations calculated using PIA were input to a forward simulation that calculates the

corresponding MT-forces by integrating the contraction dynamics. Using nominal MT-parameters
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3 Sensitivity analysis

in the Hill model yielded nominal forces, while alternately perturbing each MT-parameter of the

knee flexors and extensors by ±5% yielded perturbed MT-forces.

3.2.5 Sensitivity analysis

Scovil and Ronsky [91] and Redl et al. [81] evaluated sensitivity using:

Se
ijp =

(Fper,ij − Fnom,ij)/Fnom,ij

(pper,p − pnom,p)/pnom,p
(3.2)

where Se
ijp was the sensitivity of muscle j to parameter p at time instant i, pnom,p and pper,p

were the nominal and perturbed values of parameter p, and Fnom, ij and Fper,ij were the nominal

and perturbed values of muscle force j at time instant i. Our definition of sensitivity differed in two

ways. Firstly, we evaluated the muscle contribution to the joint moment instead of the MT-force,

since the joint moment determines propulsion during gait and it is also the measured quantity

during dynamometer experiments. Secondly, we used an absolute instead of a relative measure,

since a large relative change in a muscle contributing only little to the joint moment hardly affects

the gait pattern or the measured moment. The resulting sensitivity measure was:

MSe
ijp =

∣∣∣∣ (M+∆p,ij −M−∆p,ij)/2

∆pp/pnom,p

∣∣∣∣ , (3.3)

where ∆pp/pnom,p was the relative parameter perturbation, M−∆p,ij and M+∆p,ij were the

perturbed contributions of muscle j to the knee moment at time instant i when parameter p was

perturbed by respectively −∆pp and +∆pp. Individual muscle contributions to the knee moment,

the MT-moments, were calculated by multiplying the MT-forces by the moment arm of the MT-

actuator with respect to the knee. Hence, a MSe
ijp of 100Nm could be interpreted as a parameter

perturbation of 10, changing the moment by 10Nm.

We determined sensitivity to the MT-parameters of m.rectus femoris (RF), m. tensor fasciae

latae (TFL), m. vastus intermedius (VI), m. vastus lateralis (VL), m. vastus medialis (VM), m.

biceps femoris caput longum (BFL), m. biceps femoris caput breve (BFS), m. gracilis (GRA),

m. gastrocnemius lateralis (GL), m. gastrocnemius medialis (GM), m. sartorius (SAR), m.

semimembranosus (SM), and m. semitendinosus (ST). For the isometric experiments, we deter-

mined sensitivity to each MT-parameter of the maximal MT-moment predicted by the Hill-model.

For the isokinetic experiments and gait, we determined sensitivity to each MT-parameter for the
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3.2 Methods

MT-moment calculated using (1) CIA, (2) PIA, and for the MT-moment predicted from (3) for-

ward simulation of the Hill-model.

For the isokinetic experiments, the maximal during the experiment

MSe
jp = max

i

MSe
ijp, (3.4)

is reported. For gait, the time average of MSe
ijp,

MSe
jp =

1

I

I∑
i=1

MSe
ijp, (3.5)

is reported. Sensitivities were averaged over the three subjects.

The calculated sensitivities during gait determined a ranking in the MT-parameters. MT-

parameters with higher sensitivity require higher accuracy to reliably calculate muscle contributions

to the joint moment. To facilitate the interpretation of the results, we adopted the following sen-

sitivity classification. We classified MT-parameters with respect to their sensitivity during gait as

low (MSe
jp < 5Nm), medium (5Nm ≤ MSe

jp < 10Nm), and high (10Nm ≤ MSe
jp). The moment

exerted by both knee flexors and extensors averaged over a gait cycle is in the order of 5Nm. This

means that to determine the muscle contribution to the joint moment with an accuracy of 10%,

MT-parameters with medium or high sensitivity need to be known with an accuracy of at least

10% or 5% respectively.

During dynamometer experiments, maximal knee torques were measured, whereas during gait,

knee torques were submaximal. We therefore adopted different bounds to classify sensitivi-

ties from the dynamometer experiments. We classified the MT-parameters with respect to the

highest found in the isometric and isokinetic experiments as low (MSe
jp < 50Nm), medium

(50Nm ≤ MSe
jp < 10Nm), and high (100Nm ≤ MSe

jp). A change of 10Nm can be distinguished

from measurement errors as reported by [65; 95; 97]. This means that a change in an MT-parameter

with medium or high sensitivity by at least 20% or 10% respectively is measurable.
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3 Sensitivity analysis

3.3 Results

Figure 3.2a, 3.3a, 3.4a show MSe
jp to Ls

t, L
opt
m , and Fmax

m respectively for the different analyses

during gait. Sensitivity to Ls
t (figure 3.2a) is high for RF, VI, VL, BFL, GL, GM, and SM for

PIA and the forward simulation, and for VI, VL, VM, GL, GM, and SM for CIA. Sensitivity to Ls
t

(figure 3.2a) is medium for TFL, VM, and ST for PIA and the forward simulation. Sensitivity to

Lopt
m (figure 3.3a) is medium for RF, VI, and VL for PIA and the forward simulation, and for VM

for CIA. Sensitivity to Ls
t and Lopt

m of the other muscles and to Fmax
m (figure 3.4a), τact , τdeact ,

αopt, and vmax
m of all muscles was low.

Figures 3.2b, 3.3b, 3.4b show MSe
jp to Ls

t, L
opt
m , and Fmax

m for the different analyses of the dy-

namometer experiments. The patterns of MS during gait (figures 3.2a, 3.3a, 3.4a) resemble the

patterns of MS during the dynamometer experiments (figures 3.2b, 3.3b, 3.4b). Table 3.2 illus-

trates the similarities in the classification for the case of PIA. Sensitivity to 16 MT-parameters is

high or medium for gait. Fourteen of these 16 parameters are in the same or higher class for the

dynamometer experiments. On the other hand, the sensitivity to Ls
t of TFL and GL is medium

and high for gait, but low and medium for the dynamometer experiments, respectively.

For each MT-parameter, table 3.3 reports the isometric and isokinetic experiment with the highest

MSe
jp. This shows that for different MT-parameters, maximal sensitivities result from a wide range

of experiments.

Although standard deviations of MSe
jp showed larger variability between test subjects for gait than

for the dynamometer experiments (see figures 3.2 to 3.4), the classification of the MT-parameters

for the individual subjects was similar.

MT-moments calculated based on PIA or a forward simulation often had a higher sensitivity

to Ls
t, L

opt
m , and Fmax

m than MT-moments calculated based on CIA (figures 3.2 to 3.4).

3.4 Discussion

We assessed and compared sensitivities of dynamic simulations to MT-parameters for gait and for

dynamometer experiments. The higher the sensitivity to an MT-parameter during gait, the more

accurate this MT-parameter needs to be known to analyse gait accurately.
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3.4 Discussion

Figure 3.2: Sensitivities MSe
jp [Nm], averaged over the test subjects, and standard deviation, of knee

extensors to tendon slack length are shown. Knee extensors are m.rectus femoris (RF), m. tensor fasciae
latae (TFL), m. vastus intermedius (VI), m. vastus lateralis (VL), and m. vastus medialis (VM). Knee
flexors are m. biceps femoris caput longum (BFL), m. biceps femoris caput breve (BFS), m. gracilis
(GRA), m. gastrocnemius lateralis (GL), m. gastrocnemius medialis (GM), m. sartorius (SAR), m.
semimembranosus (SM), and m. semitendinosus (ST). For the isometric experiments (a, lightest grey),
the sensitivity of the maximal muscle contribution to the isometric knee moment predicted by the Hill-
model is given. For the isokinetic experiments (a) and gait (b), three different sensitivities are given:
the sensitivity of the muscle contributions to the knee moment calculated based on CIA (black) and PIA
(dark grey), and the sensitivity of the muscle contributions to the knee moment predicted from forward
integration of the Hill-model (FS) (light grey). Standard deviation is indicated with †. According to the
classification, the straight line (-) at 100Nm in (a) and 10Nm in (b) indicates the high sensitivity-level ;
the dashed line (–) at 50Nm in (a) and 5Nm in (b) indicates the medium sensitivity-level.

61



3 Sensitivity analysis

Figure 3.3: Sensitivities MSe
jp [Nm], averaged over the test subjects, and standard deviation, of knee

extensors to optimal muscle fibre length. Knee extensors are m.rectus femoris (RF), m. tensor fasciae latae
(TFL), m. vastus intermedius (VI), m. vastus lateralis (VL), and m. vastus medialis (VM). Knee flexors
are m. biceps femoris caput longum (BFL), m. biceps femoris caput breve (BFS), m. gracilis (GRA), m.
gastrocnemius lateralis (GL), m. gastrocnemius medialis (GM), m. sartorius (SAR), m. semimembranosus
(SM), and m. semitendinosus (ST). For the isometric experiments (a, lightest grey), the sensitivity of the
maximal muscle contribution to the isometric knee moment predicted by the Hill-model is given. For the
isokinetic experiments (a) and gait (b), three different sensitivities are given: the sensitivity of the muscle
contributions to the knee moment calculated based on CIA (black) and PIA (dark grey), and the sensitivity
of the muscle contributions to the knee moment predicted from forward integration of the Hill-model (FS)
(light grey). Standard deviation is indicated with †. According to the classification, the straight line (-)
at 100Nm in (a) and 10Nm in (b) indicates the high sensitivity-level ; the dashed line (–) at 50Nm in (a)
and 5Nm in (b) indicates the medium sensitivity-level.
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3.4 Discussion

Figure 3.4: Sensitivities MSe
jp [Nm], averaged over the test subjects, and standard deviation, of knee

extensors to maximal isometric force are shown. Knee extensors are m.rectus femoris (RF), m. tensor
fasciae latae (TFL), m. vastus intermedius (VI), m. vastus lateralis (VL), and m. vastus medialis (VM).
Knee flexors are m. biceps femoris caput longum (BFL), m. biceps femoris caput breve (BFS), m. gracilis
(GRA), m. gastrocnemius lateralis (GL), m. gastrocnemius medialis (GM), m. sartorius (SAR), m.
semimembranosus (SM), and m. semitendinosus (ST). For the isometric experiments (a, lightest grey),
the sensitivity of the maximal muscle contribution to the isometric knee moment predicted by the Hill-
model is given. For the isokinetic experiments (a) and gait (b), three different sensitivities are given:
the sensitivity of the muscle contributions to the knee moment calculated based on CIA (black) and PIA
(dark grey), and the sensitivity of the muscle contributions to the knee moment predicted from forward
integration of the Hill-model (FS) (light grey). Standard deviation is indicated with †. According to the
classification, the straight line (-) at 100Nm in (a) and 10Nm in (b) indicates the high sensitivity-level ;
the dashed line (–) at 50Nm in (a) and 5Nm in (b) indicates the medium sensitivity-level.
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3 Sensitivity analysis

The higher the sensitivity to an MT-parameter during a dynamometer experiment, the more this

parameter affects the measured angle-moment relation and hence, the more information the angle-

moment relation contains about this parameter.

Comparing sensitivities during gait and dynamometer experiments allowed us to determine whether

dynamometer experiments could provide information about the MT-parameters important to re-

liably study MT-function during gait. Similar sensitivity patterns for gait and dynamometer ex-

periments would indicate that the MT-parameters which need to be known accurately to reliably

analyse gait affect the isometric or isokinetic angle-moment relation measured. To help compare

sensitivity patterns, MT-parameters were classified based on the effect of a parameter perturbation

on the muscle contribution to the joint moment.

The sensitivity analysis showed that calculated MT-moments during gait had a high or medium

sensitivity to only a limited number of MT-parameters of the 13 knee flexors and extensors (fig-

ures 3.2a, 3.3a and 3.4a), suggesting that not all muscle parameters need to be estimated. In

agreement with [91] and [81], the sensitivity to Ls
t was higher than the sensitivity to Lopt

m , and

the sensitivity to Lopt
m was higher than the sensitivity to Fmax

m . However, our study revealed large

differences between muscles in the effect on the muscle contribution to the joint moment when

perturbing Ls
t and Lopt

m (figures 3.2 and 3.3). Furthermore, our definition of sensitivity revealed

the lesser importance of knowing MT-parameters of TFL, GRA and SAR, as expected from the

low MT-force production of these muscles.

Dynamometer experiments thus provide information about the majority of the MT-parameters

that need to be accurately known to reliably calculate the MT-moment distribution during gait.

However, MT-moments of TFL and GL are less sensitive to Ls
t during dynamometer experiments

than during gait. MT-length of TFL and peak MT-length of GL and the corresponding maximal

isometric forces are higher during gait than during the isokinetic experiments. Since TFL and GL

are bi-articular muscles, their MT-length is not only influenced by knee flexion, but also by hip

and ankle position respectively. Hence, a way to obtain information about Ls
t of TFL and GL is

by changing the position of the test subject in the dynamometer.

To be useful for parameter estimation, dynamometer experiments need to contain information

about the MT-parameters. However, accurate estimation of various MT-parameters also requires

sufficient information in the dynamometer experiments. Our results showed that for different MT-
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parameters, maximal sensitivities result from a wide range of experiments (table 3.3). Varying

the hip angle during the dynamometer experiments resulted in a higher sensitivity to some MT-

parameters, therefore, providing a means of collecting more information.

Garner and Pandy [42] estimated Ls
t, L

opt
m , and Fmax

m for all upper limb muscles based on iso-

metric dynamometer experiments. Our study demonstrates that the measured isometric and isoki-

netic knee moments are only sensitive to a limited number of MT-parameters of the knee flexors

and extensors. Consequently, it is not feasible to estimate Ls
t, L

opt
m , and Fmax

m of all knee flexors

and extensors based on the studied set of dynamometer experiments. Furthermore, isokinetic dy-

namometer experiments are necessary to obtain information about Lopt
m of RF, VI, and VM, three

parameters having a medium sensitivity for gait, but a low sensitivity for the isometric dynamome-

ter experiments (figure 3.3).

Sensitivity depends on the method used to calculate MT-forces: the sensitivity of MT-moments

calculated based on PIA or a forward simulation to MT-parameters is higher than the sensitivity

of MT-moments calculated based on CIA. A plausible explanation is that the dynamic muscu-

loskeletal model is highly simplified in CIA. Using CIA, the Hill model is only used to calculate

the instantaneous maximal MT-force. The ranking of the MT-parameters with respect to their

sensitivities during gait, however, is similar for the three different analyses.

The higher inter-subject variability of MSe
jp for gait than for dynamometer experiments was due

to the higher variability in the kinematics. During dynamometer experiments, subjects were in

a predefined position. Similarity of classification of the muscle specific MT-parameters, however,

reinforced our conclusions.

In summary, the calculated muscle contributions to the knee moment during gait and dynamome-

ter experiments had a high sensitivity to only a limited number of MT-parameters of 13 knee

flexors and extensors. In general, the highest sensitivity was found to Ls
t. However, for some

muscles the sensitivity to Lopt
m or Fmax

m was also considerable. The ranking of the specific muscle

MT-parameters with respect to their sensitivity during gait and dynamometer experiments was

largely similar. We therefore conclude that the angle-moment relation measured by dynamometer

experiments contains information about MT-parameters necessary to reliably analyse gait. Our

study thus demonstrated the feasibility of subject-specific estimates of MT-parameters being made

based on dynamometer experiments.
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Chapter 4

Functional knee axis based on isokinetic dynamometry data:

comparison of two methods, MRI validation, and effect on

knee joint kinematics

Abstract1

This paper compares geometry-based knee axes of rotation (transepicondylar axis and geometric

center axis) and motion-based functional knee axes of rotation (fAoR). Two algorithms are evalu-

ated to calculate fAoRs: Gamage and Lasenby’s sphere fitting algorithm (GaL) and Ehrig et al.’s

axis transformation algorithm (SARA). Calculations are based on 3D motion data acquired during

isokinetic dynamometry. AoRs are validated with the equivalent axis based on static MR-images.

We quantified the difference in orientation between two knee axes of rotation as the angle between

the projection of the axes in the transversal and frontal planes, and the difference in location

as the distance between the intersection points of the axes with the sagittal plane. Maximum

differences between fAoRs resulting from GaL and SARA were 5.7◦ and 15.4 mm. Maximum dif-

ferences between fAoRs resulting from GaL or SARA and the equivalent axis were 5.4◦/11.5 mm

and 8.6◦/12.8 mm, respectively. Differences between geometry-based axes and EA are larger than

differences between fAoR and EA both in orientation (maximum 10.6◦).and location (maximum

20.8 mm). Knee joint angle trajectories and the corresponding accelerations for the different knee

axes of rotation were estimated using Kalman smoothing. For the joint angles, the maximum RMS

1This chapter has been published as a full article in Journal of Biomechanics: A. Van Campen, F. De Groote,
L. Bosmans, L. Scheys, I. Jonkers, J. De Schutter. Functional knee axis based on isokinetic dynamometry data:
comparison of two methods, MRI validation, and effect on knee joint kinematics. 2011, vol. 44, pp. 2595-2600.
Only minor changes concerning notational consistency and lay-out have been performed.
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4 Functional knee axes

difference with the MRI-based equivalent axis, which was used as a reference, was 3◦. For the knee

joint accelerations, the maximum RMS difference with the equivalent axis was 20◦/s2. Functional

knee axes of rotation describe knee motion better than geometry-based axes. GaL performs better

than SARA for calculations based on experimental dynamometry.

4.1 Introduction

To study human motion using musculoskeletal models the knee axes of rotation (AoR) needs to

be determined. Substantial research on AoRs has already been reported. AoRs can be deter-

mined based on bone geometry. Usually, skin markers placed at the most prominent points of

the epicondyles determine the transepicondylar axis (EPI) [35]. However, EPI is susceptible to

palpation errors [31]. The geometric center axis (GEO) is another geometry-based axis, defined as

the connection of the centers of a shape fitting the epicondyles. GEO can be obtained by imaging

a subject’s femur [35; 85]. These geometry-based axes are fixed, although it is known that both

location and orientation of the AoR vary with knee flexion during motion [53; 92; 109].

In contrast to GEO and EPI, functional axes of rotation (fAoR) are motion-based AoRs. The

orientation and location of fAoRs are averaged orientations and locations of the AoRs through-

out the motion. This way, an AoR which best explains the recorded joint motion is obtained.

Distinction is made between fitting techniques as described by e.g. [41; 44], and transformation

techniques as described by e.g. [37; 87]. Fitting techniques optimize an objective function assum-

ing that markers trace out a circle around the fAoR. Transformation techniques find the fAoR

by minimizing the variations in distance between markers on each segment and the fAoR. These

techniques have been validated in simulation [37; 41; 44], or using a mechanical device [87]. Ehrig

et al. [37] quantified the influence of marker errors on the fAoR in simulation by applying Gaussian

noise with a standard deviation of 1 mm. MacWilliams [66] compared fAoRs using a mechanical

device and added soft tissue artifacts (STA) by attaching a compliant material to the distal tibia

part. It has, however, been shown that STA are in the order of centimeters, and are more pro-

nounced for femur markers [3; 57]. Hence, these validation approaches do not model STA correctly.

Additionally, they do not evaluate the effect of muscle contraction, including (i) larger STA and

(ii) the effect of loading on location and orientation of the AoR [109].

In this study, we aim to find the AoR which best describes the joint motion during isokinetic

dynamometry. This knowledge can be used to overcome misalignment and malfixation, problems
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inherent to dynamometry [55], and to calculate the knee joint torque more accuratly. To this

end, we compare geometry-based axes (GEO and EPI), and fAoRs calculated using the algorithms

proposed by Gamage and Lasenby [41] (GaL) and by Ehrig et al. [37] (SARA). GaL is the best

performing sphere fitting algorithm according to the simulation study by MacWilliams [66]. SARA

is the best performing axis transformation algorithm according to the simulation study by [37]. In

contrast to previous simulation studies, we compared both algorithms for experimental 3D motion

data of knee flexion/extension obtained during passive and active dynamometry. During passive

dynamometry, the effects of muscle contraction on STA and on the pose of the axis are minimized.

Comparing the results of passive and active dynamometry therefore allows the study of the influ-

ence of active muscle contraction on the estimation of the axis. We validated fAoRs with equivalent

axes (EA) obtained from static MR-images [85]. This validation is chosen because the EA describes

the relative motion of bones, and thus is not influenced by STA. The setup, combining 3D motion

capturing and MRI, allows us to study whether fAoRs or geometry-based axes describe the motion

better, and whether the GaL- or the SARA-algorithm performs best.

Additionally, this study includes calculation of knee joint kinematics according to motion-based

axes (EA, fAoRs) and geometry-based axes (GEO, EPI) applying Kalman smoothing [28]. This

enables us to evaluate whether the application of different AoRs results in statistically relevant

differences in joint acceleration from which knee torques are calculated using inverse dynamics.

Summarizing, this study determines whether (i) the fAoRs or geometry-based AoRs are in

better agreement with a motion-based EA obtained by MRI,(ii) the GaL- or the SARA-algorithm

performs better e.g. under the influence of STA including muscle contraction, and (iii) the kine-

matics resulting from different AoRs are statistically different.

4.2 Methods

Five healthy subjects (three male, two female; BMI 21 ± 1.2) seated in a Biodex dynamometer

(Biodex Medical Systems) performed isokinetic flexion/ extension of the right knee through its

range of motion (ROM), typically between 20◦ flexion and 100◦ flexion, at two different speeds

(30◦/s and 60◦/s). Each subject completed three trials actively moving the device and three trials

with the device being moved and the leg passively lying on it, to minimize the effect of active

muscle contraction. Markers were placed on the femur and tibia as shown in figure 4.1. A Krypton

camera (Nikon Metrology) tracked the markers at 100Hz. A static measurement, with the subject
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4 Functional knee axes

lying down on the left side, knees slightly bent, was performed.

In addition, each subject underwent four MR-scans (T1 weighted SE image series; Trio 3T, Siemens

AG) of the right leg at four different knee angles: one while lying on the back with the knees slightly

hyperextended (full leg scan), three while lying on the left side with the right knee flexed between

20◦ and 70◦ (partial leg scan). Markers were placed as during dynamometry.

