
DEPARTEMENTTOEGEPASTE
ECONOMISC.HE WETENSCHAPPEN

ONDERZOEKSRAPPORT NR 9723

SHOULD WE USE A PORTABLE GENERATOR IN AN

EMERGENCY?

by

Zeger DEGRAEVE

Linus SCHRAGE

Katholieke Universiteit Leuven

Naamsestraat 69, 8-3000 Leuven

ONDERZOEKSRAPPORT NR 9723

SHOULD WE USE A PORTABLE GENERATOR IN AN

EMERGENCY?

0/1997/2376/25

by

Zeger DEGRAEVE

Linus SCHRAGE

KA THOLIEKE UNIVERSITEIT LEUVEN

Department of Applied Economic Sciences

Should We Use a Portable Generator in an Emergency?

by

Zeger Degraeve

Katholieke Universiteit Leuven, Department of Applied Economic Sciences, Belgium

zeger.degraeve@econ.kuleuven.ac.be

Linus Schrage

University of Chicago, Graduate School of Business, Chicago, IL, 60637, USA

linus.schrage@gsb.uchicago.edu

19 August 1997

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Abstract

Problem generators are convenient tools for making large numbers of problem

instances available to objectively evaluate the performance of different algorithms. We

suggest that a) problem generators should be used only as a last resort, and b) if used they

should be "portable", i.e., will generate the same problem instances on different computers,

and c) use statistical methodology consistent with good experimental design. We provide a

number of rules and tools to use when deciding to use a random problem generator.

Subject classifications: Tools for computational testing; Problem generator; Cutting Stock,

Knapsack.

2

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

In order to objectively evaluate the performance of different algorithms, standard

problem sets are frequently created. Distributing large numbers of large test problems is

cumbersome. As an alternative, random problem generators have also been developed. A

single, small problem generator may be able to generate a huge number of test problems. See

the references for many examples of where random problem generators have been used to test

algorithms for a wide range of problems. We make three arguments: a) random problem

generators should be used only as a last resort, and b) if used, they should be portable in the

sense that they give the same results on all computers, and c) they should be designed to be

consistent with good experimental design.

1 Why Not Use a Random Problem Generator?

We can think of three reasons for not using a random problem generator : a) the

problems generated tend to not be representative of real industrial problems, b) solving lots of

randomly generated problems gives a false sense of having thoroughly tested an algorithm,

and, c) discouraging their use encourages us to go out and solve real problems.

To illustrate (a), consider the cutting stock problem as it occurs in the paper industry.

One is given data on the number of rolls needed of each of a number of different widths of

paper. The most common distributional assumption made in all random problem generators

is that random variables have a uniform distribution. Gau and Wascher (1995) describe a

very comprehensive and flexible random problem generator for cutting stock problems. The

generator used therein, assumes that demands for the various widths are uniformly distributed

over some (input) interval. In Figure 1 is displayed the cumulative distribution for the

amount demanded for each of 68 product widths for a paper cutting problem from a major

paper manufacturer. The amounts demanded ranged from 2 to 412 units. Most of the

3

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

demands fell between 2 and 200, but there were several between 200 and 412. It is clear that

these demands are not uniformly distributed. It would be an improvement if a generator

allowed a choice of non-uniform distributions to be used. Testing an algorithm on real

empirical distributions would be even better.

Figure 1 : Cumulative Distribution of Product Demands.

70

60

50
fl
u
;::I

"0
0 40

p...
<l.l
;>
'p
ro 30 "5
S
;::I

U
20

10

Demand

To illustrate (b), consider the unbounded or general integer knapsack problem. See

Babayev, Glover, and Ryan (1997), and Martello and Toth (1990) for excellent descriptions

of the problem, as well as efficient algorithms for solving it. The form of the problem is :

4

Should We Use a Portable Generator in an Emergency?

Maximize

subject to
n

I,wjX j :::;; C
j=l

Xj = 0, 1,2, ...

Degraeve and Schrage

A plausible, and in fact common, way of generating random instances of this problem is to let

Pj and Wj be random integers in [l, 1000]. Because the Xj are unbounded, variable j is

dominated and can be set to 0 if there exists another k such that Wj ~ Wk and Pj :::;; Pk. Because

the Wj are integer, any problem with n ~ 1000 variables, can be reduced (in time proportional

to n) to a problem with at most 1000 variables. Further, if c is not chosen randomly, (but is

perhaps allowed to depend upon n), then, as n is allowed to increase, every randomly

generated problem can be reduced in linear time, with probability approaching 1, to the single

problem:

Maximize 1000 XI

Subject to

XI = 0,1,2, ...

