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Should We Use a Portable Generator in an Emergency? Degraeve and Schrage 

Abstract 

Problem generators are convenient tools for making large numbers of problem 

instances available to objectively evaluate the performance of different algorithms. We 

suggest that a) problem generators should be used only as a last resort, and b) if used they 

should be "portable", i.e., will generate the same problem instances on different computers, 

and c) use statistical methodology consistent with good experimental design. We provide a 

number of rules and tools to use when deciding to use a random problem generator. 

Subject classifications: Tools for computational testing; Problem generator; Cutting Stock, 

Knapsack. 
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In order to objectively evaluate the performance of different algorithms, standard 

problem sets are frequently created. Distributing large numbers of large test problems is 

cumbersome. As an alternative, random problem generators have also been developed. A 

single, small problem generator may be able to generate a huge number of test problems. See 

the references for many examples of where random problem generators have been used to test 

algorithms for a wide range of problems. We make three arguments: a) random problem 

generators should be used only as a last resort, and b) if used, they should be portable in the 

sense that they give the same results on all computers, and c) they should be designed to be 

consistent with good experimental design. 

1 Why Not Use a Random Problem Generator? 

We can think of three reasons for not using a random problem generator : a) the 

problems generated tend to not be representative of real industrial problems, b) solving lots of 

randomly generated problems gives a false sense of having thoroughly tested an algorithm, 

and, c) discouraging their use encourages us to go out and solve real problems. 

To illustrate (a), consider the cutting stock problem as it occurs in the paper industry. 

One is given data on the number of rolls needed of each of a number of different widths of 

paper. The most common distributional assumption made in all random problem generators 

is that random variables have a uniform distribution. Gau and Wascher (1995) describe a 

very comprehensive and flexible random problem generator for cutting stock problems. The 

generator used therein, assumes that demands for the various widths are uniformly distributed 

over some (input) interval. In Figure 1 is displayed the cumulative distribution for the 

amount demanded for each of 68 product widths for a paper cutting problem from a major 

paper manufacturer. The amounts demanded ranged from 2 to 412 units. Most of the 
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demands fell between 2 and 200, but there were several between 200 and 412. It is clear that 

these demands are not uniformly distributed. It would be an improvement if a generator 

allowed a choice of non-uniform distributions to be used. Testing an algorithm on real 

empirical distributions would be even better. 

Figure 1 : Cumulative Distribution of Product Demands. 
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To illustrate (b), consider the unbounded or general integer knapsack problem. See 

Babayev, Glover, and Ryan (1997), and Martello and Toth (1990) for excellent descriptions 

of the problem, as well as efficient algorithms for solving it. The form of the problem is : 
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Maximize 

subject to 
n 

I,wjX j :::;; C 
j=l 

Xj = 0, 1,2, ... 

Degraeve and Schrage 

A plausible, and in fact common, way of generating random instances of this problem is to let 

Pj and Wj be random integers in [l, 1000]. Because the Xj are unbounded, variable j is 

dominated and can be set to 0 if there exists another k such that Wj ~ Wk and Pj :::;; Pk. Because 

the Wj are integer, any problem with n ~ 1000 variables, can be reduced (in time proportional 

to n) to a problem with at most 1000 variables. Further, if c is not chosen randomly, (but is 

perhaps allowed to depend upon n), then, as n is allowed to increase, every randomly 

generated problem can be reduced in linear time, with probability approaching 1, to the single 

problem: 

Maximize 1000 XI 

Subject to 

XI = 0,1,2, ... 

Thus, even though we might ostensibly solve, say, 20 different big randomly generated 

problems, we are in fact only solving essentially one modest size underlying problem 20 

times. This seems a less thorough test of an algorithm than one would like. Solving 20 

different problems from 20 different industrial sources would be more reassuring. 

We think reason (c) may be most important. If the operations research profession is to 

be successful, it is because it helps solve real problems, not imagined problems. One of the 
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success stories of Operations Research is optimization. Linear and integer programming is 

widely used in industry. The substantial improvement in the performance of commercial 

optimization software on industrial problems in the last ten years coincides with the 

introduction and enhancement of the NETLIB and MIPLIB test data sets, see the websites : 

http://www.mcs.anl.gov/home/otc/Guide/TestProblems/LPtest/index.html and 

http://softlib.rice.edu/softlib/catalog/miplib.htrnl. It is tempting to assume the latter 

caused the former. Almost every problem in these libraries is from some industrial setting. 

Almost every problem is unique in terms of its characteristics. Developing an algorithm that 

does well on everyone of these diverse problems is a challenge. 

