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Abstract

In this paper we present an efficient methodology for approximating the
distribution function of the net present value of a series of cash-flows, when
the discounting is presented by a stochastic differential equation as in the
Vasicek model and in the Ho-Lee model. Upper and lower bounds in con-
vexity order are obtained. The high accuracy of the method is illustrated
for cash-flows for which no analytical results are available.

1 Introduction

When determining the present value of a series of n payments ¢; at times 7;
(¢ =1,...,n), one has to define a discount process X (7). The present value of
this series is then given by

Vb = Zc,«,e_’\'(m. (1)
=1

To determine the cumulative distribution function (cdf) of this random variable
(rv), one has to cope with a standard problem: the summation of rvs with mar-
ginal cdfs of the same type need not (and often will not) produce a cdf of that
type. Secondly, the dependence structure of the rvs X (7;) is not known or hard
to obtain in general. Although we could approximate the cdf via Monte Carlo
simulation when the dependence structure of the X (7;) is given, this would be
very time-consuming. Moreover, if we want to estimate a high quautile (e.g.
Value-at-Risk) accurately, we should increase the sample size — and consequently
the computation time — drastically. Using results from actuarial risk theory on
comonotonic risks, we can however obtain an easily computable upper bound for
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Vo. In addition, Jensen’s inequality combined with the theory on comonotonic
risks provides a tool for obtaining a lower bound.

In this paper we will define the discount factors as follows. We write X (7) as

X(r) = /0 r(s)ds, . (2)

hence .
Vo= Z C; exXp <—/ ’r(s)ds) , (3)
i=1 0

and consider two types of models for (s). In the first model, the stochastic
differential equation for describing the behaviour of r(s) is the same as the one
for the instantaneous interest rate in the Vasicek (1977) model:

dr = (o — Br)dt + vdW, (4)

where o, § and « are non-negative constants and W represents a standard Wiener
process. Replacing o by a non-negative function «(¢) of time, as in the Ho-Lee
(1986) model yields a second model:

dr = a(t)dt +vdW. (5)

In the present paper analytical upper and lower bounds for the distribution func-
tion of V; are obtained. They are shown to be practically applicable due to the
very small relative error bounds. Random variables of this type arise in modern
actuarial situations where e.g. discounting is taken into account in the evaluation
of the distribution of IBNR provisions. In the case of financial reinsurauce it
provides the distribution of the experience account and as such it enables the
determination of the final premium of this type of reinsurance. Knowing the dis-
tribution of Vg, provides a tool for the determination of the ”fair value” as well as
the ”supervisory value” of a portfolio of risks. Moreover it avoids simulations in
solvency calculations and it helps for the determination of embedded value and
appraisal value.

Our methodology only requires the knowledge of the distribution functions of
the X(7;) and does not take into account the dependence structure between
these random variables. Allowing for all kinds of dependence structures, which
often cannot be measured because of the incomplete statistical basis, of course
has an influence on the distribution function of V5. Replacing the unknown cdf
of Vo by the upper bound (in convex order sense) is a safe strategy in the sense
that all risk averse decision makers would prefer the original (unknown) cdf. On
the other hand, the lower bound gives us an idea of the high accuracy of the
approximation.



2 Convex Upper Bound

In the actuarial field it is common practice to replace the cdf of 14 by a "less
favourable” one. Of course the new cdf should be easier to determine, see e.g.
Goovaerts e.a. (1986). To formalise the concept "less favourable”, we make use
of the convex order.

Definition 1 A rv V is smaller than a rv W in the conver order if
E[g(V)] < Blg(W)]
for all convex functions ¢ : R — R. This is denoted as V <. W.

In terms of utility theory, V <. W means that the rv V' is preferred to the rv
W by all risk averse decision makers, i.e. E[u(=V)] > E[u(—W)] for all concave
utility functions u. Replacing the cdf of V' by the cdf of ¥ can therefore be
considered as a prudent strategy. A closely related order is the stop-loss order.

Definition 2 A rv V is smaller than a rv W in the stop-loss order if
BV —d, < EW —d),
for all d. This is denoted as V <z W.

In Shaked & Shanthikumar (1994) it is proven that the convex order incorporates
the stop-loss order:

V<aW

/
V<aW <« { BV - EW (6)

We will now introduce the concepts of a Fréchet space and comonotonic risks,
which will enable us to construct an upper bound for V4.

Definition 3 The Fréchet space R, (Fi,..., F,) determined by the (univariaie)
distribution functions Fy, ..., F, is the class of all n-variate distribution functions
F (or the corresponding rvs) with marginals Fy, ..., F,.

