
ARENBERG DOCTORAL SCHOOL
FACULTY OF ENGINEERING SCIENCE

Quality maintenance in geographical
data and services for spatial networks

Joris Maervoet

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor in Engineering

January 2014

Quality maintenance in geographical data and ser-
vices for spatial networks

Joris MAERVOET

Examination Committee:
Prof. dr. ir. J. Berlamont, chair
Prof. dr. P. De Causmaecker, supervisor
Prof. dr. ir. G. Vanden Berghe, supervisor
Prof. dr. ir. H. Blockeel
Dr. ir. J. Crompvoets
Dr. K. Verbeeck
Dr. P. Brackman
(RouteYou, Belgium)

Prof. dr. N. Van de Weghe
(Ghent University, Belgium)

Prof. dr. C. Claramunt
(Naval Academy Research Institute, France)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor
in Engineering

January 2014

© KU Leuven – Faculty of Engineering Science
Celestijnenlaan 200A box 2402, 3001 LEUVEN, Belgium (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2014/7515/6
ISBN 978-94-6018-782-7

Preface

Long years, difficult years... this would have summarized the PhD project I
have just completed, if it had not been for the discovery of numerous nice
service- and quality oriented people in my network. Beyond doubt, without
their expertise and helpful argument, the road to completion would also have
been less attractive.

First and foremost, I would like to thank my supervisors, Patrick De
Causmaecker and Greet Vanden Berghe. They provided me with a challenging
applied research environment for more than 10 years. This environment enabled
me to become acquainted with both corporate life and the academic world.
Moreover, I got the opportunity to combine this applied research with the
study of a M.Sc. in applied computer science. Thank you for the numerous
suggestions, feedback and support during my PhD.

I am very grateful to those people from industry who were willing to launch,
finance and manage the research projects that contributed to this thesis: in
particular to Pascal Brackman and Philiep De Sutter from the company
RouteYou, and to Gert Vervaet from the company Tele Atlas (currently
TomTom). Besides, much of this research would not have been possible without
the support of the IWT (Vlaams agentschap voor Innovatie door Wetenschap
en Technologie).

I would like to thank Hendrik Blockeel, Nico Van de Weghe, Katja Verbeeck,
Joep Crompvoets and Christophe Claramunt for accepting to be members of
the jury and for their useful feedback which helped improving the quality of this
text. I want to thank prof. Berlamont for being the chairman of my examination
committee.

I highly appreciated the collaboration with, the support of and the atmosphere
created by all my former and current colleagues at the Computer Science group of
KAHO Sint-Lieven (formerly ‘vakgroep IT’): Annemie, Annick, Bart x2, Björn,
Bram, Burak, Faysal, Filip, Geert, Geoffrey, Jan x2, Jannes, Joris, Jorn, Katja,

i

ii PREFACE

Koen x3, Laurens, Hilde, Mieke, Mihail, Murat, Mustafa, Nele, Peter, Philippe,
Phyllis, Pieter x3, Sam, Stijn, Tahir, Tijs, Tim, Tony, Vincent, Werner, Wim,
Wouter and Yvan. The same applies to the colleagues at RouteYou: Bénédict,
Benjamin, David, Kevin, Niels and Pieter.

Special thanks go out to Erik Van Achter, who dotted the i’s and crossed the
t’s in my articles and texts.

Last but not least, I would like to thank my parents and in particular my
girlfriend Lore for supporting me in all sorts of activities related to this PhD.
Since February 2011, our son Ferre provides the entertainment at home. He
will share this responsibility with a sibling by February 2014.

Abstract

The present thesis describes various applications based on concrete questions
originating from GIS practice. It aims at the design and validation of (1)
methods to maintain the quality of large amounts of geographical data, and, (2)
service components for spatial networks, dealing with efficiency in environments
with a limited amount of resources.

In the first place, such an endeavour involves quality maintenance in geographic
information systems (GIS). It is pursued through the identification of patterns,
describing relational regularities, and corresponding outliers indicating probable
inconsistencies in the data. This approach is different from classical approaches
to outlier detection and quality analysis in GIS, traditionally relying on
techniques prospecting for statistical and positional deviation in geographical
data.

It moreover implies the efficiency enhancement of shortest path (cost)
approximation components through auxiliary structures in spatial weighted
graphs. Efficiency in this context mainly refers to the approximation accuracy,
the calculation time required to produce an approximation and the structures’
compactness. A first part describes the integration of a hierarchical shortest
path algorithm in a multi-tier architecture, considerably restricting the amount
of data used during a routing query. Secondly, an evaluation framework for
approximate distance oracles is introduced, taking into account the overall
accuracy performance of the oracle. An advanced oracle, based on graph
partitioning and minimizing the absolute approximation error in spatial graphs,
is presented and evaluated.

The fast automated discovery of attractive closed paths in graphs comprises
the third theme of this work. This problem arises from the introduction of
edge attractiveness scores in graphs. The tour suggestion problem for outdoor
activities aims at optimizing the arc and vertex attractiveness of a closed path
in a transportation network graph, satisfying a set of constraints. An algorithm

iii

iv ABSTRACT

of low computational impact generating heuristic solutions to this problem is
presented.

The underlying concepts and approaches introduced in the present thesis are
applicable in more general domains. The approach to relational outlier detection
applies to quality maintenance in data-rich intelligent systems. The auxiliary
structures enhancing efficiency of approximative shortest path algorithms can
be reused for exact algorithms. The automated discovery of structures of high
attractiveness is valuable for a broader class of applications in graphs with
dually weighted edges. Four software components resulting from this research
have been adopted by industry.

Beknopte samenvatting

Deze thesis beschrijft verscheidene toepassingen gebaseerd op concrete vragen
afkomstig uit de GIS-praktijk. Ze beoogt het ontwerp en de validatie van (1)
methoden om de kwaliteit van grote hoeveelheden geografische gegevens te
handhaven, en (2) service-componenten voor spatiale netwerken, die omgaan
met efficiëntie in omgevingen met een beperkte hoeveelheid resources.

In de eerste plaats heeft dit onderwerp betrekking op de kwaliteitshandhaving
in geografische informatiesystemen (GIS). Hiertoe wordt bijgedragen door de
identificatie van patronen die relationele regelmatigheden en overeenkomstige
afwijkingen in de data beschrijven. Dergelijke afwijkingen zijn een indicatie voor
mogelijke inconsistenties in de gegevens. Deze benaderingswijze verschilt van
de klassieke benaderingen voor de detectie van afwijkingen en kwaliteitsanalyse
in GIS, omdat deze traditioneel steunen op technieken die op zoek gaan naar
statistische en positionele afwijkingen in geografische gegevens.

In een tweede luik wordt de efficiëntie van benaderingscomponenten van (kosten
van) kortste paden bevorderd door middel van hulpstructuren in spatiale
gewogen grafen. Efficiëntie verwijst in deze context hoofdzakelijk naar de
benaderingsaccuraatheid, de vereiste rekentijd om een benadering te genereren en
de compactheid van de structuren. Een eerste deel beschrijft de integratie van een
hiërarchisch korste-pad-algoritme in een multitierarchitectuur, die de hoeveelheid
gegevens gebruikt tijdens een routeringsprocedure aanzienlijk beperkt. Daarna
wordt een evaluatieraamwerk voor zogenaamde afstandsbenaderingsorakels
geïntroduceerd, dat rekening houdt met de globale accuraatheidsscores van
het orakel. Een geavanceerd orakel, gebaseerd op het partitioneren van de graaf
en het minimaliseren van de absolute benaderingsfout in spatiale grafen, wordt
voorgesteld en geëvalueerd.

Het snel en automatisch onthullen van aantrekkelijke gesloten paden in
een graaf vormt het derde thema van dit werk. Dit probleem ontstaat
uit het aanbrengen van aantrekkelijkheidsscores aan de kanten van een

v

vi BEKNOPTE SAMENVATTING

graaf. Het toursuggestieprobleem voor buitenrecreatie streeft een optimale
aantrekkelijkheid na van de bogen en knopen van een gesloten pad, dat voldoet
aan een verzameling beperkingen. Een algoritme met een lage rekentijd dat
heuristische oplossingen voor dit probleem aanreikt in een transportnetwerk
wordt voorgesteld.

De onderliggende concepten en benaderingswijzen die in deze thesis aan bod
komen zijn toepasbaar in algemenere domeinen. De benadering voor het
opsporen van relationele afwijkingen is relevant voor kwaliteitshandhaving
in gegevensrijke intelligente systemen. De hulpstructuren die de efficiëntie be-
vorderen van approximatieve kortste-pad-algoritmen kunnen worden hergebruikt
voor exacte algoritmen. Het automatisch onthullen van structuren met een hoge
aantrekkelijkheid draagt bij tot een bredere klasse van toepassingen in grafen
waarvan de kanten twee gewichten hebben. Vier softwarecomponenten die uit
dit onderzoek voortvloeien werden overgenomen door de industrie.

Abbreviations

ACE A Combined Engine
ADO Approximate Distance Oracle
API Application Programming Interface

BTP Bus Touring Problem

CI Complex Intersection
CWA Closed World Assumption

DBMS DataBase Management System
DCW Dual Carriage Way
DILP Descriptive Inductive Logic Programming

EA Early Access
EILP Empirical Inductive Logic Programming

FOW Form Of Way
FRC Functional Road Class
FW Feasibility Window

GIS Geographic Information Systems
GUI Graphical User Interface

HAV Highly Attractive Vertex

IILP Interactive Inductive Logic Programming
ILP Inductive Logic Programming

KDD Knowledge Discovery in Databases

vii

viii ABBREVIATIONS

LBS Location Based Services
LCA Least Common Ancestor
LE Late Exit
LP Logic Programming

MLHNP Multi-Level Heuristic Node Promotion
MOSP Multi-Objective Shortest Path

OATSP Outdoor Activity Tour Suggestion Problem
OP Orienteering Problem
OSM Open Street Map

PCTSP Prize Collecting TSP
POI Point Of Interest

RDBMS Relational DataBase Management System
RMSE Root-Mean-Square Error

SAR Spatial Association Rules
SDM Spatial Data Mining
SP Shortest Path
SPADA Spatial Pattern Discovery Algorithm