Figure 4.1: Marker protocol applied during dynamometry and MR-imaging. Ten markers were placed
on the femur: a marker cluster (markers 1a-1c) at the proximal end of the femur, a marker cluster (markers
4a-4c) at the distal end of the femur, two single markers (markers 2 and 3) between the marker clusters,
a marker on the lateral epicondyle (marker 5) and a marker on the medial epicondyle (marker 6). Five
markers were placed on the tibia: a marker cluster on the shaft region (markers 7a-7c), a marker on the
lateral malleolus (marker 8) and a marker on the medial malleolus (marker 9). All markers were placed
on the anterior aspect of the subject, because (i) the subjects were sitting down during dynamometry, and
(ii) the markers needed to be visible for the Krypton camera.

Anatomic femur and tibia reference frames were defined according to ISB convention based

on the bone geometry extracted from the full leg scan [84]. The femur reference frame had its

origin in the hip joint center (HJC), as determined by fitting a sphere to the femur head, y-axis

through the midpoint of the transepicondylar connection and the HJC, and x-axis perpendicular

to the plane defined by the hip HJC and the transepicondylar connection. The tibia reference

frame was defined parallel to the femur reference frame in extended posture, and with its origin at

the midpoint of the transepicondylar axis. MR-marker coordinates were expressed in the anatomic
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reference frames.

We quantified the combined error on each marker due to (i) differences in STA resulting from

different postures during dynamometry and MRI, and (ii) reattaching markers. To this end, we

mapped [94] the markers on femur and on tibia from the static measurement during dynamometry

and the full leg scan.

Functional axes of rotation were calculated using the algorithms proposed by [41] and [37]. Calcu-

lations were based on all 15 markers (figure 4.1). When a marker lost visibility at a certain time

instant, the marker was left out of the calculations at that time instant. In contrast to [37], poses

of femur and tibia with respect to Krypton camera global frame, which are input to the algorithm,

are calculated using Kalman smoothing. Details are given in the supplementary material.

To validate the fAoRs, we calculated equivalent axes and equivalent angles of rotation according

to Chasles’s theorem based on two MR-images. The equivalent axis exactly describes the rotation

of a rigid body, here the tibia, from one position to another with respect to a reference body, here

the femur. We selected the two images best representing the subject’s ROM during dynamometry

(figure 4.2). Femur and tibia were segmented out of both MR-images [86]. We manually selected

four reference points on both the femur and the tibia in both images (see figure 4.3). This allowed

us to map [94] both femurs onto each other. We applied the corresponding transformation to

the tibia segments. We then calculated the transformation (rotation of tibia relative to femur) be-

tween tibia segments. Equivalent axis and equivalent angle resulted from the latter transformation.

We quantified the difference in orientation between two axes as the angle between the projec-

tion of the axes in the transversal and frontal planes, and the difference in location as the distance

between the intersection points of the axes with the sagittal plane. We compared (i) fAoRs cal-

culated using GaL and SARA, (ii) fAoRs and the equivalent axis, (iii) EPI and GEO, and the

equivalent axis. We performed a Wilcoxon matched-pair test on the differences in location and

orientation between fAoRs resulting from GaL and EA, and between fAoRs resulting from SARA

and EA. This test typically obtains whether the mean ranks of the results differ.

fAoRs were calculated based on the entire dataset of three trials for each measurement con-

dition (active vs. passive; 30 vs. 60◦/s). We calculated fAoRs for each trial and quantified the

consistency of the estimations as the maximal difference in orientation and in location between

two trials for each measurement condition.
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Figure 4.2: Protocol for selection of MR-images to calculate the equivalent axis. The range of motion
during dynamometry (solid line between black dots) and MRI (dashed line between black dots) is shown.
Knee flexion angles during MRI are indicated (1-4). We selected the two images best representing the
subject’s ROM during dynamometry without including a part of the range of motion which was not
registered during dynamometry or loosing symmetry. For example, in situation (a), we selected images 2
and 3. In situation (b), we selected images 2 and 4.

For all measurement conditions, joint angles and accelerations were estimated by Kalman smooth-

ing using different axes of rotation: fAoRs, EA and geometry-based AoRs. RMS and maximal

values of the difference in joint angles and accelerations between AoRs and EA were calculated,

both absolute and relative to the kinematics calculated based on the EA. Additionally, we per-

formed a Wilcoxon matched-pair test on the difference in kinematics between all fAoRs resulting

from GaL and EA, and the difference between all fAoRs resulting from SARA and EA.

Results were averaged over subjects and standard deviations were calculated.

4.3 Results

The error on each marker position due to different postures during dynamometry and MRI, and

due to reattaching the markers is shown in table 4.1.

Comparing fAoRs resulting from SARA and GaL (table 4.2a), maximal differences were 3.8◦

(transversal) in orientation and 5.1 mm in location for passive measurement conditions, and 5.3◦

(transversal) in orientation and 12.4 mm in location for active measurement conditions.

Comparing fAoRs and EA (table 4.2b), differences in orientation ranged from 2.4◦ (GaL) to 5.6◦

(SARA) in the transversal plane, and from 5.0◦ (GaL) to 6.3◦ (SARA) in the frontal plane for

passive measurement conditions. Differences in orientation were smaller for fAoRs resulting from

GaL than from SARA (transversal 3.2◦ vs. 5.3◦, frontal 4.8◦ vs. 7.4◦ respectively) for active

measurement conditions. Latero-distal and latero-dorsal inclinations were consistently higher for
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4.3 Results

Figure 4.3: Reference points on femur (f1: medial epicondyle, f2: lateral epicondyle, f3: most caudal
point of fossa intercondylaris, f4: most anterior point on lateral epicondyle ) and on tibia (t1: medial
condyle, t2: lateral condyle, t3: most proximal and prominent point on facies articularis fibularis, t4:
tuberositas tibiae) used for mapping femurs onto each other and for calculating equivalent axis between
consecutive images.

Table 4.1: Mapping errors [mm].

marker 1a 1b 1c 2 3

6.1 (±1) 4.2 (±1.3) 11 (±3.2) 6.5 (±3) 7.8 (±2.9)

marker 4a 4b 4c 5 6

4.9 (±2.9) 6.9 (±3) 9.1 (±3.1) 10.8 (±3.2) 10 (±3.1)

marker 7a 7b 7c 8 9

5.1 (±2.6) 6 (±2.4) 4.1 (±2.5) 4.3 (±2.2) 5 (±1.9)

Mean errors [mm] between markers expressed in the anatomical reference frame (derived from MRI) and

markers expressed in the camera reference (derived from dynamometry) for the calibration positions.

Standard deviations are given between brackets. Marker numbers correspond to figure 4.1.
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4 Functional knee axes

all fAoRs resulting from GaL than for EA. There was no consistency in the inclination of fAoRs

resulting from SARA compared to EA. The inter subject variability is smaller for GaL than for

SARA, as shown by the standard deviations. Maximal differences in location were 5.1 mm and

12.7 mm for fAoRs resulting from passive and active measurement conditions, respectively. The

deviations between fAoRs resulting from GaL and EA, and between SARA and EA were statisti-

cally different.

Comparing geometry-based axes, GEO and EPI, and EA (table 4.2c), differences in orientation

were respectively 7.8◦ and 10.6◦ in the transversal plane, and 8.5◦ and 9.3◦ in the frontal plane.

Differences in location between geometry-based axes and EA were 20.8 mm (GEO) and 10.6 mm

(EPI). The intersubject variability was higher comparing geometry-based AoRs to EA than when

comparing fAoRs to EA.

GaL calculates fAoR orientations with a better inter-trial consistency than SARA. SARA cal-

culates fAoR locations with a better inter-trial consistency than GaL for active measurements.

GaL and SARA calculate fAoR locations with comparable inter-trial consistency for passive mea-

surement conditions (table 4.3). The overall difference between kinematics resulting from GaL

and EA, and the overall difference between kinematics resulting from SARA and EA differed sig-

nificantly during 90% of the motion cycle for the knee joint angle and during 57% of the motion

cycle for knee joint acceleration. Estimates of knee joint angles showed maximal RMS differences

with EA smaller than 3.1◦. Comparison of knee joint accelerations, however, depended on the

measurement condition: passive motion at 30◦/s resulted in maximal RMS differences of 5.1◦/s2

and maximal relative differences of 10.6%, whereas active motion at 60◦/s2 resulted in maximal

RMS differences of 22.8◦/s and maximal relative differences of 44.8% (table 4.4).

4.4 Discussion

We compared geometry-based knee axes, GEO and EPI, and functional axes of rotation based on

marker trajectories calculated using two algorithms, GaL and SARA. We evaluated the perfor-

mance of both algorithms under passive and active measurement conditions. Marker trajectories

were obtained during passive and active isokinetic dynamometry, in contrast to previous studies

which used simulation data [37; 41; 66]. We validated AoRs by comparing them with EA based

on MR-images. Finally, we studied the influence of AoR on knee joint kinematics estimated using

Kalman smoothing [28].
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4.4 Discussion

Table 4.2: Comparison of knee joint axes of rotation.

(a) GaL-SARA
Orientation Location

Measurement [◦] [mm]
condition transversal frontal sagittal

30A 4.7 (±2.3) 3.9 (±2.5) 7.1 (±2.6)
30P 3.8 (±2.2) 2.8 (±1.7) 5.1 (±2.9)
60A 5.3 (±3.1) 3.2 (±1.2) 12.4 (±9.1)
60P 3.2 (±1.9) 2.3 (±1.3) 3.6 (±3.0)

(b) GaL-EA SARA-EA
Orientation Location Orientation Location

Measurement [◦] [mm] [◦] [mm]
condition transversal frontal sagittal transversal frontal sagittal

30A 3.2 (±2.4) 4.8 (±2.8) 8.7 (±4.8) 5.0 (±3.2) 5.8 (±2.7) 8.5 (±6.7)
30P 3.1 (±1.3) 5.1 (±2.9) 5.5 (±4.7) 5.2 (±3.6) 6.1 (±4.2) 6.6 (±6.8)
60A 3.5 (±2.1) 5.5 (±2.7) 12.7 (±2.7) 5.3 (±3.3) 7.4 (±3.2) 9.0 (±7.1)
60P 2.4 (±1.5) 5.0 (±3.0) 6.0 (±3.5) 5.6 (±2.6) 6.3 (±3.6) 4.1 (±4.5)

(c) EPI-EA GEO-EA
Orientation Location Orientation Location

Measurement [◦] [mm] [◦] [mm]
condition transversal frontal sagittal transversal frontal sagittal

10.6 (±4.7) 9.3 (±7.2) 10.6 (±3.4) 7.8 (±5.6) 8.5 (±6.9) 20.8 (±6.0)

Comparison of knee joint axes of rotation. Table (a) shows the differences in orientation [◦] and location

[mm] between axes resulting from GaL and SARA; table (b) shows the differences in orientation [◦] and

location [mm] between axes resulting from GaL and SARA, respectively, and the EA used as a measure to

validate; table (c) shows the differences in orientation [◦] and location [mm] between the geometry-based

axes GEO and EPI and the EA. The experiments were completed at two velocities, 30◦/s and 60◦/s,

indicated as 30 and 60, both actively (A) and passively (P). Differences in orientation are expressed as the

angle between the projection of the axes in the transversal and frontal planes. Differences in location are

expressed as the distance between the intersection points of the axes with the sagittal plane. Values are

averaged over the subjects. Standard deviations are reported between brackets.
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4 Functional knee axes

Table 4.3: Inter-trial consistency

GaL SARA
Orientation Location Orientation Location

Measurement [◦] [mm] [◦] [mm]
condition transversal frontal sagittal transversal frontal sagittal

30A 1.3 (±0.6) 2.5 (±2.8) 12.8 (±10.7) 18.4 (±6.1) 18.3 (±5.9) 4.7 (±5.1)
30P 2.4 (±3.7) 2.4 (±3.7) 4.4 (±3.1) 37.4 (±11.1) 36.4 (±11.6) 3.7 (±4.0)
60A 4.1 (±5.0) 3.6 (±3.5) 9.8 (±6.0) 17.3 (±7.4) 17.4 (±7.4) 3.8 (±1.6)
60P 0.7 (±0.4) 1.1 (±1.6) 5.0 (±5.7) 18.2 (±8.0) 17.4 (±7.6) 2.2 (±2.4)

Maximal difference in orientation and location of the fAoR resulting from GaL and SARA between trials

for each measurement condition. The experiments were executed at two velocities, 30◦/s and 60◦/s,

indicated as 30 and 60, both actively (A) and passively (P). Differences in orientation are expressed as the

angle between the projection of the axes in the transversal and frontal planes. Differences in location are

expressed as the distance between the intersection points of the axes with the sagittal plane. Values are

averaged over the subjects. Standard deviations are reported between brackets.

Poses of tibia and femur were determined based on local marker positions expressed in the anatom-

ical reference frame. Mapping errors between local marker positions obtained from the MR-images

and the marker positions during the static measurement acquired by the Krypton camera are given

in table 4.1. The errors are possibly due to (i) reattaching the markers before MR-imaging, (ii)

using glycerin markers, to meet nonferrous requirements for MR-imaging, (iii) manually locating

the marker centers in the images, and (iv) differences in STA resulting from different postures.

Compared to STA induced by motor tasks, these errors are rather small [3]. We also verified that

the mapping errors cannot account for the differences in the calculated AoRs (see supplementary

material). Moreover, by mapping more than the minimum number of three markers on the femur

segment, the influence of the errors on the segment’s pose is reduced (if the additional markers

move independently). Since the same local marker positions are used for all calculations, these

mapping errors do not influence the comparison between fAoRs.

Comparing GaL and SARA for passive measurements, maximal differences in orientation and

location were 3.8◦ (transversal) and 5.1 mm. These differences doubled and quadrupled, respec-

tively, for active measurements. This indicates that both algorithms have different sensitivities to

the effect of muscle contraction on the marker trajectories.
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4 Functional knee axes

Comparing fAoRs and EA for passive measurements, differences in orientation in the transver-

sal plane are smaller for GaL (2.4◦) than for SARA (5.6◦); in the frontal plane, differences are

comparable (5.0◦ for GaL, 6.3◦ for SARA). Differences in orientation between fAoR and EA for

active measurements were smaller for fAoRs resulting from GaL (transversal 3.2◦; frontal 4.8◦)

than for those resulting from SARA (transversal 5.3◦, frontal 7.4◦). Moreover, the differences

between GaL and EA were similar to the ones for passive measurements. This indicates that GaL

is less sensitive to the effect of muscle contractions on the marker trajectories for calculations of

the orientation. We found a consistent inclination between fAoRs resulting from GaL and EA in

the latero-distal and latero-dorsal directions. Maximal difference in location between fAoR and

EA for passive measurements was 5.1 mm. Maximal difference in location between fAoRs and

EA for active measurements was 12.7 mm. This indicates that both algorithms are sensitive to

the effect of muscle contractions on the marker trajectories for calculation of the location. The

higher correspondence between fAoRs and EA for passive measurements is as expected, because

the images are also taken in passive conditions. The difference between fAoRs and EA might arise

from (i) the difference between STA in dynamometry, where the subject is sitting in a chair, and in

MR-imaging, where the subject is lying on the side; (ii) the effects of soft tissue motion which are

minimized but not completely eliminated in passive dynamometry, and (iii) the different inputs

for the calculations of EA and fAoRs: EA results from a transformation between two positions

whereas fAoRs are calculated as mean axes describing the recorded ROM. Despite these sources

of errors, the fAoRs describe the motion of tibia relative to femur in a good way (as shown by the

animation provided in the supplementary material). fAoRs resulting from GaL and SARA showed

statistically significant different deviations from EA.

We found larger differences comparing EPI/GEO to EA than comparing fAoRs to EA. This in-

dicates that motion-based axes and geometry-based axes do not concur, nor do geometry-based

axes, as reported earlier [35; 71].

The AoR influenced the estimated knee joint angles in a statistically significant, but limited man-

ner (less than 3.1◦). The influence on knee joint accelerations however, was more pronounced. We

found maximal RMS-differences of 22.4◦/s and maximal relative differences of 44.8% when using

fAoRs as compared to EA for the active measurement at 60◦/s. Differences with EA are larger

for geometry-based AoRs than for fAoRs. Differences with EA are larger for faster and active

motions. For the active measurement at 60◦/s, the maximal knee joint accelerations during the
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non-isokinetic part of the measurement are in the order of 200◦/s2, which is about twenty times

smaller than the maximal knee joint accelerations during gait. This finding suggests that the ac-

curacy of the modeled AoR becomes more critical as accelerations increase.

This study has some limitations. Firstly, although our dataset is larger than those evaluated

in other studies, e.g. [109], it is still relatively small. Hence, statistical observations should be

interpreted carefully. Secondly, our approach only allows a relative quantification of the combined

effects of muscle contraction (i.e. larger STA and the direct effect on location and orientation of

the AoR) by comparing the results based on passive and active measurement conditions. Thirdly,

inaccuracies are introduced during mapping due to the difference in STA during different postures

assumed by the subjects. Fourthly, we were restricted by the amount of flexion possible during

MRI, which in turn restricted us in calculating EA for the same ROM as during dynamometry.

Despite these limitations we found convincingly better agreements between fAoRs and EA than

between geometry-based axes and EA. Moreover, the latter limitations account for both algorithms

which enables us to distinguish between the performance of the algorithms of GaL and SARA using

experimental data.

In summary, we calculated fAoRs based on 3D marker trajectories acquired during passive and

active isokinetic dynamometry experiments of the knee, and we validated the fAoRs with EA

based on MR-images. We found different fAoRs using GaL and SARA, for both passive and active

measurement conditions. In general, GaL showed the best correspondence with EA, mainly for

orientation. Moreover, fAoRs resulting from GaL showed a consistent inclination compared to

EA both in latero-distal and latero-dorsal direction. fAoRs were in better agreement with EA

than geometry-based axes. The AoR had limited influence on the estimated knee joint angles, but

did influence the estimated knee joint accelerations, especially at higher velocity. Based on these

findings, we suggest using functional knee axes of rotation rather than geometry-based knee axes

of rotation, and using the algorithm of [41] to calculate the fAoR.
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4.5 Supplementary material

Calculating functional axes

Implementation of algorithms

Gamage and Lasenby [41] (GaL) calculate the orientation n and the location defined by a fixed

point m on the axis by minimizing the following objective functions respectively:

Cost(n,mp) =

P∑
p=1

I∑
i=1

[(vp
i −mp) · n]

2
, (4.1)

and

Cost(rp,m) =

P∑
p=1

I∑
i=1

[
(vp

i −m)
2 − (rp)

2
]2
, (4.2)

with p = 1 . . . P indicating the markers on one segment, i = 1 . . . I indicating the time instants,

vp
i the (measured) position of marker p at time instant i expressed in the reference frame of the

other segment, rp the distance from the point m on the line to the circular arc marked out by

marker p, mp any point on the plane traced out by vector vp. In our application, we expressed the

position of the tibia markers in the femur reference frame, vtf . P = 5 is the number of markers

on the tibia. i depends on the measurement condition and on the subject.

The orientation n is obtained by differentiating 4.1 with respect to mp, and substituting the

result in 4.1. The latter expression can be written in matrix form A n = 0. The singular value

decomposition of A yields n.

The location m is obtained by differentiating 4.1 with respect to mp, and substituting the result

in 4.2. The latter expression can be written in matrix form A m = b from which m can be

extracted.

Ehrig et al. [37] (SARA) calculate the orientation n and the location defined by a fixed point

m on the axis by minimizing the objective function:

Cost(mf ,mt) =

I∑
i=1

∥∥∥Rf
i mf + tfi −

(
Rf

i mt + tti

)∥∥∥2

, (4.3)

with mt/f a fixed point on the axis expressed in the local femur/tibia reference frame and

R
t/f
i and t

t/f
i the rotation and translation, respectively, from the local femur/tibia reference frame

to the ground reference frame at time instant i. Expression 4.3 can be written in matrix form
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A x = b. The singular value decomposition of A yields n and m.

The pose of femur and tibia with respect to the ground at every time instant i is described by

transformation matrices T fw
i and T tw

i , respectively. These transformation matrices depend on six

generalized coordinates (three rotations and three translations) which are obtained by processing

marker trajectories with the Kalman smoothing algorithm proposed by [28] (implementation details

given below). The positions of the tibia markers measured in the ground reference frame, vtw, are

transformed to the femur reference frame to serve as input for equations 4.1 and 4.2:

vtf
i =

(
T fw
i

)−1

vtw
i . (4.4)

Rotation matrices R
f/t
i and translation vectors t

f/t
i used as input for SARA are readily obtained

from the transformation matrices from the local femur and tibia reference frames to the ground

reference frame, T fw
i and T tw

i , respectively:

T
f/t w
i =

(
R

f/t
i t

f/t
i

0 1

)
. (4.5)

Implementation of knee motion model

The knee motion model proposed by Yamaguchi and Zajac [119] is frequently used in musculoskele-

tal modeling. The model describes the translation of the knee axis of rotation in proximal/distal

and anterior/posterior direction as a function of the knee angle θ, tyamaguchi = [tx ty 0]′ while the

orientation remains fixed. The rationale behind combining the algorithms described above and

the model of [119] is as follows: algorithms for calculating functional knee axes of rotation assume

that the location of the axis (all points on the axis) remains fixed. However, it is known that both

orientation and location depend on e.g. knee flexion and loading. In order to relax the assumption

of a fixed location, we subtracted the scaled translation tyamaguchi according the model of [119]

from the fixed point. Consequently, the optimization algorithms 4.1, 4.2 and 4.3 result in a mean

orientation n and a fixed location m at extension. At the end, m is translated to the mean of the

recorded range of motion.

