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Abstract We propose a novel algorithm, FURS (Fast

and Unique Representative Subset selection) to deter-

ministically select a set of nodes from a given graph

which retains the underlying community structure. FURS

greedily selects nodes with high-degree centrality from

most or all the communities in the network. The nodes

with high-degree centrality for each community are usu-

ally located at the center rather than the periphery

and can better capture the community structure. The

nodes are selected such that they are not isolated but

can form disconnected components. The FURS is eval-

uated by means of quality measures like coverage, clus-

tering coefficients, degree distributions and variation

of information. Empirically, we observe that the nodes

are selected such that most or all of the communities

in the original network are retained. We compare our

proposed technique with state-of-the-art methods like

SlashBurn, Forest-Fire, Metropolis and Snowball Ex-

pansion sampling techniques. We evaluate FURS on

several synthetic and real-world networks of varying

size to demonstrate the high quality of our subset while

preserving the community structure. The subset gener-

ated by the FURS method can be effectively utilized

by model based approaches with out-of-sample exten-

sion properties for inferring community affiliation of the

large scale networks. A consequence of FURS is that the
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selected subset is also a good candidate set for simple

diffusion model. We compare the spread of information

over time using FURS for several real world networks

with random node selection, hubs selection, spokes se-

lection, high eigenvector centrality, high Pagerank, high

betweenness centrality and low betweenness centrality

based representative subset selection.

Keywords Node subset selection · hubs · community

detection · simple diffusion model

1 Introduction

In the modern era graphs have become universal. Their

applications span from social network analysis, bio-infor-
matics, telecommunication networks to even software

engineering. With the advancement of technology, wide-

spread use of Internet and availability of cheap sensors,

the amount of information that can be collected is only

increasing. This leads to large scale graphs with hun-

dreds of thousands to even millions of nodes. There are

several internet based organizations from Facebook to

LinkedIn which produces graphs ranging from online

social networks to professional networks scaling to 100

million users [Crandall et al., 2008], [Ferrara, 2012],

[Pham et al., 2011], [Leskovec et al., 2008] and captures

the interactions between these users. In the telecommu-

nication field, the cell phone interactions produces large

scale graphs and provide insight that groups of peo-

ple prefer to converse with which other groups of peo-

ple [Blondel et al., 2008] and [Saravanan et al., 2011].

In biological systems, graphs are generated from inter-

actions between various entities which reflect the asso-

ciations between these entities. For example the inter-

actions between neurons in the brain to associations be-
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tween the proteins in food synthesis [Jeong et al., 2000]

and [Bullmore and Sporns, 2009].

Real world graphs exhibit community structure where

the nodes are densely connected within the community

and sparsely connected between the communities. The

problem of community detection has received a lot of at-

tention in recent years [Danon et al., 2005],

[Fortunato, 2009],[Clauset et al., 2004],

[Girvan and Newman, 2002], [Langone et al., 2012],

[Lancichinetti and Fortunato, 2009b],

[Rosvall and Bergstrom, 2008] and [Gilbert et al., 2011].

These communities are of great importance as they help

to shed light on behavior and functioning of the net-

works, like buyer or seller behavior during times of cri-

sis. However, the modern day networks are extremely

large and detecting communities from these networks

can become impractical and intractable due to memory

and time constraints. The question to ask then is how

to overcome the challenge of scale of the networks and

perform data analysis of these networks. One direction

to proceed is to develop efficient algorithms which are

fast, accurate, scalable [Rosvall and Bergstrom, 2008],

[Blondel et al., 2008] and might use parallelization or

distributed computing. The other approach which has

been receiving some attention lately is the method of

sampling.

Sampling is conventionally done by a stochastic al-

gorithm when one is interested in performing computa-

tions that are too expensive for the large graph. A sam-

ple of the network can be a set of nodes from the large

graph along with their edges. Another sample can be

a set of edges from the large graph along with the cor-

responding vertices. The simplest technique for obtain-
ing such a sample would be to perform a random sam-

pling. Random sampling has been studied extensively in

various domains to provide insightful information, par-

ticularly, in the case of online social network analysis

[Gjoka et al., 2010] and [Catanese et al., 2011]. However,

the subgraph obtained by random sampling does not re-

tain the inherent community structure. Thus, the sam-

pling of the network should be performed such that the

obtained subgraph is a good representative of the orig-

inal network. But how does one measure if a subgraph

is a ‘good representative’ of the larger network? Ex-

isting work using graph properties like degree distribu-

tions and clustering coefficients are [Hubler et al., 2008]

and [Leskovec and Faloutsos, 2006]. Another work ar-

gues that the measure of representativeness varies and

depends on the analysis to be performed

[Maiya and Berger-Wolf, 2010]. In this paper, we use

several evaluation metrics like Coverage (Cov), fraction

of communities preserved (Frac), clustering-coefficients

(CCF), degree distributions (DD) and variation of in-

formation (VI) to determine the quality of the subset

generated by FURS.

1.1 Motivation & Contributions

Recent work [Gleich and Seshadhri, 2012] showed that

egonets can exhibit conductance scores as good as the

Fiedler cut and provide a good seed sample for a par-

titioning method like PageRank clustering. However,

another work [Kang and Faloutsos, 2011] suggests that

real world scale-free networks follow power-law degree

distributions and have ‘no good cuts’. They provide an

ordering of the nodes of the graph (SlashBurn algo-

rithm) to obtain a good compression of the real world

graphs. We concur with [Kang and Faloutsos, 2011] and

observe that nodes with high degree centrality or hubs

tend to be part of dense regions of a graph.

The aim of this work is to select a subset of nodes

which are located at the center of the communities in

the large scale network without explicitly performing

community detection. The nodes which are located at

the center are good representative of the underlying

community structure. The concept is parallel to the

concept of identification and selection of k centroids

for the k-means clustering technique [MacQueen, 1967].

For this purpose we want to locate and select nodes

with high degree centrality. This is because nodes with

high PageRank centrality [Katz, 1953,Bonacich, 1987],

eigenvector centrality [Katz, 1953,Bonacich, 1987] and

betweenness centrality [Freeman, 1979] can be influen-

tial nodes in the large scale network but need not neces-

sarily be at the center of the communities. This problem

of selection of a subset where the nodes are central to

the communities present in the large network without

explicitly perform community detection is NP-hard.

We propose a Fast and Unique Representative Sub-

set (FURS) selection technique which is a greedy ap-

proximation of the above criterion. The basic idea is to

first order the nodes based on their degree in descend-

ing order during each iteration and pick the node with

highest degree centrality. Once such a node is selected

its immediate neighbors are deactivated (as they can be

reached directly from this node) during that iteration

and the node is placed in the selected subset without

changing the graph topology. We then select the node

with highest degree centrality among the active nodes

and the process is repeated until we reach the subset

size. Once all nodes are deactivated, a new iteration

is started and the deactivated nodes are re-activated.

They are ordered according to their degree centrality

in descending order and the process of node selection,

deactivation and reactivation is repeated till we obtain
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the desired subset. The proposed approach greedily se-

lects nodes with high degree centrality from different

dense regions of the graph.

Thus, we propose a Fast and Unique Representative

Subset (FURS) selection algorithm which determinis-

tically obtains a representative subset of nodes while

retaining the community structure of the large graph.

The contributions of the paper are listed as the follows:

– The sample set of nodes has high degree central-

ity. We observe that these nodes span the differ-

ent communities in the graph capturing the com-

munity structure of the large network. This is eval-

uated by the metric fraction of communities of the

large network preserved in the subset generated by

the FURS. We experimentally demonstrate that the

quality of the subset generated by FURS is better

for several evaluation metrics than previous tech-

niques.

– We compare and show that the proposed subset se-

lection technique is faster than the state-of-the-art

sampling techniques like SlashBurn, Metropolis and

Snowball Expansion sampling.

– We show that the subset obtained by FURS is also a

good candidate set for simple diffusion model. The

spread of information over time using FURS is gen-

erally better than the candidate set obtained by ran-

dom node selection, hubs selection, spokes selection,

high eigenvector centrality, high Pagerank, high be-

tweenness centrality and low betweenness centrality

based representative subset selection.

Related work in this domain is discussed in the next

section. This is followed by the description of our pro-

posed sampling technique in section 3. Section 4 ex-

plains the evaluation metrics and Section 5 illustrates

the experiments conducted along with the analysis of

the experiments. Section 6 reflects the applicability of

FURS for inferring community affiliation in association

with model based approach. Section 7 explains the us-

age of FURS as a candidate set for a simple diffusion

model. We provide the conclusion in section 8.