TSP Traveling Salesperson Problem
TSPLT Tour Suggestion Problem for Leisure and

Tourism
TTDP Tourist Trip Design Problem

UML Unified Modeling Language

WARMR Wanted: Association Rules over Multiple
Relations

Contents

Abstract iii

Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Context . 1

1.2 Research context and industrial cooperation 2

1.3 Themes and objectives . 4

1.4 Structure of the thesis . 6

2 Feasibility study of applying descriptive ILP to large geographic
databases 9

2.1 Introduction . 10

2.2 Problem description . 12

2.2.1 Quality control for geographical data 12

2.2.2 Data model and rule examples 13

2.2.3 Challenges . 14

ix

x CONTENTS

2.3 Applicability of ILP to Quality Gate 15

2.3.1 Motivation . 15

2.3.2 ILP subdomains . 15

2.3.3 Quality Gate in relation to ILP subdomains 16

2.4 Case study . 17

2.4.1 Our approach based on WARMR 17

2.4.2 Data preparation and modelling: the Beggen data . . . 19

2.4.3 Results . 20

2.4.4 Tracing anomalies and rule export 21

2.5 Discussion . 22

2.5.1 A reflection on the experiment 22

2.5.2 Towards a larger scale application of the experiment . . 23

2.6 Conclusion . 24

3 Outlier detection in relational data: a case study 27

3.1 Introduction . 28

3.2 Related work . 29

3.2.1 Outlier detection . 29

3.2.2 Spatial rule mining . 31

3.3 Problem description . 32

3.3.1 System analysis . 32

3.3.2 The dynamic data model 34

3.3.3 Rule and outlier type analysis 35

3.3.4 The integration of a relational datamining technique . . 36

3.4 System design . 37

3.4.1 Rationale . 37

3.4.2 Generic rule language 39

CONTENTS xi

3.4.3 Data preprocessing . 40

3.4.4 Data mining and pattern postprocessing 42

3.5 Results . 45

3.5.1 Experiment 1: discovering inter-feature relations 45

3.5.2 Experiment 2: discovering intra-feature relations 46

3.5.3 Rule set for experiment reconstruction 48

3.6 Future work . 48

3.7 Conclusion . 51

4 Wayfinding by multi-level heuristic node promotion in real road
networks 53

4.1 Introduction . 54

4.2 Related work . 57

4.2.1 Heuristics for one-to-one shortest path finding 57

4.2.2 Applicability of classical hierarchical approaches 59

4.2.3 Classical hierarchical shortest path finding 60

4.3 Multi-level heuristic node promotion in transformed network graphs 62

4.3.1 Algorithm . 65

4.3.2 The role of transition points and the heuristic estimate 66

4.3.3 Preprocessing overview 67

4.3.4 Updating overview . 68

4.4 Multi-level heuristic node promotion in real road networks . . . 68

4.4.1 Adaptation 1: cell classification and merge 71

4.4.2 Adaptation 2: easing the node promotion condition . . . 76

4.4.3 Adaptation 3: transition point corrections 77

4.4.4 Adaptation 4: improving the transition point selection . . 81

4.5 Experiment . 82

4.5.1 Objectives and methodology 82

xii CONTENTS

4.5.2 Geographical dataset . 84

4.5.3 Basic wayfinding and MLHNP settings 84

4.5.4 Results . 85

4.6 Conclusion . 88

5 Least squares approximate distance oracles for spatial networks 89

5.1 Introduction . 90

5.2 Least squares approximate distance oracles 92

5.2.1 Basic concepts . 93

5.2.2 Oracles of unit size . 94

5.3 An advanced ADO based on clusters and transit nodes 95

5.3.1 Related work . 95

5.3.2 Definitions . 97

5.3.3 ADO construction . 97

5.3.4 Network distance approximation algorithm 102

5.3.5 Complexity . 102

5.4 Experiment . 102

5.5 Conclusion . 105

6 Tour suggestion for outdoor activities 107

6.1 Introduction . 108

6.2 Tour suggestion models for leisure and tourism 109

6.3 The outdoor activity tour suggestion problem 111

6.4 Approach . 114

6.5 Results . 116

6.6 Conclusion . 119

7 Conclusion 121

CONTENTS xiii

7.1 Contribution . 121

7.2 Further directions . 124

A Extraction of a directed weighted spatial graph from Open-
StreetMap data 129

Bibliography 133

Curriculum vitae 145

List of publications 147

List of Figures

2.1 Geographic data collection with mobile mapping vehicles 12

2.2 Applying WARMR to geographical data: general approach . . 18

3.1 Identification of regularities and anomalies within the quality
maintenance business process. 33

3.2 An excerpt of the metamodel, the data model, and the data
(UML class diagram). 34

3.3 Design of the rule miner prototype. 38

3.4 The geographical metamodel and its relation to interpretation
construction (UML class diagram). 42

4.1 Routing process diagram. 55

4.2 Multi-level heuristic node promotion. 64

4.3 Recursive run of the multi-level heuristic node promotion algorithm. 65

4.4 Scenario 1. 69

4.5 Scenario 2. 70

4.6 Scenario 3. 70

4.7 Cell builder and merger states in the neighbourhood of a complex
intersection. 72

4.8 Classification of regular cells, CI parts and DCW parts. 73

4.9 Cell merge algorithm. 75

xv

xvi LIST OF FIGURES

4.10 Scenario 4. 76

4.11 Transition point corrections by length and by couple. 77

4.12 Transition point correction in case of early access/late exit. . . 77

4.13 Example of an uncovered anomalous transition point pattern and
the backtracking mechanism. 83

5.1 Association graph construction 98

5.2 Association edge weight calculation 98

5.3 Instance of an origin cluster in the Ghent dataset. 103

5.4 Unit size oracle’s absolute error as a function of spatial distance. 105

5.5 Advanced oracle’s absolute error as a function of spatial distance. 105

5.6 Unit size oracle’s average absolute error histogram for spatial
distance ranges. 105

5.7 Advanced oracle’s average absolute error histogram for spatial
distance ranges. 105

6.1 Optimal paths for two problem models in a sample Manhattan
graph . 112

6.2 State diagram of the fast heuristic algorithm for the OATSP. . 115

6.3 Arc attractiveness map and the three best tours for experiment
SN-1. 117

6.4 Arc and node attractiveness map and the two best tours for
experiment SN-2. 117

List of Tables

3.1 Unsupervised outlier detection. 29

3.2 Possible experiment scenarios for the example rule set 36

3.3 Primitive function definitions 39

3.4 Rule language components . 40

3.5 Inclusion condition: three approaches 41

3.6 Sample data flow during preprocessing for the school/road data set 43

3.7 Sample data flow during datamining and postprocessing for the
school/road data set . 44

3.8 Sanity check details (experiments 1 and 2). 49

3.9 Sanity check details (experiments 3 and 4). 50

4.1 MLHNP concept definitions (part 1) 63

4.2 MLHNP concept definitions (part 2) 64

4.3 Legend. 69

4.4 Adaptation 1 . 71

4.5 Adaptation 2 . 76

4.6 Adaptation 3a . 79

4.7 Adaptation 3b . 80

4.8 Experiment results (small box pruning). 86

xvii

xviii LIST OF TABLES

4.9 Experiment results (large box pruning). 86

5.1 Set, tree and graph functions 100

5.2 Absolute error statistics (in minutes) of network distance
approximations for the query sample set S in the Ghent dataset. 104

6.1 Experiment SN-1 and SN-2 statistics. 118

6.2 Top-5 result characteristics for experiments SN-1 and SN-2. . . 118

Chapter 1

Introduction

1.1 Context

At the beginning of the 21st century, digital map-making was a specialized
process, exclusively executed by cartographers, under the authority of
governmental or private organisations. Offering these maps and corresponding
geographical services on the web, used to be a difficult and complicated task.
During the last decade, the world of web cartography has been subject to drastic
changes.

In a first evolution, map-making became a matter of combining many pieces of
map data originating from an increasing number of sources. The map-making
industry or geographic content providers started to involve a substantially higher
number of methods and sources in the collection and synthesis process of
geographical data, e.g. mobile mapping and crowd-sourcing. It is the role of
map merging, often referred to as data conflation, to combine geographical
data from separate sources into one map, preserving data accuracy, avoiding
redundancy and solving data conflicts, as described by Longley et al. [73]. With
the advent of collaborative mapping initiatives such as OpenStreetMap (OSM),
the map-making process became both more transparent and, as such, democratic
(as stated by Lin [70]), and geographical data became the result of a patchwork
contributed by many individuals.

A second evolution concerns the advance of easily integratable web components
that facilitate offering online maps and building online services regarding
geographical data. Both open-source and commercial software projects were
launched easing the realisation of interactive maps on the web. Open web

1

2 INTRODUCTION

standards were developed for the exchange of geographical data. The so-
called mashups are web applications enabling the fast integration of services
and data from multiple sources in a single graphical interface through open
application programming interfaces (APIs). A service example is map tiling,
which facilitates the instant visualisation of a map according to a specified
map template. Geocoding implies the translation of a postal address into geo-
referenced coordinates. Routing involves identification of the optimal path from
a specified origin to a specified destination with regard to a certain criterion
such as distance or travel time.

Both evolutions involve interesting challenges. The first evolution raises the
concern of how the quality of geographical data can be controlled in this many-
pieces-from-multiple-sources context. The latter trend raises the challenge
of designing service components that efficiently answer questions regarding
geographical data in instant time and with a limited amount of other resources.
For example, limiting the memory usage of a web application augments the
number of parallel tasks a given server infrastructure can handle. Short response
times enhance the end user experience of applications such as browsing maps
and trip planning. The present thesis anticipates these challenges.

1.2 Research context and industrial cooperation

The contributions in this thesis are based on joint research with industry.

The Quality Gate project aimed to develop a system that is capable of
maintaining the quality of data located in the central database of the company
Tele Atlas. At the moment of the project launch, this company1 was market
leader in the provision of geographical data to other companies. The geographical
data supports three types of applications: navigation systems, geographic
information systems (GIS) and applications that provide location-based services
(LBS). In these application areas there is an increasing demand for data quality.
In certain situations companies could even be legally liable for inaccuracies in
geographical data. Moreover, Tele Atlas was a typical example of a company
relying on multiple sources for geographical data acquisition. It managed a fleet
of mobile mapping vans, assisting a team of specialists in the semi-automatic
mapping of the delimited regions they had been assigned to. This process
was occasionally subject to human mistakes and structural differences due to
individual preferences.
Quality Gate was a research and development (O&O) project funded by the

1Since 2007, the company is a wholly-owned subsidiary of automotive navigation system
manufacturer TomTom.

RESEARCH CONTEXT AND INDUSTRIAL COOPERATION 3

IWT. In this project, the company realized the infrastructural and process-
based aspects of quality maintenance of geographical data. The complementary
approach by the author focused on data mining techniques to identify patterns
in the geographical data automatically and on tracing corresponding anomalies.
This data has extensive structural characteristics: it consists of objects or
features enclosing both a spatial representation (which typically is a point, a
linestring or an area) and a tree of attribute information. The data model links
a spatial representation type and a tree of (non-spatial) attribute types to each
feature type. A petrol station is for example represented by a point, and its
attribute tree encloses the station’s address, brand and fuel types. Furthermore,
it links associations types to two or more feature types and again an attribute
type tree. Associations describe non-spatial relations between features, such as
a forbidden traffic manoeuvre between roads for a specified type of vehicle.

The major part of this thesis was achieved during a project in cooperation with
the company RouteYou.com. This company manages a web 2.0 environment
enabling users to interactively create, share and use routes in the context of
leisure and tourism. Besides, it offers a routing platform for various application
developers and digital content providers. Much of this is realized by web
components offering online maps and services regarding geographical data, such
as map tiling and geocoding. The company owes its unique position in the market
of recreational navigation to the maintenance of a set of transportation network
graphs, tailored to the needs of several outdoor activity modes such as hiking
and mountain biking. Each edge in these graphs encodes a score, taking into
account the physical and scenic road characteristics and the traffic regulations
with regard to the mode. This score will further be referred to as attractiveness
or suitability. The transportation graphs annotated by attractiveness give rise
to several useful applications for any outdoor activity mode. The computation
of a route of interest between two points selected by the user, for instance,
entails a trade-off between attractiveness and the length of the route. The
derivation of a connected subnetwork consisting of edges of high attractiveness
is another example. The models and methods implied by these applications
often differ from traditional approaches in the field.
The industrial PhD project (Baekelandmandaat) ‘Structural heuristics for
personalized routes’ funded by the IWT anticipates these differences. It focuses
on the development of structural models in order to index, structure and
facilitate dynamic geographical knowledge such that performant algorithms can
use this knowledge to offer routing services in the context of tourism and leisure.
The geographical data faced consists of directed graphs with a spatial
representation and of which edges have associated attractiveness scores and
lengths. This data is authored by the company’s geomatics department and is
assumed to be correct. Optionally, this data is enriched by points of interest
(POIs) which a spatial position and an attractiveness. Besides, in an operational

4 INTRODUCTION

context, the company maintains a multi-tier architecture and the geographical
data is stored in a spatial database. This architecture supports a multi-purpose
GIS system and enables easy geographical data updates.

1.3 Themes and objectives

The research in this thesis is based on concrete questions originating from GIS
practice. The present doctoral dissertation aims at the design and validation of

• methods to maintain the quality of large amounts of dynamic geographical
data originating from multiple sources, and,

• service components for spatial networks, efficiently answering queries
regarding spatial networks in low computational time and with a limited
amount of resources.

This work was performed in close collaboration with a number of companies,
who each had specific goals. The dissertation reflects this: it focuses on three
different themes, with as main common feature their relevance for GIS and
spatial networks:

• Geographical data quality. This first theme pursues the maintenance
of the quality of data stored in GIS, through the identification of patterns
describing data regularities. The commercial and the collaborative
map-makers are facing very similar challenges with regard to quality
maintenance: the amount of data is huge, and the data as well as the data
model is subject to continuous updates. For large content providers such
as Tele Atlas, the discipline of (semi-)automated identification of outliers
and quality analysis in GIS, was, until 2007, restricted to the identification
of positional inaccuracies and inconsistencies or referred to the statistical
deviation (cf. clustering, trend analysis) of non-spatial attributes. The
present work advocates for the application of relational data mining
techniques in order to find outliers indicating probable inconsistencies.
This approach better integrates the structural aspects of the data, preserves
scalability and is compatible with evolving data models. It should be
noted that outliers in geographical data do not necessarily correspond to
errors, but can exhibit specific knowledge.

• Shortest path (cost) approximation. A second theme implies the
construction of structures from spatial weighted graphs enabling instant
shortest path (cost) approximation, in resource-constrained environments

THEMES AND OBJECTIVES 5

where exact shortest path approaches cannot be applied. Amongst the
common (web) services components for geographical data, routing is the
most computationally intensive component. As is customary, routing
entails finding the path of lowest cost between two vertices in a weighted
graph. Recently proposed algorithms, such as a hybrid approach by
Goldberg et al. [42], the contraction hierarchy approach by Geisberger et
al. [39] and the transit-node approach by Bast et al. [7], return the exact
solution in an effective way. The second approach has been made publicly
available in the form of a standalone open-source software component.
Any of these approaches require a preprocessing (or precalculation) phase,
during which indexed structures are built, enabling a fast answer to
any routing query. The best performing systems expose a clear trade-off
between the required preprocessing and query time. However, none of these
approaches or systems integrate with RouteYou’s multi-tier architecture,
considerably restricting the amount of (preprocessed) data used during
query time, and requiring geographical data updates. These goals can
be realized when the exactness of these systems is abandoned i.e. they
generate paths of low cost approximating the lowest cost. An approximate
distance oracle is a very related component to this theme: it is a compact
data structure or model built from a graph, that is able to return an
approximation of the shortest path cost between any two vertices of a
graph in instant time. It often trades compactness for approximation
accuracy. This type of components has many applications where only a
cost approximation by a compact component is required.

