
KATHOLIEKE
UNIVERSlTEIT

LEUVEN

OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0318

AGGREGATING CLASSIFIERS WITH
MATHEMATICAL PROGRAMMING

by
J. ADEM

W. GOCHET

0/2003/2376/18

Aggregating Classifiers with
Mathematical Programming

Jan ADEM
Department of Applied Economics, Katholieke Universiteit Leuven,

Naamsestraat 69, 3000 Leuven, Belgium,
e-mail: jan.adem@econ.kuleuven.ac.be

Willy GOCHET
Department of Applied Economics, Katholieke Universiteit Leuven,

Naamsestraat 69, 3000 Leuven, Belgium,
e-mail: willy.gochet@econ.kuleuven.ac.be

Abstract

Traditionally, bagging takes a majority vote among a number of classifiers.
An alternative is to aggregate the classifiers with a mathematical program­
ming model. This approach guarantees that the aggregated classifier will not
be worse than the best component classifier on a given criterion function on
the design dataset. The approach is illustrated on three real world datasets
and compared to traditional bagging.

1

1 Introduction

The supervised classification (SC) problem consists of finding a formal
rule that classifies patterns with unknown class membership into one of a fi­
nite number of classes C as accurate as possible. Such a formal rule is called
a classifier. Patterns are whatever needs to be classified. For each pattern,
the values of P measurements are known. In order to design a classifier, a
design dataset 1) consisting of a finite number of patterns N with known class
membership is given. Let x np E IR with n E {I, 2, ... , N} and p E {I, 2, ... , P}
be the value of measurement p of pattern nand Cn E {I, 2, ... , C} the class to
which pattern n belongs. Overviews of the currently available methods for
designing a classifier are given in textbooks such as [4, 8, 13].

This variety of SC methods gives rise to a simple question: can we find
ways to aggregate classifiers such that the aggregated classifier has more de­
sirable characteristics than any of the classifiers separately?

Given are a finite number of classifiers 91,92, ... , 9L. These L classifiers
are called the component classifiers. Let 91n E {I, 2, ... , C} be the class that
component classifier 91 assigns to design dataset pattern n. If 91n = en,
the pattern is correctly classified, otherwise it is misclassified by component
classifier 91. The design dataset error rate of classifier 91 is denoted by hI.
Assume without loss of generality that all hI > 0 and that all the component
classifiers are different, i.e. there exist no two classifiers 9lt and 912 such that
9ltn = 91 2 n for all n E {I, 2, ... , N}. Component classifiers can be obtained
in several ways. One might apply different SC methods to the same design
dataset or, alternatively, use the same SC method on sub-samples from the
design dataset. These sub-samples can be taken with or without replacement.

Each component classifier will be given a weight al such that 2:f=l al =
1 and all al ~ O. Let I (.) be the indicator function. I (.) = 1 if the
argument is true and = 0 otherwise. The aggregated classifier classifies
a pattern with measurements Xl, ... , Xp into the class c* for which e* =
arg maxC{2:f=l a11(91 (Xl, ... , xp) = en where 91(Xl, ... , xp) denotes the class
that component classifier 91 assigns to the pattern. Ties are solved randomly.
2:f=l at! (91 (Xl, ... , xp) = c) can be seen as an estimate for prc(C = e I Xl =
Xl, ... , Xp = X P), the conditional probability that a pattern with measure­
ments Xl, ... , X p belongs to class c. Conditional probability estimates are

2

greatly appreciated in practice because they give an idea of the reliability
of a prediction, e.g. in credit scoring [7, 11]. In majority vote (MV) ag­
gregating, each component classifier is given equal weight, i.e. al = t for
all 1 E {I, 2, ... , L} [3]. In AdaBoost.MI, the weight of the l-th component
classifier is chosen as al = log((l - hl)/hl) [8]. The constraints L~l al = I
and all al 2: 0 do not apply in AdaBoost.M1. However, this is not always
the best choice for the weights al. It might be better to fix the values for the
weights al according to some criterion function defined on the available data.

In Section 2, we will present and discuss the mathematical programming
(MP) formulation that can be used to aggregate component classifiers. Ways
to reduce the possible computational difficulties are discussed in Section 3.
Section 4 illustrates how to use the approach on four real world datasets.
The last section presents the conclusions.

