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J. Martens 

Introduction 

There are many reasons thinkable why we eventually decide to build a model, and use it to 

study, explain or analyse a part of reality. Possibly, we are driven by plain curiosity to better 

understand how a part of reality works. In effect, this is the typical motive that we find 

in physics. A part of physical science intends to discover the rules of motion, the equations 

that govern the force of gravity, the mathematics that capture the principle of electromagnetic 

inference, the formal aspects of light and light breaking, and many other natural phenomena. 

For what purpose? Although debatable, the typical reason for the physical scientist to model 

comes from the desire for knowledge, the desire to be able to explain how a natural phenomenon 

works - all this for the primary goal of comprehension. The study of a part of reality may be 

motivated on other grounds than curiosity. Not the desire for knowledge an sich, but the desire 

to improve a current unsatisfactory situation, forms the core motivation for embarking on a 

modelling study. Stated otherwise, the performance of a real system is in need of improvement, 

and the goal of modelling is to evaluate alternative strategies that are proposed to realise this 

improvement. It is clear that this ground for modelling assumes that we have the capability 

to control a real system or to intervene to some extent, as we intend to bring the real system 

in alignment with the best of all alternatives for improvement of the current situation. A 

feeling of dissatisfaction with the current performance of a real system, and the awareness 

of potential improvements, constitute the typical mainspring for modelling that we find in 

economics, management and operations research - see e.g. [17, 26, 22]. It forms the underlying 

motive that we assume in this research report, to construct, to analyse and above all to validate 

models. 

Since we conceive modelling as an activity that aims at evaluating alternative strategies for 

upgrading the current performance of a real system, we like to think of the entire modelling 

process as a two-step activity. In a first step, a model of the current situation is built. We refer 

to this model as a primary model. In a second step, the primary model is modified to analyse 

particular suggestions for improvement. We refer to a modified primary model as a secondary 

model. Secondary models answer typical what-if questions that allow us to measure the effect 

on the performance of certain changes in the primary model. They are competing plans of 

action to resolve the problem situation, and to remove the feeling of dissatisfaction with the 

current performance of the real system of interest. We think of the entire process of building 

a primary model, and modifying it into a number of secondary models as a process that aims 

to advance the best strategy for improvement - the best secondary model -, that is believed to 

yield the highest return on investment upon implementation, and that is expected to provide 

the greatest level of satisfaction for all model stakeholders. 
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As an immediate follow-up of interpreting the modelling process as a two-step activity, it 

goes without saying that we are eager to offer some level of assurance that the strategy for 

improvement that we finally retain, will indeed upon implementation bring about the better

ment that we expected from it. What factors determine whether or not the level of expected 

improvement that we attached to a secondary model will indeed be realised when the real sys

tem is modified according to the strategy that is contained by the model? This question in 

fact probes for a measure of the predictive adequacy of a secondary model. This measure ought 

to give an indication of the discrepancy between the performance gain that will effectively be 

realised by implementing the strategy for improvement that is incorporated in the model, and 

the performance gain that is estimated from experiments with the secondary model. It needs 

little argument to recognise that such a measure is extremely hard to establish, as it requires 

us to impeccably foresee the performance gain that will be achieved in reality. However, since 

a secondary model is a modified primary model, it is only natural that the predictive ade

quacy of our secondary model will depend to some extent on the accordance of our primary 

model with the current situation in the real system of interest. In the assumption that we 

have the capability to gather data or observations from the real system of interest, then we 

can attempt to contrast real system observations with similar such data or observations that 

we obtain through experiments with a primary model. In this research report, we identify such 

data or observations with behaviour. In case data are obtained from a real system, we speak 

of real system behaviour. Similarly, in case data are gathered from a primary model, we speak 

of primary model behaviour. In that view, a primary model is as much in accordance with the 

current situation of a real system as the behaviour of the primary model strikes with that of 

its real counterpart. If the primary model on the basis of which we develop secondary models, 

is biased or contains fundamental flaws - in particular, if it exhibits behaviour that does not 

comply with behaviour obtained from the real system -, then to what extent can we justify 

the choice of a particular secondary model when this model is a modification of an inaccurate 

primary model? For, if we remain ignorant of the adequacy of our primary model, then what 

confidence can we grant to the claim that the performance gain that we attached to the best 

secondary model, echoes the true performance gain that we will eventually achieve in reality 

upon implementation of the strategy that is contained in this secondary model? Therefore, 

where a measure of predictive adequacy for a secondary model is too much to hope for, we 

like to attach to a secondary model a degree of confidence that reflects the accordance of the 

behaviour of the primary model on which the secondary model is based, with behaviour of the 

real system of interest. 

In this research report, we define the process of model validation as an activity that labels 

a primary model with a degree of accuracy, reflecting the similarity of its behaviour with 

behaviour of the real system of interest. Our research goal is then to formally develop a 

method, that integrates aspects of systems theory, stochastic processes and fuzzy set theory, 

and that can be used by a model builder to evaluate the degree of accuracy of the behaviour 
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of his primary model in view of similar such real system behaviour. In order to realise this 

goal, we define three research questions. A first research question involves the development 

of a general framework for our validation method. We develop such a framework in section L 

There, we discuss a modelling hierarchy, and expose in an informal way the nature of a primary 

model, its position in the hierarchy, and the notion of primary model behaviour. Also, we pin 

down the concept of a real system, and real system behaviour. We position validation in the 

framework and the modelling hierarchy, and distinguish it from verification. A second research 

question involves the formal development of the operands of our validation method. We will 

address this matter in sections 2 and 3. There, we develop a structured discrete event system 

and a stochastic system construct, identify a primary model with a stochastic system, and 

define primary model behaviour as a derivative of a stochastic system that involves statistics 

of stochastic processes that are specified by the stochastic system. We will postulate that real 

system behaviour stems from an unknown, underlying primary model, and thus can be seen 

as a derivative of an unknown stochastic system. Finally, we present in section 4 our fuzzy 

set theoretic based validation technique. The validation technique that we develop employs 

a neuro-fuzzy learning algorithm and a resemblance relation concept in fuzzy set theory, and 

allows to derive a measure of similarity between primary model behaviour and real system 

behaviour. 
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1 A framework for validation 

In this section, we develop a framework for our validation method. We postulate the meaning 

of concepts like real systems, primary models, behaviour, and others. First, in subsection 1.1, 

we introduce real systems and real system behaviour. Then, we present a modelling hierarchy 

in subsection 1.2. The hierarchy lays down the difference between conceptual models, formal 

models and simulation models. Further, we introduce a number of additional postulates on 

the idea of an environment and a behaviour orientation, in order to come to a primary model 

and primary model behaviour in subsection 1.3. Also, we outline the structure of a typical 

validation problem for which our validation method may be suitable. Finally, in subsection 1.4, 

we integrate the concepts that are postulated in this section in the modelling hierarchy, and we 

situate where processes like verification and validation come in. 

1.1 Real systems 

In almost every debate on modelling and validation - see e.g. [16, 31, 3, 14] -, the process of 

validation is described as an activity that confronts a model with a real system. In light of 

the notion of a primary model that we introduced in the introduction, we may want to define 

validation as a process that requires two arguments: a primary model on the one hand, and 

the real system for which we developed the primary model on the other hand. Although this 

viewpoint on validation feels intuitively the right way to go - that is, validation should ideally 

contrast a model with the real system that the model aims to capture - it is too much to 

expect, for it implies that validation involves two constructs of which we can in fact pinpoint 

only one. Indeed, as we will see in sections 2 and 3, we follow a system theoretic and stochastic 

process approach to formally lay down what we mean by a primary model or a stochastic 

system. The stochastic system construct that we develop is an unambiguous, mathematical 

construct. The fact that we can pinpoint a stochastic system is in sheer contrast with the 

fact that we are unable to identify the (!) real system for which we developed the stochastic 

system. Naturally, we can always use our natural language to describe the problem situation 

that led to the development of the stochastic system, and consider the model as an attempt 

to deal with the problem situation. In case multiple model builders are confronted with one 

and the same problem situation, should we then not expect that their descriptions in a natural 

language of what their primary models actually stand for, will differ from one another? But 

then, should we conceive their models as different models of one and the same real system, or 

should we conceive their models as different models of different real systems? The problem 

that we face is that there is no unambiguous way to take segments of reality, to label them, 

and then to claim that a primary model is a model for one particular such labelled segment. 

Any attempt to pinpoint the real system of interest is therefore in vain. To illustrate this 

point, assume that we have built a primary model in response to an undesirable low departure 
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punctuality of flights in an airline network. Assume that the primary model implements the 

rotation of aircraft at the stations in the network, and models activities like aircraft unloading, 

cleaning, refueling, boarding, etc. For that purpose, assume that it contains model logic for 

ground crew, air traffic management, flight operations and other components that playa role 

in the rotation of aircraft. In case we are asked to explain what our model stands for, then we 

may want to communicate in a natural language that our model mimics the rotation process of 

aircraft in an airline network, in an attempt to study the reasons for delays at departure, and 

incorporates therefore model logic for ground crew, air traffic management, flight operations, 

air traffic control, flight connections, etc. But then, haven't we just cut out a part of reality? 

Haven't we pinpointed the real system for which we developed our primary model? The answer 

is in the negative. Instead, we have revealed our perception of a real system - a conceptual 

model -, and have described this perception in a natural language. We come back to the notion 

of a conceptual model in subsection 1.2. Here, it is only natural to ask for the nature of the 

real system that we have perceived. In the following postulate, we lay down the nature of real 

systems, 

Postulate 1 (Real system) 
A real system is a family of building blocks of matter and matter interaction in the universe. 

[> 

According to postulate 1, a real system is nothing but a set of elementary constituents of the 

universe. In that respect, real systems are studied by the (quantum) physicist in a laboratory, 

and do not constitute the direct object of interest of modelling in light of this research report. 

Despite being unable to put the finger on the real system of interest in a modelling study, we 

do not want to rule out the real system concept from our argument, if only it constitutes the 

ultimate source of data [31] in regard to which we like to express the validity of a primary 

model. We identify this data with a relation between the Cartesian product of the range of 

some variables of interest and the Cartesian product of the range of other variables of interest. 

We call the former variables independent variables, and use the term dependent variables for 

the latter variables. In that respect, we postulate that for every observed relation between the 

Cartesian product of the range of independent variables of interest and the Cartesian product 

of the range of dependent variables of interest, there must be a real system - some family 

of building blocks of matter and matter interaction - that is responsible for, or that induces 

this relation. We call such a relation real system behaviour. In case of the aforementioned 

airline example, an independent variable of interest possibly measures the average delay at 

arrival of incoming aircraft at the central station in the network, or the temporal correlation 

among successive such arrival delays. A dependent variable of interest possibly measures the 

average delay at departure of outgoing aircraft at the central station, or the relative frequency of 

departure delays that are caused by endogenous delay reasons - delays which can be attributed 

to the station itself. We postulate the notion of real system behaviour generally as follows, 
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Postulate 2 (Real system behaviour) 

Real system behaviour is a relation between the Cartesian product of the range of independent 

variables and the Cartesian product of the range of dependent variables of interest, induced by a 
real system. 

p. 

According to postulate 2, we must have identified a number of independent and dependent 

variables before we can speak of real system behaviour. Having identified independent and de

pendent variables, every relation between the Cartesian product of the range of the independent 

variables and the Cartesian product of the range of the dependent variables that is induced by a 

real system, satisfies to be called real system behaviour. Clearly, a complete theory of reality is 

required if we want to determine which particles in the universe influence the independent and 

the dependent variables that we have chosen, and eventually determine the relation that we 

have retained as real system behaviour. The underlying real system that is responsible for the 

values that we observed of independent and dependent variables, is in fact of no importance. 

Stated otherwise, all that matters to us is the trace that a real system leaves in the universe 

that is set up by the range of independent and dependent variables of interest. This trace, 

being a behaviour relation, forms one of the operands of our validation approach. 

1.2 A modelling hierarchy 

In many general discussions on modelling - see e.g. [2, 15, 22, 31] -, we encounter a certain 

hierarchy among models. In the following, we intend to compose from the literature a suitable 

modelling hierarchy. Then, once we have postulated the concept of a primary model, we position 

in subsections 1.3 and 1.4 the primary model concept in the hierarchy, and develop a structure 

for the typical problem situation in which our validation approach may be applied to assess 

the adequacy of a primary model. The modelling hierarchy that we present in the following, 

consists of a conceptual layer, a formal layer, and an implementation layer. 

We postulate that a model at the conceptual layer of the hierarchy coincides with a cogni

tive image, comprising components, objects, (causal) relations between components, resources, 

entities, attributes of resources, parameters, events, assumptions, hypotheses, etc. that are 

believed to make up a necessary pool of ingredients to explain real system behaviour of interest. 

Since a conceptual model is developed to resolve a particular problem situation, it is influenced 

by the goals that are put forward in a modelling study. Further, every conceptual model is part 

of a world view, which forms an idiosyncratic, problem dependent and cognitive representation 

of the real world - see e.g. [5] on the concept of world views. A conceptual model expresses a 

certain angle of attack [22] to deal with a problem situation. For a common problem situation, 

we can expect every model builder to have its own particular world view. Hence, there will 

likely be a multitude of different conceptual models, conceived by these model builders when 

they attempt to resolve the problem situation. We refer to conceptual models as perceived 
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systems, as they reside in the minds of the modellers [20]. They are in a way perceptions of 

real systems. We postulate a conceptual model as follows, 

Postulate 3 (Conceptual model) 
A conceptual model is an idiosyncratic and cognitive image in a world view of a model builder, that 

comprises objects, components, interactions, resources, entities, parameters, events, relationships, 

attributes, assumptions, hypotheses, etc. that are believed to be relevant to explain real system 

behaviour. 

t> 

A conceptual model embodies a theory to account for how independent variables affect 

dependent variables - albeit in an implicit way. In light of our validation method, we desire that 

a conceptual model also accounts for how independent variables themselves are established. To 

give a short example, assume that we are interested in modelling a simple coin striking process. 

In particular, assume that our interest goes to the effect of the rate of arrival of coin planchets 

(unfinished coins) on the utilisation of the striking machine. In that particular case, we desire 

that a conceptual model of the entire striking process not only tries to give an account for how 

arrival rate influences striking machine utilisation, but also that it carries a rationale for how the 

arrival rate itself is established. Possibly, the conceptual model embraces a theory to explain 

the complete production of the coin planchets themselves in order to determine this arrival 

rate. We whish to agree here that the part of a conceptual model that explains the behaviour 

of independent variables is autonomous in nature, in that we do not look out for other variables 

that can be seen as independent variables with respect to the former independent variables. 

Thus, very simply, when we speak of a conceptual model, we have in mind a model that provides 

both an explanation for the effect that independent variables have on dependent variables, and 

a theory for how independent variables themselves are established - all this in an implicit and 

informal way. We refer to the part that formulates a theory of how independent variables affect 

dependent variables as the main part of a conceptual model. We refer to the part that explains 

independent variables as the input part of a conceptual model. In case of the simple coin 

striking process, the input part of a conceptual model may specify that coin planchets arrive 

according to a so-called Poisson arrival process with an unspecified arrival rate. The main part 

of the conceptual may then conceive the striking process itself as a single-queue-single-server 

system with unlimited queue capacity, and an unspecified service rate. 

Under the conceptual modelling level, we encounter a formal modelling level. At this level, 

a conceptual model is calibrated and made explicit with the help of a formal specification 

language. The fact that we let a conceptual model include both a main part and an input part, 

re-enters in the following postulate of a formal model, 
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Postulate 4 (Formal model) 
A formal model is a calibrated, structured image of the main and/or the input part of a conceptual 
model, written in a particular formal specification language. 

[> 

With the term structured in postulate 4, we want to emphasise that a formal model is a 

regular image, that explicitly contains a certain system structure that remained only indefinite 

in a perceived system. Stated otherwise, a formal model is a white-box derivative of a perceived 

system, a completely spelled out and formal theory to explain real system behaviour. We like 

to think of the main and the input part of a conceptual model as uncalibrated theories. In that 

respect, we conceive a formal model as a formal calibration [3] of the main and/or the input 

part of a conceptual model. By that, we mean that a formal model lays down particular values 

for key parameters in the conceptual model. In the aforementioned coin striking example, 

such parameters may include the service rate of the striking machine, the queuing discipline of 

the buffer out of which the striking machine samples coins, or possibly the rate at which coin 

planchets are cut out of a strip of metal and advanced to the striking process. 

Finally, at the implementation layer, we position the simulation model. A simulation model 

is nothing more than an implementation on a computer of a formal model, for ease of exper

imentation and analysis. Although we could in theory perform experiments manually with a 

formal model, this is in practice not a viable option. Instead, we want a computer program for 

automated, fast experimentation. We postulate a simulation model here as follows, 

Postulate 5 (Simulation model) 
A simulation model is a program, that implements a formal model in a particular computer pro
gramming language. 

I> 

1.3 Primary models 

In view of the modelling hierarchy that we presented in subsection 1.2 and in light of our 

validation method, we like to think of the outcome of a modelling process in terms of a number 

of formal models. Some of these models are formal calibrations of the main part of a conceptual 

model, while others are formal calibrations of the input part. For any part of a conceptual 

model, we like to agree that the formal models for that part differ from one another only in the 

values that are given to some key parameters. The fact that we let a single conceptual model 

bring about a multiple of formal models raises the issue how we should integrate all these models 

in the process of validation. To be more precise, given some real system behaviour of interest, 

should we validate each main model individually in light of the observed behaviour, without 

considering input models? Should we validate main and input formal models separately, and 

then integrate the obtained measures of validity for every combination of main and input model 
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that we can make? Or should we measure the accuracy of all main and input formal models 

at once? In our method for validation, input model validation is intertwined with main model 

validation. For, we like to assemble alternative input models in an environment. In view of 

the structured discrete event system formalism that we develop in this report, we think of an 

environment as a family of structured discrete event systems, each one of which generates input 

for a main model - again, a structured discrete event system - in an autonomous way. The 

autonomous nature of models in an environment simply means that these models do not get 

their input from other models. This is in contrast with a main model, input for which we always 

generate through a particular autonomous model in an environment. We postulate the notion 

of an environment here as follows, 

Postulate 6 (Environment) 
An environment is a family of autonomous, calibrated formal models of the input part of a conceptual 
model. 

to> 

As a short illustration of an environment, let's reconsider the simple coin striking process 

that we introduced earlier. Assume that we are dissatisfied with the average number of coins 

that are produced per hour in the real production process. To improve the system throughput, 

we want to study the effect of upgrading the striking machine. Within this problem situation 

and modelling goal, we require a model of the striking process itself, and a model of the process 

that is responsible for the generation of coin planchets. In case we have decided conceptually to 

model coin planchet arrivals by a so-called Poisson arrival process, then an environment will -

in light of the specification language that we employ - comprise autonomous structured discrete 

event systems that produce coin planchets. Each system in the environment models a Poisson 

arrival process at a different arrival rate. If we then pin down a single formal model of the 

main part of the conceptual model of the striking process, then we can study the effect that 

workload (arrival rate) has on throughput for the main formal model-environment pair that we 

have identified. 

In light of the short example that we presented above, we state that a primary model 

embraces - among other issues - an environment of systems that model the generation of input 

on the one hand, and a single main formal model that models the processing of input on the 

other hand. In a way, we specify in the following postulate the nature of the modelling pari of 

a primary model, 

Postulate 7 (Primary model) 
A primary model is a construct that contains - among other issues - an environment and a calibrated 
main formal model to process input from models in the environment. 

to> 

Comparing postulate 7 with the definition of a stochastic system that we develop in section 3, 
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the postulate is somewhat incomplete in that it does not explicitly mention the fact that we like 

a primary model to define also the experiments that we are allowed to perform with the models 

that the primary model contains, as well as the stochastic processes that we intend to retain 

as outcome of these experiments. We conceive these experiments and the stochastic processes 

as add-ons to a main formal model and an environment, in order to achieve a primary model. 

Running a little ahead of things, one part of a primary model pins down a main structured 

discrete event system and an environment of input structured discrete event systems - this part 

is emphasised in postulate 7 -, while another part specifies the experiments or replications that 

we are allowed to perform, and lays down a number of stochastic processes. As we will point 

out, we use statistics of these stochastic processes to constitute primary model behaviour. We 

will capture the precise connection between statistics of stochastic processes that are induced 

by experiments with formal models of a primary model, and behaviour of the primary model 

itself, by the concept of a behaviour orientation, that we postulate as follows, 

Postulate 8 (Behaviour orientation) 
A behaviour orientation is a window on statistics of stochastic processes, that are induced through 
experiments with the main formal model and models in the environment of a primary model. 

I> 

Thus, very simply, we think of a behaviour orientation as a kind of filter that specifies, given 

a family of stochastic processes, how statistics of these stochastic processes yield observations 

on independent and dependent variables. Since other behaviour orientations may yield other 

behaviour, we like to speak of behaviour of a primary model through a behaviour orientation. 

In that view, ,we postulate primary model behaviour as follows, 

Postulate 9 (Primary model behaviour) 
Primary model behaviour is a relation between the Cartesian product of the range of independent 
variables and the Cartesian product of the range of dependent variables of interest, induced by a 
primary model through a behaviour orientation. 

I> 

Figure 1 puts some of the concepts that we introduced in perspective. On top of the 

figure, we placed a conceptual model IC; that we have constructed in response to a particular 

problem situation.1 On the lowest level in the figure, we placed behaviour of a real system IR. 
Uncertainty with respect to some key parameters in the main part of IC;, makes that we whish 

to retain at the formal level a number of different main formal models. In the figure, we used an 

index set J ~ {I, 2, ... ,n} to index the different calibrations of the main part of the conceptual 

model. The formal model that we obtain for a calibration j E J is denoted in the figure by IB';,j. 
Assuming in the aforementioned coin striking example that the rate at which coins are struck 

on the striking machine is the only key parameter in the main part of our conceptual model, 

llf we let I be an index set to index different model builders, then we can associate with every index in I a 
scheme like that of figure 1. 
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----- " ./ -----validity? validity? validity? validity? 

----- " ./ -------behaviour of real system it. 