2 Related Work

Sampling techniques can be broadly divided into two

categories:

– Node sampling - Node sampling involves select-

ing nodes which form a representative subset of the

graph. The selected set of nodes can either be con-

nected or disconnected. The subgraph obtained from

the subset containing disconnected nodes comprises

disconnected components and can even have iso-

lated nodes (w.r.t. the subgraph and not the large

scale network). Some node sampling techniques in-

clude randomly selecting nodes based on degree cen-

trality, random walk model and forest-fire model

[Leskovec and Faloutsos, 2006].

In [Leskovec and Faloutsos, 2006], they evaluate the

quality of the samples for these methods based on

their ability to match various properties of the orig-

inal graph structure like degree distributions, clus-

tering coefficients and component sizes. They con-

clude that the sample obtained by the forest-fire ap-

proach is better than other methods. We provide a

brief description of the Forest-Fire model and the

SlashBurn algorithm.

1. Forest-Fire - Firstly, a node is randomly picked

as seed node. We then begin “burning” the out-

going links and the corresponding nodes. If a link

gets burned, the node at the other endpoint gets

a chance to burn its own links, and so on recur-

sively. The Forest-Fire model has two param-

eters: forward (pf ) and backward (pb) burning

probability.

2. SlashBurn - Recently, a new approach was pro-

posed to provide an ordering of the nodes of the

graph namely SlashBurn algorithm. It was used

to obtain a good compression of the real world

graphs in [Kang and Faloutsos, 2011]. The Slash-

Burn algorithm can also be utilized for obtain-

ing a subset of nodes which contain informa-

tion about the inherent community structure.

For the SlashBurn algorithm after selection of

the k-hubset the connections are burnt and a

new graph is constructed. The giant connected

component is discovered in this new graph and

the process of selection is performed recursively

till we reach the required size of the subset.

– Subgraph sampling - In subgraph sampling a new

node is always selected from the neighborhood of

an already selected node based on a criterion. As a

result the obtained subgraph is always connected.

This is a hard constraint and has to be followed

making the problem more difficult and computa-

tionally expensive. In [Hubler et al., 2008], the Metr-

opolis algorithm [Metropolis et al., 1953] was used

for a sample subgraph selection. Recently, two sam-

pling technique using the concepts of expander graph

was published in [Maiya and Berger-Wolf, 2010] wh-

ere the obtain subgraph is connected. We provide a

brief description of Metropolis Sampling using De-

gree Distribution (MDD) [Metropolis et al., 1953]

and Snowball Expansion Sampling (XSN)

[Maiya and Berger-Wolf, 2010].

1. Metropolis Sampling using Degree Distri-

bution (MDD) - The idea behind MDD is to



4 Raghvendra Mall et al.

select a subgraph which has similar topologi-

cal properties w.r.t. large graph. For MDD, the

topological property is degree distribution. In or-

der to get this subgraph, we draw a subgraph

from the subgraph space following a specific den-

sity ρ(S). This density should reflect subgraph

quality well, which means good induced subgraphs

should be drawn more frequently than worse ones.

Thus ρ(S) depends on the quality of subgraph

G(S). It is not possible to draw samples from

the sample space when the underlying normal-

ized density ρ(S) is not known beforehand. To

solve this problem we use the Metropolis algo-

rithm [Metropolis et al., 1953].

2. Snowball Expansion Sampling (XSN) - The

XSN technique is based on the notion that sam-

ples with good expansion properties tend to be

more representative of the community structure

in the original network than samples with worse

expansion. This concept is derived from the the-

ories of expander graph. In Snowball Expansion

Sampling the aim is to find a sample with max-

imum expansion factor i.e. |N(S)|
|S| where N(S)

is the neighbourhood of subgraph S. The term

“snowball” is used because subsequent members

of the sample (S) are selected from current neigh-

bourhood set N(S) based on the degree to which

a node v ∈ N(S) contributes to the expansion

factor (|N({v})−(N(S)∪S)|). New sample mem-

bers can be chosen either deterministically or

probabilistically and the process is continued till

we reach the desired subgraph size. Thus, the

sample grows as a snowball and results in a con-

nected subgraph G(S).

We compare our proposed algorithm with the Forest-

Fire [Leskovec and Faloutsos, 2006] and SlashBurn

[Kang and Faloutsos, 2011] techniques from Node Sam-

pling methods. We also compare our approach with the

Metropolis Sampling using Degree Distribution (MDD)

[Metropolis et al., 1953] and Snowball Expansion Sam-

pling (XSN) [Maiya and Berger-Wolf, 2010] which is bet-

ter of the two methods that had been proposed in

[Maiya and Berger-Wolf, 2010], from the Subgraph sam-

pling methods.

There have been other contributions involving sam-

pling graphs for purposes like visualization [Rafiei, 2005],

compression [Adler and Mitzenmacher, 2000],

[Kang and Faloutsos, 2011],[Feder and Motwani, 1991],

[Gilbert and Levchenko, 2004], sociology [Frank, 2005]

and epidemiology [Goel and Salganik, 2009]. There is

another work [Mehler and Skiena, 2009] which assumes

that a network sample is already generated and contains

nodes from a single community. With this assumption,

they propose a method to grow the network such that it

includes all the members of this community. However,

the aim of this paper is to come up with a fast technique

to obtain a unique subset of nodes which represents all

or most of the communities in the network.

3 Proposed Method

We first provide a brief description of the notations

which we will use throughout the paper.

3.1 Notions & Notations

1. A graph is mathematically represented asG = (V,E)

where V represents the set of vertices or nodes and

E ⊆ V ×V represents the set of edges in a network.

2. The set S represents the subset of nodes obtained

by the proposed technique such that S ⊂ V .

3. The subgraph generated by the subset of nodes S

is represented as G(S). It can mathematically be

depicted as G = (S,Q) where S ⊂ V and Q = (S ×
S) ∩ E represents the set of edges in the subgraph.

4. The subgraph G(S) can have disconnected compo-

nents and the cardinality of the set S is given by

s.

5. The degree distribution function is given by D(V ).

6. The adjacency matrix is denoted as A and the ad-

jacency list corresponding to each vertex vi ∈ V is

given by A(vi).

7. The neighboring nodes of a given node vi are repre-

sented by N(vi).

8. The median degree centrality of the graph is repre-
sented as M .

9. The cardinality of the set V is represented as n.

10. The cardinality of the set E is represented as e.

All the graphs considered in this paper are assumed to

be undirected and unweighted unless otherwise men-

tioned.

3.2 Core Concept

Nodes which have a high degree centrality or hubs rep-

resent the existence of more interaction in the network

and have the tendency of being located at the center of

a community. However, it is essential to select several

such nodes of high degree centrality from the different

communities in the large network. But this problem of

selection of such a subset S without explicitly perform-

ing community detection is NP-hard. Mathematically
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it can be formulated as:

max
S

J(S) =

s∑
j=1

D(vj)

s.t. vj ∈ ci,
ci ∈ {c1, . . . , ck}

(1)

whereD(vj) represents the degree centrality of the node

vj , s is the size of the subset, ci represents the ith com-

munity and k represents the number of communities in

the network which cannot be obtained explicitly.

A greedy solution to the problem can be formulated

in an optimization framework by maximizing the sum

of the degree centrality of the nodes in selected subset

S such that the neighbors of the selected nodes are de-

activated for that iteration. By deactivating the neigh-

bors we move from one dense region of the network

to another dense region thereby approximately cover-

ing most or all the communities in the network. Till

the subset size s is achieved, the deactivated nodes are

activated in the next iteration and the procedure is re-

performed. Algorithmically, it can be represented as,

J(S) = 0

While |S| < s

max
S

J(S) := J(S) +

st∑
j=1

D(vj)

s.t. N(vj)→ deactivated, iteration t,

N(vj)→ activated, iteration t+1,

(2)

where st is the size of the set of nodes selected by FURS

during iteration t.

3.3 FURS Procedure

The FURS algorithm can be divided into three steps

namely Hub Selection, Deactivation and Reactivation

of nodes. We describe the FURS procedure in detail

below:

1. Hub Selection - We first sort all the nodes on

the basis of their degree centrality in descending or-

der. We maintain the identity of the node and its

corresponding degree centrality in a list. An impor-

tant observation is that if two nodes have the same

degree centrality, then after sorting they are main-

tained in an order which remains constant. Thus no

matter how many times one runs the sorting proce-

dure the nodes after sorting are always maintained

in the same order. For example, consider a network

of 5 nodes ((v1, 5), (v2, 3), (v3, 5), (v4, 4), (v5, 3)) where

the first term in each tuple represents the node iden-

tifier and the second term represents the correspond-

ing degree centrality. After sorting, the list is always

represented as ((v1, 5), (v3, 5), (v4, 4), (v2, 3), (v5, 3)).

