
TECHNICAL REPORT 1

Wayfinding by multi-level heuristic node promotion
in real road networks

Joris Maervoet∗, Pascal Brackman‡, Patrick De Causmaecker†§, Katja Verbeeck∗ and Greet Vanden Berghe∗§
∗KU Leuven, Department of Computer Science, CODeS, Gebr. De Smetstraat 1, 9000 Ghent, Belgium

†KU Leuven-Kulak, Department of Computer Science, CODeS, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
‡RouteYou.com, Kerkstraat 108, 9050 Ghent, Belgium

§iMinds - ITEC - KU Leuven

Abstract—The present article introduces the application of
the multi-level heuristic node promotion algorithm to real
road networks for vehicle navigation. In contrast with many
classical shortest path algorithms, this hierarchical shortest-
path approximation algorithm integrates in a multi-tier web
architecture in such a way that routing queries as well as a
minor data updates are processed in a short amount of time.
The multi-level heuristic node promotion algorithm was first
proposed by Jagadeesh et al. [1] for two levels, although it is
only effective when an irreversible graph transformation has
been applied on the road network during preprocessing. This
irreversible transformation, which consists of slip road removal
and dual carriage way reduction, is problematic in contemporary
route planning applications. Several heuristic adaptations to
both the data preprocessing and the algorithm are introduced
and motivated. These adaptations bypass the irreversible graph
transformation and restore the effectiveness of the heuristic node
promotion algorithm.

A computational experiment shows the application of the
hierarchical algorithm to the 5-level time-weighted road network
graph of Belgium, in combination with node pruning using a
rectangular area. It analyses the effects of each of the adaptations
on the routing performance. This experiment is conducted in the
context of a routing web application for tourism and leisure
purposes, but the suggested approach is effective for hierarchical
shortest-path applications in general.

Index Terms—Shortest path problem, heuristic algorithms,
data preprocessing.

I. INTRODUCTION

ROUTEYOU.COM manages a web 2.0 environment en-
abling users to interactively create, share and use tourist

routes. Besides, it offers a routing platform for various ap-
plication developers and digital content providers. One of its
basic components is a routing engine that computes a route of
interest, mainly intended for vehicle navigation, over the road
network between two points selected by the user.
This calculation entails finding the path with the lowest cost in
a directed weighted graph. The engine supports several routing
modi, each of them referring to another type of edge weights.
For the modus ‘shortest’, the weights represent the edge
length. A time-weighted graph enables finding the ‘fastest’
route. These time weights are estimates of the average time it
is necessary for a vehicle to traverse the edge. Moreover, the

The research has been carried out as part of the industrial PhD project
‘Structural heuristics for personalised routes’ funded by the IWT (090726)
and the company RouteYou.

DB

Application server

Thread

(si, ei) ?

Fig. 1. Routing process diagram. Upon each routing request from starting
point si to end point ei (step 1), the application server starts a thread (step 2).
Once or repeatedly, this thread loads the portion of the road network nodes
and edges that spatially intersect a bounding box (step 3). When the path
finding process has terminated (step 4), the thread returns the result to the
client and dies, releasing the memory occupied by the thread (step 5).

engine offers a gamut of modi, further referred to as ‘nicest’,
tailored to subdomains of leisure and tourism. For these modi,
the weights correspond to the multiplications of the edge
length and an unsuitability factor ≥ 1, which is inversely
proportional to the suitability of the edge to the subdomain.
For cycling, for example, unsuitability is determined by both
physical and scenic road characteristics and traffic regulations.

The path calculation infrastructure is a multi-tier architec-
ture consisting of the following properties.
• All road network graph information is stored exclusively

in a relational database with a spatial extension.
• The actual path calculation is executed on an application

server.
• The road network graph is subject to minor updates such

as new road segments or changing costs w.r.t. the traffic
situation.

This architecture supports a multi-purpose GIS system with
high scalability w.r.t. the number of parallel users of services
offered by the system. It gives rise to the following processes
supporting the routing application:

1) preprocessing the road network. This step involves the
transformation of geographical data into an indexed and
annotated road network graph. The word indexed refers
to structures that optimise data consultation in process
2a, e.g. static clusters or a spatial index, such as an
R-tree or QuadTree. The word annotated refers to the

TECHNICAL REPORT 2

enrichment of the data by heuristic information (e.g.
node coordinates, obstacle segmentation lines, hierarchi-
cal labels) in order to accelerate the search in process
2b.

2) the routing process, triggered by end user requests. It is
shown in Figure 1 and consists of:

a) consulting and reindexing relevant data. Reindex-
ing in its turn involves building structures in the
annotated graph, which facilitate the search process
in process 2b.

b) the shortest path finding process itself.
3) updating the indexed and annotated road network. An

atomic update involves the update of an edge weight or
the insertion or deletion of an edge or a node.

Peculiarity of the infrastructure. Process 2a does not
apply to traditional infrastructures. In memory-based infras-
tructures, all data is loaded in memory only once, after
preprocessing. In disk-based infrastructures, the indexed and
annotated data is written on a disk in an adapted format during
preprocessing, and disk access is integrated in the shortest path
finding process. When the shortest path calculation is written
as an extension of the RDBMS, elementary graph operators
and indices can be integrated in order to improve performance
and avoid reindexing [2].

Requirements. Given the online nature of the application,
the twofold routing process is evaluated based on the 3 follow-
ing performance criteria: (1) computational time: end users
need the answer in less than 5 seconds; (2) memory footprint: a
low amount of memory used by the routing process, increases
the number of parallel requests the web application allows
handling; and (3) quality of the route. Quality is expressed in
terms of relative error with regard to the cost of the exact
solution. It is required that (4) the computational time of
one atomic update is less than 1 second. Other performance
criteria are: (5) the computational time of preprocessing, and
(6) the size of the indexed and annotated data generated during
preprocessing.
Process 2a in the multi-tier architecture is time consuming
(criterion (1)). Its time complexity is at least linear to the size
of the consulted data and each query introduces a constant
latency time. Moreover, the size of the consulted data is pro-
portional to the memory footprint (criterion (2)). This imposes
that the routing algorithm requires only a concise subset of the
data, transferred from the database in a low number of efficient
queries, irregardless of the routing distance.

In the overview of heuristic approaches to one-to-one
wayfinding in Section II-A of the present article, we show
that classical hierarchical shortest path algorithms suit the
requirements imposed by the application best. Section II-B
discusses the applicability of these approaches to several
routing modi and Section II-C further outlines this type of
approaches in the field. Section III of this article introduces
a new hierarchical shortest path algorithm, which is called
multi-level heuristic node promotion (MLHNP).
Similar to other hierarchical path finding approaches, this
algorithm can only be effective on real road network data if
the road network graph is transformed during preprocessing.

The application of this transformation is problematic in con-
temporary routing applications. Section IV introduces a set
of heuristic adaptations to the MLHNP approach such that
it is effective in untransformed network graphs. Section V
evaluates the performance of hierarchically finding the ‘fastest’
routes for a test set of 1000 routing queries in Belgium.
Section VI is the conclusion of this article.

II. RELATED WORK

A. Heuristics for one-to-one shortest path finding

During the last two decades, one-to-one shortest path al-
gorithms for realistic road networks have received extensive
attention. Zhan and Noon [3] compared 15 optimal shortest
path algorithms on two test sets covering the U.S. The most
effective one-to-one algorithms are variants of the algorithm
proposed by Dijkstra [4], which differ with regard to the
data structure for finding the node with the smallest label for
examination during search. Heuristic shortest path algorithms
use extra knowledge about the road network in order to make
the search process less computationally expensive.

The A* algorithm, first proposed by Hart et al. [5], limits the
search area to an ellipse by including a heuristic estimation of
the cost to the end node in the node traversal priority function.
The extra knowledge consists of the node’s geographical
coordinates. The algorithm is guaranteed to find the optimal
solution when the heuristic is admissible i.e. always under-
estimates the cost. In distance-weighted networks, Euclidean
distance is an admissible heuristic. Jacob et al. [6] showed
that the introduction of an overdo parameter, multiplying
the Euclidean distance to the end node, drastically decreases
computational time while preserving the solution quality to a
large extent. The idea behind this ‘overdo heuristic’ is a better
estimate of the conservative lower bound of the A* algorithm.
Other A* variants aim at improving the cost estimate itself by:
using a learning algorithm [7], looking ahead one node further
[8], precomputing the shortest paths between a selection of
landmarks [9] or modelling obstacles through segmentation
lines [10].

Branch pruning is another form of limiting the search area,
which involves ignoring the nodes during the search process
that have low probability to being on the shortest path from
starting to end node. This could be realised by the use of
a stochastic model [11] or just by restraining the search
space to a rectangular area containing start and end node,
in the direction of their connecting line [12], or parallel to
the axes of the coordinate system [13]. More recent work
focuses on heavily precomputed data structures defining a set
of prunable nodes for each of the individual edges. Wagner
and Willhalm [14] approximate the set of nodes containing a
shortest path by a geometry (so-called consistent container).
Lauther [15] saves for each of the edges e and each of the pre-
defined regions r whether there exists a shortest path through
e to r. Gutman [16] introduces the reach of a node v i.e. for
all shortest paths P through v, the maximum of the cost of the
prefix and the suffix of P. Next, the nodes are pruned, for which
the reach is higher than the underestimation of both the prefix
and suffix of the shortest path under construction. The same

TECHNICAL REPORT 3

author also presents a faster preprocessing method, which
computes the upper bounds of the maxima. A bi-directional
version of this algorithm has been improved by Goldberg et
al. [17]. Moreover, the introduction of shortcut arcs drastically
increased the preprocessing efficiency.