2 Mathematical Programming Formulation

Associate with each design dataset pattern a binary variable Yn = I if
pattern n is misclassified by the aggregated classifier, = 0 otherwise. Denote
by Qnc = {ll gl(Xnl, ... , xnP) = c} the set of component classifiers that classify
pattern n in class c. The problem specific expense of misclassifying pattern n
is en. E is a user-defined constant, 0 :::; E :::; 1. The aggregated classifier that
minimizes the design dataset misclassification expense is found by solving
the following mixed integer linear programming (MILP) formulation.

3

N

MILP-E: min L en Yn
allYn

n=1

subject to

L al - L al + (1 + E)Yn ~ E

IEQncn lEQnc

L

Lal=l
1=1

0:::: al:::: 1

al E IR

Yn E {O,l}

nE{l, ... ,N} CE{l, ... ,C} C-j.Cn

lE{l, ... ,L}

lE{l, ... ,L}
n E {I, ... , N}

E can be interpreted as the minimum difference there should be between
the maximal conditional probability estimate and the second largest before
the MILP-E is allowed to consider the pattern as correctly classified. Setting
E = 0 allows for ties in the maximal conditional probability estimates. For
E > 1, the objective function value of any feasible solution is ~:=1 en and the
formulation has no sense. As the MILP-E problem always has a nonempty
feasible region and cannot have an unbounded solution, an aggregated classi­
fier that minimizes the design dataset misclassification expense always exists.

The MILP-E formulation is a special case of a more general formulation.
Define for each design dataset pattern C binary variables Ync = 1 if pattern
n is classified into class C by the aggregated classifier, = 0 otherwise. Let enc
be the problem specific expense of classifying pattern n into class c. E is the
same as in the MILP-E formulation.

4

N C

general-MILP-E: min L L enc Ync
°1,Yna n=l c=l

subject to

lEYnc lEYnd

C

LYnc = 1
c=l

L

La! = 1
1=1

o ~ a! ~ 1

al E IR

Ync E {O, I}

n E {I, ... ,N}

l E {1, ... ,L}
l E {1, ... ,L}
n E {I, ... , N} C E {I, ... , C}

In this model, the user is offered a large flexibility to model his se prob­
lem. For example, suppose one wants to find the expense minimizing classifier
given that at least 90% of the design dataset patterns in class 2 should be
correctly classified and that none of the class 1 design dataset patterns are
put in class 3. It suffices to add the constraints L:nEV2 Yn2 ~ 0.901D21 and
L:nEVl Yn3 ~ 0 where Dc is the set of design dataset patterns that belong
to class e, Dc = {n 1 en = e} C D. Note that adding such constraints might
make the formulation infeasible. The price for this flexibility is that the mod­
els tend to be difficult to solve to optimality when the design dataset or the
number of component classifiers gets larger.

In the remainder of this work, we will focus on the MILP-E formulation
using a simple 0-1 expense structure, i.e. en = 1 for all n E {I, 2, ... , N}.

5

3 Pre-processing

Solving MILP-E to optimality may be very time consuming, even impos­
sible to solve within a reasonable time using classical branch and bound
procedures. Therefore it is important to reduce the size of MILP-E as much
as possible. Especially reducing the number of binary variables Yn will be
helpful in reducing the overall time to solve MILP-E. Below a number of re­
duction rules are proposed that reduce considerably the difficulty of solving
MILP-E. This will be illustrated by the real world examples in Section 4.

Let E be sufficiently small. Proposition 1 is a trivial observation.

Proposition 1 : A design dataset pattern that is classified cor­
rectly (incorrectly) by all L component classifiers gl will be clas­
sified correctly (incorrectly) by the aggregated classifier for all
possible values of (01,02, ... , OL).

A reduction rule follows directly from this proposition.

Reduction Rule 1 (RRl) : All patterns that are classified
correctly (incorrectly) by all component classifiers can be left out
from MILP-E.

When applying RR1, it is clear that the objective function value of MILP­
E has to be increased by 1 for every misclassified pattern that is left out.
The optimal solution to MILP-E is unaffected by RRl. Consider the fol­
lowing example with three classes, five component classifiers and three pat­
terns that all belong to class 1. Let (gu, g2b g3b g4b g5l) = (1,1,1,1,1),
(g12, g22, g32, g42, g52) = (2,2,2,2,2) and (g13, g23, g33, g43, g53) = (3,2,3,3,2).
For all feasible values of (Ob 02, 03, 04, 05), the first pattern will be classified
correctly, the second and the third incorrectly.