• Discovery of structures related to attractiveness in spatial
graphs. This third theme focuses on the discovery of closed paths of
high attractiveness in graphs where the edges have both a length and an
attractiveness score. It gives rise to a web component for tour suggestion
for the company RouteYou. The fast and automated construction of closed
paths supports this component generating tours of a specified length and
of optimal attractiveness with regard to one of the company’s outdoor
activity modes. This is a novel approach since any of the conventional
approaches to tour suggestion for leisure and tourism emphasize the
selection of a sequence of vertices of different attractiveness, often of a
complete graph.

Relations between the themes. The quality of geographical data,
maintained by techniques discussed in theme 1, is of high influence on the quality
of services based on this data. The shortest path approximation algorithms
treated in the second theme are important examples of this type of services,
and are the basic component of point-to-point route planners and navigation
systems. Anomalies in geographical data, which are detected by techniques

6 INTRODUCTION

covered by the first theme, can cause serious flaws with regard to route planning
and navigation, ranging from travel time estimation deviation, over detours or
blocked off passages in the suggested path, to manoeuvres which are illegal or
put people into danger. The shortest path approximation algorithms operate
on spatial networks, extracted from this geographical data, which is rich in
structure. In case of navigation in transportation networks, this extraction
process mainly determines (1) which ways and junctions must be included in
the network in the form of edges and nodes, and, (2) the scores or weights to
be assigned to the edges. This process is different for each routing mode and
each means of transport.

Conversely, formal requirements imposed by services can be mapped backwards
on data regularities for quality maintenance. Full network connectivity, for
example, ensures that a shortest path algorithm is able to return a path between
any two nodes in the network. This property can be translated back into a set
of quality rules such that a connected network is extracted for any data set
satisfying these rules.

Point-to-point navigation along the most attractive route is the common setting
of the second and the third theme. Although the shortest path approximation
algorithms apply to spatial transportation networks in general, these algorithms
support point-to-point navigation along the most attractive route. For this type
of navigation, the edge weights of the graph are derived from both the edge’s
length and attractiveness. The tour suggestion module in theme 3 operates in
spatial graphs in which the edges have both a length and an attractiveness, and
has attractiveness-based point-to-point navigation as a component.

1.4 Structure of the thesis

The structure of this work is as follows. Chapter 2 is situated in the geographical
data quality theme and accounts for the feasibility of applying inductive logic
programming to identify anomalies in the geographical data of the company Tele
Atlas. This relational data mining technique integrates the representation of
logic programming. A small case study deals with the extraction of regular and
irregular patterns in relation to attributes of road elements and junctions of a
small geographic region. Chapter 3 continues this work with the formalization of
outlier detection in relational data and GIS. An integrated tool for extracting a
broad scope of valuable knowledge about outliers in GIS is presented, supporting
an evolving data model. The added value of this tool is illustrated by two
experiments and a sanity check.

STRUCTURE OF THE THESIS 7

Chapter 4 treats the integration of a shortest path algorithm in a multi-tier
web architecture. An approximation algorithm based on the hierarchy of a
road network (cf. class labels) integrates best in this architecture. It however
requires an irreversible graph transformation during preprocessing, which is
problematic in contemporary route planning applications. Two alternative
geographical data processing steps during the preprocessing and two adaptations
of the algorithm are proposed in order to restore the algorithm’s effectiveness.
Chapter 5 advocates for the evaluation of approximate distance oracles by the
root-mean-square error of its network distance approximations. It introduces an
oracle for spatial graphs based on clustering graph vertices that share similar
shortest paths starting or ending in these vertices. Both chapters on shortest
path (cost) approximation are supported by an experimental analysis of the
path cost accuracy for an extensive set of sample routing queries.

The theme of the discovery of closed paths of high attractiveness is represented
by Chapter 6. It introduces the outdoor activity tour suggestion problem in
order to generate closed paths consisting of edges of high attractiveness and
subject to spatial constraints in graphs where the edges have both a length and
an attractiveness score. A case study on closed paths illustrates the generation
of a set of tour suggestions satisfying the constraints.

This work resulted in four software components that have been adopted by
industry.

Chapter 2

Feasibility study of applying
descriptive ILP to large
geographic databases

The present chapter discusses a case study aiming to discover regularities
and anomalies in large databases containing geographical data, to improve
and maintain the overall data quality. The application of Inductive Logic
Programming (ILP) and descriptive ILP in particular to this case is discussed
and motivated. In an experiment on real-world data, a classical descriptive
ILP algorithm (WARMR) is applied to the hamlet of Beggen, Luxemburg,
to mine for rules describing regularities. The algorithm adopts the setting of
learning from interpretations. In this setting, the data is divided into smaller
parts, called interpretations, and rules are learnt about multiple relations inside
these parts. In a next stage, the violating interpretations of the rules could be
traced to identify candidate anomalies. A rule export module was set up to feed
the results to a rule checking engine for further validation of this experiment.
Finally, the results are discussed, the feasibilities of the system used in the case
study are assessed and possibilities with regard to a larger scale application of
the experiment are discussed.

The research in this chapter is part of an R&D project funded by IWT (050730).
I would like to thank Ann Nowé (Vrije Universiteit Brussel) for suggesting
ILP as an interesting approach for quality control in geographic databases,
and Luc De Raedt (KU Leuven) and Hendrik Blockeel (KU Leuven) for the
software support and interesting suggestions. The work in the present chapter

9

10 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

has been published as Maervoet, J., De Causmaecker, P., Nowé, A., Vanden
Berghe, G. (2008). Feasibility Study of Applying Descriptive ILP to Large
Geographic Databases. Proceedings of the Workshop on Mining Multidimensional
Data (MMD). European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML PKDD). Antwerp, 15-19
September 2008 (pp. 1-15).

2.1 Introduction

This chapter accounts for the feasibility of applying ILP and its subdomains
to the geographical data in order to control the quality of data located in the
central database of the company Tele Atlas. ILP is a relational data mining
technique in which input data as well as output patterns have a relational
representation: the language of logic programs (or similar). This makes ILP
an interesting candidate to apply to Quality Gate, since the data of interest is
rich in structure. A possible approach would be to employ supervised learning
and look for explanations of given examples of irregularities. Another approach
is to use unsupervised learning and look for regularities in the data in the form
of rules, of which the violations are then candidate irregularities. The latter
approach offers the most interesting functionality and is the one used in our
case study. It is a form of indirect unexpected knowledge mining. It should be
mentioned that not any set of violations to a rule indicates a set of erroneous
situations in the database. The violations can exhibit exceptional geographical
situations such as the end of a motorway. Plantevit et al. [84] classify methods
for unexpected rule discovery into user-driven methods (intervention by a human
expert) and data-driven approaches, which are again subdivided into using
unexpectedness-oriented measures on classical algorithms and new algorithms
integrating new concepts of unexpectedness. In the case study we investigate
the data-driven approach using unexpectedness-oriented measures on classical
algorithms.

Outlier detection in multidimensional data has been studied extensively in the
domains of statistics and automated learning. A lot of the methods proposed
are based on proximity [13] or density [57] analysis. Another approach is to
cluster the data first and to identify the entities that lie outside any cluster as
outliers. Aggarwal and Yu [2] proposed the use of evolutionary algorithms to
discover outliers in high-dimensional input data. However, our geographical
data needs a more relational approach because the input data consists of several
interrelated data types. Therefore, approaches originating from the field of
ILP, in which patterns are learnt from relational data, are more likely in these
circumstances.

INTRODUCTION 11

Koperski and Han [60] were the first to define the concept of spatial association
rules and to introduce an appropriate mining method. Further related work in
geographical rule mining has been carried out at the University of Bari, Italy. In
this work, the geographic hierarchy is integrated in the mining process. In [77]
and [5], census data from Stockport is analysed by learning rules about socio-
economic issues (e.g. commuter habits) in small districts to support transport
planners. Furthermore, Lisi and Malerba [71] designed a hybrid language, called
AL-log, that allows relational and structural description of data in order to use
ILP to induce multiple-level association rules. The system is more performant
than classical ILP with hierarchical information as background knowledge
because taxonomic reasoning is integrated directly in the search process. In [76]
geographical concepts are learnt which are not explicitly modelled. The system
provides end-users with a tool for the automatic recognition of morphological
elements (e.g. a fluvial landscape). In [16], geographic impact factors are learnt
for rent prize categories in Munich. Most of the work is supervised learning.
Another difference with the approach of our case study is that eventually some
spatial knowledge is put into the preconditions of our experiment and that our
outcome rules do not necessarily contain literals describing spatial relationships.
Furthermore, our case has special interests in unexpected knowledge mining.

Another related approach has been explored by Kuramochi and Karypis [61],
who applied finding frequent patterns on graph-modelled input data successfully.
In this case the mining procedure is optimised using graph properties such that
uninteresting subgraphs can be pruned, candidate patterns can be generated and
frequencies can be counted efficiently. Again, it differs with our work because
we are not necessarily looking for rules with spatial relationships. Furthermore,
ILP goes beyond the propositional rule learning employed by [61].

The next section presents the problem of quality control for geographical data
and its main challenges. A rough sketch of the company’s data model is
given, together with some sample rules. Section 3 motivates the application
of ILP and its subdomains to Quality Gate. The fourth section outlines an
experiment in which the WARMR algorithm is applied to a modified subset
of the database. It is shown how to look up anomalies and export outcome
rules into the representation used by the company. Section 5 discusses the
experiment of the previous chapter. Encountered problems are identified. It
presents suggestions on how to apply the algorithm on a larger scale. The last
section is the conclusion of this work and contains some suggestions for further
research.

12 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

Figure 2.1: Geographic data collection with mobile mapping vehicles

2.2 Problem description

2.2.1 Quality control for geographical data

The company uses several methods to collect geographical data. Beside the
processing of aerial photographs and data originating from other organisations
(such as the government), the acquisition by mobile mapping vehicles is the
most important way to collect data. These vehicles are controlled by mobile
specialists who proceed to regions of interest to create, to validate or to update
field data. The specialist is provided with a set of tools that support the
semi-automatic acquisition of data.

Most of the anomalies that reside in the database originate from human mistakes
or from inconsistency between different sources. Moreover, not all kinds of
mistakes are immediately traceable. Some only become apparent when a
considerable number of updates are combined. Others need an elaborate search
in the central database.

In a recent manual test case, data engineers started to investigate the intrinsic
logic behind the spatial data, based on anomalies they encountered in the
past. This process yielded a substantial number of rules, despite the short
period during which it has been carried out. So the number of rules makes
rigid checking of DB updates (manually entered by the specialists) for complete

PROBLEM DESCRIPTION 13

consistency impossible. Furthermore it appeared that more general trends are
much more difficult to formulate. There is a general belief that various heuristics
could help in finding inaccuracies (e.g. elaboration on same rule, checking the
geographic neighbourhood, updates by the same actor). Currently, the company
investigates the applicability of a rule engine in their software, which enables the
automatic tracing of anomalies. However the construction of rules is a manual
process, driven by knowledge about known anomalies. Due to the high number
of concrete rules, the rule base is flat and hardly manageable.

2.2.2 Data model and rule examples

The problem data basically consists of complex geographical features e.g. a
restaurant or a water area. These complex features map to simple features
which are points, lines, areas or some combination of these. The simple features
can be seen as a combination of nodes, edges and faces in the spatial plane.
A complex feature also has non-spatial attributes, which are organised in a
hierarchical manner (e.g. composite address of a restaurant). The above
concepts are illustrated in Figure 3.2. Furthermore, there is aggregation and
multiple inheritance between feature types. Extra relationships (e.g. allowed
traffic manoeuvre) between features can be imposed using associations. The
most common feature type is the road element, which represents in fact a part
of a road (not necessarily from a physical junction to another). It maps to a
line feature and has functional road class, specifying road importance, amongst
its attributes.

Some examples of regularity rules that were manually discovered by data
engineers are listed below.

1. At each roundabout, not all connected roads have the same single direction
of traffic (all inwards or all outwards). Violations to this rule occur when
a traffic direction update has not been executed over all connected roads
or after a typing error. In this chapter it will further be referenced to as
the graveyard rule.

2. A road element that is at both sides connected with road elements that
have name X, has name X as well. This rule is violated when an operator
executes an incomplete name update. However in some exceptional
situations, such a discontinuity is realistic. Both this and the previous
rule link same-type features lying closely together and compare same-type
non-spatial attributes of them.

3. Each highway road element is connected at both sides. Violations to this
rule occur for example in the intersection of the highway with the border

14 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

between two regions that are operated by two different mobile specialists
and are due to coordination problems. It links same-type features lying
closely together.

2.2.3 Challenges

For this application, there are two major challenges with regard to the mining
task of rule and/or anomaly discovery, regardless of the chosen approach.

First of all, the geographic database is gigantic in size, rich in structure and
highly relational. So scalability is very important to apply the KDD process
successfully. Provost and Kolluri [86] have made a survey of strategies for scaling
up the kind of KDD process that employs inductive algorithms. However, most
of the strategies stated can be easily generalised to other types of data mining
and apply for our case. The large database size could be handled by various
data partitioning strategies, with regard to data instances and/or data features.
A rich data structure often yields a large pattern space. Strategic cropping
of, as well as heuristic search through the pattern space could help. The
relational data representation, which can be integrated in the KDD mining
process, can be omitted by flattening the data or can be shifted towards the
database management level.

