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Abstract 

Traditionally, bagging takes a majority vote among a number of classifiers. 
An alternative is to aggregate the classifiers with a mathematical program­
ming model. This approach guarantees that the aggregated classifier will not 
be worse than the best component classifier on a given criterion function on 
the design dataset. The approach is illustrated on three real world datasets 
and compared to traditional bagging. 
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1 Introduction 

The supervised classification (SC) problem consists of finding a formal 
rule that classifies patterns with unknown class membership into one of a fi­
nite number of classes C as accurate as possible. Such a formal rule is called 
a classifier. Patterns are whatever needs to be classified. For each pattern, 
the values of P measurements are known. In order to design a classifier, a 
design dataset 1) consisting of a finite number of patterns N with known class 
membership is given. Let x np E IR with n E {I, 2, ... , N} and p E {I, 2, ... , P} 
be the value of measurement p of pattern nand Cn E {I, 2, ... , C} the class to 
which pattern n belongs. Overviews of the currently available methods for 
designing a classifier are given in textbooks such as [4, 8, 13]. 

This variety of SC methods gives rise to a simple question: can we find 
ways to aggregate classifiers such that the aggregated classifier has more de­
sirable characteristics than any of the classifiers separately? 

Given are a finite number of classifiers 91,92, ... , 9L. These L classifiers 
are called the component classifiers. Let 91n E {I, 2, ... , C} be the class that 
component classifier 91 assigns to design dataset pattern n. If 91n = en, 
the pattern is correctly classified, otherwise it is misclassified by component 
classifier 91. The design dataset error rate of classifier 91 is denoted by hI. 
Assume without loss of generality that all hI > 0 and that all the component 
classifiers are different, i.e. there exist no two classifiers 9lt and 912 such that 
9ltn = 91 2 n for all n E {I, 2, ... , N}. Component classifiers can be obtained 
in several ways. One might apply different SC methods to the same design 
dataset or, alternatively, use the same SC method on sub-samples from the 
design dataset. These sub-samples can be taken with or without replacement. 

Each component classifier will be given a weight al such that 2:f=l al = 
1 and all al ~ O. Let I (.) be the indicator function. I (.) = 1 if the 
argument is true and = 0 otherwise. The aggregated classifier classifies 
a pattern with measurements Xl, ... , Xp into the class c* for which e* = 
arg maxC{2:f=l a11(91 (Xl, ... , xp) = en where 91(Xl, ... , xp) denotes the class 
that component classifier 91 assigns to the pattern. Ties are solved randomly. 
2:f=l at! (91 (Xl, ... , xp) = c) can be seen as an estimate for prc(C = e I Xl = 
Xl, ... , Xp = X P ), the conditional probability that a pattern with measure­
ments Xl, ... , X p belongs to class c. Conditional probability estimates are 
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greatly appreciated in practice because they give an idea of the reliability 
of a prediction, e.g. in credit scoring [7, 11]. In majority vote (MV) ag­
gregating, each component classifier is given equal weight, i.e. al = t for 
all 1 E {I, 2, ... , L} [3]. In AdaBoost.MI, the weight of the l-th component 
classifier is chosen as al = log((l - hl)/hl ) [8]. The constraints L~l al = I 
and all al 2: 0 do not apply in AdaBoost.M1. However, this is not always 
the best choice for the weights al. It might be better to fix the values for the 
weights al according to some criterion function defined on the available data. 

In Section 2, we will present and discuss the mathematical programming 
(MP) formulation that can be used to aggregate component classifiers. Ways 
to reduce the possible computational difficulties are discussed in Section 3. 
Section 4 illustrates how to use the approach on four real world datasets. 
The last section presents the conclusions. 