Thus, even though we might ostensibly solve, say, 20 different big randomly generated

problems, we are in fact only solving essentially one modest size underlying problem 20

times. This seems a less thorough test of an algorithm than one would like. Solving 20

different problems from 20 different industrial sources would be more reassuring.

We think reason (c) may be most important. If the operations research profession is to

be successful, it is because it helps solve real problems, not imagined problems. One of the

5

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

success stories of Operations Research is optimization. Linear and integer programming is

widely used in industry. The substantial improvement in the performance of commercial

optimization software on industrial problems in the last ten years coincides with the

introduction and enhancement of the NETLIB and MIPLIB test data sets, see the websites :

http://www.mcs.anl.gov/home/otc/Guide/TestProblems/LPtest/index.html and

http://softlib.rice.edu/softlib/catalog/miplib.htrnl. It is tempting to assume the latter

caused the former. Almost every problem in these libraries is from some industrial setting.

Almost every problem is unique in terms of its characteristics. Developing an algorithm that

does well on everyone of these diverse problems is a challenge.

2 How to Use Random Problem Generators if You Must

It is expensive and time consuming to collect real industrial problems. A random

problem generator may be the only alternative if you want a problem with a particular

characteristic, e.g. large size, quickly. In that case we think two general rules should be

followed: a) the generator should be portable in the sense that some other researcher can run

it on her machine and get essentially the same problem set, and b) the generator should be

compatible with good statistical experimental design. We refine these into the following

more specific rules: 1) input parameters to the problem generator should be integer, not

reallfloating point; 2) use a good portable uniform random number generator to get the

"raw" random numbers in the problem generator; 3) transform the raw numbers with a

monotonic transformation to get problem specific random numbers; 4) transform the raw

numbers in a portable fashion and 5) Make the entire problem generator portable.

We say a problem generator is portable if, given the same set of inputs, the generator

produces the same set of outputs, to machine precision, when run on different computers.

6

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Slightly more precisely, given a set of inputs {Xl, X2, ... , xm}, a problem generator on computer

i produces the output {Yl i, Y2i, •.• , Yni }. A generator is portable if there exists a small positive

tolerance, E, such that for any given input set {Xl, X2, ... , xm}, and for every two computers i

andj, we have for every output term k that IYki - yJI < E * (1 + max(abs(Yki), abs(yJ))). So in

particular, if Yki and Ykj are integers, then Yki = yJ. A major difficulty in writing portable

software is that different kinds of computers do floating point arithmetic slightly differently.

Almost all computer types do integer arithmetic identically. So the major technique in

writing portable generators is to avoid floating point arithmetic in favor of integer arithmetic.

Weare now ready for rule 1.

Rule 1 : Input parameters for the problem generator should be in unambiguous integer

format.

A common type of input to a problem generator is a fraction or probability, e.g., the

fraction of the elements in a matrix that should be nonzero. It is natural to specify this

number as a fraction, e.g., 0.4. Any computer, however, that uses binary, base 8, or base 16

floating point arithmetic (i.e., almost all popular computers), cannot represent 0.4 accurately.

It is represented only approximately. Therefore, how it gets stored may vary among

computers. So instead of allowing fractions directly as inputs, it is more portable to scale any

such inputs, by, say 1000, and enter them as integers. Thus, 400 (out of 1000) is preferred to

0.4 as an input. For example, the cutting stock problem generator, CUTGEN1, from Gau and

Wascher (1995) requires the user to specify the range over which product widths are to be

generated. This is done by specifying a raw material width, b, an integer, and two fractions,

0< VI < V2 ~ 1, so that the product widths are in the interval Ii E [Vlb, v2b]. If the (are

7

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

restricted to be integer, then the actual interval obtained may vary from computer to

computer, depending upon how v,b and v2b are rounded. It is better to specify the two limits

directly as integers.

Rule 2 " Use a good portable uniform pseudo-random number generator to get the "raw"

random numbers.

Almost every mathematical software package contains a generator for uniform

numbers in the interval (0,1). One should be reluctant to use these generators for two reasons,

a) they are of questionable quality, and b) they are almost never documented, so one cannot

generate the same stream of random numbers on some other system. As an alternative, one

should use any of the good quality portable generators available in the public domain.