Secondly, the spatial nature of the input data should be dealt with. Knowledge
discovery in geographic databases is more difficult than traditional KDD.
Shekhar et al. [99] even doubt the usefulness of traditional data mining
techniques in this context because of data type complexity and intrinsic spatial
relationships. According to [99], spatial data mining differs from classical data
mining with regard to data input, statistical foundation, output patterns and
computational process. Geographical data is composed of objects with spatial
and non-spatial attributes. Because “everything is related to everything else but
nearby things are more related than distant things”, materialisation of spatial
relationships will be necessary and will determine the usefulness of the results
to a certain extent. However, finding irregularities in our geographical dataset
is not restricted to a purely spatial data mining problem. Not all anomalies can
be detected using a spatial framework (e.g. discovery of a wrong speed limit
based on the road type).

APPLICABILITY OF ILP TO QUALITY GATE 15

2.3 Applicability of ILP to Quality Gate

2.3.1 Motivation

Inductive Logic Programming (ILP) is a relational data mining technique
that integrates the relational representation of the input data in the mining
process [31] and in which input data as well as output patterns have a relational
representation: the language of logic programs (or similar). It involves the
explicit construction of First-order Logic rules from inherent regularities and
trends in the input data. ILP algorithms can be seen as a search in a space of
hypotheses that describe or classify parts of the input datac̃itelavrac94book.

ILP naturally comes as a candidate technique to apply to Quality Gate because
automatic rule induction embodies the process of discovering (ir)regularities
and trends in the geographical data, using an explicit representation that allows
to control and loop up new occurrences of anomalies in the data and offers
opportunities to be integrated in the company’s business process. Because
the geographical data is highly relational, ILP is preferable over propositional
learning systems.

2.3.2 ILP subdomains

Mainly, ILP systems could be categorised into systems for predictive and for
descriptive induction [24].

Predictive data mining is described as a discipline in which a hypothesis is
induced that correctly classifies some given positive and negative examples
(observations). So the outcome hypotheses of predictive ILP will be used for
classification and prediction. Of course, this representation of classifiers could be
extended to classification into any finite number of classes. Some predictive ILP
systems induce LP rules, others generate decision trees that can be translated to
small logical programs using cuts [24] (or using negation as failure). Predictive
data mining has the longest tradition. Historically, predictive ILP systems
are divided into empirical and interactive ILP (respectively EILP and IILP)
systems, which have different properties, as described in [66].

The aim of descriptive data mining is to find regularities within a given set of
unclassified examples [24]. In particular, as many usable data characteristics as
possible are collected to build a sort of most specific hypothesis that describes
the entire set of examples. Note that predictive induction can be handled more
efficiently (lower complexity) than descriptive induction.

16 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

2.3.3 Quality Gate in relation to ILP subdomains

Predictive ILP systems, and specifically EILP systems, are interesting to learn
rules driven by known anomalies. Anomalies are negative examples, other data
is positive (or the other way around). The outcome hypotheses can be used
to classify new data into the category of anomalies or correct data. However,
there can be a problem with the significance of known anomalies compared to
the number of unknown anomalies that are presented to the system as positive
examples. It is not possible to learn rules about regularities using EILP without
the guidance by known anomalies, because a generation of positive examples
using the closed world assumption (CWA) does not work here.

EILP systems are commonly non-interactive ‘from scratch’ learners, which
enable the assumed automatic rule generation. They need a large example set,
which is no problem for our application. The fact that they are single predicate
batch learners requires a higher-level strategy to support scalability.

At first glance, IILP systems are interesting candidate systems for Quality Gate
because of their incremental behaviour. However they are inappropriate for the
intended fully automatic generation of rules due to the fact that they rather
revise than construct theories and that they count on external parties to judge
or review newly generated examples or hypotheses. Nevertheless a nice support
tool for domain experts who have low I.T. affinity can be developed using IILP
systems. It provides the user with a GUI that shows some geographic situations
that should be approved or disapproved or that should be commented. Like in
a Mastermind game, the system is challenged to find the solution by asking as
few questions as possible.

DILP systems are interesting to learn rules that describe intrinsic logic and
trends in the geographic database. It is a form of unsupervised learning. The
outcome consists of sets of all possible hypotheses that satisfy the constraint set.
A much larger part of the hypothesis space is searched, because DILP is not
guided by positive and negative examples and because of the result diversity.
This makes DILP algorithms intrinsically less performant. However, DILP is the
most suitable technique to apply to our problem, because there is no knowledge
about anomalies needed in advance. Therefore, this technique is applied in the
experiment discussed in the next sections.

CASE STUDY 17

2.4 Case study

2.4.1 Our approach based on WARMR

Stolle et al. [104] offer a formal generic definition on the descriptive ILP setting:
the aim of DILP is to find a set of clauses Th(cons,E, Lh) in a hypothesis
language Lh that hold over a set of interpretations E and satisfy a predefined
conjunction of constraints cons(h,E). The background knowledge B is used
during hypothesis construction and embodies prior knowledge about the learning
problem. A DILP algorithm typically uses one specific conjunction of constraints.
A non-exclusive list of possible constraints is given in [104]. The definition
adopts the partition of the input data set into interpretations to scale up the
algorithm (as used in [24] and [9]).

WARMR is a DILP algorithm that finds patterns satisfying the constraint
freq(covers;E) > t, as described by Stolle et al. [104], which means that more
than t elements of the set of interpretations E should be covered by the pattern.
WARMR involves a level-wise discovery of frequent datalog patterns, which
consists of a conjunction of function-free terms [71]. Such a pattern is called
a frequent query since the pattern must be executed as a query on B

⋃
E to

verify whether it covers the interpretation E. The support of a frequent query is
the proportion of interpretations that are covered by a frequent query to the
total number of interpretations. The WARMR algorithm enumerates only those
frequent queries that have a support above a specified value. The discovery
process starts by the enumeration of frequent queries consisting of one term
(i.e. length 1), satisfying the hypothesis language Lh. In the next steps, the
frequent queries of length n+ 1 are generated by the extension of the frequent
queries of length n, until a maximum pattern length is reached. Frequent
queries are commonly post-processed into if-then rules or query extensions. This
post-processing implies the combination of a pattern ‘X’ and a pattern ‘X and
Y’ into the rule ‘if X then Y’. The confidence of this query extension is the
support of the pattern ‘X and Y’ divided by the support of the pattern ‘X’.
Its support equals the support of the pattern ‘X and Y’. More details on the
algorithm can be found in Dehaspe [26].

In this experiment, WARMR will be used to construct query extensions that
describe regularities in the input data. The approach is outlined in Figure 2.2.
As an example, the top left subfigure shows a map of connected road elements
of which one allowed traffic direction is anomalous and creates a so-called
inverse graveyard in node a. In a next step, the map is partitioned into
interpretations by grouping road elements around the nodes (indicated by
E). The data is translated into a Prolog format, in which separate predicates

18 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

Figure 2.2: Applying WARMR to geographical data: general approach

are used to declare the existence of features and to define properties of these
features. The hypothesis language is defined (indicated by LH). Additionally,
background knowledge B, which is used during rule construction, can be defined.
Next, the WARMR algorithm is run to construct frequent queries (bottom left
subfigure). During postprocessing, query extensions are constructed (bottom
right subfigure). In a next stage, these rules are presented to human users
and can be accepted or rejected. Query extensions with high but not 100%
confidence are of particular interest to trace according violations. Notice that the
coverage constraint employed by WARMR is existentially quantified within the
interpretations. When for example interpretations symbolise separate villages
containing roads, the rule large(A) :- road(A) does not imply that all roads in
the villages are large, but that there are large roads in a village if there are
roads.

The anomalies we mine can be defined as interpretations for which B is true
and H is false given a rule H :- B with high confidence and support above a
certain threshold. In other words, taking the WARMR coverage constraint into
account, we are looking for interpretations e, given a clause of the form h :- b1 ,
... , bm for which ∃θ : {b1θ, ..., bnθ} ⊆ e⇒ ¬∃σ : {b1σ, ..., bnσ, hσ} ⊆ e amongst
a substantially larger group of interpretations e for which ∃θ : {b1θ, ..., bnθ} ⊆

CASE STUDY 19

e⇒ ∃σ : {b1σ, ..., bnσ, hσ} ⊆ e, in which θ and σ represent substitutions.

2.4.2 Data preparation and modelling: the Beggen data

The aim of this experiment is to evaluate the types of rules that can be induced
from a dataset of realistic complexity and containing imperfect data. It is
a subgoal to verify whether the graveyard rule is a feasible outcome of the
WARMR approach. The dataset of the village of Beggen, Luxemburg, is
small-sized reference test set provided by the company. Since this set did not
completely comply with these goals, we applied two minor modifications to this
data. A small part of the junctions was randomly left out resulting in imperfect
data. Randomly generated allowed traffic flows were added because the Beggen
data set did not contain a significant number of single flows supporting the
graveyard rule(s). The experiment focusses on the induction of rules that relate
one or more geographic objects and mainly non-spatial attributes of these
objects, optionally using the spatial relationship of immediate proximity. We
restricted ourselves to junctions (incl. geometry) and road elements (incl. names,
geometry and importance). The input data was partitioned into interpretations
by taking the immediate neighbourhood of each original junction. This resulted
in an input data set of 68 interpretations described in Prolog format, using a
separate predicates to announce the existence (by ID) and geometry of junctions
and road elements and to define properties. The background knowledge only
consists of predicates that are negations of predicates used in the knowledge
base.

The most important WARMR parameters are: minimum allowed support of
frequent queries (0.05), minimum allowed confidence of resulting rules (0.7) and
search depth (5 literals). The language bias is also specified at this point. This
is a set of constraints determining the hypothesis language. Type constraints
are specified for the predicates described above and for their negated versions,
specified in the background knowledge. Mode constraints allow for all predicate
parameters to introduce new variables (+), to bind to already introduced
variables (-) and to introduce new variables that are strictly different from
a previously introduced same type variable (\). Functional road classes are
allowed to be formulated as constants, and (not_)junction predicates can only
appear once in the hypotheses because each interpretation contains at most one
junction. Occurrence constraints ensure that road element flow predicates on
the same variable only appear once in the hypotheses.

The WARMR run took about 15 minutes on a standard PC and, for the settings
given, 39 696 frequent queries were generated (maximum length 5), out of which
13 584 query extensions were generated.

20 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

2.4.3 Results

About 30 interesting rules were manually selected from the large set of query
extensions. Three classes of interesting regularity rules (query extensions) are
listed below, together with some example rules. The classification is rather
intuitive.

1. Rules on completeness. A first group of example rules are rules that
state a simple (co)existence of one type of objects and/or its properties
in the interpretations e.g. Interpretations containing a class 1 road
description, contain a name definition for that road element (confidence:
100%; support: 30.8%). Note that, when the rule concerns properties of
the same feature, the use of one interpretation per feature would have
been more appropriate. Other rules in this series are rather diagnostic e.g.
Interpretations containing a road element functional road class description
but without name definition for the road element involved, contain a class
7 road element (confidence: 100%; support: 7.3%).

2. Rules on flows. This type of rule links the existence of allowed traffic
flows within the interpretations. The graveyard rule was (re)discovered
in two parts, because in our system only one literal is allowed in
the consequence of an implication: Interpretations not containing any
‘both direction’ road elements contain a flow from centre road element
(confidence: 96.5%; support: 41.1%). and Interpretations not containing
any ‘both direction’ road elements contain a flow to centre road element
(confidence: 89.6%; support: 38.2%).

3. Rules on interpretation statistics and continuity. This type of
rule relates the existence of distinct objects and/or properties within
an interpretation. Some rules can only be used for statistics e.g.
Interpretations containing a road element, contain another road element
with different ID (confidence: 80.8%; support: 80.8%). So 80.8% of
the interpretations contain more than one road element. Others refer
to laws on the continuity of road properties through interpretations e.g.
Interpretations containing a class 1 and a class 4 description, contain a
class 1 description for a strictly different road element (confidence: 100%;
support: 5.8%). Note that most of the violations against these rules
could be avoided by the use of border predicates, depicting the geographic
objects located at the border of Beggen.

The outcome of this experiment is a giant number of hypotheses, which is not
manageable to present to a human reader nor suitable to use immediately for
anomaly detection. In [74] some suggestions are listed to reduce the number of

CASE STUDY 21

rules drastically either by specifying constraints in order to limit the number of
rules generated or by means to filter the rules obtained.

2.4.4 Tracing anomalies and rule export

The case study has been extended by two modules to improve the usability and
to enable further validation by experts.

A first module allows the end user to look up violating interpretations for each
generated rule that has a confidence lower than 100%. This is realised by a
Prolog interpreter, for which the background knowledge was asserted. If a given
rule H :- B is looked up, for each interpretation I, sequentially, the facts of I are
asserted; if the query B succeeds and the query B,H does not, the interpretation
is added to the set of violating interpretations and the facts of I are retracted.
The violations can be easily visualised in a spread sheet version of the Beggen
map, because the interpretations were given coordinate names.