Figure 1: A framework for validation 

then every main formal modellB\j, Vj E J installs a particular striking rate of the striking 

machine. As we pointed out earlier, we are likely to be affected by uncertainty with respect 

to some key parameters in the input part of Ci as well. At the formal level, this translates 

into a family of input formal models, or an environment. In the usual case, we want to group 

these input formal models in a single environment. However, there are some cases conceivable 

in which it is preferable to let the environments differ - albeit only slightly - from one another.2 

In view of the coin striking case that we develop and that will frequently re-appear in this 

report, one can safely set all environments equal to one another. The environments in figure 

1 are denoted by <Ci,j, j E J. Taking back the coin striking example, in case we have decided 

e.g. on a minimum and a maximum arrival rate of coin planchets to the striking process, then 

an environment might comprise an input formal model for every rate in between this minimum 

and maximum arrival rate. 

As we indicated earlier, a primary model comprises an environment, a main formal model, 

replications and stochastic processes. Primary models in the figure are denoted by M;,j, j E J. 

Given these primary models and a suitable behaviour orientation, we are now faced with the 

dilemma of picking the best primary model in view of the real system behaviour that we have 

available. In effect, as we intend to use a primary model to develop secondary models, which 

are then in turn used to evaluate the benefit of competing strategies of improvement, we like 

to discriminate superior from inferior primary models. When is a primary model superior 

to another primary model? Here, we state that the adequacy or validity of a primary model 

depends on the similarity of the behaviour that it induces through the behaviour orientation, 

"The cases that we have in mind in which we may prefer to let environments differ from one another, lie 
beyond the scope of this research report. 
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with regard to the observed real system behaviour. The very assessment of this similarity is 

precisely where we like our validation method to come in. We expect thus from our technique 

that it assists the model builder in determining which primary model he should eventually 

retain to develop secondary models. 

1.4 Verification, validation and the modelling hierarchy 

In figure 2,3 we positioned the notion of a primary model and primary model behaviour in 

the modelling hierarchy. Also, we situated where activities as verification and validation take 

place in the overall picture. The solid arrows in the figure represent typical modelling actions. 

These include perceiving and experimenting with a real system, specifying and calibrating a 

conceptual model in a number of formal models, and implementing these models on a computer. 

The dashed arrows indicate where verification and validation come in. In short, verification 

is a process that operates within the modelling hierarchy, whereas validation is a process that 

extends beyond the hierarchy, and always involves a real system - real system behaviour in 

particular . 

The large rectangle in the upper right of the figure is meant to represent reality. We 

postulate reality as a source of data, that can be structured as a family of real systems with 

labels. Recall that a real system was postulated as a family of building blocks of matter and 

matter interaction. We argued that our interest is not in real systems an sich, but in the 

trace that real systems leave in a universe, set up by the range of measurable independent 

and dependent variables of interest. We referred to such a trace as real system behaviour, and 

argued that we like to think of modelling as an activity that attempts to provide an explanation 

for such behaviour. 

We postulated a conceptual model as an idiosyncratic, cognitive image of all that, that is 

believed to be relevant to explain real system behaviour. A conceptual model is part of the 

world view of a model builder, and depends on the modelling goals that have been put forward. 

We pointed out that a conceptual model is inHicted with a problem of calibration. Some key 

parameters have to be decided upon, and we are unsure what decision is the best decision 

to make. Therefore, at the formal level of modelling, a conceptual model yields a number 

of primary models. Each such model comprises a certain calibration of the main part of the 

conceptual model - a main formal model -, and a number of calibrations of the input part of 

the conceptual model - organised in an environment. We mentioned that, in order to obtain 

a primary model, we must define the experiments that we allow ourselves to perform with a 

main formal model and with the models in an environment, as well as a number of stochastic 

3In the figure, PFM stands for primary formal model, while PSM stands for primary simulation model. Also, 
we displayed on the left side of the figure, the languages to express conceptual models, primary models and 
simulation models. The simulation language that we use to run experiments, is called SIMAN. Good expositions 
on SIMAN are widely available in the literature - see e.g. [12, 25J. 
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Figure 2: Verification, validation and the modelling hierarchy 

processes. Once a primary model is fully established, we can distillate behaviour from the 

model through a behaviour orientation. 

In the figure, we placed primary formal model and primary simulation model verification 

on the one hand, and behaviour validation on the other hand. Verification is a process that 

does not leave the modelling hierarchy. It questions the adequacy of a model in view of a model 

at a higher level in the hierarchy. We can thus address the adequacy of a primary simulation 

model in relation to the primary (formal) model that it claims to implement. This kind of 

verification investigates whether we correctly simulated the formal model specifications of a 

primary model on a computer. We can also address the adequacy of a primary (formal) model 

in relation to the conceptual model that it claims to calibrate. This kind of verification is 

concerned with the fact whether or not we correctly formalised the components, component 

interactions, assumptions, hypotheses, etc. that are contained in a conceptual model. In 

contrast to verification, validation does leave the modelling hierarchy. We define validation as 

an activity that compares real system behaviour with primary model behaviour. The technique 

that we develop in this report offers a way to determine the degree of similarity between primary 

model and real system behaviour. 
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2 Structured discrete event systems 

In this section, we develop a structured discrete event system construct that we like to use to 

specify formal models. The structured discrete event system construct is an extension of the 

classic discrete event system construct, and is inspired on the concept of so-called structured ma

chines and discrete event networks [31]. Other approaches to model discrete event-like systems 

can be found in [4]. We decided to develop a structured discrete event system formalism, as we 

felt that there was some room for improvement of the original discrete event system formalism 

of [31]. In addition, the original discrete event system formalism exhibits some shortcomings 

that prevented us from employing the formalism right-away in light of our validation method. 

Although we start our presentation here with an introduction to general systems theory in 

subsection 2.1, we assume that the reader is already familiar with most of the system theoretic 

concepts that we present. Good expositions on general systems theory include [19, 31, 30, 32, 

28]. In subsection 2.2, we pin down the notion of abstract objects and abstract systems, which 

are general system theoretic constructs that we need to define the operands of our validation 

method. Then, we introduce in subsections 2.3 through 2.6 the necessary discrete event system 

terminology, and expose our structured discrete event system construct. We postpone an 

example of our system construct until subsection 3.4. 

2.1 System theory fundamentals 

In order to build a formal model - irrespective of whether we are dealing with the main or 

the input part of a conceptual model -, we identify a number of descriptive variables. Some 

descriptive variables are input variables, representing facts, that are determined externally, 

possibly by an experimenter. Some of the non-input variables are needed to derive primary 

model behaviour. We call those non-input variables output variables. Where input and output 

variables represent causes and effects respectively, state variables form a kind of bridge in 

between the causes and the effects. In a way, they constitute the memory of a system. In the 

following definition, we use the concept of input and output variables to lay down the notion 

of an input and output set. 

Definition 1 (Input and output set) 
For Xi, i E I input variables, Yj, j E J output variables, indexed by finite index sets I and J, 

Xi and }j the range of the respective variables Xi and Yj for all i E I and j E J, the Cartesian 
product X ~ IIiE! Xi and the Cartesian product Y ~ IIjEJ}j are called an input and output set 

respectively. 

o 
In order to be able to speak of behaviour of descriptive variables, we require the notion of 

time and of a time set. We formally define a time set as follows, 
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Definition 2 (Time set) 
An arbitrary set T is called a time set iff. T is equivalent to the positive real line [0, +00[. 

o 
Members of a time set are called time points. In the remainder of this report, we will always 

assume that a time set T equals the positive real line [0, +00[. Let now Xi, i E I be descriptive 

variables, indexed by a finite index set I. Denote the range of every variable Xi, 'Vi E I by Xi. 

We call a function from a time set T into niEI Xi a time function. Formally, 

Definition 3 (Time function) 

For T a time set, Xi, i E I descriptive variables, indexed by a finite index set I, and Xi the range of 
Xi for every i E I, a function from T into ILEI Xi is called a time function. 

o 
Depending on whether the variables that are indexed by the index set I in definition 3 are 

input, state, or output variables, we speak of an input time function, a state time function, 

or an output time function. We use time functions to describe the behaviour of descriptive 

variables for an unlimited period of time. We call the universe of all possible time functions a 

time function set. Formally, 

Definition 4 (Time function set) 

For T a time set, Xi, i E I descriptive variables, indexed by a finite index set I, and Xi the range of 
Xi for every i E I, the family of all time functions from T into X ~ IIiEI Xi, denoted by §(T, X), 
is called a time function set. 

o 
We call the restriction of a time function from a time set T into a set X to an half-open 

intervallto, tIl of T such that tl > to, a trajectory or segment over lto, tIl. We use trajectories 

or segments to describe the behaviour of descriptive variables over a limited period of time. 

Formally, 

Definition 5 ('Irajectory /Segment) 

For T a time set, Xi, i E I descriptive variables, indexed by a finite index set I, Xi the range of Xi 

for every i E I, f a time function from T into IIiEI Xi, and T' ~ Jto, tlJ an half-open interval of T 
such that tl > to, the restriction of f to T' is called a trajectory or segment over T'. 

o 
As we did for time functions, we speak of input, state and output trajectories, depending 

on whether we are dealing with input, state or output variables. Where a time function set 

embodies all possible behaviour of some descriptive variables over an unlimited period of time, 

a trajectory or segment set embodies all possible behaviour over any limited period of time. 

Formally, 
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Definition 6 (Trajectory/Segment set) 
For T a time set, Xi, i E I descriptive variables, indexed by a finite index set I, Xi the range of Xi 

for every i E I, and X ~ ILEI Xi, the family of all restrictions of time functions from T into X to 
half-open intervals of T, denoted by .5" (T, X), is called a trajectory or segment set. 

D 

In general systems theory, the family of all segments of an input segment set that are allowed 

to be applied to a model, is called an allowable input segment set. Members of an allowable 

input segment set are called allowable input segments. Let n be a subset of an input segment 

set .9'(T, X). Then n is called an allowable input segment set if and only if it satisfies a 

number of desirable properties. A first property concerns the fact that, when an input segment 

W E .9'(T, X) over an interval]to, tl] is allowable - and hence belongs to n -, then we like that 

the restriction of w to every half-open interval]to, t] such that to < t < tlo is also an allowable 

input segment. This requirement follows readily from the reasonable assumption that we can 

at any time interrupt an experiment. We call the restriction of a segment w over an interval 

lto, tl] to an interval]to, t] the left segmentation of w to t. In the following definition, we define 

left segmentation to a time point for a segment in an arbitrary segment set. 

Definition 7 (Left segmentation) 
For .5"(T, X) a segment set, s E .5"(T, X) a segment over an interval Jto, tlJ, and t a time point in T 

such that to < t < t l , the left segmentation of s to t, denoted by St), is a segment over Jto, tJ, defined 
in every tf E Jto, tJ by 

St) (t') ~ s(t') (2.1) 

D 

If we can interrupt an experiment, then it is only reasonable to assume that we can continue 

an interrupted experiment. In particular, if w is an allowable segment over ]to, tl], and if tis 

a time point for which holds that to < t < tl, then we like that the restriction of w to ]t, tIl is 

also an allowable input segment. We call this restriction the right segmentation of w to t, 

Definition 8 (Right segmentation) 
For .5"(T, X) a segment set, S E .5"(T, X) a segment over an interval Jto, t l], and t a time point in 
T such that to < t < it, the right segmentation of s to t, denoted by S>t, is a segment over Jt, tl], 
defined in every t' E Jt, tlJ by 

(2.2) 

D 
With the help of definition 7 and 8, we can now concisely formulate a first requirement for 

a subset of an input segment set to be an allowable input segment set, in that it must be closed 

under left and right segmentation of segments. Any left or right segmentation of a segment in 

the set, must yield another segment in the set. 
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A second property involves the notion of time invariance of a system. Stated informally 

here, a system is called time invariant if its reaction to an input segment is independent of the 

interval over which the input segment is defined. In that respect, we desire that the translation 

of an allowable input segment to any time point in the time set, yields another allowable input 

segment. We define the translation of a segment to a time point as follows, 

Definition 9 (Translation) 
For YeT, X) a segment set, s E yeT, X) a segment over an interval]to, tl], and t a time point in 
T, the translation of s to t, denoted by S~t, is a segment over ]t, t + (tl - to)], defined in every 
t' E ]t, t + (tl - to)] by 

S~t(t') #0 s(to + (t' - t» (2.3) 

o 
A translation of a segment thus comes down to a shift of its domain over some amount of 

time units. With definition 9 in mind, we state a second requirement for a subset of an input 

segment set to be an allowable input segment set, in that it must be closed under translation 

of segments. This implies that we can make abstraction of the precise interval over which a 

segment is defined. 

A final desirable property requires the concept of right addition of segments. In particular, 

when both wand w' are allowable input segments, and when w' is contiguous to w - that is, 

when the begin point of the domain of w' coincides with the end point of the domain of w -, 

then it is only reasonable to expect that the new segment formed by 'continuing' w with w' 

must also be an allowable input segment. We write the continuation of w with w' as ww' and 

call WW' the right addition of w' to w. Formally, 

Definition 10 (Right addition) 
For Y(T,X) a segment set, and s,s' E Y(T,X) segments over lto,tll and ]t1,t2l respectively, the 
right addition of s' to s, denoted by ss', is a segment over lto, t2], defined in every t E ]to, t2l by 

(2.4) 

o 
For a subset of an input segment set to be an allowable input segment set, we require that it 

is closed under right addition of segments. Summarising the above desirable properties, yields 

the following definition of an allowable input segment set, 

Definition 11 (Allowable input segment set) 
For YeT, X) an input segment set, a subset 11 of YeT, X) is called an allowable input segment set 

iff. it is closed under left and right segmentation, translation and right addition of segments. 

o 
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2.2 Abstract objects and abstract systems 

The abstract object construct that we cover in the following, is a primitive construct in general 

systems theory, that we like to use to model all that can possibly be known from a real system 

- see e.g. [30].4 We will define the notion of an abstract object trace as all that we do know of 

a real system. 

For n an allowable input segment set, and 9(T, Y) an output segment set, we denote a 

generic input/output segment pair by (w, IJ), with wEn and IJ E 9(T, Y). We whish to agree 

here once and for all that dom(w) = dom(lJ) for any input/output segment pair (w, IJ). Imagine 

now in light of the aforementioned coin striking process, that we let an experimenter determine 

when coin planchets are added to the buffer of the process over some appropriate interval of 

time. Assume that, over this interval, we simply record the number of coins in the buffer as 

well as the status (busy/idle) of the striking machine. In other words, the experimenter applies 

some allowable input segment w - scheduling arrivals _,5 while we observe the returned output 

segment IJ - measuring queue length and machine status. What factors will determine the output 

segment that we observe? Clearly, the output segment depends on the input segment that the 

experimenter applies. However, we expect that it will also depend on the initial conditions in 

the striking system - as there are the initial number of coins in the buffer, and the fact whether 

the striking machine is initially idle or busy. Naturally, the output segment that we observe 

also depends on the very way that the real coin striking process works. What matters here, is 

that for the interval of experimentation, there is a particular universe of input/output segment 

pairs that characterises the family of all possible experimental outcomes that can be obtained 

by letting the experimenter choose an arbitrary allowable input segment, and by applying this 

segment to the process, initialised in some arbitrary initial 'state'. We call such a universe an 

input/output segment relation. Formally, 

Definition 12 (Input/output segment relation) 

For T a time set, X and Y an input and an output set, n ~ YeT, X) an allowable input segment 

set, Jto, tlJ C T such that tl > to, and Alto,tll £ {w I dom(w) = Jto, t l ]}wE51 and Bltohl £ {O I 
dom(O) = Jto, h]}OE.9'(T,Y), a relation between Alto,ttl and Blto,tll, denoted by Rlto.t.l, is called an 
input/output or I/O segment relation. 

o 
Given that an input/output segment pair (w, IJ) belongs to an input/output segment relation 

Rltohl, it is only natural to ask whether we should expect the pair (w .... t, IJ .... t ) with translations 

of wand IJ to belong to the input/output segment relation R1t,t+(t,-to)I' and this for all t E T. 

In the following, we let this issue be answered in the positive. In that respect, we define the 

notion of a time invariant family of I/0 segment relations as follows, 

4In that respect, real system behaviour must be derivable from an abstract object. 
5We thus assume that the arrival trajectorY of coin planchets, composed by the experimenter, is allowable. 

In particular, we require here that it consists of countably many arrivals. 
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Definition 13 (Time invariant family of I/0 segment relations) 
For T a time set, X and Y an input and an output set, 11 <;;; yeT, X) an allowable input segment 
set, I ~ {Jto, tll I tl > tohohET, and Rjto,t,] C 11 x YeT, Y) an input/output segment relation 
for every lto, tll E I, the family {Rjto,t,]}jto.ttjEI is called a time invariant family of I/G segment 

relations iff. it holds for alllto, tll E I that 

(w,O) E Rjto,tlj =? 'It E T : (w~t, O~t) E Rjt,t+(t,-to)j (2.5) 

o 
The fact that an allowable input segment set is closed under left and right segmentation, 

raises the issue whether, in case an input/output segment pair (w, B) belongs to an input/output 

segment relation R]toh]' we should expect that the input/output segment pair (wt],Bt]) and the 

input/output segment pair (w>t, B>t) with left and right segmentations of w and B belong to 

the input/output segment relations R]to,t] and R]t,tl] respectively, and this all t E ]to, tl[. Again, 

we let this issue be answered in the positive. For, we can split up our experiment, and consider 

the experimental outcomes in the first and the subsequent second experiment as I/0 segment 

pairs in (different) I/0 segment relations. 

Since an allowable input segment set is closed under right addition, it is only natural to ask 

whether we should expect that for every input/output segment pair (w, B) in an input/output 

segment relation R]to'!']' there is for every t2 E T such that t2 > tl at least one input/output 

segment pair (w', B') in the input/output segment relation R]tlh]' for which holds that the 

input/output segment pair (ww', BB') with the right additions of w' to wand B' to B is an 

input/output segment pair in the input/output segment relation R]toh]' In other words, if we 

obtained (w,B) in an experiment, where dom(w) ~ ]to,tlj, should we then expect that it is 

possible to find for every t2 E T such that t2 > tl at least one pair (w', B') in R]tl,t2] such that 

(ww', BB') E R]toh]? Again, we let this question be answered in the positive. In that respect, 

we define a consistent family of I/0 segment relations as follows, 

Definition 14 (Consistent family of I/O segment relations) 
For T a time set, X and Y an input and an output set, 11 <;;; yeT, X) an allowable input segment 

set, I ~ {lt~, tlll tl > tohohET, and Rjtohj C 11 x YeT, Y) an input/output segment relation for 
every lto, tll E I, the family {Rjto,tljlitohjEI is called a consistent family of I/G segment relations 

iff. it holds for alllto, tll E I that 

(2.6) 

o 
With the help of definitions 13 and 14, we are now ready to give a concise definition of 

an abstract object. The definition that we provide here is similar in nature, though somewhat 

stricter than a definition given by [30].6 

6In particular, the definition requires that the family of I/O segment relations that makes up an abstract 
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Definition 15 (Abstract object) 
For T a time set, X and Y an input and an output set, n C;;; .5"(T,X) an allowable input segment 
set, I ~ {lto, tIl I tl > toho,t,ET, and Rjto,tlj C n x .5"(T, Y) an input/output segment relation 
for every lto, tIl E I, the family {Rjto,t,j}jto,t,jEI is called an abstract object or AO iff. it is a time 
invariant and consistent family of I/O segment relations. 

o 
An abstract object characterises all that can possibly be known from a real system. It 

embodies a black-box view on a real system. That is, it tells us for every item that can go into 

the box - for every allowable input segment -, which items can come out of the box - the output 

segments to which the input segment is related by an I/0 segment relation. We conclude our 

discussion of abstract objects by introducing the notion of an abstract object trace as follows, 

Definition 16 (Abstract object trace) 
A family of subsets of the I/O segment relations of an abstract object A is called an abstract object 

trace or a trace of A. 

o 
In general, for A an abstract object, we denote a trace of A by AI.' We use the concept 

of an abstract object trace to formally express what we do know of a real system. A limited 

time frame, and experimental constraints imply that we cannot expect to have a fully dressed 

abstract object of a real system at our disposal. Instead, all that we can hope for is a number 

of observed input/output segment pairs. We organise these pairs in an abstract object trace. 

With some of the input/output segment pairs of an abstract object trace, we intend to perform 

particular time based arithmetic, in order to derive values for all independent and dependent 

variables of interest, and to construct real system behaviour. 

An intuitive interpretation of state variables proceeds by assuming that we have an abstract 

object available. In effect, state variables can be seen as those variables that are required, once 

the object is known, to label every I/0 segment pair of the object that carries a common 

allowable input segment w, with a unique combination of values for the variables - unique 

within the family of I/O segment pairs that have w at their first coordinate -, and this for every 

allowable input segment w. Such a label is referred to as a state of the abstract object. Much 

similar to the definition of an input and an output set, we define a state set as follows, 

Definition 17 (State set) 
For Uk, k E K state variables, indexed by a finite index set K, and Ek the range of state variable 
Uk for all k E K, the Cartesian product E ~ IIkEK Ek is called a state set. 

o 
Members of a state set are called states. Just like with input and output variables, the 

state behaviour through time is captured by a trajectory. Once we have pinned down a number 

object must be a time invariant family. 
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of state variables, some states may not be very meaningful to describe the conditions in an 

abstract system. We call those states irregular states. In short, an irregular state is a state 1) 

that we will never want to choose as a starting state in an experiment with an abstract system, 

and 2) that can never be reached from a non-irregular state. Where the former is under our 

direct control, the latter requires us to see the notion of state transitions. What matters here is 

that an abstract system is always in a non-irregular state, either because we have put it in such 

a state, or because the system has reached this state from another non-irregular state when it 

processed an input segment. In the following, we refer to non-irregular states as initial states, 

and we assemble all initial states in an initial state set. Practically, given a particular state set, 

we will derive an initial state set by imposing a family of constraints on the state variables. 

Therefore, we define an initial state set formally as follows, 

Definition 18 (Initial state set) 
For I; a state set, and C a family of constraints on the state variables that make up I;, an initial 

state set, denoted by I;o, is a subset of I; that holds every state satisfying all of the constraints in C. 

o 
We can rearrange the information that is contained in an abstract object, by defining a 

function for every initial state of the object, that assigns to every allowable input segment the 

output segment that the object will return when it is in this particular state. Such a function 

is termed an input/output segment function. In view of our definition of an abstract object, we 

define an input/output segment function as follows, 

Definition 19 (Input/output segment function) 
For T a time set, X and Y an input and an output set, n ~ ..9'(T, X) an allowable input segment 
set, A an abstract object with an I/O segment relation Rlto,t,] c n x ..9'(T, Y) for every lto, tll C 

T S.t. tl > to, and (J an initial state from an initial state set I;o for A, a function from n into 
yeT, Y), denoted by i u , is called an input/output or I/O segment function in (J iff. it holds for all 
win n that 

{
W[RdOrn(w)lB 

iu(W) = B =? iu(Wtl) = Btl, \;It E dom(w) \ {sup(dom(w»)} 

iu(W~t) = B~t, 'It E T 

(2.7) 

o 
The conditions in (2.7) comply with the intuitive notion of state, and are in agreement with 

the fact that an abstract object is a consistent, time invariant family of I/O segment relations. 

