
Least Squares Approximate Distance Oracles for
Spatial Networks

Joris Maervoet1, Jan Christiaens1, Patrick De Causmaecker2,3, and
Greet Vanden Berghe1,3

1 KU Leuven, Department of Computer Science, CODeS,
Gebr. De Smetstraat 1, 9000 Ghent, Belgium

2 KU Leuven-Kulak, Department of Computer Science, CODeS,
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

3 iMinds - ITEC - KU Leuven

Abstract. An approximate distance oracle is a compact data structure
or model that is able to answer network distance queries between any
two vertices of a graph. Distance oracles are of particular interest for
applications that require real-time network distance approximations and
only have limited time to build or space to store a predictive model.
A conventional distance oracle employs a guaranteed upper and lower
bound to the relative error of the approximation and often pegs down
its required size on these bounds. These bounds do however not clearly
represent the overall performance of the oracle, and the relaxation of
these bounds can produce a reduced complexity of the precalculation
time, the oracle space and the query time. The present paper introduces
the concept of a distance oracle that minimizes the root-mean-square
error of its network distance approximations. An appropriate distance
oracle of size O(1) is presented for both general and spatial networks. A
more advanced least squares approximate distance oracle is introduced
for spatial networks. It is based on clustering graph vertices that share
similar shortest paths starting or ending in these vertices. Its prediction
accuracy is demonstrated in the context of travel time approximation in
a transportation network for vehicle navigation.

Keywords: distance oracle, spatial networks, geographical data pro-
cessing.

1 Introduction

As introduced by Thorup and Zwick [1], an approximate distance oracle (ADO)
is a data structure that immediately answers network distance queries between
any two vertices of a graph. In contrast to data structures arising from precom-
puting the distances between any pair of vertices of the graph, ADOs require
limited space and can be built in limited computational time. Real-time distance
approximation is of particular interest for applications such as calculating the
distance between two people in a social network or retrieving the distances from
the current location to a set of alternative locations [2], e.g. restaurants, in a

2

transportation network. In these domains an estimate of the network distance is
often sufficient.
Many combinatorial optimization problems from logistics, public transportation
and tourism, require a transportation cost matrix for a set of locations. The
vehicle routing problem [3], for instance, is about finding the path of lowest
cost from one or several depots visiting a set of customer locations. The goal
of the orienteering problem [4] is to find a path, of a travel cost below a given
threshold and along a selection of locations, maximizing the sum of collected
location scores. The matrix mentioned above contains the transportation cost,
often travel time or fuel cost, between any origin-destination pair of the problem
in a transportation network. Using an ADO to determine this matrix is advan-
tageous when the problem’s locations often change and the transportation cost
calculation must be offered as a portable software component.

We now introduce the following definitions. A graph, further also referred
to as a general network, is denoted G = (V,E), where V is the set of vertices
and E the set of edges of the graph. The number of vertices |V | = n and the
number of edges |E| = m. By default, G is a weighted graph, which means that
any edge e ∈ E has a weight w(e) > 0. A path between the vertices u and v in
G is a sequence of edges consecutive in G, starting in u and ending in v. Its cost
equals the sum of the edge weights. The network distance dG(u, v) is the cost
of the path of lowest cost between u and v in G. A spatial network is a general
network where each v ∈ V corresponds to a position p(v) ∈ Rd. The spatial
distance dS(u, v) is a function of p(u) and p(v) in Rd. An Euclidean network is a
spatial network where the weight of any edge e connecting to vertices u and v is
defined as w(e) = dS(u, v), with dS(u, v) taking the Euclidean distance between
p(u) and p(v). Distances in this type of network satisfy the triangle inequality
i.e. ∀u, v, w ∈ V : dG(u,w) ≤ dG(u, v) + dG(v, w), and the network distance has
a lower bound: ∀u, v ∈ V : dG(u, v) ≥ dS(u, v).

In any of these networks, an ADO is a data structure or model that answers
network distance queries dG(u, v) by a reported distance dR(u, v). Conventional
ADOs assume a guaranteed upper and lower bound to the error of the reported
distance. In this context, a distance oracle has a stretch factor α when ∀u, v ∈ V :
dG(u, v) ≤ dR(u, v) ≤ α·dG(u, v). Alternatively, an ADO is called ε-approximate
when the relative error of any approximation generated by the oracle is not
more than ε i.e. ∀u, v ∈ V : abs(dG(u, v) − dR(u, v))/dG(u, v) ≤ ε. Thorup
and Zwick [1] showed for any integer k, that building an oracle of stretch 2k−1,
answering queries in k time, requires a space of at least n1+1/k. Sommer et al. [5]
argue that this bound does not provide useful information for sparse graphs, and
prove for any ADO that a space of at least n1+Ω(1/tα)/lg(n) is required to build
an oracle of stretch α and query time t. Network distance approximation for
spatial networks can be seen as fine-tuning “as the crow flies” distances towards
network distances. ADOs for spatial networks exploit the spatial coherence of
source and destination vertices of similar shortest paths. Sankaranarayanan and
Samet [2] introduce an ε-approximate oracle of this type based on well-separated
pair decomposition in a d-dimensional space. The oracle’s space requirements are