2 How to Use Random Problem Generators if You Must 

It is expensive and time consuming to collect real industrial problems. A random 

problem generator may be the only alternative if you want a problem with a particular 

characteristic, e.g. large size, quickly. In that case we think two general rules should be 

followed: a) the generator should be portable in the sense that some other researcher can run 

it on her machine and get essentially the same problem set, and b) the generator should be 

compatible with good statistical experimental design. We refine these into the following 

more specific rules: 1) input parameters to the problem generator should be integer, not 

reallfloating point; 2) use a good portable uniform random number generator to get the 

"raw" random numbers in the problem generator; 3) transform the raw numbers with a 

monotonic transformation to get problem specific random numbers; 4) transform the raw 

numbers in a portable fashion and 5) Make the entire problem generator portable. 

We say a problem generator is portable if, given the same set of inputs, the generator 

produces the same set of outputs, to machine precision, when run on different computers. 
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Slightly more precisely, given a set of inputs {Xl, X2, ... , xm}, a problem generator on computer 

i produces the output {Yl i, Y2i, •.• , Yni }. A generator is portable if there exists a small positive 

tolerance, E, such that for any given input set {Xl, X2, ... , xm}, and for every two computers i 

andj, we have for every output term k that IYki - yJI < E * (1 + max(abs(Yki ), abs( yJ))). So in 

particular, if Yki and Ykj are integers, then Yki = yJ. A major difficulty in writing portable 

software is that different kinds of computers do floating point arithmetic slightly differently. 

Almost all computer types do integer arithmetic identically. So the major technique in 

writing portable generators is to avoid floating point arithmetic in favor of integer arithmetic. 

Weare now ready for rule 1. 

Rule 1 : Input parameters for the problem generator should be in unambiguous integer 

format. 

A common type of input to a problem generator is a fraction or probability, e.g., the 

fraction of the elements in a matrix that should be nonzero. It is natural to specify this 

number as a fraction, e.g., 0.4. Any computer, however, that uses binary, base 8, or base 16 

floating point arithmetic (i.e., almost all popular computers), cannot represent 0.4 accurately. 

It is represented only approximately. Therefore, how it gets stored may vary among 

computers. So instead of allowing fractions directly as inputs, it is more portable to scale any 

such inputs, by, say 1000, and enter them as integers. Thus, 400 (out of 1000) is preferred to 

0.4 as an input. For example, the cutting stock problem generator, CUTGEN1, from Gau and 

Wascher (1995) requires the user to specify the range over which product widths are to be 

generated. This is done by specifying a raw material width, b, an integer, and two fractions, 

0< VI < V2 ~ 1, so that the product widths are in the interval Ii E [Vlb, v2b]. If the ( are 
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restricted to be integer, then the actual interval obtained may vary from computer to 

computer, depending upon how v,b and v2b are rounded. It is better to specify the two limits 

directly as integers. 

Rule 2 " Use a good portable uniform pseudo-random number generator to get the "raw" 

random numbers. 

Almost every mathematical software package contains a generator for uniform 

numbers in the interval (0,1). One should be reluctant to use these generators for two reasons, 

a) they are of questionable quality, and b) they are almost never documented, so one cannot 

generate the same stream of random numbers on some other system. As an alternative, one 

should use any of the good quality portable generators available in the public domain. 

CUTGENl, for example, uses the portable uniform pseudo-random number generator 

described in Bratley, Fox, and Schrage (1987). An important advantage of these portable 

generators is that in addition to returning a floating point number in (0,1), they return a 

corresponding integer random number, typically uniformly distributed over the interval [1, 

23'_2]. For portability, one typically wants to disregard the floating point number and use 

just the integer. The generator in Bratley, et. al. is a congruential generator using a multiplier 

of 16807. Although that generator is of good quality, Fishman and Moore (1986) recommend 

using the multiplier 742938285. A portable version using that multiplier is included in 

appendix A. 

Rule 3 " Transform the raw uniforms with a monotonic transformation when generating the 

problem specific random variables. 
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To motivate this rule, consider the random number generation capabilities of the 

Excel spreadsheet program. The "ToolslData analysislRandom number generation" menu 

item allows one to generate random numbers from a variety of distributions. One is able to 

specify an initial seed so that one can generate the same set of random numbers in different 

sheets. In Table 1, you can find sets of six random numbers generated from a uniform, 

normal, Poisson, and Bernoulli distributions, generated using Excel-95. In each of the four 

cases the initial seed was 55. Except for the Bernoulli case, the means were specified to be 

15. The random numbers might be, say, demands placed on an inventory system. 

Table 1 : Random Numbers Generated with Excel-95. 