The following procedure describes the implementation:

Firstly, the orientation n of the axis is calculated according to equation 4.1 or 4.3.
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4 Functional knee axes

Secondly, θ for every time instant i, θi, is calculated by aligning the z-axis of a local femur reference

frame with n and using inverse XYZ Euler angles to calculate the rotation of tibia with respect to

femur around n. θ is the angle between the anatomical z-axis and the orientation of the functional

axis:

α = acos (z · n) . (4.6)

To align, z and n, a rotation around al, the axis perpendicular to z and n is needed:

al = z × n. (4.7)

The corresponding transformation Tzn representing a rotation of α about al is:

Tzn =

(
R 0

0 1

)
. (4.8)

R is used to to calculate θi:

θi = −bgtg (−R Rtf
i (1, 2), R Rtf

i (1, 1)). (4.9)

As θi is known, scaling factors s = [sx sy 0] for the unscaled translation t̂yamaguchi(θi) at each

time instant can be obtained by minimizing (based on equation 4.2):

Cost =

P∑
p=1

I∑
i=1

[(
vp
i −

(
m− s t̂yamaguchi

))2 − (rp)
2
]2
, (4.10)

or (based on equation 4.3)

Cost =

I∑
i=1

∥∥∥Rf
i mf −Rt

i mt + tfi − tti − s t̂yamaguchi

∥∥∥2

, (4.11)

based on GaL and SARA respectively. Cost is minimized with respect to s using the fmincon

solver from the Matlab optimization toolbox, with lower bounds [0 0 0] and upper bounds [2 2 0].

m is than calculated by applying tyamaguchi = s t̂yamaguchi to (equation 4.2):

Cost =

P∑
p=1

I∑
i=1

[
(vp

i − (m− tyamaguchi))
2 − (rp)

2
]2
, (4.12)
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Table 4.5: Combining GaL and SARA with the model of Yamaguchi.

GaL-EA SARA-EA
Location KMY textbfLocation KMY

measurement [mm] [mm] [mm] [mm]
condition sagittal sagittal sagittal sagittal

30A 8.7 (±4.8) 16.9 (±12.3) 8.5 (±6.7) 12.2 (±7.8)
30P 5.5 (±4.7) 14.3 (±8.6) 6.6 (±6.8) 13.3 (±11.2)
60A 12.7 (±2.7) 32.4 (±19.6) 9.0 (±7.1) 24.3 (±7.1)
60P 6.0 (±3.5) 31.7 (±23.5) 5.1 (±4.5) 21.2 (±8.7)

Differences [mm] between marker position before and after the transformation ((a) according to Gamage

and Lasenby [41] based on passive measurements at 30◦/s (GL30P); (b) according to Ehrig et al. [37]

based on passive measurements at 30◦/s (SARA30P)) and mapping errors (c) for one subject. Directional

differences (x, y, z) and total distances are shown. Markers are according figure 1 in the paper.

and to (equation 4.3):

Cost =

I∑
i=1

∥∥∥Rf
i mf −Rt

i mt + tfi − tti − tyamaguchi

∥∥∥2

. (4.13)

Relaxing the assumption of a fixed location of the functional axis by combining GaL and SARA

with the knee motion model of [119], results in a worse location of the functional axis in comparison

to the location of the equivalent axis (see table 4.5).

Kalman smoothing

The Kalman smoother combines prior knowledge, described by a process and measurement model,

with the measured marker trajectories to produce an estimate of the joint kinematics while min-

imising the estimation error statistically. In contrast to e.g. [94], Kalman smoothing takes into

account that the joint kinematics at a certain time instant depend on the joint kinematics at the

previous and next time instants.

Process model

The process model predicts the expected time evolution of the generalized coordinates. To guar-

antee a smooth motion, it is assumed that the fourth derivative of the generalized co-ordinates is

constant. A noise term takes into account the model errors introduced by this assumption.
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Measurement model

The measurement model is based on a biomechanical model. Segments were modeled by relating

local marker positions in the segment’s anatomical reference frame to the marker positions in the

camera reference frame by six generalized coordinates. As an input for the algorithm of [41], gener-

alized coordinates were based on a femur model. As an input for the algorithm of [37], generalized

coordinated were based on a femur model and on a tibia model. As for the calculation of joint

kinematics, generalized coordinates were based on a model of femur and tibia with 7 DOFs: the

femur has 6 DOFs with respect to the world, the tibia is connected to the femur by a 1 DOF joint

defined by the geometry-based axes and the motion-based axes (nine calculations).

Transformation matrices between the segment’s anatomical reference frame and the ground at each

time instants are derived from the generalized coordinates. Each marker in the model is weighted

to indicate its reliability, e.g. markers on the epicondyles were given lower weights (higher uncer-

tainty) as they suffer from large STA. The higher the weights, the more the estimate will be based

on the measurement model.

Influence of mapping errors

The magnitude of the mapping errors as presented in table 1 of the paper suggest that the dif-

ferences between equivalent axes (EA) and functional axes (fAoR) might arise from these errors.

To qualify the effect of the mapping errors on the reported differences between the axes, we trans-

formed the fAoR to the EA, we applied this transformation to the femur markers (these markers

showed the largest mapping errors), and calculated the difference between markers before and after

the transformation. This allows us to verify whether the differences in marker positions before and

after the transformation are explained by mapping errors.

The following procedure explains how we retrieved differences in femur marker positions when

the fAoR’s pose is transformed to the EA’s pose:

1. Define a frame with origin in the intersection point (m0) of the equivalent axis with the

sagittal plane. Each marker position is originally expressed in the anatomic reference frame

(as defined in the paper) with origin in the hip joint center. To express the marker positions

in the new frame, each marker is translated over -m0 (expressed in the anatomic reference

frame).
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Table 4.6: Marker differences and mapping errors [mm].

(a) GL30P

Marker 1a 1b 1c 2 3 4a 4b 5 6
X 9.1 9.2 3.8 5.4 6.4 8.0 2.5 3.8 5.8 -2.2
Y -4.5 -1.7 -12.3 -8.8 -6.5 -2.9 -13.5 -9.6 -3.7 -18.5
Z -42.9 -27.8 -32.1 -28.7 -26.2 -22.1 -25.1 -15.6 -3.5 -3.4
Distance 44.1 29.3 34.6 30.5 27.7 23.7 28.7 18.7 7.8 18.9

(a) GL30P
Marker 1a 1b 1c 2 3 4a 4b 5 6
X 12.6 12.6 7.1 8.7 9.8 11.3 5.7 7.0 9.0 0.8
Y 1.8 4.7 -6.5 -2.8 -0.4 3.4 -7.8 -3.6 2.5 -13.0
Z -44.1 -28.2 -32.7 -29.2 -26.5 -22.3 -25.4 -15.4 -2.8 -2.7
Distance 45.9 31.3 34.1 30.6 28.3 25.2 27.2 17.3 9.7 13.3

(a) GL30P
Marker 1a 1b 1c 2 3 4a 4b 5 6
X 3.5 1.3 8.2 -4.9 0.8 -9.7 -6.6 6.2 5.8 -4.6
Y -1.0 -0.9 -8.5 -0.1 -0.6 -4.5 0.2 6.2 5.2 3.9
Z -4.1 3.8 5.2 -1.3 1.3 -0.7 0.2 -3.3 -0.7 -0.5
Distance 5.5 4.2 12.9 5.1 1.6 10.7 6.6 9.4 7.8 6.1

Differences [mm] between marker position before and after the transformation ((a) according to Gamage

and Lasenby [41] based on passive measurements at 30◦/s (GL30P); (b) according to Ehrig et al. [37]

based on passive measurements at 30◦/s (SARA30P)) and mapping errors (c) for one subject. Directional

differences (x, y, z) and total distances are shown. Markers are according figure 1 in the paper.
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2. To align the EA and fAoR, a rotation around the axis perpendicular to both EA and fAoR

is needed (cfr. eq. 4.7). This results in a transformation representing the rotation from the

functional axis to the equivalent axis (cfr. eq. 4.8).

3. To make the EA and fAoR coincide, a translation between the intersection points of the axes

with the sagittal plane is added to the transformation.

4. The transformation matrix resulting from 2. and 3. is then applied to the marker positions

calculated in 1. Differences between marker positions before and after the transformation

can now be calculated.

5. To qualify the influence of the mapping errors on the comparison of EA and fAoRs, the calcu-

lated differences between marker positions before and after the transformation are compared

to the mapping errors (see Table 4.6 for one subject).

From table 4.6, we conclude that:

(i) the differences between marker positions corresponding to EA and fAoR are systematic in

contrast to the mapping errors. E.g.: 1) from inspection of the signs of the differences in X-,

Y-, and Z-directions, and 2) the larger the distance between the AoR and the marker, the

larger the difference between markers corresponding to EA and fAoR ;

(ii) the average difference between marker positions corresponding to EA and fAoR is much larger

compared to the mapping errors.

In summary, the described differences between equivalent axis and functional axes cannot be at-

tributed to the mapping errors only.
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Chapter 5

An extended dynamometer set-up to improve the accuracy

of knee joint moment assessment

Abstract1

This paper analyses an extended dynamometry setup that aims at obtaining accurate knee joint

moments. The main problem of the standard setup is the misalignment of the joint and the

dynamometer axes of rotation due to non-rigid fixation, and the determination of the joint axis of

rotation by palpation. The proposed approach (i) combines 6D registration of the contact forces

with 3D motion capturing (which is a contribution to the design of the setup), (ii) includes a

functional axis of rotation in the model to describe the knee joint (which is a contribution to

the modelling), and (iii) calculates joint moments by a model-based 3D inverse dynamic analysis.

Through a sensitivity analysis, the influence of the accuracy of all model parameters is evaluated.

Dynamics resulting from the extended setup are quantified, and are compared to those provided by

the dynamometer. Maximal differences between the 3D joint moment resulting from the inverse

dynamics and measured by the dynamometer were 16.4Nm (16.9%) isokinetically and 18.3Nm

(21.6%) isometrically. The calculated moment is most sensitive to the orientation and location of

the axis of rotation.

In conclusion, more accurate experimental joint moments are obtained using a model-based 3D

inverse dynamic approach that includes a good estimate of the pose of the joint axis.

1This chapter has been published as a full article in IEEE Transactions on Biomedical Engineering: A. Van
Campen, F. De Groote, I. Jonkers, J. De Schutter. An extended dynamometer set-up to improve the accuracy of
knee joint moment assessment. 2013, vol. 60, pp. 1202-1208. Only minor changes concerning notational consistency
and lay-out have been performed.
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5.1 Introduction

Dynamometry is the process of obtaining selective subject-specific strength profiles by measuring

joint moments in controlled conditions: isometric at selected joint angles or isokinetic at selected

angular velocities. However, the standard setup does not result in accurate control of the joint’s

motion [103] and measurements of the joint’s moment (see e.g. [97]). The dominant factor causing

dynamometer measurement inaccuracy is the misalignement between machine axis and joint axis

of rotation (AoR). In case of the knee joint, the cause of this misalignment is twofold. First, the

fixation between the body segments and the dynamometer is not rigid. This results in a motion

of the segments relative to the dynamometer and an absolute displacement of the AoR. Second,

the AoR’s location is not accurately known as the alignment is based on palpation of the lateral

epicondyle. The alignment errors will be minimized if the joint angle and the joint load are the

same during the measurement and the alignment procedure. In practice however, alignment under

active conditions is mostly not feasible as discussed further in this paper. Also, the AoR’s pose

depends on the joint angle and the joint load [103; 109].

One way to improve the measurement accuracy, is to track the motion of the body segments.

Herzog [46] and Arampatzis et al. [5] collected 3D kinematic data based on skin markers. The

disadvantage of using skin markers is that they do not represent the true bone motion. Kaufman

et al. [55] collected 3D kinematic data with tri-axial goniometry. However, this device is known

to be inaccurate. Tsaopoulos et al. [101] collected 2D kinematic data with X-ray fluoroscopy to

obtain true bone motion, and hence to overcome the errors introduced by soft tissue. But, as the

knee motion is a 3D motion, out-of-plane motion corrupts the kinematic data [93]. Joint moments

can be calculated by inverse dynamics based on a model. Herzog [46], Arampatzis et al. [5] and

Tsaopoulos et al. [101] analysed this 3D problem with a 2D model, and did not measure reaction

forces and moments. This necessitates them to make assumptions concerning moment arms, reac-

tion moment, and orientation of the force transmitted between limb segment and dynamometer.

Kaufman et al. [55] were able to analyze a 3D lower limb model, because they mounted a load

cell between lower leg and device. A common limitation of these studies is that they model the

knee’s AoR as a geometry-based AoR whereas Van Campen et al. [103] recently showed that a

functional axis of rotation better describes the actual joint kinematics during dynamometry, and

hence, results in more reliable joint dynamics.

The aim of this paper is twofold. First, we describe an experimental setup that extends a standard
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Biodex Pro3 System to obtain 3D knee joint dynamics. The setup combines 3D motion captur-

ing of foot, tibia, femur and crank, and registration of the reaction forces and moments by a 6D

load cell. Data processing consists of inverse kinematics and inverse dynamics based on a model

including a functional AoR instead of a geometry-based AoR. A functional AoR is a one degree of

freedom joint axis model. It does however not represent a pure flexion/extension axis (according to

the ISB convention), but it describes the coupled rotations in the knee joint as well. The sensitivity

of the calculated joint moment to all model parameters is evaluated. Second, we compare the knee

joint moment obtained by the proposed approach with dynamometer results and with the knee

joint moment obtained by the approach proposed by Herzog [46] to quantify the of influence the

assumptions which had to be made by [5; 46; 101].

5.2 Methods

5.2.1 Dynamometry

Two international athletes (19y female, BMI 21; 20y male, BMI 18) performed isometric and

isokinetic contractions at five angles (30 ◦ to 90 ◦ with 15 ◦ increment) and three velocities (30,

60, 120 ◦/s, the range of motion was between 20 ◦ and 100 ◦). Three contractions were performed

for each of these conditions in both directions. The direction of motion is referred to as flex-

ion/extension although there are small coupled rotations in the other directions as well. The

subject could relax for 10s between contractions. The procedure was approved by the ethical com-

mittee, and an informed consent was signed.

Subjects were seated in a Biodex Pro3 dynamometer at 60 ◦ hip flexion, attached with the reg-

ular belts. The hip joint center was determined by palpation. 90 ◦ knee flexion was defined as

the line connecting lateral epicondyle and maleolus being perpendicular to the line connecting the

epicondyle and the hip center of rotation. Alignment of the knee joint axis with the dynamometer

axis of rotation was performed at 60 ◦ knee flexion in passive conditions assuming that the lateral

epicondyle defined the transepicondylar axis. Active markers were placed on foot (3), tibia (5),

femur (7) and crank (3) (see fig. 5.1a), and were tracked by a Krypton camera (K600, Nikon)

which was placed in front of the subject at a distance of 2.5 to 3m. A 6D force sensor (JR3 inc.)

was mounted in the crank of the dynamometer, without changing its regular setup (fig. 5.1 c).

Data acquisition was synchronized at 200Hz. Analog signals of the dynamometer where collected

through a NI SCB-68 I/O connector (National Instruments). Krypton data where transferred by a
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regular ethernet cable. Load cell data where received by a 1-channel PCI. Software was customized

(orocos.org) to trigger the logging of all data streams simultaneously.

5.2.2 Model

The system was modelled with four segments and nine degrees of freedom (DOF) (see fig. 5.1 a-b):

the crank has one rotational DOF about the dynamometer AoR, the femur has six DOFs, the

tibia has one DOF relative to the femur, and the foot has one DOF relative to the tibia. The

knee joint was described by a one DOF functional AoR which 3D pose was calculated from the

3D positions of the active markers on tibia and femur [41; 103]. Scaled musculoskeletal models of

the subjects were available. To this end a generic model [32] was scaled based on 62 markers as

is described by [52]. Mass and inertia parameters resulted from the scaled model (see also table

1B). Inertial parameters of the crank were obtained from experimental identification. MR-images

of each subject with non-ferrous markers were obtained in order to define local marker positions in

the anatomic reference frames according to ISB conventions for each segment. For details about

the imaging procedure and the location of the anatomic reference frames, we refer to [103].

5.2.3 Analysis

For inverse kinematics of the lower limb, a Kalman smoothing algorithm [28] was used. Van

Campen et al. [103] provide details on inverse kinematics and determination of functional AoRs.

In addition, the ankle kinematics are calculated by modelling the foot’s rotation relative to the

tibia by the dorsi/plantarflexion axis adopted from the scaled model. From inverse dynamics, the

knee moment generated about the functional AoR (M3D, see Appendix for details on equations of

motion) and the interaction forces between tibia and crank (Ftc) were obtained. For comparison,

knee moments according to the 2D analysis [46] were calculated. Dynamometer voltage signals

representing joint angle and moment were converted according to the manufacturer’s specifications.

Dynamometer moments (Mdyn) were corrected for gravitation.

Dynamics resulting from the dynamometer’s processed voltage signals are compared to the re-

sults of the 3D dynamic analysis. Absolute differences and relative differences with respect to the

peak moments in flexion and extension are reported. Mean differences between M3D and Mdyn

based on all data samples are calculated, as well as corresponding 95% limits of agreement. Differ-

ences between 2D and 3D analysis are quantified. The orientation of the interaction force between

tibia and crank was calculated to verify the perpendicularity to the crank, an assumption underly-
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Figure 5.1: (a) Free body diagram of the foot-tibia-crank-system. The knee and ankle joint are indicated
with •. Fknee and Mknee are the reaction forces and moments at the knee joint. Fr and Mr are the reaction
forces and moments at the load cell. Gknee, Gfoot and Gcrank are the gravitational forces of knee, foot
and crank, respectively. Freaction and Mreaction are the reaction forces and moments at the load cell.
Ftibia−crank and Mtibia−crank are the reaction forces and moments exerted by the tibia on the crank. All
vectors used to derive the equations of motion are expressed relative to D in the XYZ reference frame.
D is the reference point on the dynamometer axis of rotation. (b) Markerprotocol as applied during
dynamometry. Markers are indicated: seven markers on femur (1-5; 4 and 5 are placed on the femoral
epicondyles), five on tibia (6-10; 9 and 10 are placed on the maleoli), and three on foot (11-13; 12 and
13 are placed on the lateral and medial side of the midfoot, 11 is placed on the midfoot). Clusters are
indicated with a-b-c. All markers were placed on the anteriori aspect of the subject. (c) The picture of
the experimental setup illustrates the mounting of the load cell.
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ing the 2D analysis as described in literature. Finally, the sensitivity to all model parameters was

examined by quantifying the effect of parameter perturbations on the calculated joint moment.

Segment’s centres of mass and AoR’s position are perturbed in anterior and proximal direction

(X,Y). AoR’s orientation is perturbed about X- and Y-axis. Perturbations of the functional AoR

are based on the differences between geometry-based and functional AoR as reported by [103].

Perturbations of the centre of mass were based on [72].

5.3 Results

Alignment

The location of the functional AoR was never constant with respect to the dynamometer AoR

during the experiments. Figure 5.2 illustrates the motion of rknee (intersection of the functional

AoR with the sagittal plane) in a plane perpendicular to the dynamometer AoR during isokinetic

and isometric conditions. The displacement of the functional AoR depends on the measurement

condition and on the direction of motion (flexion versus extension). During isokinetic measure-

ments, the average displacements with respect to the dynamometer AoR were 40.6mm (±2.4: S1)

and 65.5 mm (±31.6: S2) during flexion and 18.4mm (±9.3: S1) and 36.0mm (±22.2: S2) dur-

ing extension. During isometric measurements, average displacements were 50.1mm (±16.5: S1)

and 71.4mm (±16.5: S2) during flexion, and 10.9mm (±2.8: S1) and 8.7mm (±1.2: S2) during

extension. The motion of the functional axis relative to its initial position during isometric con-

ditions results from the subject’s muscle contraction (axis moves away from initial position), and

relaxation (axis moves again towards the initial position).

Dynamics

The three dimensional knee joint moment M3D differs from the dynamometer moment Mdyn

during isokinetic and isometric conditions. The differences are subject-dependent. The differences

are larger at higher velocities (isokinetic) and at positions near the middle of the rom (isometric).

Mean differences between M3D and Mdyn for both subjects during all measurement conditions

indicate a systematic difference between M3D and Mdyn (table 5.2).
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Figure 5.2: Motion of the functional AoR (black dots) and the lateral epicondyle (black full) in the
sagittal plane for both test subjects (S1: left column; S2: right column) for two measurement conditions.
The position of the biodex axis of rotation is located at (0,0). The location of the functional AoR and the
lateral epicondyle at the beginning of the measurement are indicated (Epicondyle:square; functional AoR:
triangle).
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Table 5.1: Sensitivity analysis:
perturbations and resulting effect on moment.

S1 S2

A. ∆p isok isom isok isom

nknee 10 ◦ 4.0 (0.7) 4.3 (2.7) 4.8 (0.7) 5.0 (2.7)

rknee 2cm 3.9 (0.4) 4.1 (0.7) 3.2 (0.4) 3.8 (0.5)

mass ◦ 0.25kg 1.0 (0.1) 0.7 (0.2) 1.1 (0.1) 0.7 (0.3)

com* 2cm 0.7 (0.1) 0.5 (0.1) 0.7 (0.04) 0.3 (0.2)

B. S1 S2

massfoot 0.91kg 0.92kg

masstibia 2.69kg 2.74kg

comfoot [0.053 -0.012 0.008] m [0.055 -0.013 0.009] m

comtibia [0 -0.1875 0] m [0 -0.2017 0] m

A. Overview of changes in joint moment (given in [Nm]) due to perturbations in model parameters (∆ p).
Maximal changes averaged over the conditions are shown for both subjects (S1-S2) during isokinetic and
isometric contractions (standard deviations are given between brackets). For mass, centre of mass, and
inertia tensor only the maximal changes for either foot or tibia ( ◦ indicates foot, ∗ indicates tibia) are
shown. For orientation and location of the functional AoR the maximal changes are shown for perturbations
about the anatomical X-axis and along the Y-axis respectively.
B. Overview of the most important inertia parameters of the limb segments as used in the model. Centre
of mass of the tibia is expressed in the tibia reference frame (according to ISB convention), centre of mass
of the foot is expressed in the foot reference frame (origin at midpoint of malleoli, axes parallel with tibia
frame in anatomic position).
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Table 5.2: 95% Limits of Agreement

Flexion Extension

|∆mean| LOA |∆mean| LOA

[Nm] [Nm] [Nm] [Nm]

condition S1 S2 S1 S2 S1 S2 S1 S2

30 ◦/s 3.5 11.7 11.5 21.9 0.2 5.3 9.1 21.9

60 ◦/s 6.6 9.3 11.4 18.6 2.4 4.1 10.6 10.1

120 ◦/s 2.5 4.4 14.1 16.7 2.6 1.1 14.5 17.4

30 ◦ 11.1 14.0 7.4 8.0 7.7 14.5 6.7 6.7

45 ◦ 10.6 19.4 6.3 10.0 7.7 17.8 6.8 9.8

60 ◦ 10.4 20.7 6.6 13.3 6.2 16.5 5.6 10.9

75 ◦ 6.6 19.7 5.3 14.8 3.9 13.1 8.3 10.2

90 ◦ 10.9 17.6 6.5 13.8 1.9 5.2 13.3 7.9

Mean differences between M3D and Mdyn (absolute values) for all measurement conditions and for subject
1 (S1) and subject 2 (S2). 95% limits of agreement (LOA) are indicated as 2 x 1.96 x standard deviation
of the differences. The mean difference indicates the averaged difference between M3D and Mdyn during
the experiment. The limits of agreement indicate the interval (around the mean difference) which contains
95% of the measurment points.