Hierarchical shortest path algorithms use a road network
divided into multiple levels (e.g. the road classes) in order
to limit the search link space drastically: only close to the
start and end node the lower level links are taken into
account. This divide-and-conquer strategy was first introduced
and related to the field of cognitive psychology by Car and
Frank [18]. Initially, the preprocessing phase of this type of
approaches started from a hierarchically labelled network, and
most algorithms were approximative. In the context of these
classical hierarchical approaches, Fu et al. [19] identified
the hierarchical shortest path algorithm as the most efficient
heuristic in real transportation networks. They refer to the
experiments by Liu [20], which show that the hierarchical
algorithm reduces the average computational time of Dijkstra
to one tenth, whereas A* only reduces it to half and bi-
directional search to 80% (as first introduced by Dantzig [21]).
A second type of approaches involves hierarchy computation
during preprocessing, and does guarantee optimal results.
Sanders and Schultes [22], [23] obtain a highway hierarchy
by iteratively selecting all edges that appear in shortest paths
between any nodes u and v, but outside the local neigh-
bourhood of u and v. It integrates highway node contraction
similar to shortcut arcs. A contraction hierarchy [24] arises
from iteratively contracting any node in a heuristic order of
importance. For the latter approach, path calculation times
of 0.2-0.3 ms are reported. The transit-node approach [25]
starts from a map divided into a set of disjoint regions. It
involves identification - for each of the regions - of a small
set of nodes where any shortest path leaving or entering the
region passes. Next, all shortest paths between any two transit
nodes of different regions and between any node of a region
r and any transit node of r are precalculated. This approach
further reduces the path calculation time to the order of 5-
20 µs. Goldberg et al. [17] found that the performance of
their algorithm based on reach pruning is very similar to the
performance of a hierarchical algorithm. They introduced the
concept of cardinality reach, referring to the traversal order
during search, in order to emulate hierarchical behaviour in
terms of a reach algorithm.

Multi-tier and requirement suitability of the heuristics.
Both the variants of the Dijkstra and A* algorithm can easily
be integrated in the multi-tier architecture, in combination with
pruning the nodes by a rectangular area. This is illustrated in
Figure 1. Efficient bounding box selection is supported by
almost every spatial DBMS. Nevertheless, these algorithms
do not scale for routing queries over higher distances d, since
the size of the data consulted by process 2a has a worst-case
complexity of O(d2), assuming a uniform spatial distribution
of the road network graph.
Branch pruning heuristics have typically been designed for
pruning during the shortest path finding process. Only when
the pruning technique can be adopted by process 2a, i.e.
integrated in a few efficient database queries, it might scale

for routing queries over higher distances. This integration is
possible for the algorithms by Wagner and Willhalm [14]
and Lauther [15], but does not realise a significant scalability
improvement. In the case of reach pruning, contemporary
spatial DBMS technology does not enable to efficiently query
the spatial points of which one of the attributes (reach number)
is higher than the euclidean distance to two given points.
Moreover, a dynamic version of this algorithm has only been
considered for edge weight changes, for the version without
shortcuts and without experimental evaluation [26].
The multi-tier integration of both the highway and contraction
hierarchy approaches is problematic since there is no sound
mechanism to reduce the number of consulted edges in ad-
vance in a scalable way. Data updates can be executed in short
computational time [26], but are constrained to changing the
edge weights. The transit-node approach is compatible with
the multi-tier architecture, but burdens the precalculated data
size, and is unsuitable for efficient data updates.
Classical hierarchical approaches integrate generally well in
the multi-tier architecture because the algorithms operate on
strongly reduced parts of the road network graph, which
can be indexed by location and level. This enables a low
memory footprint and computational time for process 2a.
During preprocessing, the road network annotation is derived
from the source data by simple operators such as intermediate
node reduction and spatial containment. As a consequence,
preprocessing times are rather short, the generated data size
is small and minor data updates can be processed in less
than 1 second. The limitations of this type of approaches
are the approximative character of the resulting paths, and
the necessity of a predetermined network hierarchy, which is
discussed below.

B. Applicability of classical hierarchical approaches

Classical hierarchical approaches are mostly applied in
transportation network graphs, in which edge weights repre-
sent travel time. The road classes then simply determine the
levels of the network. This road class heuristic is a good indi-
cator for the actual speed over the edges and the subnetwork
of the n highest classes is fully connected by nature. The
road classes can be easily obtained from geographical content
providers.

Furthermore, classical hierarchical approaches are applica-
ble to a wider domain of routing modi. For some countries,
the road class is also a good heuristic to find the shortest
path in a distance-weighted road network graph. Jagadeesh
et al. [1] showed for Singapore that it was due to the road
class reflecting the inherent hierarchy of the graph topology.
Alternatively, Chou et al. [27] suggest to promote edges with
a high length to the higher level for this type of weights.
The same classical hierarchical algorithms can be used in this
context of finding the ‘nicest’ routes, but the generation of
hierarchy for these modi is beyond the scope of this article.
For hierarchical networks in general, we assume that
• each subnetwork of the n highest classes is fully con-

nected.
• the number of edges in the higher classes is restricted.

TECHNICAL REPORT 4

• the edges of a higher class are more probable to be
included in the shortest path from any node a to any
node b of the graph. This results typically in a selection
of edges of lower unsuitability (higher speed) enriched
by edges that realise topological connectivity (e.g. slip
roads, ‘unsuitable’ (‘low speed’) path that is an essential
shortcut).

C. Classical hierarchical shortest path finding

Classical hierarchical wayfinding requires a network graph
to be divided in two or more (connected) graphs. Leave points
denote the nodes that enable traversal from a given level
network to a higher level network. The term entry points is
used for the ones that give entry to a lower level network. The
term transition points refers to both entry and leave points.
Several algorithms have been proposed that optimally conduct
the search process over different levels.

Car and Frank [18] proposed a bottom-up approach to
multi-level hierarchical routing. It uses a hierarchical tree of
meshes i.e. a set of edges bounded by higher-level edges, and
starts from the lowest level. It involves that first the shortest
path from the start node to the closest leave point and from
the closest entry point to the lower level are found, using a
classical algorithm, on the lowest level network. Next, the infix
path is recursively searched for on the higher level network.
The recursion ends when start and end node are situated in
the same or in adjacent meshes, or when no higher level is
available. In this case, the shortest path from start to end node
is found using a classical algorithm. In the end, the resulting
subpaths are concatenated. Later on, Cho and Lan [28] adopted
the bottom-up approach and studied the memory-error trade-
off for different combinations of Dijkstra and A* with ‘overdo
heuristic’ on the different levels of operation.

One major drawback of the bottom-up approach is that the
choice of the closest transition point is not necessarily the best
choice to produce the path with the lowest cost. Therefore,
Liu [20] introduced the stitching approach, i.e. the meshes
in which the start and end node are located are added to
the higher-level network, and a classical algorithm is used
to find the shortest path from the start to the end node in
the stitched network graph. Chou et al. [27] suggested to
calculate the shortest paths from the start node to all leave
points and from all entry points to the end node and to select
the combination with the lowest cost afterwards. Jagadeesh
et al. [1] introduced the two-level hierarchical algorithm with
heuristic node promotion. It is a top-down approach that starts
routing at the higher level if start and end node are situated in
the same or in adjacent meshes. This higher level routing stage
involves finding the shortest path from start to end node on the
higher level network, enriched by a set of virtual links from
the start node to each of the leave points and from each of
the entry points to the end nodes, using a classical algorithm.
The virtual link weights are cost estimates based on Euclidean
distance. Next, the two virtual links selected in the resulting
path are replaced by the shortest path from start to end node
of the virtual links, obtained by routing on the lower level
network. The authors showed that their method outperforms

(computation time vs. result quality) the two-level version of
the bottom-up approach.

The algorithms described above typically integrate a pruning
technique in order to speed up the search during each of the
subroutings. Jagadeesh et al. [1] constrain the search space to
the subgraph formed by the N closest nodes to the start and
end node. Liu [20] uses cell meshes to prune the search graph.
In the first case, it may be difficult to find a general measure
for N or an accurate distance function for scenic or time-
weighted routing modi. The latter case will certainly work for
planar graphs, but may not be effective in non-planar graphs
without intensive preprocessing of overlapping cells.