A second module is a rule export module. It translates the outcome rules into the
XML format used by the company. During rule translation, the whole context
in which the experiment was set up should be integrated in the outcome rules.
For example, the original Prolog rule1 roadelement_name(C,B), not(=(C,A)) :-
true, roadelement_name(A,B) is, making abstraction of the syntax and data
model details, translated into

Check for each junction: if there exists a simpleorderarea8 containing the junction
that has the officialname Beggen, and there exists a roadelement A that touches
the junction and has an officialname, then there exists a roadelement C that
touches the junction and has an officialname and the officialname of C equals
the officialname of A and the ID of C is different from the ID of A.

A first component that is reflected in the global rule structure is the WARMR
constraint conjunction. Furthermore, the geographic area (Beggen) for which
the rule applies should be adopted. Also the way the interpretations were
constructed has its impact on the main root predicate of the rule and on the
relation that is declared between the root feature and new geographic features
in the rule body. Furthermore, cardinalities in the data model influence the
lower-level formulations (not in the example; e.g. “there exists a property vs.
has as property”). Also implicit Prolog bindings should be taken into account
and other Prolog elements such as negation and equality should be translated
correctly.

1The violations of this rule of low confidence do not refer to actual errors in the data. The
example was solely selected to illustrate the translation mechanism.

22 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

2.5 Discussion

The ultimate aim of this research is to build an operational component that
induces a confined set of readable rules that hold over the geographical data in a
semi-automatic manner. It must be a generic component that mines the relations
between given object and property types based on a given geographic region.
The experiment showed us a partially successful application of a descriptive
ILP algorithm. However, still a lot of problems need to be solved in order to
build the intended generic component.

2.5.1 A reflection on the experiment

DILP goes clearly beyond intra-feature learning and is suitable to discover
relationships among geographic features and attributes. The case study ended
up with a rule overhead, for which we proposed suggestions to reduce the
number of rules. The data representation of LP requires a serious preprocessing
effort but enables an easy representation of outcome patterns and integration
of background knowledge. Most of the available DILP systems require a
considerable effort for the developer to get acquainted with and are rarely
robust.

The resulting rules of the WARMR algorithm satisfy a constraint with existential
quantification. This existential quantification yields a substantial performance
improvement, but constrains the validity of the induced rules to the level of
the partitioning chosen. For existential quantification, it seems preferable
to omit all the rules that do not strictly correspond with the partitioning
intentions. On the other hand, inducing rules with universal quantification is
much less performant but the intended range of rules is much larger for one
single experiment. But existential quantification requires more effort in the
planning of the interpretation partitioning and in the formulation of hypothesis
restrictions. In both situations results become more precise when a border
predicate is used to indicate the interpretation’s boundaries.

The use of negation as failure (not-literals) in the induced hypotheses caused
some problems. Some algorithmic problems were encountered, because bound
not-literals are order-dependent within the hypothesis. When introduced as
a first part of the binding or unbound, the negated literal refers to existence
within the interpretation; otherwise it refers to a failing property of an already
introduced variable. In fact, for this research, both usages are interesting. Note
that the use of multiple disjunct literals in the head yields the same logical
expressiveness as the use of negated literals. Each disjunction in the head can
be expressed as single literal headed rules using negation in the body. The use

DISCUSSION 23

of not-literals provides more information, whereas the use of disjunctions in the
head yields a smaller hypothesis space.

The rule export module contributed to the interpretability of the resulting rules
for end users, who are domain specialists but not necessarily computer scientists.
The next question considers whether sets of rules can be logically combined to
improve the inventory and usability of rules.

2.5.2 Towards a larger scale application of the experiment

At this point it is clear that it is not possible to set up one big ILP experiment
that mines for all types of rules, nor one that mines for all object and property
types, nor one that takes a whole country as input. So a more general strategy
in planning series of ILP experiments is required. Such strategy should mainly
manage input space and pattern space scalability.

A first requirement is a more generic representation of objects and properties
types within the DILP experiment to mine for any object and property types of
choice. This could be done by the integration of the metadata in the predicate
scheme construction during the data formatting task. Measures should be taken
with regard to the language bias to avoid that meta-information is mined. In
fact this is a first step to integrate the existing concept hierarchies more in the
search process.

Scalability of the input space is a minor problem in the organisation of series
of ILP experiments. Thanks to the learning from interpretations setting,
WARMR’s time complexity is linear with regard to the interpretation set
size for an individual experiment. Some relational data mining systems also
have random sampling of input data (interpretations) as an option integrated
in the search process. The necessity of presenting large geographic regions to a
single ILP system depends on the support of the candidate rules in a dataset.
The graveyard rule, for example, could have enough support in a large city.
Maybe further checking in rural areas would not even increase its support,
because of the lack of single traffic flow roads. Therefore, a possible solution
is input data sampling during the data selection task. This sampling can be
random, but in case of geographical data it might be better to select geographic
regions for which certain conditions hold, such as variance or the presence of
selected object types.

Pattern space scalability is the most delicate issue of a DILP application, because
the size of the hypothesis space is exponential with regard to the number of
allowed hypothesis predicates for an individual experiment. DILP systems such
as ACE enable query sampling. It implies that not all possible frequent queries

24 FEASIBILITY STUDY OF APPLYING DESCRIPTIVE ILP TO LARGE GEOGRAPHIC DATABASES

are generated and executed; so it results in missing rules but also in a large
reduction in execution time. However each form of knowledge about probable
and improbable object type, property type and advanced features combinations
is welcome. In this manner a series of smaller DILP experiments can be set up
so that the global size of pattern spaces decreases enormously. Probably the
concept hierarchy could help to crop useless type combinations. Another option
is to organise the type combinations in relation to real-world map formats:
low-scale national map, regional tourist map, map for geologists. This increases
the probability to discover realistic relationships between object and property
types.

2.6 Conclusion

The purpose of this research is to study the applicability of (D)ILP to discover
anomalies in large geographical databases, by means of a case study on a realistic
data sample. ILP appeared to be an interesting mining method for knowledge
discovery in geographical databases because it enables the direct induction of
usable first-order logic rules and copes with the relational nature of the input
data. When rule learning were driven by known anomalies, which is not the case
here, EILP systems would be applicable. In the case of unsupervised learning,
DILP systems are used to describe intrinsic logic in the geographic database.
In the latter case, it is not possible to build and consider a magna carta of
regularities that hold over the input data, but it is worth to consider almost
complete rules and look up their violations afterwards.

The experiment shows the intrinsic value of DILP. However, additional fine-
tuning and optimisation are required before the induction of valuable knowledge
can be automatised and taken to practical use. In order to apply the experiment
on a larger scale, a more generic infrastructure is needed to support the automatic
data extraction, preparation, modelling and evaluation. The next chapter
tackles these issues by the introduction of a generic tool which is adaptive to
the model of the input data.

With regard to scaling up the application, further research is needed that focuses
on algorithm and representation design techniques to optimise the search. Until
now, regularities were searched for in order to deduce irregularities afterwards.
So a first approach to scale up is to integrate a direct search for irregularities
within the process. A second opportunity is to embody the hierarchical structure
of the data in the mining process. The geographical data can be represented in
function of a hierarchy ranging from fine-grained up to coarse grained descriptors
and the search process can be organised correspondingly. A third opportunity

CONCLUSION 25

is to take advantage of the spatial nature of the input data by modelling it in
a graph format. In our case, graph edges could for example represent object
closeness or even object similarity.

Chapter 3

Outlier detection in relational
data: a case study in
geographic information
systems

Geographic information systems are commonly used for a variety of purposes.
Many of them make use of a large database of geographical data, the correctness
of which strongly influences the reliability of the system. In this chapter, we
present an approach to quality maintenance that is based on automatic discovery
of non-perfect regularities in the data. The underlying idea is that exceptions
to these regularities (‘outliers’) are considered probable errors in the data, to be
investigated by a human expert. A case study shows how the tool can be used
for extracting valuable knowledge about outliers in real-world geographical data,
in an adaptive manner to the evolving data model supporting it. While the tool
aims specifically at geographic information systems, the underlying approach is
more broadly applicable for quality maintenance in data-rich intelligent systems.

The research in this chapter is part of an R&D project funded by IWT (050730). I
would like to thank Hendrik Blockeel (KU Leuven) for the interesting suggestions,
and Gert Vervaet, Frank Maes, Denis Philips and Dieter Verhofstadt (Tele
Atlas) for the repeated provision of data samples and the constructive feedback
on the rule miner prototype. Celine Vens, who co-authored this chapter, is a
postdoctoral fellow of the Research Foundation Flanders (FWO-Vlaanderen).
The work in this chapter has been published as Maervoet, J., Vens, C., Vanden

27

28 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

Berghe, G., Blockeel, H., De Causmaecker, P. (2012). Outlier detection in
relational data: a case study in geographical information systems. Expert
Systems with Applications, 39 (5), art.nr. ESWA7039, 4718-4728.

3.1 Introduction

Outliers in a data set are commonly defined as individuals that are substantially
different from the rest of the data. Such irregularities can indicate an error
in the data, or abnormal behaviour of the underlying system. On the other
hand, outliers can exhibit exceptional situations in the data, which are not
fundamentally erroneous neither abnormal. In research areas such as machine
learning and statistics, a great diversity of algorithms for outlier detection have
been proposed in the last years [13, 57, 2, 15]. Most of them refer to a statistical
deviation of the outlier values from the rest of the data set. However, a lot
of contemporary applications of outlier detection such as fraud and network
intrusion detection, have a relational character. The data consist of several
interrelated data types, implying that the concept of outlier detection can be
seen in a broader perspective. Besides the detection of deviating values for
a specific variable, it is also possible to look for deviating structures in the
relational data.

In this chapter, a case study of relational outlier detection on geographical
data is presented. It concerns learning anomalies in the core database of the
geographic content provider Tele Atlas. This company possesses a large amount
of geographical road data, collected from different sources. Irregularities, e.g.
a wrong speed restriction, creep in due to human mistakes or inconsistencies
between different sources. Therefore, a quality maintenance system has been
set up by the company enabling data engineers to manually formulate rules to
which the data should conform and providing infrastructure to trace violations
against these rules in a brute-force manner. An example of such a rule is “A
road segment adjacent to a primary school has always a speed restriction of 30”.
More information about the problem context is described in Chapter 2. In the
present chapter, we apply a relational frequent pattern miner to discover such
rules automatically from the data. Exceptions to these rules will be considered
probable erroneous data, to be presented to a human expert for evaluation.

The chapter is structured as follows. Section 3.2 presents some related work in
the domains of relational outlier detection and spatial data mining. Section 3.3
thoroughly describes the geographic data quality problem and the relational
outlier detection approach to it. The actual case study is presented in more
detail in Section 3.4. Section 3.5 reports some regularity rules and corresponding

RELATED WORK 29

outliers found by the system. Finally, we indicate some directions for future
work in Section 3.6 and conclude in Section 3.7.

3.2 Related work

3.2.1 Outlier detection

Given an input data set, an outlier is an instance or a set of instances1 that
show(s) exceptional behaviour compared to the rest of the input data set or to
a local context within the input data set. Outlier detection is the non-trivial
process of extracting a set of previously unknown anomalies from data. It is a
form of data mining.

A first dimension categorises outlier detection approaches according to the type
of learning. Lazarevic et al. [67] distinguish between:

• Supervised outlier detection. Both the outliers and regularities from
the input data set are labelled. In this case, the problem can be reduced
to classification.

• Semi-supervised outlier detection. Some examples of anomalies
and/or regularities from the input data set are given. It can be applied in
interactive learning systems. Zhu et al. [118] e.g. predict all the outliers
from the input data set based on an outlier sample set indicated by the
end user.

• Unsupervised outlier detection. This type of outlier detection
assumes unlabeled input data. It involves fitting one or more models over
the input data and identifying the model deviations as outliers.

Indirect description Direct description
Statistical outliers Clustering (distance or

density based)
Probability distribution
(histogram, Gaussian)

Nearest neighbour (dis-
tance or density based)

Relational outliers Frequent pattern discovery Anomaly pattern discovery

Table 3.1: Unsupervised outlier detection.

1In the latter case, individual set members are not anomalous.

30 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

Table 3.1 shows a classification of unsupervised outlier detection systems. These
systems can be classified into statistical and relation outlier detection and into
detection by direct and indirect description.

Statistical outlier detection. This type of system looks for outliers with
a statistical deviation from the rest of the data, assuming one global model
that distinguishes the outliers from the regular data. A common technique
applies clustering: the data is clustered, and the elements that do not belong
to any clusters are outliers. Other methods use density [13] and/or proximity
analysis [57, 89]. Aggarwal and Yu [2] introduce evolutionary algorithms for
identifying outliers in data with a high number of dimensions. Frank et al. [35]
mine for spatial regional outliers. These are neighbourhoods of anomalous
objects that maximise the non-spatial attribute value deviation between the
object and its neighbouring objects.