The technique for subset selection is inspired by the

greedy algorithm used for maximum coverage prob-

lem in graphs as introduced in [Feige, 1998].

Before subset selection, we remove all the nodes

from the graph whose degree centrality is less than

the minimum of a user-defined threshold t and me-

dian degree centrality M of the network i.e. D(vi) <

min(t,M) as we wish to select nodes of higher de-

gree centrality and prevent the selection of outliers.

By putting this condition, we remove all cliques of

size min(t,M) and discard such cliques as outlier

community w.r.t. the size of other communities in

the network. However, their connection with corre-

sponding nodes is retained i.e. the degree distribu-

tion of the graph is retained. The median degree

centrality M is the median value in the list of de-

gree centrality values of all the nodes and is not

affected by outliers. So, we prefer to use the median

degree centrality instead of the mean degree cen-

trality which is heavily influenced by outliers. Af-

ter removal of all the nodes with degree centrality

D(vi) < min(t,M), we pop the node with highest

degree centrality from the list and select it as the

new node say vj .

2. Deactivation - All the neighbors of vj obtained

by A(vj) are deactivated from the maintained list.

By deactivating these nodes N(vj), we simply don’t

consider these nodes for selection for the time being

without affecting the graph topology. Thus, the de-

gree distribution of the remaining nodes V \(N(vj)∪
vj) stays unaffected.

We then select the node with the next highest de-

gree centrality from the list say vp after deactivat-

ing the neighbors of vj and we deactivate N(vp). By

performing this operation, we ensure that the newly

selected node will not appear in the neighbors of the

existing subset of nodes for that iteration. This en-

ables us to select nodes from different dense regions

of the graph and thus have a representative subset

containing nodes from most or all of the communi-

ties in the large network.

3. Reactivation - This process of selection of a node

based on degree centrality and deactivating its im-

mediate neighbors is performed iteratively until we

obtain the required number of nodes which is equiv-

alent to the subset size s. We observe empirically

from our experiments that generally, it requires 2

iterations to obtain the required subset S.



6 Raghvendra Mall et al.

We sort these nodes based on their degree central-

ity, maintain a list and iteratively re-perform all the

operations. By performing this operation, we end up

selecting several nodes from each dense region of the

graph. The subgraph obtained from the subset selected

by FURS can have disconnected components. We put

the constraint that the resulting subgraph G(S) does

not contain isolated nodes as isolated nodes cannot cap-

ture underlying community structure. If the subgraph

G(S) contains isolated nodes then the subset size s is

increased iteratively to s := s + d0.05× ne and FURS

is re-performed. Thus nodes selected from each dense

region are connected and the subset selected by FURS

is not a maximal independent set of the large scale net-

work. Algorithm 1 summarizes the FURS technique.

Algorithm 1: FURS Algorithm

Data: A list of nodes with their corresponding degree
centrality values L = (V,D(V )), the median
degree centrality M , user-defined threshold t,
the adjacency matrix A with information about
neighbors N(vi), ∀vi ∈ V and cardinality of the
set V i.e. n.

Result: A subset of representative nodes S whose
cardinality is s

1 L := (V,D(V )), ∀vi ∈ V such that D(vi) > min(t,M)
2 L := sort(L) // Based on the degree centrality

values in descending order

3 while |S| < s do
// REACTIVATION Step

4 if L == {} then
5 L := L ∪ {vi, D(vi)}, ∀vi ∈ V that was

deactivated.
6 L := sort(L) // Based on the degree

centrality values in descending order

7 end
// HUB SELECTION

8 v1 := L.pop() // pop out the node with highest

degree centrality

9 S := S ∪ v1 // Add to output set S

10 Nb← N(v1) // Neighboring nodes of v1
// Create a temporary list and add Nb along

with their corresponding degree

centrality, if N(v1) is not already

present in the list.

// DEACTIVATION Step

11 L := L.deactivate(Nb,D(Nb)) // Deactivate the

neighbors of v1
12 end
13 if ∼ isempty(Isolated Nodes(S)) then
14 s := s+ d0.05× ne.
15 Re-perform FURS.

16 end

In Figure 1 the active nodes are always represented

in darker shades and the deactivated nodes are repre-

sented in lighter shades. The selected nodes are always

coloured in purple. Figure 1 explains the working mech-

anism of FURS selection procedure on a small network

of 18 nodes. FURS selects 6 nodes from this network

and the subgraph corresponding to this subset contains

nodes from all the communities in the network. We ob-

serve from Figure 1 the presence of 3 cliques C1, C2 and

C3 of size 5, 6 and 7 respectively with few interconnec-

tions between them. We calculate the degree centrality

values and maintain a sorted list L of the node identi-

fier and the degree centrality of the corresponding node.

Here, L = {(v18, 7), (v17, 7), (v16, 6), (v15, 6), (v14, 6), (-

v13, 6), (v12, 6), (v1, 6), (v4, 6), (v3, 5), (v2, 5), (v6, 5), (v5,-

5), (v11, 5), (v8, 5), (v9, 4), (v10, 4), (v7, 4)}. In Figure 1a,

we select the 1st node or the node with the highest de-

gree centrality i.e. v18 and deactivate all the nodes of

clique C3 along with node v11 which are neighbors of

node v18. After that we select node v1 whose degree

centrality 6 is maximum among the activated nodes.

We deactivate all the nodes of clique C2 and node

v8 which are neighbors of v1. This is depicted in Fig-

ure 1b. We then select v9 which has maximum de-

gree centrality (D(v9) = 4) among the currently ac-

tivated nodes. We observe that all the other nodes in

the network are deactivated as observed in Figure 1c.

We then remove all the selected nodes and reactivate

all the previously deactivated nodes. Then, list L =

{(v17, 7), (v16, 6), (v15, 6), (v14, 6), (v13, 6), (v12, 6), (v4, 6)-

, (v3, 5), (v2, 5), (v6, 5), (v5, 5), (v11, 5), (v8, 5), (v10, 4),

(v7, 4)}.
Since the required subset size (s = 6) is not equal

to the current subset size (s1 = 3 i.e. the size of subset

after iteration 1 is 3), so we activate all the deactivated

nodes. We then select node v17 whose degree central-

ity is 7. It is followed by deactivating all the nodes in

clique C3 and node v4 which are immediate neighbors

of the node v17. This step is depicted in Figure 1d. Fig-

ure 1e shows the selection of node v3 from clique C2

as it has maximum degree centrality among the acti-

vated nodes. Finally, Figure 1f highlights the selection

of node v11 as D(v11) = 5. The resulting subgraph is

shown in Figure 1g and contains a disconnected com-

ponent corresponding to clique C2. Thus the resulting

subgraph G(S) captures community information about

all the three communities present in the network.

3.4 Time Complexity

The FURS algorithm results in a unique representative

subset of the entire network as the selection process is

deterministic. The initial seed node is selected such that

it has the highest degree centrality in the graph. In or-

der to maintain the list L of nodes along with their cor-

responding degree centrality in the ranking of largest to

smallest degree centrality value, we need to sort L. This
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(a) Select node v18 with highest de-
gree 7 in L and deactivate its neigh-
bours (v17, v16, v15, v14, v13, v12, v11).

(b) Select node v1 with highest
degree 6 among active nodes in
L and deactivate its neighbours
(v4, v3, v2, v6, v5, v8).

(c) Select node v9 with highest degree
4 among active nodes in L and deac-
tivate its neighbours (v10, v7). There
are no more active nodes in L. Remov-
ing the selected nodes all the deacti-
vated nodes are reactivated.

(d) Select node v17 with highest de-
gree 7 in L and deactivate its neigh-
bours (v16, v15, v14, v13, v12, v4).

(e) Select node v3 with highest degree
6 among the active nodes in L and de-
activate its neighbours (v2, v6, v5).

(f) Finally select node v11 with the
highest degree 5 among the active
nodes in L and deactivate its neigh-
bours (v8, v10, v7). There are again
no more active nodes but we have
reached the desired subset size and
stop FURS here.

(g) FURS Subgraph - Retains the
inherent community structure with
nodes from each clique (C1, C2,C3).

Fig. 1: Steps involved in FURS for a subset of size 6 from a network of 18 nodes.
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is computationally the most expensive step of our pro-

posed algorithm. The minimum time required to per-

form this sorting is O(n. log(n)). Every time L becomes

empty, we reinitialize the list L with the nodes and de-

gree centrality values of the nodes which were deacti-

vated in the previous iteration. Let the number of such

iterations required be iter. Thus, the overall computa-

tions required for sorting becomes O(iter.n. log(n)). In

general, we observe that 2-3 iterations are sufficient to

obtain the required subset S.