The moments resulting from a 2D analysis [46] (M2D) differ from M3D during isokinetic and

isometric conditions as presented in table 5.3 and fig. 5.3. The differences during isometric condi-

tions are similar in magnitude as those between Mdyn and M3D, although there are small changes;

e.g. for S1, the mean difference during flexion was larger (6.4Nm). The differences during isokinetic

conditions are almost double compared to those between Mdyn and M3D; during extension M2D

underestimates the joint moment whereas during flexion M2D overestimates the joint moment.

The interaction force vector was considered to be perpendicular to the crank if its angle with

the normal to the crank was less than 15 ◦. During isokinetic conditions the perpendicularity con-

dition was satisfied during 8.1% (S1) and 70.1% (S2) of the experimental time. The higher the

velocity, the less the orientation of the force was perpendicular to the crank throughout the range

of motion. During isometric conditions the perpendicularity condition was satisfied during 0.8%

(S1) and 95.6% (S2) of the contraction time. Overall, the orientation of the interaction force is

highly subject-dependent.
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Sensitivity analysis

Table 5.1 shows maximal changes in calculated knee joint moments averaged over the isokinetic and

isometric conditions. When perturbing the pose of the functional AoR, the changes in joint moment

were slightly larger for isometric conditions (S1/S2: 4.0/4.8Nm isokinetically versus 4.3/5.0Nm iso-

metrically, and 3.9/3.2Nm isokinetically versus 4.1/3.8Nm isometrically for respectively orientation

and location). For isometric conditions, changes in joint moment perturbing the orientation be-

came larger at higher knee flexion. Perturbing the centre of mass of the tibia of tibia and foot

in proximal direction resulted in ∆M between 0.7Nm and 1.1Nm. Pertubing the ankle AoR or I

resulted in changes smaller than 0.6Nm.

5.4 Discussion

The main problems to obtain an accurate knee moment by standard dynamometry are due to

misalignment between the dynamometer’s AoR and the joint’s AoR. In this paper, first, a full 3D

analysis for isokinetic and isometric dynamometry at the knee joint is presented. In contrast to

previous studies, marker-based 3D motion capture is combined with 6D load cell data. Second, the

joint AoR is modelled as a functional AoR. Functional AoRs better explain the joint’s motion than

geometry-based AoRs (e.g. the transepicondylar axis), and hence result in more accurate dynamics.

Third, Kalman smoothing, which has been shown to give good estimates of the joint kinematics [28],

is used for inverse kinematics. Kinematics obtained using Kalman smoothing and a functional AoR

differ from dynamometer kinematics confirming results reported in literature [5; 46; 55; 101]. A

sensitivity analysis revealed that the accuracy of the estimation of the knee joint axis’ pose is much

more important than the accuracy of other model parameters. Applications which rely on joint

moments e.g. to obtain information about the joint’s actuators [42] will benefit from experimental

data with improved accuracy [29].

Isokinetic

Inverse dynamics showed that M3D and Mdyn differ during isokinetic conditions. The differences

were at most 15.2Nm/12.6Nm (31.8%/12.7%) (S1) and 21.5Nm/16.4Nm (58.3%/16.9%) (S2) dur-

ing flexion/extension. The lower the velocity, the smaller the difference became, and M3D was

typically smaller than Mdyn.

In literature, there are two studies, Herzog [46] and Kaufman et al. [55], that reflected on the

accuracy of isokinetic dynamometry albeit using other measuring and modelling techniques. Her-
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Table 5.3: Comparison of M3D with Mdyn and M2D

Flexion Extension

S1 S2 S1 S2 S1 S2 S1 S2

A ∆max ∆mean ∆max ∆mean

Isok 15.2 21.5 4.5 8.6 12.6 16.4 2.8 4.3

[ Nm ] (5.8) (0.9) (1.8) (3.7) (6.8) (2.9) (0.9) (1.1)

Isok 35.7 58.3 10.4 21.1 18.0 16.9 4.0 4.4

[ % ] (16.7) (20.9) (3.9) (4.3) (11.8) (3.4) (2.4) (1.1)

Isok-2D 27.5 35.7 14.6 20.4 34.3 35.7 16.3 16.6

[ Nm ] (5.7) (13.6) (4.5) (4.1) (5.2) (13.7) (4.6) (1.4)

Isom 18.7 25 9.9 18.3 13.9 21.5 5.7 13.4

[ Nm ] (3.9) (3.3) (1.9) (2.6) (2.1) (4.2) (2.2) (4.9)

Isom 27.8 29.6 14.6 21.6 12.5 15.2 5.4 9.7

[ % ] (5.6) (5.8) (2.0) (3.9) (6.9) (5.2) (3.8) (4.8)

Isom-2D 18.9 26.8 10.8 19.9 12.5 18.0 4.6 9.5

[ Nm ] (3.9) (3.5) (1.8) (2.8) (2.6) (2.9) (2.0) (4.8)

B [ Nm ] max mean max mean

30 ◦/s 56.1 33.1 55.4 34.8 84.2 48.7 103.7 69.2

60 ◦/s 55.6 32.7 37.1 21.9 109.6 65.2 86.3 49.2

120 ◦/s 40.9 24.9 27.9 10.1 100.3 57.9 103.5 36.2

30 ◦ 85.4 92.8 71.9 98.3

45 ◦ 77.5 93.1 99.9 129.2

60 ◦ 64.6 87.6 128.3 169.2

75 ◦ 50.8 80.6 161.2 186.6

90 ◦ 63.0 72.9 184.9 171.8

A. Maximal and averaged (absolute) differences between moments calculated by 3D inverse dynamics
and moments registered by the dynamometer (Isok/Isom). Maximal and averaged (absolute) differences
between moments calculated by 3D and 2D inverse dynamics (Isok-2D/Isom-2D) are reported. Relative
differences to the peak moment ([ % ]) between moments resulting from 3D inverse dynamics and moments
resulting from the dynamometer are reported. For all isokinetic and isometric measurement conditions
respectively, absolute values are averaged over the measurement conditions. Standard deviations are given
between brackets.
B. Maximal moments calculated by 3D inverse dynamics per measurement conidition. For isokinetic
measurements, the averaged moments over the flexion and extension part of the motion are reported
additionaly.
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Figure 5.3: M3D (grey), Mdyn (dashed black), and M2D (black) for subject 1 (upper row) and subject
2 (lower row). Four measurement conditions are given: isokinetic 30 ◦/s and 120 ◦/s, and isometric 30 ◦

and 75 ◦. 98



5.4 Discussion

zog obtained joint positions by videotaping four markers on crank and tibia segment. Kaufman

et al. obtained joint positions with a tri-axial electro-goniometer. Basically, the presented inverse

kinematics differs in two ways: the joint’s AoR is described as a functional AoR, and kinematic

data is collected by a 3D motion capture system and post processed by Kalman smoothing [28].

When comparing the resulting dynamics, the magnitude of the averaged differences between the

calculated joint moment and Mdyn obtained in this study is higher than reported by Herzog, and

comparable to those reported by Kaufman et al. In agreement with Kaufman et al., the contri-

bution of the inertia to the joint moment was limited. However, Kaufman et al. found smaller

differences at higher velocities, and both studies reported that the calculated moments were larger

than Mdyn. Likely causes for these opposing observations are: (i) Herzog performs a 2D analysis

whithout measuring reaction forces, and therefore has to make assumptions concerning the appli-

cation point of the interaction force Ftc between tibia and crank and concerning the orientation

of Ftc, (ii) kinematic data is more accurate in the present study, and (iii) the description of the

joint’s AoR is different. (ii) and (iii) will both influence inverse dynamics. From a theoretical point

of view, the approach proposed here will deliver the most accurate results. Moreover, according

to the sensitivity analysis, the pose of the joint’s AoR has the largest influence on the inverse

dynamics results.

Kaufman et al. [55] reported the orientation of the interaction force between tibia and crank.

Some 2D studies ( [5] and [101]) rely on these findings to justify the assumptions concerning the

interaction force between crank and tibia. Kaufman et al. reported long periods during which Ftc

was perpendicular to the crank. However, in this study, the interaction force was not perpendicular

to the crank throughout the isokinetic measurement. These different findings might result from

the setup or different modelling approach. Kaufman et al. attached the crank anteriorly to the

tibia whereas in this paper, the crank was attached posteriorly.

In general, the subject-dependency of the results might be explained by the overall difference

in strength between the subjects. Additionally, differences in muscle and soft tissue volumes can

explain the different amounts of motion between the segments and the dynamometer. Although

the setup was standardized, the subject’s comfort was a priority. Figure 5.2 illustrates that the

motion of the joint’s AoR relative to the dynamometer AoR was larger for S2 than for S1.

Performing the 2D analysis similar to Herzog [46], the averaged differences between M3D and

M2D were 14.6Nm/20.4Nm (S1/S2) during flexion and 16.3Nm/16.6Nm (S1/S2) during extension.

These findings demonstrate the effect of the assumptions in a 2D analysis, which boil down to
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accounting only for an offset of the lever arm in the direction of the crank. In this study the lever

arm was based on the pose of the functional AoR and the application of Ftc resulted from the 3D

analysis.

Isometric

M3D and Mdyn do differ during isometric conditions as well. Averaged differences were

9.9Nm/18.3Nm (14.6%/23.0%) (S1/S2) during flexion and 5.7Nm/13.4Nm (5.4%/6.1%) (S1/S2)

during extension.

In literature, there are two studies, Arampatzis et al. [5] and Tsaopoulos et al. [101], that

reflected on the accuracy of isometric dynamometry, again using other measuring and modelling

techniques. Arampatzis et al. [5] and Tsaopoulos et al. [101] studied isometric conditions by a 2D

approach. Arampatzis et al. obtained kinematic data by 3D motion capturing, Tsaopoulos et al.

by fluoroscopy. The absolute and relative differences between calculated joint moment and Mdyn

are larger than those reported by Arampatzis et al. and Tsaopoulos et al. In contrast to both stud-

ies, here, the joint moment during extension was larger than Mdyn, which was more pronounced

at lower knee flexion, and vice versa during flexion. The opposite findings result from the different

approaches: 3D versus 2D inverse dynamics. For the 2D approach, not based on interaction forces,

following assumptions have to be made: (i) the application point of Ftc is known, and (ii) the

orientation of Ftc is known. The latter assumption is based on the findings of Kaufman et al. [55]

which were reported for isokinetic conditions and for a non-regular setup: the contact was located

at the anterior part of the tibia. Here, the contact is located at the posterior part of the tibia

where soft tissue volumes are larger. The coefficient of friction depends on the soft tissue volume,

and hence on the subject. Following this reasoning we expect that the range of possible angles

between Ftc and the perpendicular orientation would be higher for a person with a higher BMI.

Our experimental findings (only two subjects) are in line with this expectation. Moreover, esti-

mating or measuring the application point of Ftc is inaccurate as there is no precise point contact,

and defining the application point of Fknee based on a transepicondylar axis is inaccurate as well,

because the AoR does not correspond to the transepicondylar axis [103]. In fact, the sensitivity

analysis shows that the AoR’s pose is the most important parameter to obtain accurate results.

These assumptions will affect the calculations of the reaction forces in the knee and hence also the

joint moment.

Performing the 2D analysis similar to Herzog [46], the averaged differences between M3D and

M2D were 10.8Nm/19.9Nm (S1/S2) during flexion and 4.6Nm/9.5Nm (S1/S2) during extension.
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Sensitivity analysis

A sensitivity analysis was performed and revealed that (i) orientation and location of the functional

knee joint axis are the most crucial model parameters for both isokinetic and isometric conditions,

and (ii) that the accuracy of model parameters adopted from the scaled Opensim model suffices.

Limitations

The limitations of this study are the following. (i) Inverse kinematics (and hence the pose of the

functional AoR [103]) is based on motion capturing of skin mounted markers. As a consequence the

moments resulting from the inverse dynamic analysis are influenced by soft tissue artefacts. How-

ever, the described methodology takes advantage of the Kalman smoothing for inverse kinematics,

which has been shown to improve the accuracy of the estimated joint kinematics over previously

used methods [28]. Anatomical landmark displacements are minimized by linking the skin markers

to the underlying bone segements [103]. (ii) The alignement of the AoR’s was passively performed

at one position. For a fair comparison between studies, the alignement should be performed under

the same conditions (knee angle, passive or active). In general, the alignement should preferably be

done under conditions as close as possible to the experimental conditions. Tsaopoulos et al. [101]

performed the alignment both passively and actively as during experimental conditions, but the

difference between M2D and Mdyn were larger using the latter approach. In the end, it would be

unfeasible to repeat the alignment procedure for each measurement condition given the number of

experiments, and because isokinetic experiments result in motion of the joint axis relative to the

dynamometer axis (see fig. 5.2). (iii) The dataset was too limited to link the differences between

the subjects to the subject’s characteristics.

5.5 Conclusion

A 3D model-based analysis of knee joint dynamics showed that the difference between the re-

sults as given by a dynamometer (Biodex 3Pro) and by a 3D analysis can grow up to 21.5Nm

during isokinetic conditions and 25Nm during isometric conditions. Differences depend on the

measurement condition and on the subject. Whether these differences are important depends on

the application: for some applications repeatibility might be needed (which was not part of this

study) whereas whenever accurate measurements are needed, for validation purposes or to extract

actuator information from the joint-angle relationships, these differences are considerable. Another

interesting finding of the study is the sensitivity of the joint dynamics to the axis of rotation’s pose.
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Although the dataset for this study was rather limited, this study demonstrated the large dif-

ferences between 3D and 2D inverse dynamic analysis of knee joint dynamometry. In contrast to

the 2D analyses reported in literature, our 3D analysis relies less on assumptions and more on ex-

perimental data provided by the extended setup measuring 3D reaction forces and moments. This

leads to a better description of the joint’s behavior. Moreover, the sensitivity analysis showed the

importance of the definition of the knee joint axis’ pose. Altogether, it can be concluded that a 3D

inverse dynamic analysis with a good estimate of the joint axis’ pose is needed to obtain accurate

results. Further studies including more subjects might give insight in the correlation between the

subject’s physical activity and antropometry, and the differences between the joint moment and

the moment resulting from the dynamometer.
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5.6 Appendices

3D calculation of the knee joint moment

To calculate forces and moments at the knee joint we applied conservation of linear (eq. 5.1) and

angular momentum (eq. 5.2) (fig. 5.1):

S∑
s=1

Fs =

S∑
s=1

ms (q̈s + g) , (5.1)

with Fs the external non-gravitational forces acting on segment s = 1 . . . S, ms the segment’s

mass, q̈s the linear acceleration of the segment’s center of mass and g the gravitational acceleration,

all expressed in the same reference frame. Vectors are written in bold.

S∑
s=1

MP
s =

S∑
s=1

(Isαs + (ωs × Isωs))︸ ︷︷ ︸
a

+

n∑
s=1

(scom ×msq̈s)︸ ︷︷ ︸
b

, (5.2)

with MP
s the sum of the external moments and the moments of the external forces on segments

about any point P , and the right hand side equalling the change in angular momentum Ls consisting

of (a) the change in angular momentum about the segment’s com; (b) the change in Ls caused by

the moment of the linear momentum of the segment’s com about P .

To obtain reaction forces and moments at the knee joint, we solve the equations about a point

D on the crank and to express all components in the reference frame XYZ with its origin in D.

XYZ was defined by the dynamometer AoR (Z) and the perpendicular plane (XY) derived from

the circular motion of the markers on the crank. Eq. 5.1 and 5.2 can then be written as:

Fr + FXY Z
knee =

3∑
s=1

ms (q̈s + g) , (5.3)

with Fr the reaction forces as registered by the load cell, FXY Z
knee the reaction force in the knee

joint expressed in XYZ, for s = crank, tibia and foot, and:
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MXY Z
knee =

3∑
s=1

dLs

dt

−
(
Mr + (rr × Fr) +

(
rknee × FXY Z

knee )
)

+

3∑
s=1

(rcoms ×msg) , (5.4)

with MXY Z
knee the reaction moment in the knee joint expressed in XYZ, Mr the moments as

registered by the load cell, rr and rknee the position vectors of the application points of the

external forces at the sensor and the knee joint expressed in XYZ with respect to D. rknee results

from the calculation of the functional AoR. The application point is the point on the functional

AoR with anatomical z-component equal to zero, so the intersection point with the sagittal plane.

To obtain the knee moment M3D generated about the functional AoR, MXY Z
knee was projected

onto the functional AoR:

M3D =
MXY Z

knee · n
‖n‖ , (5.5)

with n the vector representing the orientation of the functional AoR.

Internal forces between tibia and crank Ftc were calculated by applying eq. 5.1 to the crank

(fig. 5.1 b):

Fr + Ftc =

1∑
s=1

ms (q̈s + g) (5.6)

2D calculation of the knee joint moment

To obtain the knee moment M2D according to Herzog [46], we calculated

M2D =
dk
dc
Mdyn

+ Gc mcdc
dk
dc

+Gtf mtfdtf

+ Icαc
dk
dc

+ Itfαt, (5.7)
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with dk the distance between the application point of Ftc and rknee projected in XY, dd the

distance between Ftc and the dynamometer AoR (projected in XY and assuming that Mtc equals

zero; an assumption which resulted in a feasible point given the contact area), dc the distance

between the com of the crank and the AoR of the dynamometer, and dtf the distance between the

com of the tibia-foot segment and the AoR of the dynamometer. mc and mtf , Ic and Is, and αc

and αt are respectively the mass, the inertia tensor and angular acceleration of the crank and the

tibia-foot segment (tibia for α). For isometric conditions, only the first term remains.
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Chapter 6

A new method for estimating subject-specific muscle-tendon

parameters of the knee joint actuators: a simulation study

Abstract1

A new method for the estimation of subject-specific muscle-tendon parameters of the knee ac-

tuators based on dynamometry experiments is presented. The algorithm aims at estimating the

tendon slack length and the optimal muscle fiber length by minimizing the difference between

synthetically reproduced and model-based joint moments. The key innovative features are (i) the

inclusion of a priori physiological knowledge to define a physiologically feasible set, the hot start for

the optimization, and constraints for the optimization, and (ii) the introduction of a new (affine)

transformation of the muscle-tendon parameters which greatly improves the numerical condition

of the optimization.

The influence of the initial guess and of measurement noise was studied in a simulation environ-

ment, and the performance was compared to the method presented earlier by Garner and Pandy

for the upper limb. The tendon slack length was estimated for 97.5/63% (extensors/flexors) of all

initial guesses within 2% of the ground truth. The optimal fiber length was estimated for 89/90%

(extensors/flexors) of all initial guesses within 2% of the ground truth. When 10Nm measurement

noise was added, the mean value of the estimated tendon slack length deviated at most 1.9/1.6%

(extensors/flexors) from the ground truth whereas the standard deviations were at most 5.1/3.9%.

The mean value of the estimated optimal fiber length deviated at most 4.3/3.0% (extensors/flexors)

from the ground truth whereas the standard deviations were at most 10.2/15.5%. In comparison,

1This chapter has been submitted for review as a full article in Numerical methods in Biomedical Engineering:
A. Van Campen, G. Pipeleers, F. De Groote, I. Jonkers, J. De Schutter.
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mean values resulting from the method of Garner and Pandy deviated up to 181% (± 123%) and

119% (± 30%) from the ground truth for, respectively, optimal fiber length and tendon slack length

of rectus femoris.

We concluded that the presented method had a low dependency on the initial guess, and out-

performed the method of Garner and Pandy in terms of accuracy by at least one order of magnitude

when parameters were estimated from noisy data. The improvements open new perspectives for

subject-specific modelling of muscles and tendons, which is beneficial for the accuracy of human

motion simulations.

6.1 Introduction

Biomechanical analyses of human motion often rely on computer simulations based on muscu-

loskeletal (MS) models. MS-models contain: (i) the skeletal and muscle geometry, and (ii) the

muscle-tendon (MT) dynamics which are represented by Hill-type models [120]. A Hill-type model

is described by four MT-parameters: the maximum isometric force Fmax
m , the optimal fiber length

Lopt
m , the tendon slack length Ls

t, and the optimal pennation angle αopt. Whereas imaging tech-

niques allow us to extract subject-specific geometric features such as MT-lengths and moment

arms (e.g. [85]), it is hard to extract values for the MT-parameters in vivo. As a result, the MT-

parameters are often collected from cadaver studies [7; 32; 56]. However, the MT-parameters are

subject-specific and reported values vary widely [91]. Moreover, the sensitivity of dynamic motion

analyses to these parameters differs (e.g. [2; 29; 81]). All studies rank Ls
t as the most important

parameter, followed by Lopt
m . Lower sensitivities are reported for Fmax

m , negligible sensitivities are

reported for αopt. Yet, these sensitivity analyses are not indicative of whether a set of experiments

contains the information necessary to identify the MT-parameters of importance in order to en-

hance the accuracy of motion analyses.

Winby et al. [115] compared different techniques to anthropometrically scale Lopt
m and Ls

t as a

first step to make these parameters subject-specific. They conclude that it is essential to preserve

the muscle’s operating range, i.e. the part of the joints’ range of motion in which the muscle

contributes to the joint moment. This finding is supported by studies of [26], and more recently

by [8], which show that the physiological operating range is muscle-specific. However, these scaling

methods do not reflect subject-specific muscle strength or moment-angle relationships.

