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Abstract 

In this paper we present. an efficient. met.hodology for approximat.ing t.he 
distribution function of t.he net present value of a series of cash-flows, whell 
the discounting is present.ed by a st.ochastic difl·erent.ial equat.ion as in t.he 
Vasicek model and in t.he Ho-Lee model. Upper and lower bounds in con
vexity order are obt.ained. The high accuracy of t.he methoc! is illust.rat.ed 
for cash-flows for which no analytical results are available. 

1 Introduction 

When determining the present value of a series of n payments Ci at times Ti 
(i = 1, ... , n), one has to define a discount process X (T). The present vallw of 
this series is then given by 

n 

Vo = L C.ie-X(T;). 

i=l 

(1) 

To determine the cumulative distribution function (cdf) of this ra11clolll variabl(~ 
(rv), one has to cope with a standard problem: the summation of rvs with mar
ginal cdfs of the same type Ileed not (and often will not) produce a cdf of that 
type. Secondly, the dependence structure of the rvs X (Ti) is not known or hard 
to obtain in general. Although we could approximate the celf via lV1011te Carlo 
simulation when the dependence structure of the X (T;J is given, this would he 
very time-consuming. Moreover, if we want to estimate a high quantil!: (e.g. 
Value-at-Risk) accurately, we should increase the sample size - anel consequently 
the computation time - drastically. Using results from actuarial risk theory on 
comonotonic risks, we can however obtain an easily computable upper bound for 
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1/0. In addition, Jensen's inequality combined with the theory on COlllonotollic 
risks provides a tool for obtaining a lower bound. 

In this paper we will define the discount factors as follows. We write X (T) as 

hence 

X(T) = r T(s)ds, 
./0 

Va = t c" exp (-1'1'; T(S)dS) , 

(2) 

and consider two types of models for .,.(s). In the first model, the stochastic 
differential equation for describing the behaviour of T( s) is the same as the one 
for the instantaneous interest rate in the Vasicek (1977) model: 

dT = (a - {3T)dt + 'YdTiV, (4) 

where a, {3 and 'Yare non-negative constants and H! represents a standard vViellPr 
process. Replacing a by a non-negative function a(t) of time, as in the Ho-Lee 
(1986) model yields a second model: 

dT = a(t)dt + 'YdW. (5) 

In the present paper analytical upper and lower bounds for the distribution func
tion of Va are obtained. They are shown to be practically applicable dup to the 
very small relative error bounds. Random variables of this type arise in model'll 
actuarial situations where e.g. discounting is taken into account in the evaluation 
of the distribution of IBNR provisions. In the case of financial n~insural1(:e it 
provides the distribution of the experience account and as such it enables the 
determination of the final premium of this type of reinsurance. Knowing tlw dis
tribution of Va, provides a tool for the determination of the "fair value" as well a" 
the "supervisory value" of a portfolio of risks. Moreover it avoids simulations in 
solvency calculations and it helps for the determination of embedded valUf~ and 
appraisal value. 

Our methodology only requires the knowledge of the distribution functions of 
the X(Ti) and does not take into account th(~ dependence structure betwefm 
these random variables. Allowing for all kinds of dependence structures, which 
often cannot be measured because of the incomplete statistical basis, of coun;(~ 
has an influence on the distribution function of Vo. Replacing the unknown cdf 
of Vo by the upper bound (in convex order sense) is a safe strategy in the sense 
that all risk averse decision makers would prefer the original (unknown) cdf. On 
the other hand, the lower bound gives us an idea of the high accuracy of the 
approximation. 

2 



2 Convex Upper Bound 

In the actuarial field it is common practice to replace the eelf of 10 by a "less 
favourable" one. Of comse the new cdf should be easier to determiu(-\ se(~ (,.12,. 

Goovaerts e.a. (1986). To formalise the concept "less favomable", \-'ie make use 
of the convex order. 

Definition 1 A rv 1/ 'is smalleT than 0. r'v vV in the mnve:r oT!leT if 

E[rp(V)] :::: E[rp(W)] 

for' all convex functions (p : R --7 R This 'is denoted as V ::::11 vl/. 