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 3

O(n/εd) answering queries in time O(log(n)). Sankaranarayanan and Samet [2]
conducted an experiment on a publicly available US transportation network
with distance-weights. It confirmed the linear storage requirements and yielded
an average relative error of 0.9% for ε = 0.1, which is 10%. With regard to
Euclidean networks, Gudmundsson et al. [6] refer to a number of solutions based
on polyhedral surfaces and obstacles. They notice that none of these can be used
to build an ADO of subquadratic space answering queries in constant time. They
present an oracle for Euclidean networks with m = O(n) of size O(n · log(n))
and query time O(1). It is based on partitioning the graph into a set of clusters
with a fixed radius. Mainly for networks satisfying the triangle inequality, many
variants of the landmark embedding technique have been proposed. It involves
that a set of landmarks R is selected from V and that the network distances
between any vertex and V and one or more vertices in R are computed. Real-
time network distance approximation is based on these precomputed distances.
In the ADO proposed by Qiao et al. [7], each landmark covers the set of vertices
located within a given radius. This radius can be linked to the upper bound
of the absolute approximation error. They show that finding the minimal set
of landmarks is NP-hard. Qiao et al. [8] improve the approximation accuracy
significantly by looking up the least common ancestor (LCA) of the two queried
vertices i.e. the last vertex shared by the paths of lowest cost starting in a global
landmark, in efficient indices.

In what follows, we raise several concerns in regard to the practical applica-
tion of ADOs.

1. The basic assumption in many ADOs is a guaranteed upper and lower bound
to the relative approximation error, whereas many applications only require
a low average error and a low error variance. Although the latter is a weaker
condition than the first, the latter condition is a better indicator of the
overall accuracy of the oracle. This duality manifests itself in the fact that
experimental approaches in the field of ADOs starting from guaranteed error
bounds end up in reporting the average error (e.g. [2]). Qiao et al. [7] showed
that the relaxation of these bounds results in a reduced complexity of the
precalculation time, the oracle space and the query time.

2. Some applications require a minimal absolute approximation error, instead
of a minimal relative one. This is the case when the transportation matrix
for the traveling salesperson problem (TSP) is generated by an ADO. The
stability regions [9] of the TSP edge lengths, i.e. the length domains within
which the optimal sequence of nodes is identical, better fit an absolute than
a relative deviation pattern.

3. Many popular applications of network distance approximation apply to trans-
portation networks with time weights, supporting travel time estimation of
the ‘fastest’ path between two vertices. These spatial networks do not satisfy
the triangle inequality, which is assumed to hold or applies to the evaluation
network in most ADO research. The ADO for spatial networks in general
by Sankaranarayanan and Samet [2] is solely validated by experiments on
distance-weighted transportation networks. To the best of our knowledge, not

4

any ADO designed for spatial networks has been validated on time-weighted
transportation networks before.

In order to evaluate an oracle based on the average error and its variance (con-
cern 1), Section 2 formalizes the concept of an ADO minimizing the root-mean-
square error (RMSE) of its network distance approximations. The rationale of
this concept is to abandon the guarantee-based ADO design to increase the
overall approximation accuracy (depending on the intrinsic characteristics of
the network) or to reduce the space complexity of the oracle. Considering the
second concern, this concept is introduced for both relative and absolute devi-
ation. Section 3 comprises an ADO design for spatial networks minimizing the
absolute RMSE. This oracle is constructed by partitioning the network into clus-
ters of vertices that share similar paths of lowest cost. In Section 4, the oracle’s
quality is evaluated for a time-weighted transportation network extracted from
the OpenStreetMap project.

2 Least squares approximate distance oracles

The following definitions apply to weighted graphs in general as well as to directed
weighted graphs in general. In the latter type of graph G = (V,E), any directed
edge (or arc) e ∈ E is defined as an ordered pair of vertices, corresponding to
its associated direction. A path in a directed graph is a sequence of consecutive
edges of forward direction.

2.1 Basic concepts

Given an ADO approximating a network distance query dG(u, v) by the reported
distance dR(u, v) for any vertex u and v of a general network G = (V,E). We
define two inverse accuracy criteria, the absolute and the relative RMSE, as
follows.

RMSEabs(G) :=

√∑
∀u,v∈V,u6=v(dG(u, v)− dR(u, v))2

|V |2 − |V |

RMSErel(G) :=

√√√√∑
∀u,v∈V,u 6=v

[
dG(u,v)−dR(u,v)

dG(u,v)

]2
|V |2 − |V |

An oracle has an optimal approximation accuracy on a graph G, if the RMSE on
G is minimal. These definitions however imply that the ADO accuracy evaluation
requires an all-pairs shortest path approach, of which the processing time has a
(nearly) cubic complexity: the time complexity of the classical Floyd-Warshall al-
gorithm is O(n3); Chan’s algorithm [10] requires O(n3 ·(log(log(n)))3/(log(n))2)
time. Therefore, in practice, a representative query1 sample set S ⊂ V × V is

1 This query is an unordered/ordered pair, since dG(u, v) is a symmetric/asymmetric
function in undirected/directed graphs.

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 5

determined. S has a random distribution in V × V or an expected query distri-
bution for a certain application domain e.g. long-distance queries. The ADO’s
accuracy can be evaluated quickly based on the sampled RMSE on G as follows.