Ten years ago, Garner and Pandy [42] and Lloyd and Besier [63] presented the only functional

scaling methods to date. The former method was applied to the upper limb actuators. The latter
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method was applied to the lower limb and focussed on the estimation of Ls
t in combination with

scaling factors for maximal muscle force and the level of activation.

The algorithm of Garner and Pandy [42] minimizes the difference between the joint moments ex-

perimentally obtained by isometric dynamometry at different joint angles and the corresponding

model-based joint moments. The optimization variables are transformations of Lopt
m and Ls

t of

all muscles: per muscle, two transformed parameters are estimated. It was however not verified

whether this procedure was feasible: did the experiments contain sufficient information? Nor were

the results validated: does the initial guess influence the solution of this non-linear optimization

problem? And how is the optimization affected by measurement errors which are inherent to

dynamometry as e.g. [104] illustrated? In the mean time the demand for subject-specific MT-

parameters, and hence MT-parameter estimation methods, only increased [38].

The contributions of the work presented in this paper are twofold:

• The development of a new method for estimation of subject-specific MT-parameters

of the knee actuators using a (i) new transformation of MT-parameters that increases

the numerical efficiency, and (ii) physiological a priori knowledge to reduce the feasible set.

• The validation of the proposed method in a simulation environment based on synthetically

generated isometric dynamometry data, including the benchmarking of the method against

the only functional scaling method available to date [42] when applied to knee actuators

6.2 Methods

6.2.1 Data simulation

For this simulation study, synthetic experimental dynamometer moments (further referred to as

’synthetic moments’) were generated using the generic model in OpenSim [33]. To model experi-

mental noise, noise is added to the synthetic moments when explicitly indicated. Muscles included

in the estimation procedure were the knee extensors (RF: rectus femoris, VI: vastus intermedius,

VL: vastus lateralis, VM: vastus medialis) and the knee flexors (BFL: biceps femors long head,

GL: gastrocnemius lateralis, GM: gastrocnemius medialis, SM: semimembranosus) because they

showed the highest sensitivity for optimal muscle fiber lenghts and tendon slack lengths according

to [29]. The activation level for all muscles was set to 0.8 for the dynamometer data, as it has been

reported that no maximum activation is reached during isometric dynamometry (e.g. [10]).
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The generic MT-parameter values according to [32] that were used to generate the synthetic

moments will be referred to as the ground truth values.

Our protocol consisted of isometric dynamometry of the knee joint at five equidistant knee an-

gles (−90 ◦ to −30 ◦; full extension is zero degrees) at a fixed hip flexion of 80 ◦ from which the

moment-angle relationship was obtained. Aditionally, the estimation protocol makes ues of muscle

fiber length data at rest (hip and knee fully extended, without ankle dorsi/plantar flexion). For

this study, joint moments and muscle fiber lengths were synthetically reproduced. In this study,

fiber length data was synthetically generated. When applying the method to experimental data,

we suggest to use the values as presented by [112].

Two additional sets of isometric dynamometer experiments were generated for ten and twenty

equidistant knee angles (−100 ◦ to −10 ◦) at the same hip flexion angle. These additional sets

allowed us to (i) verify whether augmenting the experimental cost resulted in an equivalent rise in

information on the MT-parameters, and (ii) to properly evaluate the method of [42]. The latter

method needed a larger set of dynamometer data.

6.2.2 Hill-type model

The muscle dynamics were described by a Hill-type model as shown in figure 2.2.3. In isometric

conditions, the force generating capacity of the muscle depends on (i) Lopt
m , the muscle-specific

optimal fiber length at which the muscle produces (ii) the maximum isometric force Fmax
m . The

force transfer by the tendon depends on Ls
t, the tendon slack length at which the tendon starts to

transfer force. The equilibrium between Fm, the force produced by the muscle, and Ft, the force

transferred by the tendon, is governed by αopt, the pennation angle of the muscle at Lopt
m . The

model equations (assuming isometric conditions) are:

Fm = Fact

(
Lm

Lopt
m

, a

)
+ Fpas

(
Lm

Lopt
m

)
, (6.1)

Ft = Fmt = f

(
ε =

Lt − Ls
t

Ls
t

)
, (6.2)

Ft = Fm cos α, (6.3)
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Lmt = Lt + Lm cos α, (6.4)

cos α =

√√√√1−
(
Lopt

m sin αopt

Lm

)2

, (6.5)

Fm, Ft, α = f(Lm, Lmt), , (6.6)

with Fact/pas the active/passive muscle force, f(.) indicates a dependency on (.), a the muscle

activation, Lm/t the muscle/tendon length, and α the pennation angle at the current MT-length

Lmt. Force-length-velocity characteristics were implemented according to [68].

The MT-lengths Lmt and muscle activations a were assumed to be known inputs to the optimiza-

tions. Lmt follows directly from the kinematics during the (synthetically reproduced) experiments.

The estimation method developed in this paper benefits from restricting the search space to the

physiological operating range of the muscle. According to the Hill-type model, each muscle can

actively generate force throughout the range L̃m,jk = 0.4 to 1.6, for muscle j = 1 . . . J , and

experimental condition k = 1 . . .K. L̃m,jk is the normalized muscle fiber length (i.e. the muscle

fiber length Lm,jk divided by the muscle’s Lopt
m,j) [120]. States Lm,jk and parameters Lopt

m,j and

Ls
t,jdefine at which part of the force-length curve the muscle is operating. Each muscle contributes

to the joint moment within its specific operating range [8; 26].

6.2.3 Estimation

The parameter estimation procedure comprised the solution of a non-linear constrained optimiza-

tion problem (NLP) preceded by a heuristic phase which provided the physiologically feasible set

and the hot start for the NLP. The motivation to introduce the heuristics was to put as much

as possible physiological knowledge into the problem to prevent the solver to get stuck at points

which were numerically feasible, yet not physiologically sound.

In this section the derivation of the physiological constraints (first subsection), and the hot start

(second subsection) is discussed. Furthermore, the transformation of parameters (third subsection)

and the formulation of the NLP are described.

Physiological constraints

The physiological constraints are constraints which exclude the combinations of MT-parameters

[Lopt
m,j L

s
t,j ] resulting in normalized fiber lengths outside the operating range, and in muscle fiber

lengths outside an interval around the reference fiber length values (here, reference lengths equal
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ground truth lengths, however, in an experimental environment reference lengths can be based

on the cadaver study of [112]). Hence, the physiological constraints result in the physiologically

feasible set in two steps.

In the first step, two extreme knee joint angles were considered within the muscle’s operating

range. Extreme angles were selected at the ends of the range of motion where a muscle still

contributed to the joint moment. The extreme angles were set to knee flexion angles of −105 ◦

(−90 ◦ for gastrocnemii) and −30 ◦ (which is a conservative choice). Given an initial guess of

parameters
[
Lopt

m,j L
s
t,j

]
for a muscle, discrete combinations in a chosen area around these param-

eters were evaluated at the considered extreme joint angles for a specific muscle j and a condition k:

min
L̃m,jk,s

s, (6.7)

subject to −s ≤ F̃t,jk(L̃m,jk)− F̃m,jk(L̃m,jk) cos αjk ≤ s, (6.8)

0.4 ≤ L̃m,jk ≤ 1.6, (6.9)

with L̃m,jk the normalize muscle fiber length
Lm,jk

Lopt
m,j

, and s a slack variable which bounded con-

straint (6.8).

Here, the area around the parameters was set to ±50% of the initial values, while the discrete

values were chosen at increments of 10%:

for 0.5 Ls
t,j : 0.1 Ls

t,j : 1.5 Ls
t,j ,

for 0.5 Lopt
m,j : 0.1 Lopt

m,j : 1.5 Lopt
t,j ,

solve optimization (equations (6.7) to (6.9)) for both extreme angles,

if s == 0 & constraints fullfilled,

solution physiologically feasible,
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else,

solution not physiologically feasible or infeasible,

end

end,

end.

All discrete parameter combinations [Lopt
m,j L

s
t,j ] resulting in physiologically feasible L̃m,jk at both

extreme knee angles, were selected. A feasible solution fullfiled the constraints. A physiologically

feasible solution implied that additionally s equalled 0, and hence L̃m,jk solves the Hill-model

equations.

In the second step, we evaluated the muscle fiber lengths L0
m,j for the body in the anatomical

position at rest, resulting from the feasible combinations [Lopt
m,j L

s
t,j ] for each muscle j in the first

step. For this simulation study, the reference muscle fiber lengths Lref,0
m,j were synthetically repro-

duced. However, in an experimental environment, Lref,0
m,j are not known. Therefore, we imposed a

soft constraint on Lref,0
m,j demanding that L0

m,j did not deviate more than ∆fl,j from Lref,0
m,j . This

variability, hence uncertainty on Lref,0
m,j , was modelled as the sum of the inter-subject and intra-

muscle variabilities on L0
m,j as observed in cadavers [112]:

min
L̃0

m,j ,s

s, (6.10)

subject to −s ≤ F̃ 0
t,j(L̃

0
m,j)− F̃ 0

m,j(L̃
0
m,j) cos α0

j ≤ s, (6.11)

Lref,0
m,j −∆fl,j ≤ L0

m,j ≤ Lref,0
m,j + ∆fl,j , (6.12)

where 0 indicates that the body was in the anatomical position at rest. Again, only the discrete

combinations resulting in physiologically feasible L̃m,jk were selected.

Figure 6.1 illustrates the procedure to select the physiologically feasible MT-parameter combi-

nations.
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Figure 6.1: Representation of a physiologically feasible set of parameter combinations for a muscle. The
grid represents the area in which discrete combinations of Lopt

m and Ls
t have been evaluated. The circles

represent the rejected combinations i.e. combinations which result in L̃m outside the operating range, The
grey and black bullets represent the combinations which result in L̃m inside the operating range. The
black bullets represent the parameter combinations resulting in a muscle length Lm within a certain range
of the ground truth lengths.
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Hot start

To obtain the hot start for the optimization, L̃m,jk were calculated for all experimental isometric

dynamometer conditions according to equations (6.7) to (6.9). An extra constraint was added

to make sure that the fiber length at a more flexed position was shorter/longer for the flex-

ors/extensors.

Assuming that the moment arms were known (from the geometry), applying equations (6.1) to

(6.6), for each physiological MT-parameter combination, model-based muscle forces, and hence

model-based joint moments were calculated as the product of the muscle forces and the respective

moment arms. These joint moments are further referred to as ’model-based moments’. The hot

start was chosen as the physiological MT-parameter combination [Lopt
m,j L

s
t,j ] for j = 14 which

resulted in the smallest difference between simulated moments and synthetic moments (see sec-

tion 6.2.1).

Transformation of MT-parameters

From the Hill-type model (equations (6.1) to (6.6)), we noticed that there is an implicit correla-

tion between Lopt
m,j and Ls

t,i. Furthermore, we found that this correlation was approximately linear

when representing the physiologically feasible parameter combinations as
1

Lopt
m,j

as a function of

Ls
t,j

Lopt
m,j

. This linear relation can be described by fitting a line through the physiologically feasible

combinations per muscle using least squares regression:

c1,j
Ls

t,j

Lopt
m,j

+ c2,j ≈
1

Lopt
m,j

, (6.13)

with c1/2,j the regression coefficients for muscle j. The parameter δj is introduced to quantify the

deviation of a (MT-) parameter combination from the regression line. δj,max was the maximum

value of δj :

δj =
1

Lopt
m,j

− c1,j
Ls

t,j

Lopt
m,j

− cj,2. (6.14)

This relationship allows us to introduce δj and
Ls

t,j

Lopt
m,j

as optimization variables in the optimiza-
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tion problem instead of
1

Lopt
m,j

and
Ls

t,j

Lopt
m,j

. The advantages of this change of variables are following:

(i) δj is small for MT-parameter combinations in the feasible set and can easily be bounded in

contrast to
1

Lopt
m,j

(as illustrated in figure 6.2); and (ii) when δj = 0, equations (6.13) and (6.14)

are equivalent. Then, equation (6.13) can be used to eliminate
1

Lopt
m,j

from the force equilibrium

(equation (6.3)). Hence, the force imbalance only depends on
Ls

t,j

Lopt
m,j

and L̃m. With δj we allow for

a small deviation between 1/Lopt
m,j and the linear regression.

Optimization

Instead of the Hill MT-parameters
[
Lopt

m,j L
s
t,j

]
, we adopted the transformation introduced in sec-

tion 6.2.3 as optimization variables. The vector x of optimization variables was therefore:

x =

[
L̃m,jk

Ls
t,j

Lopt
m,j

δj s

]
, (6.15)

with j = 1 . . . 4, k = 1 . . . 5, L̃m,jk the state of muscle j at condition k, and s a slack variable.

The goal criterium was formulated as a bi-objective goal criterium:

min
x

s︸︷︷︸
a

+ ‖Mk,mod −Mk,synt‖2∞︸ ︷︷ ︸
b

, (6.16)

where (a) and constraint (6.17) imposed the equilibrium between muscle and tendon force for each

muscle j at each condition k by minimizing the maximum difference given by s, whereas (b) min-

imized the maximum error between the model-based (Mk,mod) and the synthethically reproduced

experimental moments (Mk,synt) over all experimental conditions j.

The NLP was constrained by:

116



6.2 Methods

−s ≤ F̃m,jk(L̃m,jk) cos αjk − F̃t,jk(L̃m,jk) ≤ s, (6.17)

(ε)
min ≤ εjk ≤ (ε)

max
, (6.18)

0.4 ≤ L̃m,jk ≤ 1.6, (6.19)

L̃m,jk − L̃m,j(k+1) > 0.005, (6.20)(
Ls

t,j

Lopt
m,j

)min

≤
Ls

t,j

Lopt
m,j

≤
(
Ls

t,j

Lopt
m,j

)max

, (6.21)

−δmax,j ≤ δj ≤ δmax,j . (6.22)

Constraint (6.18) ensured that the tendon length was minimum the slack length without becoming

excessively long, by constraining the tendon strain ε. Constraint (6.19) imposed L̃m,jk to be

within its physiological operating range. Constraint (6.20) is an additional condition on L̃m,jk

which imposed that the state in the current experiment k cannot be equal to the state in the next

experiment k + 1. For the knee extensors L̃m,jk at higher knee flexion j should be larger than

L̃m,j(k+1) at the next knee flexion k+ 1. For the knee flexors the constraint imposed the opposite.

Constraints (6.21) and (6.22) represented physiological bounds on the respective optimization

variables.

Whenever the experimental set could not guarantee good estimations for certain parameters due

to a lack of information (e.g. different parameters had the same influence on the joint moments),

extra relationships between specific muscle parameters were added as a constraint to the NLP. E.g.

from an anatomical point of view it makes sense to assume that the Lopt
m,j of all three vasti and

both gastrocnemii are in the same range. Following extra contraints were therefore respectively

added to the optimization:

0.9 ≤
Lopt

m,vi

Lopt
m,vl

,
Lopt

m,vi

Lopt
m,vm

,
Lopt

m,vl

Lopt
m,vm

≤ 1.1, (6.23)

0.9 ≤ Lopt
m,gm

Lopt
m,gl

≤ 1.1. (6.24)
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Figure 6.2: The graph represents the correlation between the physiologically feasible parameter com-
binations. The black line is obtained by linear regression, the black dashed lines represent the maximum
deviation from the line, the grey dashed lines represent the bounds on the parameters. The intersection
of the four dashed lines defines the physiologically feasible set for the parameters.
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The optimization was solved with the local solver KNITRO [20].

Calculations were performed on a Core2, 2.4GHz processor with 4GB RAM.

6.2.4 Analysis

Influence of muscle fiber lengths

The definition of the physiologically feasible set relied on data of muscle fiber lengths (which

can be obtained from cadaver data [112] for adults). Although the inter-cadaver variabilities and

intra-muscle variabilities were taken into account when defining the physiologically feasible set,

the available reference might deviate from the actual ground truth. To investigate the influence

of the reference fiber lengths, the physiologically feasible sets were redefined: the reference values

were perturbed (positive and negative) with the inter-cadaver variabilities [112] to generate new

reference fiber lengths for all initial guesses. Means and standard deviations of the lines’ slope,

maximum deviations δmax,j from the lines, and minimum and maximum values for
Ls

t,j

Lopt
m,j

were

calculated.

Influence of initial guess

For each muscle j that was part of a specific muscle group (here knee extensors and knee flex-

ors, with j = 1...4), three initial guesses of Lopt
m,j and Ls

t,j were generated. The generic values as

reported by [32] were chosen as ground truth value. The first initial guess was the ground truth

combination of the MT-parameters. The two other initial guesses were [75 125; 125 75]% of the

ground truth values. Hence, it was assumed that whenever either Lopt
m,j or Ls

t,j decreased, the other

parameter had to increase in order to guarantee a physiological operating range. To each of the

intial guesses a uniformily distributed noise was added (mean 0%, maximum magnitude 5%) to

avoid that discrete parameter combinations would equal the ground truth parameter combination

when applying the procedure as described in 6.2.3 to 6.2.3.

The estimation procedure (sections 6.2.3 to 6.2.3) was performed for all 34 combinations of initial

guesses. Resulting absolute and relative deviations from the ground truth values for Lopt
m,j and Ls

t,j ,

and the maximum fitting error between synthetic and simulated joint moments were calculated.

To study the influence of the initial guesses the simulated moments were noise-free.
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Table 6.1: Parameter sets for OED.

[Lopt
m,j L

s
t,j] [

Ls
t,j

Lopt
m,j

δj] [L̃min
m,j L̃

max
m,j ]

†

SET+Fl
5 yes yes no

SET-Fl
10 yes yes yes

SET+Fl
10 yes yes no

SET-Fl
20 yes yes yes

Experimental sets and parameter transformations are shown. OED has been performed for experimental

sets of five (set5), ten (set10), and twenty (set20) isometric dynamometer measurements. ±Fl indicates

whether the muscle fiber lengths as obtained in the anatomical position at rest, have been included. †

is the transformation of parameters introduced by [42]. δi is a parameter which reflects the correlation

between Lopt
m,j and Ls

t,j for a specific muscle i. Yes or no indicates whether the parameters have been

evaluated or not.

Influence of measurement noise

All measurement errors were modelled as noise on the joint moments. As MT-geometric features

can be extracted from MR-images, they were assumed to be quite accurate and their uncertainty

was therefore neglected. A common technique to obtain the mean and covariance of a set of pa-

rameters identified based on measurements suffering from uncertainties is Monte Carlo simulation.

However, this technique is highly time expensive. Therefore, sigma points were used here. The

theory of the sigma points was originally developed in the field of unscented Kalman filtering [54].

Schenkendorf et al. [83] illustrated the determination of the mean and the confidence region of a

set of identified parameters x based on sigma points. The main idea is to deterministically choose

a set of weighted points so that certain properties of the distribution of x are captured. Hence,

given a vector of measurements, and assuming a (symmetrical) Gaussian distribution z, a second

order approximation of z captures the mean and covariance. Here, we used a fourth order ap-

proximation of z which additionally captured the kurtosis. The sigma points and corresponding

weights were chosen as proposed by [54] by solving an optimization problem constrained by the

mean, covariance, and kurtosis, a constraint to ensure that the weights summed up to one, and a

goal function which minimized the errors in higher order moments. The optimization was needed

to solve the underdetermined set of equations. Furthermore, the sigma points were forced to be

within two standard deviations of the mean. Mathematical details are provided in Appendix A.
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For this paper, the mean values and covariances of the estimated parameters resulting from sim-

ulated moments subject to two different sets of noise were calculated. Standard deviations on the

simulated moments were set to 5 and 10Nm. Results from the estimation procedure described in

section 6.2.3 and from the procedure proposed by Garner and Pandy (2003) [42] were evaluated

and compared. In comparison to Garner and Pandy (2003) [42] we were able to estimate a higher

number of parameters thanks to the description of the inter-dependency between Lopt
m and Ls

t.

Hence, for a fair comparison between the methods, the analysis was performed for the same exper-

imental set (being the set of five isometric dynamometer experiments). This way, the same sigma

points and covariances can be used. Therefore, only four parameters (of two muscles, here RF

and VI) were estimated using the method of Garner and Pandy (2003) [42] whereas the other four

parameters of the remaining muscles VL and VM were kept constant at their ground truth values

during the optimization. The initial guesses for both algorithms were the optimization variables

resulting from the ground truth Hill MT-parameter values.

Optimal Experimental Design (OED)

The aim of OED is to compare the identifiability of specific sets of parameters (either the MT-

parameters themselves, or a transformation of the MT-parameters) based on the information con-

tained in a specific set of experiments. Hence, OED examines the choice of the experimental set,

and the choice of the parameter transformations. Additionally, OED allows to verify to which

extent noise affects the identifiability.

The experimental sets evaluated in this study were listed in section 6.2.1. This paper focused

on the identification of the two most sensitive MT-parameters being Lopt
m,j , and Ls

t,j , while Fmax
m,j

and αopt,j were kept constant [32]. Three parameter transformations (per muscle j) were evaluated:

1. the Hill MT-parameters [Lopt
m,j L

s
t,j ] themselves;

2. the transformation proposed by [42]: [L̃min
m,j L̃

max
m,j ] being the minimum and maximum nor-

malized muscle fiber lengths, respectively;

3. the new transformation [
Ls

t,j

Lopt
m,j

δmax,j ], introduced in section 6.2.3.

To compare the informativeness of the experimental sets and the parameter transformations, two

scalarizations of the Fisher information matrix FIM were evaluated: D-optimal design and E -

optimal design criteria [15]. FIM is a matrix which contains the sensitivities, i.e. the partial
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Table 6.2: Influence of Lm on physiologically feasible set.

lb [ ] ub [ ] a δmax

RF 2.42 (±0.28) 3.23 (±0.29) 0.40 (±0.15) 3.04 (±0.28)
VI 1.17 (±0.11) 2.01 (±0.23) 0.97 (±0.17) 4.60 (±0.59)
VL 1.41 (±0.22) 2.38 (±0.19) 0.91 (±0.25) 4.64 (±0.76)
VM 1.06 (±0.08) 1.91 (±0.30) 1.01 (±0.13) 5.02 (±0.67)

BFL 2.35 (±0.25) 3.55 (±0.36) 0.51 (±0.17) 2.48 (±0.43)
GL 4.81 (±0.84) 9.44 (±0.77) 0.37 (±0.11) 2.55 (±0.14)
GM 6.27 (±1.78) 9.27 (±3.33) 0.30 (±0.0) 2.57 (±0.09)
SM 3.90 (±0.56) 6.94 (±0.79) 0.55 (±0.19) 2.38 (±0.25)

The mean and standard deviations of the slope a of the line, the deviation δmax from the line and the

lower and the upper bounds (lb, ub) on
Ls

t

Lopt
m

are given per muscle over all physiologically feasible sets (see

figure 6.2).

derivatives of the simulated data (moments and fiber length) to the parameters. D-optimality

maximizes the determinant of FIM, and hence minimizes the total error in all parameters. E -

optimality maximizes the minimum eigenvalue of FIM, and hence minimizes the maximum error

over all parameters. For the evaluation, scaling was applied and noise was taken into account

according to [110].