In terms of utility theory, V ::::C:l IV means that the rv 17 is preferred to the l"\' 

W by all risk averse decision makers, i.e. E[v,( -lf l] 2: E[u( - VVl] for all COllcavr~ 
utility functions u. Replacing the cdf of V by the cdf of H' can thr~j"(-Jon' lw 
considered as a prudent strategy. A closely related order is the stop-loss order. 

Definition 2 A TV V 'is smalleT than a rv Hf 'in the stop-l08s onler' if 

for all d. Th'is is denoted as V Scsi W. 

In Shaked & Shanthikumar (1994) it is proven that the convex order incorporates 
the stop-loss order: 

If ::::,"" lV -¢==} { V ::::sf lV 
EV=EW 

(G) 

We will now introduce the concepts of a Frechet space and COIIlOnotonic risks, 
which will enable us to construct an upper bound for Vo. 

Definition 3 The Fr'cchet space Rn(F), ... , Fn) determined by the (u.nivo.r-iate) 
distribution functions F j , ••• , Fn is the class of all n-vo.rio.tp. distr-i/mhon Ill/rull'ious 
F (or the cor-responding TVS) with mo.rgirwls F), ... , Fl!' 

In the Frechet space Rn(F) , ... , Fnl any rv X.is constrained from above by 

A comonotone risk is a rv with cdf W:'Ll see e.g. Dhaene et al (1997): 

Definition 4 A mndom vector' (Xl? ... ,Xn ) is so.'id to be comonotone (the '("'/)8 

X), ... ,Xn aTe said to be m:u.tuo.lly comonotone) -if any of the follo'Uri'flfJ eq1Livair;nt 
conditions hold: 
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1. For the n-variate cd:f" we have 

2. There e.7;ist a rv Z and non-decrea.sing jiJ.nctions gl, ... ,g71. : lR. -+ lR. .0;'11.1:11. 

that 

3. FOT any rv U un~f"o7"Tnily distr'ib'ated on [0,1], we have 

As usual, "4,,, denotes equality in distribution and F- 1 represents the inverse uf 
the cdf F defined as 

It can be seen from condition 2 that comonotonic rvs possess a very strong pOHitive 
dependence: increasing one of the x.i will lead to an increase of all other rvs X,i 
involved. These special rvs will provide us with a tool to construct a close upper 
bound for Va, see Goovaerts et al (2000). 

Theorem 1 Lei X = (XI, ... , Xn) be a n-dimensional r"u w'ith marg'inals F I ;··., Fl/.' 
Further, let U be a TV, uniformly distributed on [0, 1]. Finally, let (PI; ... '¢71. /if, 
non-negative and non-incTeasing functions. Then 

Proof. In Goovaerts & Dhaene (1999), it is shown that 

n n 

L¢;(Xi ) 'Sse L¢i(Fj-l(U)). 
;=1 ;=1 

Because (Xl, ... , Xn) and (Fl-I(U), ... , FlI~l(U)) have the same marginahi, I::'~l c,b,(Xi ) 
and I:~~l ¢i(F;-l(U)) have the same mean. Equation (6) then completes the 
proof. 0 

Setting ¢i(X):= c;exp(-X(T.,)), we obtain the convex upper bound 

n n 

(8) 
i=l ,=1 

To compute the cdf of W, we can use the additivity of the inverse cdf" of COIIlO

notonic risks. 
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Proposition 1 Let Y1 , •.. , 1';,. be 17. comonotort'ic risks w'ith ma:rg'inals F l , ... , FI/' 
Then 

11. 

P E [0,1], 
'l=l 

w'ith S = Y1 + ... + 1;,. 

For a proof of this result, we refer the interested reader to Dennenberg (1994). 
Remark that, for any strictly decreasing function (p and any cdf Fx, 

P E [0, IJ. 

So, for strictly positive cash-flows Gi and strictly increasing FX(T;) , the tail functioll 
PVv' := 1 - Fw is implicit ely given by 

n 

L ¢i(F,X(Ti) (Pw(:r:))) = .T. (9) 
i=l 

Notice that we only need to know the inverse marginal cdfs F'\(T;) to wrnpute 
the upper bound. If all Ci < 0, then Fw is implicit ely given by 

n 

L ¢i(FX(Ti) (Fw(x))) = x. (10) 
;=1 

The case when certain Ci are negative and other are positive is considered in 
Goovaerts et al (2000). Theorem 1 can also be used to determine an upper 
bound for the price of an arithmetic Asian option, see Simon et al (2000). 