RMSESabs(G) :=

√∑
∀(u,v)∈S(dG(u, v)− dR(u, v))2

|S|

RMSESrel(G) :=

√√√√∑
∀(u,v)∈S

[
dG(u,v)−dR(u,v)

dG(u,v)

]2
|S|

2.2 Oracles of unit size

We now introduce the optimal oracles of unit size for both the absolute and
relative cases. These oracles are mainly intended as a reference test to compare
the intrinsic characteristics of different networks, and their difficulty level of
establishing an ADO. We expect for instance that the accuracy of a unit size
oracle for spatial networks is considerably better on a distance-weighted than
on a time-weighted transportation network. Their optimality is defined directly
with regard to a query sample set S ⊂ V × V , since an all-pairs shortest path
calculation in fact realizes an exact distance oracle requiring a a high processing
time complexity. Straightforward mathematical methods produce the following
constant values.

Oracles of unit size in general networks. An ADO of size O(1) minimizing
RMSESabs(G), responds to each query dG(u, v) by a constant distance dC :

dC =

∑
∀(u,v)∈S

dG(u, v)

|S|

Analogously, it can be shown that an ADO of size O(1) minimizing RMSESrel(G)
and answering to each query a constant distance dC requires

dC =

∑
∀(u,v)∈S

(1/dG(u, v))∑
∀(u,v)∈S

(1/d2G(u, v))

Oracles of unit size in spatial networks. The distortion for an individual
vertex couple in a spatial network is defined as

γ(u, v) :=
dG(u, v)

dS(u, v)

Note that the maximum value of γ(u, v) for any u, v ∈ V is often referred to
as the (maximum) distortion, the dilation or the stretch factor of G [2, 11].

6

Sankaranarayanan and Samet [2] state that a distortion spectrum usually ex-
hibits large distortion values only for low spatial distances. An ADO of size
O(1) for spatial networks entails the approximation of a query dG(u, v) by the
product γC · dS(u, v), where γC represents a constant distortion. The following
condition yields an oracle of optimal approximation accuracy with regard to the
absolute RMSE.

γC =

∑
∀(u,v)∈S

(d2S(u, v) · γ(u, v))∑
∀(u,v)∈S

d2S(u, v)

An optimal ADO of the same configuration minimizing the relative RMSE re-
quires

γC =

∑
∀(u,v)∈S

(1/γ(u, v))∑
∀(u,v)∈S

(1/γ2(u, v))

3 An advanced ADO based on clusters and transit nodes

The classical landmark embedding techniques based on spatial coverage, de-
scribed in Section 1, are less effective in networks that do not necessarily satisfy
the triangle inequality. The core of the ADO introduced in the present section
is therefore based on graph partitioning into disjoint clusters of vertices. Fur-
thermore, a set of transit nodes of minimal size is determined for each of the
clusters. The network distance approximation algorithm is based on the precal-
culated distances between the transit nodes. The design of this oracle is aimed
at minimizing the absolute RMSE. Related approaches to graph partitioning are
discussed in the next paragraphs.

3.1 Related work

Several graph clustering algorithms have been proposed optimizing different ob-
jectives. Both Monien and Diekmann [12] and Pothen [13] minimize the number
of edges connecting different partitions. Edge length based clustering of edges
in graphs was proposed by Das and Narasimhan [14] for constructing sparse
spanners in complete Euclidean networks. The Markov cluster algorithm by van
Dongen [15] minimizes the probability of leaving the cluster during a random
walk. It is an iterative algorithm on a matrix of transition probabilities. The con-
ductance of a graph indicates the number of steps a random walk in the graph
requires for converging to a uniform distribution. Clusters of low conductance
can be seen as bottlenecks. Iterative Conductance Cutting [16, 17] maximizes
the conductance of these bottlenecks.

In the following cases, graph partitioning has been applied in order to ob-
tain the path of lowest cost in graphs. This discipline is somewhat different
from network distance approximation because it mainly focusses on returning
the complete path of the exact result, which implies a different trade-off between

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 7

space and query time complexity. Lansdowne and Robinson [18] were the first
to apply the concept of spatial decomposition to the shortest path problem in
sparse directed graphs. During query time they assign the vertices of the spatial
graph to a set of regions in order to optimize the performance of the exact calcu-
lation of the n paths of lowest cost. More recent approaches divide the complete
graph into clusters during the preprocessing phase. This phase also implies that
the partitioning description is stored together with a set of precomputed paths
or distances between the clusters. During a shortest path query, this stored in-
formation is used in order to drastically reduce the search space of the path
calculation procedure. Huang et al. [19] advocate the application of the Spatial
Partition Clustering technique in order to minimize I/O costs in routing systems
that require to load the edges from secondary storage to a main memory buffer. It
partitions the arcs of a directed spatial graph such that the origin vertices of the
arc of a partition are bound by a quasi-square polygon. The routing algorithm
by Flinsenberg et al. [20] only considers the edges (1) belonging to the cells of the
start and destination vertex, (2) connecting two so-called boundary nodes of dif-
ferent cells, and, (3) representing precalculated paths between boundary nodes
of same cells. A hierarchical version of this algorithm has been presented by Jung
and Pramanik [21]. Flinsenberg et al. [20] introduced the partitioning problem
as finding the cell configuration that yields a minimal average number of loaded
edges. Their preprocessing phase consists of several runs, repeatedly merging
1-vertex-cells until one cell of size |V | remains. This greedy merge procedure is
managed by a priority function containing a random element. The cell configura-
tion over all the runs that suits the partitioning problem best is selected. When,
however, the A* algorithm is applied to a transportation network, Flinsenberg
et al. [20] discovered that minimizing the number of loaded edges does not result
in the fastest query results, and reformulated the partitioning problem’s objec-
tive value minimizing the algorithm’s search space. Maue et al. [22] assign each
node to the cluster of the closest node (with regard to the network distance) of
a set of k centre nodes. Their routing algorithm integrates pruning of complete
clusters based on distance bounds. The resulting search space has the shape of
a corridor around the shortest path, of which the narrowness is determined by
the number of clusters k. Note that these approaches are different from recent
successful partition-based approaches to exact shortest path calculation since
the preprocessing phase starts from arbitrary graph partitions such as adminis-
trative divisions. In order to lower the number of precalculated paths, Bast et
al. [23] search for the minimal set of transit nodes outside the partition, such
that any long-distant shortest path from/to the partition passes one of these
nodes.