Another way to represent the information in an abstract object A ~ {RJto,t,J}JtohlcT s.t. tl>tO 

with allowable input segment set n, is then to give an input/output segment function for every 

state in an appropriate initial state set ~o for A, such that for all w in n and (T in ~o, it holds 

that 
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(2.8) 

The destination state that is reached from a particular initial state under an applied allow

able input segment, is specified by a so-called state transition junction. For L:o an initial state 

set, and n an allowable input segment set, a state transition function is a function from L:o x n 
into L:o that satisfies certain consistency conditions. A discussion of these conditions extends 

beyond the scope of this research report - see e.g. [30]. 

The connection between states and outputs is captured by a so-called output junction. For 

L:o an initial state set, and Y an output set, an output function, denoted by A, is a function 

from L:o into Y that assigns to every state in L:o an output from the output set Y. 

The following abstract system construct, which eventually comes down to the system con

struct of [31], integrates the concepts that were introduced before. 

Definition 20 (Abstract system) 
For T a time set, X and Y an input and an output set, n <;;; Y(T, X) an allowable input segment set, 
~o an initial state set, {) a state transition function from ~o x n into ~o, and A an output function 
from ~o into Y, an abstract system or AS is a 7-tuple, defined by 

S £ (T, x,n, Y, ~o,{), A) (2.9) 

o 
The specification of a state transition junction, that should determine the destination state 

under any allowable input segment, prevents us from building abstract systems for problems 

of a realistic complexity. The structured discrete event system formalism that we develop in 

the following is precisely aimed to be able to construct formal models for the kind of systems 

and problem situations that we like to think of in light of our validation method. The abstract 

system construct will re-appear as we develop the stochastic system construct in section 3. 

2.3 Events, timed sequences and event scheduling 

Intuitively, a (structured) discrete event system is a system theoretic construct, in which events 

take place at discrete points in time. The term structured emphasises that a certain structure 

of components and component interactions is contained in the system specification. Unlike 

an abstract system, events are the driving force behind the advance of time in a structured 

discrete event system. We classify events in two categories: events that are predicted by the 

system specification and drive the system from one state to another, or internal events, and 

events that happen outside the system (and are hence unpredictable) but affect the state of 

the system, or external events. In view of the aforementioned coin striking process, a typi<'!al 

internal event could be the striking machine, taking an unfinished coin planchet from the buffer, 
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Figure 3: Segments and timed sequences 

and commencing the striking process. A typical external event could be a new, unprocessed 

coin planchet being added to the buffer in front of the striking machine. 

We call a sequence of time-event pairs, whereby every pair specifies an event and a time point 

of occurrence, a timed event sequence if and only if the time point of occurrence of the event 

in any time-event pair of the sequence is greater than or equals the time point of occurrence 

of events in previous time-event pairs in the sequence. The following definition of a timed 
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sequence is somewhat more general, in that it does not explicitly require that the members of 

the sequence must be events, 

Definition 21 (Timed sequence) 

For T a time set, X an arbitrary non-empty set, and I a countable index set, a function from I 

into T x X, denoted by s, is called a timed sequence iff. for all i l , i2 E I s.t. i l < i2 it holds that 
V"T(s(i1» ::; V"T(s(i2». 

o 
Figure 3 highlights the difference between segments and timed sequences. Figure 3(a) 

displays three potential segments over an interval Jto, tlJ. We used different line styles in the 

figure to differentiate the trajectories. The segments could be input, state or output segments 

of an abstract system. Figure 3(b) shows three timed sequences - albeit in a somewhat implicit 

way. We used different dot styles to differentiate the timed sequences. If we associate e.g. 

the squared dots in figure 3(b) with coin arrivals, then the timed sequence X that assigns to 

every index i in {I, 2, 3, 4} a pair with a time point in Jto, tlJ at which a coin arrives, and the 

keyword coin, is a typical timed external event sequence for the coin striking process. Figure 

3(b) contains another example of a timed sequence. Interpret therefore the lower and upper 

triangular shaped dots in the figure as E[ ~ striking process initiated and Ee ~ striking process 

completed respectively. According to the figure, the striking process is initiated on the interval 

Jto, tIl at the same time that it is completed, indicating that the striking machine takes a new 

coin planchet from the buffer, every time it finishes the current coin in process. The timed 

sequence E that assigns to every index i in {I, 2, ... , 6} a pair with a time point in Jto, tIl at 

which the striking process is completed or re-initiated, and the event E[ or Ee, is a typical 

example of a timed internal event sequence. Finally, figure 3(b) contains a third example of a 

timed sequence. Assume that the round shaped dots in the figure represent the number of coins 

in the buffer of the striking process. If we associate buffer content with system output, then 

the round shaped dots in the figure constitute a timed output sequence v that assigns to every 

index i in {I, 2, ... , 7} a pair with a time point in lto, tIl at which the system dumps its output, 

and a natural number indicating the number of coins in the buffer at that point in time. 

Given an initial state set ~o, a family of internal events E, and an extended time set '1',7 
we capture the time-event advance mechanism by a function T from ~o into '1' x E. For every 

initial state, this function specifies which internal event will happen next, and how many time 

units will have to elapse before this event occurs. We call such a function a time-event advance 

function. Formally,8 

7By extended time set, we mean the time set T, united with the singleton-set that holds the supremum of T. 
In case T ~ [0, +00[, we thus have that f' ~ [0, +00]. 

BThe definition that we provide of a time-event advance function runs parallel to that of the time-advance 
function in the classic discrete event system formalism of [31]. 
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Definition 22 (Time-event advance function) 
For T an extended time set, E an internal event set, and ~o an initial state set, a time-event advance 
function, denoted by T, is a function from ~o into T x E. 

D 

In discrete event systems, it is not uncommon that multiple internal events are anticipated 

to occur simultaneously in the future from the viewpoint of a particular initial state. In that 

respect, instead of directly specifying the value of a time-event advance function at an initial 

state, we whish to set up a list of anticipated time-event pairs. Then, we use the amount of 

time units that need to elapse before the event in the anticipated time-event pairs take place, 

together with a partial order relation that we install on the internal event set, to determine 

the next internal event, and the amount of time units that need to elapse before it will occur. 

First, let's introduce the notion of an internal event scheduler in the following definition, 

Definition 23 (Internal event scheduler) 
For T an extended time set, E an internal event set, and ~o an initial state set, an internal event 

scheduler is a relation, denoted by r, between ~o and T x E. 

D 

Let r be an internal event scheduler. For an arbitrary initial state u E 2:0, one or more of 

the time-event pairs to which u is related by r, will have at their first coordinate, an amount 

of time units that is the smallest amount of time units among all time-event pairs to which u is 

related by f. Such time-event pairs carry imminent events. Formally, we define an imminent 

event as follows, 

Definition 24 (Imminent event) 
For r an internal event scheduler between ~o and T x E, and u an initial state of ~o, an event E E E 
is called an imminent event in u iff. 

.. . . {3S E T : u[r](s, E) 
E IS Immment m u '* 

~3[E' E E, s' E T s.t. s' < sJ: u[rJ(S',E') 
(2.10) 

D 

We derive a time-event advance function T from an internal event scheduler r, and a partial 

order relation ::S on the internal event set, as follows 

'" {u[r](s, £) and £ is imminent in u 
T(U) = (s,£) '* 

~::J[t' E E s.t. £' -< £] : u[r](s, E') 
(2.11) 
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2.4 Components and local transitions 

The state of an abstract system is described by a number of state variables in a state variable 

set. In a structured discrete event system, we partition a state variable set, attach a linguistic 

label to every member of the partition, and refer to such a label as a component. A component 

points to a set of state variables that we conceive as meaningfully belonging together. Typical 

examples of components that we think of are queue and striking machine in the context of the 

simple coin striking system. We call the state variables to which a component points component 

state variables. A typical state variable of a queue might indicate the number of items that 

it contains, while a striking machine could be described by the remaining time that it needs 

to finish the current coin in process. The Cartesian product of the range of state variables 

of a component constitutes a component state set. Some states in a component state set may 

carry incompatible values for the state variables. Therefore, we retain all meaningful states of 

a component in a component initial state set. In the following, we use the symbol C to denote a 

set of components, and we employ the notation ~8 to denote the initial state set of component 

cE C. 

A logical follow-up of thinking of a system in terms of components and events, is that 

components are perceived to influence one another through events. To be more precise, for 

every component, we identify events that significantly affect the state of the component, and 

the scheduling of which depends on the state of other components. By significant, we mean that 

the state change of the component as a result of the event, is not limited to a simple reduction 

of the value of a countdown clock time variable - like a variable that measures the remaining 

striking time.9 By an event, the scheduling of which depends on the state of other components, 

we mean that state variables of the latter are indispensable to anticipate the event, and/or to 

know how many time units need to elapse before the event is expected to take place. In a way, 

this kind of influence of a component on another component through an event embodies a notion 

of causality. In effect, the state of a component (the influencer) determines - possibly among 

other components - the scheduling of an event, which upon occurrence significantly affects the 

state of another component (the influencee). It is as if a state change of the latter, in response 

to the event, is caused by a state change of the former. lO For this kind of influence that a 

component has on another component, we call the influencing component an active influencer. 

Sometimes, to calculate the next state of a component under an event, we need the state of 

another component that does not influence the former in the sense that we explained above. 

The random number generator component that we encounter later in this report is a typical 

9 A countdown clock time variable is a state variable that carries the interpretation of measuring a remaining 
'processing' time of a component. Usually - that is, at almost every time point that an event occurs -, a 
countdown clock time variable is simply reduced with the time that has elapsed since the event took place. Such 
a straight-forward reduction is a trivial or insignificant state change of a component. 

leThe idea is that a state change of the influencer suddenly results in the scheduling of an event, which upon 
occurrence affects the state of the inlluencee in a non-trivial or significant way. 
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example of such an influencing component that is not an active influencer. As we will point out, 

we let every state variable of a random number generator component hold a so-called (pseudo) 

random number - a positive real number on the unit interval. We use random numbers to 

draw samples of a population of e.g. different striking times. This allows us to model an 

apparently random striking time. In that case, a component striking machine requires the 

state of a component random number generator at the very moment that the striking process is 

initiated, and that a striking time must be sampled. In that way, the next state of the striking 

machine component depends on the current state of the random number generator component. 

Therefore, we say that the random number generator component is a passive influencer of the 

striking machine component. 

To model active and passive influencers, we define a relation in a component set. A com

ponent c is related to a component c' # c if and only if c is an active or a passive influencer of 

c'. We call such a relation a causality-dependency relation. We employ a causality-dependency 

relation to model the effect that internal events have on the state of a component with the 

help of a local transition function. A local transition function is defined for every component, 

and maps a triple with the current state of the component, the current state of all components 

that are related to the component by the causality-dependency relation, and a time-event pair, 

on the state that the component will travel to upon occurrence of the event in the time-event 

pair. Formally, we define a local transition function as follows, 11 

Definition 25 (Local transition function) 
For l' an extended time set, E an internal event set, Eo an initial state set, r a time-event advance 
function from Eo into l' x E, C ~ {c; hEI a component set, indexed by a finite index set I, Egi, i E I 
initial state sets of the components in C such that Eo ~ Ito E~, A a causality-dependency relation 

in C, and c a component in C, a function from a subset of E3 x (II j EI s. t. Cj IA]c E~j ) x (1' x E) into E3, 
denoted by 84" that is defined in a point (aC , aIA]c, (s, E»~, with alA]c ~ (aCh, aCh, ... , a Cjn ) if and 

only if there exists a state a E Eo such that a C = \lEo (a), a Cj = \l E~j (a) for every j ~ jl,jz, ... ,jn 

and r(a) = (s, E), is called a local transition function in c. 

o 
The idea of local transition functions comes down to the following. Everything as in defini

tion 25, let a be an initial state of the initial state set ~o of a structured discrete event system. 

The state a pins down an initial state for every component ci, Vi E I. The next internal event 

that will take place, and the amount of time units that will elapse before it occurs, are given 

by the image of a under the time-event advance function T. Denote this time-event pair by 

T(a) ~ (s, E). In order to calculate the next state of the system when € takes place, we can 

proceed in two ways. Either we immediately define the global state that the system reaches 

from the current state, once the event € is processed after s time units, or we calculate the next 

11 In the definition, we adopt the convention that L:o ~ L:~' X L:~2 ~ A x B x C in case C ~ {Cl, C2} and 
E~' ~ A x B and L:~2 ~ C. Thus, in case (a, b) is a state of C, and C is a state of C2, then we denote an initial 
state of L:o by (a,b,c) and not by ((a,b),c). 
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local states of the system first under the time-event pair - we calculate the states of all com

ponents individually -, and then assemble all these local states in a global state. By specifying 

local transition functions, we follow the latter approach. Clearly, in order to compute the next 

(local) state of a component, we must know its current state, the state of all its influencers and 

the time-event pair that takes place. Therefore, a typical member of the domain of the local 

transition function of a component c is of the form (aC , a[Alc, (s, e)), where a C is the current 

state of the component, a[Alc is the current state of all the influencers of the component, and 

(s,e) is a time-event pair that can take place when the system is in one of the (global) states 

that specifies the state of c and its influencers to be a C and a[Alc. 

2.5 Total states and external state transitions 

In a (structured) discrete event system, a change of state occurs only when an internal or an 

external event takes place. Since nothing notable happens in between a pair of subsequent 

events, the state in between two state transitions remains fixed. In order to be able to correctly 

model the effect that an external event has on the current state of a structured discrete event 

system, we must however be aware of the amount of time that the system has resided in its 

current state. Therefore, a system time variable e is used in the classic discrete event system 

formalism, that keeps track of the time that the system has been in its current state. With the 

help of a system time variable, the concept of a total initial state set can be defined as follows, 

Definition .26 (Total initial state set) 
For T an extended time set, 1;0 an initial state set, E an internal event set, and T a time-event 
advance function from 1;0 into T x E, a total initial state set, denoted by Eo, is defined by 

(2.12) 

o 
Members of a total initial state set are called total initial states. In the following, we use 

the notation jj to denote an arbitrary total initial state. Thus, very simply, in case a structured 

discrete event system is said to be in a total initial state jj ~ (a, e) at a certain time point t, 
then it has been in state a at time point t for e time units. Using the concept of a total initial 

state set, we define a transitory state set as follows, 

Definition 27 (Transitory state set) 
For T an extended time set, 1;0 an initial state set, and Eo C 1;0 x T a total initial state set, a 
transitory state set, denoted by 1;_, is defined by 

1;_ ~ {cr I -.3e E T : (cr, e) E EO}.·EEo (2.13) 

o 
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Members of a transitory state set are called transitory states. Combining (2.12) and (2.13), 

it follows that a transitory state must be a state in which the next internal event is bounded 

to occur immediately. A (structured) discrete event system will hence only pass through its 

transitory states. Once all events at a time point have been processed, it always settles in a 

non-transitory state. 

Using the concepts of total initial states and transitory states, we now define a pair of final 

discrete event system concepts, i.e. an external state transition function and a discrete event 

output function. For T an extended time set, ~o an initial state set, f:o c ~o x l' a total initial 

state set, and X an external event set, a function from f:o x X into ~o, denoted by OX, is called 

an external state transition function. An external state transition function specifies, for every 

pair with a total initial state of a (structured) discrete event system and an external event, 

the next state of the system. By convention, the system time variable e is set at 0 when an 

external and/or an internal event takes place. For l' an extended time set, ~o an initial state 

set, f:o c ~o x T a total initial state set, and Y an output set, a function from ~o \ ~ ..... into 

Y, denoted by A, is called a discrete event output function. A discrete event output function is 

the discrete event like version of the output function of an abstract system. Here, we explicitly 

state that output is only defined for those states that are non-transitory states. 

2.6 The structured discrete event system construct 

In the following definition, we formally lay down the structured discrete event system construct 

that we intend to employ to build models for the problem situations that we think of in light 

of our validation method. 

Definition 28 (Structured discrete event system) 

For T an extended time set, X an external event set, (E,~) a partially ordered internal event set, Y 

an output set, C £ {C;};EI a component set, indexed by a finite index set I, E~i, i E I initial state 
sets for components in C, Eo ~ DiEI E~i an initial state set, r an internal event scheduler between 
Eo and T x E, A a causality-dependency relation in C, o¢, '<:Ie E C a local transition function in e, 

Ox an external state transition function from I;o x X into Eo, and)" a discrete event output function 
from Eo \ E_ into Y, a structured discrete event system or sDEVS is a 12-tuple, defined by 

(2.14) 

o 
For Q the structured discrete event system of definition 28, we call (global) internal state 

transition function of Q, denoted by oq" the function from a subset of ~o x (1' x E) into ~o, 

that is defined in (0",7(0")) for every 0" E ~o, by 
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Figure 4: State transitions in a structured discrete event system 

(2.15) 
v 

organised in a I::iEI dim(E~i) tuple 

with UCi ~ \7 ECi (u) for every i E I, and with I ~ {I, 2, ... , n}. As we pointed out in (2.15), 
a 

we organise the RHS of (2.15) such that the image of (U,7(U)) under 8", forms an initial state 

in ~o. Thus, very simply, a (global) internal state transition of a structured discrete event 

system is modelled by triggering every local transition function of the system individually, and 

then organising the outcome of these triggering operations in an initial state of the structured 

discrete event system. 

In figure 4, we put the essential items of a structured discrete event system Q in perspective. 

We illustrate in the figure how a structured discrete event system travels from an initial state 

UQ to a (destination) state Ut2' under a timed external event sequence X ~ (tl,Xtl) ~ (t2,Xt2). 

At time point tQ, the system is assumed to be in a total initial state GtQ ~ (uQ,O). We now 

use the time-event advance function 7, that is induced by the internal event scheduler r and 

the partial order relation ::S on E, to derive the next internal event, and the remaining time 

until this event will occur. The time-event pair with the first imminent event that needs to be 

processed equals r(uQ) ~ (eo, e). In the figure, the event e is scheduled to occur at time point 

to. Since no external events happen from time point tQ until and including time point to, the 

state of the system remains uQ at every time point in the interval [tQ, tor. The system time 

variable e steadily increases however. The total state of the discrete event system changes thus 

continuously on the interval [tQ, tor. At time point to, the internal state transition function 8", of 

(2.15) is used to derive the next state of the system. The next state equals Uta ~ 8",(uQ, (eo, e)). 
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What is now the state of the system at time point to? We define this state to be the state 

that the system eventually reaches, after having processed all events, no matter whether they 

are internal or external events. Since there is no external event at time point to, and in the 

assumption that Uto is a non-transitory state, the state of Q at to equals thus Uto. 

We let the structured discrete event system Q produce output at time point to, in response 

to the fact that a state transition has occurred. In contrast with the classic discrete event system 

formalism, we whish to agree here once and for all to apply the discrete event output function A 

of Q every time that an event - no matter whether it is an internal or an external event - takes 

place, that differs from the no-internal-event and the no-external-event. As we will indicate in 

the example specifications that we develop later in this report, we use the no-internal-event to 

let time advance in a structured discrete event system in case no significant internal event is 

expected to take place in the future. Sometimes, we apply the no-external-event to a structured 

discrete event system as the result of the fact that the no-output of another system is offered 

as an external event to the former system. To be more precise, there may not always be a 

meaningful output to be reported when a state transition occurs in a system that produces 

external events for another system - which makes that we will define the output in that case 

to be the no-output. Assuming that the event at time point to is not the no-internal-event, the 

system produces an output Yto ~ A(Uto). 

After the state transition at time point to, the system time variable e is reset at o. The 

total state of Q at time point to hence equals (Uto'O). Now, we employ again the time-event 

advance function T to derive the next internal event, and the time until this event will occur. 

Assume that T(Uto) ~ (el + e2, E'). As indicated by the figure, an external event Xtl occurs 

before the internal event E' takes place. In case Xtl is the no-external-event, we leave the total 

state of the system untouched. In case Xtl differs from the no-external-event, we use the total 

state (Uto,el) to look up the state that is assigned to the pair ((Uto,el),Xtl) by the external 

state transition function ox. The system hence travels to Uti ~ ox((Uto,el),Xtl) at time point 

tl. We reset the system time variable e at O. What happens once the system has settled in Uti? 

Then, we re-employ the time-event advance map T to figure out when the next internal event 

will take place. The time-event pair with the next internal event equals T( Uti). In the figure, 

we assumed that the internal event E' (that was expected to be the first internal event when the 

system had moved to state Uto), is still the next internal event that will take place, as seen from 

state Uti. Thus, T(Utl) ~ (e2,E'). Since all events at time point tl have been processed, we use 

the discrete event output function A to derive the output at tl - in the assumption here that 

Xtl differs from the no-external-event. Since the state of the structured discrete event system 

at tl equals Uti' the output of the system at this point is given by Ytj ~ A(Utl). 

The situation in figure 4 at time point t2 is a little more complicated. As we illustrated in 

the figure, both an internal and an external event are bound to happen at time point t2. How 

should we tie-break these simultaneous events? We whish to agree here once and for all that we 
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first handle the internal event, after which we deal with the external event. Possibly, once this 

external event is processed, we may have to apply the internal state transition function again 

to deal with an internal event, that is scheduled to happen immediately as a follow-up of the 

external state transition. Let's clarify this point somewhat further. At time point t2, we first 

apply the internal state transition function 0", to derive the next state u;';- ~ O",(Utll (e2, E')). 
Then, we use the time-event advance function r to determine when the next internal event 

takes place. In the figure, we assumed that the next internal event is anticipated to take place 

at some point beyond t2. Thus, the state u;';- is the state to which the system travels to, 

after having processed all internal events so far. Since there is an external event Xt2 at time 

point t2, we now apply the external state transition function Ox to the pair «u;';-,0),Xt2). 