3 Convex Lower Bound 

Starting from Jensen's inequality for conditional expectations, 

E[J(V)IZJ ?: J(E[VIZ]), (11) 

where f : lR -+ lR is a convex function, we c:an derive a c:onvex lower bound 
for Vo. This inequality has also been used by Rogers & Shi (1995) to obtain a 
lower bound for the price of an Asian option, while Feynmall & Hibbs (1965) 
applied it to introduc:e a variational result for essentially the same quantity; C:.fJ· 
the partition matrix, an important quantity in mathematical physic:s. 

Proposition 2 For' any two rV8 Y and Z, let L := E(YIZ). Then 

L:::::<:1: Y (12) 

5 



Proof_ As (-)+ = max(·; 0) is a convex fum:tion, w(" find for all k 

E[Y - k]+ E[E((Y - k)+IZ)] 
~ E[E(Y - kIZ)l+ 
= E[L- k]+ 

Furthermore, L and I' havr. the same mean, so again r.quation (6) complr.tes the 
proof. 0 

Replacing Y by Va and c:hoosing an appropriate c:onditioning variable Z, we get 
an expression for the stop-loss transform E(L - k)+ of the convex lower bound 
L. To compute the cdf FI, out of E(L - k)+, rema.rk that 

l+oo 
E(X - k)+ = (x - k)dFx (:r:), 

• k 

hence 

(13) 

4 Application: Vasicek & Ho-Lee Model 

Solving the stochastic differential equation for the Vasicek model results in 

1'(8) = e-11-'T(0) + ~(1- e-{3S) + "(c-{3s.f e{3udW(u), (14) 

N (e- f3S 1'(O) + ~(1 - e-(38 ), ;;(1- e-2f3-').) (13) 

Straightforward calculus then yields, for X(7) := J; 1'(s)ds, 

X(7) = ~T + ~(T(O) - ~)(1 - e-{3T) + ~ 1T (1 - e{3('IL-T))dW(v,), 

which in turn has a normal distribution with mean 

and variance 

0'2(7) = ;: (7 -*(1 - e-f3T ) + 2~(1 - e-2/h )) . 

For the Ho-Lee model we get 

T(S) = T(O) + t o{u)du + "(W(s), 
.fa 

N (1'(0) +.f a(v.)dv",,(2s). 

6 

(IG) 

(17) 



Consequently, X(T) is normally distributed with mean 

and variance 
",2 3 

a2(T) = T' 
where we used the abbreviation 'P,,(T) := JOT O{U)(T - 'u.)dv.. 

The convex upper bound for Vo for both models follows from 

11 

L C; exp {-p,(Ti) - a(T.,)<J>-l(F\v(k))} = k (18) 
i=O 

where <T> denotes the standard normal cdf. Equivalently, 

(H)) 

with 'Uk determined by 

n 

LCiexp{-p,(Ti) - a(TJv.d = k. (20) 
;=0 

To compute the convex lower bound, we first have to choose a conditioning vari
able Z. Therefore, define 

fa := - faX(T)dT, 
.fa 

which is clearly again normally distributed, say, with mean fl.1i and variance ai· 
Now we choose 

fa - P,1i 
Z/j := -- ~ N(O, 1), 

ali 
(21) 

as conditioning variable. Recall that when a normal rv -X (T) is conditiollf~d on 
a standard normal rv Za, it remains normal with mean 

E(-X(T)IZIi) = -E(X(T)) + kT,IiZIi 

and variance 
Var(-X(T)IZa) = Var(X(T)) - k;,(5) 

where 
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The stop-loss transform of the lower bound L is given by 

Notice that the integrand is a non-decreasing function of 'U, at least if Ci. 2': 0 alld 
kTi,1i 2': 0 ('i = 1, ... , n). This means that the integrand equals zero for all '/J, :S 'Uk, 

with 'Uk determined by 

t Ci ex]) { - p( Ti) + kTi,r,<P- 1 ('U,,) + ~ (a 2 ( Ti.) - kT ,,8) } = k. (22) 