Strauss [29] raised some issues concerning unconnected
higher level network graphs that apply to the hierarchical
approaches above. He identified the case of (1) a disconnected
higher-level graph due to the data selection, (2) a disconnected
higher-level graph because of the topographic restrictions of
the dataset, and (3) the low-level shortcut which connects
two high-level subnetworks. Examples of the latter case are
a footpath connecting the railway system with the airport
or a shortcut between two highways which often appears in
paths with the lowest travel time. In this context, Liu [20]
suggests to add 1-edge shortcuts within the higher network
during preprocessing. Strauss [29] introduces the multi-level
hopping algorithm to cope with all these issues. This method
alternates between synchronous and asynchronous search tree
spreading in a bidirectional manner.
We argue that each of the issues raised can be avoided
by the following measures: (1) expand the data selection
in case the routing algorithm detects a disconnection, (2)
organise the global higher network in such a way that it is
a connected graph (this could be imposed without any loss
of route quality)1, and (3) classify the edges according to the
probability of being included in any shortest path. The last
measure has already been suggested by Jagadeesh et al. [1]
for slip roads between motorways.

Concluding remark. Classical hierarchical algorithms can
be categorized into four main algorithmic strategies: top-down,
bottom-up, stitching and level hopping. In combination with
a spatial or mesh-based pruning, the first three strategies
integrate well in the multi-tier architecture. Given the upper
bound number u of edges contained in a cell or spatial
container, the worst-case size complexity of the data consulted
by process 2a is limited to O(2 · l · u), with l the number
of levels. Section III introduces a variant of the top-down
approach, which was shown to yield the optimal trade-off of
computational time and result quality. The multi-level hopping
algorithm requires process 2a to consult as much data as a
Dijkstra or A* algorithm and therefore it does not fulfil the
requirements.

1Note that a disconnected highway graph due to dataset restriction often
coincides with the inability to produce the real-world fastest path with any
algorithm, because this path runs through one or more neighbouring datasets.
This is not a valid excuse for the algorithm to fail, but it indicates that this
type of case applies to rather experimental than operational planners.

TECHNICAL REPORT 5

TABLE I
MLHNP CONCEPT DEFINITIONS

Concept Definition

G
ra

ph G = (V,E) a directed road network graph in which each of the edges e ∈ E is assigned a weight w(e) and a level l(e) ∈
[0,maxlevel]. Any directed edge e starts in node from(e) ∈ V and ends in node to(e) ∈ V . We will use the symbols
∈̇ and ∈̃ to denote set membership of V and E.

GL the subgraph of G, consisting of edges e ∈̃ G : l(e) ≥ L. GL should be connected for each L ∈ [0,maxlevel].
edge(n1, n2, w) an edge from vertex n1 to n2 of weight w
reduced(G,X) the transformed version of G in which all intermediate nodes (i.e. nodes that only connect to two physical ways) have

been removed. Intermediate node reduction is achieved by iteratively replacing each pair of edges edge(a, b, w1) and
edge(b, c, w2) with intermediate node b, by edge edge(a, c, w1 +w2) . The exception list X is an optional parameter.
Any node of X that is a node of G must not be removed.

Pa
th

s P(a, b,G) the set of paths from vertex a to b in graph G. It consists of any sequence P of subsequent edges from graph G, for
which the first edge starts in a and the last edge ends in b

Pi the edge with position i in path P
Pi...j the subpath of P starting by Pi and ending by Pj

|P | the cost of path P is defined as the sum of the weights of all its edges
dist(a, b,G) the shortest path distance from vertex a to b in G is defined as minP∈P(a,b,G)|P |. The set of shortest paths

shortest(a, b,G) contains any path P for which |P | = dist(a, b,G)

errorrel(Q) the relative error of an approximate shortest path Q ∈ P(a, b,G) is defined as |Q|−dist(a,b,G)
dist(a,b,G)

C
el

ls cell c a spatial region containing nodes of a graph G.
cells(L) the set of cells of level L in graph G. Each polygon that is enclosed by edges in GL and eventually the dataset boundary,

and does not overlap any other edges in GL, is an element of cells(L).
l(c) L|c ∈ cells(L)

cells(n,L) the subset of cells(L) of cells that spatially overlap node n ∈̇ G. ∀n ∈̇ G,L ∈ [1,maxlevel] : cells(n,L) 6= ∅
contiguous(c1, c2) is true when the cells c1 and c2 are contiguous i.e. their spatial intersection is at least a line.

N
od

e
pr

om
ot

io
n leavepoints(c) the set of candidate transition points between any route starting in cell c planned in any Gm with m < l(c) and Gl(c)

leavepoints(c) = {n ∈ c|∃e ∈̃ reduced(Gl(c)) : from(e) = n ∧ to(e) /∈ c}
entrypoints(c) the set of candidate transition points between Gl(c) and any route ending in cell c planned in any Gm with m < l(c)

entrypoints(c) = {n ∈ c|∃e ∈̃ reduced(Gl(c)) : to(e) = n ∧ from(e) /∈ c}
estimate(n1, n2) a cost estimate of the shortest path from n1 to n2

promotest(n,G′) ⇔ ¬(∃e ∈̃ G′ : from(e) = n)

promoteend(n,G
′) ⇔ ¬(∃e ∈̃ G′ : to(e) = n)

III. MULTI-LEVEL HEURISTIC NODE PROMOTION IN
TRANSFORMED NETWORK GRAPHS

The present section introduces the multi-level heuristic node
promotion algorithm (MLHNP). It is a recursive version of the
two-level algorithm by Jagadeesh et al. [1]. Whereas slip roads
and dual carriageways typically occur in networks for vehicle
navigation, the algorithm is only effective on road networks
that have been subjected to the following graph transforma-
tions: (1) slip road removal, and, (2) dual carriage way and
multi-lane reduction into single-track ways. These processes
reduce complex intersections to a single node connecting the
main directions.

A. Algorithm

MLHNP assumes the availability of the concepts listed in
Table I, applied to a network divided in maxlevel+1 levels.
This algorithm approximates the path of lowest cost from
vertex sglobal to eglobal in graph G, returning an approximate
path Q with a minimal errorrel(Q). It is initiated by the call
mlhnp(sglobal, eglobal,maxlevel,G) to the algorithm listed in
Figure 2. Figure 3 shows an example top recursive run of
the algorithm. First, it determines its level of execution lexec
as the highest level for which n1 and n2 are not located in
contiguous or same cells. Next, the search graph is pruned
and constrained to the edges of level ≥ L. When lexec > 0
and promotest(n1, G

′), the search graph is extended by a

mlhnp(n1, n2, lrestr, G) :

Lcand ← {l|∀c1 ∈ cells(n1, l), c2 ∈ cells(n2, l) : ¬(c1 =
c2 ∨ contiguous(c1, c2))}
lexec ← min(lrestr,max(Lcand ∪ {0}))
G′ ← reduced(Glexec , {sglobal, eglobal})
if lexec > 0 then

if promotest(n1, G′) then
G′ ← G′ ∪ {edge(n1, n, estimate(n1, n))|n ∈
leavepoints(cells(n1, lexec))}

end if
if promoteend(n2, G′) then
G′ ← G′ ∪ {edge(n, n2, estimate(n, n2))|n ∈
entrypoints(cells(n2, lexec))}

end if
end if
R← P ∈ shortest(n1, n2, G′)
if l(R0) = ‘v’ then
R← concatenation(mlhnp(from(R0), to(R0), lrestr −
1, G), R1...size(R)−1)

end if
if l(Rsize(R)−1) = ‘v’ then
R←
concatenation(R0...size(R)−2,mlhnp(from(R0), to(R0), lrestr−
1, G))

end if
return R

Fig. 2. Multi-level heuristic node promotion.

set of virtual edges, from n1 to n1’s cell leave points. These
virtualisations are part of the so-called node promotion because
n1 is promoted to Glexec

. This promotion is heuristic because

TECHNICAL REPORT 6

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4 VIRTUAL LINK PROMOTION ROUTING (A*, Dijkstra, …)

SOLVE VIRTUAL LINK

SOLVE VIRTUAL LINK

Fig. 3. Recursive run of the multi-level heuristic node promotion algorithm.

each of the virtual edge weights is a heuristic cost estimate
of the shortest path from n1 to the leave point. Analogously,
when lexec > 0 and promoteend(n2, G′), the search graph is
extended by a set of virtual edges, from n2’s cell entry points
to n2. Next, a classical routing algorithm is applied from n1 to
n2. This step is further referred to as the basic shortest path
calculation. In the resulting path, each selected virtual link is
replaced by the path resulting from the recursive call to this
function. The recursive decrement of the level of execution
guarantees that the algorithm is finite.

B. The role of transition points and the heuristic estimate

Each cell corner connecting to other edges of the higher
level network, is registered as a transition point. The transition
point definitions in Table I realize this pattern likewise. A
recursive run of MLHNP typically generates a route of the
type
(startnode) − virtuallink − (transitionpoint) − fixedroute −
(transitionpoint)− virtuallink − (endnode),
in which the virtual links are solved in deeper recursions. So
the solution of the virtual link typically contains higher level
cell border edges and the transition point in the resulting route
is the node where the route switches between the cell border
and rest of the network. This means that the shortest path
search on the border is preferably executed downlevel. This
is a scalable approach that complies with hierarchical road
network data containing more than two levels.2.