2 Mathematical Programming Formulation 

Associate with each design dataset pattern a binary variable Yn = I if 
pattern n is misclassified by the aggregated classifier, = 0 otherwise. Denote 
by Qnc = {ll gl(Xnl, ... , xnP) = c} the set of component classifiers that classify 
pattern n in class c. The problem specific expense of misclassifying pattern n 
is en. E is a user-defined constant, 0 :::; E :::; 1. The aggregated classifier that 
minimizes the design dataset misclassification expense is found by solving 
the following mixed integer linear programming (MILP) formulation. 
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MILP-E: min L en Yn 
allYn 

n=1 

subject to 

L al - L al + (1 + E)Yn ~ E 

IEQncn lEQnc 

L 

Lal=l 
1=1 

0:::: al:::: 1 

al E IR 

Yn E {O,l} 

nE{l, ... ,N} CE{l, ... ,C} C-j.Cn 

lE{l, ... ,L} 

lE{l, ... ,L} 
n E {I, ... , N} 

E can be interpreted as the minimum difference there should be between 
the maximal conditional probability estimate and the second largest before 
the MILP-E is allowed to consider the pattern as correctly classified. Setting 
E = 0 allows for ties in the maximal conditional probability estimates. For 
E > 1, the objective function value of any feasible solution is ~:=1 en and the 
formulation has no sense. As the MILP-E problem always has a nonempty 
feasible region and cannot have an unbounded solution, an aggregated classi­
fier that minimizes the design dataset misclassification expense always exists. 

The MILP-E formulation is a special case of a more general formulation. 
Define for each design dataset pattern C binary variables Ync = 1 if pattern 
n is classified into class C by the aggregated classifier, = 0 otherwise. Let enc 
be the problem specific expense of classifying pattern n into class c. E is the 
same as in the MILP-E formulation. 
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N C 

general-MILP-E: min L L enc Ync 
°1,Yna n=l c=l 

subject to 

lEYnc lEYnd 

C 

LYnc = 1 
c=l 

L 

La! = 1 
1=1 

o ~ a! ~ 1 

al E IR 

Ync E {O, I} 

n E {I, ... ,N} 

l E {1, ... ,L} 
l E {1, ... ,L} 
n E {I, ... , N} C E {I, ... , C} 

In this model, the user is offered a large flexibility to model his se prob­
lem. For example, suppose one wants to find the expense minimizing classifier 
given that at least 90% of the design dataset patterns in class 2 should be 
correctly classified and that none of the class 1 design dataset patterns are 
put in class 3. It suffices to add the constraints L:nEV2 Yn2 ~ 0.901D21 and 
L:nEVl Yn3 ~ 0 where Dc is the set of design dataset patterns that belong 
to class e, Dc = {n 1 en = e} C D. Note that adding such constraints might 
make the formulation infeasible. The price for this flexibility is that the mod­
els tend to be difficult to solve to optimality when the design dataset or the 
number of component classifiers gets larger. 

In the remainder of this work, we will focus on the MILP-E formulation 
using a simple 0-1 expense structure, i.e. en = 1 for all n E {I, 2, ... , N}. 
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3 Pre-processing 

Solving MILP-E to optimality may be very time consuming, even impos­
sible to solve within a reasonable time using classical branch and bound 
procedures. Therefore it is important to reduce the size of MILP-E as much 
as possible. Especially reducing the number of binary variables Yn will be 
helpful in reducing the overall time to solve MILP-E. Below a number of re­
duction rules are proposed that reduce considerably the difficulty of solving 
MILP-E. This will be illustrated by the real world examples in Section 4. 

Let E be sufficiently small. Proposition 1 is a trivial observation. 

Proposition 1 : A design dataset pattern that is classified cor­
rectly (incorrectly) by all L component classifiers gl will be clas­
sified correctly (incorrectly) by the aggregated classifier for all 
possible values of (01,02, ... , OL). 

A reduction rule follows directly from this proposition. 

Reduction Rule 1 (RRl) : All patterns that are classified 
correctly (incorrectly) by all component classifiers can be left out 
from MILP-E. 