Consequently 

and 

~E(L - k)+ = /1 (-1) d'iJ, = Uk-l. 
dk , 'lJ.1 

Finally, using equation (13), we find 

Fdk) = 'Uk, (23) 

If however Ci < 0, I;j-i" then 

.J j""" Q, 

-E(L - k)+ = (-1) d'U, = -'/J,k, 
dk 0 

and Fdk) = 1 - 'Uk, 

For the Vasicek model, some lengthy yet simple calculations yield 

~ (" ,2 {(T 1\ v) _ .!.(e1j(TIIU) _l)(e-i3T + e- i3l)) + ~(e;3(TIII)) _ e-1J(TIIU))} du 
ali J 0 fP f3 2(3 

-- T6 - - + -(6 + _)(e-;3T - 1) - _(e-21:JT + 1) 
1 ,2 { T2 1 e-;36 1 } 

ali f32 2 (3 f3 2f32 
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where T ::; 6 and 

Remark that 
? 

CO'ii(r(u.) , 1'(5)) = e-1J(u+s) ~;i (eL(J(liflS) - 1) 2' 0 

which implies the positivity of kT .6. Analogous, for the Ho-Lee model we get 

where T ::; 6 and 
62 

(J6 = L..j5f5. 
2 

The kTi ,6 are here also positive, be<.:ause 

5 Accuracy of the bounds 

In this section we investigate the a<.:curacy of the proposed bounds for the pre
sent value function Vo, by comparing their cdf to the empirical cdf obtaillecl with 
Monte Carlo simulation. We also construct a QQ-plot to visualise the goodness
of-fit. Finally, we determine the maximum stop-loss error, relatively to the: ex
pected value of Vo, by calculating the stop-loss premiums of the upper and lower 
bound respectively: 

E(W - k)+ - E(L - k)+ 

E(Vo) 
The first case considered is the Vasicek model with parameters 0: = 0.0038438, 
f3 = 0.044688 and, = 0.0015313, see De Winne (1995). We set c, = 100, T, =i 
(i = 1, ... ,30) and choose 1'(0) = 0.08, 6 = 30. 

Figure 1 shows the distribution functions and the corresponding QQ-plots of 
the upper and lower bounds, <':OInpared to the empirical distribution based Oil 

10000 randomly generated, normally distributed vectors. The distribution fnllC:
tions are remarkably close to each other and enclose the simulated cdf !licely. 
This is confirmed by the QQ-plot where we also see that the comollotonic: upper 
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bound has somewhat heavier tails. In figure 2 we plot the upper and lower stop
loss premiums, E(vV - k)+ and E(L - k)+ respectively, for several retentioll~ k. 
The vertical line indicates the mean present value E(1fo) = 1074.987. For the 
maximal value of the maximum relative stop-loss error, we find 

. (E(Hl - k)+ - E(L - k)+) ~ 0 08°;' 
max ( ) ~ . 10. 

k E 10 

We now construct a Ho-Le(-' model where, besides a lineair part, .,-(.) consists of a 
harmonically damped oscillation and some normally distri bu ted error. Tllerdon', 
we define 

O'(T) := B + Ae-(/T [WCOS(WT) - gSill(WT)] 

with r = 0.01, A = 0.003, B = 0.01, g = 0.01 and 'W = 3. Hence, 

( ) _ BT2 ~ _ Ae-gT [w COS(WT) + g sin(wT)J 
'Pc> T - ') + 2 2 2 2 

~ g +W g +W 

Again, we assume equal payments Ci = 100 at times Ti = 'i (i = 1, ... ,30) aml 
choose is = 30. The initial interest rate r(O) is set to 0.5, so E(1!Q) = 839.4933. 
Figures 3 and 4 again indicate the high accuracy of the bounds: e.g. the maxi
mum relative stop-loss error stays below 0.6%. 

Intuitively, we expect the bounds to perform worse when the payments Ci are 
no longer constant or when r increases. vVe therefon~ revisit the Vasicek model 
and set C; = i. Moreover, we increase r by a factor 10, so E(vo) = 121.4577. 
Despite the absence of the c, in the conditioning variable Z,y, both upper ane! 
lower bounds remain excellent approximations (see figures 5 en 6). 

References 

[1] Bingham N.H. & Kiesel R, 1998, Risk-Ne'Utml Valv,at'ion, Pr'icing and Hed
ging of Financial Der-ivatives, Springer-Verlag London. 