The ultimate algorithmic choice of transition point is
influenced by the virtual link cost estimate function
estimate(n1, n2). The better the approximation, the higher
the chance that the transition point generating the shortest
path is selected. Finding the shortest path in a graph with
systematic overestimation of the virtual link cost, yields pref-
erence of transition points close to the starting node/end node.
Systematic underestimation tends to minimise the cost of the
global path apart from the virtual link. Jagadeesh et al. [1]

2We have considered alternative transition point definitions. (1) Each
transition from the cell border to the lower level network. This approach
involves that the transition points are candidate points where the shortest path
switches between the cell border and the network inside of the cell. This
approach is promising w.r.t. any of the routing performance criteria, but is
not scalable because at high levels we could easily obtain cells of 10000
transition points. (2) Each transition from the cell border to edges of one
level lower. This approach scales but imposes some additional requirements.
Each cell of level n should overlap edges of exactly level n−1. Moreover, it
only supports paths that have a level increase/decrease by one, which deviate
greatly from shortest paths in common hierarchies.

approximate the real cost by the Euclidean distance in case
of distance-weighted edges, and by the Euclidean distance
divided by the average speed of the weights of the cell’s
edges in case of time-weighted edges. The latter approach
assumes a homogeneous speed distribution over the cell. This
is certainly not the case for cells of levels greater than 1.
Individual variance between the real virtual link cost and
its approximation leads more easily to a wrong transition
point choice (i.e. resulting in a path with higher cost) than
systematic deviation. Moreover, it requires extra preprocessing
time and storage costs. Therefore we just use an arbitrary
average resistance ravg in order to estimate the virtual link
cost for each of the routing modi as follows:
estimate(n1, n2) = disteucl(n1, n2) · ravg
This value is a single estimate of the ratio of the real path cost
from any n1 to any n2 to the euclidean distance between n1
and n2.

C. Preprocessing overview

Starting from a road network graph cleared from slip roads
and dual carriage ways, the following transformations and
annotations are necessary during the preprocessing phase.

1) Intermediate node reduction of each graph GL : L ∈
[0,maxlevel]. This transformation is necessary to speed
up the search process of the shortest path algorithm
and it supports higher level scalability of MLHNP. It
is a reversible transformation because each transformed
edge can be unambiguously translated into the original
sequence of edges.

2) Appropriate indexing of each of the resulting graphs
reduced(GL).

3) Cell generation and cell contiguity registration
4) Appropriate indexing of the cells and contiguities by

node.
5) Generation and indexing of the transition points by cell.

Step 3 involves building polygons formed by the minimal
cycles of the planar version of the road network graph GL,
for each L ∈ [1,maxlevel]. Planarisation involves that edge
crossings are replaced by dummy vertices, for each subnet-
work GL, and that duplicate line parts are merged into a single
line belonging to the highest level of both sources. Moreover,
all directed edges have been made undirected in the planar
graph. The planar graph has been extended by the border of
the routable area, its level labelled by maxlevel + 1. Non-
border edges may end at the border, but must not exceed it.

TECHNICAL REPORT 7

As a result, this planar graph has a spatial representation in
which none of the edges intersect, and any edge (not part of
the border) encloses two minimal cycles of the graph.
This cell generation can be implemented as an iterative top-
down process, which uses GN to split the cells of level N +1
into cells of level N . At the top level it starts from one or
more cells representing the routable area. In order to split one
cell of level N +1, all topology of GN overlapping the cell is
loaded, and minimal cycle navigation starts at a random edge
of exactly level N (if not available, the cell can be copied down
level). During navigation, the algorithm chooses the leftmost
edge at each node. Navigation ends when a visited node is
encountered, closing the polygon. The next navigation starts
in a random edge of exactly level N that has only been visited
once. The split-down finishes when no more start edges are
available. Each time an edge is visited twice, a cell contiguity
is registered. Note that choosing the same direction (leftmost
or rightmost) for all navigations will guarantee that all minimal
cycles are visited when any edge is visited in forward and
backward direction.

D. Updating overview

Processing an atomic data update is quite straightforward.
In case of a weight update of an edge of level m, it is
only required to update the accumulated weight in any graph
reduced(GL) with L ≤ m. In case of insertion or removal of
an edge e of level m, it can be required (1) to break up one
or two edges and (2) to reduce a novel intermediate node in
any reduced(GL) with L ≤ m. When an edge of level m > 0
that encloses both two cells in cells(L) with 0 < L ≤ m is
removed, the cells (and their contiguities) should be merged.
The remaining subset of the union of transition points of both
cells should be determined. When the insertion of an edge of
level m > 0 realizes a full separation of a cell in cells(L)
with 0 < L ≤ m into two new cells, the cells (and their
contiguities) should be split. The new cells inherit a subset of
the original transition point set, and new transition points are
amongst the nodes of the separation boundary.

IV. MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL
ROAD NETWORKS

Geographic content providers commonly model physically
separated lanes as well as slip roads as separate edges. It is
unclear how slip road removal and dual carriageway reduction,
as suggested in the previous section, can be dealt with in a
routing application for vehicle navigation.
• The transformation processes may be ambiguous, or only

realisable in combination with turn restrictions, for in-
stance when a complex intersection does not interconnect
all directions.

• Contemporary routing applications enable visually select-
ing a starting or end point located on any of the edges
originally provided. So the user may select a specific
lane or slip road. The transformation projects many of
such edges to one edge or node. So the routing in the
transformed graph does not comply with the route-by-
click philosophy of the application, unless the start and

TABLE II
LEGEND.

node
a high level edge (an arrow restrains the navigation direction)
a low level edge (an arrow restrains the navigation direction)
starting node
end node
path
cell of starting node
cell of end node
virtual link involved
selected virtual link that is replaced after recursion
virtual link that causes problems
useful virtual link

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

Fig. 4. Scenario 1. The corresponding legend is in Table II.

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

Fig. 5. Scenario 2. The corresponding legend is in Table II.

end neighbourhood in the graph is enriched by original
data, or the route is corrected after the routing process.

• Contemporary routing services return a line string, which
is the exact route’s geometry including the appropriate
lanes and slip roads to be taken. It is not clear how this
geometry can be reconstructed after the routing process.

This section introduces several heuristic adaptations to the
MLHNP approach in Section III such that it is effective in
network graphs that have not been subjected to slip road
removal and dual carriageway reduction.

A. Adaptation 1: cell classification and merge

1) Problem: First, when applying MLHNP to a transformed
graph, the cell contiguity function in Table I is a good heuristic
to determine the level of execution lexec. This is not the case
in a graph with dual carriageways and complex intersections.
The routing scenario in Figure 4 is a typical routing example
that should be executed at the lowest level because the cells
in which start and end node are located would be contiguous

TECHNICAL REPORT 8

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

A

B

A

B

(d) Corrected cells and vir-
tual links

A

B

A

B

(e) Resulting path after cor-
rection

Fig. 6. Scenario 3. The corresponding legend is in Table II.

TABLE III
ADAPTATION 1

Concept New definition

C
el

ls cells(L) the set of cells of level L in graph G.
Each polygon that is enclosed by edges in
GL or edges of the dataset boundary, but
does not overlap any other edges in GL, is
an element of cellsold(L). Each merge of
each cell in cellsold(L) that is not part of
a DCW or CI, with all of the contiguous
DCWs and CIs, is an element of cells(L).

after transformation.
Second, as described in Section III-B, transition points de-
termine where MLHNP switches between high and low level
routing. In graphs with complex intersections, the cell and
transition point definitions do not always generate optimal
transition point locations. Figure 5, 6a, 6b and 6c illustrate
that the transition points are located between the (candidate)
virtual links and the complex intersection they are part of. This
often restricts the cell border trajectory, which is planned at
the lower level, to one direction.

2) Solution: Both issues have been sorted out by a heuristic
cell definition adaptation, illustrated in Table III. This adap-
tation reshapes the cell polygons, emulating the form they
would have after road network graph transformation, using
the classical cell definition. A first effect is that the cells in
cells(L) overlap near dual carriage ways (DCWs) and com-
plex intersections (CIs). The contiguity of these overlapping
cells can be used as an approximation of the contiguity of
the routing graph which has been subject to the removal of
DCWs and CIs. The other effect is that the transition points
are located at the right side of the CIs, such that high level
routing only concerns with routing between CIs and low level
routing with routing over the CI, as illustrated in Figure 6d
and 6e. In other words, the cell form is used as a heuristic to
find unique transition points from/to the outside world of the
cell.

3) Realisation: The cell classification and merge procedure
need to be executed for achieving this adaptation, after the
iterative top-down cell generation (Section III-C). Figure 7
shows the cell processing phases that produce the adapted
cells and transition points in the neighbourhood of a CI. First,
all minimal cells are generated from the minimal cycles of

(a) Cells from minimal cycles (b) Cell classification

(c) Cell merge (d) Determination of transition points

Fig. 7. Cell builder and merger states in the neighbourhood of a complex
intersection.

the planar graph. These cells are depicted in Figure 7a, in
which cells have a different colour. Next, 2-step classification
is applied to each of these cells. Figure 7b shows regular cells
in hatched blue, CI parts in red, and DCW parts in white. This
classification is used by the cell merge algorithm. It results in
only four cells, represented in Figure 7c, each containing as
much as possible of the complex intersection. Figure 7d shows
how entry points (E) and leave points (L) are assigned to the
bottom left cell.