A second reduction rule will be derived from Proposition 2.

Proposition 2 : Let g[with l = arg minI {hIll E {I, 2, ... , L} } be
a component classifier with the smallest design dataset error rate
among the L component classifiers. When component classifier
k has hk > h[then for an optimal solution (oi, O2, ... ,01) to
MILP-E, it cannot hold that Ok > "2:~1,1# oj.

6

Proof: When ak > ~f=l,l# at, the aggregate classifier will
classify the design dataset patterns in the same way as component
classifier gk, hence will have a larger design dataset error rate than
component classifier g[which is a contradiction since g[provides
a feasible solution to MILP-E. (Q.E.D.)

Take a five component example with (hI, h2' h3, h4, h5) = (0.35,0.36,0.29,
0.32,0.29). The lowest error rate is 0.29, hence l E {3,5}. The error rate of
any solution for which a1 > a2 + a3 + a4 + a5 is 0.35. Hence, such solution
can never be optimal as (aI, a2, a3, a4, (5) = (0,0,1,0,0) is a feasible solution
with a lower objective function value. The same is true for all solutions for
which a2 > a1 + a3 + a4 + a5 or a4 > a1 + a2 + a3 + a5·

Reduction Rule 2a (RR2a) : Assume classifiers g[and gk as
in Proposition 2. For any pattern n correctly classified by all
component classifiers except for classifier k, it holds that Y~ = °
in an optimal solution of MILP-E.

Proof: The restrictions for pattern n in MILP-E include

L

L al - ak + (1 + E)Yn 2: E.

1=1,1#

An optimal value y~ = 1 implies that ai; > ~f=l,l# ai. By
Proposition 2, this leads to a contradiction. (Q.E.D.)

Again, take the five component example with (hI, h2' h3, h4' h5) = (0.35,
0.36,0.29,0.32,0.29) as before but now let (gl1, g21, g31, g41, g51) = (1,1,1,3,1).
Pattern 1 belongs to class 1. Assume we classify the pattern incorrectly. This
is only possible if a4 > a1 + a2 + a3 + a5. Any solution for which this is true
has a design dataset error rate of 0.32 which cannot be optimal. Hence, in an
optimal solution, it holds that Yi = 0. The constraint a1 +a2+a3+a5-a4 2: E
stays in the formulation.

Reduction Rule 2b (RR2b) : Assume classifiers g[and gk
as in Proposition 2. For any pattern n incorrectly classified in
the same class by all component classifiers except for component
classifier k, it holds that y~ = 1 in an optimal solution of MILP-E.

7

Proof: Two cases are possible.

(i) Component classifier k misclassifies pattern n. In that case
Proposition 1 applies and Y~ = 1.

(ii) Component classifier k classifies pattern n correctly. The
restrictions for pattern n in MILP-€ include

L

ak - L al + (1 + €)Yn :::: €.

l=l,l;<k

An optimal value Y~ = 0 implies that at, > 2:f=l,l# ai. By
Proposition 2, this leads to a contradiction. (Q.E.D.)

Take the same example as before but now let (g11, g21, g31, g41, g51)
(1,2,2,2,2). Assume we classify the pattern correctly. This implies that
a1 > a2 + a3 + a4 + a5' Any solution for which this is true has a design
dataset error rate of 0.35 which cannot be optimal. Hence, in an optimal
solution, it holds that Yi = 1. The constraint that corresponds to pattern
1 can be dropped from the formulation as it will be satisfied for all possible
values of (aI, a2, a3, a4, (5).

After applying reduction rules 1, 2a and 2b, some design dataset patterns
will be left in MILP-€ with an unknown value for Y~. Let An be the set of
restrictions for any such pattern n. For some design dataset patterns nand
m, it may hold that An = Am and the next reduction rule is then obvious.

Reduction Rule 3 (RR3) : When An = Am for two different
design dataset patterns nand m in MILP-€, one set of restric­
tions, say set Am, can be dropped from the formulation provided
coefficient of Yn in the objective function is increased by 1.