[2J De Winne R, 1995, The Discr-etization Bias fOT Pmcesses of the Shm·t- Tenn. 
Interest Rate: An Emp'ir-ical Analysis, Discussion Paper CORE 9564. 

[3] Dennenberg D., 1994, Non-Additi'ue Measur-e and Integr'al, Kluwer Acad(~mic 
Publishers, Boston. 

[4J Dhaene J., Wang S., Young V. & Goovaerts M.J., 1997, CO'IT/,orwt!J'II:icity 
and Maximal Stop-Loss Pr-emiv:rns, Research Report 9730, Department of 
Applied Economics KU.Leuven. 

[5] Feynman RP. & Hibbs A.R., 1965, Q'Uo.ntv,rn, Mechanics and Path-In.teqm.ls, 
Me. Graw Hill Book Company, New York. 

10 



[6] Goovaerts M.J. & Dhaene J., 1999, S'lJ.pe'rrnod'U,lar· o'!"der·'ing and stochastic 
anrm'ities, Insurance: Mathematics and Economics, 24, p. 281-290. 

[7] Goovaerts M.J., Dhaene,T. & De Schepper A., 2000, Stochastic 'uppe'!" bov:nr!s 
fOT pTesent val'ae funct'ions, Journal of Risk and Insurance, forthcoming. 

[8] Ho T. & Lee S., 1986, TeTrn Str-1J.ct'U:re Movements and Pr·'icing Inter-est Rate 
Contingent Claim,s, Journal of Finance, 41. 

[9] Rogers L. & Shi Z., 1995, The Vaz'ue of au Asian Opt'iou, Jourual of Appli(~d 
Probability, 32, p. 1077-1088. 

[10] Shaked M. & Shanthikumar J.G., 1994, Stochastic oTder·s and their- (J.]Jpl'il:a
tions, Academic press, p. 545. 

[11] Simon S., Goovaerts M.J. & Dhaene J., 2000, An easy cOTnp'atable 'upper· 
bo'U,nd for· the pr-ice of an Qrith:metic Asian option, Insurance: Mathematics 
& Economics, forthcoming. 

[12] Vasicek 0., 1977, An Eq1J.ilibr-ium ChamcteTizat'ion of the Term StT'lU;t'IJ.l'lO, 
Journal of Financial Economies, 5, p. 177-188. 

11 



Upper Bound, Lower Bound & Empirical Distribution (Vasicek model) 
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(b) Upper (0) & lower (0) quantiles vs. Monte Carlo quantiles 

Figure 1: Distribution function and QQ-plot of the upper & lower bounds (Vasi
cek model), compared to lVIonte Carlo simulation. 

12 



Upper & lower stop-loss premium (Vasicek model) 
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Max. relative stop-loss error (Vasicek model) 
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(b) Maximum relative stop-loss error 

Figure 2: Stop-loss premiums for the upper & lower bounds and the corresponding 
maximum relative stop-loss error (Vasicek model) 
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Upper Bound, Lower Bound & Empirical Distribution (Ho-Lee model) 
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(b) Upper (0) & lower (0) quantiles vs. Monte Carlo quantiles 

Figure 3: Distribution function and QQ-plot of the upper & lower bound,; (Ho
Lee model), compared to Monte Carlo simulation 
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Upper & lower stop-loss premium (Ho-Lee model) 
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(a) Stop-loss premiums 

Max. relative stop-loss error (Ho-Lee model) 
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(b) Maximum relative stop-loss error 

Figure 4: Stop-loss premiums for the upper & lower bounds and the corresponding 
maximum relative stop-loss error (Ho-Lee model) 
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Upper Bound, Lower Bound & Empirical Distribution (Vasicek model) 
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Figure 5: Distribution function and QQ-plot of the upper & lower hounds (Vasi
cek model), compared to Monte Carlo simulation 
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Upper & lower stop-loss premium (Vasicek model) 
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(a) Stop-loss premiums 

Max. relative stop-loss error (Vasicek model) 
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(b) Maximum relative stop-loss error 

Figure 6: Stop-loss premiums for the upper & lower bounds and the corresponding 
maximum relative stop-loss error (Vasicek model) 
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