Cell classification. This process discriminates between parts
of CIs, parts of DCWs and regular cells. The classification
is twofold. For each of the two stages, a selection of level 1
cells of a sample area, has been tagged manually in order to
construct a classifier.
A first classifier has been constructed in order to discriminate
regular cells from CI and DCW parts. The graph in Figure 8a
shows 78 manually tagged cells as a function of 1) the number
of level 0 edges contained in the cell (X-axis) and 2) the
cell’s elongation = perimeter2/area (Y-axis), both on a
logarithmic scale. These parameters are similar to the area and
elongation parameters identified by Delafontaine et al. [30] in
order to detect sliver polygons in map overlaying.
Figure 8a contains labels for regular cells, CI parts, DCW parts
and cells that have been described as uncertain. Examples of
uncertain cells are those that are cut off by the global border
and cells that are located between the two edges of a dual
carriageway at one side but contain a considerable portion of

TECHNICAL REPORT 9

(a) Classification of regular cells versus CI or DCW parts. The elongation
is depicted as a function of the number of edges contained, for 78 manually
labelled cells.

(b) Classification of CI versus DCW parts. The perimeter of 78 manually
labelled cells is depicted as a function of the elongation.

Fig. 8. Classification of regular cells, CI parts and DCW parts.

urban area at the other side. Note that all unlabelled cells of
the sample area are represented as well.
DCW parts are characterised by high elongation and a rela-
tively small number of edges. They form a cluster with CI
parts, characterised by a small number of edges. This cluster
is disjoint from the cluster of regular cells, which have high
numbers of edges and low elongation. Figure 8a depicts a
linear classifier, generated in the logarithmic plane. It identifies
a cell as being regular when elongation < #edges1.3424.
In practice, the number of edges contained within a cell is
counted by an SQL query. In order to speed up this query, the
count is limited to 1000, before it is passed to the classifier.
This is indicated by the plateau in the classifier.
The classifier scales well to cells of higher levels. Higher level
DCW parts are even longer, containing more crossing edges.
Thus, this category tends to move up right in the graph. CI
parts are quasi static. Regular cells will move to the right
because they become larger. So none of these categories tends
to interfere with the classifier.

Next, non-regular cells are categorised into CI and DCW
parts. The graph in Figure 8b shows 78 manually tagged cells
as a function of the cell’s elongation = perimeter2/area (X-
axis), and, the cell’s perimeter, here in digital degree (Y-axis),
both on a logarithmic scale.
Figure 8b shows the manually assigned labels for CI parts,
DCW parts and cells that have been described as uncertain.
A special type of uncertain cells, i.e. DCW parts in which a
canal is situated between the traffic flows, have been assigned
a separate label. Note that all unlabelled non-regular cells of
the sample area are represented as well.
DCW parts are characterised by high elongation and a long
perimeter, whereas these parameters have low numbers for
CI parts. Canals in DCWs cause lower elongation. Figure 8b
depicts the classifier elongation < 300 ∧ perimeter < 0.3,
which is true in case of a CI part.
The classifier scales well to cells of higher levels. DCW parts
of higher levels tend to have longer perimeters and higher
elongation. Thus, this category tends to move up right in the
graph, away from the classification boundaries. CI parts are

merge cells(ALL,CIS,DCWS) :

Candidates← CIS
while Candidates 6= ∅ do

for each complexInt ∈ Candidates do
if ∃n : contiguous(complexInt, n) ∧ n ∈ Candidates then

for each n : contiguous(complexInt, n) ∧ n ∈ Candidates
do
complexInt← merge(complexInt, n)
CIS ← CIS \ {n}
Candidates← Candidates \ {n}
ALL← ALL \ {n}

end for
else
Candidates← Candidates \ {complexInt}

end if
end for

end while
Candidates← CIS

⋃
DCWS

while Candidates 6= ∅ do
planning ← new array
for each cell ∈ Candidates do
planning[cell]← {n : contiguous(cell, n) ∧ n /∈ Candidates}

end for
for each cell ∈ keys(planning) do

for each colonist ∈ planning[cell] do
colonist← merge(colonist, cell)

end for
Candidates← Candidates \ {cell}
ALL← ALL \ {cell}

end for
end while
return ALL

Fig. 9. Cell merge algorithm.

static.
Cell merge. For each of the levels, the cell merge algorithm

is applied to the set of classified cells. The algorithm in
Figure 9 takes the complete set of cells ALL and its subsets
CIS and DCWS that have been identified as CI / DCW parts,
as its input. The algorithm first clusters neighbouring CI parts
in singular cells. Next, all CI clusters and DCW parts are
merged iteratively by each of their neighbouring regular cells.
The outcome is illustrated in Figure 7c. This algorithm tries to
maximise the cell overlap at CIs but prevents that cells absorb
continuing DCWs along neighbouring regular cells. Note that a

TECHNICAL REPORT 10

A

B

A

B

A

B
A

B

(a) Path without virtual-
isation

A

B

A

B

A

B
A

B

(b) Cells and virtual
links in case of virtual-
isation

A

B

A

B

A

B
A

B

(c) Shortest path with
virtualisation

Fig. 10. Scenario 4. The corresponding legend is in Table II.

TABLE IV
ADAPTATION 2

Concept New definition
promotest(n,G′) ⇔ n = sglobal
promoteend(n,G

′) ⇔ n = eglobal

cell merge of A by B involves that B inherits A’s neighbours.
Transition point assignment. Once all cells have been

merged, the leave points and entry points of each cell can be
easily determined, according to the definitions listed in Table I.
This is shown in Figure 7d.

B. Adaptation 2: easing the node promotion condition

1) Problem: In a transformed road network graph, MLHNP
node promotion takes place only if starting node n1 or end
node n2 are missing in graph G′. In a graph with dual
carriageways, this can result in paths with extra costs which
can easily be avoided. This is shown in Figure 10. The shortest
path from A to B starts and ends at higher level edges, while
it consists of lower level links in the neighbourhoods of A and
B.

2) Solution: This issue is compensated by a change of
the node promotion conditions, as proposed in Table IV. It
involves node promotion for each recursion with lexec > 0,
producing virtual links from the global start and to the global
end. This intervention enables MLHNP to take into account
the lower level neighbourhood around the global start and
end node, as illustrated in Figure 10b and 10c. From now
on, the MLHNP algorithm in Figure 2 no longer requires
{sglobal, eglobal} as the exception list for the intermediate node
reduction of Glexec .

C. Adaptation 3: transition point corrections

1) Problem: Despite Adaptation 1, some of the transition
points are still not on locations that support the effectiveness
of the MLHNP algorithm. This can be caused by (a) incorrect
classification of certain regular, DCW part or CI part cells,
(b) the inability of the cell merge algorithm to merge a
cell with the complete CI or DCW along its boundaries,
or (c) the fact that a very commonly used connection with
the inside of a cell is located outside the cell, as illustrated
in Figure 12b. Note that issue (b) is not unlikely to occur
because the merge algorithm does not support self-tangent

(a) Incorrect (b) Correct (c) Incorrect (d) Correct

Fig. 11. Transition point corrections by length and by couple. The basic
legend is in Table II. Arrows represent the virtual links created from/to any
of the entry/leave points to/from a point within the cell. Green arrows refer
to correct, red to incorrect and blue to corrected transition points. The dots
mark the witness-edges of the transition points.

(a) Network graph (b) Incorrect (c) Correct

Fig. 12. Transition point correction in case of early access/late exit. The
basic legend is in Table II. Arrows represent the virtual links created from
any of the entry points to a point within the cell. Green arrows refer to correct,
orange to partially correct, red to incorrect and blue to corrected transition
points. The dots mark the witness-edges of the transition points.

or multiple polygons as cell representation (Figure 11a), or
because the mechanism that prevents the merge of DCW parts
located along contiguous cells is too restrictive (Figure 11c).
We identified three anomalous transition point patterns of a
cell c.

1) A cell c does not have any entry (leave) point located on
a complex intersection along the cell border. Figure 11a
is an example of this pattern. MLHNP becomes less
effective with lexec = l(c) in this case because it does
not allow that a path enters (leaves) the lower level
graphs of c via the missing intersection.

2) The choice of an entry (leave) point constrains the
subsequent (preceding) path direction on the cell border.
This has been exemplified in Figure 6a, 6b and 6c, and
occasionally still occurs, as illustrated in Figure 11c.
This makes MLHNP less effective because the choice of
transition point at the higher level brings along decisions
that should be made at the lower level.

3) A transition point is located between its cell and a very
commonly used connection with the cell. The network
in Figure 12a contains examples of this pattern for both
the late exit and the early access case. It is shown for
the latter case in Figure 12b. In both cases, MLHNP
will never allow routes from/to this cell using this
connection, whereas a significant number of shortest
paths starting (ending) in this cell and ending (starting)
in a non-contiguous cell pass through this connection.