In the Fréchet space R, (Fy,..., Fy,) any rv X.is constrained from above by
Fx(x) <min{F\(z1), Fs(xa), ..., Fu(z,)} = Wo(x), VxeR"
A comonotone risk is a rv with cdf W,,, see e.g. Dhaene et al (1997):

Definition 4 A random vector (X1,...,X,) is said to be comonotone (the rus
X1,..., Xy are said to be mutually comonotone) if any of the following equivalent
conditions hold:



1. For the n-variate cdf we have

Fx(x) = min{ Fi(21), Fa(22),..., Fu(z.)}, VxeRY;

2. There exist a rv Z and non-decreasing functions gy, ..., g, - R = R such
that

LX) (91(2), ,gn(Z)r);

3. For any rv U uniformily distributed on [0,1], we have

(X, ..

(X1, ... X)) 2 (FFNU), ... F-HU)).

T

d e e _ . .
As usual, ”=" denotes equality in distribution and F=! represents the inverse of

the cdf F' defined as

F'(p) = inf{z € R|Fx(z) > p}, pe€0,1].
It can be seen from condition 2 that comonotonic rvs possess a very stroug positive
dependence: increasing one of the X; will lead to an increase of all other rvs X
involved. These special rvs will provide us with a tool to construct a close upper

bound for Vg, see Goovaerts et al (2000).

Theorem 1 Let X = (X4,..., X,,) be a n-dimensional rv with marginals Fy, ..., F,,.
Further, let U be a rv, uniformly distributed on [0,1]. Finally, let ¢, ..., ¢, be
non-negative and non-increasing functions. Then

(bl()‘rl) + ¢11.(Xn) S(L’I? ¢1(F]71(U)) +--e ¢H(E71(U)) (7)

Proof. In Goovaerts & Dhaene (1999), it is shown that
Y60 e Yy B(FTHU)).
i=1 i=1

Because (X1, ..., X,) and (F7'(U),..., F7Y(U)) have the same marginals, > | &;(X;)

and Y. ¢;(F; '(U)) have the same mean. Equation (6) then completes the
proof. O

Setting ¢;(X) := ¢;exp (—X (7)), we obtain the convex upper bound

W = Z(;S,;(FI\TSTZ)(U)) = Zc/ exp(—Fl\T(lT‘;)(U)). (8)
i=1 i=1

To compute the cdf of W, we can use the additivity of the inverse cdfs of comeo-
notonic risks.



Proposition 1 Let Y7,...,Y, ben comonotonic risks with marginals F\, ..., F,.
Then

Fit) =) F'p),  pel01l,
with S =Y, + ...+ Y.

For a proof of this result, we refer the interested reader to Dennenberg (1994).
Remark that, for any strictly decreasing function ¢ and any cdf Fy,

HFS (1) = Fyhy 1 —p),  pel01].

So, for strictly positive cash-flows ¢; and strictly increasing Fy(,), the tail function
Fw :=1— Fy is implicitely given by

ZM (Frry Fw (@) = z. (9)

Notice that we only need to know the inverse marginal cdfs F3 -
the upper bound. If all ¢; < 0, then Fy is implicitely given by

X(r) to compute

qu, oy (Fw (@) = 2. (10)

The case when certain ¢; are negative and other are positive is considered in
Goovaerts et al (2000). Theorem 1 can also be used to determine an upper
bound for the price of an arithmetic Asian option, see Simon et al (2000).

3 Convex Lower Bound

Starting from Jensen’s inequality for conditional expectations,

E[f(V)12] = f(E[V|Z)), (11)

where f : R — R is a convex function, we can derive a convex lower bound
for Vy. This inequality has also been used by Rogers & Shi (1995) to obtain a
lower bound for the price of an Asian option, while Feynman & Hibbs (1965)
applied it to introduce a variational result for essentially the same quantity, ¢.q.
the partition matrix, an important quantity in mathematical physics.

Proposition 2 For any two rvs Y and Z, let L :== E(Y'|Z). Then

L S(L’I? )/ (12)



Proof. As (-)y = max(-,0) is a convex function, we find for all

EIY ~Ky = E[B(Y - k)|2)]
> BIE(Y —k|Z));
= E[L-k,

Furthermore, L and ¥ have the same mean, so again equation (6) completes the
proof. O

Replacing Y™ by V4 and choosing an appropriate conditioning variable Z, we get
an expression for the stop-loss transform E(L — k), of the convex lower bound
L. To compute the cdf Fy, out of E(L — k), , remark that