D-optimality and E -optimality were compared for different sets of experiments and parameters

(see also table 6.1).

For simplicity, subscript j is omitted in the next sections.

6.3 Results

Influence of the muscle fiber length at rest on the physiologically feasible set

The influence of the reference muscle fiber lengths on the definition of the physiologically feasible

set is shown in table 6.2. The general observations were that the physiologically feasible sets in all

cases comprised the MT-parameter ground truth values.
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6.3 Results

Figure 6.3: Estimated parameters resulting from all initial guesses are divided into five subgroups
based on the remaining relative difference with the ground truth parameter value: smaller than
0.5%, between 0.5% and 1% (< 1%), between 1% and 1.5% (< 1.5%), between 1.5% and 2% (<
2%), and larger than 2% (>= 2%). (a) for flexors and (b) for extensors show the relative number
of estimates contained in each group for Lopt

m , while (c) for flexors and (d) for extensors show the
relative number of estimates contained in each group for Ls

t.
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6 Subject-specific muscle-tendon parameters: estimation in simulation

Influence of initial guess

The influence of the initial guess on the estimated parameters is shown in figure 6.3. All initial

guesses of the flexor parameters, and 97.5% of the initial guesses of the extensor parameters resulted

in feasible estimates. Whenever a solution was infeasible, this was indicated by the solver’s exitflag.

For flexors, 63% of the estimated Lopt
m and 90% of the estimated Ls

t were within 2% of the ground

truth value. For extensors, 89% of the mean values for the estimated Lopt
m and 97.5% of the mean

values for the estimated Ls
t were within 2% of the ground truth value.

Influence of measurement noise

The influence of measurement noise on the estimated means and covariances is given in table 6.3

for noise levels 5Nm and 10Nm. The mean values for the estimated Ls
t were overall closer to

the ground truth value than the mean value for the estimated Lopt
m . For noise level 5Nm, the

maximum absolute and relative standard deviations on the estimation of Lopt
m were 1.0/0.77cm

(BFL/VL) and 15.3/9.2% (GM/VL). The maximum absolute and relative standard deviations on

the estimation of Ls
t were 1.6/0.76cm (BFL/VL) and 4.8/5.4% (BFL/VI). For noise level 10Nm,

the maximum absolute and relative standard deviations on the estimation of Lopt
m were 0.94/0.85cm

(BFL/VL) and 15.5/10.2% (GM/VL). The maximum absolute and relative standard deviations on

the estimation of Ls
t (for flexors/extensors) were 1.3/0.69cm (BFL/VI) and 3.9/5.1% (GM/VL,VI).

The influence of measurement noise on the mean value and standard deviations of the estimated

parameters of RF and VI resulting from the algorithm proposed by [42] was different compared to

the influence on the estimated parameters from the method presented in this paper. The mean of

the estimated Lopt
m differed up to 9cm (181%) (RF). The mean of the estimated Ls

t differed up to

5cm (119%) (RF). Standard deviations on the estimated parameters were large (123% and 30%

for Lopt
m and Ls

t respectively for RF).

Optimal Experimental Design

Results of the identifiability study are summarized in table 6.4. Overall, the identifiability for

extensors and flexors was comparable. The Hill MT-parameters [Lopt
m Ls

t] clearly showed low

identifiability. [
Ls

t

Lopt
m

δ] showed higher identifiability than [L̃min
m L̃max

m ]. Identifiability benefitted

more from a transformation of the parameters, and from including data of the muscle fiber lenghts,

than from including more isometric dynamometer experiments.
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6 Subject-specific muscle-tendon parameters: estimation in simulation

Table 6.4: Summary of the results of the OED

Extensors Flexors
Dcrit Ecrit Dcrit Ecrit

SET+Fl
5

[Lopt
m Ls

t] 2.1e−8 2.2e−5 1.8e−6 4.1e−6

[
Ls

t

Lopt
m

δ] 3.0e14 3.9e−2 3.9e19 7.1e−2

SET-Fl
10

[Lopt
m Ls

t] 1.2e−9 2.4e−6 4.6e−11 3.2e−6

[
Ls

t

Lopt
m

δ] 1.7e14 5.0e−3 1.9e20 2.9e−1

[L̃min
m L̃max

m ] 8.8e3 4.1e−4 1.7e2 1.6e−4

SET+Fl
10

[Lopt
m Ls

t] 2.2e−4 2.1e−4 2.1e−3 4e−5

[
Ls

t

Lopt
m

δ] 3.5e−18 2.1e−1 1.5e25 6.7e−1

SET-Fl
20

[Lopt
m Ls

t] 3.5e−6 1.0e−4 5.6e−8 2.1e−5

[
Ls

t

Lopt
m

δ] 6.3e19 1.7e1 2.7e22 5.7e−1

[L̃min
m L̃max

m ] 2.1e6 1.0e−3 3.6e4 4.6e−4

The determinant (D-criterium), and the minimum eigenvalue (E-criterium) of the Fisher-information ma-
trix are shown per experimental set and per parameter transformation. Higher values are an indication
for a better identifiability of the parameters from the respective experiments. Results are shown for ex-
perimental sets of five (set5), ten (set10), and twenty (set20) isometric dynamometer measurements. ±Fl

indicates whether the information on the muscle fiber lengths has been included.
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6.4 Discussion

6.4 Discussion

Influence of the muscle fiber length on the physiologically feasible set

The influence of the fiber length at rest on the physiologically feasible set was limited i.e. little

changes were observed in the slope of the regression line, the maximum deviation of the line, and the

bounds on
Ls

t,i

Lopt
m,i

, and the real solution remained within the physiologically feasible set. However,

the fiber lengths as obtained from literature [112] are representative for healthy adults. Caution

is required when subjects who are part of a different sub-population (e.g. children) are studied.

Either the reference values should be adapted and/or the uncertainties should be increased.

Influence of initial guess

Per muscle, three sets of initial guesses of the parameters have been evaluated. Combining the

initial guesses of all muscle groups, 81 resulting combinations have been evaluated. For the flexors,

most Ls
t are estimated witin 0.8cm of the ground truth value, and most Lopt

m are estimated within

0.25cm of the ground truth value. For the extensors, all Ls
t are estimated within 0.5cm of the

ground truth value, and all Lopt
m are estimated within 0.25cm of the ground truth value. Differences

between the ground truth and the estimated Ls
t are six to 50 times smaller than the differences

between values for Ls
t reported for three frequently used MS-models [7; 32; 69] (see table 6.5).

Differences between the ground truth and the estimated Lopt
m are four to twelve times smaller than

the natural variability on Lopt
m as reported by [112] (see table 6.5).

De Groote et al. [29] showed in their sensitivity analysis of isometric experiments that perturba-

tions in Ls
t can lead to moment sensitivities of about 20Nm for gait and about 150Nm for isometric

dynamometry. These sensitivities are defined as the ratio between the change in the muscle mo-

ment and the relative change in a parameter. Similarly, perturbations in Lopt
m can lead to moment

sensitivities of about 7.5Nm for gait and about 50Nm for isometric dynamometry. Hence, for the

considered moment sensitivities reported in [29] in the muscle moment of 0.4Nm for gait and 3Nm

for dynamometry are obtained for (i) 97.5% (extensors) and 63% (flexors) of the initial guesses of

Ls
t, and for (ii) 89% (extensors) 90% (flexors) of the initial guesses of Lopt

m .

The maximum fitting errors, reflecting the remaining discrepancy between the synthetic moments

and the simulated moments, are for more than 50% of the initial guesses smaller than 0.1Nm for

the extensors, and smaller than 1Nm for the flexors.
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6 Subject-specific muscle-tendon parameters: estimation in simulation

Table 6.5: Parameter values from literature

Lopt
m Ls

t

min max ∆ min max
[cm] [cm] [cm] [cm] [cm]

BFL 8.5 10.9 3.0 13.0 32.9
GL 5.7 6.4 1.0 23.4 38.5
GM 5.1D 6.0KH 0.95 21.2 40.1A

SM 6.9A 8.1KH 1.9 15.7 37.8A

RF 7.6A 11.4 1.4 9.6 34.6A

VI 7.7 9.9A 2.2 10.6A 13.6
VL 8.4D 9.9A 2.5 9.6 15.7
VM 7.6 9.7A 2.8 9.6 12.6

Minimum and maximum values for Lopt
m and Ls

t as obtained from models available via OpenSim [33]: the
London lower limb model [69] relies on the cadaver study of [56], the lower limb model of Delp et al. [32]
relies on the cadaver studies of [39; 113], the lower limb model of Arnold et al. [7] relies on the cadaver
studie of [112]. Minimum and maximum values are according to [56] and [32] respectively, unless otherwise
indicated (A value adopted from Arnold et al. [7], D value adopted from Delp et al. [32], KH value adopted
from Klein-Horsman et al. [56]). For Lopt

m a natural variability ∆ is given based on [112]. Therefore, the
reported variabilities in muscle fiber lengths are multiplied by a ratio of the optimal sarcomere length
(2.7m) and the reported sarcomere lengths cfr. [32].
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6.4 Discussion

Evaluating the results, it appears that there are many suboptimal solutions of the optimization.

Based on the goal criterion values it is possible that the number of local optima is limited, however

that the neigbourhood of these few local optima is valley-like shaped. As a results the local solver

might fullfil the stopping criteria before the optimum is reached.

Influence of measurement noise

When adding measurement noise, the mean values of the estimated parameter are within 5% of

the ground truth value. The standard deviations are higher for Lopt
m (up to 15.3%) than for Ls

t

(up to 5.4%). Means and standard deviations resulting from both levels of measurement noise,

are comparable. Comparing the standard deviations for the estimation of Lopt
m to the natural

variabilities reported by [112] (see table 6.5), it appears that the natural variabilities are two to

four times larger than the standard deviations, except for GL and GM where they are similar.

This shows that it is beneficial to estimate the value for Lopt
m using the proposed procedure rather

than to adopt a value from literature. Comparing the standard deviations for the estimation of Ls
t

to the differences between parameter values in literature (see table 6.5), it is even more obvious

that using the estimation procedure is beneficial as the variabilities are 6.6/2 (BFL/VI) to 16.4/25

(GM/RF) times larger than the two standard deviations (representing 95% of the estimates) from

the mean values.

Again, these results can be interpreted in light of the sensitivity analysis of [29]. Ls
t is the most

crucial parameter. From the results in this paper, it can be seen that the identifiability of Ls
t is also

better as the estimated means are closer to the ground truth than the estimated means for Lopt
m .

95% of the estimations are within two times the standard deviation of the mean value. Hence,

assuming the same moment sensitivities as earlier, 95% of the estimated Ls
t result in an error in

muscle moment smaller than 2Nm (gait)/15Nm (dynamometry). The standard deviation for the

estimation of Lopt
m is three times larger than for Ls

t, about 15%. Hence, 95% of the estimations are

within 30% of the mean values. As the moment sensitivities are reported to be two to three times

smaller for Lopt
m than for Ls

t, 95% of the estimated Lopt
m also result in an error in muscle moment

smaller than 2Nm (gait)/15Nm (dynamometry). For a maximum offset (defined as the maximum

deviation between the mean of the estimates and the ground truth) of 2.9% in the estimated Ls
t,

the additional error in muscle moment is smaller than 0.4Nm/3Nm (gait/dynamometry). For a

maximum offset of 4.7% in the estimated Lopt
m , the additional error in muscle moment is smaller

than 0.4Nm/2.5Nm (gait/dynamometry).
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6 Subject-specific muscle-tendon parameters: estimation in simulation

Studying the effect of measurement noise on the estimation algorithm presented by [42], Ls
t also

appears to be best identifiable. There are some remarkable differences in performance of this al-

gorithm compared to the algorithm presented in this paper. The mean value of the parameters

estimated by [42] deviates much from the ground truth value, and the standard deviation is higher.

This can be explained as follows: the transformation of the parameters determines the shape of

the objective function. Clearly, the objective function contains local optima which do not lie close

to the global optimum. In addition, the introduction of the physiologically feasible set is beneficial

in the new algorithm.

When interpreting the effect of the measurement noise, following limitations should be kept in

mind: (i) the method of the sigma points adds noise to one or two experiments at a time. This

alternative approach to the more commonly used Monte Carlo analysis bears the huge advantage

that it is less time expensive (as only a limited set of evaluations have to be performed); (ii) the a

priori assumption that the transformation (here the parameter estimation) of a limited set of points

(here the vector of experiments including noise) are a symmetric Gaussian with a certain mean and

covariance might not hold for the evaluated non-linear problems; (iii) the sigma points are chosen

in a deterministic manner. Nevertheless, these limitations do not affect the comparison between

both methods and hence, we can conclude that our method is more robust against measurement er-

rors than the algorithm of [42] when using it for the estimation of Lopt
m and Ls

t of the knee actuators.

For our analyses, the implementation of the algorithm of [42] is according to the information

provided by the authors, i.e., the same goal function, constraints, MT-model and transformation

of parameters are used for the optimization. However in this paper, the hot starts were set to their

ground truth values as the hot starts suggested by [42] never lie close to the ground truth value,

and the implementation of the muscle characteristics is as described by [68]. The solver used is

KNITRO [20], a local solver.

Our approach is a local optimization incorporating as much knowledge as possible. Alternatively,

a global optimization procedure, such as genetic algorithms or simulated annealing, can be used.

However, these global optimization approaches do neither guarantee convergence to the global op-

timal solution, and moreover they are very numerically expensive.

In this study the maximum isometric forces Fmax
m were assumed to be known, because the sen-
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sitivity study of dynamic simulations to this MT-parameter is low [29]. However, the maximum

isometric forces might differ significantly between subjects. In these cases, it is possible to derive

a value of the maximum isometric forces based on imaging techniques (e.g. [100]).

A general limitation of this study is that only one ground truth model has been evaluated, being

the model described by [32]. Considering other ground truth values might influence the results.

However, the motivation for our approach is that the sensitivity analyses of [29] showed similar

results for several (five) models, and these senstivities are used to define the Hessian (and hence

the Fisher information matrix), which in turn is similar for the different models.

Optimal Experimental Design

The basic idea of optimal experimental design is extracting maximum information from a minimum

set of experiments. Here, we mainly adopted OED to illustrate that the optimization numerically

benefitted from the newly introduced parameter transformation, and that thanks to the inter-

dependency between Ls
t and Lopt

m for the knee actuators, and the a priori physiological knowledge,

we only need a limited set of experiments. Limiting the experimental set lowers the experimental

load for subjects.

The parameter transformation most influenced the results: the identifiability clearly benefitted

from the transformation as introduced in this paper

[
Ls

t

Lopt
m

, δ

]
, and from the inclusion of informa-

tion on muscle fiber lengths. Also a rise in the number of isometric experiments is beneficial, albeit

to a lesser extent. However, as joint kinematics cannot accurately be imposed during dynamometry

(e.g. [55]), it is not straightforward to obtain measurements at a high number of preselected joint

angles. Garner and Pandy [42] interpolated a limited set of experiments. Yet, care should be taken

when following this approach as there is no guarantee that the activation levels are the same at all

measurements [10].

Taking noise into account, resulted in a proportional decay of the criteria. For those cases where

only isometric dynamometer experiments were taken into account, the effect of the noise was

straightforward. As the noise term was equal for all synthetic moments, the criteria downscaled

equivalent to the noise level.

Some issues have to be taken into account concerning this identifiability study. (i) The infor-

mation on the muscle fiber lengths is used as a priori knowledge to define the physiologically
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6 Subject-specific muscle-tendon parameters: estimation in simulation

feasible set, and hence is not directly used in the optimization. (ii) This study includes isometric

dynamometer experiments. It is however possible that the identifiability benefits from the inclu-

sion of isokinetic experiments. Although the noise on isokinetic measurements is larger [104], and

the numerical cost for the optimization rises, it is definitely an item for further research.

6.5 Conclusion

We presented and validated a new method for subject-specific estimation of the optimal muscle

fiber length and the tendon slack length based on local optimization techniques. The method

was applied to four flexors and four extensors of the knee in a simulation environment. The key

innovative features in the method are: (i) the inclusion of a priori physiological knowledge to

define a physiologically feasible set of solutions and to provide a good hot start for the non-linear

constrained optimization, and (ii) the introduction of a new transformation of the MT-parameters

which was beneficial for the numerical condition of the optimization. These two features, together

with the inter-dependency between the optimal muscle fiber length and the tendon slack length we

described, also made that the method required a smaller experimental set (isometric dynamome-

try).

We found that the method showed a low dependency on the initial parameter guess, and that

it outperformed the method of Garner and Pandy (2003) [42] in terms of accuracy by at least one

order of magnitude when parameters were estimated from noisy data.

Notwithstanding the progress we made concerning the demanding issue of subject-specific MT-

parameters identification, some aspects are open for future research. The additional value of isoki-

netic experiments for the identification should be evaluated. Furthermore, although the method

showed a good robustness to measurement noise compared to the method of Garner and Pandy

(2003) [42], for application of the method to experimental data, the success will still rely on the

quality of the data acquisition and processing. Also, verifying the validity of the method for the

estimation of subject-specific MT-parameters of actuators of the hip and the ankle joint is a sub-

ject for further research, together with the design of an experimental setup comparable to [104]

which allows (i) to obtain reliable measurement data, and (ii) to obtain measurement data for all

degrees of freedom. A last item of research might focus on the more accurate determination of the

individual muscle operating ranges, as the method clearly benefits from this information.
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6.6 Appendix A

Julier and Uhlmann [54] provide details on the optimization and constraints to obtain the position

of the sigma points and the corresponding weights. The number of sigma points required is 2n2 +1

with n the dimension of the problem, here n = 5 (the number of experiments).

The normalized sigma points are:

ψ0 = s0, (6.25)

ψ1 = (± s1) (In)sp1 , (6.26)

sp1 = 1...n, (6.27)

ψ2 = ± s2 (In)sp2 ± s2 (In)sp3 , (6.28)

sp2 = 1...n− 1, (6.29)

sp3 = ( sp2 + 1) ...n, (6.30)

with one point ψ0 at distance s0 = 0, ten points ψ1 at distance ±s1, and 40 points ψ2 at distance√
s2

2 + s2
2 from the ground truth value. In is the identity matrix from which the (sp1,2,3)th column

is taken. Hence, the noise on the measurements ν is:

ν0 =
(√

Cy

)
ψT

0 , (6.31)

ν1 =
(√

Cy

)
ψT

1 , (6.32)

ν2 =
(√

Cy

)
ψT

2 , (6.33)

(6.34)

and is assumed to be additive to y (which are the synthetic moments). Cy is assumed to be a

diagonal matrix with equal diagonal entries.

Now, the mean value of the estimated x̄ (which are Lopt
m and Ls

t) and the covariance Cx of the
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6 Subject-specific muscle-tendon parameters: estimation in simulation

identified parameters x̂ are:

x̄ = w0 x̂0 +

2n∑
sp=1

w1 x̂sp1 +

2n2+1∑
sp=2n+1

w2 x̂sp2, (6.35)

Cx = w0 (x̂0 − x̄) (x̂0 − x̄)
T

(6.36)

+

2n∑
sp=1

w1 (x̂sp1 − x̄) (x̂sp1 − x̄)
T

(6.37)

+

2n2+1∑
sp=2n+1

w2 (x̂sp2 − x̄) (x̂sp2 − x̄)
T
. (6.38)

with w0 w1, and w2 the weights resulting from the optimization.
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Chapter 7

The added value of the estimation of subject-specific muscle-

tendon parameters of the knee joint actuators in muscu-

loskeletal modeling: two case studies

Abstract1

In this study we applied a recently developed method for functional scaling (i.e. subject-specific

estimation) of the most sensitive Hill muscle-tendon parameters being the optimal muscle fiber

length and the tendon slack length of the knee joint actuators. The method, which has been vali-

dated in a simulation environment, was applied to isokinetic dynamometry, treadmill walking and

countermovement jumping for two healthy power athletes. It was the first time that functional scal-

ing was applied to evaluate dynamic simulations. The performance of four musculoskeletal models

was compared. The four models were: two models including linearly scaled muscle-tendon param-

eters in combination with respectively linearly scaled and image-based geometry, and two models

including functionally scaled muscle-tendon parameters for the knee joint actuators in combination

with respectively linearly scaled and image-based geometry. An EMG-driven forward simulation

was performed for isokinetic dynamometry. We found differences (averaged over the subjects)

between the moments resulting from inverse dynamics and the predicted moments expressed as

root mean square values as low as 38.3 (±27.6) /29.1 (±0.4) Nm (flexion/extension, models in-

cluding functionally scaled muscle-tendon parameters for the knee joint actuators), and as high as

54.1 (±24.6) /59.6 (±12.4) Nm (flexion/extension, models including linearly scaled muscle-tendon

parameters). An inverse analysis was performed for all movements. Predicted activations for all

1This chapter is edited for submission as a full paper in Journal of Biomechanics.
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models were compared with experimentally obtained activations. In general, better correlations

were found for the musculoskeletal models including functionally scaled muscle-tendon parameters

of the knee joint actuators.

Altogether, we showed the potential of our functional scaling method, and we showed how muscu-

loskeletal modeling benefits from functionally scaled muscle-tendon parameters of the knee joint

actuators.

7.1 Introduction

Dynamic simulations of human motion have the potential to support biomechanical analyses e.g.

to plan intervention in pathologic gait, to design prostheses, and to enhance sport performance.