Uniform Normal Poisson Bernoulli 

10.0665 16.8761 14 1 

12:7641 12.2333 15 1 

16.3256 11.8622 13 0 

14.6385 14.6887 12 1 

15.8290 18.8710 8 0 

19.5093 17.9562 12 0 

In Table 2 are the results of doing exactly the same exercise in Excel-97. 
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Table 2: Random Numbers Generated with Excel-97. 

Uniform Normal Poisson Bernoulli 

10.0665 7.8212 14 1 

12.7641 13.2787 15 1 

16.3256 15.9820 13 0 

14.6385 14.7369 12 1 

15.8290 15.6071 8 0 

19.5093 19.7963 12 0 

Notice that the results are the same except for the Normal distribution. We argue that Excel-

97 is an improvement over Excel-95, but not as much as it could be. When Excel-97 

transforms "raw" uniforms into Normal or uniformly distributed random variables of arbitrary 

distribution, it apparently uses a monotonic increasing transformation. Notice that when a 

uniform random number from Excel-97 is large, then so is its corresponding Normal random 

variable. If we wished to test whether the choice of distribution makes a difference in 

problem difficulty, the data from Excel-97 would give a more unequivocal answer. The 

transformation to generate Poisson random variables does not appear to be a monotonic 

transformation. The method for generating Bernoulli's appears to be (unfortunately) a 

monotonic decreasing transformation. High values for the uniform and Normal outcomes 

implies that the corresponding Bernoulli random variable will be small, i.e., O. We look 

forward to the release of Excel-99. 

There is a second reason for recommending the use of a monotonic transformation. 

When a problem generator needs random values uniformly distributed over some specified 

interval, an alternative, the modulus (mod) transformation, is sometimes used to transform the 

raw uniform values into approximately uniformly distributed values into some other desired 
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interval. Suppose the raws are uniform integers on [1,17] and we want to transform them to 

approximately uniform on [1,7]. The results of the mod transformation: 

output = 1 +((input-1) mod 7) 

are given in Table 3. While the monotonic mapping is: 

l inputJ 
output=l+ 7 * ~ , 

resulting in a transformation illustrated in Table 4. 

Table 3 : Result of the Mod Transformation. 

Output 1 2 3 4 5 6 7 

Mapping of 1 2 3 4 5 6 7 

Input 8 9 10 11 12 13 14 

15 16 17 

Table 4 : Result of the Monotonic Transformation. 

Output 1 2 3 4 5 6 7 

Mapping of 1 3 6 8 11 13 16 

Input 2 4 7 9 12 14 17 

5 10 15 
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Comparing Tables 3 and 4, we observe that the monotonic transformation clearly looks more 

uniform that the mod transformation. The modulus transformation tends to over-represent 

small values, and under-represent large outcomes. 

Rule 4 : Transform the raw uniforms generated in a portable fashion. 

Floating point arithmetic should be avoided in favor of integer arithmetic when 

generating a discrete outcome, such as an integer, or the choice of a branch in some decision 

process. To satisfy rules 3 and 4 for the commonly used case of uniformly distributed 

integers, we provide the portable subroutine VUNIFI in appendix B .. Its essential task is to 

compute portably, an integer x, the integer part of u * v / w , i.e. : 

(2.1) 

The interpretations are: the raw random variables are integers uniform on [0, 1, ... w-l], v is a 

draw from that distribution, and the output is to be approximately uniform on [0,1, ... ,u-l]. 

For the method to work on typical 32 bit computers, we need: 

To avoid overflow, VUNIFI requires: 

° :s:; u, (u+2) *( u+2) < w, 

12 

(2.2) 

(2.3) 

(2.4) 
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Restriction (2.3) does not seem a serious one. It essentially restricts one to random integers in 

the range [0,46300]. 

The "obvious" way to compute (2.1) is to first do the multiplication in double 

precision, then do the division, and then take the integer part. The portability problems with 

the various steps of that approach are: a) the largest integer product can be computed exactly 

in double precision varies from computer to computer, b) how accurately the fractional part 

gets represented after doing the division varies from computer to computer, and therefore c) 

the integer part may get computed differently among different computers. To our knowledge, 

all popular computers that support 4-byte integers, produce identical results in integer 

arithmetic as long as there is no overflow. Therefore, VUNIFI uses all integer arithmetic, 

while avoiding overflow. The essential "trick" of VUNIFI is to first compute an upper bound 

onx: 

b= Lv/LwluJJ (2.5) 

Clearly, b is a valid upper bound because l%J::;;%. Observe that proper use of brackets 

ensures that the results of all calculations can be represented exactly as 32 bit integers. 