2) Solution and realisation: Both pattern 1 and 2 can be
countered by moving entry points one step backwards and
leave points one step further, out of the cell area, under certain
conditions. We cannot simply apply this correction to any
transition point. This would increase the chance of generating

TECHNICAL REPORT 11

TABLE V
ADAPTATION 3A

Concept New definition

N
od

e
pr

om
ot

io
n leavepoints(c) witnesslp(c) = {∀e ∈̃ reduced(Gl(c))|∃n ∈ c : from(e) = n ∧ to(e) /∈ c}

outerlp(c) = {∀e ∈ witnesslp(c)|(length(difference(e, c)) < length(e)/2) ∨
(∃e2 ∈ witnesslp(c) : e2 6= e ∧ to(e2) = to(e) ∧ length(difference(e, c) < σ1)}

leavepoints(c) = {∀n|∃e ∈ outerlp(c) : to(e) = n}
⋃
{∀n|∃e ∈ witnesslp(c)\outerlp(c) : from(e) = n}

entrypoints(c) witnessep(c) = {∀e ∈̃ reduced(Gl(c))|∃n ∈ c : to(e) = n ∧ from(e) /∈ c}

outerep(c) = {∀e ∈ witnessep(c)|(length(difference(e, c)) < length(e)/2) ∨
(∃e2 ∈ witnessep(c) : e2 6= e ∧ from(e2) = from(e) ∧ length(difference(e, c) < σ1)}

entrypoints(c) = {∀n|∃e ∈ outerep(c) : from(e) = n}
⋃
{∀n|∃e ∈ witnessep(c)\outerep(c) : to(e) = n}

TABLE VI
ADAPTATION 3B

New concept Definition

C
el

l parent(c2) the singleton of the cell c1 that was used to generate c2 during the iterative top-down cell generation process i.e. the
only cell of level l(c2) + 1 that contained c2 before the cell classification and merge processesa.

has siblings(c) ⇔ ∃cs : parent(cs) = parent(c) ∧ cs 6= c

ancestors(c) = parent(c) ∪ ancestors(parent(c)); ancestors(∅) = ∅

N
od

e
pr

om
ot

io
n early accesses(ca) on backlink(n1, n2, l, e)⇔ e ∈̃ reduced(Gl) : to(e) = n2 ∧ intersects(n1, e)

has forwardlink(n1, l)⇔ ∃e ∈̃ G : from(e) = n1 ∧ l(e) = l

early accesses(ca) = {(nc, na, e)|∃cc : ca ∈ ancestors(cc) ∧ nc ∈ entrypoints(cc)\entrypoints(ca) ∧
na ∈ entrypoints(ca) ∧ distance(nc, na) < σ2 ∧ ∃e : on backlink(nc, na, l(ca), e)
∧ has forwardlink(nc, l(cc)) ∧ has siblings(cc)}

late exits(ca) on forwardlink(n1, n2, l, e)⇔ e ∈̃ reduced(Gl) : from(e) = n2 ∧ intersects(n1, e)
has backlink(n1, l)⇔ ∃e ∈̃ G : to(e) = n1 ∧ l(e) = l

late exits(ca) = {(nc, na, e)|∃cc : ca ∈ ancestors(cc) ∧ nc ∈ leavepoints(cc)\leavepoints(ca) ∧
na ∈ leavepoints(ca) ∧ distance(nc, na) < σ2 ∧ ∃e : on forwardlink(nc, na, l(ca, e))
∧ has backlink(nc, l(cc)) ∧ has siblings(cc)}

entrypoints′(c) = {nc|∃(nc, na, e) ∈ early accesses(c)} ∪ {na|na ∈ entrypoints′(c) ∧ ¬(∃(nc, na, e1) ∈
early accesses(c) ∧ ¬(∃e2 : e2 ∈̃ reduced(Gl(c)) ∧ to(e2) = na ∧ e1 6= e2))}

leavepoints′(c) = {nc|∃(nc, na, e) ∈ late exits(c)} ∪ {na|na ∈ leavepoints′(c) ∧ ¬(∃(nc, na, e1) ∈ late exits(c) ∧ ¬(∃e2 :
e2 ∈̃ reduced(Gl(c)) ∧ from(e2) = na ∧ e1 6= e2))}

reduced′(GL) = reduced(GL, {(nc, na, e)|∃c : l(c) = L ∧ ∃(nc, na, e) ∈ early accesses(c) ∪ late exits(c)})

aAs CI and DCW part cells have been merged with regular cells, this function is applied exclusively to regular cells. It is possible that c1 does not
completely contain c2 anymore or that it has been classified as non-regular and therefore does not exists anymore.

paths of higher cost. It makes the predictions returned by the
cost estimate function more inconsistent, and causes transition
point conflicts in case the algorithm is called between nodes
of cells that have a common neighbouring cell. Consider a set
of witness-edges of a leave point n: {∀e ∈̃ reduced(Gl(c)) :
from(e) = n ∧ to(e) /∈ c} and of an entry point n:
{∀e ∈̃ reduced(Gl(c)) : to(e) = n ∧ from(e) /∈ c}. A
transition point t of cell c is moved when

• one of its witness-edges has a longer line length outside c
than inside c. In practice, this heuristic measure intercepts
any instance of pattern 1. Figure 11b is an example of
this correction.

• there exist witness-edges of other (same type) transition
points of c that have the replacement point in common
with one of its own witness-edges which has a line length
outside c smaller than σ1. Figure 11d is an example
of this correction. In practice, this measure intercepts a
reasonable number of instances of pattern 2. However,
there exist cases of pattern 2 that cannot be corrected
without generating other anomalous patterns or violating

other constraints. Figure 13a shows an example of pattern
2 that requires moving the entry points towards the
neighbours of the neighbours of the cell.

This first adaptation can be achieved by introducing a cor-
rection step to the preprocessing procedure, or by changing
the transition point generation step, as suggested by the new
concept definitions in Table V.
Concerning pattern 3, both early accesses and late exits
(EA/LE) can be intercepted by moving the transition point
to the EA/LE point. An EA/LE node of a cell of level L
usually is an intermediate node in GL and thus not con-
tained in reduced(GL). Therefore the new transition point
can only be used when the intermediate node is reintroduced
in reduced(GL).
An EA/LE pattern is detected by the following heuristic. An
EA/LE point typically connects with a cell ca of level L by
a way of a level M , with 0 < M < L. Moreover, this node
of GM belongs to a CI, which has been merged by a cell cc
during the cell merge procedure, and this point typically is a
transition point of cc. Pattern 3 can efficiently be detected by

TECHNICAL REPORT 12

matching the transition points na of a cell ca and the transition
points nc of the cells cc that originally were generated by
splitting ca. These points form an EA(LE) pattern when:
• the distance between nc and na is lower than σ2,
• nc is located on an edge in reduced(GL) ending/starting

in na,
• there is an edge in reduced(GM) of exactly level M

starting/ending in nc, and,
• cc has sibling cells i.e. there must exist a way of level
M that crosses ca.

This pattern covers all instances of pattern 3 identified so far.
Figure 12 shows two examples of an EA pattern and their
corrections. Table VI shows the extension of preprocessing
by an EA/LE correction step. It assumes that from now on
the MLHNP algorithm uses the concepts entrypoints′(c),
leavepoints′(c) and reduced′(GL) instead of the concepts
without apostrophe.

D. Adaptation 4: improving the transition point selection

1) Problem: Given any shortest path starting and ending
in two non-contiguous cells of level L, MLHNP is able
to find the shortest path if (a) all of its edges outside the
cells belong to GL, and (b) it chooses the transition points
that generate this path. Currently, the transition point choice
is based on the minimum of the sum of the cost of the
candidate higher level path and the cost estimation(s) of the
lower level path (Section III-B). In certain cases, this choice
may not be the optimal one, because the cost estimation is
inconsistent with the real lower level cost. The inconsistency
risk is notably higher when anomalous transition points of
pattern 2 are involved. Figure 13e and 13f illustrate the wrong
choice of transition point given the transition point situation in
Figure 13a. The current adaptation addresses the algorithmic
improvement of the transition point choice.

2) Solution and realisation: Higher level correction ap-
plies when the non-virtual part of any resulting path R in the
algorithm in Figure 2 passes any of the promoted transition
points. This symptom indicates that another transition point
was used to enter or leave the cell border. In this case R is
replaced by the path that would result from the choice of the
transition point in which the original non-virtual path passes.
This intervention has few risks because the lower level routing
is able to generate the removed subpath on the cell border.
The applicability of the lower level correction depends on
the ability of the algorithm behind the basic shortest path
calculation to generate shortest paths from or to the other
transition points after calculation. If they were all known,
MLHNP would not be the preferred hierarchical strategy in
general. This correction only applies if the algorithm knows
some of them. The Dijkstra algorithm, for example, is able to
produce all shortest paths from/to the other transition points
that have a lower cost than the path from a to b. Suppose that
MLHNP has solved a virtual link at execution level m, that
was created at execution level l > m. If it detects a shortest
path from or to a nearby (distance lower than σ3) transition
point generated at level l with a significantly lower cost than
the current solution of the virtual link, the algorithm tracks

back to level m, replaces all virtual links by the calculated
paths so far and recalculates the shortest path. If the calculated
paths still contain virtual links, these are solved at a level
lower than m. This backtracking mechanism is illustrated in
Figure 13.