CUTGENl, for example, uses the portable uniform pseudo-random number generator

described in Bratley, Fox, and Schrage (1987). An important advantage of these portable

generators is that in addition to returning a floating point number in (0,1), they return a

corresponding integer random number, typically uniformly distributed over the interval [1,

23'_2]. For portability, one typically wants to disregard the floating point number and use

just the integer. The generator in Bratley, et. al. is a congruential generator using a multiplier

of 16807. Although that generator is of good quality, Fishman and Moore (1986) recommend

using the multiplier 742938285. A portable version using that multiplier is included in

appendix A.

Rule 3 " Transform the raw uniforms with a monotonic transformation when generating the

problem specific random variables.

8

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

To motivate this rule, consider the random number generation capabilities of the

Excel spreadsheet program. The "ToolslData analysislRandom number generation" menu

item allows one to generate random numbers from a variety of distributions. One is able to

specify an initial seed so that one can generate the same set of random numbers in different

sheets. In Table 1, you can find sets of six random numbers generated from a uniform,

normal, Poisson, and Bernoulli distributions, generated using Excel-95. In each of the four

cases the initial seed was 55. Except for the Bernoulli case, the means were specified to be

15. The random numbers might be, say, demands placed on an inventory system.

Table 1 : Random Numbers Generated with Excel-95.

Uniform Normal Poisson Bernoulli

10.0665 16.8761 14 1

12:7641 12.2333 15 1

16.3256 11.8622 13 0

14.6385 14.6887 12 1

15.8290 18.8710 8 0

19.5093 17.9562 12 0

In Table 2 are the results of doing exactly the same exercise in Excel-97.

9

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Table 2: Random Numbers Generated with Excel-97.

Uniform Normal Poisson Bernoulli

10.0665 7.8212 14 1

12.7641 13.2787 15 1

16.3256 15.9820 13 0

14.6385 14.7369 12 1

15.8290 15.6071 8 0

19.5093 19.7963 12 0

Notice that the results are the same except for the Normal distribution. We argue that Excel-

97 is an improvement over Excel-95, but not as much as it could be. When Excel-97

transforms "raw" uniforms into Normal or uniformly distributed random variables of arbitrary

distribution, it apparently uses a monotonic increasing transformation. Notice that when a

uniform random number from Excel-97 is large, then so is its corresponding Normal random

variable. If we wished to test whether the choice of distribution makes a difference in

problem difficulty, the data from Excel-97 would give a more unequivocal answer. The

transformation to generate Poisson random variables does not appear to be a monotonic

transformation. The method for generating Bernoulli's appears to be (unfortunately) a

monotonic decreasing transformation. High values for the uniform and Normal outcomes

implies that the corresponding Bernoulli random variable will be small, i.e., O. We look

forward to the release of Excel-99.

There is a second reason for recommending the use of a monotonic transformation.

When a problem generator needs random values uniformly distributed over some specified

interval, an alternative, the modulus (mod) transformation, is sometimes used to transform the

raw uniform values into approximately uniformly distributed values into some other desired

10

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

interval. Suppose the raws are uniform integers on [1,17] and we want to transform them to

approximately uniform on [1,7]. The results of the mod transformation:

output = 1 +((input-1) mod 7)

are given in Table 3. While the monotonic mapping is:

l inputJ
output=l+ 7 * ~ ,

resulting in a transformation illustrated in Table 4.

Table 3 : Result of the Mod Transformation.

Output 1 2 3 4 5 6 7

Mapping of 1 2 3 4 5 6 7

Input 8 9 10 11 12 13 14

15 16 17

Table 4 : Result of the Monotonic Transformation.

Output 1 2 3 4 5 6 7

Mapping of 1 3 6 8 11 13 16

Input 2 4 7 9 12 14 17

5 10 15

11

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Comparing Tables 3 and 4, we observe that the monotonic transformation clearly looks more

uniform that the mod transformation. The modulus transformation tends to over-represent

small values, and under-represent large outcomes.

Rule 4 : Transform the raw uniforms generated in a portable fashion.

Floating point arithmetic should be avoided in favor of integer arithmetic when

generating a discrete outcome, such as an integer, or the choice of a branch in some decision

process. To satisfy rules 3 and 4 for the commonly used case of uniformly distributed

integers, we provide the portable subroutine VUNIFI in appendix B .. Its essential task is to

compute portably, an integer x, the integer part of u * v / w , i.e. :

(2.1)

The interpretations are: the raw random variables are integers uniform on [0, 1, ... w-l], v is a

draw from that distribution, and the output is to be approximately uniform on [0,1, ... ,u-l].