Relational outlier detection. Many contemporary outlier applications are
relational. In the context of network security, for example, there is a high interest
in so-called anomaly detection. This is the detection of deviant behaviour in
network traffic that possibly indicates an attack. Caruso and Malerba [15]
propose an adaptive model for network traffic. If a new network connection
deviates substantially from the model, the system examines whether it concerns
an outlier, or a legal connection, whereupon the model is adapted.
In relational outlier detection, the input data is composed of several interrelated
data types and so the outliers have a relational character too. Often, it assumes
multiple models that explain why an outlier differs from the rest of the data.
In [4], a theory of normal behaviour is modelled using a formal knowledge
representation language (first-order logic). Both outliers and so-called witness
sets are searched for. Outliers are entities that are inconsistent with the given
background knowledge. Corresponding witness sets describe the causes behind
the outliers in the data.
Relational outlier detection is a form of relational data mining, a research area
that has gained a lot of interest during the last years. A large amount of the
research is carried out in the context of inductive logic programming (ILP) [66].
The data, as well as the discovered patterns and the background knowledge,
are represented as logic programs. The major part of research on ILP (and on
relational data mining in general) has been carried out on supervised learning.
Less research has been performed on unsupervised learning, in which a set
of hypotheses that describe the whole set of facts as accurately as possible
are learnt. Relational clustering [90], finding frequent patterns in first-order
logic [27] and clausal discovery [25] belong to the latter category.

Discovery by direct description. This means that patterns describing
exceptional situations are looked up directly. For instance, Laros [64] looks for a
substring, as short as possible, that appears exactly once in a set of strings. With

RELATED WORK 31

regard to relational outliers, several definitions and corresponding algorithms
for anomalous pattern discovery can be found: sporadic rules [58, 59] (rules
with low support but high confidence), minimal infrequent itemsets [45] and
unexpected rules [84] (with a support between two thresholds). Exception rules
[107] refer to the extension of the premise of a ‘common sense rule’, refuting the
consequence of that rule. Anomalous association rules [8] refer to association
rules for which anomalous itemsets exist that always contradict the rule.

Discovery by indirect description. Instead of looking for patterns that
describe the exceptions directly, the complementary problem can be examined
as well. It involves looking for regularities, followed by the identification of data
that does not comply with those regularities. K-Means clustering of network
traffic data followed by the identification of traffic anomalies [81] is an example
of this category. Discovery by indirect description allowed us to apply state of
the art techniques from the domain of frequent pattern mining.

3.2.2 Spatial rule mining

Spatial rule mining is a common machine learning approach to spatial data
mining (SDM), which aims at extracting useful or interesting patterns from
spatial databases. Shekhar et al. [99] indicate that the data input, statistical
foundation, output patterns and computational process are different for SDM.
Zeitouni [116] identified several generic SDM tasks, and associated existing
methods with these tasks. With regard to rule learning, we can distinguish 4
types of approaches:

• Characteristic rules. This type of rules describes characteristic object
and neighbourhood properties of a set of spatial objects in the database [32].
It is a form of summarisation.

• Classification rules. This form of supervised classification involves the
discovery of a set of rules (often represented as decision trees) comparing
the object and neighbourhood properties of a set of spatial objects of choice,
called the target class, to one or more contrasting classes. For instance,
Ceci and Appice [16] learn geographic impact factors for several rent prize
categories from census data. Frank et al. [34] propose a Voronoi-based
framework to integrate spatial relationships in the search process.

• Association rules. Spatial association rule mining is the identification
of frequently occurring spatial-related patterns in a set of data items in a
spatial database [47]. It can be categorised as spatial data dependencies
mining.

32 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

• Trend rules. Basically, trend rules describe patterns of change of one or
more non-spatial attributes of objects or objects in their neighbourhood
[32].

Spatial association rule mining. Koperski and Han [60] defined spatial
association rules (SAR) as association rules with at least one spatial predicate in
the antecedents or consequent. Such a spatial predicate could refer to topological
relationships, orientation and ordering and contain distance information. The
spatial rule mining algorithm employs refinement in a hierarchy of topological
relations i.e. starting from approximate spatial computation.

Concept hierarchy refinement. Spatial multi-level association rule mining
extends the approach above by refinement in a (spatial or attribute) concept
hierarchy. An example of spatial hierarchy is the refinement of a country into
one or more provinces. An example of conceptual hierarchy of attributes is the
refinement of areas into rural and urban areas.
SPADA (Spatial Pattern Discovery Algorithm) is a system for spatial association
rule mining, in which the rules have a Datalog representation. It uses refinement
through a concept hierarchy of objects. SPADA is used by Malerba et al. [77]
and Appice et al. [5] for analysing socio-economic issues in census data in order
to improve transport planning. Lisi and Malerba [71] improved this system by
the design of the hybrid language AL-log, which yields a unified treatment for
both relational and structural data features.

3.3 Problem description

3.3.1 System analysis

The company Tele Atlas collects geographical information from several sources,
such as aerial photographs and mobile mapping. It provides the geographical
data for companies active in the areas of car navigation systems, geographic
information systems and location-based services. From these application areas,
the company is facing an ever increasing demand for geographical data quality.
It manages a large central database, which is subject to continuous updates,
originating from core data collection and processing using high quality standards.
There are two strategies by which the quality of the geographical data in the
database can be maintained and improved:

• by processing the navigation logs of and explicit update requests by the
end user community

PROBLEM DESCRIPTION 33

Regularities

Set of approved
rules

The company’s DB Passive and

active verification

Figure 3.1: Identification of regularities and anomalies within the quality
maintenance business process.

• by making quality domain knowledge explicit and verifying it against the
data.

In line of the latter strategy, Tele Atlas has set up an infrastructure that allows
manually building quality rules and verifying data against these rules. Passive
verification implies a check of each update against a limited set of rules. Active
verification is done by separate processes, checking the rest of the rules against
the whole database. In this chapter, we introduce a tool that automates building
quality rules.

This tool is used by data engineers and extracts previously unknown relations
that are present in the data. It supports the use cases below:

• First of all, the user selects a data sample and formulates a question e.g.
“How do speed restrictions of a road element (i.e. elementary piece of any
road) relate to adjacent points of interest (POIs)?”

• Within a reasonable amount of time, the user receives direct and complete
answers to the question regarding the selected data sample, in the form
of rules, together with their statistical relevance.

• The user is able to trace the violations (outliers) against these rules and
to visualise them.

• Guided by a rule’s outliers, the user decides whether to accept the rule in
the quality maintenance system, by exporting it, or not. Also very similar

34 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

FeatureType

AttributeType

SimpleAttributeType

ComplexAttributeType

Road Element

Composite Official Name

Official Name

Functional Road Class

roadElement458214

compositeOfficialName458215

officialName458216

+Krijgsbaan

officialName458217

+N419

functionalRoadClass458218

+3

METAMODEL DATA MODEL GEOGRAPHICAL DATA

Figure 3.2: An excerpt of the metamodel, the data model, and the data (UML
class diagram).

rules without violations can be considered for acceptance. Note that rules
with outliers indicating exceptional true situations should not be approved
by the user. After approval, the rule can be used for active and passive
verification, in order to discover outliers regarding the complete database.

These functionalities clearly require a system for outlier detection by
indirect description. Figure 3.1 shows its impact on the quality maintenance
business process. Data sampling is required to cope with the large dimensions
of the database. The data engineers should match data samples to questions.
The sample size should be significantly large in order to avoid overfitting.

3.3.2 The dynamic data model

Besides the geographical data, the data model has a dynamic nature too. The
data model changes, for example, when the engineers decide to adopt a new type
of POI, or when, entering a new country, the address interpolation representation
by integers does not apply any more. In order to design a rule miner tool that
copes with this dynamic data model, the metamodel is constructed. This is the
model of the datamodel, which does not change over time. It will be used to
design a rule language that is independent from the data model that is currently
in use. Figure 3.2 conceptually shows the relationship between the metamodel,
the data model, and the data.

We explain the most important concepts in the metamodel, their implementa-
tions in the data model, and the data itself:

• Feature type. The company’s geographical data basically consists of
features of a certain type, for example restaurants, water areas, junctions
or road elements.

PROBLEM DESCRIPTION 35

• Simple and complex attribute type. Each feature type is composed
of a tree of attributes types, in which the internal nodes are complex
attributes and the leaves are simple attributes, i.e. containing a value.
A road element has, for instance, a functional road class, which is a
value indicating the road importance (highway, secondary road,...) and a
composite official name, of which multiple official names contain the name
strings. The most important attribute is the geometry, which scales
down to a point, a polyline, a polygon or a combination of these. The
data model also defines spatial relationships such as overlap and distance.

• Association type (not in figure). An association type links several
feature types by specific roles, e.g. a forbidden traffic manoeuvre between
two road elements or connectivity between junctions and road elements.

• Inheritance support (not in figure). Furthermore, the metamodel
supports association, feature and attribute type inheritance. For example,
restaurants, junctions and schools inherit from the POI type. All types
inherit the geometry attribute type from the base feature type.

The rules, generated by the tool, are expressed in terms of the data model and
describe previously unknown relationships in the data. Note that a possible
data model update requires a set of data transformations, which apply to the
already discovered rules as well.

3.3.3 Rule and outlier type analysis

At this point, we go into more detail about the type of rules that the tool
is expected to extract. We received a set of example rules in advance from
the company, out of which 3 typical rules are listed in the second column of
Table 3.2. The company expects their type is very similar to the type of rules
the tool might discover.

According to the definitions by Koperski and Han [60], this rule set contains
both spatial and non-spatial association rules. Table 3.2 shows a possible
experiment scenario with regard to the system analysis functionalities for each
of the example rules. The questions are examples of system inquiries by users
that definitely result in a concise set of rules, of which the example rule is an
unexpected member. ‘Unexpected’ means that data engineers who do not know
the examples, are not able to predict the rule from the question. The anomaly
descriptions state which kind of outliers, for each of the rules, the user expects
to highlight during visualisation.
The table shows that

36 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

Question Example rule Anomaly description
“How do road element
speed restrictions relate
to adjacent POIs?”

“A road element adjacent to a
primary school has always a
speed restriction of 30 km/h”

road elements adjacent to a
school with a speed restric-
tion different from 30 km/h

“How do the road ele-
ment’s attributes inter-
relate?”

“A road element with a speed
restriction of 120 km/h, has
always functional road class 1
(i.e. high road importance)”

a road element with speed
restriction 120 and functional
road class > 1

“How does a round-
about relate to the
attributes of its associ-
ated features?”

“Each roundabout has
at least one connection-
association with a road
element with a traffic flow
away from the roundabout.”

a roundabout without con-
nected road elements with
a traffic flow away from the
roundabout

Table 3.2: Possible experiment scenarios for the example rule set

• each rule can be mapped to a question aiming at feature and attribute
type relations, given a fixed spatial relation or association type.

• for each rule, the expected anomaly descriptions refer to spatial objects
for which the fixed relation or association type holds, but the rule fails.2

This representation situates the problem as a relational outlier detection
problem and requires the use of relational association rule mining techniques
to look up regularities in a first phase. Moreover, omitting the refinement of
spatial operators during the search process speeds up the search, compared to
spatial rule mining.

3.3.4 The integration of a relational datamining technique

Hypothesis language requirements. Building an operational tool that is
able to discover patterns in the complete data set, independent from the data
model version in use, requires a uniform representation language in terms of
the metamodel, in which the data and the rules can be expressed. Besides,
the hypothesis language should enable the expression of aggregate (‘has-a’)
relationships between features and attributes.

The algorithm. WARMR [26] is a relational datamining algorithm that
induces association rules in datalog representation, which meets the above
language requirements. It uses learning from interpretations [9], which is

2For instance, in example 1, it would not make sense that the outlier detection comes up
with pairs of primary schools and road elements with speed restriction 30 km/h that are not
adjacent.

SYSTEM DESIGN 37

typically used for description. This learning setting assumes that the input
data is presented in the form of interpretations. These are database partitions
that represent a set of relational states. A candidate hypothesis describes
certain interpretation properties. It covers an interpretation if and only if the
interpretation is a model for the hypothesis. The algorithm is linear in the
number of interpretations.
First, WARMR executes a level-wise discovery of frequent queries that cover
the given set of interpretations. Frequent queries are conjunctions of literals
that fulfil the language bias provided by the user. The language bias consists
of a set of constraints, which determine which frequent queries are searched for.
The support of a frequent query is defined as the number of interpretations
the query covers to the total number of interpretations. Level-wise discovery
involves that, at each level, the frequent queries are specialized by extending
them with each of the allowed literals, until a specified maximum number of
levels (literals) is reached or until the support has decreased below a specified
minimal support. Note that also background knowledge, in the form of rules,
can be taken into account during interpretation coverage control.
Next, frequent queries are processed into query extensions. A query extension
is a datalog clause of the form h : −b1, b2, ..., bm, generated from the queries
b1, b2, ..., bm and b1, b2, ..., bm, h. The confidence of the query extension is
defined as the support of the latter query to the support of the first. The
support of the first and the latter query are said to be the bodyfrequence
and the support of the query extension. The discovery of outliers to a query
extension is trivial. Outliers are the interpretations that are covered by the first
query but not by the latter.
Clare and King [21] treat the distribution of levelwise rule discovery algorithms
such as WARMR. They describe Farmer, Worker and Merger processes to
distribute frequent query support counts within equal amounts of interpretations
over multiple machines.
In our case study, we use the WARMR implementation of the ACE Datamining
System [11]. It implements a set of Inductive Logic Programming (ILP)
algorithms, of which the efficiency has been improved by the query pack
mechanism [10].