Apart from sorting the list L, the other computation

that is being performed is deactivating the neighbors

of the winning node. Let S = (p1, p2, . . . , ps) be the

set of nodes sampled by the proposed algorithm. For

each node pi ∈ S, we have to deactivate all its neigh-

bors N(pi). Deactivating each neighbor of a node pi
takes unit computation time. The computational time

required for the purpose of deactivation can then be

represented as O(
∑s
i=1N(pi)). Thus, the overall com-

putational complexity of the algorithm isO(iter.n. log(n)

+
∑s
i=1N(pi)).

4 Evaluation Metrics

Current community detection algorithms generate dif-

ferent partitions in each iteration for a given large scale

network. For a fair comparison, we first generate a par-

tition of the large graph using a scalable community

detection algorithm and then run the same algorithm

on the subgraphs generated by various sampling tech-

niques. In order to obtain method-independent results

we experimented with three different community detec-

tion algorithms namely CNM [Clauset et al., 2004], In-

fomap [Rosvall and Bergstrom, 2008] and Louvain

[Blondel et al., 2008] as these approaches can handle

large scale networks. We then evaluate the subgraph

generated by each selection technique on various met-

rics like time required to generate the subgraph, cluster-

ing coefficients, degree distributions, coverage, variation

of information and fraction of communities preserved.

The results reported are the mean values for the vari-

ous evaluation metrics. The measures like variation of

information, clustering coefficients, degree distribution

compare the extent of similarity of the generated sub-

graph G(S) with respect to the subgraph for the same

set of nodes in the original graph G(S′). A summary of

the various evaluation metrics is mentioned below.

Variation of Information: Variation of Informa-

tion (VI) is an information theoretic measure and is

used to compare two different partitions as depicted in

[Meila, 2007]. Mathematically VI can be formulated as:

V I(U, V ) =

k∑
i=1

r∑
j=1

nij
n
log(

ni.nj/n
2

nij/n2
),

where ni represents the number of nodes in cluster i in

partitioning U and nj represents the number of nodes

in cluster j in partitioning V and nij is the joint distri-

bution of the cluster memberships in U and V . The VI

measure is not normalized but it is bounded between

the range [0; 2 log(max(k; r))] [Wu et al., 2009] where k

is the number of clusters in one partition and r is the

number of clusters in another partition.

Lower values of VI means less variation between the

two cluster membership lists and a value of 0 means per-

fect match between two cluster partitions. Hence, lower

values of VI can be interpreted as less variation of in-

formation between the partitions. However, there exists

other information theoretic measures like Normalized

Mutual Information (NMI) [Lancichinetti et al., 2009]

and Adjusted Rand Index (ARI) [Rabbany et al., 2012]

which are normalized criterion and provide better in-

terpretation. However, there is no one best informa-

tion theoretic criteria for evaluating cluster member-

ships [Rabbany et al., 2012]. In our experiments we use

variation of information (VI) criteria.

Clustering Coefficient: The clustering coefficient

(CCF) is defined as a vector with values ranging be-

tween [0, 1] both inclusive. We compare it using the

L1-norm. In order to prevent any bias like a single

degree dominating the distance, we prevent the use

of higher order L-norms including L∞. We calculate

the average (absolute) difference between the cluster-

ing coefficients which is mathematically formulated as∑
v∈S
|G(v)−S(v)|
|S| . Once we obtain this average distance,

we convert it into similarity measure by subtracting the

distance from 1 as in [Maiya and Berger-Wolf, 2010].

Degree Distribution: We compare the degree dis-

tributions (DD) of the large graph and the subgraph

generated by the selection technique using the Kolmogorov-

Smirnov D-Statistics as employed in [Hubler et al., 2008],

[Maiya and Berger-Wolf, 2010].The Kolmogorov-Smirnov

D-Statistics corresponds to the maximum difference be-

tween the two cumulative distribution functions FY of

G and FY ′ of S over the range of random variables Y

and Y ′. Y and Y ′ are distributed according to G and

S respectively. The distance D(G,S) is formulated as:

D(G,S) = maxv∈S |FY (v) − FY ′(v)|. We convert this

distance into a similarity measure by subtracting the

distance from 1 as in [Maiya and Berger-Wolf, 2010].

Coverage: Coverage (Cov) is a simple evaluation

metric which is defined as the ratio of the total number

of unique nodes directly reachable from the nodes in
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the selected subset to the total number of nodes in the

graph. It can be represented as the ratio of cardinal-

ity of the set of all the nodes directly reachable from

the nodes in the selected subset to the total number of

nodes in the graph and mathematically be formulated

as
|∪si∈SN(si)|

n . Coverage varies between 0 and 1 and

higher values result in better coverage.

Fraction of Communities: We determine the frac-

tion of total communities in the larger network repre-

sented by the subgraph generated by the selection tech-

nique as the fraction of communities preserved (Frac).

This number ranges between 0 and 1 and was also used

in [Maiya and Berger-Wolf, 2010].

5 Experiments

5.1 Synthetic Networks

We compare our proposed FURS selection technique

with SlashBurn and Forest-Fire node sampling meth-

ods on a variety of synthetic networks of varying size

and using different mixing parameters as depicted in

Figure 2. These synthetic networks were generated by

the software provided by Fortunato as mentioned in

[Lancichinetti and Fortunato, 2009a]. We maintain the

size of the subset as 15% of the nodes in the network

based on experimental findings in

[Leskovec and Faloutsos, 2006] and set the k values for

k-hubset for SlashBurn as 0.5% of the nodes as per the

recommendation in [Kang and Faloutsos, 2011].

From Figure 2, we observe that Forest-Fire (FF)
node sampling is a fast subset selection technique but

doesn’t retain the original community structure as can

be observed from the VI for Louvain and Infomap method

and also the fraction of communities preserved for Lou-

vain method. For the FF method the forward pf and

backward pb burning probability are set to pf = 0.7

and pb = 0.3 as given in [Leskovec and Faloutsos, 2006].

The Cov value turns out to be high for FF sampling

except for synthetic networks with 5, 000 nodes. The

SlashBurn algorithm is computationally more expen-

sive and doesn’t retain the CCF as well as FURS and

Forest-Fire sampling techniques. However, the Slash-

Burn approach is quite consistent w.r.t. other evalua-

tion metrics. The FURS selection technique is compu-

tationally least expensive and better retains the CCF.

With the exception of synthetic networks with 5, 000

nodes the FURS technique preserves the community

structure of larger networks even with high mixing pa-

rameter as depicted in Figure 2. So, for large scale net-

works it is better to use the FURS selection technique.

5.2 Real World Networks

We compare our proposed sampling technique on sev-

eral real-world networks ranging from social networks,

communication networks, citation networks, collabora-

tion networks, web graphs, internet peer to peer net-

works to road networks. These networks are available at

the http://snap.stanford.edu/data/index.html. Ta-

ble 1 reflects a few keys statistics of each network.

Network Nodes Edges CCF
p2p 10,876 39,994 0.008

Cond-mat 23,133 186,936 0.6334
HepPh 34,401 421,578 0.1457
Enron 36,692 367,662 0.497

Epinions 75,879 508,837 0.2283
Web-Stanford 281,903 2,312,497 0.619

roadCA 1,965,206 5,533,214 0.0464
Livejournal 3,997,962 34,681,189 0.3538

Table 1: Nodes (V), Edges (E) and Clustering Coeffi-

cients (CCF) for each network

5.3 Experimental Setup

We compare our proposed FURS method with Forest-

Fire sampling (FF) [Leskovec and Faloutsos, 2006], MDD

[Hubler et al., 2008], Snowball Expansion (XSN) sam-

pling [Maiya and Berger-Wolf, 2010] and SlashBurn al-

gorithm [Kang and Faloutsos, 2011]. These are the state-

of-the-art techniques for sampling community structure.

For MDD the produced samples try to mimic the degree

distribution of the original network. In XSN, the sample

set S is selected such that it maximizes the expansion

factor: |N(S)|
|S| and the concept behind SlashBurn algo-

rithm was explained earlier.

We perform all the experiments on a computer with

12 Gb RAM and 2.4 GHz Intel Xeon processor. We

perform 5 randomizations of community detection al-

gorithms (Louvain, Infomap, CNM) on the large net-

work and for each randomization, we perform com-

munity detection on the subgraph generated by each

of the subset selection method. Thus, we report mean

and standard deviation values for the various evalua-

tion metrics. The subset size is maintained as 15% of

the nodes in the network as per the experimental analy-

sis in [Leskovec and Faloutsos, 2006]. For the Metropo-

lis algorithm based MDD, we perform 1, 000 iterations

to produce each sample.