3.2 The oracle

Definitions. We first introduce a few definitions supporting the description of
the advanced ADO. A random sample of k < |S| elements of the set S is denoted
random(S, k). The partition of a set S is a collection of pair-wise disjoint subsets
of this set such that the union of these subsets equals S. A directed graphG(V,E)

8

is connected when for each pair of nodes (u, v) ∈ V ×V there exists a path from
u to v. The forward shortest path tree of a connected directed graph G(V,E)
rooted at vertex r ∈ V is a tree T in G, such that, for each node v ∈ V the
downward path from r to v in T corresponds with a path of lowest cost from r
to v in G. The backward shortest path tree of a directed graph G = (V,E) rooted
at vertex r ∈ V is a tree T in G, such that, for each node v ∈ V the upward
path from v to r in T corresponds with a path of lowest cost from v to r in G.

ADO construction. The construction of the advanced ADO from the con-
nected directed spatial network G(V,E) comprises stepwise generation of the
following elements:

1. two partitions of V , of which PO consists of origin clusters and PD of desti-
nation clusters,

2. a set T ⊂ V of minimal size, containing transit nodes for each cluster C in
PO and PD (we say t ∈ T is a transit node of C),

3. the precalculated distances dG(s, t) for any transit node s of an origin cluster
and any transit node t of a destination cluster (close cluster pairs excluded,
see element 6),

4. the precalculated distances dG(u, s) between any u in an origin cluster CO
and any transit node s of CO,

5. the precalculated distances dG(t, v) between any transit node t of a destina-
tion cluster CD and any v in CD,

6. a set of close cluster pairs (CO, CD) ∈ PO × PD, and,
7. the constant distortions γCO,CD

for any close cluster pair (CO, CD).

 (a)

 (b)

Fig. 1: Association graph construction. The subfigures show two consecutive runs
of the recursive algorithm. The backward shortest path tree is indicated by a
solid line. The association edge creation or counter increment (dashed lines) is
only illustrated for one vertex. Ellipses delimit the subtrees with maxDepth = 2.
Note that any pair of vertices is linked at most once during the processing of
one tree.

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 9

Procedure GenerateOriginPartition(G)
input : G ← spatial network G(V,E)
output : PO ← set of subsets of V
parameters: numberOfRoots, popularityThreshold

B construction of sample backward shortest path trees
roots ← random(V, numberOfRoots)
trees ← tree set (initially empty)
foreach r in roots do

tree ← backwardShortestPathTree(G,r)
insert(trees, tree)

B association graph construction
Ga ← association graph Ga(Va, Ea) (initially empty)
B an association graph is an undirected graph where each edge e has a weight w(e)
and a counter c(e), and each vertex v has a vote v(v), all equal to 0 by default
foreach t in trees do

Ga ← generateAssociations(Ga, t, root(t))

B association edge weight calculation
foreach edge ea in Ea do
{v1, v2} ← getVertices(Ga, ea)
foreach e1 in getEdges(Ga, v1) do

foreach e2 in getEdges(Ga, v2) do
if (getVertices(Ga, e1)

⋂
getVertices(Ga, e2)) \{v1, v2} 6= ∅

then w(ea)← w(ea) + c(e1) · c(e2)

B determination of principal nodes
foreach vertex va in Va do
{vh} ← getVertices(Ga, edgeMaxWeight(getEdges(Ga, va))) \ {va}
v(vh) ← v(vh) +1

principalNodes ← a subset of Va (initially empty)
foreach vertex va in Va do

popularity ← v(va)/|getEdges(Ga, va)|
if popularity > popularityThreshold then insert(principalNodes, va)

B cluster construction
PO ← set of singletons of elements in principalNodes
foreach vertex va in Va\principalNodes do

Ep ← subset of getEdges(Ga, va) connecting to a vertex in principalNodes
if Ep 6= ∅ then
{vh} ← getVertices(Ga, edgeMaxWeight(Ep)) \ {va}
addToSubsetContaining(PO, va, vh)

while Va\(
⋃

C∈PO
C) 6= ∅ do

foreach vertex va in Va\(
⋃

C∈PO
C) do

Ec ← subset of getEdges(Ga, va) connecting to a vertex in
⋃

C∈PO
C

if Ec 6= ∅ then
{vh} ← getVertices(Ga, edgeMaxWeight(Ec)) \ {va}
addToSubsetContaining(PO, va, vh)

return PO

Algorithm 1: Generation of the origin cluster partition. The set, tree and graph
functions are explained in Table 1.