Currently, dynamic simulations are widely used in research. Typically, the dynamic simulations

rely on a musculoskeletal (MS-) model. The MS-model presented by Delp et al. [32] is often

used. This MS-model represents an average male, and its actuators, muscles and tendons, are

modeled as Hill-type actuators [120] for which the characteristics are mainly based on data ob-

tained from cadaver studies. Muscle-tendon (MT-) parameters are scaled linearly, in accordance

to the segment’s length. In order to personalize the analyses and to gain accuracy, a common

objective of many biomechanical researchers is to develop subject-specific MS-models. Such mod-

els include the subject-specific information concerning (i) MS-geometry as moment arm lengths,

origin and insertion points of tendons, and (ii) MT-parameters which describe the muscle and

tendon force-length-velocity characteristics. Much progress has already been made when it comes

to extracting subject-specific geometric information because of the development of imaging tech-

niques (e.g. [85; 100]). Scheys et al. [85] showed that image-based models estimate more accurate

moment arm lengths for children with bone deformities causing pathologic gait patterns. Tsai

et al. [100] reported that their image-based MS-geometry better predicts the knee joint moment

than the generic model and the linearly scaled (geometry and MT-parameters) generic model.

However, linear scaling is not a valid procedure to adapt MT-parameters subject-specifically, as

shown by [115]. The study revealed that scaling methods which preserve the muscles’ operating

range outperform linear scaling. Yet, no subject-specific information on muscle strength is taken

into account in these methods. In fact, subject-specific MT-parameter estimation is a challenging

task as it relies typically on experimental data and non-linear optimization techniques. The MT-

parameter estimation is based on the experimentally obtained moment-angle relationship, hence

the joint moments are obtained at predefined joint angles. Further this type of scaling is referred

to as functional scaling. It is very likely that it is not possible to estimate the MT-parameters
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for all actuators, because the experimental data do not contain sufficient information on all MT-

parameters and/or the identifiability of the MT-parameters is poor. The former can be investigated

by a sensitivity analysis (e.g. [29]), the latter can be investigated by an identifiability analysis (e.g.

as presented in chapter 6). De Groote et al. [29] showed that dynamometer experiments mainly

contain information on the tendon slack length and to a lesser extent on the optimal fiber length of

a limited set of specific knee joint actuators. Van Campen et al. [105] showed that the respective

MT-parameters can be identified from a minimum set of isometric dynamometer experiments.

Lloyd and Besier [63] described a calibration method to obtain the Ls
t of 13 knee actuators together

with three activation-related parameters and two scaling factors to enforce a relative strength dis-

tribution between flexors and extensors. The parameter set was obtained through a non-linear

least-square fit resulting in the best agreement between the joint moments as measurend during

five experimental trials and the respective joint moments obtained via inverse dynamics. Lopt
m

varied linear with the level of activation. The method was validated. However, to evaluate the

performance, some of the calibration trials were also used as validation trials.

Garner and Pandy [42] described a method for subject-specific scaling of MT-parameters (Ls
t

and Lopt
m , Fmmax). A transformation of variables was introduced. The parameter set was ob-

tained through a non-linear least-square fit resulting in the best agreement between experimental

isometric dynamometer data and the respective model-based joint moments.

We [105] recently proposed an alternative estimation procedure for subject-specific scaling of

MT-parameters (of a Hill-type muscle model). The procedure relies on subject-specific strength

measurements obtained by isometric dynamometry [104] while it aims at preserving the muscle’s

operating range. In a simulation environment, the robustness of the estimation procedure to the

initial guess and to measurement noise was found to be better compared to the algorithm proposed

by [42]. However, our functional scaling method has not yet been validated on experimental data.

The aim of this study is to evaluate the recently presented functional scaling method [105] by

the evaluation of the predictions by MS-models with increasing subject-specificity: (i) an MS-

model with linearly scaled geometry, and linearly scaled MT-parameters, (ii) an MS-model with

linearly scaled geometry, and functionally scaled MT-parameters of the knee joint, (iii) an MS-

model with image-based geometry, and linearly scaled MT-parameters, and (iv) an MS-model with

image-based geometry, and functionally scaled MT-parameters of the knee joint actuators. To our

knowledge, no studies are available which compare the performance of functional scaling to linear

scaling. Three motion conditions are used to validate the different models: isokinetic dynamom-
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etry at 30◦/s, treadmill walking at 4km/h, and countermovement jumping. The correspondence

between simulated and experimental quantities is assessed.

The evaluation is via (i) a forward simulation (dynamometry) which forces to make an assumption

concerning maximum muscle activation rates and (ii) inverse simulations (dynamometry, walking,

jumping) which forces to make an assumption on how muscles are recruited, hence on the perfor-

mance criterion to be optimized.

We hypothesize that the higher the subject-specificity of the MS-model, the better it predicts

the experiments.

7.2 Methods

Subjects

Two subjects participated in this study. Both subjects (S1: 22y male, BMI 19; S2: 19y female,

BMI) were elite power athletes. A written informed consent was provided to all subjects before

participation. The experimental procedure was approved by the Ethical Committee.

Musculoskeletal modeling

The generic MS-model [32] consisted of eight segments (trunk, pelvis, left and right thigh, lower

leg, and foot) and 19 degrees of freedom. Each leg was actuated by 43 muscles. Contraction

dynamics were described by a Hill-type model [120]. Force-length-velocity characteristics were

according to [68].

Four subject-specific MS-models were constructed for both subjects. The geometry of the MS-

models was either linearly scaled to the segment lengths, further referred to as GEO-linear, or

the geometry was image-based, referred to as GEO-image. The MT-parameters were either all

linearly scaled to the segment lengths, further referred to as MT-linear, or the MT-parameters

of the knee joint actuators were obtained by functional scaling (see Supplementary Material for

details), further referred to as MT-specific. Hence the four models were: GEO-linear/MT-linear,

GEO-linear/MT-specific, GEO-image/MT-linear, GEO-image/MT-specific.

The optimal muscle fiber length and tendon slack length of the knee joint actuators were as given

in table 7.1 for all models. Maximum isometric force and optimum pennation angle for all muscles
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and the optimal muscle fiber length and tendon slack length for hip and ankle joint actuators were

adopted from [32]. These MT-parameters were linearly scaled to the segment’s lengths.

To extract subject-specific geometry, MR-images were obtained for each subject lying supinely

with knees extended [85]. Local marker positions were obtained from the MR-image, and were

expressed relative to the bones in anatomical reference frames as described by [103].

Data acquisition

The experimental setup and data acquisition for treadmill walking (4km/h) and countermovement

jump were described by [52]. Data contained three-dimensional (3D) marker trajectories, ground

reaction forces (GRF), and surface electromyography (EMG) of gastrocnemius (GAS), vastus lat-

eralis (VL), rectus femoris (RF), lateral hamstrings (HamLat), and medial hamstrings (HamMed).

The experimental setup and data acquisition for isometric and isokinetic dynamometry (30◦/s)

was as described by [104]. Data contained 3D kinematics, registration of 3D reaction forces and

moments, and EMG of RF, VL, GAS, HamLat, and HamMed.

The raw EMG signals were collected at 1000Hz (walking, jump) and 500Hz (dynamometry).

Data processing

The raw EMG signals were band-passed filtered, rectified and peak dynamic normalized [19]. For

dynamometry, the peak signal was set to 0.9 instead of 1 as it has been reported that during

isokinetic dynamometry, no maximal activation is reached [10]. Because only five EMG signals

were measured during dynamometry, we made following assumptions: all three vasti were driven

by the signal of VL, lateral hamstrings were driven by the signal of HamLat, medial hamstrings

were driven by the signal of HamMed, and gastrocnemii were driven by the signal of GAS.

Inverse kinematics (IK) were calculated with a Kalman smoothing algorithm [28]. Inverse dy-

namics (ID) were obtained via OpenSim [33] for walking and jumping, and as described by [104]

for dynamometry. Forward (dynamometry) and inverse (all motion conditions) simulations were

performed as schematically represented in figure 7.1. The forward simulations were EMG-driven

and calculated the joint moment Mjoint of the knee which was actuated by 13 muscles. The actu-

ator lengths Lmt resulted from the joint kinematics and the MS-model. The inverse simulations

calculated the muscle activations underlying the motion using a physiological inverse approach [30].

The goal criterion was altered to the minimization of the maximal activation according to [1].

139



7 Validation study of functional scaling

Table 7.1: MT-parameter values for different musculo-skeletal models

S1 S2

1 2 3 4 1 2 3 4

Lm
opt [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

RF 12.39 11.75 12.31 8.81 11.06 10.84 12.02 10.43

VI 9.5 10.32 9.69 9.43 8.49 11.03 8.89 11.52

VL 9.17 10.61 9.87 9.86 8.21 10.52 9.33 12.21

VM 9.72 9.86 10.8 10.11 8.69 10.72 9.89 11.85

BFL 11.93 16.84 11.32 13.74 10.77 7.71 10.81 14.4

GL 6.92 7.41 6.85 5.02 6.43 8.68 6.18 5.42

GM 6.48 8.23 6.31 5.42 6.03 7.89 5.81 5.32

SM 12.39 11.22 8.3 11.58 7.9 8.77 7.79 8.05

Ls
t [cm] [cm] [cm] [cm] [cm] [cm] [cm] [cm]

RF 33.69 35.77 33.49 36.76 30.08 32.56 32.69 36.05

VI 14.86 15.17 15.15 20.55 13.26 11.33 13.91 13.88

VL 17.14 13.92 18.44 15.64 15.34 15.98 17.45 15.62

VM 13.76 16.94 15.28 14.51 12.3 10.73 13.99 13.99

BFL 35.67 27.54 33.85 32.81 32.2 35.45 32.33 28.21

GL 41.07 41.67 40.67 41.52 38.18 38.8 36.71 37.23

GM 42.15 42.84 41.01 41.66 39.18 40.24 37.79 38.74

SM 39.29 36.18 37.23 31.26 35.44 31.62 34.97 31.90

Values for optimal fiber length (Lm
opt) and tendon slack length (Lt

s) are given for both subjects and four
models: Model 1 is the GEO-linear/MT-linear model, model 2 is the GEO-linear/MT-specific model, model
3 is the GEO-image/MT-linear model, model 4 is the GEO-image/MT-specific model. Muscles included
are according to the findings of [29]. The changes in the MT-parameter values due to functional scaling
relative to the linearly scaled MT-parameter values (models 1 and 3) for all bold values (models 2 and
4) were larger than the standard deviations on the estimated means based on noisy experimental data as
reported by [105].
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EMG

Lmt (t)

Fm(t)

Lma(t)

Mjoint

A: Forward

B: Inverse

compare to
MID

min
a(t)
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w ||MID - Msim||
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MID
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Static optimization:

|| ||inf

Contraction dynamics
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Figure 7.1: Schematic representation of the forward (A) and inverse simulations (B). Forward simulations
are driven by activations a(t) obtained by EMG. By integration of a Hill-type MT-model MT-forces
Fmt are obtained. The Hill-type MT-model is described by active (Fact) and passive (Fpas) force-length
characteristics and the tendon (Ft) force strain characteristic. Muscle-tendon length Lmt, are input to the
model. Simulated joint moments Mjoint result from the multiplication of the muscle moment arms Lma

with Fm. Mjoint is compared to MID the joint moment according to an inverse dynamic analysis. Inverse
simulations estimate a(t) by solving a goal criterion which minimizes the maximum activation while fitting
MID to Mjoint. The estimated activations are than compared to the experimentally obtained activation
by EMG.

141



7 Validation study of functional scaling

Data analysis

To evaluate the performance of the models, (i) we calculated the root mean squared differences

between the predicted moments for the isokinetic dynamometry (isokinetic parts of the motion)

resulting from the forward simulation and the results from inverse dynamics, and (ii) we compared

predicted activation patterns resulting from inverse simulations with EMG recordings quantita-

tively (activation pattern) by cross-correlations. Also, the fitting errors between muscle moments

corresponding to the estimated activations (hip flexion, knee flexion, ankle plantar flexion) and

the inverse dynamics were reported as RMS values. Since the inverse dynamics were imposed via

a penalty term, a value of the fitting error within modeling uncertainty rather than an exact fit

was required.

7.3 Results

Table 7.1 shows how the linear scaling changes the MT-parameter values. Relevant changes in

light of the uncertainty on the estimated means due to measurement noise are indicated in bold.

Forward simulation

Dynamometry

The differences at the isokinetic parts of the motion between the moments resulting from inverse

dynamics, and the predicted moments based on the MS-models are given as RMS values in ta-

ble 7.2. Forward simulations of the knee joint moment showed that GEO-linear/MT-specific and

GEO-image/MT-specific models drastically improved the predicted extensor moment, whereas for

the predicted flexor moments the improvement was more explicit for the GEO-image/MT-linear

(S1) ./MT-specific (S2) models. Overall the GEO-image/MT-specific models predicted the joint

moment best. The model predictions are visualized in figure 7.2.

Inverse simulation

Dynamometry

Inverse simulations showed in general that, the predicted activation patterns by the MS-models

which were MT-specific show higher correlations with the EMG recordings. Overall, muscles were

differently recruited depending on the MS-model type.

Correlations are presented in table 7.3c. The most relevant activation signals are shown in fig-

ure 7.3, an overview of all signals is provided in figure 7.4 of the Supplementary Material.
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Table 7.2: Experimental versus predicted knee joint moments.

S1 S2

1 2 3 4 1 2 3 4

[Nm] [Nm] [Nm] [Nm] [Nm] [Nm] [Nm] [Nm]

Ext 66.9 28.8 68.4 33.9 42.6 29.4 50.8 29.2

Flex 36.8 28.3 16.3 18.7 71.4 57.8 62.6 57.8

Root mean square (RMS) differences in [Nm] between the isokinetic moment resulting from inverse dy-
namics and the predicted moment based on four MS-models: Model 1 is the GEO-linear/MT-linear model,
model 2 is the GEO-linear/MT-specific model, model 3 is the GEO-image/MT-linear model, model 4 is
the GEO-image/MT-specific model. RMS-values are calculated for the isokinetic parts of the motion.

Treadmill walking

Inverse simulations showed in general comparable correlations between the pattern of the EMG

recordings and the GEO-linear models at one side, and the GEO-image models at the other side.

The predicted activation levels for VL and HamLat are low compared to the EMG recordings.

Correlations for the MS-models which were MT-specific were mostly higher, except for VL. Cor-

relations are presented in table 7.3a. An overview of the activation patterns as measured and

predicted during gait are provided in Supplementary figure 7.6.

The fitting errors between muscle moments corresponding to the estimated activations and inverse

dynamics were within modeling uncertainty (RMS smaller than 6Nm)

Countermovement jumping

Inverse simulations showed in general the highest correlations between EMG recordings and the

GEO-linear/MT-specific models for GL, SOL, and RF, and the GEO-image/MT-specific models

for the hamstrings. The predicted activation levels were in general lowest for the GEO-linear/MT-

specific models. The predicted activation levels by the GEO-image models of subject 2 were

maximum, i.e. saturated, for VL and the hamstrings.

Correlations are presented in table 7.3b. Most relevant patterns are shown in figure 7.4b; an

overview of all measured and predicted patterns is provided in Supplementary figure 7.7.

The fitting errors between muscle moments and inverse dynamics were within modeling uncertainty.
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Table 7.3: EMG versus predicted activations: Cross-correlations

S1 S2

1 2 3 4 1 2 3 4

A. Treadmill

GL .95 .95 .91 .91 .73 .80 .66 .81

SOL .69 .72 .58 .57 .23 .34 .44 .49

RF .41 .42 .34 .34 .23 .31 .58 .69

VL .55 .71 .75 .66 .47 .32 .28 .20

HamLat .73 .69 .73 .74 .18 .30 .18 .23

HamMed .48 .49 .85 .83 .42 .42 .39 .39

B. Jump

GL .87 .91 .82 .82 .90 .92 .63 .66

SOL .93 .93 .90 .91 .89 .95 .93 .95

RF .88 .93 .82 .83 .91 .80 .72 .64

VL .93 .88 .89 .91 .93 .93 .95 .90

HamLat .95 .94 .95 .95 .83 .86 .83 .90

HamMed .92 .90 .91 .89 .82 .85 .86 .88

C. Isokinetic

GAS .69 .71 .89 .91 .84 .90 .85 .92

RF .93 .89 .92 .87 .76 .56 .62 .55

VL .97 .98 .94 .98 .92 .98 .89 .91

HamMed .95 .96 .96 .96 .95 .92 .89 .96

HamLat .87 .87 .94 .94 .95 .92 .89 .96

Cross-correlations between predicted activations and EMG recordings for subject 1 (S1) and subject 2 (S2)
per model. Model 1 is the GEO-linear/MT-linear model, model 2 is the GEO-linear/MT-specific model,
model 3 is the GEO-image/MT-linear model, model 4 is the GEO-image/MT-specific model.
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7.4 Discussion

In this study, the capability of MS-models with a different level of subject-specificity to predict

experimental motion data is evaluated. The four MS-models contained either linearly scaled geom-

etry or image-based geometry combined with linearly scaled MT-parameters or functionally scaled

MT-parameters of the knee joint actuators. The evaluated motions were isokinetic dynamometry,

treadmill walking, and countermovement jumping. The functional scaling of the optimal muscle

fiber lengths and the tendon slack lengths of the knee joint actuators relies on mono-articular

isometric dynamometry (see chapter 6).

This study allowed analyzing the effect of subject-specific MS-geometry versus the effect subject-

specific MT-parameters. Two simulation approaches are applied: (i) A forward simulation which

uses recorded EMG signals as input to simulate the knee joint moment. This forward simula-

tion was used to simulate isokinetic dynamometry. This simulation approach is equivalent to the

simulation approach underlying the estimation method. (ii) An inverse approach which calculates

muscle activations underlying a given motion based on a performance criterion. Inverse approaches

are frequently applied in motion analysis since they require no EMG recordings. However, because

of the optimization involved in the prediction of the muscle activations, the model uncertainties

increase when using inverse approaches.

Functional scaling mostly adapted the MT-parameter values significantly: the changes in de values

were mostly larger than the uncertainty on the estimated mean value due to measurement noise as

reported by [105]. Otherwise, whenever the changes of the MT-parameter values after functional

scaling were whithin the uncertainty on the estimated mean value e.g. Ls
t of GL, this can be linked

to a lower sensitivity of the MT-parameters to isometric dynamometry [29; 102].

Forward simulation

Dynamometry

The forward simulations showed large improvements of the predicted joint moment when func-

tionally scaled MT-parameters are included in the MS-model. Surprisingly, the GEO-image/MT-

specific models, the most subject-specific models, did not outperform the GEO-linear/MT-specific

models. In our case studies, the improvement of the simulations resulting from subject-specific

MT-parameters was larger than the improvement resulting from subject-specific MS-geometry.

This is probably a consequence of the test-subjects being power athletes.

Systematic differences in shape between predicted moments and measurement-based moments are
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present for both subjects. This likely demonstrates the presence of modelling errors e.g. the

simplified description of the joints, the representation of the muscles as line segments, and the

phenomenological Hill-model especially the force-velocity characteristic. However, adapting the

model was not into the scope of this paper.

From our perspective, two main reasons for the remaining discrepancy between experimental and

simulated moments, and hence limitations to this study, can be put forward: (i) the maximum

isometric force Fm
max, which is adopted from the generic model [32] for all muscles, and (ii) the

EMG acquisition and processing. Concerning the former, Tsai et al. [100] derived Fm
max from the

muscle volume as observed in the images. Whereas for the knee extensors the image-based val-

ues are in reasonably good agreement with the generic values, the flexor values reported by [100]

were up to 30% smaller than the generic values. According to the Hill-model equations [120], an

overestimation of Fm
max results in an overestimation of the muscle forces and hence, in an overesti-

mation of the joint moment as observed in our results. Including Fm
max in the estimation procedure

however is not feasible as the dynamometer experiments show in general lower sensitivities to this

MT-parameter [29].

Concerning the latter, we were limited by the number of EMG signals, which forced us to make

some assumptions. We also opted for peak moment scaling of the EMG signals which is typically

adopted for gait analysis too. However, there is no such thing as ’a golden rule’ when it comes to

scaling of processed EMG signals [43].

In literature, either the influence of image-based MS-geometry [100] or the influence of the func-

tionally scaled MT-parameters [63] has been studied.

Tsai et al. [100] performed an EMG-driven forward simulation of knee extensor isokinetic dy-

namometry. An unscaled model, a linearly scaled model (MT-parameters and geometry), and an

image-based model (MT-parameters linearly scaled) were evaluated. In contrast to their results, we

found that our MS-models overestimated the dynamometer result. A possible explanation is that

the measurement errors in the experimental data of [100] were higher, because the experimental

data were as recorded by the dynamometer, whereas we relied on results from a full 3D analysis

which has been shown to result in more accurate measurements [104]. We also found lower dif-

ferences between the MS-models with image-based geometry and MS-models with linearly scaled

geometry (both with linearly-scaled MT-parameters). A possible explanation for this difference is

that the value of Fmax
m in our study was equal for both models, whereas in theirs the value was
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image-based (MS-model equivalent to GEO-image/MT-linear) or the value was derived from the

subject’s strength (MS-model equivalent to GEO-linear/MT-linear).

Lloyd and Besier [63] also performed an EMG-driven forward simulation. The studied MS-model

includes linearly scaled geometry. Values for Fmax
m , αopt and Lopt

m were adopted from literature.

In their model, Lopt
m was a linear function of activation. Two parameters enforced the relative

force distribution between flexors and extensors. Three parameters regulated the amount of ac-

tivation. These five adjustable parameters, together with 13 adjustable Ls
t values (one per knee

joint actuator), were calibrated so that the forward dynamics results best matched the respective

five experimental trials. Considering the results, the predicted knee joint moment at its max-

ima deviated up to 40Nm (extension) and 20Nm (flexion) from the experimental data which was

comparable to the performance of our model with linearly scaled MS-geometry and functionally

scaled MT-parameters. However, the experimental velocities were different (120◦/s versus 30◦/s).