When applying RR1, it is clear that the objective function value of MILP­
E has to be increased by 1 for every misclassified pattern that is left out. 
The optimal solution to MILP-E is unaffected by RRl. Consider the fol­
lowing example with three classes, five component classifiers and three pat­
terns that all belong to class 1. Let (gu, g2b g3b g4b g5l) = (1,1,1,1,1), 
(g12, g22, g32, g42, g52) = (2,2,2,2,2) and (g13, g23, g33, g43, g53) = (3,2,3,3,2). 
For all feasible values of (Ob 02, 03, 04, 05), the first pattern will be classified 
correctly, the second and the third incorrectly. 

A second reduction rule will be derived from Proposition 2. 

Proposition 2 : Let g[ with l = arg minI {hIll E {I, 2, ... , L} } be 
a component classifier with the smallest design dataset error rate 
among the L component classifiers. When component classifier 
k has hk > h[ then for an optimal solution (oi, O2, ... ,01) to 
MILP-E, it cannot hold that Ok > "2:~1,1# oj. 
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Proof: When ak > ~f=l,l# at, the aggregate classifier will 
classify the design dataset patterns in the same way as component 
classifier gk, hence will have a larger design dataset error rate than 
component classifier g[ which is a contradiction since g[ provides 
a feasible solution to MILP-E. (Q.E.D.) 

Take a five component example with (hI, h2' h3, h4, h5) = (0.35,0.36,0.29, 
0.32,0.29). The lowest error rate is 0.29, hence l E {3,5}. The error rate of 
any solution for which a1 > a2 + a3 + a4 + a5 is 0.35. Hence, such solution 
can never be optimal as (aI, a2, a3, a4, (5) = (0,0,1,0,0) is a feasible solution 
with a lower objective function value. The same is true for all solutions for 
which a2 > a1 + a3 + a4 + a5 or a4 > a1 + a2 + a3 + a5· 

Reduction Rule 2a (RR2a) : Assume classifiers g[ and gk as 
in Proposition 2. For any pattern n correctly classified by all 
component classifiers except for classifier k, it holds that Y~ = ° 
in an optimal solution of MILP-E. 

Proof: The restrictions for pattern n in MILP-E include 

L 

L al - ak + (1 + E)Yn 2: E. 

1=1,1# 

An optimal value y~ = 1 implies that ai; > ~f=l,l# ai. By 
Proposition 2, this leads to a contradiction. (Q.E.D.) 

Again, take the five component example with (hI, h2' h3, h4' h5) = (0.35, 
0.36,0.29,0.32,0.29) as before but now let (gl1, g21, g31, g41, g51) = (1,1,1,3,1). 
Pattern 1 belongs to class 1. Assume we classify the pattern incorrectly. This 
is only possible if a4 > a1 + a2 + a3 + a5. Any solution for which this is true 
has a design dataset error rate of 0.32 which cannot be optimal. Hence, in an 
optimal solution, it holds that Yi = 0. The constraint a1 +a2+a3+a5-a4 2: E 
stays in the formulation. 

Reduction Rule 2b (RR2b) : Assume classifiers g[ and gk 
as in Proposition 2. For any pattern n incorrectly classified in 
the same class by all component classifiers except for component 
classifier k, it holds that y~ = 1 in an optimal solution of MILP-E. 
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Proof: Two cases are possible. 

(i) Component classifier k misclassifies pattern n. In that case 
Proposition 1 applies and Y~ = 1. 

(ii) Component classifier k classifies pattern n correctly. The 
restrictions for pattern n in MILP-€ include 

L 

ak - L al + (1 + €)Yn :::: €. 

l=l,l;<k 

An optimal value Y~ = 0 implies that at, > 2:f=l,l# ai. By 
Proposition 2, this leads to a contradiction. (Q.E.D.) 

Take the same example as before but now let (g11, g21, g31, g41, g51) 
(1,2,2,2,2). Assume we classify the pattern correctly. This implies that 
a1 > a2 + a3 + a4 + a5' Any solution for which this is true has a design 
dataset error rate of 0.35 which cannot be optimal. Hence, in an optimal 
solution, it holds that Yi = 1. The constraint that corresponds to pattern 
1 can be dropped from the formulation as it will be satisfied for all possible 
values of (aI, a2, a3, a4, (5). 