10

x

y

a

b

c

w(exy) c(eax) ·c(eay) + c(ebx) ·c(eby) + c(ecx) ·c(ecy)

Fig. 2: Association edge weight calculation example. The weight of the edge
between vertices x and y is calculated as the sum of the counter products of the
edges connecting x and y with a common vertex.

Function Definition

S
e
ts random(S, k) returns a random sample of k < |S| ele-

ments of the set S

insert(S, e) inserts e in the set S

addToSubsetContaining(S, eadd, eref) inserts eadd in the subset of S containing
eref

T
re

e
s root(T) returns the root of tree T

depth(e, T) returns the depth of element e in tree T
(the root of T has depth 0)

next(e, T) returns the set of children of element e in
tree T

getSubtrees(e, T, d) returns the set of trees rooted at the child
elements of e in tree T and chopped of at
depth d relative to the child elements

G
ra

p
h
s getV ertices(G, e) returns the set of 2 vertices connected by

edge e in graph G

getEdges(G, v) returns the set of edges connecting vertex
v in graph G

edgeMaxWeight(E) returns the edge e that has the highest
weight w(e) in edge set E

connected(G, v1, v2) there exists an edge between v1 and v2 in
graph G

constructEdge(G, v1, v2) inserts an edge between v1 and v2 in graph
G

backwardShortestPathTree(G, r) returns the backward shortest path tree
(defined in the definitions paragraph of
Section 3) of graph G rooted at vertex r

Table 1: Set, tree and graph functions

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 11

Procedure generateAssociations(Ga, t, el)
input : Ga ← association graph Ga(Va, Ea)
input : t ← tree of elements in Va and branches in Ea

input : el ← an element in t
output : Ga ← association graph Ga(Va, Ea)
parameters: minDepth, maxDepth

if depth(el, t) > minDepth then
subtrees ← getSubtrees (el, t,maxDepth)
foreach 2-element combination (tree1, tree2) in subtrees do

foreach element elx in tree1 do
foreach element ely in tree2 do

if not(connected(Ga, elx, ely)) then
constructEdge(Ga, elx, ely)

c(getEdge(Ga, elx, ely)) ← c(getEdge(Ga, elx, ely)) +1

foreach element eln in next(el, t) do
Ga ← generateAssociations(Ga, t, eln)

return Ga

Algorithm 2: Recursive generation of the association graph. The set, tree and
graph functions are explained in Table 1.

Element 1 implies clustering of vertices sharing many similar paths in the set
of all paths of lowest cost starting (partition PO) or ending (partition PD) in
these vertices. This similarity can be described best in terms of the LCA of two
vertices in a forward/backward shortest path tree. Two nodes are similar when
their LCA is only a few edges away for many paths of lowest cost. Algorithm 1
describes a sampling-based method of low computational time to generate the
origin cluster partition PO. It generates an association graph Ga from a set
of numberOfRoots backward shortest path trees in G rooted in a sample of
V . This undirected graph registers in its edge counters how many times two
vertices have a close LCA, over the set of trees. This registration (Algorithm 2)
is realised for one tree t by linking the vertices between any pair of subtrees,
cropped at depth maxDepth, of any vertex located at least at depth minDepth
in t. This is shown in Figure 1. The edge weight calculation propagates the
edge counters over triangle subgraphs of Ga, as illustred in Figure 2. Principal
nodes are the vertices of Va around which the clusters will be built. Principal
node determination starts by a voting mechanism. Any vertex in Va submits
a vote for the vertex connected by the edge of heaviest weight. Next, vertices
that have a vote-degree ratio above the popularityThreshold parameter, become
the principal nodes. Any vertex connected in Ga to a principal node is assigned
to the cluster of the principal node connected to the vertex by the edge of
heaviest weight. Finally, the other vertices are iteratively added to the clusters
corresponding to their edge of heaviest weight. The algorithm generating the
destination cluster partition PD is the same but starts from a set of forward
shortest path trees. Note that both types of shortest path tree can be generated
by the Dijkstra algorithm. In case of a backward shortest path tree, it is required

12

to invert any of the graph’s edge directions before calculation, and to interpret
the results accordingly.
For element 2, a minimal set of transit nodes for any cluster is determined. In
case of origin/destination clusters, the paths in the sample backward/forward
shortest path trees starting/ending in any vertex of the cluster are considered.
The coverage of the transit nodes of a cluster is the proportion of these paths
that passes at least one of the transit nodes. The minimal set of transit nodes
for any cluster is determined, which has at least a specified coverage tnCoverage
(e.g. 95%). This minimal set is retrieved through a mixed integer programming
approach. The precalculated distances in the elements 3, 4 and 5 are calculated
using a one-to-many shortest path algorithm. While the above distances are used
to approximate long network distance queries, the probability that short paths
of lowest cost pass through the transit nodes is remarkably lower. For element 6,
a set of close cluster pairs is determined. Two clusters are close if they have at
least one vertex in common. For queries from cluster CO to CD, the network
distance approximation will not be based on the precalculated distances, but on
the constant distortion minimizing the absolute RMSE for queries in CO ×CD.
These distortions (of the last element) are calculated for a sample query set
random(CO × CD, kavdist).