The system hence immediately moves to u;,; ~ Ox «u;,;- , 0), Xt2). But then, since the system 

does not reside in u;';- for a strictly positive amount of time, isn't u;';- a transitory state? In 

view of definition 27, the answer is no. In effect, if we did not apply the external event Xt2' 
then the system would have remained in the state ut;.- for some strictly positive amount of 

time units, since we assumed that 'i7T (r(u;,;-)) > o. Therefore, ut;.- is a non-transitory state. 

In state ut;., we apply the time-event advance function to derive the imminent time-event pair 

with the next internal event. According to the figure, this pair equals r(ut;.) ~ (0, €). Once the 

system is in state ut;., the next internal event thus takes place immediately. For that reason, 

ut;. is a transitory state. As usual, we apply the internal state transition function to derive the 

next state Ut2 ~ o",(ut;., (0, e)). In the figure, we assumed that the next internal event from the 

viewpoint of state Ut2' is expected to occur at a time point beyond t2. In that respect, once 

the system enters the state Ut2' all events have been handled, and the discrete event output 

function>. is employed to derive the system's output at time point t2. Since the state of the 

structured discrete event system at time point t2 equals Ut2' the output of the system equals 

Yt2 ~ >'(Ut2) at time point t2. Concluding our discussion of state transitions in a structured 

discrete event system, observe from the figure that the system, that was started in the total 

initial state (uQ, 0), has produced the timed output sequence v ~ (to, Yto) ~ (tl, Yt, ) ~ (t2, Yt2)' 
in response to our timed external event sequence X ~ (tl, Xt,) ~ (t2, Xt2). 
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3 Stochastic systems 

In this section, we lay down the operands of our validation method, and state the conditions 

that must be fulfilled for the method to be applicable. Therefore, we develop a stochastic 

system construct. Roughly said, a stochastic system embraces a family of structured discrete 

event systems and a family of stochastic processes. In subsection 3.1, we introduce some ba

sic stochastic process terminology. We assume that the reader is familiar with basic measure 

theoretic notions of random variables and stochastic processes. For an extensive treatment of 

stochastic processes, we refer to [23, 24, 10, 7]. For a profound coverage of measure theoretic 

aspects of probability theory, we refer to [8, 27, 11]. Then, we introduce in subsection 3.2 the 

notion of random numbers and random number generators, and explain how random numbers 

and a random number generator can be included in the structured discrete event system formal

ism that we proposed in section 2. The inclusion of random numbers in the structured discrete 

event system formalism is a formal development of the idea to model apparent randomness in 

a deterministic way in a system specification, as it was originally proposed by [31]. Further, we 

use the concept of random numbers to formally define the notion of replications in subsection 

3.3, and integrate replications with the structured discrete event system construct in subsection 

3.4. We also develop a pair of examples of structured discrete event systems in subsection 3.4. 

We define statistics of interest of stochastic processes in subsection 3.5. Finally, we conclude 

this section by defining a stochastic system construct in subsection 3.6 and by laying down the 

concept of behaviour of a stochastic system. 

3.1 Stochastic processes 

For n an arbitrary non-empty set, a r7-field on n is defined as a class of subsets of n, that 

contains n, and that is closed under complementation and countable union. Formally, 

Definition 29 (r7-field) 
For 0 an arbitrary non-empty set, a class F of subsets of 0 is called a r7-field (on 0) iff. 1) 0 E F, 

2) A E F '* AC E F for all A E F, and 3) Ai E F, i E I '* UiEI Ai E F for every countable index 
set I. 

o 
For n an arbitrary non-empty set, members of a r7-field on n are called measurable sets in 

n. For F a r7-field on n, the pair (n, F) is called a measurable space. Measurable spaces and 

probability measures are concepts that we require to formally define the notion of a random 

variable. In the following definition, we formally pin down the notion of a probability measure. 
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Definition 30 (Probability measure) 
For (0, F) a measurable space, a function P from F into [0,1] is called a probability measure on F 

if and only if 1) P(O) = 1, 2) PtA) = Q =} P(AC) = 1 - Q for all A in F, and 3) 2:iEI P(Ai) = 

P(UiEI Ai) for every countable index set I and mutually disjunct measurable sets Ai, i E I in O. 

D 

Keeping the notation of definition 30, the triple (0, F, P) is called a probability space. The 

set n is referred to as the sample set of the probability space, while measurable sets in 0 are 

called events. An experiment on a probability space involves taking a sample of n. Every event 

that contains the sample of n that is obtained in the experiment, is said to have occurred. A 

random variable can now formally be defined as follows, 

Definition 31 (Random variable) 
For (0, F) and (X, S) measurable spaces, and P a probability measure on F, an F - S measurable 
function x from 0 into X is called a random variable on (0, F, Pl. 

D 

The function x in definition 31 is measurable if and only if X-I (A) E F for all A E S. A 

finite number of random variables, that are defined on a common probability space, is said to 

be a number of jointly distributed random variables. Formally, 

Definition 32 (Jointly distributed random variables) 
For Xi, i E I random variables, indexed by a finite index set I, the variables Xi, i E I are called 
jointly distributed random variables iff. they are defined on a common probability space. 

D 

The joint probability law of jointly distributed random variables is defined as follows, 

Definition 33 (Joint probability law) 
For (O,F,P) a probability space, (Xi,Si), i E I measurable spaces, indexed by a finite index set 
I ~ {iI, i 2, ... , in}, and Xi an F - Si measurable function from 0 into Xi for every i E I, the joint 

probability law of Xi" Xi" ... , Xi n , denoted by PXi , ,Xi, , ... ,Xin ' is a probability measure on @iEISi, 
defined in every measurable rectangle A ~ DiEI Ai of {SihEI by 

PXi"Xi" .. ,Xin (Al ~ p(n x;-l(Aill 
iEI 

(3.16) 

D 

The notation 0iEISi in the above definition, stands for the so-called product a-field of 

{Si}iEI. Notice that the joint probability law of the jointly distributed random variables 

xil,Xi2', .. ,Xin, indexed by the index set I ~ {iI,i2, ... ,in }, is in general not the same as 

the joint probability law of the jointly distributed random variables xII(il)' XII(i2)"'" XII(in ), 

indexed by the index set l' ~ {1l(iI),Il(i2), ... ,Il(in)}, where ll(iI),Il(i2), ... ,Il(in) is any 

permutation of iI, iz, ... , in. 
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Independent random variables form a special kind of jointly distributed random variables. 

The notion of independent random variables will be of use when we come to random numbers 

in an attempt to develop the extended structured discrete event system construct in subsection 

3.4. Formally, 

Definition 34 (Independent random variables) 

For (fl, F, P) a probability space, (Xi, Si), i E I measurable spaces, indexed by a finite index 
set I ~ {i1 ,i2 , ... ,in }, Xi an F-Si measurable function from fl into Xi for every i E I, the 
random variables Xi" Xi" ... , Xin are called (mutually) independent random variables iff. for every 
measurable rectangle A ~ ILEI Ai of {S;}iE[, it holds that 

(3.17) 

o 
Thus, keeping the notation of definition 34, in case I ~ {iI, i2} and in case the random vari

ables Xi, and Xi2 are independent, then the value of their joint probability law at a measurable 

rectangle Ail x Ai2 of {Si" Si2} must coincide with the product of the value of the probability 

law of Xi, at Ail with the value of the probability law of Xi2 at Ai2 , and this for all measurable 

sets Ail and Ai2 of Sil and Si2 respectively. 

In the above, we have introduced the notion of probability spaces, random variables, and 

jointly distributed random variables. We now define a stochastic process as follows, 

Definition 35 (Stochastic process) 
For (fl,F,P) a probability space, (Xi,Si), i E I measurable spaces, indexed by an arbitrary index 

set I, and Xi an F -Si measurable function from fl into Xi for every i E I, the F -0iEISi measurable 
function = from fl into ILEI Xi, defined in every wE fl by 'i1 Xi 0 =(w) ~ Xi(W) for every i E I, is 
called a stochastic process on (fl, F, Pl. 

o 
In the definition, we use the notation V Xi to denote the ith projection function on DiE! Xi. 

Members of the range of a stochastic process are called realisations of the stochastic process. A 

stochastic process can also be defined as an indexed family of random variables that are defined 

on a co=on probability space. In case the index set is countable, we speak of a discrete 

stochastic process. In case the index set is uncountable, we speak of a continuous stochastic 

process. 

We illustrate the concept of a stochastic process in the following example. In the example, 

we take back the problem situation of the simple coin striking process. The stochastic processes 

that we define in example 3.1 are processes that we typically think of when it comes to validate 

a stochastic system. 
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Example 3.1 (Probability space, random variable and stochastic process) 

Let S £ (T, X, n, Y, L:o, 0, >..) be an abstract system, generated by a structured discrete event system Q 

that models the coin striking process.12 Assume that input segments in the allowable input segment 

set of S are pointwise trajectories with coin arrivals. Assume that output segments of S are pointwise 

trajectories that indicate the number of coins in the buffer in front of the striking machine. Let now 

t> ° be a time point in T, and mEN. Define 

n,,", £ {w I dom(w) £ ]O,t'] s.t t' ~ t and I{t" I W(t") # X<,b},"E lo,"iI ~ mLEfl (3.18) 

Thus, very simply, for a particular choice of t and m, n,,", assembles all allowable input trajectories 

over intervals that contain the interval ]0, t], and that schedule at least m coin arrivals. Assume now 

that, on the input side, we are interested in inter-arrival time. In that respect, define an index set 

I", £ {I, 2, ... ,m}, and a function X',""i, Vi E I from n,,", into R+ in wEn,,", by 

X"",,i(W) £ inf"Edom(w){t' I c(w, t') ~ i} - inf"Edom(w){t' I c(w,t') ~ i-I} (3.19) 

where c is a simple function from n,,", x T into N that maps a pair (w, t') on the number of coin arrivals 

that are scheduled by w to occur before or at time point t'. Every function X',""i, Vi E I maps every 

input segment w of n,,", on the time in between the (i - l)th and the ith coin arrival that is scheduled 

byw. 

Let now a be an arbitrary initial state of S. Keeping the time point t and the minimum number of 

coin arrivals m, define 

80'",", £ {O I :Jw En,,", : 0 = ~0'(W)}8ES"(T,y) (3.20) 

Thus, very simply, 80'",m contains all output trajectories over intervals that contain the interval]O, t], 

each of which is the image of some input segment in n t ,", under the input/output segment function ~O' 

of S. In other words, 80',',", equals the range of the restriction of ~O' to n"",, Assume that we are 

interested on the output side in queue length. That being the case, let J, £ [0, t] be an index set, and 

define a function YO',',""j, Vj E J t from 80',',", into R+ in 0 E 80'",", by13 

.0 A {O[SUP"Elo,jl{tl I O(t') # V<,b}] 
Y O',',"',J ( ) -

\7 range(q) (a) 

:Jt' E ]O,j] s.t. O(t') # v<,b 

otherwise 
(3.21) 

Every function YO',',""j, Vj E J t maps an output segment 0 of 80',',m on the most recent observation 

12The specific connection between structured discrete event systems and abstract systems is beyond the scope 
of this report. The induction of an abstract system by a structured discrete event system runs parallel to the 
induction of an abstract system by a classic discrete event system. For more information on the connection 
between classic discrete event systems and abstract systems, we refer to [31]. 

13In case lijl attains at every time point t' E ]a,j] the no-output v¢, then (3.21) evaluates in Ii to the number 
of coins that were originally in the queue as specified by the initial state (J. In that respect, we made here the 
implicit assumption that one of the state variables of the abstract system S - that is denoted by q - describes 
the number of coins in the buffer in front of the striking machine. 
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Figure 5: Measurable functions and probability laws 

on the queue length - if there is any such observation _,'4 that lies on the intervaljO,jj. 

For the functions Yo-,t,m,j, j E Jt to be measurable, we impose on Go-,t,m the minimal ".-field over 

the class of all preimages of measurable sets of the Borel ".-field on R+ under Yo-,t,m,j, j E Jt 15 In other 

words, we impose on Go-,t,m the minimal ".-field over 

Aeo,t,= £ U {Y;;),m,j(A) I A E lffi(R+)} (3.22) 
jEJt 

Having installed ".(Aeo,t,m) on Go-,t,m, the functions Yo-,t,m,j, j E Jt become functions that are 

defined on a common measurable space. In a similar way, we impose on nt,m a ".-field such that all 

the functions Xt,m,i, i E 1m and the restriction of the input/output segment function ~o- to nt,m are 

measurable. Thus, we impose on nt,m the minimal ".-field over 

Ant,m £ U {x;,;;',,(A) I A E lffi(R+)} U {~;Iht,= (A) I A E ".(Aeo.t,m)} (3.23) 
iE1m. 

Figure 5(a) puts the sets and the functions that were defined above in perspective. In figure 5(a), we 

placed the sets nt,m and Go-,t,m, and positioned the functions ~o-Int,=, Xt,m,i, i E 1m and Yo-,t,m,j, j E Jt . 
In figure 5(b), we illustrated how a probability measure P on ".(Ant ,=) is turned into a probability 

law PXt,=,i for every i E 1m, a probability law P~'lnt,=' and a probability law PYo,t,=,; for every j E Jt . 
Carefully observe that the functions Xt,m,i, i E 1m are random variables defined on a common probability 

space (nt,m, ".(Ant,=), P), as are the functions Yo-,t,m,j 0 ~o-Int,m' j E Jt . In view of the definition of a 

stochastic process, they define two stochastic processes on (nt,m,,,.(An,,=),P). 

<J 

14If there is no such observation, then e is mapped on the initial queue length, as specified by the initial state. 
15The minimal ".-field over a class of sets is the intersection of all ".-fields that contain the sets in the class. 

The Borel <T-field on R+ contains all intervals, singleton-sets and countable unions and intersections of intervals 
in R+. 
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3.2 Random number generators 

We generate realisations of a random variable with the help of a random number generator. We 

define a random number generator as follows, 

Definition 36 (Random number generator) 

For R a subset of [0,1]' a function Z on R is called a random number generator or RNG with 

coverage R and period p iff. it is a 1-1 function onto R, and it holds for every r E R that Z(r) "" r 

and~(r)=r. 
p times 

o 
In the following, for Z a random number generator, we denote ZoZ as Z2, ZoZoZ as Z3, etc. 

Members of the coverage of a random number generator are called (pseudo }-random numbers. 

Notice that it follows readily from the definition that a random number generator exhibits 

cyclical behaviour. In effect, for Z a random number generator with period p, the definition 

implies that we can use Z to generate a sequence of at most p unique random numbers. The 

(p + l)th number that we generate, will equal the first number that we started from. We call 

any sequence of random numbers generated by a random number generator, a stream of the 

generator. The first random number in a stream is called the seed of the stream. 

From definition 36, it follows that we can construct a multiple of random number generators 

that all have one and the same coverage R and period p. It is then only natural to ask 

whether all those generators are equally valuable. The answer is in the negative. For, the 

quality of a random number generator depends on the extent that it induces a uniform i. i. d 

process. 16 To give an example, assume that the quality of a random number generator Z, 

the specification of which is unknown to us, needs to be established. For that purpose, we 

are allowed to perform an experiment, whereby we take an arbitrary random number r from 

the coverage of Z, designate any finite number iI, i2, ... , in of coordinates, and ask a neutral 

supervisor who has knowledge of Z to return the ilh, i~h, ... , i;h random number in the (infinite) 

stream with seed r that is generated by Z. If we are allowed to repeat this experiment as 

many times as we like, picking each time a seed and keeping the same coordinates, then we 

can construct a probability measure on 0jEJlffi(Rj), where Rj denotes a copy of R for every 

j E J and where J ~ {iI, i2,.'" i n }.17 This measure assigns to every measurable rectangle of 

{lffi(Rj)}jEJ the relative frequency of n-tuples of random numbers, found in all our experiments, 

that belong to the rectangle. Now, assume that we are allowed to redo the former experiments 

for all possible finitely many coordinates that we can choose. Then, it is not difficult to 

see intuitively that the probability measures that we will hence obtain constitute a family 

of consistent measures. Therefore, by the well-known Kolmogorov's extension theorem, this 

family induces a probability measure P on 0iEIlffi(Ri ), where I ~ {I, 2, ... }. Hence, we can 

16 A stochastic process with independent and identically distributed random variables. 
17The notation B(R) stands for the Borel (T-field on R. 
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consider every ®iEIlB\(R,;) -lB\(R;) measurable function Xi, Vi E I, that assigns to every infinite 

stream of random numbers in I1EI Ri the random number at the ith coordinate in the stream, 

as a random variable on (I1EI Ri, ®iEIlB\(Ri), P). The variables {XihEI constitute a stochastic 

process on (I1E1 Ri, ®iellB\(Ri), P). Now, we like to call the random number generator Z 

an (c,p)-ideal random number generator if and only if the random variables Xj and Xk are 

independent for all j, k E I S.t. 0 < Ij - kl ~ p - 1, and the joint probability law of any finite 

number of random variables Xi" Xi., ... ,Xin deviates (in absolute terms) at any measurable 

rectangle of {lB\(Rj )hEJ at most c from the joint probability law of n independent (continuous) 

uniformly distributed random variables that have the unit interval as their range, at the same 

measurable rectangle. We refer to 1 - c as the density of the generator. 

3.3 Replications 

In the above, we introduced the notion of random numbers and a random number generator. 

At the formal level of modelling, we like to refine the structured discrete event system concept 

of section 2 such that it allows to model apparent randomness in the behaviour of one or 

more descriptive variables of interest. For that purpose, we include a random number generator 

component in the component set of a structured discrete event system. For Z a random number 

generator with coverage R and period p, we call a component G in the component set of 

a structured discrete event system Q, that has influencers Cl, C2,"" en, a random number 

generator component (that implements Z) iff. 1) the state set of G is defined by ~G ~ RS, where 

s denotes the different purposes for which random numbers are used in the model, and 2) for 

every initial state 0'0 of Q, with uff ~ 'i1r;c(uo) and u[A]G ~ ('i1r;c, (0'0), 'i1r;"2 (0'0), ... , 'i1r;Cn (0'0)), 
it holds that 

8~(uff, u[A]G, 1'(0'0)) ~ ('i1 R, (uff) , ... , Z('i1 Rj (uff)) , ... , 'i1 Rs (uff)) 

--------for at most one j E {1,2, ... ,s} 

(3.24) 

with 7' the time-event advance function of Q, and R; a copy of R for every i E {I, 2, ... , s}. 

We thus whish to agree here that, for every state variable of Q for which we like to model 

apparent randomness in behaviour, we reserve one particular state variable of the random 

number generator component. To give an example, if we decide in a more elaborate coin 

striking case to model apparent randomness for the total processing time on a number of 

different machines, then we will reserve a separate generator component state variable for every 

machine that we whish to sample varying processing times for. Every time that a processing 

time needs to be determined for a machine, we consume the random number that is held by 

the corresponding state variable of the random number generator component. The generator 

component then undergoes a state transition as specified by (3.24), where j points to the 

coordinate that holds the consumed random number. 
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In the following, we refer to a structured discrete event system that contains a random num

ber generator component as a random structured discrete event system or an rsDEVS. A point 

that we whish to emphasise is the following. Assume that we are presented with an abstract 

system S ~ (T, X, n, Y, ~o, 8,.>..) that has been generated by a random structured discrete event 

system Q ~ (T,X,(E,::s),y,C,{~8}CEC,~o,A,{8¢}cEC,8x,r,.>..). Let S be initialised in some 

partial initial state. By that, we mean that the value of every state variable of S has been 

specified, with the exception of the state variables of the random number generator component 

of Q. Then, if we whish to perform an experiment with S, we must first 'complete' the partial 

initial state to obtain an initial state of S, after which we can apply an allowable input seg

ment to this initial state. It is now only natural to ask, moving from the partial initial state 

to the initial state, whether there are some combinations of values for the random number 

state variables that are inferior to other combinations. The answer is in the positive. For, 

assume that we must determine initial values for two random number state variables. If we 

choose these initial values (or seeds) unwisely, in the sense that after a relatively low number 

of state transitions of the random number generator component, one of the state variables of 

this component attains the seed that we used for the other state variable, then we will induce 

an unwanted (short-term) temporal correlation between the descriptive variables for which we 

use random numbers from the generator component. This is not desirable. In that respect, to 

properly define the experiments that we are allowed to carry out with S, we whish to introduce 

here some additional terminology. We define a partial initial state set of S by 

Definition 37 (Partial initial state set) 
For Q a random structured discrete event system with component set C ~ {C;};El> where I ~ 
{I, 2, ... ,n}, random number generator component G ~ Cn and component initial state sets l;g', i E 

I, and seQ) the abstract system that is generated by Q with initial state set l;~, the partial initial 

state set of seQ), denoted by ITo, is defined by 

ITo ~ {~("i7E~l (a), "i7E~2 (a)~ .. . , "i7 E~n-1 (a», e~ I ij ~ (a, e) E l;~} (3.25) 

organised in a Ef,;l dim(E~i) + 1 tuple 

D 

A partial initial state of an abstract system S ~ seQ) that is generated by a random 

structured discrete event system Q, pins down a value for every state variable of S, apart from 

those state variables that are random number component generator state variables of Q. For 7r 

a partial initial state of S, we call a pair that carries at its first coordinate an ordered tuple with 

a seed for every random number state variable of Q, and at its second coordinate an allowable 

input segment for S, a replication with S in 7r. Formally,18 

l8The way that we define a replication differs from the more pragmatic description that is often given in the 
simulation literature, where a replication is described as a run with a simulation model - see e.g. [16]. 
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Definition 38 (Replication) 
For Q a random structured discrete event system, r an initial state of the random number generator 
component of Q, w an input segment in the allowable input segment set of seQ), and 1r a partial 
initial state of seQ), the pair (r,w) is called a replication with seQ) in 1r. 

D 

We call length of a replication the length of the domain of the input segment that the 

replication contains. To perform a replication with an abstract system in a partial initial state 

reads as 1) to construct an initial state out of the partial initial state and the random number 

stream seeds of the replication, 2) to apply the allowable input segment of the replication in the 

resulting initial state, and 3) to use the input/output segment function of the abstract system 

to determine the output segment. We refer to the input/output segment pair that is obtained 

as the outcome of the replication. 