Given the size restriction on u, it follows that b overestimates x by at most 2. VUNIFI 

checks for this overestimation and decreases b as needed. Details are given in the comments 

in the code. 

In another recently published example, the random problem generator simply 

generated a sequence of uniformly generated real numbers in (0,1), where the major purpose 

of the input was to simply specify the number of such numbers to be generated. In this case, 
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simply using the output from a portable generator, such as URAND, would have satisfied our 

definition of portability. What was done, however, to make the results "more random", was 

to instead use six different random number generators. To get the next random output 

random number, a random number was first drawn from a seventh random number generator. 

This number was then used to choose which of the six generators would be used to generate 

the next output number. Unfortunately, floating point arithmetic was used in making the 

random choice among the six. Different computer types might at some point in the sequence 

choose a different stream, simply because of round-off differences. Once this happened, 

subsequent numbers could be dramatically different from computer to computer. Two 

observations are pertinent: a) it is not clear that randomly choosing among random 

generators produces more truly random results, and b) if, nevertheless, one wishes to choose 

randomly among generators, a portable way of doing it is to use VUNIFI to generate a 

random integer uniform in [0, 5], and then use this as an index into the random generator to 

use for the next output draw. 

Rule 5: Write standard compliant code in a portable standard high level programming 

language. 

Even if the two portable subroutines mentioned above are used, things can still go 

wrong. Recently, when we tried· to compile a published generator that was described as 

portable, the first attempt at compiling it failed because the program name was the same as 

the name of the principal subroutine, a violation of the standard for the language FORTRAN. 

Thus, one should not only choose a popular, standardized language, e.g., C or FORTRAN, 

but also adhere to the language standard when writing the generator. Another problem we 

encountered with a recent published generator resulted from inconsistency in the case used. 
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In one part of the program a variable was referred to as "z", whereas in another part of the 

program, "Z" was used to refer to the same variable. Standard FORTRAN is case insensitive 

and considers these two symbols as referring to the same variable. Absoft FORTRAN on the 

Mac, however, deviates from the standard and considers these as two different variables. The 

moral is, be consistent and do not push the standard. A minor portability problem with the C 

language was that older, freely distributed compilers only recognized so-called 

Kernigan&Ritchie C, whereas, recent compilers are designed for the ANSI-standard version 

of C. A number of reliable translators, e.g., f2c, are available for converting standard 

FORTRAN programs into standard C programs. 

3 Computational Examples 

As an exercise, we have written a portable version, CUTGENP, of the CUTGENI 

generator, using the rules and tools mentioned above. We have compared CUTGENP with 

CUTGENI using a number of different compilers and computers as indicated in Table 5. 
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Table 5 : FORTRAN Compilers and Computers Used for the Experiments. 

ID Compiler Computer and Operating System 
Watcom Watcom Fortran 77 Version 10.6 Dell Dimension XPS Pro 200n 

Windows 95 
MSFort Microsoft Fortran 77 Powerstation Dell Dimension XPS Pro 200n 

Windows 95 
XLF IBM Fortran 77 IBM SP2 workstation RISC 6000 

UNIX (AIX) 
FortVS IBM VS Fortran 77 Version 2 IBM 96721R51 mainframe 

Release 6 CMS (VM) 
HP HP Fortran compiler HP-700 

Unix 
Alpha DEC Alpha Fortran DEC Alpha 

Unix (OSF) 
VMS VMS Fortran DEC Alpha 

VMS 
Sparc Sparc Fortran Sparc-20 

SparcOS 
Linux Linux/GNU Fortran Gateway Pentium Pro 

Linux 
SGI Silicon Graphics Fortran Silicon Graphics 

Unix (IRIX Sys V.4) 
Mac Absoft Apple Macintosh Power 8100 

System 7 

CUTGEN1 uses floating point arithmetic at some crucial points in its procedure, even though 

it produces integer output. Thus, it may generate different output sets on different computers 

for the same set of input parameters. As expected, CUTGENP generates the same output on 

each computer for a given input set. We found that, for a given input data set, CUTGEN1 

gave one set of results on Watcom, Linux and XLF, and another set of results (almost 

identical to CUTGENP) on MSFort, SGI, HP, VMS, Sparc, Mac, Alpha and FortVS. For 

reference, one set of input parameters that illustrates the non-portability is : 

10 1000 .375 .625 50 991759555 150 
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with the second last number being the random number seed. For input to CUTGENP, the 

decimal points are dropped on the 3rd and 4th numbers, i.e., they are interpreted as fractions of 

1000, the second input number. 