Moreover, the concentric isokinetic dynamometry trial as presentd by Lloyd and Besier was part

of the calibration pool of experiments. When evaluating their model against an experiment which

was not part of the calibration trials, the performance level of their model reduced. In general,

it is hard to say which method performs best, the calibration method of Lloyd and Besier or our

functional scaling method. A huge advantage of our estimation method in contrast to the ap-

proach of Lloyd and Besier, is the need for only a limited set of experiments which results from

the numerically efficient formulation. However, in contrast to Lloyd and Besier our method allows

to vary Lopt
m . We also assumed that the relative strength between flexors and extensors can be

deduced from imaging technique [40]. Additionnaly, (i) it is not reported whether the amount of

parameters is identifiable from the proposed set of calibration experiments, and (ii) Ls
t of some

muscles are estimated although [29] showed that al least three of the calibration experiments do

not contain information on these parameters. Although Lloyd and Besier rely on dynamometer

data too, which have been shown to be noisy (e.g. [104]), the influence of measurement noise is not

studied nor is the influence of the initial guesses.

Inverse simulation

For the inverse analyses, cross-correlations were consistently higher for jumping and isokinetic

dynamometry than for gait. This can be attributed to how muscles were recruited during these

different tasks. During the jump and the dynamometry, muscles are recruited at full strength,

whereas during gait muscles are recruited at lower activation levels according to the performance

criterion.
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Dynamometry

Considering dynamometry, the inverse simulation seemed to support the results of the forward sim-

ulation: patterns resulting from MS-models which were MT-specific showed better correspondence

to the EMG recordings. For the quadriceps, this held specifically for VL. The weaker correspon-

dence between the predicted activation of RF and the EMG might result from cross-talk with the

vasti, which is a known problem [73]. Considering the hamstrings, especially for S2, according to

the correlations, GEO-image/MT-specific models best predicted the activation pattern.

Treadmill walking

Considering treadmill walking, none of the MS-models predicted maximum activation levels.

Hence, the model strengths appeared to be sufficient. Mostly, the MS-models which were MT-

specific resulted in better predictions of the activation patterns. It was however not straightforward

to draw conclusion whether results from an inverse analysis did or did not benefit from advanced

subject-specific MS-modeling in healthy adults as the results were subject- and muscle-specific.

As far as the authors are aware, no comparable studies are available. The predicted activation

patterns based on the adapted goal criterion [1] were comparable to the results reported by [30].

Countermovement jump

Considering countermovement jumping, model strength obviously becomes an issue. In general,

more activation is needed for jumping (and also for isokinetic dynamometry). Therefore, the

influence of the goal function is smaller because the solution space will be smaller. Again, the

MS-models which were MT-specific result in better predictions of the activation patterns. How-

ever, GEO-linear/MT-specific models resulted in lower activation levels, and never saturated in

contrast to GEO-image/MT-specific models of S2 for VL and the hamstrings. Hence, GEO-

linear/MT-specific models resulted to be more powerful although the correlations indicated that

the GEO-image/MT-specific models better predicted the activation patterns. For both subjects,

particularly the hamstrings still needed a large activation burst in order to perform the jump.

In fact, as only the knee actuators were subject-specific, the bi-articular muscles actuated joints

together with non-specific actuators which probably lack strength. Hence, this resulted in higher

activation of the specific actuators too. A more accurate estimate of Fm
max might also be beneficial.

Again, the authors are not aware of comparable studies.

The importance of evaluating walking and jumping was already mentioned earlier. The MT-
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parameters of the knee joint actuators have been functionally scaled based on mono-articular

experiments of the knee joint. However, some muscles were bi-articular as they also either artic-

ulated the hip joint or the ankle joint. In theory, it is possible that the improved correspondance

between measured and modelled knee moments obtained by functional scaling of the MT-actuators

of a bi-articular muscles would deteriorate the contribution of these muscles to the hip or ankle

moment resulting in compensatory actions of mono-articular muscles. However, our results showed

that this was not the case: e.g. at the ankle joint, the functional scaling of the MT-parameters of

m. gastrconemii did not corrupt the performance of m. soleus.

7.5 Conclusion

We presented two case studies for which four MS-models including gradually increasing subject-

specific features (MS-geometry, MT-parameters) are evaluated for three different movements: isoki-

netic dynamometry, treadmill walking, and jumping.

We demonstrated that forward simulation of knee joint moment benefits from functionally scaled

MT-parameters. The scaling of the MT-parameters also appeared to be more important than the

MS-geometry.

Additionnally, we demonstrated that for inverse simulations the effect of functionally scaled MT-

parameters of knee joint actuators is less pronounced. However, this can be attributed to the

assumption made about muscle recruitement in the goal criterion, and to the model involved

during gait and jumping which is a model of the complete lower limb. Yet, the model strength

improved when image-based geometry and functionally scaled MT-parameters were combined.
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Figure 7.2: Predicted knee joint moments during isokinetic dynamometry for all models. Results for
subject 1 are shown on top, results for subject 2 are shown below. Extension moments are negative.
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7.5 Conclusion

Figure 7.3: Predicted activations for isokinetic dynamometry (30◦/s) for lateral vastus (VL), and medial
hamstrings (HamMed) for subject 1 (S1) and subject 2 (S2). Unscaled results results are shown. The
reference EMG is given in light grey, green: GEO-image/MT-specific, yellow: GEO-image/MT-linear, red:
GEO-linear/MT-specific, magenta: GEO-linear/MT-specific.
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Figure 7.4: Predicted activations for countermovement jumping for rectus femoris (RF), lateral vastus
(VL), gastrocnemius (GAS), soleus (SOL), and medial hamstrings (HamMed) for subject 1 (S1) and subject
2 (S2). Unscaled results are shown. The reference EMG is given in light grey, green: GEO-image/MT-
specific, yellow: GEO-image/MT-linear, red: GEO-linear/MT-specific, magenta: GEO-linear/MT-specific.
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7 Validation study of functional scaling

7.6 Supplementary Material

Algorithm for subject-specific estimation of optimal fiber length and tendon slack

length

The details on the algorithm proposed for subject-specific estimation of the optimal fiber length

and the tendon slack length of the knee joint actuators are submitted for publication elsewhere.

The experimental joint moments are obtained through isometric dynamometry [104], and a mini-

mum set is selected.

Here, we provide the rationale and some implementation issues of the methodology. The algo-

rithm aims at estimating subject-specific values of the most sensitive MT-parameters according

to [29]. Simulation moments which rely on the MT-parameters and experimental moments are fit-

ted. Hence, the MT-parameters are altered. The parameters included are the optimal fiber length

Lm
opt and the tendon slack length Lt

s of four knee extensors (rectus femoris RF, vastus lateralis VL,

medialis VM, intermedius VI), and four knee flexors (biceps femoris long head BFL, semimembra-

nosus SM, gastrocnemius medialis GM and lateralis GL). The maximal isometric force Fm
max and

the optimal pennation angle are set to generic values [32]. Note that if appropriate techniques are

available, Fm
max can be determined image-based (e.g. [100]).

1. Rationale

Implicit to Hill-type models, Lm
opt and Lt

s are correlated. Hence, if one of both parameter values

changes, by definition of the model, the other value has to change too if the muscle’s operating

range has to be preserved. Considering a discrete combination of Lm
opt and Lt

s, in its neighborhood

many other discrete combinations can be found that (i) the respective Lm satisfies the Hill-model

equations and (ii) guarantee muscle activity in the muscle’s operating range. The optimization

problem underlying the estimation is a non-linear problem which typically suffers from local op-

tima. However, the better the feasible set (the set of all possible solutions) is defined together with

the goodness of the initial guess from where the optimization start, the higher the chances to get

close to the global optimum, the exact solution of the problem.

Therefore, a two-phased algorithm was proposed: in phase I the feasible set and a hot start for the

optimization in the second phase are obtained, in phase II the non-linear optimization problem is

solved.

1.1 Algorithm phase I
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For a discrete number of combinations of Lm
opt and Lt

s in an a priori defined neighborhood of the

initial combinations, the Hill-model equations are solved. Hence, the states being the muscle fiber

lengths are calculated for two extreme positions (one in flexion, one in extension) for the respective

actuator. A first selection of combinations is made based on the physiological operating range of

the actuator: whenever the normalized state exceeds the borders of the physiological operating

range, the combination is excluded from the feasible set. For the remaining combinations, states

calculated for the model in the reference position (zero activation, 0◦ hip/knee/ankle flexion) are

compared to respective fiber lengths as presented in literature for cadavers [112]. An uncertainty

on the fiber lengths is taken into account based on the sum of the reported standard deviations

between cadavers and the coefficient of variation reflecting the regional fiber heterogeneity. Again,

all the parameter combinations outside the borders of the uncertainty are removed from the fea-

sible set. For the remaining combinations, the respective states are calculated in accordance to

the measurement kinematics. The total joint moment is obtained for all combinations of feasible

parameters sets. The hot start results from the parameter combinations which minimize the differ-

ence between the experimentally obtained joint moments and the joint simulation moments. The

mathematical description of the feasible set is illustrated in figure 6.2.
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1.1 Algorithm phase II

The non-linear optimization problem aims at finding parameters that result in the best fit between

a vector (here five isometric moments) of simulation moments and a vector of experimentally ob-

tained moments by changing the MT-parameters so that the parameter values fulfill the imposed

constraints. The activations are obtained via EMG. The constraints are (i) the borders of the

feasible set, (ii) physiologically inspired constraints e.g. the length of an extensor in a more flexed

position should be larger than the length of the extensor in a less flexed position, and (iii) anatom-

ically inspired constraints e.g. the functionality of some muscles as lateral and medial gastrocnemii

is equivalent which is reflected in the MT-parameters. The optimization variables are defined as

transformation of Lm
opt and Lt

s in order exploit the correlation between the model at one side and

for the numerical efficiency (calculation time) at the other side.

2. Implementation details

In this section, some details on the implementation of phase II are provided.

2.1 Optimization variables

The vector of optimization variables contains:

• The normalized fiber lengths at every measurement condition for each actuator.

• The transformations of Lm
opt and Lt

s per actuator being (
Ls

t

Lm
opt

and δ which represents the

maximal distance of a feasible combination to the line (see figure 6.2).

2.2 Goal criterion

The goal criterion is a weighted bi-objective criterion:

min
x

w ‖Ft,jk − Fm,jk cos αjk‖∞ + (1− w) ‖Msim−Mexp‖∞ , (7.1)

with x the vector of optimization variables, w the weighing factor, Ft,jk the tendon force at a

condition k = 1 . . .K for muscle j = 1 . . . J , Fm,jk the muscle force at a condition k for muscle

i, αjk the pennation angle at condition k of muscle j, Msim the joint moments as resulting from

the simulations which depend on Lm
opt and Lt

s and Mexp the joint moments as resulting from the

isometric dynamometer experiments.

2.3 Constraints
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The normalized states are constrained by an upper and lower bound, which force the state to lie

within a physiological operating range. Additionally, the normalized states for extensors are forced

to decrease as the joint goes into extension and vice versa for the flexors. The tendon should be

at least at his slack length. The parameter transformations should lie within the feasible set.

Supplementary figures
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Figure 7.5: Predicted activations for isokinetic dynamometry (30◦/s) for rectus femoris (RF), lateral
vastus (VL), gastrocnemius (GAS), and medial and lateral hamstrings (HamMed, HamLat) for subject 1
(S1) and subject 2 (S2). Unscaled results as well as scaled results are shown.The reference EMG is given in
light grey, green: GEO-image/MT-specific, yellow: GEO-image/MT-linear, red: GEO-linear/MT-specific,
magenta: GEO-linear/MT-specific.
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Figure 7.6: Predicted activations treadmill walking (4km/h) for rectus femoris (RF), lateral vastus (VL),
gastrocnemius (GAS), soleus (SOL), and medial and lateral hamstrings (HamMed, HamLat) for subject 1
(S1) and subject 2 (S2). Unscaled results as well as scaled results are shown. The reference EMG is given in
light grey, green: GEO-image/MT-specific, yellow: GEO-image/MT-linear, red: GEO-linear/MT-specific,
magenta: GEO-linear/MT-specific.
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Figure 7.7: Predicted activations for countermovement jumping for rectus femoris (RF), lateral vastus
(VL), gastrocnemius (GAS), soleus (SOL), and medial and lateral hamstrings (HamMed, HamLat) for
subject 1 (S1) and subject 2 (S2). Unscaled results as well as scaled results are shown.The reference
EMG is given in light grey, green: GEO-image/MT-specific, yellow: GEO-image/MT-linear, red: GEO-
linear/MT-specific, magenta: GEO-linear/MT-specific.
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Chapter 8

Conclusions and suggestions for future work

The aim of this thesis was to identify subject-specific muscle-tendon parameters of Hill-type muscle-

tendon models. The focus was on the actuators of the knee joint. Dynamic motion analyses mostly

rely on muscle-tendon parameters obtained from cadaver studies and these values are scaled to the

subject’s anthropometry. The accuracy of dynamic simulations of human motion analyses benefits

from the incorporation of subject-specific estimated muscle-tendon parameters. This corresponds

to functional parameter scaling.

Five contributions are made in this thesis:

1. Selection based on performance and validation of an algorithm to estimate functional knee

axes of rotation using experimental data.

2. Development of an extended dynamometer setup for more accurate calculations of the knee

joint reaction moments.

3. Description of the inter-dependency of the muscle-tendon parameters of the knee joint actu-

ators.

4. Formulation of an algorithm to estimate the subject-specific muscle-tendon parameters of

the knee joint actuators and its evaluation in simulation.

5. Validation of musculoskeletal models including subject-specific estimated muscle-tendon pa-

rameters of the knee joint actuators based on experimental data.
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8.1 Contribution 1

The estimation of muscle-tendon parameters is based on experimental dynamometry. The es-

timation procedure obviously benefits from accurate experimental data as these are used to fit

simulation data. However, dynamometry suffers from unreliability mainly due to misalignment

between the dynamometer’s axis of rotation, and the (knee) joint axis of rotation. This implies

that data resulting from the standard dynamometer do not reflect the moment generated by the

joint actuators around the joint’s axis of rotation. To deal with this issue, the goal was to find

the best estimate of the knee joint’s axis of rotation which, given the marker-based positions of

the segments, boils down to the estimation of a functional axis of rotation which best explains the

relative motion of tibia to femur for a recorded (range of) motion. Many algorithms have been

proposed in literature (e.g. [37; 41; 71; 87]), but it was not known which algorithm performed

best on experimental data. Therefore, the best performing algorithms in a simulation environment

([37; 41]) were implemented and their performance was tested in an experimental environment

being isokinetic dynamometry. Validation was based on the equivalent axes describing the relative

displacement of tibia(bone) to femur(bone) between two positions as observed in MR-images. Ad-

ditionally, geometry-based axes including the transepicondylar axis which is most frequently used

(also for alignation during dynamometry), were compared to the equivalent axes. Alltogether, this

resulted in the conclusion that functional axes of rotation estimated based on the sphere fitting

technique of [41] are the best representations of the actual knee joint axis of rotation, and that

functional axes of rotation in general are better representatives of the actual knee joint axis of

rotation than geometry-based axes of rotation.

This result is important in light of any research in which knee joint kinematics and dynamics

should be properly calculated, as these depend on the joint’s axis of rotation.

8.2 Contribution 2

Dynamometer data are obtained via an extended setup rather than via standard dynamometry.

This approach guarantees an improved accuracy of the experimental data, since a full 3D inverse

dynamic analysis can be performed based on measured marker trajectories, and reaction forces

and moments. The calculation of the joint dynamics rely on a model including a functional axis

of rotation instead of the transepicondylar axis. It is the combination of the tracking of marker

trajectories, the measurement of reaction forces and moments (which is critical to enable a 3D
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8.3 Contribution 3

inverse dynamic analysis), and the functional definition of the knee joint axis that distinguish the

approach from previous extensions of a dynamometer set-up [5; 46; 55; 101].

The established improvement in accuracy was found to be in the range of 10Nm to 25Nm for

isometric dynamometry. The magnitude of the improvements confirms the importance of obtain-

ing accurate experimental measurement data, in particular in view of parameter estimation.

8.3 Contribution 3

The tendon slack length and the optimal muscle fiber length of the knee joint actuators are the

most crucial muscle-tendon parameters for human motion analysis. In this thesis, it has been re-

vealed that these parameters are not independent from each other. The inter-dependency appeared

to be approximatly linear after applying a non-linear transformation of these parameters.

In its own right, this finding opens perspectives in muscle-tendon parameter scaling.

8.4 Contribution 4

The algorithm proposed in chapter 6 aims at estimating the tendon slack length and the optimal

muscle fiber length of the knee joint acuators (according to the sensitivity analysis in chapter 3).

The algorithm comprises two phases. The first phase results in the description of the feasible

set (relying on the interdependency of the parameters) and the choice of a hot start for the local

optimization in the second phase. Also, a transformation of the parameters has been introduced,

different from the transformation proposed by Garner and Pandy [42]. The evaluation of the al-

gorithm has been performed in a simulation environment. Both the effect of the initial guesses of

the parameters and of measurement noise has been evaluated.

Comparison with the algorithm of Garner and Pandy [42] (in simulation) shows a pronounced

higher robustness of the new algorithm to initial parameter guesses and to measurement noise.

8.5 Contribution 5

The last contribution in this thesis is the validation of the parameter estimation in an experimental

environment. The validation is based on data obtained for power athletes, hence for a specific sub-

163



8 Conclusions and suggestions for future work

group in the population. The evaluated motions are treadmill walking, isokinetic dynamometry,

and jumping. Dynamometry allows us to evaluate the performance of the knee joint acuators.

Walking and jumping allow us to evaluate whether an improvement at one joint would cause re-

duced performance at the other joints, as joints are coupled through bi-articular muscles. The

performance of models including different levels of subject-specific information have been evalu-

ated. For walking, all models performed similarly. However, the inclusion of estimated parameters

for the knee joint actuators was found to be more crucial than the inclusion of subject-specific

geometric features during dynamometry and jumping for power athletes.

This work involved the first validation of MS-models including functional scaling and image-based

geometry.

In contrast to the two previously presented methods of Garner and Pandy [42] and Lloyd and

Besier [63], the proposed estimation procedure covers the whole process from sensitivity analysis,

identifiability, validation in a simulation environment and evaluation on experimental data. Above,

due to the numerical efficient formulation, only a limited set of experiments is needed in contrast

to [42; 63], hence the experimental load for the subjects is also reduced.

8.6 Suggestions for future work

Many suggestions can be made concerning research in biomechanics including motion analysis.

However, in light of this thesis my suggestions are the following:

• Extending the experimental data for the parameter estimation with isokinetic

(or rather non-isometric) experiments.

The parameter estimation procedure proposed in this thesis relies on isometric experiments.

Hence no dynamics are involved. By combining isometric and isokinetic experimental data,

dynamics are included and the experimental set becomes richer, and hence more information

on the parameters becomes available. However, the complexity of the optimization increased,

as a consequence numerical cost rises, and a last issue is the increase in the uncertainty on

the measurements mainly due to the uncertainty on muscle activations. Nevertheless, the

inclusion of isokinetic experiments might become essential when estimating the parameters

of hip actuators, because more actuators are involved than for the knee joint.

• Subject-specific estimation of parameters of hip and ankle actuators.
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The accuracy of dynamic motion simulations will obviously benefit from an elaborated

subject-specific description. In the lower limb, the ankle and the hip joints are of partic-

ular interest. In order to enable subject-specific estimation of the actuators of these joints,

the same general procedure can be followed as for the knee joint, starting with a sensitivity

analysis.

The main challenge for the ankle joint will be the estimation of the ankle’s axis of rota-

tion. Some algorithms have been proposed, but none has been validated [58; 106]. As the

ankle comprises a double joint, things become even more complex than for the knee joint.

Moreover, the range of motion of the ankle is smaller, segments are smaller, and not all

joint segments can be tracked. The design of the experimental setup can be equivalent to

the design as described in chapter 5, including tracking of the kinematics and registration of

reaction forces and moments. Dynamometery of ankle joint has already been shown to be

unreliable [6].

The main challenges for the hip joint will be the experimental setup and the modeling of

the actuators. As the hip joint has three degrees of freedom, descisions will have to be made

concerning fixation, stabilization of the subject, excitation etc. The actuators are modeled

as line segments. However, many actuators as e.g. the glutei have different functional zones,

or bundles. The modeling approach of these models might have to be reconsidered, and

every functional zone might have to be attributed different characteristics. For the model-

ing of the hip joint center of rotation, in fact many algorithms are available in literature,

mostly these are generalizations of the algorithms for functional knee axis estimation [37; 41].

When all three lower limb joints are taken into account, the introduction of bi-articular

experiments (obtaining moment-angle relation at two joints simultaneously) can also be a

next step. This way, more information on bi-articular muscles can be obtained.

• The quantification of muscle activations during experiments.

Muscle activations are often obtained through surface electromyography. This results in fol-

lowing problems: only the activation of superficial muscles can be measured, and only a

qualitative measure of the actual activation is obtained which is than scaled.

Concerning the limited number of measurable muscles, it might be valuable to investigate

whether it is possible to exploit the similarity in EMG profiles of functionally related muscles
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(e.g. [27; 48]).

Concerning the quantification of the activation level, theire is a problem of chosing a ref-

erence value. Therefore, instead of opting for some particular normalization procedure [43],

it could be of interest to actually form an idea about the maximum activation level possible.

• Studying the sensitivity of the force-length-velocity characteristics.

Results from dynamic motion analyses as reported in literature rely on different force-length-

velocity characteristics. The choice for a particular one is based on the numerical efficiency.

However it is not known to which extend the characteristics influence the results. Hence,

a sensitivity analysis of the force-length-velocity characteristics could give proper insight in

this matter.

• Evolving towards an in vivo reference model.

My last suggestion is to gradually evolve towards subject-specific musculoskeletal modeling.

Because the complete measurement campaign is rather extensive, reference models could be

helpful. The next step could be the building of an in vivo reference model which could replace

the model of Delp et al. [32]. This in vivo reference model can be built for example for a

male, and a female for which all data are collected from experiments. Hence, geometry is

image-based, muscle-tendon characteristics are functionally scaled, joint axes and centers of

rotation are described functionally. When using this model, researchers or other users can in

relation to geometry, focus on adapting the model for observed subject-specific abnormalities.

Concerning muscle-tendon parameters the scaling of the optimal fiber length and tendon slack

length should rely on the intrinsic correlation between these parameters while respecting the

operating ranges.
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