For the method to work on typical 32 bit computers, we need:

To avoid overflow, VUNIFI requires:

° :s:; u, (u+2) *(u+2) < w,

12

(2.2)

(2.3)

(2.4)

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Restriction (2.3) does not seem a serious one. It essentially restricts one to random integers in

the range [0,46300].

The "obvious" way to compute (2.1) is to first do the multiplication in double

precision, then do the division, and then take the integer part. The portability problems with

the various steps of that approach are: a) the largest integer product can be computed exactly

in double precision varies from computer to computer, b) how accurately the fractional part

gets represented after doing the division varies from computer to computer, and therefore c)

the integer part may get computed differently among different computers. To our knowledge,

all popular computers that support 4-byte integers, produce identical results in integer

arithmetic as long as there is no overflow. Therefore, VUNIFI uses all integer arithmetic,

while avoiding overflow. The essential "trick" of VUNIFI is to first compute an upper bound

onx:

b= Lv/LwluJJ (2.5)

Clearly, b is a valid upper bound because l%J::;;%. Observe that proper use of brackets

ensures that the results of all calculations can be represented exactly as 32 bit integers.

Given the size restriction on u, it follows that b overestimates x by at most 2. VUNIFI

checks for this overestimation and decreases b as needed. Details are given in the comments

in the code.

In another recently published example, the random problem generator simply

generated a sequence of uniformly generated real numbers in (0,1), where the major purpose

of the input was to simply specify the number of such numbers to be generated. In this case,

13

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

simply using the output from a portable generator, such as URAND, would have satisfied our

definition of portability. What was done, however, to make the results "more random", was

to instead use six different random number generators. To get the next random output

random number, a random number was first drawn from a seventh random number generator.

This number was then used to choose which of the six generators would be used to generate

the next output number. Unfortunately, floating point arithmetic was used in making the

random choice among the six. Different computer types might at some point in the sequence

choose a different stream, simply because of round-off differences. Once this happened,

subsequent numbers could be dramatically different from computer to computer. Two

observations are pertinent: a) it is not clear that randomly choosing among random

generators produces more truly random results, and b) if, nevertheless, one wishes to choose

randomly among generators, a portable way of doing it is to use VUNIFI to generate a

random integer uniform in [0, 5], and then use this as an index into the random generator to

use for the next output draw.

Rule 5: Write standard compliant code in a portable standard high level programming

language.

Even if the two portable subroutines mentioned above are used, things can still go

wrong. Recently, when we tried· to compile a published generator that was described as

portable, the first attempt at compiling it failed because the program name was the same as

the name of the principal subroutine, a violation of the standard for the language FORTRAN.

Thus, one should not only choose a popular, standardized language, e.g., C or FORTRAN,

but also adhere to the language standard when writing the generator. Another problem we

encountered with a recent published generator resulted from inconsistency in the case used.

14

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

In one part of the program a variable was referred to as "z", whereas in another part of the

program, "Z" was used to refer to the same variable. Standard FORTRAN is case insensitive

and considers these two symbols as referring to the same variable. Absoft FORTRAN on the

Mac, however, deviates from the standard and considers these as two different variables. The

moral is, be consistent and do not push the standard. A minor portability problem with the C

language was that older, freely distributed compilers only recognized so-called

Kernigan&Ritchie C, whereas, recent compilers are designed for the ANSI-standard version

of C. A number of reliable translators, e.g., f2c, are available for converting standard

FORTRAN programs into standard C programs.

3 Computational Examples

As an exercise, we have written a portable version, CUTGENP, of the CUTGENI

generator, using the rules and tools mentioned above. We have compared CUTGENP with

CUTGENI using a number of different compilers and computers as indicated in Table 5.

15

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Table 5 : FORTRAN Compilers and Computers Used for the Experiments.