After applying reduction rules 1, 2a and 2b, some design dataset patterns 
will be left in MILP-€ with an unknown value for Y~. Let An be the set of 
restrictions for any such pattern n. For some design dataset patterns nand 
m, it may hold that An = Am and the next reduction rule is then obvious. 

Reduction Rule 3 (RR3) : When An = Am for two different 
design dataset patterns nand m in MILP-€, one set of restric­
tions, say set Am, can be dropped from the formulation provided 
coefficient of Yn in the objective function is increased by 1. 

Assume pattern 1 and 2 belong to class 1 and pattern 3 belongs to 
class 2. Assume five component classifiers classify these three patterns as 
(g11, g21, g31, g41, g51) = (1,1,3,4,4), (g12, g22, g32, g42, g52) = (1,1,2,3,3) and 
(g13, g23, g33, g43, g53) = (2,2,1,3,3). It is easy to check that Al = A2 
A3 = {a1 + a2 - a3 + (1 + €)Y1 :::: 10, a1 + a2 - a4 - a5 + (1 + €)Y1 > 
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E, a1 + a2 - 0 + (1 + E)Y1 2: E}. Hence, the restrictions of pattern 2 and 3 can 
be left out of MILP-E by applying RR3 twice provided the objective function 
coefficient of Y1 is increased by 2. 

Combined with pre-processing, standard branch and bound methods as 
implemented in commercial software are capable of solving fairly large prob­
lem instances within reasonable time limits. 

4 Real World Examples 

In datarich conditions, a methodological sound way of working with the 
MILP-E formulation would be to divide the available data at random in three 
independent datasets: one to design the component classifiers, one to design 
the aggregated classifier and one dataset to evaluate both the component and 
aggregated classifiers. For MV aggregating and boosting, a separate dataset 
to design the aggregated classifier is not needed [3, 8]. 

If data are scarce, a different approach is necessary to use the available 
data more efficiently. The real world examples illustrate such schemes. 

All four datasets are publicly available and described at the UCI repository 
at http:jkdd.ics.uci.edu [2]. 

Our aim on the tic-tac-toe dataset is to illustrate in detail how pre­
processing can successfully reduce the computation time to solve MILP-E. 
The component classifiers will be obtained by applying different SC methods 
to the same design dataset. We will compare the performance of the MILP-E 
classifier to that of the MV classifier. 

4.1 Tic-tac-toe 

The tic-tac-toe dataset consists of 958 patterns each having 9 measure­
ments. The patterns are legal tic-tac-toe endgame boards and the two classes 
are: x wins or x does not win, respectively referred to as class 1 and class 2. 
The data are randomly divided into a design dataset V of 638 patterns and 
a testing dataset T of 320. Component classifiers are obtained by using dif­
ferent SC methods as given in Table 1. The entry in the column "linear?" is 
yes if the classifier is linear in the measurements, no if not. The LDA, QDA, 
NN, KER and MLR classifiers are calculated with SAS [9]. The MSID-4A 
[5], GOCH [6] and BENN [1] classifiers are found with LINDO [10]. 
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Table 1: SC Methods 

SC method 
majority rule (MR) 
linear discriminant analysis (LDA) 
quadratic discriminant analysis (QDA) 
nearest neighbour (NN) 
kernel (KER) 
multinomial logistic regression (MLR) 
linear programming (MSID-4A) 
linear programming (GOCH) 
linear programming (BENN) 

linear? implementation details 
no 
yes proportional priors 
no proportional priors 
no k = 64 
no T = 3, pool = yes, kernel = normal 
no 
yes H = 1, K = 0, s = 1 
yes 
yes 

Denote by hTJ the error rate on the design dataset and by hT the error 
rate on the testing dataset. hTJ1' hTJ2 and hTi.' hT-, are the error rates per 
class, respectively on the design and the testing dataset. The error rates 
are expressed as percentages. Table 2 shows the aggregation results when 
aggregating only the four classifiers that are linear in the measurements are 
aggregated. E was set to 0.0001. 