3.4 System design

3.4.1 Rationale

The system analysis in the previous section states that the user starts an
experiment from a selected data sample, which is typically a geographic area

38 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

DATA SELECTION

AREA

FEATURE TYPE

FEATURE INCLUSION
CONDITION

PROPERTY TYPES

 CONSTRAINTS APPROACH

SETTINGS SELECTION

INTERPRETATIONS

BACKGROUND
KNOWLEDGE

LANGUAGE
BIAS

FREQUENT
QUERIES

W
A

R
M

R
 (

A
C

E)

QUERY
EXTENSIONS

VIOLATIONS
(OUTLIERS)

XML QUALITY
RULES

Data preprocessing Data mining Pattern postprocessing

Figure 3.3: Design of the rule miner prototype.

and a question. The rule type analysis showed that rule mining with a relational
approach, realised by WARMR, can formulate answers to these questions. This
algorithm learns from interpretations. The user’s question consists of 3 data
selection items. The design choices for each of these items are motivated below.

• Central feature type. In the quality maintenance system of the
company, a rule starts by definition by a universal quantification for
the features of a specific type, as in “For all features of type x: ...”. Strictly
speaking, the rules produced by WARMR have a relative quantification
over the interpretations, as in “For 99% of the interpretations: ...”.
However, this rule is adopted as a perfect rule (and thus universally
quantified) by the quality maintenance system. We prefer to build
interpretations for features in a geographic area and of one specific type. As
a consequence, WARMR produces rules that conform to the specifications
of the system. Therefore, the user has to select a feature type.

• Feature inclusion condition. One approach to including spatial
information (e.g. distance) in the rules, would be to define a set of
spatial relations in the background knowledge. This would result in a
large number of spatial calculations (not any information will be processed
and cached only once) during the knowledge discovery process, resulting in
poor computational performance. A common technique for performance
improvement in spatial data mining is the materialisation of spatial
relationships, described by Shekhar et al. [99]. It involves that all necessary
spatial calculations are executed during preprocessing and that the results
are integrated in the input data. Therefore, we prefer the user to select
a spatial relation, e.g. overlap, and this information is incorporated in
the interpretations. This is realised by the inclusion of features for which

SYSTEM DESIGN 39

the relation holds. The same principle is applied for associations, not for
performance but for uniformity reasons.

• Attribute types. The data engineer might not be interested in possible
relations for each of the simple and complex attribute types involved. It
should thus be possible to restrict the attributes types entered in the
interpretations.

These data selection items are shown in Figure 3.3.
The next subsection details the design of a rule language that covers the example
rules in Table 3.2. The following subsections discuss the data preprocessing,
mining and postprocessing steps of the rule miner tool in Figure 3.3.

3.4.2 Generic rule language

In this section, a rule language is defined in terms of the metamodel, in order
to support data model evolution. In Table 3.3, we define and illustrate a set of
primitive functions.

The rules that are generated will test for the existence of related features,
certain attributes, or certain attribute values. The rule language consists of
the components defined in Table 3.4. Feat_rel(CF,F) is a boolean function,

Definitions Examples
type(DataElement)
returns the specific data model type of a
feature, an attribute or an association.

type(feat4497) = “Road”
type(attr4498) = “Address”
type(ass4499) = “Forbidden Turn”

value(SimpleAttribute)
returns the assigned value of a simple
attribute.

value(attr4498) = “Elm Park”

has(DataElement1, DataElement2)
returns true if the first element contains the
second one. According to the metamodel,
only features and complex attributes can
contain other attributes. Associations
contain features.

has(feat4497, attr4498) = true
has(ass4499, feat4497) = true

spat_dist(Feature1, F eature2)
returns the spatial distance between the
“Geometry” attributes of the 2 features.
Returns 0 if both geometries overlap.

spat_dist(feat4496, feat4497) = 20

Table 3.3: Primitive function definitions

which returns true if the relationship between the features CF and F holds.

40 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

No. Definitions
1 foreach_feature(feature CF , type T)

∀ CF : type(CF) = T

2 feature_exists(feature F , type T, boolfunction Feat_rel, feature CF)
∃ F : type(F) = T ∧ Feat_rel(CF, F)

3 complex_att_exists(attribute A, type T, element P)
∃ A : type(A) = T ∧ has(P,A)

4 simple_att_exists(attribute A, type T, element P, value V)
∃ A, V : type(A) = T ∧ has(P,A) ∧ value(A) = V

Table 3.4: Rule language components

Example functions for Feat_rel(CF,F), will be defined in Subsection 3.4.3.
Let us assume that adjacent50(CF,F) is true when two features are less than
50 metres apart. The ground term
feature_exists(church53, “Church”, adjacent50, road54)
means that feature church53 of type “Church” is adjacent to feature road54.
The first rule in Table 3.2 is defined as

foreach_feature(A, “Road Element”) :
feature_exists(B, “School”, adjacent50, A),
simple_att_exists(C, “Type”, B, “primary”),
complex_att_exists(D, “Composite Speed Restriction”, A)
⇒ simple_att_exists(E, “Speed Restriction”, D, 30)

given the model in which speed restrictions belong to a composite attribute and
primary is a value for the attribute named “Type” contained by the “School”
feature type.

3.4.3 Data preprocessing

Interpretation generation First, the user enters a selection of the geographical
database partitions to be inspected, whereupon these partitions are loaded from
the database. Next, the interpretations are generated from the loaded data.
This generation consists of the following steps (present in Figure 3.3):

• The user chooses a central feature type of interest, around which the
interpretations are built. For each instance of this central feature type
in the data, an interpretation is constructed. This step determines the T
parameter in rule language component 1.

SYSTEM DESIGN 41

Approach Feat_rel(CF, F) Example rule
Inclusion by overlap
adds all features of some types of
choice (in the set ftypeset) that
overlap the central feature.

spat_dist(CF, F) = 0
∧ (type(F) ∈ ftypeset)

Each “Service Area”
overlaps at least
one “Service Point”.

Inclusion by offset distance
adds all features of some types of
choice that are situated an offset
distance d apart from the central
feature.

spat_dist(CF, F) < d
∧ (type(F) ∈ ftypeset)

Rule 1 in Table 3.2.

Inclusion by association type
adds all features that are associated
with the central feature type for some
association types of choice (in the set
atypeset).

∃ A : type(A) ∈ atypeset
∧has(A,CF)∧has(A,F)

Each “Slip Road” is
associated with a
“Forbidden Turn”.

Table 3.5: Inclusion condition: three approaches

• By formulating inclusion conditions, the user is able to include other
features in the interpretations that are somehow related to the central
feature. This step both constrains the T parameter and defines the
Feat_rel function to be included in rule language component 2. Currently,
3 types of inclusion condition, shown in Table 3.5, are supported.

• The user has to indicate an attribute type subtree for each of the feature
types involved. Only the information for these attribute types is recorded
in the interpretations. This step constrains the T parameters in rule
language components 3 and 4.

Figure 3.4 shows the relationship between the geographical metamodel and the
concepts of interpretation construction. The interpretations are generated into
Prolog notation, based on the rule language components.

Language bias and background knowledge generation The language bias
and background knowledge are partially fixed, partially generated in a semi-
automated manner. The language bias ensures that recurring variables only
bind parameters of the same type, as listed in Table 3.4. Note that features
and attributes are both elements. The same table contains annotations that
indicate how variables and constants are introduced in candidate rules. By
default, the underlined terms will be replaced by new variables, the normal
terms by constants and the bold terms by previously introduced variables.
There are some possible variations:

42 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

FeatureType

AttributeType

+MinCardinality
+MaxCardinality

SimpleAttributeTypeComplexAttributeType

Type
<<interface>>

+TypeName
+ID
+IsAbstract

InterpretationModel

has central

1

1

InclusionCondition

OverlapWithOffsetIC

+OffsetRadius

AssociationIC

AssociationType

+SourceRoleName
+TargetRoleName
+SourceMinCardinality
+SourceMaxCardinality
+TargetMinCardinality
+TargetMaxCardinality

has target

1

1

has source

11

allows for

*

1

allows for

* 1

allows for

* 1

Figure 3.4: The geographical metamodel and its relation to interpretation
construction (UML class diagram).

• The end user can select an alternative language bias and background
knowledge pair, resulting in data model mining. An example rule is: “Each
restaurant is overlapped by exactly one restaurant area.” This setting only
includes information about the existence of simple attributes instead of the
values (cf. underlined parameter V of rule language component 4), and
allows to mine for cardinalities. In this case, the background knowledge
contains the definition of an isunique-predicate, indicating whether an
attribute of a given type only occurs once for each parent attribute or
feature. It is included in the language bias.

• The tool supports abstract feature and attribute types in the hypothesis
language. An example rule is “Each service point (this is an abstract
feature type) is adjacent to a road”. In this case, the background knowledge
contains the necessary rules to derive whether a feature or attribute type
implements an abstract type. It is necessary to enumerate all possible
abstract and non-abstract types in the language bias.

Table 3.6 shows a sample data flow during preprocessing.

3.4.4 Data mining and pattern postprocessing

Data mining The interpretations, background knowledge and language bias
files are fed to the ACE Datamining System. Before mining, the user is asked
a minimum support, a minimum confidence and a maximal rule length (i.e.
maximal number of literals). In a level-wise manner, WARMR generates the

SYSTEM DESIGN 43

Raw
data

type(f001) = type(f002) = type(f003) = “Road Element”
type(f004) = type(f005) = “School”
spat_dist(f001, f004) = 8 spat_dist(f001, f005) = 66
spat_dist(f002, f004) = 24 spat_dist(f002, f005) = 22
spat_dist(f003, f004) = 16 spat_dist(f003, f005) = 44
spat_dist(f004, f005) = 21

type(ass001) = type(ass002) = “Connected Road Elements”
has(ass001, f001) = has(ass001, f003) = true
has(ass002, f002) = has(ass002, f003) = true

type(a001) = type(a002) = type(a003) = “Comp. Speed Restriction”
type(a011) = type(a012) = type(a013) = “Speed Restriction”
type(a004) = type(a005) = “Type”

has(f001, a001) = has(f002, a002) = has(f003, a003) = true
has(a001, a011) = has(a002, a012) = has(a003, a013) = true
has(f004, a004) = has(f005, a005) = true

value(a011) = 30 value(a004) = “primary”
value(a012) = 50 value(a005) = “university”
value(a013) = 30

Input
settings

- Central feature type: “Road Element"
- Inclusion by offset distance: all restaurants, schools and gas stations
that are situated 50m apart from the central feature
- Attribute types: all attribute types for the feature types involved

Interpre-
tations

%interpretation for “Road Element" f001
...

%interpretation for “Road Element" f002
complex_att_exists(f002, “Composite Speed Restriction”, a002).
simple_att_exists(a002, “Speed Restriction”, a012, 50).
feature_exists(f004, “School”, adjacent50, f002).
simple_att_exists(a004, “Type”, f004, “primary”).
feature_exists(f005, “School”, adjacent50, f002).
simple_att_exists(a005, “Type”, f005, “university”).

%interpretation for “Road Element" f003
...

Table 3.6: Sample data flow during preprocessing for the school/road data set

44 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

frequent queries (above the minimum support), which are processed into query
extensions (above the minimum confidence) afterwards. Some examples are
given in the results section. These query extensions are presented to the end
user and can be selected individually for outlier detection and rule export.

Language
bias

Default settings.

Frequent
queries

foreach_feature(A, “RoadElement”) :
− complex_att_exists(B, “Comp. Speed Restriction”, A). Supp: 1
− feature_exists(B, “School”, adjacent50, A). Supp: 1
− ...
− feature_exists(B, “School”, adjacent50, A),
simple_att_exists(C, “Type”, B, “university”),
complex_att_exists(D, “Comp. Speed Restriction”, A). Supp: 0.67
− feature_exists(B, “School”, adjacent50, A),
simple_att_exists(C, “Type”, B, “primary”),
complex_att_exists(D, “Comp. Speed Restriction”, A). Supp: 1
− feature_exists(B, “School”, adjacent50, A),
simple_att_exists(C, “Type”, B, “primary”),
complex_att_exists(D, “Comp. Speed Restriction”, A),
simple_att_exists(E, “Speed Restriction”, D, 30). Supp: 0.67

Query
exten-
sions

...
%query extension 20
foreach_feature(A, “Road Element”) :
feature_exists(B, “School”, adjacent50, A),
simple_att_exists(C, “Type”, B, “primary”),
complex_att_exists(D, “Composite Speed Restriction”, A)
⇒ simple_att_exists(E, “Speed Restriction”, D, 30). Conf: 0.67

Outliers The outliers for query extension 20 are:
- interpretation for “Road Element" f002
Visualisation: g002 : type(g002) = “Geometry” ∧ has(f002, g002).