00
EX -k = / (2 — k)dFy(x),
Sk
hence
d i 00
—FE(X —-k); = —/ dFy(z) = Fx (k) — 1. (13)

4 Application: Vasicek & Ho-Lee Model

Solving the stochastic differential equation for the Vasicek model results in

r(s) = e (0) + %(1 — eiﬁs) +ye P / eﬂ""(ﬂﬂf’(’u), (14)
Jo
_Bs « _ 72 94k -
~ N {e %0 —l—vl—eﬁs,~1~e‘ﬂ”.> 15
(5@ + -, ) (15)
Straightforward calculus then yields, for X (7) := [ r(s)ds,
o 1 o _ v [T -
X(r)=—=7+2(r0) - )1 —e?" —i-f/ 1 — 0= aW (u),
(7) 3 ﬁ(()ﬁ)( )5_0( )aW (u)
which in turn has a normal distribution with mean
« 1 «
p(r) = -7+ —(r(0) — -)(1 — e
(1) 5 ﬁ( (0) ﬁ)( )

and variance

2
Y 2 —Br
02(7):/j_—2<7'—~(1—6ﬁ)+

: La-em),

20
For the Ho-Lee model we get

r(s) = r(0)+ '/0.5 a(u)du +yW (s), (16)
~ N (7‘(0) + /05 a('u)d'u,72s) ) (17)
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Consequently, X' (7) is normally distributed with mean

p(1) = r(0)T + ¢al(7)

and variance

2 g
o(r) = L5

)

T

where we used the abbreviation ¢q(7) == [ a(u)(r — u)du.

The convex upper bound for ¥ for both models follows from

Z cexp {—p(r) —o(m) o (Fw(k))} =k (18)

where @ denotes the standard normal cdf. Equivalently,
va(li:) =1- (I)('U,k) (19)

with uy determined by

ZC-:: exp {—p(7;) — o(ri)ur} = k. (20)

=0

To compute the convex lower bound, we first have to choose a conditioning vari-
able Z. Therefore, define

8
I; .= f/ X(r)dr,
Jo

which is clearly again normally distributed, say, with mean ;s and variance o3.
Now we choose I
Zy =2 L N(@0,1), (21)

as

as conditioning variable. Recall that when a normal rv —X(7) is conditioned on
a standard normal rv Zs, it remains normal with mean

E(=X(7)|2Zs) = —E(X(7)) + krsZs

and variance
Var(-X(7)|2s) = Var(X(r)) - 2,
where

I
ks = Cou(—=X(7),Z;) = 0_5/ Cou(X (1), X (v))dv.
0



The stop-loss transform of the lower bound L is given by

E <Z e X)) Zl;) — l{:}
=1 +

i:(’E (e—«\'(ﬂ'ﬂz&) _ k}
4

=1

1
ZC, (J\p{ () + kv, 525 + 2( (T,) LTHJ)} — ];::|

[k

n 1 )
5 ¢; exp {*/L(Ti) + ki, s® 7 (u) + 5(02(7,7) - AZTI,J)} - A} du
=1

=

E(L—k)y

= F

Il

+

+
Notice that the integrand is a non-decreasing function of u, at least if ¢; > 0 and
k5 >0 (¢=1,...,n). This means that the integrand equals zero for all u < uy,
with u, determined by

T

Z i exXp {—/L(TL') + ko 5@ (ug) + %(02(7,;) - l{}.,—_/.)(g)} =k. (22)

i=1
Consequently
1
E(L-k), = /UL Z}:c, exp{ (7i) + Ky, 6@ () + 5(02(7',,;) — kﬂ,‘;)} — k du

and
d 1
o —E(L-k)y = / (—1) du = ug — 1.

J g

Finally, using equation (13), we find
If however ¢; < 0, Vi, then
U,
EE(L ks /0 (=1) du = —uy,

and FL(IC) =1- Uk -

For the Vasicek model, some lengthy yet simple calculations yield

i - i . ’}’_2 (7— A I/) _ l(Pﬁ(TN/) _ 1)(6_'67 + e—ﬁu) + L((,ﬁ(-r/\z/) _ e—/f(-r/\u)) du
" o5 Jo P? B ’ 28
14 72 e P _pr 1 o207
= o {75 /3(5+ 7 (e 1) — 2/32( +1)



where 7 < § and

C o (B i 1, o
05:;—2{[3&(%—1)—5(2() ‘”—1)~§B(e f”—l)}

Remark that

W=

2
Cov(r(u),r(s)) = e_ﬁ(""“);vﬁ () —1) >0

which implies the positivity of k; 5. Analogous, for the Ho-Lee model we get

1042 . 2 .
ks = — {—(T/\I/)Z(T-i-l/) - —f(T/\J/)"}dl/
’ as Jo 2 3

ek (I o S T
_ + -
205 |12 3 2

where 7 < § and ‘
v9°
=-—+/6/5.
s B /
The k,, 5 are here also positive, because

Cov(r(u),r(s)) = ¥*(u A s) > 0.