Assume pattern 1 and 2 belong to class 1 and pattern 3 belongs to
class 2. Assume five component classifiers classify these three patterns as
(g11, g21, g31, g41, g51) = (1,1,3,4,4), (g12, g22, g32, g42, g52) = (1,1,2,3,3) and
(g13, g23, g33, g43, g53) = (2,2,1,3,3). It is easy to check that Al = A2
A3 = {a1 + a2 - a3 + (1 + €)Y1 :::: 10, a1 + a2 - a4 - a5 + (1 + €)Y1 >

8

E, a1 + a2 - 0 + (1 + E)Y1 2: E}. Hence, the restrictions of pattern 2 and 3 can
be left out of MILP-E by applying RR3 twice provided the objective function
coefficient of Y1 is increased by 2.

Combined with pre-processing, standard branch and bound methods as
implemented in commercial software are capable of solving fairly large prob­
lem instances within reasonable time limits.

4 Real World Examples

In datarich conditions, a methodological sound way of working with the
MILP-E formulation would be to divide the available data at random in three
independent datasets: one to design the component classifiers, one to design
the aggregated classifier and one dataset to evaluate both the component and
aggregated classifiers. For MV aggregating and boosting, a separate dataset
to design the aggregated classifier is not needed [3, 8].

If data are scarce, a different approach is necessary to use the available
data more efficiently. The real world examples illustrate such schemes.

All four datasets are publicly available and described at the UCI repository
at http:jkdd.ics.uci.edu [2].

Our aim on the tic-tac-toe dataset is to illustrate in detail how pre­
processing can successfully reduce the computation time to solve MILP-E.
The component classifiers will be obtained by applying different SC methods
to the same design dataset. We will compare the performance of the MILP-E
classifier to that of the MV classifier.

4.1 Tic-tac-toe

The tic-tac-toe dataset consists of 958 patterns each having 9 measure­
ments. The patterns are legal tic-tac-toe endgame boards and the two classes
are: x wins or x does not win, respectively referred to as class 1 and class 2.
The data are randomly divided into a design dataset V of 638 patterns and
a testing dataset T of 320. Component classifiers are obtained by using dif­
ferent SC methods as given in Table 1. The entry in the column "linear?" is
yes if the classifier is linear in the measurements, no if not. The LDA, QDA,
NN, KER and MLR classifiers are calculated with SAS [9]. The MSID-4A
[5], GOCH [6] and BENN [1] classifiers are found with LINDO [10].

9

Table 1: SC Methods

SC method
majority rule (MR)
linear discriminant analysis (LDA)
quadratic discriminant analysis (QDA)
nearest neighbour (NN)
kernel (KER)
multinomial logistic regression (MLR)
linear programming (MSID-4A)
linear programming (GOCH)
linear programming (BENN)

linear? implementation details
no
yes proportional priors
no proportional priors
no k = 64
no T = 3, pool = yes, kernel = normal
no
yes H = 1, K = 0, s = 1
yes
yes

Denote by hTJ the error rate on the design dataset and by hT the error
rate on the testing dataset. hTJ1' hTJ2 and hTi.' hT-, are the error rates per
class, respectively on the design and the testing dataset. The error rates
are expressed as percentages. Table 2 shows the aggregation results when
aggregating only the four classifiers that are linear in the measurements are
aggregated. E was set to 0.0001.

Table 2: Aggregating Linear Classifiers

SC method hv hVl h1J-;. hT h7j hT2
LDA 35.5 34.9 31.0 34.4 33.3 36.1
MSID-4A 25.7 17.3 42.9 28.3 16.2 47.5
GOCH 25.9 13.8 50.5 29.9 13.1 56.6
BENN 32.0 32.6 31.0 33.1 31.3 36.1
MV aggregating 32.0 32.5 31.0 33.1 31.3 36.1
MILP-< aggregating 23.7 17.1 37.1 26.9 16.2 44.3

Given the component classifiers, the MILP-E aggregated classifier outper­
forms all other classifiers in terms of accuracy both on the design and the
testing dataset. The MILP-E aggregated classifier performs (much) better
than the MY classifier and also strictly better than any of the individual
classifiers. The MY classifier does not perform well. Due to pre-processing
only 5 binary variables are left in the final MILP-E formulation. As many as
485 patterns could be left out of the MILP-E model due to RRl. 38 binary
variables could be left out due to RR2a and 16 due to RR2b. Another 94
binary variables can be left out due to RR3. The resulting MILP-E is as
simple as