ID Compiler Computer and Operating System
Watcom Watcom Fortran 77 Version 10.6 Dell Dimension XPS Pro 200n

Windows 95
MSFort Microsoft Fortran 77 Powerstation Dell Dimension XPS Pro 200n

Windows 95
XLF IBM Fortran 77 IBM SP2 workstation RISC 6000

UNIX (AIX)
FortVS IBM VS Fortran 77 Version 2 IBM 96721R51 mainframe

Release 6 CMS (VM)
HP HP Fortran compiler HP-700

Unix
Alpha DEC Alpha Fortran DEC Alpha

Unix (OSF)
VMS VMS Fortran DEC Alpha

VMS
Sparc Sparc Fortran Sparc-20

SparcOS
Linux Linux/GNU Fortran Gateway Pentium Pro

Linux
SGI Silicon Graphics Fortran Silicon Graphics

Unix (IRIX Sys V.4)
Mac Absoft Apple Macintosh Power 8100

System 7

CUTGEN1 uses floating point arithmetic at some crucial points in its procedure, even though

it produces integer output. Thus, it may generate different output sets on different computers

for the same set of input parameters. As expected, CUTGENP generates the same output on

each computer for a given input set. We found that, for a given input data set, CUTGEN1

gave one set of results on Watcom, Linux and XLF, and another set of results (almost

identical to CUTGENP) on MSFort, SGI, HP, VMS, Sparc, Mac, Alpha and FortVS. For

reference, one set of input parameters that illustrates the non-portability is :

10 1000 .375 .625 50 991759555 150

16

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

with the second last number being the random number seed. For input to CUTGENP, the

decimal points are dropped on the 3rd and 4th numbers, i.e., they are interpreted as fractions of

1000, the second input number.

4 Conclusions and Ideas for Future Work

A problem generator is only a valid alternative to making large numbers of test

problems available to researchers to test new algorithms if it produces the same problem

instances on different machines with different compilers. In this paper, we have identified

five rules that should be considered in the development of portable generators of test

problems. Future work can focus on checking how well other available problem generators in

the literature satisfy our five rules and improving them if necessary such that they become

really portable.

17

Should We Use a Portable Generator in an Emergency?

Appendix A Random Number Generation Function URAND

FUNCTION URAND(IX)
INTEGER*4 IX

C Portable random number generator using the recursion:
C IX = 742938285 * IX MOD (2**(31) - 1)
C using only 32 bits, including sign.
C
C INPUTS:
C IX = integer in the interval [1, 2147483646]
C
C OUTPUTS:

Degraeve and Schrage

C IX = new (pseudorandom) integer in interval [1, 2147483646]
C URAND = a uniform fraction in (0.0, 1.0).
C
C COMMENTS:
C Cycle length is 2147483646. all integers in [1, 2147483646]
C are generated exactly once in a cycle.
C

INTEGER*4 K1
C Date 7 Aug 1994 by L. Schrage
C
C First note: 742938285 = 21309 * 34865
C Compute IX = 21309 * IX MOD 2147483647
C NOTE: 2147483647 = 21309 * 100778 + 5245

K1 IX / 100778
IX = 21309 * (IX - K1 * 100778) - K1 * 5245
IF (IX .LT. 0) IX = IX + 2147483647

C Compute IX = 34865 * IX MOD 2147483647
C Note: 2147483647 = 34865 * 61594 + 8837

K1 IX / 61594
IX = 34865 * (IX - K1 * 61594) - K1 * 8837
IF (IX .LT. 0) IX = IX + 2147483647
URAND = IX * 4.656612875E-10
RETURN
END

Appendix B SUBROUTINE VUNIFI

C

SUBROUTINE VUNIFI(M, IY, IR, IX)
INTEGER*4 M, IY, IR, IX

C Portable routine to compute
C integer part OF IY * IR / M
C
C INPUTS
C M THE 'MODULUS', 4 < M < 2 ** 31
C IR THE 'RANGE', 0 < (IR+2) * (IR+2) < M
C IY A 'RANDOM INTEGER', 0 <= IY < M
C
C It is caller's responsibility to check
C the bounds on the inputs
C
C OUTPUTS :
C IX = GREATEST INTEGER <= IY * IR / M
C
C E.G., If IY is uniform on [1, M-1]
C Then IX is approximately uniform on [0, IR - 1]

18

Should We Use a Portable Generator in an Emergency?