4 Conclusions and Ideas for Future Work 

A problem generator is only a valid alternative to making large numbers of test 

problems available to researchers to test new algorithms if it produces the same problem 

instances on different machines with different compilers. In this paper, we have identified 

five rules that should be considered in the development of portable generators of test 

problems. Future work can focus on checking how well other available problem generators in 

the literature satisfy our five rules and improving them if necessary such that they become 

really portable. 
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Appendix A Random Number Generation Function URAND 

FUNCTION URAND( IX) 
INTEGER*4 IX 

C Portable random number generator using the recursion: 
C IX = 742938285 * IX MOD (2**(31) - 1) 
C using only 32 bits, including sign. 
C 
C INPUTS: 
C IX = integer in the interval [ 1, 2147483646] 
C 
C OUTPUTS: 

Degraeve and Schrage 

C IX = new (pseudorandom) integer in interval [ 1, 2147483646] 
C URAND = a uniform fraction in (0.0, 1.0). 
C 
C COMMENTS: 
C Cycle length is 2147483646. all integers in [1, 2147483646] 
C are generated exactly once in a cycle. 
C 

INTEGER*4 K1 
C Date 7 Aug 1994 by L. Schrage 
C 
C First note: 742938285 = 21309 * 34865 
C Compute IX = 21309 * IX MOD 2147483647 
C NOTE: 2147483647 = 21309 * 100778 + 5245 

K1 IX / 100778 
IX = 21309 * ( IX - K1 * 100778) - K1 * 5245 
IF ( IX .LT. 0) IX = IX + 2147483647 

C Compute IX = 34865 * IX MOD 2147483647 
C Note: 2147483647 = 34865 * 61594 + 8837 

K1 IX / 61594 
IX = 34865 * ( IX - K1 * 61594) - K1 * 8837 
IF ( IX .LT. 0) IX = IX + 2147483647 
URAND = IX * 4.656612875E-10 
RETURN 
END 

Appendix B SUBROUTINE VUNIFI 

C 

SUBROUTINE VUNIFI( M, IY, IR, IX) 
INTEGER*4 M, IY, IR, IX 

C Portable routine to compute 
C integer part OF IY * IR / M 
C 
C INPUTS 
C M THE 'MODULUS', 4 < M < 2 ** 31 
C IR THE 'RANGE', 0 < (IR+2) * (IR+2) < M 
C IY A 'RANDOM INTEGER', 0 <= IY < M 
C 
C It is caller's responsibility to check 
C the bounds on the inputs 
C 
C OUTPUTS : 
C IX = GREATEST INTEGER <= IY * IR / M 
C 
C E.G., If IY is uniform on [ 1, M-1] 
C Then IX is approximately uniform on [0, IR - 1] 
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C 

C 1 August 1997 by Z. Degraeve and L. Schrage 
INTEGER*4 K, ID, IDNOM, INUMR, ITEMP, IXL 

C 
C Get an upper bound on [ IY * IR/ M] = [ IY/( M/ IR)] 

K = M / IR 
IX IY / K 
ID = M - K * IR 

C 
C Now reduce IX if necessary. The initial IX 
C overestimates the true/final value by at most 2 
C if M > 4 

DO 2090 IXL = IX, 0, -1 
C 

Degraeve and Schrage 

C Test if IXL is small enough, i.e. in infinite precision: 
C IXL <= IY * IR / M, or 
C IXL * M <= IY * IR, or 
C IXL * ( K * IR + ID) <= IY * IR, or 
C IR * ( IY - IXL * K) >= IXL * ID, or 
C IY - IXL * K > 0 and 
C IR >= IXL * ID / ( IY - IXL * K) 
C Note IXL <= IR + 2, and ID < IR, so no overflow 

INUMR = IXL * ID 
IF( INUMR .EQ. 0) GO TO 9000 

C Note, IXL <= IY/ K, so IXL * K <= IY, so no overflow 
IDNOM = IY - IXL * K 
IF( IDNOM .LE. 0) GO TO 2090 
ITEMP = INUMR/ IDNOM 
IF( IR .GT. ITEMP) GO TO 9000 
IF( IR .LT. ITEMP) GO TO 2090 

C We have IR = ITEMP, so 
C IR >= IXL * ID/ ( IY - IXL * K) only if no truncation 
C occurred in computing ITEMP. 
C Note, ITEMP <= lNUMR/ IDNOM, so no overflow 

IF ( ITEMP * IDNOM .GE. lNUMR) GO TO 9000 
2090 CONTINUE 

C 

C 

C 

9000 IX = IXL 

RETURN 
END 
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