Network distance approximation algorithm. During a query for the net-
work distance dG(u, v), the origin cluster CO and destination cluster CD are
retrieved where u ∈ CO and v ∈ CD. When (CO, CD) is not a close cluster pair,
dR(u, v) equals the minimal value of dG(u, s) + dG(s, t) + dG(t, v) for any com-
bination of transit node s of CO and transit node t of CD. Otherwise, dR(u, v)
is γCO,CD

· dS(u, v).

Complexity. c denotes the average number of partitions in PO and PD, t de-
notes the average number of transit nodes per cluster, and l denotes the average
number of clusters in PD that forms a close cluster with a cluster in PO. Suppose
that any of the 7 elements of the advanced ADO is stored in a hash table of space
complexity O(k) and average time complexity O(1). The space complexity built
up by these elements is:O(2·n+2·c·t+c·(c−l)·(t)2+n·t+n·t+c·l+c·l) = O(n+c2),
assuming that l and t are much smaller than c and n. This means that the space
complexity is linear with regard to the number of nodes and quadratic with re-
gard to the number of clusters. The query time complexity is O(1) in case the
origin and destination are located in a close cluster pair. Otherwise, it is O(t2).

4 Experiment

The advanced ADO introduced in the Section 3 is evaluated on a time-weighted
transportation network extracted from OpenStreetMap, which is a source of
publicly available geographic data. Mapping individual way objects in an Open-
StreetMap map extract to a directed weighted spatial graph is described in
Appendix A. After this extraction, a minimal number of vertices is removed

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 13

from the graph such that the graph becomes connected. This process starts by
the manual selection of a vertex r which is known to be in the largest connected
subgraph. Next, both a forward and a backward shortest path tree rooted in r
is constructed. The subgraph consisting of the nodes belonging to both trees is
a connected graph.

The Ghent dataset is the OpenStreetMap map extract of latitude range
[51.0258, 51.0834] and longitude range [3.6685, 3.7856], dated May 16, 2012.
The derived connected graph contains 4296 vertices.

Fig. 3: Instance of an origin cluster in the Ghent dataset. All vertices belonging
to the cluster are connected by a star (trivial centre point). The other lines
indicate the edges of the transportation network. Arrows indicate the major
part of edges that are traversable in single direction. The 5 boxes represent the
cluster’s associated transit nodes, covering at least 90% of the sample paths
leaving the cluster. Network and waterways derived from c© OpenStreetMap
contributors.

The basic evaluation for this directed weighted spatial graph G(V,E) as-
sumes construction of two independent sets S and T of random ordered pairs

14

(queries) in V × V . Both sets contain 10000 elements. The positions of the
individual vertices in the pairs of S and T have a uniform distribution over
the rectangular area of interest. We assume that this is the expected query
distribution for main-purpose applications of ADOs. Next, an ADO of unit
size minimizing RMSETabs(G), and the advanced ADO introduced in Section 3
are constructed. The construction parameter settings for the latter oracle were
numberOfRoots = 50, popularityThreshold = 0.07, minDepth = 15,
maxDepth = 10, tnCoverage = 0.90, kavdist = 20. These settings resulted in 87
origin and 79 destination clusters. One of the origin clusters, generated by this
oracle, is shown together with its associated transit nodes in Figure 3. Table 2

percentile
RMSEabs avg 1% 5% 10% 90% 95% 99% max

Unit size ADO 2.814 2.207 0.03 0.17 0.33 4.64 5.60 7.42 13.60

Advanced ADO 0.777 0.253 0.00 0.00 0.00 0.90 1.79 3.63 9.01

Table 2: Absolute error statistics (in minutes) of network distance approxima-
tions for the query sample set S in the Ghent dataset.

shows the absolute error RMSESabs(G) and some other absolute error statistics
for both oracles.
In order to analyse the oracle’s approximation accuracy for different categories of
“as the crow flies” distance between the origin and destination vertex of a query,
we introduce the set U of 10000 random queries (u, v) in V × V where dS(u, v)
has a uniform distribution. Both RMSEUabs(G) and the average absolute error
for U were found to be lower sc. 0.730 and 0.211. Figure 4 shows the unit size
oracle’s absolute approximation error as a function of the query’s spatial distri-
bution for any query in the sample set of universal spatial distance distribution
U . This data is averaged for discrete spatial distance ranges in the histogram
of Figure 6. The same data on the advanced oracle’s approximation accuracy
is represented in Figure 5 and 7. The first histogram shows that the unit size
oracle’s absolute error average is around 2 minutes for medium-distant queries,
but increases for longer distances up to 8 minutes. The other oracle’s absolute
error average is close to 0 minutes for long-distant queries, shows a peak of about
1.2 minutes around queries of distance 500m. This shows that the latter oracle
is able to drastically reduce the absolute error and that it is the most suscep-
tible to absolute errors when the origin and destination vertices are located in
a close cluster pair. While the approximation mechanism for non-close cluster
pairs yields a reasonable chance to have an exact approximation, the mechanism
for close cluster pairs is based on spatial distance multiplication by a constant.
The latter mechanism can be seen as an improved version of the unit size oracle.
For queries of length 400-500m, its approximations error is the halve of the one
of the unit size oracle.