C

C 1 August 1997 by Z. Degraeve and L. Schrage
INTEGER*4 K, ID, IDNOM, INUMR, ITEMP, IXL

C
C Get an upper bound on [IY * IR/ M] = [IY/(M/ IR)]

K = M / IR
IX IY / K
ID = M - K * IR

C
C Now reduce IX if necessary. The initial IX
C overestimates the true/final value by at most 2
C if M > 4

DO 2090 IXL = IX, 0, -1
C

Degraeve and Schrage

C Test if IXL is small enough, i.e. in infinite precision:
C IXL <= IY * IR / M, or
C IXL * M <= IY * IR, or
C IXL * (K * IR + ID) <= IY * IR, or
C IR * (IY - IXL * K) >= IXL * ID, or
C IY - IXL * K > 0 and
C IR >= IXL * ID / (IY - IXL * K)
C Note IXL <= IR + 2, and ID < IR, so no overflow

INUMR = IXL * ID
IF(INUMR .EQ. 0) GO TO 9000

C Note, IXL <= IY/ K, so IXL * K <= IY, so no overflow
IDNOM = IY - IXL * K
IF(IDNOM .LE. 0) GO TO 2090
ITEMP = INUMR/ IDNOM
IF(IR .GT. ITEMP) GO TO 9000
IF(IR .LT. ITEMP) GO TO 2090

C We have IR = ITEMP, so
C IR >= IXL * ID/ (IY - IXL * K) only if no truncation
C occurred in computing ITEMP.
C Note, ITEMP <= lNUMR/ IDNOM, so no overflow

IF (ITEMP * IDNOM .GE. lNUMR) GO TO 9000
2090 CONTINUE

C

C

C

9000 IX = IXL

RETURN
END

19

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

References

Agrawal, M.K., Elmaghraby, S.E. and W.S. Herroelen, 1996, "DAGEN: A generator of Test

Sets for Project Activity Nets", European Journal of Operational Research, 90, 376-

382.

Arthur, J.L. and J.O. Frendewey, 1988, "Generating Travelling-Salesman Problems with

Known Optimal Tours", Journal of the Operational Research Society, 39(2), 153-159.

Babayev, D., F.Glover, and J. Ryan, 1997, "A New Knapsack Solution Approach by Integer

Equivalent Aggregation and Consistency Determination", INFORMS Journal on

Computing, 9(1),43-50.

Bratley, P., B. Fox, and L. Schrage, 1987, A Guide to Simulation, Springer-Verlag, New

York.

Degraeve, Z. and L. Schrage, 1997, "Optimal Integer Solutions to Real-Life Cutting-Stock

Problems", Research Report, Katholieke Universiteit Leuven, Department of Applied

Economic Sciences, Belgium.

Degraeve, Z., 1992, "Scheduling Joint Product Operations with Proposal Generation

Methods", Ph.D. Dissertation, The University of Chicago, Graduate School of

Business, Chicago, Illinois.

Demeulemeester, E., Dodin, B. and W. Herroelen, 1993, "A Random Activity Network

Generator", Operations Research, 41(5), 972-980.

Fishman, G. and L. Moore, 1986, "An Exhaustive Analysis of Multiplicative Congruential

random Number Generators with Modulus 231 _1", Siam Journal of Scientific and

Statistical Computation", vol. 7, no. 1, pp. 24-45.

20

Should We Use a Portable Generator in an Emergency? Degraeve and Schrage

Gau, T. and G. Wascher, 1995, "CUTGENI : A Problem Generator for the Standard One­

Dimensional Cutting Stock Problem", European Journal of Operational Research,

84, 572-579.

Greenberg, HJ., 1991, "RANDMOD: A System for Randomizing Modifications to an

Instance of a Linear Program", ORSA Journal on Computing, 3(2), Spring, 173-175.

Gilmore, P.e. and R.E. Gomory, 1961, "A Linear Programming Approach to the Cutting­

Stock Problem", Operations Research, 9, 849-859.

Klingman, D., Napier, A. and J. Stutz, 1974, "NETGEN : A Program for Generating Large

Scale Capacitated Assignment, Transportation, and Minimum cost Flow Network

Problems", Management Science, 20(5), 814-821.

Kolisch, R., Sprecher, A. and A. Drexl, 1995, "Characterization and Generation of a General

Class of Resource-Constrained Project Scheduling Problems", Management Science,

41(10),1693-1703.

Lin, B.W.Y., and R.L. Rardin, 1977, "Development of a Parametric Generating Procedure for

Integer Programming Test Problems", Journal of The Association for Computing

Machinery, 24(3), 465-472.

Martello, S. and P. Toth, 1990, "An Exact Algorithm for Large Unbounded Knapsack

Problems", Operations Research Letters, vol. 9, pp. 15-20.

Sun, M., and R. Steuer, 1996, "Quad-Trees and Linear Lists for Identifying Nondominated

Criterion Vectors", INFORMS Journal on Computing, vol. 8, no. 4, pp. 367-375.

21