3.4 The extended structured discrete event system construct 

In the following, we organise replications that we allow ourselves to perform with an abstract 

system in replication sets. We define a replication set for every partial initial state of the 

abstract system. We denote a replication set, associated with a partial initial state 1r, by 

~"Ir. With the structured discrete event system formalism of section 2, and with the notion of 

replication sets in mind, we now define an extended structured discrete event system as follows, 

Definition 39 (Extended structured discrete event system) 
For Q a random structured discrete event system, ITo the partial initial state set of seQ), and 
.6.."., 1r E ITo replication sets for all partial initial states of seQ), an extended structured discrete event 

system is an ordered pair, defined by 

(3.26) 

D 

An extended structured discrete event system Qe embodies a random structured discrete 

event system Q on the one hand, and a family {~11" }1I"EIIo of replication sets on the other hand. 

The importance of replications, that in fact constrain the experiments that we are allowed to 

perform with the abstract system that is generated by Q, will come to its full right when we 

address the behaviour of a stochastic system that embodies Q. 

In the following, we create a pair of prolonged examples to illustrate our structured discrete 

event system construct. First, we develop a random structured discrete event system that mod

els the striking process of coins in the aforementioned simple coin striking example. Then, we 

create a random structured discrete event system that models the generation of coin planchets, 

which are offered to the former system. After the examples, we comment on how we intend to 

create a family of replication sets for both random structured discrete event systems. 
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Coin striking process In table 1, we summarised the specification of our random structured 

discrete event system for the simple coin striking process. The upper part of the table defines 

an extended time set T, an external event set X and output set Y, as well as a partially ordered 

interval event set E. We use the keyword coin to indicate the arrival of a coin to the system. 

The symbol x¢ stands for the no-external-event. The internal events E], EC and E¢ stand 

for striking process initiated, striking process completed and the no-internal-event respectively. 

The symbol v¢ represent the no-output. In case the events EC and EJ are anticipated to occur 

simultaneously, then we will always handle EC first. 

The center part of the table defines a component set C, initial state sets ~8, c E C of the 

components in C, and a causality-dependency relation A. The components that we identified 

are Q (queue), S (striking machine) and G (random number generator). We describe Q by a 

state variable q that indicates the number of coin planchets in the queue. We describe S by a 

state variable s that denotes the remaining striking time of the coin currently in process. We 

describe G by a single random number state variable r, that we use to sample (total) striking 

times for S. The initial state set of Q and G equal respectively the set of natural numbers N 

and the coverage R of the random number generator Z that is implemented by G. We let Z 

be the prime modulo linear congruential generator, defined in r E R by19 

Z(r) ~ [a(mr) mod m]/m (3.27) 

where a ~ 75 and m ~ 231 - 1. Further, we let the initial state set of S be the closed interval 

[0, maxrER{F;l (r)}] , where F;l is the inverse function of the so-called cumulative exponential 

distribution function FI"' that is defined in x E R by 

x 2':0 
(3.28) 

otherwise 

where the parameter J.L in (3.28) is some fixed, strictly positive real number such that f; has the 

interpretation of the average total striking time. The idea behind the initial state set of S is 

that the largest total striking time that we can possibly realise, equals maxrER{F;1(r)}, while 

the remaining striking time can be any point in the interval [0, maxrER{F;l(r)}], since we can 

apply a coin arrival at any time we want. 

The final row of the center part of table 1 defines a causality-dependency relation A in 

the component set C. Recall from our discussion in section 2 that, for a component c to be 

related by A to another component d, 1) the component c must be a scheduling component 

for an internal event, that upon occurrence alters the state of c' in a significant way - thus 

ruling out state changes that come down to a reduction with the time since the last state 

19For more information on this kind of generators, we refer to [16]. 
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rsDEVS specification 

T [0, +00] 

X {coin, x</>} 
Y N U {v</>l 
E {£I, £e, £</>} £e -< £I 

C {Q,S,G} 
~Q 

0 N 
~S 

0 [0, ma.xrER{ F;: 1 (r)}] 
~G 

0 R 

~o {a I \7 ~~ (a) :::: Z(p-1) (\7 ~&' (am (TE~~ x~~ xE&' 

A Q[A]S Q[A]G S[A]Q S[A]G G[A]S 
oQ 

</> (q,s, (U,£I)) f-+ q-1 
OS 

</> (s, (q, r), (u, £ I)) f-+ F;: 1 (r ) (s, (q, r), (u, £e)) f-> 0 

oG (r, (q, s), (u, £I)) f-+ Z(r) </> 

Ox [(( ))] {(q+1,max{(s-e),0},r) x = coin 
q,S,T ,e ,x 1--7 

(q,s,r) otherwise 

r q> 0 => (S,£I) s> 0 => (s,£e) q = s = 0 => (+00, £</» 

>.. (q, s, r) f-+ q 

Table 1: Simple coin striking rsDEVS 

transition -, or 2) the state of component c must be known in order to determine the next 

state of component c' under an internal event. This policy that we proposed to determine the 

infiuencers for each component yields the following result for this example. Looking ahead at 

the specification of the internal event scheduler r in the lower part of table 1, both Q and S 

are scheduling components for £[.20 When this event occurs, we intend to reduce the queue 

length, to generate a total striking time, and - as we consume a random number to accomplish 

the former action - to advance the value of the random number state variable such that its new 

value points to the random number that follows the current random number (according to the 

random number generator Z). In that respect, since Q and S are scheduling components of £I, 

and since this event upon occurrence significantly affects the components Q, Sand G, we retain 

Q as an active influencer of Sand G, and S as an active influencer of Q and G. Applying a 

similar reasoning for the events £e and £</>' we find that S is the only scheduling component for 

£e, while both Q and S are scheduling components for £</>.21 As we intend to simply reduce the 

value of the state variable of S with the time since the last state transition when £e occurs, and 

20For, the state of Q is required to determine whether or not E[ will occur in the future, while the state of S 
is required to determine the amount of time that needs to elapse until E[ will occur. 

21 In effect, we need the state of S to determine whether or not Eo will occur in the future, and how many time 
units need to elapse before EO will occur. Further, the states of both Q and S are required to determine whether 
or not the no-internal-event E~ will occur. 
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Figure 6: Simple coin striking rsDEVS component interaction scheme 

as we intend to leave all state variables unchanged under f¢, none of these events serves as an 

event through which one component actively influences another component. Finally, looking 

ahead at the specification of the local transition functions in the lower part of table 1, we see 

that component G forms a passive influencer of S, as its state is required to generate a total 

striking time. 

In the lower part of table 1, we summarised the specification of the local transition functions 

81" c E C, and specified an external state transition function 8x, an internal event scheduler 

r, and a discrete event output function A. With respect to the local transition functions, we 

displayed for each function only those time-event pairs that result in a state change of the cor

responding component. When the current state of the structured discrete event system equals 

U ~ (q,s,r), and when the time-event pair with the next internal event from the viewpoint 

of this state equals T(U) ~ (U,f]), then the next state of Q, Sand G will be q -1, F;l(r) 

and Z(r) respectively - assuming no external event takes place before the interval event f] is 

processed. In case T( u) ~ (u, fC), then the state of S will change to 0 when the event fC is 

processed - again, assuming the absence of external events. The specification of the external 

state transition function 8x indicates that we add a coin planchet to the queue whenever the 

external event coin is applied. Also, we reduce the remaining striking time by the time since 

the last state transition, with the help of the system time variable e. Under the no-external

event, the state of the system remains unaltered (as does its total state). The specification of 

the internal event scheduler r should be clear from our coverage of the causality-dependency 

relation A. Finally, the discrete event output function A maps every initial, non-transitory state 

on the number of coin planchets in the buffer. 

In figure 6, we constructed a component interaction scheme to visualise the structure of the 
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random structured discrete event system specification of table 1. Components are indicated 

by large white circles, while their state variables are depicted by small solid circles attached to 

the components. Solid lines in the scheme represent active influences, while dashed lines stand 

for passive influences. Since Q and S actively influence one another through the event tJ, and 

since these components both actively influence G through the same event, we placed a solid 

arrowed line from Q to S and vice versa, and from both Q and S to G, accompanied each time 

by the label tJ. The passive influence of G on S is indicated by a dashed arrowed line from G 

to S. 

Coin planchet generation process In the table in figure 7, we summarised our structured 

discrete event system specification for the process that generates coin planchets to the system 

that we developed above. The first block of the table defines an extended time set 1', an 

external event set X, an output set Y and an internal event set E. Carefully observe that 

the external event set is a singleton-set, containing the no-external-event Xc/>. The output set 

contains the outputs coin and vc/>. We reserve the output coin in case a coin planchet is ready 

to be advanced to the coin striking process. As usual, Vc/> stands for the no-output. Apart from 

the no-internal-event tc/>, we defined an internal event teA, which stands for coin arrival, and 

which we let take place every time a coin planchet is advanced to the coin striking process. 

The second block in the table of figure 7 defines a component set C, component initial state 

sets I:g, c E C, an initial state set I:o for the structured discrete event system, and a causality

dependency relation A. We identify two components: a blanks component B, representing the 

production of blanks (coin planchets) - albeit at an highly aggregated level -, and a random 

number generator component G, random numbers of which we intend to use to generate the 

time in between consecutively produced blanks. In that respect, we define a single state variable 

i for B, that represents the remaining inter-arrival time. We define a single state variable r 

for G, that represents the random number that we use to generate the next (total) inter-arrival 

time. We employ the prime modulo linear congruential generator Z of (3.27), with parameters 

a ~ 75 and m ~ 231 - 1 to model the state transitions of the random number generator 

component. The (initial) state set of G hence equals the coverage R of this random number 

generator. 

Each time the coin arrival event teA takes place - each time a coin planchet is advanced to 

the striking process -, we use the current state of the random number generator component to 

generate a realisation of a random variable with cumulative distribution function Fl , with Fl 

defined in x E R by 

x2:0 
(3.29) 

otherwise 
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rsDEVS specification 

T [0,+00) 
X {X",} 
Y {coin, v",} 

E {fcA,f",} 

C {B,G} 
EB 

0 {Fi"l(r)}reR 
EG 

0 R 
Eo E~ x Eff 
A B[A)G G[A)B 

oB 

'" 
(i,r, (U,fcA)) H Fi"l(r) 

oG 

'" 
(r,i,(u,fcA)) H Z(r) 

Ox [«i, r), e), X",) H (i, r) 

r (i, fcA) 

>. (i,r) H coin 

(a) System specification (b) Component interaction scheme 

Figure 7: System specification and component interaction scheme of simple coin planchet 
production process 

where the parameter ~ is some predetermined strictly positive real number such that ! 
carries the interpretation of the average total inter-arrival time. Thus, very simply, total inter

arrival times are realisations of an exponentially distributed random variable with cumulative 

distribution function F},: 

Since fcA and f", are the only internal events, a time-event pair with an internal event is 

either of the form (u, fcA), or equals (+00, f",). The state of the components B and G remains as 

usual unaltered under the latter time-event pair. In case the fcA event takes place, we require 

a random number to determine the next state of B. Hence, the random number generator 

component is a (passive) influencer of B, and thus G[A)B. Looking ahead at the internal event 

scheduler r, component B is a scheduling component for fcA, as we anticipate fcA to take place 

after i time units, from any state. Since an occurrence of fcA alters the state of G, component 

B is an (active) influencer of G, and hence B[A)G. 

The specification of the local transition functions 0: and o~ in the final block of the table 

in figure 7, should be clear from our presentation so far. Each time the event fcA takes place, 

we consume the current random number r and generate a (total) inter-arrival time Fi"l(r). 

Also, we change the state of the random number generator into Z(r). With regard to the 
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external state transition function /ix, notice how the state of the system remains unaffected by 

the no-external-event XI/>. Finally, for u ~ (i, r) any initial state, we let the only anticipated 

time-event pair by the internal event scheduler r eqnal the time-event pair (i, EcA). 

As we have seen in our discussion of output of a structured discrete event system, every time 

an external or internal event takes place, that differs from the no-external-event, the discrete 

event output function.>.. of the system specification is applied to generate an output. Since €cA 

forms here the only significant event in the system, we let the discrete event output function 

.>.. map every non-transitory initial state of the system on the output coin. A timed output 

sequence of the system will thus be a timed sequence with coin arrivals, ready to be applied as 

a timed external event sequence for the system that we developed for the striking process itself. 

Replication sets In the examples above, we developed two (generic) structured discrete 

event systems. Let's denote these system specifications by QI-' and Q},. respectively, and denote 

their induced abstract systems by SI-' ~ s(QI-') and S},. ~ s(Q},.). Notice that for every choice 

of J.I. and ~, we obtain a pair of fully specified and calibrated structured discrete event systems. 

In the following, we assume that J.I. and ~ are fixed. 

In order to build extended structured discrete event systems from QI-' and Q},., we have to 

define a replication set for every partial initial state of the abstract system SI-' and for every 

partial initial state of the abstract system S},.. Denoting the initial state sets of of SI-' and S},. 

by ~o and ~f, respectively, the partial initial state sets of SI-' and S},., denoted by ITo and ITf" 

are defined by 

ITo ~ Hq, s, e) I u ~ «q, s, r), e)}UEl:o !If, ~ Hi, e) I u ~ «i, r), e)hEl:~ (3.30) 

Let now 'Jr' be an arbitrary partial initial state of IIf,. Assume that we whish to retrieve 

from the outcome of every replication that we perform with S},. in 'Jr', at least m observations on 

inter-arrival time, for some mEN. Then, we define for every random number r in the coverage 

R of the generator that is used by Q},., one input segment A of an appropriate duration,22 such 

that S},. returns an output segment with at least m coin planchet arrivals in response to A, when 

it is initialised in the state, made up by the partial initial state 'Jr' and the random number T. 

Thus, very simply, our replication set ~~, for S},. in 'Jr' contains a total of p replications, where 

p is the period of the random number generator that is used. The outcome of every replication 

allows us to compute m coin inter-arrival times. Repeating the above for every partial initial 

state of S},., yields a family of replication sets. The system Q},., together with the replication 

sets ~~/ 'Jr' E IIf" define an extended structured discrete event system Q.c"e. 

22We use the notation A here, since input segments to s~ must be so-called null-segments because the external 
event set of Q~ carries only the no-external-event ')(q,. -
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Let now 7[ be a partial initial state of Sp.. We whish to define for every partial initial state 'fr' 
of S2;. and for every replication (r', A) in ~~" one and only one replication with Sp. in 'fr. We let 

this replication carry the output segment w that is produced by S2;. in 'fr' under the replication 

(r', A). Assume that we whish to observe the queue length over some predetermined interval 

]0, t] in the outcome of every replication with Sp. in 'fr. Then, all that we have to do is take care 

that the input segments that we defined in replications with S~ are defined over an interval 

that contains ]0, t]. Further, we choose an appropriate random number r of the coverage R such 

that during the replication (r,w) with Sp. in 7[, no random numbers are employed that were 

used during the replication (r', A) with S~ in 7['. Is re-usage of random numbers a source of 

great concern? The answer is yes, for it most likely induces an unwanted temporal correlation 

between future striking times and past inter-arrival times. Keeping the partial initial states 'fr' 
and 'fr, we now repeat the above for every replication that we defined in ~~" This yields a 

total of p replications with Sp. in 'fr, conditional on the partial initial state 'fr' of S2;.' Looking 

ahead at the notation that we introduce in subsection 3.6, we assemble these replications in a 

conditional replication set ~'Ir<l (Q2;., 7f'). Next, we repeat all of the above for every partial initial 

state of S~, keeping the partial initial state 'fr of SI-'" Reviewing the partial initial state set of 

S2;. that we defined in (3.30), this yields uncountably many replications with Sp. in 'fr. In that 

respect, given the partial initial state 'fr of Sp., we have defined so far a (candidate) replication 

set U'Ir'EII~ ~'Ir <l (Q2;., 7[/) for Sp. in 'fr. 

Although we could in theory stop right here, and define a family of replication sets for Sp. 

applying the approach that we introduced above for every partial initial state of Sp., we like 

to repeat our above procedure for a number of system specifications S~k' k E K, where K is 

an index set that indexes different arrival rates. We like to think of deciding on the arrival 

rate of coin planchets as a typical calibration problem that we face when we have to develop a 

formal model of the input part of a conceptual model for the entire coin striking process. To 

be more precise, in view of postulate 6 on an environment, we like to define an environment 

here as a family of random structured discrete event systems Q~k' k E K for some index set 

K, where every model in the environment generates coin planchets at a different rate. In that 

respect, the replication set that we eventually whish to define for every partial initial state 'fr of 

lIo can be written as ~'Ir ~ UkEK U'Ir'EIIo,k ~'Ir <l (Q~k' 'fr/), where 1I~,k denotes the partial initial 

state set of s(Q~). The structured discrete event system Qp., together with the replication sets 

~'Ir' 7[ E lIo, define an extended structured discrete event system Qp.,e. 
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3.5 Statistics of stochastic processes 

The stochastic system construct that we define in subsection 3.6, is a structure that contains 

a number of extended structured discrete event system specifications, representing a main 

formal model, an environment of input formal models, and an experimental set-up for every 

such model. In addition, a stochastic system specifies the stochastic processes that retrieve 

information of interest from allowable replications with the abstract systems, that are induced 

by the structured discrete event system specifications. Eventually, certain statistics of these 

processes will constitute stochastic system behaviour. In the following, we formally lay down 

these statistics. We start with the expected value and variance of a random variable, as well 

as the correlation between two random variables. We then use these to define the mean value 

function, the variance function and the correlation kernel of a stochastic process. 

In the following, all random variables are assumed to be positive real valued. If we speak 

of a random variable on a probability space, then we assume that the variable is a measurable 

function with respect to the cr-field of the probability space and the Borel cr-field on R For x 

a random variable on a probability space en, F, P), we define the expected value of x formally 

as follows,23 

Definition 40 (Expected value) 
For (n,:F, P) a probability space, and x a random variable on (n,:F, P) into R+, the expected value 
of x, denoted by E[x], is defined by 

E[x] ~ in xdP (3.31) 

D 

Roughly said, the expected value of a random variable has the interpretation of a sum of 

realisations of the random variable, where each realisation is weighted by the probability that 

it shows up. The variance of a random variable is then in a way a sum of weighted spreads of 

realisations around the expected value of the random variable. Formally, 

Definition 41 (Variance) 
For (n,:F, P) a probability space, and x a random variable on (n,:F, P) into R+, the variance of x, 
denoted by cr2 [x], is defined by 

(3.32) 

D 

The covariance (and the correlation) between two random variables that are defined on 

a common probability space, gives an indication of the extent to which realisations of one 

random variable deviate in the same direction from its expected value as realisations of the 

23The integral that appears in (3.31) is called the Lebesgue integral of x with respect to P. 
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other variable do from the expected value of that random variable. In the following definition, 

we formally lay down the notion of covariance and correlation, 

Definition 42 (Covariance and correlation) 

For (!1, F, P) a probability space, and x and x' random variables on (!1, F, P) into R+, the covariance 

and correlation between x and x', denoted by a[x, x'] and p[x, x'] respectively, are defined by 

a[x, x'] ~ in XXi dP - E[x]E[X'] [ '] '"' a[x, x'] 
px,x = Ja2[x]lT2[x' ] 

(3.33) 

o 
For a stochastic process that consists of positive real valued random variables, the mean 

value function of the process is defined through the notion of expected value of the random 

variables that the process comprises. Formally, 

Definition 43 (Mean value function) 

For (!1,:F,P) a probability space, and m" ~ {xihEI a stochastic process on (0" F, P) with positive 

real valued realisations, the mean value function of m", denoted by mm", is a function from I into 

R+, defined in every i E I by 

mm"(i) ~ E[Xi] (3.34) 

o 
In a similar way, we define the variance function of a stochastic process as follows, 

Definition 44 (Variance function) 

For (0',:F, P) a probability space, and m" ~ {xihEI a stochastic process on (0',:F, P) with positive 

real valued realisations, the variance function of m", denoted by lTfu., is a function from I into R+, 

defined in every i E I by 

(3.35) 

o 
The definition of the covariance kernel and the correlation kernel of a stochastic process is 

similar in nature to the definition of covariance and correlation between two random variables, 

Definition 45 (Covariance and correlation kernel) 

For (!1, F, P) a probability space, and m" ~ {xihEI a stochastic process on (0',:F, P) with positive 

real valued realisations, the covariance kernel and the correlation kernel of m", denoted by Km" 

and Om" respectively, are functions from I x I into R and into [-1,1] respectively, defined in every 

(i,j) E I x I by 

(3.36) 

o 
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For some stochastic processes, the mean value function and variance function show conver

gent behaviour. Also, the value of the correlation kernel tends to depend only on the absolute 

difference of its arguments. Such processes are called asymptotically stationary. Formally, 

Definition 46 (Asymptotically stationary stochastic process) 

For (n,:F, P) a probability space, and w ~ {xihEI a stochastic process on (n,:F, P), realisations 
of which are functions on an index set I into R+, the stochastic process w is called asymptotically 
stationary iff. there exists constants j.L and a 2 in R+ and a function p from I to [-1, 1] such that 
for all s E I it holds that 

(3.37) 

o 
We call the constants j.L and a 2 of (3.37) the mean and variance of w. We refer to the 

function p of (3.37) as the auto-correlation function of w. 