5.4 Experimental Results

We perform exhaustive experiments on 8 benchmark

real world networks using various evaluation metrics. It

http://snap.stanford.edu/data/index.html
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Fig. 2: Comparison of FURS, SlashBurn and Forest-Fire Node sampling techniques for various evaluation metrics

on synthetic networks with 5, 000, 10, 000, 25, 000, 50, 000 nodes with mixing parameter varying from 0.1 to 0.5

Fig. 3: Evaluation of various subset selection methods on 4 real world networks of increasing size

is depicted in Table 2. Some of the abbreviated met-

rics in Table 2 are VI LN i.e. variation of information

for Louvain method, Frac LN i.e. fraction of commu-

nities preserved by Louvain method. Other abbrevia-

tions include (VI IP) for variation of information for In-

fomap method, (VI CNM) for variation of information

for CNM method, (Frac IP) for fraction of communi-

ties captured by Infomap method and (Frac CNM) for

fraction of communities captured by CNM. We observe

that the FURS approach performs well with respect to

computation time, clustering coefficients, coverage and

fraction of communities preserved by Louvain and In-

fomap method for most of the networks. FURS is bet-

ter than at least three other sampling methods on most
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p2p Cond-mat HepPh Enron Epinions Web-Stanford roadCA Livejournal
Technique Properties Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Time 0.45 0.0 4.92 0.0 17.05 0.0 14.01 0.0 19.0 0.0 35.862 0 49.4 0 499 0.0
CCF 0.995 0.0 0.73 0.0 0.87 0.0 0.85 0.0 0.87 0.0 0.77 0 0.94 0 0.9051 0.0
DD 0.5 0.0 0.853 0.0 0.81 0 0.8 0.0 0.83 0 0.86 0.0 0.85 0 0.79 0.0

F Coverage 0.78 0.0 0.83 0.0 0.882 0 0.875 0.0 0.66 0 0.92 0 0.43 0 0.75 0.0
U VI LN 5.0 0.06 4.67* 0.1 1.22 0.1 2.18 0.06 3.66 0.05 1.7 0.03 - - - -
R Frac LN 0.125 0.01 0.33 0.0 0.16 0.01 0.15 0.003 0.84 0.13 0.6 0.03 0.014 0.0 0.023 0.0
S VI IP 2.66 0.02 3.22 0.1 0.52 0.10 0.68 0.04 5.06 2.19 1.82 0.03 - - - -

Frac IP 0.4 0.0 0.32 0.0 0.075 0.0 0.11* 0.0 0.03 0.0 0.42 0.0 0.03 0.0 - -
VI CNM 4.57 0.0 3.53 0.0 1.58 0.0 1.95 0.0 3.45 0 - - - - - -
Frac CNM 0.72 0.0 0.78 0.0 0.03* 0.0 0.103 0.0 0.17 0 - - - - - -

Time 1.61 0.0 5.18 0 31.2 0 35.6 0 115.16 0 641.4 0 4251.2 0 85596 0.0
S CCF 0.99* 0.0 0.86 0 0.86 0 0.92 0 0.95 0 0.74 0 0.95 0.0 0.77 0.0
L DD 0.723 0.0 0.64* 0 0.63* 0 0.46* 0 0.56 0 0.55* 0 0.87 0.0 0.68* 0.0
A Coverage 0.81 0.0 0.82 0 0.9 0 0.84 0 0.81 0 0.84 0 0.07* 0 0.68 0.0
S VI LN 5.16* 0.07 3.4 0.1 1.07 0.08 1.86 0.3 2.37 0.22 1.15 0.07 - - - -
H Frac LN 0.223 0.015 0.08* 0.0 0.19 0.0 0.036* 0.0 0.14* 0.03 0.75 0.045 0.01 0 0.2 0.0
B VI IP 4.07* 1.55 2.20 0.02 0.55 0.02 2.83 1.38 2.31 2.1 1.72 0.08 - - - -
U Frac IP 0.22* 0.12 0.07* 0.0 0.09 0.0 0.143 0.07 0.04 0.02 0.53 0.0 0.02 0 - -
R VI CNM 4.62* 0.0 2.77 0.0 1.35 0 2.22 0 2.17 0 - - - - - -
N Frac CNM 0.75 0.0 0.56 0.0 0.06 0 0.03* 0 0.065* 0.0 - - - - - -

Time 37.2 10.7 270.9 2.9 312.5 8.44 355.4 16.13 1453.1 30.0 9225 1980 - - - -
CCF 0.992 0.0 0.44 0.01 0.76 0.0 0.56 0.007 0.87 0.0 0.47 0.02 - - - -
DD 0.783 0.0 0.91 0.0 0.96 0.0 0.7 0.0 0.53 0.003 0.95 0.0 - - - -

X Coverage 0.56 0.01 0.57 0.0 0.81 0.0 0.46 0.02 0.38 0.007 0.42 0.03 - - - -
S VI LN 4.9 0.05 4.28 0.05 3.5 0.07 4.23 0.13 5.63 0.124 3.89 0.2 - - - -
N Frac LN 0.028 0.0 0.32 0.004 0.07 0.0 0.37 0.018 0.143 0.03 0.06 0.0 - - - -

VI IP 2.24 0.09 4.63 0.07 3.3 0.17 5.03 0.21 7.73 0.98 4.36 0.2 - - - -
Frac IP 0.97 0.01 0.32 0.0 0.33 0.02 0.32 0.0 0.00 0.0 0.042 0.0 - - - -
VI CNM 4.56 0.07 3.76 0.07 2.91 0.18 2.68 0.18 3.33 0.085 - - - - - -
Frac CNM 0.22 0.02 0.43 0.01 0.86 0.04 0.21 0.011 0.18 0.01 - - - - - -

Time 21.9 0.2 273.6 1.8 323.08 13.8 358.7 15.4 1487.4 44.0 8608 273.7 - - - -
CCF 0.992 0.0 0.44 0.01 0.76 0.0 0.56 0.01 0.87 0.002 0.45 0.016 - - - -
DD 0.78 0.01 0.91 0.0 0.96 0.0 0.7 0.01 0.53 0.003 0.95 0.0 - - - -

Coverage 0.55 0.01 0.57 0.0 0.8 0.0 0.44 0.014 0.37 0.005 0.39 0.03 - - - -
M VI LN 4.9 0.04 4.3 0.04 3.43 0.04 4.27 0.06 5.66 0.05 4.1693 0.3 - - - -
D Frac LN 0.027 0.0 0.32 0.0 0.07 0.01 0.36 0.01 0.142 0.03 0.058 0.0 - - - -
D VI IP 2.2 0.03 4.66 0.07 3.23 0.11 5.15 0.23 7.8 0.85 4.64 0.273 - - - -

Frac IP 0.98 0.0 0.32 0.01 0.06 0.0 0.32 0.008 0.0 0.0 0.04 0.002 - - - -
VI CNM 4.56 0.12 3.8 0.12 2.8 0.08 2.64 0.04 3.4 0.05 - - - - - -
Frac CNM 0.2 0.01 0.324 0.02 0.83 0.05 0.22 0.008 0.18 0.02 - - - - - -

F Time 0.48 0.01 4.95 0.01 17.15 0.03 14.1 0.05 20.1 0.07 37.8 0.1 50.24 0.5 501 1.0
O CCF 0.992 0.0 0.44 0.01 0.76 0.0 0.6 0.01 0.87 0.0 0.47 0.0 0.95 0.0 0.73 0.01
R DD 0.77 0.01 0.91 0.0 0.96 0.0 0.7 0.0 0.53 0.0 0.95 0.0 0.84 0.0 0.8 0.01
E Coverage 0.55 0.01 0.57 0.0 0.80 0.0 0.46 0.02 0.38 0.01 0.42 0.04 0.35 0.0 0.51 0.02
S VI LN 4.92 0.06 4.27 0.06 3.49 0.1 4.17 0.123 5.63 0.08 3.8 0.40 - - - -
T Frac LN 0.028 0.0 0.32 0.0 0.07 0.0 0.38 0.019 0.144 0.03 0.06 0.0 0.013 0.0 0.012 0.0
F VI IP 2.32 0.17 4.68 0.06 3.3 0.06 4.93 0.24 8.4 0.05 4.27 0.4 - - - -
I Frac IP 0.96 0.04 0.32 0.0 0.06 0.0 0.33 0.014 0.0 0.0 0.042 0.0 0.025 0.0 - -
R VI CNM 4.58 0.17 3.78 0.06 2.89 0.15 2.64 0.115 3.5 0.16 - - - - - -
E Frac CNM 0.22 0.02 0.21 0.03 0.85 0.07 0.22 0.014 0.18 0.0144 - - - - - -

Table 2: Statistics of real world networks for various subset selection techniques. Here ‘-’ represents not calculated

as computationally too expensive and ‘*’ represents the cases for which FURS & SlashBurn algorithms perform

worst.

of the networks. However, FURS performs worst for

Cond-mat network w.r.t. the metric VI LN, HepPh net-

work w.r.t. the metric Frac CNM and Enron network

w.r.t. the quality metric Frac IP. However, the other

sampling techniques are worse on one or more prop-

erties for each network. This is highlighted in Table 2

for the SlashBurn approach which is our primary com-

petitor. The SlashBurn performs worst for CCF, DD,

Coverage, VI LN, Frac LN, VI IP, Frac IP, VI CNM

and Frac CNM for one or more network. The Slash-

Burn method performs the worst for the p2p network.