Table 2: Aggregating Linear Classifiers 

SC method hv hVl h1J-;. hT h7j hT2 
LDA 35.5 34.9 31.0 34.4 33.3 36.1 
MSID-4A 25.7 17.3 42.9 28.3 16.2 47.5 
GOCH 25.9 13.8 50.5 29.9 13.1 56.6 
BENN 32.0 32.6 31.0 33.1 31.3 36.1 
MV aggregating 32.0 32.5 31.0 33.1 31.3 36.1 
MILP-< aggregating 23.7 17.1 37.1 26.9 16.2 44.3 

Given the component classifiers, the MILP-E aggregated classifier outper­
forms all other classifiers in terms of accuracy both on the design and the 
testing dataset. The MILP-E aggregated classifier performs (much) better 
than the MY classifier and also strictly better than any of the individual 
classifiers. The MY classifier does not perform well. Due to pre-processing 
only 5 binary variables are left in the final MILP-E formulation. As many as 
485 patterns could be left out of the MILP-E model due to RRl. 38 binary 
variables could be left out due to RR2a and 16 due to RR2b. Another 94 
binary variables can be left out due to RR3. The resulting MILP-E is as 
simple as 
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min 16Yl + 66Y2 + 3Y3 + Y4 + 13Y5 + 135 

subject to 

Oil + 0i2 + 0i3 - 0i4 + (1 + E)Y1 ;::: E 

0i3 + 0i4 - Oil - 0i2 + (1 + E)Y2 ;::: € 

0i4 - Oil - 0i2 - 0i3 + (1 + €)Y3 ;::: € 

0i2 + 0i4 - Oil - 0i3 + (1 + E)Y4 ;::: € 

Oil + 0i2 - 0i3 - 0i4 + (1 + E)Y5 ;::: € 

Oil :::; 0i2 + 0i3 + 0i4 

0i3 :::; Oil + 0i2 + 0i4 

0i4 :::; Oil + 0i2 + 0i3 
4 

LOil = 1 
1=1 

o :::; Oil :::; 1 

Oil E IR 

Yn E {O, I} 

I E {I, ... , 4} 

I E {I, ... , 4} 

n E {I, ... ,3} 

The optimal weights (Oir, 0i2, Oig, Oi.n = (0,0.49995,0.49995,0.0001) are ob­
tained in 0.1 CPU seconds on a pentium 530 MHz computer. Without pre­
processing, LINDO needs 3.6 CPU seconds to find the same optimal solution. 

Table 3: Aggregating All Classifiers 

SC method hv hVJ hV2 hT hTj hT2 
MR 32.9 0 100 38.1 0 100 
LDA 35.5 34.9 31.0 34.4 33.3 36.1 
QDA 20.1 24.4 11.4 23.1 22.7 23.8 
NN 30.1 37.7 14.8 29.7 37.4 17.2 
KER 34.2 39.6 23.3 35.6 36.9 33.6 
MLR 29.8 15.9 58.1 28.1 8.6 59.8 
MSID-4 25.7 17.3 42.9 28.3 16.2 47.5 
GOCH 25.9 13.8 50.5 29.9 13.1 56.6 
BENN 32.0 32.6 31.0 33.1 31.3 36.1 
MV aggregating 25.5 22.9 31.0 28.4 21.2 40.2 
MILP-f aggregating 20.1 24.4 11.4 23.1 22.7 23.8 
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Table 3 gives the aggregation results when all classifiers are aggregated. 
The MILP-c aggregated classifier again outperforms the MV classifier, both 
on the design and the testing dataset. The optimal solution to MILP-€ is ob­
tained as (ai, a:.i, aj, a4, as, a(i, a7, as, ail) = (0,0,0.50005,0,0,0,0,0,0.49995). 
Its performance is identical to the performance of QDA which also follows 
from the observation that aj > 0.5 (classifier 3 corresponds to QDA). After 
pre-processing, 47 binary variables remained in the final MILP-€ model: 228 
patterns are left out due RRl. RR2a removed 103 binary variables and RR2b 
43. Another 228 binary variables were removed due to RR3. It took LINDO 
0.1 second to find the optimal weights. Without pre-processing, after 24 
hours CPU time, LINDO still had not terminated its search. This illustrates 
the importance of pre-processing. 0 