Some asymptotically stationary stochastic processes have the property that their mean, 

variance and auto-correlation function can be estimated by any realisation of the process. Such 

processes are called ergodic. Formally, 

Definition 47 (Ergodic stochastic process) 

For (n,:F, P) a probability space, and w ~ {Xi}iEI an asymptotically stationary stochastic process 
on (n,:F, P) with mean j.L, variance a2 and auto-correlation function p, the stochastic process w is 
called ergodic iff. for every wEn and E: E I, it holds that 

lim .!. ~Xi(W) ~j.L 
n-++oo n ~ 

i=l 

t' 

lim !. r w(w)(t)dt ~ j.L 
t'-t+oo i' io (3.38) 

(3.39) 

(3.40) 

1 t'-£ 

lim -- r (w(w)(t) - j.L)(w(w)(t + s) - j.L)dt ~ p(s) 
t'-t+oo t' - E io (3.41) 

o 
The LHS of equations (3.38) and (3.39), and equation (3.40) hold in case w is a discrete 

stochastic process, realisations of which are defined on an index set I ~ {I, 2, ... }. The RHS 

of equations (3.38) and (3.39), and equation (3.41) hold in case w is a continuous stochastic 

process, realisations of which are defined on an index set I ~ [0, +00[. 
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3.6 The stochastic system construct 

For Q and Q' random structured discrete event systems, we call the pair (Q', Q) an autonomous 

coupled (structured discrete event) system if and only if the external event set of Q' equals 

{x¢}, and the output set of Q' coincides with the external event set of Q. Thus, very sim

ply, an autonomous coupled system contains one structured discrete event system, operating 

autonomously, that generates external events for another system. For (Q', Q) an autonomous 

coupled system, we define a compatibility relation for (Q', Q), denoted by F, as a relation be

tween the partial initial state sets lIb and IIo of seQ') and seQ). We say that Q is coupled 

to Q' through F, and also that (Q', Q) is an autonomous F-coupled system. We think of a 

compatibility relation as part of an experimental set-up. Given a partial initial state 7r' of 

seQ'), the compatibility relation for (Q', Q) tells us in which partial initial state we are allowed 

to place seQ) in, when we want to use the output segment in the outcome of a replication with 

seQ') in 7r' as the input segment in some replication with seQ). In the context of the coin 

striking example in this research report, the reader can safely define a compatibility relation by 

F ~ 110 x 110 for every autonomous coupled system (Q~, QJL)' where Q~ and QJL are the systems 

that we developed above, choosing particular values for the parameters .d and j.L, and where lIb 
and 110 are the partial initial state sets of s(Q~) and s(QJL). The case that we have in mind in 

which an arbitrary partial initial state of an input abstract system is not compatible to every 

partial initial state of a main abstract system, has to do with the airline network that we br~efiy 

introduced in section 1, and for which we developed a simulation model in [1]. Stated somewhat 

informally, we intend in that case to let a (small) main structured discrete event system of the 

central station or the hub in the network, be a segment of a (big) structured discrete event 

system of the entire airline network. Then, once we pinned down a partial initial state of the 

abstract system that is generated by the system of the network, it is only reasonable that we 

choose a partial initial state of the abstract system that is generated by the system of the hub 

that 'complies' with the first partial initial state. 

In the former, we introduced the idea of replications with an abstract system in a partial 

initial state. We now define a replication-realisation function in the following definition, 

Definition 48 (Replication-realisation function) 
For Q. ~ (Q, {~" lorEIID) an extended structured discrete event system, with the abstract system 
generated by Q denoted by s( Q) ~ (T, X, n, Y, Eo, 0, >'), and 7r a partial initial state in ITo, the 
replication-realisation function of seQ) in 7r, denoted by cp", is a function from ~" into .5"(T, Y), 

defined in every (r,w) E ~'" with dom(w) ~ ]to, tl], by 

cp,,(r,w)(t) ~ {>.0 0((7I",r),wtl) 
>. 0 0((71", r),w) 

53 

(3.42) 

o 
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In case (Q', Q) is an autonomous F-coupled system, then we define a replication-realisation 

function for every partial initial state of seQ'), and a replication-realisation function for every 

partial initial state of seQ). However, with regard to seQ), we intend to define also a conditional 

replication-realisation function for every partial initial state of seQ), given Q' and any partial 

initial state 1[' of seQ') such that 1[' is compatible to 1[ through F.24 For 1[ and 1[' partial initial 

states of seQ) and seQ') such that 1[' [F]1[, we denote the conditional replication-realisation 

function of seQ), conditional on Q' and 1[', by 'Prr<J(Q', 1['). The idea of a conditional replication

realisation function is the following. Given that we generate input segments by performing 

replications with the abstract system that is induced by Q', set up in a partial initial state 

1[', we perform only finitely many of all the replications that we can perform with seQ) in 1[. 

Recall that all the replications that we are allowed to perform with seQ) in 1[ are gathered in 

the replication set ~rr. To identify the replications that we allow ourselves to perform with s( Q) 
in 1[, once we have selected Q' and 1[', we introduce the notion of a replication coupling - that 

we define for all compatible partial initial states 1[' of seQ') and 1[ of seQ). For 1[' and 1[ partial 

initial states, we specify such a replication coupling as a 1-1 function from the replication set 

~~, of seQ') onto a finite subset of the replication set b..rr of seQ), and formally define it as 

follows, 

Definition 49 (Replication coupling) 

For Qe ~ (Q, {~" },rEIIo) and Q~ ~ (Q', {~~, },r'EII~) extended structured discrete event systems 

such that (Q', Q) is an autonomous coupled system, F a compatibility relation for (Q', Q), and 1[' 
and 1[ compatible partial initial states of IT~ and ITo respectively, a replication coupling for Q~ and 

Qe in 1[' and 1[, denoted bye" <I (Q',1['), is a 1-1 function from ~~, onto a finite subset of~" such 

that 

( 'A) <.<o(Q',,,') ( ) , ( , A) r , 1--)0 r, w =} 'fJrr' r , = w (3.43) 

D 

Everything as in definition 49, in case the replication coupling ~rr<J(Q', 1[') maps a replication 

(r', A) in b..~, on the replication (r, w) in b..rr , then w must equal the output segment in the 

outcome of the replication (r', A) with seQ') in 1[', as given by the replication-realisation function 

'P~' of s( Q') in 1['. We call the range of the coupling ~rr <J (Q', 1[') a conditional replication set, 

and denote it by b..rr <J (Q', 1['). In the following definition, we use the idea of a replication 

coupling to formally pin down the notion of a conditional replication realisation function, 

24For g ~ {Qk}kEK an environment of systems for Q, and (Q~, Q) an autonomous Fk-coupled system for every 
k E K, we thus intend to define a conditional replication-realisation function for every k E K, and compatible 
partial initial states of TI~,k and TID, where TI~,k is the partial initial state set of s(QU for all k E K, and where 
TID is the partial initial state set of s(Q). 

54 Katholieke Universiteit Leuven 



J. Martens 3 STOCHASTIC SYSTEMS 

Definition 50 (Conditional replication-realisation function) 

For Qe ~ (Q, {ll." }"EIIo) and Q~ ~ (Q', {ll.~, }"'EIIo) extended structured discrete event systems 
such that (Q', Q) is an autonomous coupled system, with the abstract system generated by Q 

denoted by s(Q) ~ (T, X, n, Y, L;o, 0, >..), F a compatibility relation for (Q', Q), 1r' and 1r compatible 

partial initial states of lI~ and lIo respectively, and f." <I (Q', 1r') a replication coupling for Q~ and 
Qe in 1r' and 1r, the conditional replication-realisation function of seQ) in 1r, conditional on Q' and 

1r', denoted by 'P7r <I (Q', 1r'), is a function from the range ll." <I (Q', 1r') of f.7r <I (Q', 1r') into Y(T, Y), 
defined in every (r,w) E ll.7r <I (Q',1r') by 

(3.44) 

o 
We intend to define a number of information functions to distillate information from output 

segments, that is of interest with regard to primary model behaviour. We speak of an input 

information function, in case the function is defined on the range of a replication-realisation 

function of an abstract system, generated by a structured discrete event system in an environ

ment. We speak of an output information function, when the function is defined on the range 

of a conditional replication-realisation function of an abstract system, that is generated by a 

main structured discrete event system. In any case, we formally define an information function 

as a function into the real line that attains only positive real values. We use the concept of 

information functions to define a stochastic information process as follows, 

Definition 51 (Stochastic input and output information process) 

For Qe ~ (Q, {ll.7r }7rEIIo) and Q~ ~ (Q', {ll.~, }7r'EIIo) extended structured discrete event systems 
with finite replication sets ll.~" 1r' E lI~ such that (Q', Q) is an autonomous coupled system, 

F a compatibility relation for (Q', Q), 1r' and 1r compatible partial initial states of lI~ and lIo 

respectively, {x7r',ihEl and {y",j <I (Q',1r')lJEJ indexed families of information functions on the 

range of 'P~' and 'P" <I (Q', 1r') respectively into R+, and P~~' and p~.~(Q',"') probability measures 

on 2Ll.~, and 2Ll.·~(Q',7r') respectively, defined by p~~' ({(r', A)}) ~ TLtT for all {(r', A)} E 2Ll.~" and 

p~·~(Q"7r')({(r,w)}) ~ 1Ll.'~(~"7r')1 for all {(r,w)} E 2Ll.·~(Q',7r'), the stochastic processes {X7r',i a 

'P~, hEI and {y",j <I (Q', 1r') a i.p" <I (Q', 1r') lJEJ are called a stochastic input and a stochastic output 

information process respectively. 

o 
With the definitions of (conditional) replication-realisation functions, replication couplings 

and stochastic input and output information processes, we are now ready to give a formal 

definition of a stochastic system,25 

25In equation (3.48), the asterisks stand for 

*1 ~ 1r' E lI~, .. 7r E IIo S.t. 1r'[Fk ]1r, k E K 

*2 ~ 7r' E II~,k, k E K, i E I 

*3 ~ 7r' E II~, .. 7r E IIo s.t. 7r'[Fk]1r, k E K, j E J 

(3.45) 

(3.46) 

(3.47) 

55 Katholieke Universiteit Leuven 



J. Martens 3 STOCHASTIC SYSTEMS 

Definition 52 (Stochastic system) 

For Qe £ (Q, {t.n }nEIIo) and Q~,k £ (Q~, {t.~"k},r'EII~)' k E K extended structured discrete 

event systems with finite replication sets t.~"k' 7r' E IT~,k' k E K, indexed by an arbitrary index set 

K, such that for every k E K the pair (Q~, Q) is an autonomous Fk-coupled system, En <l (Q;", 7r') 

a replication coupling for Qk,e and Qe in 7r' and 7r for every 7r' E IT~,k' 'Tr E ITo s.t. 7r'[FkJ'Tr and 
, ,,-' 

k E K, 'W"',k,i, i E I stochastic input information processes on (t.~"k' 2"-",k, Pu ",k) for every 7r' E 

IT~,k' k E K, indexed by a finite index set I, and <;",j <l (Q;", 7r'), j E J stochastic output information 
, ') b. <l(Q' 1r') 

processes on (t." <l (Q~, 7r'), 2"-·~(Qk'" ,Pu ' k' ) for every 'Tr' E IT~,k' 'Tr E ITo s.t. 'Tr'[FkJ'Tr and 

k E K, indexed by a finite index set J, a stochastic system or BB is a 6-tuple, defined by 

(3.48) 

o 
Some of the components of a stochastic system K specify a number of formal models and 

stipulate the experiments that we allow ourselves to perform with these models. Other com

ponents of the stochastic system lay down what kind of information we whish to retrieve from 

these experiments. 

It follows readily from definition 52 that a stochastic system induces a relation between a 

set, members of which are tuples of statistics of stochastic input information processes, and a 

set, members of which are tuples of statistics of stochastic output information processes. To 

be more precise, for every index k E K, partial initial state 1':' E lI~,k and compatible partial 

initial state 1': E lIo, we relate a tuple with the mean value function, the variance function 

and the correlation kernel of every of the stochastic input information processes 'W7r',k,i, i E I 

to a tuple with similar such statistics of every of the stochastic output information processes 

'7r,j <l (Q~,1':'), j E J. Clearly, such a relation contains an overload of information, and forms 

a direct practical problem if we want to retain the relation as behaviour of a stochastic system 

and further approximate this behaviour with the fuzzy neural network that we discuss in section 

4. Therefore, we introduce in the following a number of conditions that must be fulfilled by a 

stochastic system for it be validatable with our fuzzy set theory based validation approach, 

A first condition that a stochastic system must satisfy for it to be validatable, concerns the 

fact that we require that the mean value function and the variance function of every stochastic 

information process of the system shows convergent behaviour, In addition, we require that the 

value of the correlation kernel of every process tends to depend only on the absolute difference 

between its arguments. We thus want to replace the statistics mean value junction, variance 

junction and correlation kernel of every stochastic information process of a stochastic system, 

by the statistics mean, variance and auto-correlation function of an asymptotically stationary 

stochastic process. A second condition comes down to the fact that we whish to be able to 

make abstraction of partial initial states. For every stochastic information process, we desire 

that the convergence of its mean value function, variance function and correlation kernel is 
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independent of the partial initial state(s) that we choose. Stated somewhat informally, we desire 

that the mean, variance and auto-correlation function of every stochastic information process is 

independent of the partial initial states that identify the process. 26 In a third and final condition, 

we require - again stated somewhat informally here -, that we are able to compute estimates 

of the mean, variance and auto-correlation function of a stochastic information process from a 

single (very long) realisation of that process. A complete formal development of these conditions 

goes beyond the research goals of this report. We refer in the following to a stochastic system 

that satisfies the above conditions, as an approximately stationary, steady-state and ergodic 

stochastic system. 

Recall that we postulated in section 1 behaviour of a primary model as a relation between 

the Cartesian product of the range of independent variables of interest, and the Cartesian 

product of the range of dependent variables of interest. As we identify a primary model with a 

stochastic system, we formally pin down in the following definition the notion of an independent 

variable and a dependent variable of interest of a primary model,27 

Definition 53 (Independent and dependent variable) 

For K ~ (Qe,{Q~,ehEK,{FdkEK,{E" <I (Q~,7r')}*l'{'tV"',k,;}*2' {"",j <I (Q~,1f')}*3) an approx
imately stationary, steady-state and ergodic stochastic system with mean, variance and auto
correlation function I-'%,i' ofi and Pk,i attributed to the input information process 'tV"',k,i 
for every 1f' E II~,k' i E I ~ {i1,i2, ... ,imJ and k E K, and with mean, variance 
and auto-correlation function I-'k,j' lTrj and Pk,j attributed to the output information pro
cess "",j<l(Q~,1l"') for every 1l"' E II~,k' 1l" E IIos.t.1f'[Fkl1l", j E J ~ {jl,h, ... ,jn} 

and k E K, an independent variable for K and a dependent variable for K are func

tions from UkEK{((l-'k,i" lTri1 ,Pk,i,J, (l-'%,i2' lTri2' Pk,i2)'"'' (I-'k,i~ ,lTri~'Pk,i~))} into R and from 
UkEK{((Jtt,j,' lT~~il' pL,J, (I-'th' lTfj2' pL'),···, (I-'t,jn' lTfin,pLJ)} into R respectively. 

o 
In the context of the simple coin striking example, assuming that I is a singleton-set, we may 

want to define an independent variable on A ~ {(Jt%, ur, pk) hEK that for every k E K simply 

projects the triple (1-'%, ur, p%) of A on the mean inter-arrival time 1-'%. Likewise, assuming that 

J is a singleton-set, we may want to define a dependent variable on B ~ {(I-'k, u~Y, pD hEK 

that for every k E K maps the triple (Jtk, u~Y, pD of B on a value that indicates the short

term temporal correlation between queue length observations, computed from filtering out the 

correlations of p% at the higher lags, and aggregating the remaining correlations at the lower 

lags. We now use the formal definition of an independent and a dependent variable to define a 

behaviour orientation for a primary model as follows, 

26This statement is an in/onnal statement, since we cannot speak - in the strict sense - of the mean, variance 
and auto-correlation function of a stochastic information process. All that we can do, is attribute such statistics 
(of an hypothetical asymptotically stationary stochastic process) to a stochastic information process. The major 
reason for this is that realisations of a stochastic information process are always finite in length. 

27See equations (3.45), (3.46) and (3.47) for a definition of the asterisk subscripts. 
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Definition 54 (Behaviour orientation) 
For tc and '1JI finite indexed sets of independent and dependent variables for an approximately 
stationary, steady-state and ergodic stochastic system lC, the pair V' ~ (tc, '1JI) is called a behaviour 

orientation for lC. 

o 
Assuming that the single independent and dependent variable that we defined above for 

the simple coin striking process, are the only variables of interest that we want to define, 

then we obtain a relation from a stochastic system J( of the coin striking process through the 

orientation that is set up by the variables. By that, we simply mean that, for every index 

k E K, we relate the mean inter-arrival time iLk to the filtered auto-correlation function f(p%), 
where f is some predetermined filter that blocks correlations at higher lags, and integrates 

correlations at lower lags in a single real value. We call this relation the behaviour relation of 

J( through the orientation (tc, W), where tc and '!JI are singleton sets with the independent 

and dependent variable of interest respectively. We formally pin down the notion of behaviour 

of a stochastic system through a behaviour orientation in the following definition, 

Definition 55 (Behaviour of a stochastic system) 
For lC an approximately stationary, steady-state and ergodic stochastic system, and V' ~ (tc, '1JI) a 
behaviour orientation for lC, the behaviour of lC through V', denoted by f!9(lC) IV, is a relation between 
RI%I and Rlwl, derived by applying the independent and dependent variables in tc and '1JI at every 
tuple with means, variances and auto-correlation functions that were attributed to stochastic input 
and output information processes of lC. 

o 
We have now come full circle. In postulate 9, we postulated primary model behaviour as a 

relation between the Cartesian product of the range of independent variables of interest, and 

the Cartesian product of the range of dependent variables of interest. Throughout sections 

2 and 3, we developed a stochastic system construct, and formulated a triple of conditions 

that a stochastic system must fulfill for it be validatable. We now see, once we have set 

up a behaviour orientation for a validatable stochastic system J(, that the system induces a 

behaviour relation through the behaviour orientation. As we identify stochastic systems with 

primary models, we have thus pinned down one of the arguments of our validation approach, i.e. 

primary model behaviour - recall figure 2. The opposing argument, i.e. real system behaviour, 

can be identified in a completely similar way. For, if AI. stands for a family of relations with 

gathered input/output segments pairs from a real system, then we postulate that there is a 

stochastic system J(' that induces a family of input/output segment relations that contain all of 

the input/output segment pairs that we assembled in A 1 .. 28 In the hypothetical case that we do 

have the system J(' available, then we can set up an orientation "il' for J(', that is compatible to 

the orientation that we set up for J(. By compatible, we mean that independent and dependent 

28The postulate that we formulate here is in a way a stochastic system variant of the notion of a base model -
an hypothetical and ideal model- in systems theory [31J. 
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variables of both orientations measure the same performance measures of interest. We whish to 

agree here to identify real system behaviour with the behaviour of K' through the orientation 

'\1'. 

As a final remark in light of our agreement on the nature of primary model and real system 

behaviour, notice that neither primary model behaviour nor real system behaviour will be 

known exactly in practice. For, in order to pinpoint the former, we must have asymptotically 

stationary and ergodic stochastic processes available. All that we can do to estimate statistics 

of these processes is to use the approximate such processes of K themselves. Similarly, in order 

to pinpoint the latter, we must have arbitrarily long segments in input/output segment pairs of 

AI. in order to compute limits of averages of stochastic sums and integrals, and we must have 

all input/output segment pairs that are induced by K'. All that we can do to estimate these 

limits is to use input/output segment pairs of AI., with segments that are as long as possible. 

In summary, all that we can hope for is to have an estimate of real system behaviour and an 

estimate of primary model behaviour. Such estimates constitute the practical operands of our 

fuzzy set theory based validation method, that we expose in the following section. 
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4 A resemblance approach to behaviour validation 

In this section, we present our fuzzy set theoretic validation approach to validate stochastic 

systems. In that respect, we assume that we have constructed an approximately stationary, 

steady-state and ergodic stochastic system J( on the one hand, and that we have gathered a 

family of input/output segment relations AI. - that we refer to as an abstract object trace in the 

following - on the other hand, that we postulate to come from an (unknown) approximately 

stationary, steady-state and ergodic stochastic system J('. further, we assume that we have 

obtained estimates ~(J()I\7 and ~(J(')I\7' - through simulation and time-based arithmetic - of 

the behaviour of J( and J(' through compatible orientations V and V' of interest. The problem 

is then in a way to establish a measure of similarity between these behaviour relation estimates. 

In that respect, the more similar the behaviour relation estimates to one another, the more 

valid we call J( in view of AI.' Our validation method employs a resemblance relation concept 

in fuzzy set theory, that was first introduced by [6], and a neuro-fuzzy learning algorithm 

NEFPROX, developed by [21]. 

In subsection 4.1, we state some of the fundamentals of fuzzy sets and approximate rea

soning. The list of references on basic aspects of fuzzy set theory and its applications is huge 

- see e.g. [13, 9, 33, 29] for an introduction to fuzzy set theory and approximate reasoning. 

Then, we briefly explain in subsection 4.2 the fuzzy learning algorithm that we employ to in

duce a fuzzy rule base from a behaviour relation estimate, and we introduce the concept of a 

behaviour relation estimate approximation. We have chosen the NEFPROX algorithm, based 

on the satisfactory performance that we found in previous experiments that we carried out for 

a classification-variant of the algorithm [18]. In subsection 4.3, we state the concept of resem

blance relations, and we develop a notion of resemblance random variables in subsection 4.4. 

We discuss how we intend to use the cumulative distribution of resemblance random variables 

in subsection 4.5 to construct fuzzy sets of propositions on the validity of a stochastic system 

in view of an abstract object trace. 

4.1 Fuzzy set and approximate reasoning fundamentals 

In classic set theory, a set A is defined as a collection of items, called members or elements of 

A. In case A is a subset of a universe X, then the set A can be completely identified by its 

indicator function lA, that runs from X into R, and assigns to every x in X the value 1 in case 

x is a member of A, and the value 0 otherwise. Clearly, the range of 1A equals {O, I}. In fuzzy 

set theory, the range of 1A is in a way extended to the unit interval [0,1]. Basically, fuzzy set 

theory allows us to define a grade of membership to a set. 

Let itA be a function from X into R with range [0,1]. In case ItA(X) ~ 1 for x E X, then we 

say that x strongly belongs to A. Similarly, if itA (x) ~ 0 for x E X, then we say that x weakly 
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belongs to A. The set of all pairs (x, /-tA(X)), x E X is called a fuzzy set, and /-tA is called the 

membership function of the fuzzy set. Formally, 

Definition 56 (Fuzzy set) 
For X an arbitrary non-empty set, and J.LA a function from X into R with range [0,1], the set 
A £ {(X,J.LA(X»}xEX is called a fuzzy set on X with membership function J.LA. 

o 
We also say that A is a fuzzy subset of X. Notice that a fuzzy set is fully characterised by 

its membership function. To alleviate the notation, we denote J.LA(X) by A(x) for all x E X. 

Sometimes, we use the term crisp set to emphasise that a set is a non-fuzzy set. 

An a-cut, for a > 0, of a fuzzy set A on X, denoted by A"', is the set of all members of X 

that have a grade of membership of at least a to A, or A '" ~ {x I A( x) :2: a} ",EX. The core of 

a fuzzy set is defined by core(A) ~ AI, while its support, denoted by supp(A) , is defined as the 

set of all members of X that have a strictly positive degree of membership to A. 