10

min 16Yl + 66Y2 + 3Y3 + Y4 + 13Y5 + 135

subject to

Oil + 0i2 + 0i3 - 0i4 + (1 + E)Y1 ;::: E

0i3 + 0i4 - Oil - 0i2 + (1 + E)Y2 ;::: €

0i4 - Oil - 0i2 - 0i3 + (1 + €)Y3 ;::: €

0i2 + 0i4 - Oil - 0i3 + (1 + E)Y4 ;::: €

Oil + 0i2 - 0i3 - 0i4 + (1 + E)Y5 ;::: €

Oil :::; 0i2 + 0i3 + 0i4

0i3 :::; Oil + 0i2 + 0i4

0i4 :::; Oil + 0i2 + 0i3
4

LOil = 1
1=1

o :::; Oil :::; 1

Oil E IR

Yn E {O, I}

I E {I, ... , 4}

I E {I, ... , 4}

n E {I, ... ,3}

The optimal weights (Oir, 0i2, Oig, Oi.n = (0,0.49995,0.49995,0.0001) are ob­
tained in 0.1 CPU seconds on a pentium 530 MHz computer. Without pre­
processing, LINDO needs 3.6 CPU seconds to find the same optimal solution.

Table 3: Aggregating All Classifiers

SC method hv hVJ hV2 hT hTj hT2
MR 32.9 0 100 38.1 0 100
LDA 35.5 34.9 31.0 34.4 33.3 36.1
QDA 20.1 24.4 11.4 23.1 22.7 23.8
NN 30.1 37.7 14.8 29.7 37.4 17.2
KER 34.2 39.6 23.3 35.6 36.9 33.6
MLR 29.8 15.9 58.1 28.1 8.6 59.8
MSID-4 25.7 17.3 42.9 28.3 16.2 47.5
GOCH 25.9 13.8 50.5 29.9 13.1 56.6
BENN 32.0 32.6 31.0 33.1 31.3 36.1
MV aggregating 25.5 22.9 31.0 28.4 21.2 40.2
MILP-f aggregating 20.1 24.4 11.4 23.1 22.7 23.8

11

Table 3 gives the aggregation results when all classifiers are aggregated.
The MILP-c aggregated classifier again outperforms the MV classifier, both
on the design and the testing dataset. The optimal solution to MILP-€ is ob­
tained as (ai, a:.i, aj, a4, as, a(i, a7, as, ail) = (0,0,0.50005,0,0,0,0,0,0.49995).
Its performance is identical to the performance of QDA which also follows
from the observation that aj > 0.5 (classifier 3 corresponds to QDA). After
pre-processing, 47 binary variables remained in the final MILP-€ model: 228
patterns are left out due RRl. RR2a removed 103 binary variables and RR2b
43. Another 228 binary variables were removed due to RR3. It took LINDO
0.1 second to find the optimal weights. Without pre-processing, after 24
hours CPU time, LINDO still had not terminated its search. This illustrates
the importance of pre-processing. 0

In boosting, say Adaboost.M1, the component classifiers are obtained in
a specific way [8]. Therefore, it was not possible to compare the performance
of the MILP-€ classifier to that of a boosted classifier on the tic-tac-toe
dataset. On the handwritten digits dataset, the component classifiers will be
obtained by using the Adaboost.M1 procedure. The component classifiers
will be aggregated with all three procedures: boosting, MV and MILP-€.
The handwritten digits dataset is also substantially larger than the other
real world datasets. Our aim is to show that our approach, thanks to pre­
processing, can also be successful on large real life datasets.

4.2 Optical Recognition of Handwritten Digits

The handwritten digits data gives 64 discrete valued measurements of
normalized bitmaps of 5620 handwritten digits. The ten possible classes are
0,1, ... ,9. Separate design and testing datasets are given, consisting respec­
tively of 3823 and 1797 patterns.