In boosting, say Adaboost.M1, the component classifiers are obtained in 
a specific way [8]. Therefore, it was not possible to compare the performance 
of the MILP-€ classifier to that of a boosted classifier on the tic-tac-toe 
dataset. On the handwritten digits dataset, the component classifiers will be 
obtained by using the Adaboost.M1 procedure. The component classifiers 
will be aggregated with all three procedures: boosting, MV and MILP-€. 
The handwritten digits dataset is also substantially larger than the other 
real world datasets. Our aim is to show that our approach, thanks to pre­
processing, can also be successful on large real life datasets. 

4.2 Optical Recognition of Handwritten Digits 

The handwritten digits data gives 64 discrete valued measurements of 
normalized bitmaps of 5620 handwritten digits. The ten possible classes are 
0,1, ... ,9. Separate design and testing datasets are given, consisting respec­
tively of 3823 and 1797 patterns. 

We have applied AdaBoost.M1 [8] using a prototype classifier. The proto­
type classifier puts a pattern in the class that has the closest design dataset 
average to it, in terms of Euclidian distance. Ties are solved randomly. The 
boosting procedure stabilized already after eight iterations. Hence, we have 
eight component classifiers. In the AdaBoost.M1, component classifiers with 
a low design dataset error rate are given a relatively large weight al. How­
ever, the eight component classifiers could also be aggregated by means of a 
MV or the MILP-€ formulation. The results are shown in Table 4. The clas­
sifier aggregated with MILP-c performs best on the design dataset as well as 

12 



the testing dataset. Pre-processing was able to reduce the number of binary 
variables from 3823 to 103. The final MILP-E formulation was solved in 14 
seconds. These results shows that our approach can also be successful on 
fairly large real life datasets. 0 

Table 4: Results of Aggregated Classifiers 

AdaBoost.M1 8.1 10.6 
MV 7.8 10.6 
MILP-f 7.1 9.4 

These two examples show that, although methodologically questionable, 
using the same dataset to get the component classifiers and aggregate them 
might still give good results. In general though, such an approach is expected 
to easily overfit the design dataset. On the tic-tac-toe dataset, the MILP­
E aggregated classifier overfits the design dataset though not dramatically. 
Previous studies [12] suggest that the tic-tac-toe dataset is highly irregular. 
Also on the handwritten digits dataset, there is some overfitting but it is not 
problematic. 

On the image segmentation dataset below, we propose another way to 
get the component classifiers and subsequently aggregate them. In contrast 
to the tic-tac-toe example, the component classifiers will be obtained by 
applying the same SC method. Variety in the component classifiers will be 
obtained by changing the data onto which the SC method is run. The SC 
method we opt for is k-nearest neighbor as this method is known to work 
well on image segmentation data. The aim is to see if aggregation works 
when the component classifiers are already good. We will compare MV and 
MILP-E aggregation. 

4.3 Image Segmentation Dataset 

In the image segmentation dataset, one is asked to classify regions of 
nine pixels based on 19 continuous measurements. The pixel regions are 
taken from outdoor images. The seven possible classes for each pixel region 
are brickface, sky, foliage, cement, window, path and grass. There are 30 
patterns per class in the design dataset and 300 instances per class in the 
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testing dataset. The large testing dataset will only be used for evaluation. 
Hence, despite the large testing dataset, we are in datascarce conditions: as 
few as 210 patterns are available to design the component classifiers and the 
aggregated classifier in a 19-dimensional measurement space. 