In classic set theory, the set operators intersection and union are unanimously defined. In 

fuzzy set theory, a collection of alternative implementations of these operators is available. The 

intersection and union of fuzzy sets are defined with the help of so-called triangular norms and 

triangular conorms. A triangular norm and a triangular conorm are formally defined as follows, 

Definition 57 (Triangular norm and co-norm) 
A pair of functions T and .l from [0,1]2 into [0,1] are called a triangular norm or t-norm, and a 
triangular conorm or t-conorm respectively, iff. for every x, y, z E [0,1], it holds that 

T(x,l) = x 

T(x,y) = T(y,x) 

T(x, T(y,z» = T(T(x,y),z) 

x:S: y =} T(x,z):S: T(y,z) 

.l(x, 0) = x 

.l(x,y) = .l(y,x) 

.l(x, .l(y,z» = .l(.l(x,y),z) 

x :s: y =} .l(x, z) :s: .l(y, z) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

o 
Although, strictly speaking, a t-norm and a t-conorm require a pair of arguments to be 

applied, they can easily be extended to more than two arguments. In that respect, for Ai, i E I 

fuzzy subsets of a universe X, indexed by a finite index set I ~ {I, 2, ... ,n}, we use the notation 

TiEI{A(x)} for every x E X to denote 

(4.53) 

A similar agreement in notation applies for .liEI{Ai(X)} for every x E X. T-norms and 

t-conorms are used in fuzzy set theory to model the logical connectives and and or respectively. 
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With the help of the notion of a t-norm and a t-conorm, we define the intersection and union 

of two fuzzy sets as follows, 

Definition 58 (Intersection and union of fuzzy sets) 
For X an arbitrary non-empty set, A and B fuzzy subsets of X, and T and ..L a t-norm and a 
t-conorm respectively, the intersection of A and B, denoted by A /\ B, and the union of A and B, 

denoted by A vB, are defined by 

A /\ B ~ {(x, T[A(x),B(x)])}xEX A V B ~ {(x, ..L[A(x) , B(X)])}xEX (4.54) 

D 

In the following, we use Zadeh's t-norm and t-conorm to model the intersection and union 

of two fuzzy sets. In that respect, one can replace in (4.54), the t-norm T and the t-conorm l.. 

by the min and max operator respectively. 

In classic set theory, a relation R between two sets X and Y is defined as a set of pairs of 

the form (x,y) with x E X and y E Y, for which holds that the statement x is related to y is 

true. Clearly, R is a subset of X x Y. A fuzzy relation R between two crisp sets X and Y is a 

fuzzy subset of X x Y. The degree of membership of a pair (x, y) to R, with x E X and y E Y, 

indicates the extent to which the statement x is related to y is true. 

In the usual case, we interpret a fuzzy relation as a fuzzy rule or a fuzzy implication. The 

degree of membership of a point (x,y) to the fuzzy rule gives an indication of the extent to 

which the point complies with the rule. Stated otherwise, it gives an indication of the truth 

value of the statement x implies y. Although we can construct a fuzzy rule directly by specifying 

a fuzzy relation, the problem is usually to derive from a fuzzy set A on a universe X and a 

fuzzy set B on a universe Y, a fuzzy subset of X x Y that adequately models the implication if 

x is A then y is B.29 For (a, b) a point of X x Y, how should we define the membership value 

of the implication if x is A then y is B at the pair (a, b)? This question comes down to which 

fuzzy set we should install on X x Y to model the rule if x is A then y is B, given the fuzzy 

sets A and B. It brings us at the theory of approximate reasoning. 

In the theory of approximate reasoning, one operation that involves fuzzy sets, deserves 

special attention, i.e. the composition of a fuzzy set with a fuzzy relation. We define the 

composition of a fuzzy set with a fuzzy relation with the help of the notion of the projection of 

a fuzzy relation on a (crisp) set, and the extension of a fuzzy set into the Cartesian product of 

two (crisp) sets. Formally, 

29The degree of truth of the statement x is A equals the membership value of x to A. Similarly, the truth 
value of y is B equals the membership value of y to B. 
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Definition 59 (Projection of fuzzy relation and extension of fuzzy set) 
For X and Y arbitrary non-empty sets, A a fuzzy set on X, and R a fuzzy relation between X and 
Y, the projection of R on X, denoted by proh(R), and the extension of A into X x Y, denoted by 
exty(A), are defined by 

proh(R) ~ {(x,a) I a = sUPYEy{R(x,Y)}}xEX exty(A) ~ {((x,y),A(x» I (x,y) E X x Y} 
(4.55) 

D 

Using definition (59), we define the composition of a fuzzy set A on X with a fuzzy relation 

R between X and Y as follows, 

Definition 60 (Composition of fuzzy set with fuzzy relation) 
For X and Y arbitrary non-empty sets, A a fuzzy set on X, R a fuzzy relation between X and Y, 

and Tat-norm, the composition of A with R, denoted by A . R, is a fuzzy set on Y, defined by 

A· R ~ projy(RA exty(A» (4.56) 

o 
Everything as in definition 60, the composition of A with R yields a fuzzy set on Y. The 

composition of (4.56) is also called the sup-T composition of A with R. Carefully observe that 

the result of the composition depends on the t-norm T that we choose to make the intersection 

between the fuzzy sets Rand exty(A). As the NEFPROX algorithm that we are about to 

discuss, makes use of Zadeh's t-norm, the t-norm used to compute (4.56) can be replaced by 

the min-operator, and (4.56) can be called the sup-min composition of A with R. 

We stated earlier that, for A and B fuzzy sets on the respective universes X and Y, one 

of the problems in approximate reasoning is to define a fuzzy relation between X and Y using 

the membership functions of A and B, that models the fuzzy implication if x is A then y is 

B, denoted by A --+ B. Such a fuzzy implication is a fuzzy subset of X x Y, and there are 

different ways that this fuzzy subset can be constructed from the membership functions of A 

and B. In light of the NEFPROX algorithm that we employ in our validation method, one type 

of implication is of specific interest to us. This implication is called the Mamdani implication, 

and is formally defined as follows, 

Definition 61 (Mamdani implication) 
For X and Y arbitrary non-empty sets, A and B fuzzy sets on X and Y respectively, and T ~ min 
Zadeh's t-norm, a fuzzy relation A --t B between X and Y is called a Mamdani implication iff. it 
holds for all x E X and Y E Y that 

[A --t B](x,y) ~ T(A(x),B(y» (4.57) 

o 
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With the notion of a Mamdani implication in mind, we now state the generalised modus 

ponens rule of inference, which forms the backbone of the theory of approximate reasoning. 

For X and Y arbitrary non-empty sets, and (a, b) a point of X x Y, the LHS of (4.58) contains 

an example of the classic modus ponens rule of inference, 

premise if x is a then y is b premise if x is A then y is B 

fact x is a fact x is A' (4.58) 

conseq. y is b conseq. y is B' 

Thus, very simply, for e.g. ~(JC)I'17 a behaviour relation estimate in light of the coin striking 

process in the former sections, with V a behaviour orientation that defines an independent 

variable average inter-arrival time and a dependent variable average queue length, and (a, b) a 

point of the behaviour relation estimate, the premise if x is a then y is b reads as if average 

inter-arrival time equals a, then average queue length equals b. 

The RHS of (4.58) contains an example of the generalised modus ponens rule of inference. 

In the example, A and A' are fuzzy sets on X, while B and B' are fuzzy sets on Y. In the 

context of the behaviour relation estimate ~(JC)I'I7' let's interpret A as a fuzzy set modelling 

small average inter-arrival time, and B as a fuzzy set modelling large average queue length. 

Further, assume that the premise A -> B of the RHS of (4.58) is defined as a Mamdani 

implication. The premise thus states that small average inter-arrival time brings about large 

average queue length. Let now A' be a fuzzy set modelling very small average inter-arrival 

time. Then, applying the generalised modus ponens rule of inference in (4.58), we can induce 

from the premise A -> B (small average inter-arrival time yields large average queue length), 

and the fact A' (very small average inter-arrival time), a consequence B'. Intuitively, we expect 

B' to be a fuzzy set that we can interpret as very large average queue length. The membership 

function of B' is in Zadeh's framework of approximate reasoning defined by 

B' £. A' . [A -> B] (4.59) 

Thus, the composition of a fuzzy set with a fuzzy relation is used to induce a consequence 

from a fuzzy implication and a fact. In the following, we now present the general working 

method of the NEFPROX algorithm. We indicate how the algorithm induces a family of fuzzy 

rules from a behaviour relation estimate. We also point out how the resulting fuzzy rule base 

can be used to approximate the relation. 
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4.2 The NEFPROX algorithm and behaviour approximations 

The term NEFPROX30 refers to an algorithm that tries to approximate a function with a 

neural network that employs fuzzy sets as weights on connections between neurons of different 

layers in the network. We intend to apply this algorithm to approximate a behaviour relation 

estimate of a stochastic system. Although the fact that our object of interest is strictly speaking 

a relation, as opposed to a function, this point should not be a point of great concern. For, we 

do not expect a behaviour relation to relate one and the same point of (integrated) statistics of 

stochastic input information processes to different points of (integrated) statistics of stochastic 

output information processes. Moreover, in the unlikely event that one and the same point is 

related to multiple points by a behaviour relation, then we are confident that this fact will not 

significantly 'confuse' the NEFPROX algorithm if only for the fact that the algorithm creates 

a fuzzy rule base, which is precisely aimed at dealing with imprecise and/or noisy information. 

A NEFPROX network that is induced from data, consists of three layers: an input layer, a 

hidden layer, and an output layer. We identify the data from which we like to induce a network, 

with a finite estimate of the behaviour of a stochastic system lC through some behaviour orien

tation (!J:, W). In a preliminary phase, we create a neuron on the input layer of the network 

for every independent variable in !J:. Likewise, we create a neuron on the output layer of the 

network for every dependent variable in W. The algorithm then installs a number of fuzzy sub

sets of the real line for every independent and dependent variable. For each variable, the fuzzy 

sets are defined such that their combined support contains all points in between the lowest ob

servation and the highest observation on the variable. Each of the fuzzy sets is associated with 

a linguistic term, such as small, medium, large, etc. The main task of the NEFPROX learning 

algorithm will then be to create a number of neurons on the hidden layer, to link up these 

neurons with neurons on the input and the output layer, and to attach to every link a linguistic 

term, implemented by one of the predetermined fuzzy sets. The main task of the NEFPROX 

training algorithm will then be to modify the membership functions that characterise the fuzzy 

sets on the neuron to neuron connections, in an attempt to reach a rule base that adequately 

approximates (in our case) a behaviour relation estimate of a stochastic system. The number 

of fuzzy sets for each variable, and the connection between the fuzzy sets and the linguistic 

terms remains fixed during the training algorithm. 

Once the network structure and the initial fuzzy sets are defined, the learning algorithm 

of NEFPROX is invoked. In the context of an estimated behaviour relation a%>(lC)lv, where 

lC is a validatable stochastic system, and V' ~ (!J:, W) a behaviour orientation for /C, this 

algorithm can be summarised as follows. Let ((X1.X2"",Xm),(Y1.Y2, ... ,Yn)) be a point of 

a%>(/C)IV.31 For every i ~ 1,2, ... , m, the fuzzy set with respect to which Xi has the highest 

degree of membership of all fuzzy sets that are associated with the independent variable that 

30NEFPROX stands for neuro-Juzzy Junction approximation. 
3lHere, Xl,X2, ••• , Xm are values of independent variables, while Yl, Y2, .•• , Yn are values of dependent variables. 
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carries index i, is identified. Applying this for every independent variable yields a total of m 

fuzzy sets, that make up the antecedent part of a potentially new rule neuron. In effect, the 

antecedent part of every rule currently in the rule base is inspected, and a new rule neuron is 

created on the hidden layer in case no rule neuron exists that has the former identified fuzzy 

sets as its weights on its links with input neurons.32 The new rule neuron is then connected to 

all neurons on the output layer. Further, for every j ~ 1,2, ... , n, the fuzzy set with respect 

to which Yj has the highest degree of membership of all fuzzy sets that are associated with 

the dependent variable that carries index j, is identified. In case the membership degree of 

Yj to this fuzzy set is unsatisfactory low, then a new fuzzy set is created for output neuron j. 

Applying this for all output neurons, yields a total of n fuzzy sets, that make up the conclusion 

part of the new rule neuron. The above steps are now repeated for all points of the estimated 

behaviour relation ~(K)IV'. 

After an initial (and possibly further optimised) fuzzy rule base has been established in 

the manner as we outlined above, the training algorithm of NEFPROX is invoked. In our 

case, the training algorithm processes several times all points of the estimated behaviour re

lation ~(K)IV'. Each time all behaviour points are processed, an epoch is said to have been 

completed. For ((xl, x2, . .. , x;"), (Yl' y2, ... , Y~)) a point of ~(K)IV" processed in some epoch, 

the input (xI,x2, ... ,x;") is propagated through the network, in order to achieve an output 

or target estimate (iiI, ih, ... , fin). This goes as follows. Denote the set of neurons on the 

input, hidden and output layer by Uin ~ {utn,ufn,···,ur,:}, Uhdd ~ {u~dd,U~dd, ... ,u~dd} 
and Uout ~ {u~ut,U~ut, ... ,u~ut} respectively, where I ~ {1,2, ... ,m}, K ~ {1,2, ... ,q} and 

1 ~ {1, 2, ... , n}. Further, let Ai,ko Vi E I and k E K, be the fuzzy set that is installed on the 

link between input neuron i and rule neuron k. Also, let Bk,j, Vk E K and j E 1 be the fuzzy 

set that is installed on the link between rule neuron k and output neuron j. If we focus on an 

output neuron with index j, then a rule node with index k can be written as a fuzzy premise, 

denoted by 

Rk,j ~ if Xl is AI,k and X2 is A2,k and ... and Xm is Am,k then Yj is Bk,j (4.60) 

The input x ~ (xI,x2, ... ,x;") can be written as a fuzzy subset F(x) ~ {(x,1)} of Rm. 

In that respect, the generalised modus ponens rule of inference can be applied to compose 

F(x) with the fuzzy relation Rk,j of (4.60), and this for every j E 1. Given the input x, 

denote the composition by Yk,j(x) ~ F(x) . Rk,j for every j E 1. The membership value of an 

arbitrary point Y of R to every of the fuzzy sets Yk,j(x), j E 1 is computed as follows. First, 

the membership value of x: to Ai,k is determined for every i E I. Then, Zadeh's t-norm is 

used to compute O<k(X) ~ TiEI{Ai,k(X;)}. This yields an indication of the degree of matching 

32In case such a rule neuron already exists, then the algorithm will take the next point of the behaviour relation 
estimate. 
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of the input x with the antecedent part of the rule of (4.60). Next, the membership value 

of y to Bk,j is determined for every j E J. Since NEFPROX makes use of the Mamdani 

implication operator, the membership value of the point ((x~,x2, ... ,x;:"),y) to Rk,j equals 

'Yk,j(X,y) ~ min(ak(x),Bk,j(Y)) for every j E J. Since core(F(x)) = {x}, the membership 

value of y to Yk,j(x) equals 'Yk,j(X, y) for every j E J. Repeating the above for every point y of 

R completely defines the fuzzy sets Yk,j(x), j E J. Further, repeating this for all rule nodes on 

the hidden layer yields a number of fuzzy sets Yk,j (x), k E K, j E J. The activation of output 

neuron U~ut' Vj E J is now defined as the union of the fuzzy sets Yk,j(x), k E K, using Zadeh's 

t-conorm, or 

activation of U~ut under input x ~ Cj(x) ~ V Yk,j(x) 
kEK 

(4.61) 

The output of output neuron U~ut is then computed from defuzzifying the activation of 

(4.61). A defuzzifier is generally defined as a procedure that converts a fuzzy set on a universe 

X into a representative element of X. The NEFPROX algorithm offers two defuzzification 

strategies, i.e. center of gravity and middle of maxima. Denoting a ~ inf[supp(Cj(x))] and 

b ~ sup[supp(Cj(x))], and M as the set of all points that have the highest membership degree 

to Cj(x), the center of gravity and middle of maxima defuzzifiers can be written as 

[C ( )] " f: yCj(x)(y)dy 
cog j x = b 

fa Cj(x)(y)dy 
(4.62) 

Using (4.61) and applying one of the defuzzifiers of (4.62) for every output neuron j E J, 

NEFPROX creates a target estimate (fh,ijz, ... ,Yn) in response to the input (x~,x2, ... ,x;:"). 

The difference between the target estimate (Yl, Y2, ... , Yn) and the true target (y~, y2, .. . , y~) 

is now propagated backwards through the network to alter the fuzzy sets Ai,k, i E I, k E K 

and Bk,j, k E K, j E J. The modifications that are made implement a fuzzy variant of the 

backpropagation algorithm that is used to train multilayer Perceptron networks, and is known 

as fuzzy backpropagation. Eventually, propagation of the input (x~, x2' ... , x;:") possibly leads to 

a modified rule base. The learning algorithm now continues with the next pattern of &2'(JC) 1\7, 
and the steps that we outlined above are repeated to compute an output estimate. Once all 

patterns are processed, an epoch is completed, and the algorithm starts propagating the input 

of the first pattern again, until a stopping criterion is met. 

A first problem that we encounter when we want to induce from a behaviour relation 

estimate a fuzzy rule base with the NEFPROX algorithm, is how we should decide on a suitable 

parameter set-up for the algorithm. In effect, we can define a different number of fuzzy sets for 

each independent and dependent variable. Also, we can choose the shape of the membership 
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functions of the fuzzy sets to be triangular, trapezoidal or normal. Furthermore, we can select 

one of the defuzzification methods of (4.62). Besides these parameters, a number of other 

parameters must be decided upon, as there are a learning rate, a maximum number of rules 

that are allowed in the rule base, and whether or not the membership functions of the fuzzy sets 

that are defined for a variable are allowed to pass one another. By carrying out a number of 

preliminary tests with the algorithm, and based on conclusions that we drew in [18] from tests 

with NEFCLASS - an algorithm much similar to NEFPROX that can be used for classification 

-, we decided to retain the following parameters as being significant: number of fuzzy sets per 

independent and dependent variable, shape of the membership function of the fuzzy sets, and 

the defuzzification method. In that respect, for a network with m input and n output neurons, 

we define an (m, n)-NEFPROX parameter-set up as follows, 

Definition 62 «m,n)-NEFPROX parameter set-up) 

For a NEFPROX network with m input and n output neurons, indexed by the respective index sets 

I and J, cin, i E I and ~ut' j E J numbers of fuzzy sets, Sin' i E I and Siut, j E J shapes of 
membership functions of fuzzy sets, and defuzz a defuzzifier, an (m, n)-NEFPROX parameter set-up 

is a 5-tuple, defined by 

(4.63) 

o 
Thus, very simply, an (m,n)-NEFPROX parameter set-up P defines a number of triangu

lar, trapezoidal or normal shaped fuzzy sets for each input and output neuron. In addition, 

the parameter set-up specifies whether we use the center of gravity or the middle of maxima 

defuzzification method. For all other parameters that are not pinned down by the parameter 

set-up, we use the default values for these parameters, that are provided in a standard initial

isation file for the algorithm. With the help of a NEFPROX parameter set-up, we can now 

formally define what we mean by a NEFPROX approximation of a behaviour relation estimate 

of a stochastic system, 

Definition 63 (NEFPROX approximation of behaviour relation estimate) 

For ~(IC)IV <:;; R'" x Rn a finite estimate of the behaviour of an approximately stationary, steady
state and ergodic stochastic system IC through a behaviour orientation V', and P an (m, n )-parameter 
set-up for NEFPROX, the fuzzy rule base that is induced by applying the NEFPROX learning and 
training algorithm on ~(IC)IV under the parameter set-up, is called a P-approximation of ~(IC)IV. 

o 
A NEFPROX approximation of a behaviour relation estimate ~(K)l"v is thus the fuzzy 

rule base that is generated by applying the NEFPROX algorithm that we discussed in para

graph 4.2 on ~(K)IV'. In the following, we denote a P-NEFPROX approximation of ~(K)IV' 
by A1' (~(K) IV' ). Sometimes, we also employ the notation A, lffi, etc. to denote NEFPROX 

approximations. 
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4.3 Pseudo-metrics and resemblance relations 

We like to use the concept of resemblance relations in fuzzy set theory in order to arrive at 

a notion of gradual validity. Resemblance relations were first introduced by [6] to overcome 

certain paradoxes that may arise in approximate reasoning. A resemblance relation is defined 

with the help of a pseudo-metric, 

Definition 64 (Pseudo-metric) 
For n an arbitrary non-empty set, a function d from n x n into R+ is called a pseudo-metric on n 
iff. it holds for all w, w' and w" in n that 

d(w,w) = 0 

d(w,w') = d(w',w) 

d(w, w') + d(w', w") 2: d(w, w") 

(4.64) 

(4.65) 

(4.66) 

D 

For 0 a non-empty set, and d a pseudo-metric on 0, the pair (0, d) is called a pseudo-metric 

space. A resemblance relation can now formally be defined as follows, 

Definition 65 «g,d)-resemblance relation) 
For n a non-empty set, (X, d) a pseudo-metric space, and 9 a function from n into X, a fuzzy 
relation R on n is called a (g, d) -resemblance relation iff. it holds for all w, w', w" and w in n that 

R(w,w) = 1 

R(w,w') = R(w',w) 

d(g(w),g(w'))::; d(g(w"),g(w)) ~ R(w,w') 2: R(w",w) 

(4.67) 

(4.68) 

(4.69) 

o 
Carefully notice that in order to be able to speak of a resemblance relation, we must have 

a non-empty set 0, a metric space (X, d) and a function 9 from 0 into X. Equation (4.67) is 

the logical requirement that the resemblance between any point of 0 and itself has to equal l. 

According to (4.68), the resemblance between a point w and a point w', must be identical to 

the resemblance between w' and w. Finally, equation (4.69) states that, if the distance between 

g(w) and g(w') is not larger than the distance between g(w") and g(w) for some w,w',w" and w 

in 0, then the resemblance between w and w' should not be lower than the resemblance between 

w" and w. 

It is clear from definition 65 that, given the sets 0 and X, and the function 9 from 0 

into X, whether or not a fuzzy relation on 0 will be a resemblance relation, depends on the 

pseudo-metric that we define on X. In [6]' the resemblance relation concept is illustrated by 
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a number of examples for different pseudo-metrics. Based on these examples, we like to retain 

the so-called infinity pseudo-metric in light of the concept of gradual validity that we develop. 