V. EXPERIMENT

A. Objectives and methodology

The goal of this experiment is to validate the MLHNP
approach for a database containing a real road network of
a considerable size. In addition, the experiments have been
set up to measure the performance for each of the adaptations
presented in the previous section on a representative test set.
A test set consists of n routing queries represented by a start
and end node, which are part of the road network graph G.
Performance on a test set is expressed in terms of averages or
percentiles of the following criteria for the routing operations
generated by all queries in the test set. Note that a single
MLHNP run may consist of several recursive runs.
• The relative error, as defined in Table I. It reflects the

quality of the resulting route. The number of optimal so-
lutions found is equal to the number of 0.00% deviations
in the test set.

• The number of recursive runs.
• The number of loaded nodes is the sum of the number

of graph nodes that are loaded from the database over all
recursive runs.

• The number of visited nodes is the sum of the number
of graph nodes for which the basic routing algorithm has
calculated a cost, over all recursive runs. If the same
node has been visited in n runs, it is counted n times. It
indicates the search space reduction of our approach.

• Two criteria depend on the hardware and software in-
frastructure3 on which the routing is executed. The cal-
culation time is the sum of the basic routing algorithm’s
computation time over all recursive runs. It is strongly
related to the number of visited nodes. The memory
footprint is the maximal amount of memory consumed
by the routing process. Since most of the loaded data
is flushed before new data is loaded in a new run, this
criterion only depends on the most memory-intensive run.

A test set of routing queries was generated as follows. First,
an orthonormal grid was created over the routable area. The
grid distribution is assumed representative for routing for
tourism and leisure purposes. Then, the generator creates start
and end nodes by selecting random grid points. Once a node
has been picked, it cannot occur in any other query. Before
routing, the grid nodes are replaced by the closest node in
the road network graph.

B. Geographical dataset

The network studied here is the time-weighted road network
of Belgium, divided in 5 hierarchical levels. The edge weights

3All tests have been executed using PHP (Command Line Interface) 5.3.3
and a PostGis database on a Debian 6.0 environment with an Intel Xeon
E5520 @ 2.27GHz processor.

TECHNICAL REPORT 13

(a) Anomalous pattern

A
B A

B

A
B A

B

A
B A

B

(b) Shortest path and re-
sulting path after correc-
tion

A
B A

B

A
B A

B

A
B A

B

(c) Virtual links

A
B A

B

A
B A

B

A
B A

B

(d) Path on high level

A
B A

B

A
B A

B

A
B A

B

(e) Low level routing at
front with negative back-
tracking analysis

A
B A

B

A
B A

B

A
B A

B

(f) Low level routing at
back with positive back-
tracking analysis

Fig. 13. Example of an uncovered anomalous transition point pattern (leftmost subfigure) and the backtracking mechanism. The basic legend is in Table II.
In the leftmost subfigure, arrows represent the virtual links created from any of the entry points to a point within the cell. Green arrows refer to correct and
red to incorrect transition points. The dots mark the witness-edges of the transition points. In the two rightmost subfigures, red/green dots indicate transition
points subject to a positive/negative backtracking analysis.

were set as the edge distance multiplied by a discrete speed
class value. The test set used in this experiment contains 1000
routing queries, generated from an orthonormal grid (approx.
4 km) superimposed on the routable area. The road network
graph consists of 1190220 directed edges and 526253 nodes.
Preprocessing results in 1357/515/211/37 cells of level 1/2/3/4
respectively, after a cell merge with a reduction rate of ca.
91%. The total numbers of transition points per level are
22693/8493/3296/572 (22564/8390/3175/466 after Adaptation
3).

C. Basic wayfinding and MLHNP settings

MLHNP applied Dijkstra as the basic shortest path algo-
rithm in this experiment. In order to speed up the search
process, we use a rectangular pruning area parallel to the axes
of the coordinate system (Karimi et al. [13]) supported by the
indexing structure of the spatial DBMS. As the infrastructure
diagram in Figure 1 may suggest, each basic shortest path
calculation is preceded by a fetch of all links of G′ that start
within the rectangular pruning area from the database. The
size and position of this area is determined by the following
rules.
• Construct the rectangle formed by start node a and end

node b.
• Extend the rectangle such that it contains any virtual edge

in G′.
• Extend the rectangular by e% equivalent meridian degree

in both directions.
• If the rectangle is too elongated for the current level

i.e. min(breadth, height)/max(breadth, height) <
min(rlevel · (lexec · 2 + 1), rmax), elongate the smallest
sides such that this condition does not hold.

• When the Dijkstra algorithm returns an infinite cost, it
means that the pruned area does not contain any path
from a to b. In this case, the rectangular selection is
extended by e% digital equivalent meridian degree again.
After a cost reparation process, the Dijkstra algorithm is
continued. This extension is repeated until the algorithm
finds a solution.
In this experiment, the road network graph G (and also
any directed subgraph GL) is not a strongly connected
graph. Therefore, the number of repetitions should be

limited. When this number is reached in any of the
recursive runs, MLHNP is halted and does not generate a
solution, except in Adaptation 4. In this version, a subcall
to the basic shortest path calculation is able to return an
infinite cost path which is taken into account for a lower
level correction.

This heuristic approach tends to minimise the probability that
the path with the lowest cost is not located in the rectangle. It is
tailored to the hierarchical approach. Two rectangular pruning
settings are tested during the experiment: the small box setting
with e = 6, rlevel = 0.1 and rmax = 0.6 and the large box
setting with e = 12, rlevel = 0.2 and rmax = 1.
MLHNP’s average resistance ravg has been set to 4. The
settings of Adaptation 3 and 4 are σ1 = 3km, σ2 = 1km
and σ3 = 2.5km.

D. Results

Table VII shows the routing performance after the stepwise
introduction of each of the MLHNP adaptations over the
testset presented in Section V-B, for both rectangular pruning
settings. The optimal costs (on which the error rate is based)
have been obtained by the application of a Dijkstra algorithm
without pruning involved. Three out of 1000 queries in the
test set have start and end nodes that are not connected in the
road network graph. These have not been taken into account
in the statistics, neither have the queries that failed because
one of the MLHNP recursive runs could not find a finite path.
Their numbers are given in the first row. The large box pruning
setting yield lower error rates than the small box setting, at the
expense of the average number of visited nodes. As expected,
larger boxes extend the search space but small boxes may
cut away solutions of lower cost. Below, only the large box
pruning numbers are given.
Three out of 997 queries failed in the case of Adaptation
1. Each of these three queries fails at the top recursion with
execution level Ltop. The queries have a start/end node located
on a motorway, which, in reduced(GLtop), only connects to
a long edge ending/starting at the data set border, whereas
paths from the start node to the rest of the graph exist in G.
This issue is fixed by the next adaptation. Adaptation 1 yields
a trade-off between an average number of visited nodes of
5239.80 and an error rate of 9.44%.

TECHNICAL REPORT 14

TABLE VII
EXPERIMENT RESULTS. ANY AVERAGE/PERCENTILE NUMBER IS ONLY BASED ON THE FOUND SOLUTIONS.

Small box pruning Large box pruning
Adapt. 1 Adapt. 2 Adapt. 3 Adapt. 4 Adapt. 1 Adapt. 2 Adapt. 3 Adapt. 4

solutions not found 3 0 1 0 3 0 1 0
1% pctl calculation time (s) 0.027 0.036 0.037 0.039 0.033 0.040 0.042 0.050

avg calculation time (s) 0.161 0.169 0.158 0.173 0.259 0.279 0.263 0.295
99% pctl calculation time (s) 0.732 0.727 0.563 0.566 1.051 1.081 0.900 1.057
avg memory footprint (MB) 19.286 19.496 19.081 18.342 28.830 29.347 29.296 28.970

avg # routing runs 4.243 4.408 4.514 5.848 4.2263 4.394 4.503 5.821
avg # loaded nodes 6966.03 7337.83 7461.49 8621.27 16019.19 16831.94 17305.26 20526.69

1% pctl # visited nodes 628.30 852.84 884.50 924.88 864.00 1050.56 1065.70 1173.72
avg # visited nodes 3591.65 3773.92 3660.50 4123.67 5239.80 5498.72 5401.31 6103.70

99% pctl # visited nodes 10902.66 11018.52 9607.15 10192.68 15256.91 15719.72 14617.90 15990.08
exact solutions 137 145 192 240 167 175 234 300

avg error rate 11.85% 11.08% 8.81% 7.43% 9.44% 8.73% 6.47% 4.91%
99% pctl error rate 77.76% 66.89% 58.09% 52.74% 63.58% 53.05% 50.11% 36.82%

error decrease / increase - 72 / 25 300 / 117 274 / 23 - 63 / 23 301 / 114 291 / 17

The application of Adaptation 2 improves the solution quality
by 8.73%. The node promotion condition relaxation introduces
an extra number of recursive runs, reflected in the average
number, leaving the other runs roughly as they are. This causes
a higher number of visited and loaded nodes. Some individual
solutions show a higher error rate because a higher number
of node promotions increases the risk of choosing a wrong
transition point.
Adaptation 3 is the most effective adaptation. It lowers the
number of visited nodes, whereas the error rate is reduced to
6.47%. Most of the transition point corrections move the points
away from their cells. This could explain the higher average
number of runs4 and loaded nodes. Before the introduction
of Adaptation 3, malicious transition point locations often
caused detours in the lower level paths. The elimination of
these detours probably decreases the number of visited nodes.
For 1 query, an entry point was selected that only connects to
a motorway dead end in G, making the query fail.
Adaptation 4 further reduces the error rate to 4.91%. Higher
level correction generates a higher average number of runs
(for the same reason as Adaptation 3). Lower level correction
introduces an extra number of reparation runs. Therefore,
both corrections increase the average number of loaded and
visited nodes. Some queries generate worse solutions for this
adaptation than for the previous one. This occurs in case of
higher level correction because the risk of choosing a wrong
transition point at the lower level increases. It also occurs in
case of lower level correction when the replacing path contains
again a virtual link, which has an estimate-based cost.