First, from the design dataset, 10 sub-samples of 210 patterns are ran­
domly drawn with replacement. It can be verified that the expected number 
of different patterns in a sub-sample equals 132.93. A component classi­
fier is calculated on each of the 10 sub-samples using the same se method 
(k-nearest neighbor). Next, the component classifiers are aggregated with 
MILP-E using all 210 patterns of the design dataset. Hence, in the aggrega­
tion, each component classifier is up against an expected 77.07 new patterns. 
To end, the error rate of the classifiers is evaluated. Each of the 10 com­
ponent classifiers is evaluated on the sub-sample used for its design (0), on 
the design dataset (0) and the testing dataset (L>.). The component classifier 
error rates are averaged to indicate the performance of the average compo­
nent classifier (indicated by filled symbols). The MY classifier (full line) and 
the MILP-E aggregated classifier (dashed line) are evaluated on the design 
dataset and the testing dataset. 

The component classifiers are calculated in SAS using the k- nearest neigh­
bor method. In order to see if the aggregation results change if one varies 
the se method to design the component classifier, the procedure is repeated 
for k E {I, 2, 3, 5, 6, 7, 10, 15, 30}. E was set to 0.0001. Figure 1 shows the 
results. 

Both the component and the aggregated classifiers overfit the dataset used 
in their design. Surprisingly, on this dataset, the best testing dataset error 
rates are obtained by using the I-nearest neighbor method. Although the 
performance on the design dataset differs, the testing dataset performance of 
the MY and MILP-E aggregated classifier is very similar. The accuracy gain 
of aggregating (albeit with MY or MILP-t:) compared to the average compo­
nent classifier is one or two percentages. Of course, on the design dataset, 
the MILP-E aggregated classifier is always at least as good as any component 
classifier. Pre-processing was able to keep on average 85.4% of the design 
dataset patterns out of the MILP-t: formulation and strongly reduced the 
computational effort needed. The results on this dataset illustrate that the 
MILP-E does not always outperform the MY aggregated classifier on unseen 
data despite superior performance on the design dataset. 0 

In all three examples, a (large) testing dataset was available. Often, one 
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Figure 1: Results for the Image Segmentation Dataset 
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does not have a testing dataset available or is unwilling to use it for evaluation 
purposes only. An alternative that uses the available data more efficiently 
would be to estimate the accuracy of the aggregated classifier with K-fold 
cross-validation. The last example shows how to get a 10-fold cross-validation 
estimate of the accuracy of the MV aggregated as well as the MILP-E ag­
gregated classifier. Also, we will illustrate how to deal with extra, problem 
specific constraints in MILP-£. To end, we will also have a look at the relia­
bility estimates obtained by both aggregation methods. 

4.4 Dermatology Dataset 

The aim of the dermatology dataset is to diagnose one of six possible 
types of eryhemato-squamous diseases. 12 clinical and 24 histopathological 
measurements of the patient are given. Only the 12 clinical measurements 
are used. The dataset contains 366 patterns, which are to be used for both 
classifier design and testing. As in the image segmentation example, datas­
carce conditions apply. Eight patterns suffered from missing values and were 
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left out. The remaining 358 form the design dataset. 
From the design dataset, 30 sub-samples of 358 patterns are randomly 

drawn with replacement. The expected number of different patterns in such 
a sub-sample is 226.48. For each of these sub-samples, a component classifier 
was calculated in SAS using the LDA method with proportional priors and 
tested on the design dataset patterns that were not in the sub-sample. Figure 
2 shows the error rate per class of the 30 component classifiers on the design 
dataset (<» and the testing dataset (t:;). Also the error rate over all classes is 
shown. 

0."7 

0.6 

1\ 
0.5 

2 3 4 6 all 

Figure 2: Component Classifier Results for Dermatology 

Assume class 5 patterns are of special interest. The component classifiers 
have difficulties to classify class 5 patterns correctly. Can we find an aggre­
gated classifier that has a better accuracy than the component classifiers, 
especially for patterns from class 5? 