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 15

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 4: Unit size oracle’s absolute error
as a function of spatial distance.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Fig. 5: Advanced oracle’s absolute error
as a function of spatial distance.

0

2

4

6

8

10

0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
4
0
0

4
8
0
0

5
2
0
0

5
6
0
0

6
0
0
0

6
4
0
0

6
8
0
0

7
2
0
0

7
6
0
0

8
0
0
0

8
4
0
0

8
8
0
0

9
2
0
0

9
6
0
0

Fig. 6: Unit size oracle’s average abso-
lute error histogram for spatial distance
ranges.

0

0.5

1

1.5

0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
4
0
0

4
8
0
0

5
2
0
0

5
6
0
0

6
0
0
0

6
4
0
0

6
8
0
0

7
2
0
0

7
6
0
0

8
0
0
0

8
4
0
0

8
8
0
0

9
2
0
0

9
6
0
0

Fig. 7: Advanced oracle’s average abso-
lute error histogram for spatial distance
ranges.

5 Conclusion

The present paper introduces a framework for the evaluation of ADOs based on
the root-mean-square error (RMSE) of the absolute or relative error of a sample
set of network distance approximations in a graph G(V,E). This framework
applies both to general and spatial networks. An RMSE minimizing unit size
oracle for general networks generates a constant approximation. The version for
spatial networks approximates the network distance by the product of the spatial
distance and a constant distortion.

An advanced ADO was introduced. It organizes the vertices V into a partition
of origin clusters and one of destination clusters. Each cluster is assigned a set of
transit nodes. A close cluster pair is a couple of an origin and a destination cluster
sharing at least one vertex. Network distance approximation between vertices of
a close cluster pair is based on the constant distortion minimizing the absolute
RMSE for a sample set of queries from the first to the second cluster of the
pair. Approximation between remote vertices is based on a set of precalculated
distances between the vertices and the transit nodes and between transit nodes
of different clusters. The oracle’s average space complexity is O(n + c2) and
its average query time complexity is O(t2), where c is the average number of
clusters in a partition and t the average number of transit nodes of a cluster. Its
prediction accuracy was evaluated in terms of the RMSE of the absolute error
of the reported distances. The comparison with a unit size oracle for spatial
networks was made for the Ghent dataset for a query sample set of size 10000.
The positions associated with the individual vertices in this query sample set
are uniformly distributed over the rectangular dataset area. The advanced ADO

16

realizes a reduction of 3.5 times the RMSE and of 8.5 times the average absolute
error, in comparison with the unit size oracle.

Acknowledgment

The research has been carried out partly in the context of the industrial PhD
project “Structural heuristics for personalized routes” funded by the IWT (090726)
and the company RouteYou.

References

1. Thorup, M., Zwick, U.: Approximate distance oracles. In Vitter, J.S., Spirakis,
P.G., Yannakakis, M., eds.: Proceedings on 33rd Annual ACM Symposium on
Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece, ACM (2001) 183–
192

2. Sankaranarayanan, J., Samet, H.: Distance oracles for spatial networks. In: Data
Engineering, 2009. ICDE ’09. IEEE 25th International Conference on. (2009) 652–
663

3. Laporte, G.: The vehicle routing problem: An overview of exact and approximate
algorithms. European Journal of Operational Research 59(3) (1992) 345–358

4. Vansteenwegen, P., Souffriau, W., Van Oudheusden, D.: The orienteering problem:
A survey. European Journal of Operational Research 209(1) (2011) 1 – 10

5. Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: 50th IEEE
Symposium on Foundations of Computer Science (FOCS). (2009) 703–712

6. Gudmundsson, J., Levcopoulos, C., Narasimhan, G., Smid, M.: Approximate dis-
tance oracles for geometric spanners. ACM Trans. Algorithms 4(1) (March 2008)
10:1–10:34

7. Qiao, M., Cheng, H., Yu, J.X.: Querying shortest path distance with bounded
errors in large graphs. In: Proceedings of the 23rd international conference on
Scientific and statistical database management. SSDBM’11, Berlin, Heidelberg,
Springer-Verlag (2011) 255–273

8. Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance com-
puting: A query-dependent local landmark scheme. In Kementsietsidis, A., Salles,
M.A.V., eds.: IEEE 28th International Conference on Data Engineering (ICDE
2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012, IEEE Com-
puter Society (2012) 462–473

9. Libura, M., van der Poort, E.S., Sierksma, G., van der Veen, J.A.: Stability aspects
of the traveling salesman problem based on k-best solutions. Discrete Applied
Mathematics 87(13) (1998) 159 – 185

10. Chan, T.M.: More algorithms for all-pairs shortest paths in weighted graphs. In:
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing.
STOC ’07, New York, NY, USA, ACM (2007) 590–598

11. Narasimhan, G., Smid, M.: Approximating the stretch factor of euclidean graphs.
SIAM J. Comput. 30(3) (May 2000) 978–989

12. Monien, B., Diekmann, R.: A local graph partitioning heuristic meeting bisection
bounds. In: Proceedings of the Eighth SIAM Conference on Parallel Processing for
Scientific Computing, PPSC 1997, March 14-17, 1997, Hyatt Regency Minneapolis
on Nicollel Mall Hotel, Minneapolis, Minnesota, USA, SIAM (1997)