We have applied AdaBoost.M1 [8] using a prototype classifier. The proto­
type classifier puts a pattern in the class that has the closest design dataset
average to it, in terms of Euclidian distance. Ties are solved randomly. The
boosting procedure stabilized already after eight iterations. Hence, we have
eight component classifiers. In the AdaBoost.M1, component classifiers with
a low design dataset error rate are given a relatively large weight al. How­
ever, the eight component classifiers could also be aggregated by means of a
MV or the MILP-€ formulation. The results are shown in Table 4. The clas­
sifier aggregated with MILP-c performs best on the design dataset as well as

12

the testing dataset. Pre-processing was able to reduce the number of binary
variables from 3823 to 103. The final MILP-E formulation was solved in 14
seconds. These results shows that our approach can also be successful on
fairly large real life datasets. 0

Table 4: Results of Aggregated Classifiers

AdaBoost.M1 8.1 10.6
MV 7.8 10.6
MILP-f 7.1 9.4

These two examples show that, although methodologically questionable,
using the same dataset to get the component classifiers and aggregate them
might still give good results. In general though, such an approach is expected
to easily overfit the design dataset. On the tic-tac-toe dataset, the MILP­
E aggregated classifier overfits the design dataset though not dramatically.
Previous studies [12] suggest that the tic-tac-toe dataset is highly irregular.
Also on the handwritten digits dataset, there is some overfitting but it is not
problematic.

On the image segmentation dataset below, we propose another way to
get the component classifiers and subsequently aggregate them. In contrast
to the tic-tac-toe example, the component classifiers will be obtained by
applying the same SC method. Variety in the component classifiers will be
obtained by changing the data onto which the SC method is run. The SC
method we opt for is k-nearest neighbor as this method is known to work
well on image segmentation data. The aim is to see if aggregation works
when the component classifiers are already good. We will compare MV and
MILP-E aggregation.

4.3 Image Segmentation Dataset

In the image segmentation dataset, one is asked to classify regions of
nine pixels based on 19 continuous measurements. The pixel regions are
taken from outdoor images. The seven possible classes for each pixel region
are brickface, sky, foliage, cement, window, path and grass. There are 30
patterns per class in the design dataset and 300 instances per class in the

13

testing dataset. The large testing dataset will only be used for evaluation.
Hence, despite the large testing dataset, we are in datascarce conditions: as
few as 210 patterns are available to design the component classifiers and the
aggregated classifier in a 19-dimensional measurement space.

First, from the design dataset, 10 sub-samples of 210 patterns are ran­
domly drawn with replacement. It can be verified that the expected number
of different patterns in a sub-sample equals 132.93. A component classi­
fier is calculated on each of the 10 sub-samples using the same se method
(k-nearest neighbor). Next, the component classifiers are aggregated with
MILP-E using all 210 patterns of the design dataset. Hence, in the aggrega­
tion, each component classifier is up against an expected 77.07 new patterns.
To end, the error rate of the classifiers is evaluated. Each of the 10 com­
ponent classifiers is evaluated on the sub-sample used for its design (0), on
the design dataset (0) and the testing dataset (L>.). The component classifier
error rates are averaged to indicate the performance of the average compo­
nent classifier (indicated by filled symbols). The MY classifier (full line) and
the MILP-E aggregated classifier (dashed line) are evaluated on the design
dataset and the testing dataset.

The component classifiers are calculated in SAS using the k- nearest neigh­
bor method. In order to see if the aggregation results change if one varies
the se method to design the component classifier, the procedure is repeated
for k E {I, 2, 3, 5, 6, 7, 10, 15, 30}. E was set to 0.0001. Figure 1 shows the
results.

Both the component and the aggregated classifiers overfit the dataset used
in their design. Surprisingly, on this dataset, the best testing dataset error
rates are obtained by using the I-nearest neighbor method. Although the
performance on the design dataset differs, the testing dataset performance of
the MY and MILP-E aggregated classifier is very similar. The accuracy gain
of aggregating (albeit with MY or MILP-t:) compared to the average compo­
nent classifier is one or two percentages. Of course, on the design dataset,
the MILP-E aggregated classifier is always at least as good as any component
classifier. Pre-processing was able to keep on average 85.4% of the design
dataset patterns out of the MILP-t: formulation and strongly reduced the
computational effort needed. The results on this dataset illustrate that the
MILP-E does not always outperform the MY aggregated classifier on unseen
data despite superior performance on the design dataset. 0

In all three examples, a (large) testing dataset was available. Often, one

14

0.18 (>11'01' nte

0.16

0.14

012

0.10

008

006

004

002

" ".'