There are several ways to adjust the standard MILP-E model to take this 
problem specific demand into account. Notice that this is not possible in MV 
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aggregation or boosting. 
An obvious way of working would be to include a constraint of the type 

2":nE'V5 Yn :::; 0'11)51 where 1)5 is the set of design dataset patterns that belong 
to class 5 and 0' is the maximum allowable error rate for class 5 on the design 
dataset. However, such constraint may render the model infeasible and one 
has to be careful in setting 0' if one pre-processes. 

We have implemented another idea. By changing the objective function 
coefficients en, it is possible to pre-emptively model the objective to mini­
mize the number of class 5 misclassifications. E.g., set the objective function 
coefficient en = N if pattern n belongs to class 5 and en = 1 otherwise. 
The advantage of this way of working is that the model cannot run into an 
infeasibility. The reduction rules remain valid. The only difference is that 
the objective function value of MILP-E has to be increased with N for every 
misclassified pattern of class 5 that is left out and by 1 for every other mis­
classified pattern that is removed. 

As no testing dataset is available, we will use 10-fold cross-validation to 
estimate the accuracy of the aggregated estimators. 

The design dataset was randomly split into 10 subsets 1)k of almost equal 
size with k E {I, 2, ... , 10}. The component classifiers are aggregated on the 
10 sets V \ 1)k and tested on the corresponding set 1)k' Averaging of the 
testing results gives the 10-fold cross-validation estimate of the aggregated 
classifier on 1). Table 5 shows the results. 

Table 5: Aggregating LDA Classifiers 

h, h, h3 h4 h5 h6 hall 

LDA component (averaged) 0.18 0.23 0.04 0.18 0.37 0.07 0.18 
MV aggregated 0.17 0.23 0.02 0.14 0.38 0.00 0.16 
MILP-£ aggregated 0.15 0.22 0.02 0.19 0.30 0.06 0.15 

The error rates of the MILP-E aggregated classifier have improved, espe­
cially for class 5, but not drastically. Even on the sets 1) \ V k , the average 
class 5 error rate was still 0.19. The reason for this is that 9 out the 48 design 
dataset patterns from class 5 are misclassified by all component classifiers. 
This illustrates the more general statement of Breiman [3] in the context of 
MY aggregation: "Bagging unstable classifies usually improves them. Bag­
ging stable classifiers is not a good idea." Indeed, if the component classifiers 
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tend to yield the same classification, there is only little improvement to be 
made by aggregating. 

In the context of medical diagnosis, it might be interesting to have an idea 
about the reliability of the predicted class, i.e. to have an estimate of the 
conditional probabilities prc(C = clX1 = Xl,,,.,Xp = xp). Both MY and 
MILP-E aggregation directly provide such estimates. 
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Figure 3: Conditional Probability Estimates for a Pattern from Class 5 
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Figure 4: Conditional Probability Estimates for a Pattern from Class 6 

Figures 3 and 4 give the class conditional probability estimates for two 
patterns. Panel (a) of Figure 3 shows that the pattern is incorrectly classified 
with a high reliability by the MY aggregated classifier. The MILP-E aggre­
gated classifier on the other hand classifies the pattern correctly as shown in 
panel (b), though the reliability of the classification is not so high. In Figure 
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4, both aggregated classifiers make a correct classification but the reliability 
differs. 0 

5 Conclusions 

With regard to the use of MV aggregating, Breiman (1994) argues that 
"Aggregating can ( ... ) transform good predictors into nearly optimal ones. 
On the other hand, ( ... ), poor predictors can be transformed into worse ones." 
Aggregating with mathematical programming guarantees that poor predic­
tors cannot be transformed into worse ones as the aggregated classifier will 
be at least as good as the best predictor on the design dataset for a given 
criterion function. The real world examples suggest that this is often also 
true on unseen data and that our approach can outperform both bagging and 
boosting. For practicioners, the approach is particularly interesting because 
it offers the user the flexibility to include extra problem specific constraints 
into the design of the aggregated classifier and gives an idea of the reliability 
of the final classification. 
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