However, in general it can better capture the evalua-

tion metric - variation of information for the different

community detection algorithms.

Figure 3 refers to the application of various subset

selection techniques on 4 real world networks of increas-

ing scale. We observe that the XSN and MDD technique

become computationally infeasible for the roadCA net-

work. We observe that the FURS selection technique is

fast, has high clustering coefficients, coverage, smaller

variation of information and better preserves the frac-

tion of community in the large networks. However, the

internet peer to peer network network (p2p) is an ex-

ception on which the XSN, MDD and Forest-Fire (FF)

sampling perform better. From Figure 3, we observe

that the SlashBurn algorithm can effectively capture

the variation of information for the large web network

of Stanford University (web-Stanford) w.r.t. both Lou-

vain and Infomap community detection methods. The

VI metric can be high even when the Frac values are

high. This is because size of the partitions in the sub-

graphs is not necessarily uniform. Hence, higher en-

tropy and higher VI value as observed in some cases

for FURS. We cannot evaluate the VI metric for mas-

sive scale networks like roadCA and Livejournal as it is

computationally very expensive.

6 Inferring Community Affiliation

In this section we explain the usage of FURS selection

technique for inferring community affiliation for the un-

seen nodes of the large scale network. For this purpose
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we show the applicability of FURS along with a model

based clustering method namely Kernel Spectral Clus-

tering (KSC) [Alzate and Suykens, 2010],

[Langone et al., 2012] and [Mall and Langone, 2013].

6.1 Primal-Dual Kernel Spectral Clustering

Framework

The Kernel Spectral Clustering (KSC) method was first

proposed in [Alzate and Suykens, 2010] and extended

to complex networks in [Langone et al., 2012] and

[Mall and Langone, 2013]. It is based on a weighted ker-

nel PCA formulation and the model is built in a primal-

dual optimization framework. The model has a powerful

out-of-sample extension property which allows to infer

community affiliation for unseen nodes. In case of com-

plex networks, the adjacency list of the nodes in the

subset S selected by FURS are treated as data points

i.e. A(vi) = xi, ∀vi ∈ S.

Given a dataset D = {xi}si=1, xi ∈ Rn, the train-

ing data points are provided by the FURS selection

technique. Here xi represents the ith training point and

is equivalent to the adjacency list i.e. A(vi) of the ith

node in subset S. The training set is represented by

Xtr. The number of data points in the training set is

equivalent to the subset size s. Given D and the num-

ber of clusters k, the primal problem of the spectral

clustering via weighted kernel PCA is formulated as in

[Alzate and Suykens, 2010]:

min
w(l),e(l),bl

1

2

k−1∑
l=1

w(l)ᵀw(l) − 1

2s

k−1∑
l=1

γle
(l)ᵀD−1Ω e(l)

such that e(l) = Φw(l) + bl1s, l = 1, . . . , k − 1,

(3)

where e(l) = [e
(l)
1 , . . . , e

(l)
s ]ᵀ are the projections onto

the eigenspace, l = 1, . . . , k − 1 indicates the number

of score variables required to encode the k clusters,

D−1Ω ∈ Rs×s is the inverse of the degree matrix associ-

ated to the kernel matrix Ω. For large scale networks,

the dimensionality of a data point xi can be equal to n

when the ith node is connected to all the other nodes

in the network. φ : Rn → Rnh is a feature mapping

from n dimensions to nh dimensions, where nh can be

infinite dimensional. Φ is the s × nh feature matrix,

Φ = [φ(x1)ᵀ; . . . ;φ(xs)
ᵀ] and γl ∈ R+ are the regular-

ization constants. We note that s� N i.e. the number

of points in the training set is much less than the total

number of data points for the network. The kernel ma-

trix Ω is obtained by calculating the similarity between

each pair of data points in the training set. Each ele-

ment of Ω, denoted as Ωij = K(xi, xj) = φ(xi)
ᵀφ(xj)

is obtained for example by the normalized linear kernel

for large scale networks. Since we use adjacency list of

a node as a data point, the FURS selection technique

can result in isolated nodes. Nodes which are isolated in

the subgraph obtained by FURS technique might have

common neighbors with other nodes in the subset S

w.r.t. the large scale network and thus will contribute

positively in the similarity function.

The clustering model is then represented by:

e
(l)
i = w(l)ᵀφ(xi) + bl, i = 1, . . . , s, (4)

where we take φ(xi) = xi for large scale networks, bl
are the bias terms, l = 1, . . . , k−1. The projections e

(l)
i

represent the latent variables of a set of k − 1 binary

cluster indicators given by sign(e
(l)
i ) which can be com-

bined with the final groups using an encoding/decoding

scheme. The decoding consists of comparing the bina-

rized projections w.r.t. codewords in the codebook and

assigning cluster membership based on minimal Ham-

ming distance. The dual problem corresponding to this

primal formulation is:

D−1Ω MDΩα
(l) = λlα

(l), (5)

where MD is the centering matrix which is defined as

MD = Is − (
(1s1

ᵀ
sD
−1
Ω

)

1ᵀsD
−1
Ω

1s
). The α(l) are the dual variables

and the positive definite kernel function K : Rn×Rn →
R plays the role of similarity function. This dual prob-

lem is closely related to the random walk model as

shown in [Alzate and Suykens, 2010].

6.2 Out-of-Sample Extensions Model

The projections e(l) define the cluster indicators for the

training data. In the case of an unseen data point x,

the predictive model becomes:

e(l)(x) =

s∑
i=1

α
(l)
i K(x, xi) + bl (6)

This out-of-sample extension property allows kernel spec-

tral clustering to be formulated in a learning framework

with training, validation and test stages for better gen-

eralization. The validation stage is used to obtain the

model parameters like the number of clusters k in the

network. The data points corresponding to the valida-

tion set are selected using FURS.

6.3 Model Selection

The original KSC formulation [Alzate and Suykens, 2010]

works well assuming piece-wise constant eigenvectors

and using the line structure of the projections of the
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validation points in the eigenspace. It uses an eval-

uation criterion called Balanced Line Fit (BLF) for

model selection i.e. for selection of k for the normalized

linear kernel function. However, this criterion works

well only in case of well separated clusters. So, we use

the Balanced Angular Fit (BAF) criterion proposed in

[Mall and Langone, 2013] for cluster evaluation. This

criterion works on the principle of angular similarity

and is efficient when the clusters are either well sep-

arated or overlapping. The BAF criterion varies from

[-1, 1] and higher values are better for a particular k.

6.4 Experimental Results on Synthetic Network

We generated synthetic networks containing 100, 000

nodes with various values of mixing parameter (µ) using

the software provided in

[Lancichinetti and Fortunato, 2009a]. In Figure 4, we

show the result corresponding to µ = 0.1. To show that

FURS can be used effectively for inferring community

affiliation of the unseen nodes, we generate subsets of

different sizes containing 2, 500, 5, 000, 7, 500, 12, 500

and 15, 000 nodes using the FURS selection technique.

From Figure 4, we observe that time required for

sampling 2, 500 and 5, 000 nodes are nearly equal. Time

for sampling 7, 500, 10, 000 and 12, 500 are on the same

scale as well. It is maximum for 15, 000 nodes. Sorting

the nodes in the descending order of degree is the most

time consuming step. For smaller size samples all the

nodes are not deactivated and one iteration is sufficient,

while for larger samples two iterations are required and

three iterations are essential for 15, 000 nodes. The cov-

erage increases as expected with the increase of the

subset size. The clustering coefficients and degree dis-

tributions are nearly consistent and so is the fraction of

communities (Frac) spanned with respect to the larger

network. As shown in Figure 4, Frac= 1, even for a sub-

set size of 2, 500 nodes indicating the inherent commu-

nity structure can be captured with 2.5% of the nodes

in the network. It forms a subgraph G(S) containing

mostly isolated nodes. The quality of the predicted clus-

ter memberships is further validated by two evaluation

metrics i.e. low values for VI and high values for Ad-

justed Rand Index (ARI) [Hubert and Arabie, 1985].