------ .. ----~

Figure 1: Results for the Image Segmentation Dataset

'Z:~

~
<) ,

k

does not have a testing dataset available or is unwilling to use it for evaluation
purposes only. An alternative that uses the available data more efficiently
would be to estimate the accuracy of the aggregated classifier with K-fold
cross-validation. The last example shows how to get a 10-fold cross-validation
estimate of the accuracy of the MV aggregated as well as the MILP-E ag­
gregated classifier. Also, we will illustrate how to deal with extra, problem
specific constraints in MILP-£. To end, we will also have a look at the relia­
bility estimates obtained by both aggregation methods.

4.4 Dermatology Dataset

The aim of the dermatology dataset is to diagnose one of six possible
types of eryhemato-squamous diseases. 12 clinical and 24 histopathological
measurements of the patient are given. Only the 12 clinical measurements
are used. The dataset contains 366 patterns, which are to be used for both
classifier design and testing. As in the image segmentation example, datas­
carce conditions apply. Eight patterns suffered from missing values and were

15

left out. The remaining 358 form the design dataset.
From the design dataset, 30 sub-samples of 358 patterns are randomly

drawn with replacement. The expected number of different patterns in such
a sub-sample is 226.48. For each of these sub-samples, a component classifier
was calculated in SAS using the LDA method with proportional priors and
tested on the design dataset patterns that were not in the sub-sample. Figure
2 shows the error rate per class of the 30 component classifiers on the design
dataset (<» and the testing dataset (t:;). Also the error rate over all classes is
shown.

0."7

0.6

1\
0.5

2 3 4 6 all

Figure 2: Component Classifier Results for Dermatology

Assume class 5 patterns are of special interest. The component classifiers
have difficulties to classify class 5 patterns correctly. Can we find an aggre­
gated classifier that has a better accuracy than the component classifiers,
especially for patterns from class 5?

There are several ways to adjust the standard MILP-E model to take this
problem specific demand into account. Notice that this is not possible in MV

16

aggregation or boosting.
An obvious way of working would be to include a constraint of the type

2":nE'V5 Yn :::; 0'11)51 where 1)5 is the set of design dataset patterns that belong
to class 5 and 0' is the maximum allowable error rate for class 5 on the design
dataset. However, such constraint may render the model infeasible and one
has to be careful in setting 0' if one pre-processes.

We have implemented another idea. By changing the objective function
coefficients en, it is possible to pre-emptively model the objective to mini­
mize the number of class 5 misclassifications. E.g., set the objective function
coefficient en = N if pattern n belongs to class 5 and en = 1 otherwise.
The advantage of this way of working is that the model cannot run into an
infeasibility. The reduction rules remain valid. The only difference is that
the objective function value of MILP-E has to be increased with N for every
misclassified pattern of class 5 that is left out and by 1 for every other mis­
classified pattern that is removed.

As no testing dataset is available, we will use 10-fold cross-validation to
estimate the accuracy of the aggregated estimators.

The design dataset was randomly split into 10 subsets 1)k of almost equal
size with k E {I, 2, ... , 10}. The component classifiers are aggregated on the
10 sets V \ 1)k and tested on the corresponding set 1)k' Averaging of the
testing results gives the 10-fold cross-validation estimate of the aggregated
classifier on 1). Table 5 shows the results.

Table 5: Aggregating LDA Classifiers

h, h, h3 h4 h5 h6 hall

LDA component (averaged) 0.18 0.23 0.04 0.18 0.37 0.07 0.18
MV aggregated 0.17 0.23 0.02 0.14 0.38 0.00 0.16
MILP-£ aggregated 0.15 0.22 0.02 0.19 0.30 0.06 0.15

The error rates of the MILP-E aggregated classifier have improved, espe­
cially for class 5, but not drastically. Even on the sets 1) \ V k , the average
class 5 error rate was still 0.19. The reason for this is that 9 out the 48 design
dataset patterns from class 5 are misclassified by all component classifiers.
This illustrates the more general statement of Breiman [3] in the context of
MY aggregation: "Bagging unstable classifies usually improves them. Bag­
ging stable classifiers is not a good idea." Indeed, if the component classifiers

17

tend to yield the same classification, there is only little improvement to be
made by aggregating.

In the context of medical diagnosis, it might be interesting to have an idea
about the reliability of the predicted class, i.e. to have an estimate of the
conditional probabilities prc(C = clX1 = Xl,,,.,Xp = xp). Both MY and
MILP-E aggregation directly provide such estimates.