VI. CONCLUSION

We have introduced the MLHNP algorithm, enabling finding
the shortest path in hierarchically organised road network
graphs, while supporting several types of edge weights. The

4For instance, suppose a front-side virtual link from sglobal to lp ∈
leavepoints′(c), which is selected in path R. When lp is moved out of
c, the level of execution in the recursive run mlhnp(sglobal, lp, lrestr, G)
is on average higher, because on level lrestr , the (previously same) cells of
sglobal and lp become neighbours.

authors of the two-level version of this algorithm have sug-
gested a graph transformation in order to cope with dual
carriageways and slip roads in real road networks. This
transformation does not fully comply with the requirements
of contemporary routing applications.
Therefore, four adaptations of the MLHNP approach have
been proposed that bypass the graph transformation. The
first adaptation introduces a cell classification and merge
during preprocessing. The classification method can be more
generally used for functional road class prediction in GIS.
The hierarchical routing algorithm uses the resulting cell set
to emulate contiguity and transition points as if the network
graph were subject to the original graph transformation. In the
here presented application domain, an effective cell merge is
to be preferred over cell grouping because it reduces storage
costs and optimises the routing data indexation. Adaptation
2 makes the algorithm take into account the local context of
dual carriageways and slip roads when the start or end node
is located on these types of way. The third adaptation fine-
tunes the transition point locations of the first one. A last
adaptation enables the algorithm to revise its transition point
choices throughout the recursion tree. It applies to hierarchical
node promotion algorithms in general.
The adapted MLHNP approach has been designed for a
web application that uses a spatial database and that enables
hierarchical routing for several routing modi. Here, database
operations have a high impact on routing performance. Both
storage costs and calculation time of preprocessing are re-
stricted.
The MLHNP algorithm has been successfully applied to a
medium-sized hierarchical road network with time-weights,
using Dijkstra and rectangular pruning for individual routings.
The experiment showed the effectiveness of each of the
adaptations. The combined MLHNP and pruning approach
achieves a low average number of visited nodes, maintaining
an average relative error of 4.91%.

REFERENCES

[1] G. R. Jagadeesh, T. Srikanthan, and K. H. Quek, “Heuristic techniques
for accelerating hierarchical routing on road networks.” IEEE Transac-

TECHNICAL REPORT 15

tions on Intelligent Transportation Systems, vol. 3, no. 4, pp. 301–309,
2002.

[2] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang, “Relational
approach for shortest path discovery over large graphs,” PVLDB, vol. 5,
no. 4, pp. 358–369, 2011.

[3] B. F. Zhan and C. E. Noon, “Shortest path algorithms: An evaluation
using real road networks,” Transportation Science, vol. 32, no. 1, pp.
65–73, February 1998.

[4] E. W. Dijkstra, “A note on two problems in connexion with graphs.”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Transactions On Systems
Science And Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] R. Jacob, M. Marathe, and K. Nagel, “A computational study of routing
algorithms for realistic transportation networks,” J. Exp. Algorithmics,
vol. 4, p. 6, 1999.

[7] J. L. Bander and C. C. White III, “A heuristic search algorithm for path
determination with learning,” IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, vol. 28, no. 1, pp. 131–134,
1998.

[8] J. L. Adler, “A best neighbor heuristic search for finding minimum paths
in transportation networks,” Transportation research record, vol. 1651,
pp. 49–53, 1998.

[9] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A
search meets graph theory,” in Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, ser. SODA ’05. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2005, pp.
156–165.

[10] F. Hahne, C. Nowak, and K. Ambrosi, “Acceleration of the a*-algorithm
for the shortest path problem in digital road maps,” in OR, J. Kalcsics
and S. Nickel, Eds. Springer, 2007, pp. 455–460.

[11] L. Fu, “Real-time vehicle routing and scheduling in dynamic and
stochastic traffic networks,” Ph.D. dissertation, University of Alberta,
Edmonton, Alberta, 1996.

[12] H. A. Karimi, “Real-time optimal route computation: a heuristic ap-
proach,” ITS Journal, vol. 3, no. 2, pp. 111–27, 1996.

[13] H. A. Karimi, P. Sutovsky, and M. Durcik, “Accuracy and performance
assessment of a window-based heuristic algorithm for real-time routing
in map-based mobile applications,” in Map-based Mobile Services, ser.
Lecture Notes in Geoinformation and Cartography, L. Meng, A. Zipf,
and S. Winter, Eds. Springer Berlin Heidelberg, 2008, pp. 248–266.

[14] D. Wagner and T. Willhalm, “Geometric speed-up techniques for finding
shortest paths in large sparse graphs,” in Proceedings of Algorithms
- ESA 2003, 11th Annual European Symposium, Budapest, Hungary,
September 16-19, 2003, Lecture Notes in Computer Science, G. D.
Battista and U. Zwick, Eds., vol. 2832. Springer, 2003, pp. 776–787.

[15] U. Lauther, “An extremely fast, exact algorithm for finding shortest paths
in static networks with geographical background,” IfGI prints, Institut
für Geoinformatik, Universität Münster, vol. 22, pp. 219–230, 2004.

[16] R. J. Gutman, “Reach-based routing: A new approach to shortest path
algorithms optimized for road networks,” in Proceedings of the Sixth
Workshop on Algorithm Engineering and Experiments and the First
Workshop on Analytic Algorithmics and Combinatorics, New Orleans,
LA, USA, January 10, 2004, L. Arge, G. F. Italiano, and R. Sedgewick,
Eds. SIAM, 2004, pp. 100–111.

[17] A. V. Goldberg, H. Kaplan, and R. F. Werneck, “Reach for A*: Efficient
point-to-point shortest path algorithms,” in Proceedings of the eighth
Workshop on Algorithms Engineering and Experiments, vol. MSR-TR-
200. Society for Industrial and Applied Mathematics, 2006, pp. 129–
143.

[18] A. Car and A. Frank, “General principles of hierarchical spatial reason-
ing: The case of wayfinding,” in Proceedings of the 6th International
Symposium on Spatial Data Handling. Taylor and Francis, September
1994.

[19] L. Fu, D. Sun, and L. R. Rilett, “Heuristic shortest path algorithms for
transportation applications: state of the art,” Computers and Operations
Research, vol. 33, no. 11, pp. 3324–3343, 2006.

[20] B. Liu, “Route finding by using knowledge about the road network,”
IEEE Transactions on Systems, Man, and Cybernetics–Part A: Systems
and Humans, vol. 27(4), pp. 436–448, 1997.

[21] G. Dantzig, “On the shortest route through a network,” Management
Science, vol. 6, pp. 187–190, 1960.

[22] P. Sanders and D. Schultes, “Highway hierarchies hasten exact shortest
path queries,” in Algorithms ESA 2005, ser. Lecture Notes in Computer
Science, G. S. Brodal and S. Leonardi, Eds. Springer Berlin Heidelberg,
2005, vol. 3669, pp. 568–579.

[23] ——, “Engineering highway hierarchies,” in Proceedings of the 14th
conference on Annual European Symposium - Volume 14, ser. ESA’06.
London, UK, UK: Springer-Verlag, 2006, pp. 804–816.

[24] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: faster and simpler hierarchical routing in road networks,”
in Proceedings of the 7th international conference on Experimental
algorithms, ser. WEA’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 319–333.

[25] H. Bast, S. Funke, P. Sanders, and D. Schultes, “Fast routing in road
networks with transit nodes,” Science, vol. 316, no. 5824, p. 566, 2007.

[26] D. Schultes and P. Sanders, “Dynamic highway-node routing,” in
Experimental Algorithms, ser. Lecture Notes in Computer Science,
C. Demetrescu, Ed. Springer Berlin Heidelberg, 2007, vol. 4525, pp.
66–79.

[27] Y.-L. Chou, H. E. Romeijn, and R. L. Smith, “Approximating shortest
paths in large-scale networks with an application to intelligent trans-
portation systems,” INFORMS Journal on Computing, vol. 10, no. 2,
pp. 163–179, 1998.

[28] H.-J. Cho and C.-L. Lan, “Hybrid shortest path algorithm for vehicle
navigation,” J. Supercomput., vol. 49, no. 2, pp. 234–247, 2009.

[29] C. Strauss, “A note on hierarchical routing algorithms based on traverse-
oriented road networks,” International Journal of Spatial Data Infras-
tructures Research, vol. 4, pp. 239–264, 2009.

[30] M. Delafontaine, G. Nolf, N. van de Weghe, M. Antrop, and
P. de Maeyer, “Assessment of sliver polygons in geographical vector
data,” Int. J. Geogr. Inf. Sci., vol. 23, no. 6, pp. 719–735, 2009.