7 Simple Diffusion Model

The first study of diffusion in social networks emerged

in the middle of the 20th century [Ryan and Gross, 1943]

and [Coleman et al., 1966]. However, formal mathemat-

ical models of diffusion were introduced much later in

[Granovetter, 1978] and [Shelling, 1978]. Several math-

ematical models for diffusion emerged such as local in-

teraction games [Blume, 1993,Ellison, 1993,Goyal, 1996,

Morris, 2000], threshold models [Granovetter, 1978],

[Shelling, 1978,Kempe et al., 2005] and cascade models

[Liggett, 1985,Goldenberg et al., 2001].

7.1 FURS for Simple Diffusion model

In this paper, we show the effect that the subset S se-

lected by FURS has for a very simple diffusion model.

We consider the cascade model where each individual

has a single, probabilistic chance (set to 1) to activate

each of the inactive nodes in its immediate neighbor-

hood after becoming active itself. Further, we consider

the case of the very simple independent cascade model,

in which the probability that an individual is activated

by a newly active neighbor is independent of the set

of neighbors who have attempted to activate it in the

past. Starting with an initial active set S, the process

unfolds in a series of time steps. At each time ti, any

node vj who has just become active may attempt to ac-

tivate each inactive node vk for which vj ∈ N(vk). We

set the probability p(vj , vk) = 1 i.e. vk becomes active

at the next time step if it was inactive.

Real world networks exhibit community like struc-

ture as shown in [Fortunato, 2009], [Danon et al., 2005],

[Clauset et al., 2004],[Girvan and Newman, 2002],

[Lancichinetti and Fortunato, 2009b],

[Langone et al., 2012] and [Rosvall and Bergstrom, 2008].

If real world networks have community structure then

the nodes which are located at the center of the com-

munities (i.e. hubs for each community) are good can-

didate for influential nodes. When this set of nodes

are targeted for spread of information over the network

then over various time stamps the information spread

by means of this set should be the fastest. Since we

are targeting the hubs the coverage w.r.t. the entire

graph should also be maximal. As we claim that FURS

selection technique can select nodes with high degree

centrality from different dense regions of the large scale

network, it becomes a good candidate for testing the

aforementioned hypothesis.

7.2 Experimental Setup

We compare the subset S obtained by FURS with sub-

sets obtained by random node selection, hubs selec-

tion, spokes selection, high eigenvector centrality (High-

Eigen) [Katz, 1953,Bonacich, 1987], high Pagerank

[Katz, 1953,Bonacich, 1987], high betweenness (High-

Btw) centrality and low betweenness (LowBtw) cen-
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Fig. 4: Inferring Community Affiliation for large scale network using FURS selection technique

trality [Freeman, 1979] based representative subset se-

lection. We select 0.05% of the network as the sub-

set size at the initial time stamp (T0). We conducted

experiments on 2 synthetic networks containing 1, 000

nodes generated using mixing parameter values µ = 0.1

and µ = 0.5 respectively by the software mentioned

in [Lancichinetti and Fortunato, 2009a]. We conducted

experiments on several real life networks including a

flight network (Openflights), a network science collabo-

ration network [Newman, 2006] (Netscience), a metabolic

network of c. elegans worm [Duch and Arenas, 2005]

(Metabolic), a “Pretty Good Privacy” based trust net-

work [Boguna et al., 2004] (PGPnet), a citation net-

work of high-energy physics phenomenology (HepPh),

a collaboration network on condensed matter (Cond-

mat), an e-mail communication network (Enron), a who-

trusts-who network from Epinion.com (Epinion), an ac-

tor based network (Imdb Actor), stanford web network

(Web-Stanford), youtube social network (Youtube), cal-

ifornia road network (RoadCA) and livejournal online

social network (Livejounral). The networks for which

the citations are not provided are available at http:

//snap.stanford.edu/data/index.html.

7.3 Experimental Results

Figure 5 reflect the result of spread of information over

2 synthetic networks using various subset selection tech-

niques. For the synthetic networks Figure 5 shows that

when the communities are more distinct (µ = 0.1) as

in Figure 5a, the FURS subset selection has the maxi-

mum coverage for each time stamp and is the fastest to

cover the entire graph. This is also depicted in Figures

5c and 5e. However, for the synthetic network with mix-

ing parameter µ = 0.5, the communities are not distinct

as reflected in Figure 5b. Figures 5d and 5f show that

the FURS subset selection is dominated by Hubs, High-

Btw and HighEigen subset selection procedure at time

stamp T1 in terms of coverage. This is primarily be-

cause the nodes which have high degree centrality (i.e.

hubs) connect several communities due to the high mix-

ing parameter. But by the next time stamp i.e. T2 all

these selection procedures simultaneously reach a cov-

erage value of 1 i.e. the corresponding diffusion model

covers the entire graph.

Figure 6 reflect the result of simple diffusion models

corresponding to different subset selection techniques

for 2 real world networks namely the Netscience and the

PGPnet network. The Netscience network contains a lot

of small isolated disconnected components as depicted

in Figure 6a. As a result none of the subset selection

techniques can spread the information throughout the

network i.e. the coverage never reaches 1 for this net-

work. However, the FURS subset selection technique

clearly dominates other techniques w.r.t. coverage and

the speed of spread of information (measured in terms

of time stamps). This can be observed from Figures 6c

and 6e. Figure 6b represents the PGPnet network. For

http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
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this network also the diffusion model corresponding to

FURS has the fastest spread of information and cov-

erage over various time stamps. It is closely followed

by the diffusion model corresponding to HighBtw as

depicted in Figures 6d and 6f. This suggests that for

PGPnet network, due to presence of communities, the

subset selected by FURS are influential in the spread

of information and also the nodes which play the role

of mediators (high betweenness) can be treated as the

set of influential nodes.

For plotting the networks in Figure 5a, Figure 5b,

Figure 6a and Figure 1b we used the popular Gephi

software. Gephi can be obtained from https://gephi.

org/.

7.4 Result Analysis

Tables 3 and 4 showcase the coverage of different sub-

set selection method at time stamps T1, T2, T3 and

T4 for 13 real world networks. After time stamp T4

most of the methods converge with respect to cover-

age. In both Tables 3 and 4, we also rank the subset

selection method for each network considered. We pro-

vide an average rank of each subset selection method

for each time stamp. From Table 3 we observe that

the FURS selection method has an average rank of 2.7

which is less than the average rank of HighBtw (av-

erage rank = 1.5) and Hubs (average rank = 2.23)

subset selection methods for time stamp T1. This sug-

gests that initially the spread of information is not the

fastest by the FURS selection technique. However at

time stamp T2, the FURS selection technique (average

rank = 1.69) overtakes the primary competitor High-

Btw (average rank = 1.7) subset selection method. The

speed of spread of information measured in terms of

coverage for our simple diffusion model is then domi-

nated by FURS selection method as can be observed for

time stamp T3 from Table 3 and time stamp T4 from

Table 4. The average rank of FURS for time stamp T3

and T4 is 1.46 and 1.61 respectively. From Table 4 we

observe that the Random (average rank = 2.15) sub-

set selection technique surprisingly edges out HighBtw

(average rank = 2.6) and Hubs (average rank = 3.3)

subset selection methods at time stamp T4.

Figure 7 reflects the result of our simple diffusion

model for various subset selection methods on 2 large

scale real world networks namely the Youtube social

graph and the Livejournal network. From Figures 7a

and 7b we observe that for the Youtube social graph the

FURS selection technique is not the fastest for spread

of information at time stamp T1 (coverage = 0.5). At

time stamp T1 it is dominated by the Hubs (cover-

age = 0.7) and HighEigen (coverage = 0.53) subset

selection methods. However, after the 1st time stamp,

the FURS selection technique dominates other methods

w.r.t. coverage or spread of information for our diffu-

sion model. For the Livejournal network, FURS is the

best method over all the time stamps as observed from

Figures 7c and 7d. The coverage nearly reaches value 1

at time stamp T4 i.e. the information has nearly spread

throughout the network using this independent cascade

model. For these large scale networks, we cannot com-

pare with the betweenness centrality based subset se-

lection method as they are computationally expensive.