10

09

08

0.7

06

0.5

0.4

03

02

0.90

0.10

01 000000000; 0.00
00

class class class class class class
I 2 3 4 5 Ii

(a) MY aggregated

LO

09

" 0.7

0.0

0.5

0.4

0.3

0.2

055

045

0.1 0000000.00 0.00
0.0

class class class class class class
1 2 3 4 5 is

(b) MILP-E aggregated

Figure 3: Conditional Probability Estimates for a Pattern from Class 5

LO 10

0.9 0.9

08 08

07 063 0.7

06 0.0

0.5 0.5

04 04
038

OJ
027 OJ

02 0.2

0.1 0.1

0.0 0.0

class class class class class class class class class class class class

1 2 3 4 5 6 3 4 5 6

(a) MY aggregated (b) MILP-E aggregated

Figure 4: Conditional Probability Estimates for a Pattern from Class 6

Figures 3 and 4 give the class conditional probability estimates for two
patterns. Panel (a) of Figure 3 shows that the pattern is incorrectly classified
with a high reliability by the MY aggregated classifier. The MILP-E aggre­
gated classifier on the other hand classifies the pattern correctly as shown in
panel (b), though the reliability of the classification is not so high. In Figure

18

4, both aggregated classifiers make a correct classification but the reliability
differs. 0

5 Conclusions

With regard to the use of MV aggregating, Breiman (1994) argues that
"Aggregating can (...) transform good predictors into nearly optimal ones.
On the other hand, (...), poor predictors can be transformed into worse ones."
Aggregating with mathematical programming guarantees that poor predic­
tors cannot be transformed into worse ones as the aggregated classifier will
be at least as good as the best predictor on the design dataset for a given
criterion function. The real world examples suggest that this is often also
true on unseen data and that our approach can outperform both bagging and
boosting. For practicioners, the approach is particularly interesting because
it offers the user the flexibility to include extra problem specific constraints
into the design of the aggregated classifier and gives an idea of the reliability
of the final classification.

References

[1] Bennett K.P. and Mangasarian O.L., 1993. Multicategory Discrimina­
tion via Linear Programming, Optimization Methods and Software 3,
pp. 27-39.

[2] Blake C.L. and Merz C.J., 1998. UCI Repository of machine learn­
ing databases [http://www.ics.uci.edu/ mlearn/MLRepository.html].
Irvine, CA: University of California, Department of Information and
Computer Science.

[3] Breiman L., 1994. Bagging Predictors. University of California, Depart­
ment of Statistics, Technical Report 421.

[4] Duda R.O., Hart P.E. and Strok D.H., 2001. Pattern Recognition, 2nd
Edition. Wiley-Interscience New York.

19

[5] Erenguc S.S. and Koehler G.J., 1990. Survey of Mathematical Program­
ming Models and Experimental Results for Linear Discriminant Analy­
sis, Managerial and Decision Economics, Volume 11, pp. 215-225.

[6] Gochet W., Starn A., Srinivasan V. and Chen S., 1997. Multigroup Dis­
criminant Analysis Using Linear Programming, Operations Research,
Volume 45, Number 2, pp. 213-225.

[7] Hand D.J., 1997. Construction and Assessment of Classification Rules.
Wiley Chichester.

[8] Hastie T., Tibshirani R. and Friedman J., 2002. The Elements of Sta­
tistical Learning. Springer Series in Statistics, Springer.

[9] SAS Institute Inc. SAS/STATTM Users's Guide, Release 6.03 Edition.
Cary, NC: SAS Institute Inc., 1998

[10] Schrage, L. 1995. LINDO: Optimization Software for Linear Program­
ming. Lindo Systems Inc., Chicago, IL.

[11] Thomas L.C., Edelman D.B. and Crook J.N., 2002. Credit Scoring and
Its Applications. Society for Industrial and Applied Mathematics.

[12] Van Gestel T., Suykens J., Baesens B., Viaene S., Vanthienen J., Dedene
G., De Moor B. and Vandewalle J., 2002. Benchmarking Least Squares
Support Vector Machine Classifiers, Machine Learning, forthcoming.

[13] Webb A., 1999. Statistical Pattern Recognition. Arnold London.

20