5 Accuracy of the bounds

In this section we investigate the accuracy of the proposed bounds for the pre-
sent value function V4, by comparing their c¢df to the empirical cdf obtained with
Monte Carlo simulation. We also construct a QQ-plot to visualise the goodness-
of-fit. Finally, we determine the maximum stop-loss error, relatively to the ex-
pected value of V4, by calculating the stop-loss premiums of the upper and lower
bound respectively:
EW —k), —E(L—-Fk).
E(Vy)

The first case considered is the Vasicek model with parameters o = 0.0038438,
6 = 0.044688 and v = 0.0015313, see De Winne (1995). We set ¢; = 100, 7, = i
(¢=1,...,30) and choose r(0) = 0.08, § = 30.

Figure 1 shows the distribution functions and the corresponding QQ-plots of
the upper and lower bounds, compared to the empirical distribution based on
10000 randomly generated, normally distributed vectors. The distribution func-
tions are remarkably close to each other and enclose the simulated cdf nicely.
This is confirmed by the QQ-plot where we also see that the comonotonic upper

9



bound has somewhat heavier tails. In figure 2 we plot the upper and lower stop-
loss premiums, E(W — k), and E(L — k), respectively, for several retentious k.
The vertical line indicates the mean present value E(Vy) = 1074.987. For the
maximal vdlue of the maximum relative stop-loss error, we find

W -k, —-FEL-k
max (E( I A);?(H]) ( )+) ~ 0.08%.

We now construct a Ho-Lee model where, besides a lineair part, r(-) consists of a
harmonically damped oscillation and some normally distributed error. Therefore,
we define

a(T) = B+ Ae™ [wcos(wT) — gsin(wT)]

with v = 0.01, A = 0.003, B = 0.01, ¢ = 0.01 and w = 3. Hence,

_ Br? Aw Ae™7 [w cos(wT) + g sin(wT)]

+ ; 5 5
9 92 + w? g% + w?

Pa(T)

Again, we assume equal payments ¢; = 100 at times 7;, = ¢ ( = 1,...,30) and
choose 6 = 30. The initial interest rate r(0) is set to 0.5, so E(Vy) = 839.4933.
Figures 3 and 4 again indicate the high accuracy of the bounds: e.g. the maxi-
mum relative stop-loss error stays below 0.6%.

Intuitively, we expect the bounds to perform worse when the payments ¢; are
no longer constant or when 7 increases. We therefore revisit the Vasicek model
and set ¢; = 4. Moreover, we increase v by a factor 10, so E(Vy) = 121.4577.
Despite the absence of the ¢; in the conditioning variable Zs, both upper and
lower bounds remain excellent approximations (see figures 5 en 6).
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Upper Bound, Lower Bound & Empirical Distribution (Vasicek model)
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(a) Upper (—) & lower (- -) bound vs. Monte Carlo simulation (---)
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Figure 1: Distribution function and QQ-plot of the upper & lower bounds (Vasi-
cek model), compared to Monte Carlo simulation. = - )
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Upper & lower stop-loss premium (Vasicek model)

30 40 50
1

stop-loss premium
P

10

1050 1100 1150 1200

retention

(a) Stop-loss premiums

Max. relative stop-loss error (Vasicek model)

max. relative stop-loss error
0.0004 0.0006 0.0008
1 1 1

0.0002
1

0.0

1050 1100 1150 1200

retention
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Figure 2: Stop-loss premiums for the upper & lower bounds and the corresponding
maximum relative stop-loss error (Vasicek model)
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Upper Bound, Lower Bound & Empirical Distribution (Ho-Lee model)
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Figure 3: Distribution function and QQ-plot of the upper & lower bounds (Ho-
Lee model), compared to Monte Carlo simulation

14



Upper & lower stop-loss premium (Ho-Lee model)
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Figure 4: Stop-loss premiums for the upper & lower bounds and the corresponding
maximum relative stop-loss error (Ho-Lee model)
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Upper Bound, Lower Bound & Empirical Distribution (Vasicek model)
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Figure 5: Distribution function and QQ-plot of the upper & lower bounds (Vasi-
cek model), compared to Monte Carlo simulation
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Upper & lower stop-loss premium (Vasicek model)
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Figure 6: Stop-loss premiums for the upper & lower bounds and the corresponding
maximum relative stop-loss error (Vasicek model)
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