We define an infinity pseudo-metric formally as follows, 

Definition 66 (Infinity pseudo-metric) 
For Xi, i E I arbitrary non-empty sets, indexed by a finite index set I, a pseudo-metric on 
X ~ fLEI Xi is called the infinity pseudo-metric on X, denoted by doo , iff. it holds for all 
x ~ (Xl, X2, ... , XIII) and y ~ (Yl, 112, ... , YIII) in X that 

(4.70) 

o 
Everything as in definition 66, the infinity pseudo-metric doc on X defines the distance 

between the points x and Y to be the maximum over all i E I of the absolute difference between 

Xi and Yi. Stated somewhat informally, the infinity pseudo-metric on X is a conservative 

pseudo-metric, as a single coordinate with index i for which holds that IXi - Yil is large, is 

sufficient to render the distance between x and Y large. 

For n an arbitrary non-empty set, X ~ [0, l]k and At, A 2 , ..• ,Ak fuzzy subsets of n for some 

kENo, an example of a resemblance relation is given in [6] by choosing the infinity pseudo

metric on X and by defining a function from n into X that assigns to every point wEn a tuple 

with membership values AI(w), A2(w), ... , Ak(w). This example is of particular interest in our 

case. For, in case 9lJ(K) IV' ~ Rm x R" is a finite behaviour relation estimate of an approximately 

stationary, steady-state and ergodic stochastic system, then we like to identify n with Rm x 

Rn , and the fuzzy sets At, A2 , ... , Ak with the fuzzy rules in a NEFPROX approximation 

of the behaviour relation estimate. In that respect, for A a NEFPROX approximation of 

a behaviour relation estimate, we introduce the notion of an A-resemblance relation in the 

following definition, 

Definition 67 (A-resemblance relation) 
For ~(JC)IV <;;;; Rm x R" a behaviour relation estimate of an approximately stationary, steady
state and ergodic stochastic system ]( through the orientation '\l, 'P an (m, n)-parameter set-up 
for NEFPROX, A ~ {A I ,A2 , ... ,Ak } the 'P-NEFPROX approximation of ~(JC)lv, doo the infinity 
pseudo-metric on [0, Ilk, and 9 a function from Rm x R" into [0, Ilk, defined in every X E Rm x R" 
by g(x) ~ (A I (x),A2 (x), ... ,Ak(x», a fuzzy relation RA on Rm x R" is called an A-resemblance 
relation iff. it holds for all X and Y in Rm x R" that 

(4.71) 

o 
Thus, everything as in definition 67, the A-resemblance relation RA defines the resemblance 

between two points x and Y of Rm x Rn using the membership values of x and Y to AI, of 

x and Y to A2, etc. The resemblance between x and Y will be small if there is at least one 
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rule in the NEFPROX approximation for which holds that the membership value of x to the 

rule deviates significantly from the membership value of y to the same rule. The resemblance 

between x and y will be large if and only if for every rule in the NEFPROX approximation, x 

and y have similar membership degrees to the rule. 

To better grasp the notion of an A-resemblance relation, let everything be defined as in 

definition 67, and let g2>(JCI) IV" ~ Rm x Rn be a behaviour relation estimate of another stochastic 

system JC' through a behaviour orientation V' that is compatible to V. Let x be a point of the 

behaviour relation estimate g2>(JC)IV" and let y be a point of the behaviour relation estimate 

g2>(JC' ) IV'" If the resemblance between x and y is large, then we can consider y as a point of 

g2>(JC)IV' to some degree, since we find through the NEFPROX approximation of g2>(JC) IV' that 

both x and y are consistent with the knowledge in the approximation. Although y may not 

be an element of g2>(JC)IV" we can consider the statement y is an element of g2>(JC)IV' to be 

somewhat true since there is a point x of g2>(JC) IV' for which holds that y highly resembles x. 

4.4 Resemblance random variables 

In classic systems theory [31]' an abstract system is called a valid subsystem of another abstract 

system if and only if every input/output segment pair that the former system produces can also 

be produced by the latter system. If the reverse statement holds, in that every input/output 

segment pair of the latter system can be produced by the former, then we call the former 

system a valid supersystem of the latter system. Clearly, if a system is a valid subsystem of 

another system, then the other system is a valid supersystem of the first system, and vice 

versa. In classic systems theory, an abstract system is said to be valid with respect to another 

abstract system if and only if it is both a valid subsystem and a valid supersystem of the other 

system. Valid systems thus bring about the same family of input/output segment pairs in 

classic systems theory. Now, in light of the stochastic system construct that we developed in 

this research report, and in light of the notion of stochastic system behaviour, we formulate a 

fuzzy and stochastic variant of the classic subsystem and supersystem validity conditions. 

For g2>(JC) IV' and g2>(JCI)IV" behaviour relation estimates of approximately stationary, steady

state and ergodic stochastic systems JC and JC' through compatible behaviour orientations V 

and V', and A and lffi NEFPROX approximations of g2>(JC) IV' and g2>(JCI)IV" respectively, we use 

the A-resemblance relation R1l. and the lffi-resemblance relation RIJI to measure the extent to 

which we can consider g2>(JC)IV' a subset of g2>(JCI)IV'" If we can find for almost every element 

of g2>(JC)IV" an element of g2>(JCI)IV" that highly resembles the former, then we consider the 

statement g2>(JC)IV' ~ g2>(JCI)IV" to be very true since most members of g2>(JC)IV' have at least one 

highly resembling member in g2>(JC' )IV'" On the other hand, if we cannot find for the majority 

of elements in g2>(JC) IV" an element of g2>(JCI)\V', that significantly resembles the former, then 

we conclude that the statement g2>(JC)IV' ~ g2>(JCI)\V', is only little true since most members of 
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~(lC)lV' do not resemble any of the members of ~(lC')IV'/. In order then to formally express 

the extent to which ~(lC)lV' is a subset of ~(lC')IV'/, we define in the following definition the 

notion of an (A,la)-resemblance random variable, 

Definition 68 «A, lE)-resemblance random variable) 
For .@(K:)1'17 ~ Rm x Rn and .@(K:')lv/ <;;; IRm x IR" finite estimates of the behaviour of approximately 

stationary, steady-state and ergodic stochastic systems K: and IC' through the respective compatible 

behaviour orientations 'il and 'ill, P an (m, n)-parameter set-up for NEFPROX, and RA and Ru the 

A £ A-p(.@(K:)lv)-resemblance relation and lE £ A-p(.@(K:')lv,)-resemblance relation respectively, 

an (A,lE)-resemblance random variable is a random variable on (.@(K:)lv,2.@(·Q1v,P), where P is 

defined in every A E 2.@(K:)lv by peA) £ 1~~:Jlvl' denoted by r(A,II) and defined in every x E .@(IC)IV 
by 

(4.72) 

o 
Everything as in definition 68, notice that the sample set of the (A, la)-resemblance random 

variable r(A,lR) equals the behaviour relation estimate ~(lC)IV" For every behaviour point x 

of ~(lC)IV" we look up the behaviour point y of ~(lC')IV'1 for which holds that it has overall 

the highest resemblance with respect to x of all behaviour points of ~(lC')IV'/, as measured 

by both resemblance relations RA and RlR. Thus, for every point x of ~(lC)IV" we use the 

NEFPROX approximations A and la of ~(lC)lV' and ~(lC')IV'1 respectively, to identify the 

point y of ~(lC')IV'1 for which holds that x and y have the most similar membership values to 

all fuzzy rules of A and to all fuzzy rules of la of all behaviour points of ~(lC')IV'/. If we find 

for almost every point x of ~(lC)lV' a point y of ~(lC')IV'1 such that min{RA(x, y), RIB (x, y)} 

is relatively high, then we consider the proposition ~(lC)lV' C;;; ~(lC')IV'1 to be very true, since 

in light of the knowledge that is contained in the NEFPROX approximations, almost every 

behaviour point of ~(lC)lV' has at least one behaviour point of ~(lC')IV'1 for which holds that 

both points comply with the knowledge that is stored in the NEFPROX approximations A and 

la. 

In figure 8(a), we depicted by way of example possible smoothed cumulative distributions 

of different resemblance random variables. What do the smoothed distributions in the figure 

stand for? In order to address this question, assume that we are confronted with the following 

validation scenario. Let AI. be an abstract object trace, representing all that we have available 

of a real coin striking process. Thus, AI. is nothing but a family of relations that hold a limited 

number of input/output segment pairs, where every input/output segment pair contains an 

input segment with coin arrivals, and an output segment with queue length observations. Let 

now lC be the stochastic system with main structured discrete event system Q and environment 

C, that we postulate to generate an abstract object trace, denoted by a(Q)lc, that embodies 

all the input/output segment pairs of AI.' Assume now that as a result of our modelling efforts, 

we developed the stochastic systems lCA through lCF. Recalling our framework for validation 
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in section 1 and recalling figure 1, the stochastic systems /(A through /(p are thus competing 

primary models that we developed for the coin striking process. The validation dilemma that 

we face here is that we are uncertain which of the models /(A through /(p is the best model 

in light of the abstract object trace AI.' Assume now that we created a behaviour orienta

tion for every stochastic system, containing an independent variable average inter-arrival time, 

and a dependent variable average queue length. Then, we can build a number of simulation 

models, and obtain through experiments with these models - through simulation - estimates of 

the behaviour of the stochastic systems /(A, /(B, etc. through their accompanying behaviour 

orientations. Let's denote these behaviour relation estimates by ~(/(A)I'I7A' ~(/(B)I'I7B' etc. 

We denote the behaviour relation estimate that we obtain by performing time based arith

metic with the input/output segment pairs of AI. by ~(lC)I'I7' Next, we create a suitable 

(1, I)-parameter set-up P for NEFPROX, and generate the P-NEFPROX approximations of 

~(/(A)I'I7A' ~(/(B)I'I7B' etc. Denote these approximations by A, Jffi, etc. and denote the P
NEFPROX approximation of ~(/()I'17 by Z. Within the validation scenario that we outlined 

here, the smoothed cumulative distributions that we displayed in figure 8(a) are cumulative 

distributions that we may possibly find for the resemblance random variables r(Z,A)' r(Z,JI), etc. 

According to figure 8(a), for most points in the behaviour relation estimate ~(/()I'I7' we do 

not find a point in the behaviour relation estimate ~(/(E)I'I7E that highly resembles the former 

point through both the Z-resemblance relation Rz and the E-resemblance relation Rm;. Hence, 

we state that the proposition ~(/()I'17 is a subset of ~(/(E)I'I7E is only little true. In contrast, 

for most points in the behaviour relation estimate ~(/()I'I7' we do find at least one point in 

the behaviour relation estimate ~(/(A)I'17 A that highly resembles the former point through both 

the Z-resemblance relation Rz and the A-resemblance relation RA . Therefore, we state that 

the proposition ~(/()I'17 is a subset of ~(/(A)I'17 A is highly true. The problem that we now face 

is how we should convert the information that is captured by the cumulative distribution of 

a resemblance random variable, in an overall verdict on the extent that a behaviour relation 

estimate of a stochastic system can be considered a subset of a behaviour relation estimate of 

another stochastic system. We deal with this problem in the following and final subsection, in 

which we develop the concept of a fuzzy set of propositions on validity. 

4.5 Fuzzy sets of system validity propositions 

For Fr(A,B) the cumulative distribution of a resemblance random variable, with A and Jffi NEF

PROX approximations of behaviour relation estimates ~(lC)I'17 and ~(/(/)I'I7/, we convert the 

cumulative distribution into a fuzzy set of propositions on the degree to which the behaviour re

lation estimate ~(K)I'17 can be considered a subset of the behaviour relation estimate ~(K/)I'I7/. 
We interpret the membership value of a proposition to the fuzzy set as the degree of truth of 

the proposition. We derive such a fuzzy set of propositions from the cumulative distribution as 

follows. First, we divide the unit interval [0,1] in n equally sized intervals [al ~ 0, bi [, [a2, b2[, 
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Figure 8: Resemblance random variables and fuzzy sets of subsystem validity propositions 

etc. until and including [an, bn ~ 1], for some n E No. Then, we compute for every interval the 

relative number of realisations of the random variable r(A,JB) that fall within the interval. Denote 

the relative number of realisations in the ith interval by Ci. Further, we look up the maximum 

relative number of realisations that fall within any interval, and divide all relative numbers by 

this maximum. Thus, in case Cj ~ maxi=1,2, ... ,n{c.;}, then we compute the ratios ;:., ~, etc. , , 
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Finally, we create a fuzzy subset of the unit interval by defining a membership function from R 

into [0,1] that assigns to every point x E [0,1] the membership value ~, where i identifies the 

interval that contains x, and that assigns to every point x ¢ [0,1] the membership value 0. This 

approach of creating a fuzzy set on the unit interval resembles to some extent the approach of 

constructing an histogram from empirical data. In a way, we treat the random variable r(A,B) 

as if it were continuous, and compute a kind of scaled histogram. We call the created fuzzy set 

a fuzzy set of stochastic subsystem validity propositions of resolution n. Formally, 

Definition 69 (Fuzzy set of stochastic subsystem validity propositions) 

For @(JC)IV' ~ Rm x Rn and @(JCI)IV" ~ Rm x Rn finite estimates of the behaviour of approx
imately stationary, steady-state and ergodic stochastic systems JC and JCI through the respective 

compatible behaviour orientations V and V', 'P an (m, n)-parameter set-up for NEFPROX, and 

A ~ Ap(@(JC)IV') and B ~ Ap(@(JC')IV") NEFPROX approximations of @(JC)IV' and @(JCI)IV" 
respectively, a fuzzy set of stochastic subsystem validity propositions of JC with respect to JCI of reso

lution n is a fuzzy subset of [0, 1], denoted by ll<n(A, B), the membership function of which is defined 

in every x E R by, where Cmax ~ maxj=1.2 •...• n{PrC •.• ) ([i.;;!, ~[)'Prc •.• )({I})}, 

{

o x < 0 

P. ([i-l i [)Ic i-I < x < i 
on(A,lB)(x) ~ r(A,B) n' n max n - n 

PrCA•B) ({I})lcmax X = 1 

Ox> 1 

(4.73) 

o 
Returning to figure 8, we displayed by way of example in figure 8(b) a number of possible, 

smoothed fuzzy sets of stochastic subsystem validity propositions of a certain resolution n. 

In fact, the fuzzy sets that we displayed in figure 8(b) are meant to represent some of the 

converted cumulative distributions of figure 8(a). To give an example, consider the stochastic 

system lCA. The curve of figure 8(a) that represents the smoothed cumulative distribution 

of the resemblance random variable r(Z.A) is transformed by (4.73) in the fuzzy set ll<n(Z,A) 
in figure 8(b). How should we now interpret this fuzzy set? First, we associate with every 

point x E H;hE/, where I ~ {O, 1,2, ... , n}, a linguistic term of the form L-similar, where 

L represents a linguistic modifier. Examples of modifiers are very, more or less, somewhat 

and not very. We whish to agree here to make this association in a monotonic way. For 

x ~ 1 and x ~ 0, we think of the linguistic terms completely similar and not at all similar (or 

completely dissimilar) respectively. As we gradually decrease x from 1 to 0, we like to associate 

with x linguistic terms as there are very similar, somewhat similar, little similar (or somewhat 

dissimilar), etc. Now, in case we have associated with e.g. x ~ n;;-l the linguistic term very 

similar, then we introduce the notation ~(lC)r'v["']x~(lCA)[VA to denote the statement every 

element of ~(lC)[V has a very similar element in ~(lCA)[V A' In case we have associated with 

e.g. x ~ ~ the linguistic term very dissimilar, then we read ~(lC)r'V["']x~(lCA)[VA as every 

element of ~(lC)[V has a very dissimilar element in ~(lCA)[VA' We define the truth value of 

75 Katholieke Universiteit Leuven 



J. Martens 4 A RESEMBLANCE APPROACH TO BEHAVIOUR VALIDATION 

the proposition ~(IC)r'V[~lx~(1CAh'VA for some x E {*heI to be the membership value of x to 

the fuzzy set O!n(Z, A). As figure 8(b) suggests, the membership value of x ~ n;;l to o<n(Z, A) is 

high. Therefore, the proposition ~(IC)lv[~ln-l~(ICA)IVA is very much true. Stated otherwise, 

the following proposition very much holds, e:ery element of ~(IC)lv has a very similar element 

in ~(ICA)lv A - as seen through the NEFPROX approximations Z and A. 

For x relatively large, a high membership value of x to O!n(Z, A) indicates that there is 

strong support to call IC a very valid stochastic subsystem of ICA. The support is strong since 

the membership value is large. The statement includes the linguistic term very valid as we 

have chosen x to be relatively large. Notice from figure 8(b) that for the stochastic systems IC 

and ICE, the proposition ~(IC)lv[~lx~(ICE)lvE is very false for x relatively large. Hence, there 

is little or no support - since the membership value of x to an(Z, JE) is low - to call IC a very 

valid stochastic subsystem of ICE - where we employ the term very valid since x is relatively 

large. Notice from the figure that, as we decrease x, the membership value of x to the fuzzy set 

O<n(Z, JE) increases. Therefore, the proposition ~(K)lv[~lx~(KE)lvE becomes more and more 

true as we lower x. For x ~ ~, it follows from figure 8(b) that the statement every element 

of ~(IC)lv has a very dissimilar element in ~(ICE)lvE is very true. In other words, there is 

strong support to call IC a highly invalid stochastic subsystem of KE. 

In the above, we developed a fuzzy set theoretic approach to attach a label of truth to 

propositions on the extent that a behaviour relation estimate of a stochastic system is believed 

to be a subset of a behaviour relation estimate of another stochastic system. For ~(K)lv 
and ~(K')lvl behaviour relation estimates, it is now only natural to ask whether the statement 

~(K)lv[<vlx~(1C')lvl is equally true than the statement ~(ICI)lv/Hx~(K)lv, and this for every 

x E {*heI' The answer is in the negative. For, in order to evaluate the former statement, 

we use the (A,lR)-resemblance random variable r(A,18), where A is a NEFPROX approximation 

of ~(JC)IV and 1m is a NEFPROX approximation of ~(ICI)lv/. However, in order to evaluate 

the latter statement, we use the (lR, A)-resemblance random variable r(18,A)' Although the 

NEFPROX approximations that are used by the random variables r(A,B) and r(lB,A) are the 

same, the random variables themselves will in general not have identical distributions. In that 

respect, we define in the following definition the concept of a fuzzy set of stochastic supersystem 

validity propositions, 
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Definition 70 (Fuzzy set of stochastic supersystem validity propositions) 
For ~(Je)I''' ~ Rm x Rn and ~(Je')IV' ~ Rm x Rn finite estimates of the behaviour of approx
imately stationary, steady-state and ergodic stochastic systems Je and Je' through the respective 
compatible behaviour orientations V and V', P an (m,n)-parameter set-up for NEFPROX, and 
A £ A'P(~(Je)IV) and B £ A'P(~(Je')IV') NEFPROX approximations of ~(K:)IV and ~(Je')IV' 
respectively, a fuzzy set of stochastic supersystem validity propositions of Je with respect to Je' of 

resolution n is a fuzzy subset of [0,1], denoted by ,6n(A,B), the membership function of which is 

defined in every x E R by 

(4.74) 

D 

Thus, as we determine the subsystem validity of a stochastic system /C with respect to 

a stochastic system /C', then we look up for every point in the behaviour relation estimate 

of /C the most similar point in the behaviour relation estimate of /C/, using the NEFPROX 

approximations of both behaviour relation estimates. However, as we determine the supersystem 

validity of }C with respect to /C', then we look up for every point in the behaviour relation 

estimate of }C' the most similar point in the behaviour relation estimate of /C, using the same 

NEFPROX approximations. Using definitions 69 and 70, we now define a fuzzy set of stochastic 

system validity propositions as follows, 

Definition 71 (Fuzzy set of stochastic system validity propositions) 
For ~(Je)IV ~ Rm x Rn and ~(Je')IV' ~ Rm x Rn finite estimates of the behaviour of approx
imately stationary, steady-state and ergodic stochastic systems K: and Je' through the respective 
compatible behaviour orientations V and V', P an (m,n)-parameter set-up for NEFPROX, and 
A £ A'P(~(Je)IV) and B £ A'P(~(K:')IV') NEFPROX approximations of ~(Je)IV and ~(Je')IV' re
spectively, a fuzzy set of stochastic system validity propositions of K: with respect to Je' of resolution 

n is a fuzzy subset of [0,1], denoted by Ot,6n(A, B), and defined by 

(4.75) 

D 

We thus define the validity of a stochastic system /C in view of another stochastic system 

}C' through a fuzzy set, members of which are propositions on the extent that we consider 

the behaviour relation estimate that we have obtained of /C, equal to the behaviour relation 

estimate that we have obtained of /C', labelled by a degree of truth. 
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Conclusion 

In this research report, we have developed the core parts of an integrated, fuzzy set and system 

theoretic approach to validate stochastic systems. First, in section 1, we have set up a frame

work for our validation method and defined in an informal way the operands of our validation 

technique, i.e. primary model and real system behaviour. We discussed a modelling hierarchy, 

and positioned the arguments of our validation method in the hierarchy. We also differentiated 

validation from verification. Then, in section 2, we covered some basic aspects of general sys

tems theory, and we presented a structured discrete event system construct. We then employed 

this construct in section 3 to develop a stochastic system construct, and emphasised that we 

like to identify stochastic system behaviour with a relation between sets that hold tuples of 

(integrated) statistics of different stochastic processes. We concluded section 3 by defining the 

conditions that a stochastic system must fulfil for it to be validatable with our approach. Fi

nally, in section 4, we presented the core aspects of our fuzzy set theoretic validation method. 

We indicated how we employ a resemblance relation concept in fuzzy set theory, and a neuro

fuzzy function approximation algorithm, to derive the truth value of statements on the validity 

of a stochastic system. 

We wrote a bundle of C-programs to compute estimates of statistics of stochastic processes, 

cumulative distributions of resemblance random variables, fuzzy sets of stochastic system valid

ity propositions, etc. Also, we modified the source code of the NEFPROX algorithm to obtain 

rule hits of patterns, the input of which is propagated through a fuzzy neural network. We 

used these programs to experiment with our validation technique on an integrated example 

that involves the coin striking process. We intend to publish the results of these experiments 

in a future publication. Also, we like to further refine our technique, test it on a number of 

different validation scenarios and compare it with other validation techniques. 
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