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 17

13. Pothen, A.: Graph partitioning algorithms with applications to scientific comput-
ing. In: Parallel Numerical Algorithms, Kluwer Academic Press (1997) 323–368

14. Das, G., Narasimhan, G.: A fast algorithm for constructing sparse euclidean span-
ners. Int. J. Comput. Geometry Appl. 7(4) (1997) 297–315

15. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University
of Utrecht, The Netherlands (2000)

16. Kannan, R., Vempala, S., Veta, A.: On clusterings-good, bad and spectral. In:
Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on.
(2000) 367–377

17. Brandes, U., Gaertler, M., Wagner, D.: Experiments on graph clustering algo-
rithms. In Battista, G., Zwick, U., eds.: Algorithms - ESA 2003. Volume 2832 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg (2003) 568–579

18. Lansdowne, Z.F., Robinson, D.W.: Geographic decomposition of the shortest path
problem, with an application to the traffic assignment problem. Management
Science 28(12) (1982) 1380–1390

19. Huang, Y.W., Jing, N., Rundensteiner, E.A.: Optimizing path query performance:
graph clustering strategies. Transportation Research Part C: Emerging Technolo-
gies 8(16) (2000) 381 – 408

20. Flinsenberg, I.I., van der Horst, M.M., Lukkien, J.J., Verriet, J.J.: Creating graph
partitions for fast optimum route planning. WSEAS Transactions on Computers
3(3) (2004) 569 – 574

21. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically
structured topographical road maps. Knowledge and Data Engineering, IEEE
Transactions on 14(5) (2002) 1029–1046

22. Maue, J., Sanders, P., Matijevic, D.: Goal-directed shortest-path queries using
precomputed cluster distances. J. Exp. Algorithmics 14 (January 2010) 2:3.2–
2:3.27

23. Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with
transit nodes. Science 316(5824) (2007) 566

A Extraction of a directed weighted spatial graph from
OpenStreetMap data

The following rules describe a mapping of OpenStreetMap (OSM) data to a car
transportation network, in the form of a directed weighted spatial graph G(V,E).

An OSM way instance is traversable if

– it does not have a visible-tag of value false,
– it does have a highway-tag, and,
– the value of this tag is different from bridleway, bus guideway, construction,

cycleway, footway, path, pedestrian, proposed, raceway, service or steps.

If a way instance has a oneway-tag, this way is traversable

– in the forward direction if this tag’s value equals yes, true or 1,
– in the backward direction if this tag’s value equals -1,
– in both directions if this tag’s value equals no, false or 0.

18

Otherwise, if this way instance has a junction-tag, this way is traversable in the
forward direction if this tag’s value equals roundabout.
Otherwise, if the highway-tag’s value of this way equals motorway link this way
is traversable in the forward direction.
In any other case this way is traversable in both directions.

If a way instance has a maxspeed -tag, its speed in km/h is defined as:

– 130 if this tag’s value equals none,

– 50 if this tag’s value equals signals,

– this tag’s value if it is a number,

– this tag’s value multiplied by 1.609344 if it is a number followed by mph.

Otherwise, when the way instance has a maxspeed -tag and its value has the
countrycode:waytype pattern, the country code and way type yield a speed ac-
cording to the following mapping.
(((BE, motorway), 120), ((BE, trunk), 90), ((BE, primary), 90), ((BE, sec-
ondary), 90), ((BE, tertiary), 90), ((BE, residential), 30), ((BE, living street),
20),
((NL, motorway), 120), ((NL, trunk), 100), ((NL, primary), 80), ((NL, sec-
ondary), 80), ((NL, tertiary), 80), ((NL, living street), 15),
((ES, motorway), 120), ((ES, trunk), 100), ((ES, primary), 90), ((ES, sec-
ondary), 90), ((ES, tertiary), 90), ((ES, residential), 30), ((ES, living street),
20))
Otherwise, the same mapping applies to the country code derived from the data
extract’s metadata and the value of the highway-tag.
When the mapping failed, its speed is 50.

We define the reduced node reference list of a traversable way instance
as the list of node references appearing as the first or the last element in the
node reference list of any traversable way instance. The waylength between the
nodes ni and nj appearing in a full node reference list of a way instance equals
the sum of the spherical distances in metres between any two consecutive nodes
nk and nk+1 in the full node reference list, where i ≤ k < j.

Any OSM node instance appearing in the reduced node reference list of a
traversable way instance maps to a vertex of V . The values of its lon-tag and
lat-tag map to the spatial position in R2 of the vertex. dS(u, v) indicates the
spherical distance in metres between the vertices u and v.
Any two consecutive nodes of the reduced node reference list of a way traversable
in the forward or in both directions maps to a directed edge of E starting in the
first corresponding vertex and ending in the second corresponding vertex.
Any two consecutive nodes of the reduced node reference list of a way traversable
in the backward or in both directions maps to a directed edge of E starting in
the second corresponding vertex and ending in the first corresponding vertex.

The weight of an edge e from vertex u to v corresponds to waylength(u,v)·0.06
speed(e) +

Least Squares Approximate Distance Oracles for Spatial Networks (v1.2) 19

0.167, where speed(e) refers to the speed of the way instance from which e is
generated.