8 Conclusion

We proposed a novel representative subset selection tech-
nique namely FURS which selects a set of nodes retain-
ing the inherent community structure. FURS greedily
selected nodes with high degree centrality from differ-
ent dense regions of the graph thereby spanning most
or all the communities in the network. For this subset
selection technique, we used the concept of node activa-
tion and node deactivation while retaining the topology
of the graph. We compared FURS with state-of-the-art
techniques like SlashBurn, Forest-Fire, Metropolis and
Snowball Expansion sampling methodologies for vari-
ous evaluation criteria including coverage, degree dis-
tribution, clustering coefficients, variation of informa-
tion and fraction of communities covered. The subset
generated by FURS can be efficiently used for commu-
nity affiliation for unseen nodes in a network. This was
shown in combination with a model based kernel spec-
tral clustering technique (KSC). The KSC considered
FURS generated subset as input for the model. We also
showed that the subset obtained by FURS was a good
candidate set for a simple diffusion model. We inves-
tigated the speed of spread of information over time
and space using FURS and several other subset selec-
tion methods for various real world large scale networks.
Thus, we can conclude that FURS selection technique
results in a subset which is a good representative of the
large scale community structure.
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FURS Random Hubs Spokes HighBtw LowBtw HighEigen PageRank
Network Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank

Openflights 0.54 4 0.3 5 0.58 2 0.08 7 0.77 1 0.09 6 0.08 8 0.57 3
Netscience 0.47 1 0.21 4 0.29 2 0.07 8 0.27 3 0.074 7 0.11 5 0.075 6
Metabolic 0.71 5 0.22 6 0.92 2 0.12 7 0.95 1 0.11 8 0.91 3 0.78 4
PGPnet 0.5 1 0.22 4 0.37 3 0.09 8 0.47 2 0.1 7 0.2 6 0.2 5

Cond-mat 0.65 1 0.33 4 0.55 3 0.08 8 0.64 2 0.12 7 0.3 5 0.28 6
HepPh 0.73 4 0.6 6 0.84 2 0.13 8 0.88 1 0.14 7 0.75 3 0.67 5
Enron 0.56 5 0.25 6 0.79 2 0.05 8 0.88 1 0.07 7 0.67 3 0.66 4

Epinions 0.41 5 0.23 6 0.65 2 0.06 8 0.72 1 0.07 7 0.61 3 0.53 4
Web-Stanford 0.92 1 0.34 4 0.8 3 0.06 8 0.88 2 0.09 7 0.15 6 0.27 5
Imdb Actor 0.5 3 0.19 6 0.83 2 0.06 8 0.89 1 0.06 7 0.47 4 0.23 5

Youtube 0.5 3 0.19 5 0.7 1 0.05 6 - - - - 0.53 2 0.49 4
RoadCA 0.53 1 0.45 2 0.38 3 0.28 6 - - - - 0.37 4 0.32 5

Livejournal 0.58 1 0.4 5 0.57 2 0.08 6 - - - - 0.44 3 0.44 4
Avg Rank 2.7 4.84 2.23 7.4 1.5 7 4.23 4.6

FURS Random Hubs Spokes HighBtw LowBtw HighEigen PageRank
Network Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank

Openflights 0.94 2 0.83 5 0.89 4 0.32 7 0.96 1 0.36 6 0.11 8 0.9 3
Netscience 0.56 1 0.36 2 0.36 3 0.16 7 0.29 4 0.18 6 0.22 5 0.11 8
Metabolic 0.99 2 0.95 6 0.97 3 0.82 8 0.995 1 0.86 7 0.97 4 0.96 5
PGPnet 0.83 1 0.56 4 0.66 3 0.33 8 0.8 2 0.34 7 0.43 6 0.43 5

Cond-mat 0.9 1 0.78 4 0.82 3 0.41 8 0.88 2 0.48 7 0.64 5 0.63 6
HepPh 0.995 3 0.991 6 0.997 2 0.90 8 0.998 1 0.91 7 0.993 4 0.991 5
Enron 0.91 2 0.87 6 0.9 3 0.27 8 0.92 1 0.57 7 0.87 5 0.88 4

Epinions 0.92 5 0.81 6 0.95 2 0.37 8 0.97 1 0.44 7 0.94 3 0.923 4
Web-Stanford 0.95 1 0.9 3 0.86 4 0.38 7 0.91 2 0.67 5 0.28 8 0.5 6
Imdb Actor 0.98 1 0.89 4 0.93 3 0.14 8 0.97 2 0.18 7 0.81 5 0.72 6

Youtube 0.925 1 0.76 5 0.915 2 0.2 6 - - - - 0.86 3 0.854 4
RoadCA 0.77 1 0.74 2 0.53 4 0.45 6 - - - - 0.6 3 0.47 5

Livejournal 0.954 1 0.89 3 0.92 2 0.48 6 - - - - 0.88 4 0.88 5
Avg Rank 1.69 4.3 2.92 7.3 1.7 6.6 4.8 5.07

FURS Random Hubs Spokes HighBtw LowBtw HighEigen PageRank
Network Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank

Openflights 0.98 2 0.962 5 0.97 4 0.75 7 0.98 1 0.78 6 0.21 8 0.975 3
Netscience 0.565 1 0.42 2 0.37 3 0.26 7 0.296 5 0.28 6 0.33 4 0.165 8
Metabolic 0.997 2 0.993 3 1.0 1 0.975 4 1.0 1 0.97 5 1.0 1 0.997 2
PGPnet 0.95 1 0.833 4 0.843 3 0.0.65 8 0.94 2 0.663 7 0.67 6 0.67 5

Cond-mat 0.922 1 0.91 3 0.898 4 0.82 7 0.92 2 0.8 8 0.851 5 0.85 6
HepPh 1.0 1 1.0 2 1.0 1 1.0 1 1.0 1 1.0 3 1.0 1 1.0 3
Enron 0.926 1 0.924 2 0.916 4 0.79 8 0.92 3 0.85 7 0.914 5 0.913 6

Epinions 0.99 4 0.98 6 0.993 2 0.87 8 0.997 1 0. 89 7 0.992 3 0.99 5
Web-Stanford 0.953 1 0.95 2 0.9 4 0.65 7 0.91 2 0.86 5 0.58 8 0.7 6
Imdb Actor 0.985 1 0.966 4 0.972 3 0.49 8 0.976 2 0.59 7 0.95 5 0.92 6

Youtube 0.987 1 0.95 5 0.98 2 0.68 6 - - - - 0.964 3 0.962 4
RoadCA 0.88 2 0.9 1 0.62 4 0.61 5 - - - - 0.77 3 0.59 6

Livejournal 0.995 1 0.99 3 0.99 2 0.89 6 - - - - 0.985 5 0.985 4
Avg Rank 1.46 3.23 2.84 6.3 2.0 4.69 4.4 4.92

Table 3: Coverage (Cov) comparison for different subset selection method at time stamps T1, T2 and T3. The

table on the top corresponds to time stamp T1, the table in the middle corresponds to time stamp T2 and the
bottom most table corresponds to time stamp T3. Here ‘-’ represents not calculated as computationally expensive.

FURS Random Hubs Spokes HighBtw LowBtw HighEigen PageRank
Network Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank Cov Rank

Openflights 0.985 3 0.986 2 0.984 5 0.94 7 0.987 1 0.943 6 0.53 8 0.985 4
Netscience 0.565 1 0.444 2 0.375 4 0.33 5 0.3 7 0.33 6 0.4 3 0.21 8
Metabolic 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1
PGPnet 0.984 1 0.94 3 0.93 4 0.86 6 0.983 2 0.863 5 0.83 7 0.83 7

Cond-mat 0.927 2 0.93 1 0.917 4 0.915 5 0.92 3 0.897 8 0.91 6 0.90 7
HepPh 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1 1.0 1
Enron 0.928 2 0.93 1 0.918 4 0.9 8 0.918 3 0.912 7 0.917 5 0.917 6

Epinions 0.998 4 0.997 6 0.999 2 0.983 8 0.999 1 0.987 7 0.998 3 0.998 5
Web-Stanford 0.955 2 0.965 1 0.93 3 0.79 6 0.91 4 0.86 5 0.73 8 0.78 7
Imdb Actor 0.986 1 0.98 2 0.975 4 0.874 8 0.976 3 0.9 7 0.971 5 0.97 6

Youtube 0.998 1 0.989 5 0.995 2 0.92 6 - - - - 0.991 3 0.99 4
RoadCA 0.94 2 0.966 1 0.68 6 0.74 4 - - - - 0.9 3 0.69 5

Livejournal 0.999 1 0.998 2 0.998 3 0.986 6 - - - - 0.997 4 0.997 5
Avg Rank 1.61 2.15 3.3 5.46 2.6 4.3 4.4 5.07

Table 4: Coverage (Cov) comparison for different subset selection method at time stamps T4. Most of the selection

techniques have reached their maximum possible coverage by this time stamp for most of the real world networks.

Here ‘-’ represents not calculated as computationally expensive.
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(a) Comparison of Selection Techniques (b) Coverage Comparison with time

(c) Comparison of Selection Techniques (d) Coverage comparison with time

Fig. 7: Result of different subset selection techniques for Youtube and Livejournal large scale networks
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