Table 3.7: Sample data flow during datamining and postprocessing for the
school/road data set

Outlier detection Outliers for an individual rule are the interpretations for
which the body of the rule holds, but the body extended by the head fails.
Outlier detection involves the execution of these two queries on the logic program
of each of the interpretations separately, each time extended by the background
knowledge. The tool supports a generic visualisation of outlying interpretations
on a geographical map. Interpretations always represent features that have a
geometry, which scales down to a (set of) points, polylines or polygons.

RESULTS 45

Rule export The XML rule format used by the company is a semantical
superset of the rule language defined in subsection 3.4.2. The rule export
involves syntactical conversion, conversion to primitive functions and the removal
of duplicate information. For example, the feature type set constraint in
Feat_rel(FC,F) can be omitted, because rule language component 2 involves
a feature type declaration. The rule export module allows the end user to
export an accepted rule to the quality maintenance system, which uses the rule
for active or passive verification.

Table 3.7 presents a sample data flow during the data mining and outlier
detection steps, which is subsequent to the flow in Table 3.6.

3.5 Results

In this section, we present a set of example rules found by the system. We
first present the outcome of two specific experiments, focussing on the query
extensions that have almost 100% confidence. These rules are of particular
interest, because they directly indicate possible outliers in the data sample. For
each of the rules, expert feedback is given. Next, we present a sanity check, in
which experiments are reconstructed for a set of rules that have been designed
from specifications manually by the data engineers.

3.5.1 Experiment 1: discovering inter-feature relations

In a first experiment, we try to induce relationships between associated features
of junctions. Therefore, we used following input settings:

• Geographical data set: northern Barcelona (consisting of 1404 junctions)
• Central feature type: junction
• Inclusion of: all features that are associated by one of the 16 association
types defined on the junction feature type

• Attribute types: 10 (official names and type IDs) from the set of all
attribute types for the feature types involved

• Minimal support: 0.05
• Minimal confidence: 0.90
• Maximal rule length: 5

This results in 90 frequent queries and 79 query extensions. The outcome rule
with the highest confidence below 100% is:

46 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

foreach_feature(A, “Junction”) :
feature_exists(B, “Calculated Prohibited Manoeuvre”, assoc,A),
⇒ feature_exists(C 6= B, “Calculated Prohibited Manoeuvre”, assoc,A)

Confidence: 0.9795
Support: 0.1019

Explanation The rule means that, if a prohibited manoeuvre is defined over
a junction, also another prohibited manoeuvre exists over this junction. The
‘Calculated Prohibited Manoeuvre’ association type defines forbidden traffic
turns over a set of junctions, connected by the role type ‘Via Junction’.

Feedback Data experts identify this rule as a promising check, although
‘Calculated Prohibited Manoeuvre’ is an attribute generated from basic
attributes that are already present in the data. This rule has 3 outliers in
the data, 2 of which are located at the border of the data set. These are
false-positive outliers due to incomplete information. A third one triggered
further study by the engineers.

3.5.2 Experiment 2: discovering intra-feature relations

In a second experiment, we try to find relationships amongst the attributes of
road elements.

• Geographical data set: northern Barcelona (consisting of 1851 road
elements)

• Central feature type: road element
• Inclusion of: none
• Attribute types: 20 attribute types (about name, postal information,
speed restriction, routing classes, etc.) belonging to the road element
feature type

• Minimal support: 0.05
• Minimal confidence: 0.90
• Maximal rule length: 4

This results in 190 frequent queries and 169 query extensions. The 3 most
interesting outcome rules with confidence below 100% are:

foreach_feature(A, “Road Element”) :
simple_att_exists(B, “Routing Class”, A, “Local Roads of High Importance”),

RESULTS 47

⇒ simple_att_exists(C, “Road Conditions”, A, “Paved”)
Confidence: 0.9981
Support: 0.5786

foreach_feature(A, “Road Element”) :
simple_att_exists(B, “Functional Road Class”, A, “Local Roads”),
⇒ simple_att_exists(C, “Routing Class”, A, “Destination Traffic”)

Confidence: 0.9947
Support: 0.3047

foreach_feature(A, “Road Element”) :
simple_att_exists(B, “Form Of Way”, A, “Road in Pedestrian Zone”),
⇒ simple_att_exists(C, “Functional Road Class”, A,

“Local Roads of Minor Importance”)
Confidence: 0.9917
Support: 0.0643

Explanation These rules show obvious correlations between a road’s impor-
tance, its form and its actual condition. Their respective meanings are that
each ‘Road Element’ that

1. has the ‘Routing Class’ label ‘Local Roads of High Importance’, has the
‘Road Condition’ label ‘Paved’.

2. has the ‘Functional Road Class’ label ‘Local Roads’, has the ‘Routing
Class’ label ‘Destination Traffic’.

3. has the ‘Form Of Way’ label ‘Road in Pedestrian Zone’, has the ‘Functional
Road Class’ label ‘Local Roads of Minor Importance’.

Feedback According to the data experts, the first rule reveals an interesting
relationship. A ‘Routing Class’ reflects a relative importance, whereas a ‘Road
Condition’ however describes a physical state. This means that an individual
‘Routing Class’ attribute is strongly related to the global attribute distribution
over a country, such that the ‘Routing Class’ distribution for unpaved roads
varies from country to country. Note that it is not unusual to include country-
dependent information in the quality rules, but that including the geographical
dimension in the analysis is beyond the primary scope of this tool for automated
rule discovery.
The second rule shows a correlation between two road class categorisation

48 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

systems. This correlation is already implied by internal road class production
rules.
The third rule indicates an interesting correlation between the ‘Functional
Road Class’ and ‘Form Of Way’ attribute. The first one indicates a relative
importance regarding functional aspects of a road, whereas the latter combines
both physical and functional aspects. In this case, ‘Road in Pedestrian Zone’ is
a purely functional determinant. The single outlier, a relative important road
element in a pedestrian zone, is most probably an anomaly and the rule has
been accepted for further inspection.

3.5.3 Rule set for experiment reconstruction

In this evaluation phase, we verify whether end users would be able to discover
rules that are currently in use by the quality maintenance system. This sanity
check involves experiment reconstruction for this selection of rules. It assumes
unawareness by end users of these rules. The top column of Table 3.8 and 3.9
show 4 rules that have been manually designed from specifications by data
engineers. For each of the rules, we set the experiment parameters such that it
has the rule amongst its results and such that data engineers are not able to
predict the rule as an outcome of the experiment set-up.

Table 3.8 and 3.9 show some detailed information about the experiments. In
practice, it is often needed to lower the minimal support in order to find the
target rules. The target rules could be found in experiment 1,2 and 4. For
experiment 3, the targeted relation was not present in the input data set (which
was checked manually). No outliers could be detected with regard to these rules,
because they had already been adopted by the quality maintenance system.
Each of the rules comes with a set of other rules, most of the time containing
valuable information. Most of the targeted rules are short, so the total number
of rules can be kept low by lowering the maximum rule length.

3.6 Future work

The sanity check in Section 3.5 has shown that the tool is able to discover
realistic quality rules. However, the current rule language still has limitations.
This section presents two language extensions that adapt the rule expressiveness
to real-world standards.

FUTURE WORK 49

Quality rule A Road Element that is part
of a Freeway Intersection, shall
not be part of another Freeway
Intersection (FWI).

A face shall not be part of 2 or
more Postal Districts (PDs)

Experiment
description

Find relations between backward
associated features to each road
element; in this set FWI is unique

Find relations between back-
ward associated features to each
face; in this set PD is unique

geographical
data set

Crisler Crisler

Central
feature type

Road Element Face

interpreta-
tions

1851 674

Inclusion con-
dition

Association Association

All non-abstract backward associ-
ations

All non-abstract backward asso-
ciations

Attribute
Types

- -

Constraint ap-
proach

Datamodel mining Datamodel mining

Minimal
support

0.02 (FWI has low support) 0.05

Minimal confi-
dence

0.90 0.90

Maximal rule
length

4 2

Targeted rule foreach_feature(A,
“Road Element”) :
feature_exists(B,
“FWI”, assoc,A)
⇒ is_unique(B,A)

foreach_feature(A,
“Face”) :
feature_exists(B,
“PD”, assoc,A)
⇒ is_unique(B,A)

Confidence
and support

1.0 0.0427 1.0 1.0

Violations 0 0
Number of
rules per level

4+26+105+289 7+59

Table 3.8: Sanity check details (experiments 1 and 2).

50 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

Quality rule Road Elements having a
Functional Roadclass (FRC)
attribute ‘Motorway’, ‘Major
Road’, ‘Other Major Road’,
‘Secondary Road’ or ‘Stubble’
shall have a ‘No Obstruction’
Blocked Passage attribute.

A Junction can bound exactly 2
or 0 Road Elements with Form of
Way (FOW) Roundabout.

Experiment
description

Find relations between at-
tributes of each road element

Find relations between (attributes
of) road elements that overlap
each junction

geographical
data set

Crisler + Elzie + Malta +
Nilsson (reason: FRC variation)

Nilsson

Central
feature type

Road Element Junction

interpreta-
tions

6765 1611

Inclusion con-
dition

- Overlap

- Road Element
Attribute
Types

Everything from Composite
Blocked Passage + FOW and
FRC from Road Element

(Composite) Official Name, FOW
and FR from Road Element

Constraint ap-
proach

default default

Minimal
support

0.01 (FRC 2 3 4 8 have low
support)

0.01 (FOW 3 has low support)

Minimal confi-
dence

0.7 (to show invalidity of target
rule)

0.90

Maximal rule
length

5 3

Targeted rule not found foreach_feature(A,
“Junction”) :
feature_exists(B,
“Road Element”, overl, A),
simple_att_exists(C, “FOW”,
B, “Roundabout”)
⇒ feature_exists(C 6= B,
“Road
Element”, overl, A)

Confidence
and support

- 1 0.02

Violations - 0
Number of
rules per level

1+0+9+16+28 2+2+7

Table 3.9: Sanity check details (experiments 3 and 4).

CONCLUSION 51

Association Presently, association is only used as a condition to include other
features in an interpretation. Full integration means that the rule language is
able to capture associations (by name and by role) between features and to list
properties of associations. This would enable:

• the discovery of recurring patterns in association roles and association
properties. An example could be: if a junction is the first junction of a
manoeuvre, it is always the last junction of another manoeuvre.

• the combinatorial application of different inclusion conditions. For
example, this would enable finding that a junction’s associated intersection
also overlaps this junction.

Spatial functions and concepts There is a number of functions and concepts,
tailored to the domain of geographic databases, that would be very useful when
integrated in the current system.

• Feature count, for example, supports the discovery of certain types of
anomalies in geographical data, such as erroneous duplication of data. An
example rule is: the number of hotels in a city is lower than the number
of restaurants.

• Spatial distance (for feature sizes as well as distances between features)
can be realised by calculation during preprocessing, and making it explicit
in the rule language. This measure would enable finding that the distance
between a gas station and a motorway is always between 10 and 100
metres.

3.7 Conclusion

We have built a tool to mine for relational regularities and corresponding outliers
in geographical data. This tool assists a geographic content providing company
in reasoning about the structure of the data and about the data itself. It is
able to extract previously unknown knowledge in an automated way, which can
be integrated in the quality maintenance process directly. An example of this
knowledge is the rule stating that local roads of high importance are paved.
The tool anticipates the process of manual rule formulation driven by individual
reporting of anomalies in the data. Moreover, it is independent from the data
model currently in use.

52 OUTLIER DETECTION IN RELATIONAL DATA: A CASE STUDY

The WARMR algorithm is the central component of this tool. Its input consist
of interpretations, a background knowledge and a language bias, generated from
the end user’s data selection and mining preferences. Its output is used for
relational outlier detection by indirect description i.e. first WARMR mines for
rules that describe regularities and next, violations of these rules are identified
as outliers.

The case studies show that relatively simple experiments yield valuable
information about regularities and outliers in the sample data. Three out
of 4 manually designed example rules were reconstructed using the tool. Only
one rule was not found because it had very low confidence over the sample data.
The validation shows that the system requirements of our tool are met.

The approach to outlier detection and quality maintenance introduced in the
present chapter, is generally applicable in data-rich intelligent systems. It
was shown that this approach supports the discovery of valuable knowledge
in geographical data, which cannot be discovered by traditional techniques for
data quality analysis in GIS.

In the next chapter, the theme of shortest path approximation algorithms
proceeds from the present theme of geographic data quality maintenance. This
type of algorithm operates on a spatial graph, which is extracted from the
geographical data treated in the present and the previous chapter. The
extraction of time- or distance-weighted graphs entails a straight-forward
decision model based on the road elements’ and junctions’ attributes in the
data, as illustrated in Appendix A. The extraction of graphs taking into
account attractiveness requires more advanced decision models integrating
spatial relations between features of various types e.g. proximity of a forest
to a way. Hochmair and Navratil [49] discuss specifically proximity in this
context. Typical applications of shortest path algorithms are point-to-point
route planners and navigation systems. The quality of these service highly
depend on the quality of the geographical data from which the applicable spatial
graph was extracted.

Chapter 4

Wayfinding by multi-level
heuristic node promotion in
real road networks

The present chapter introduces the application of the multi-level heuristic node
promotion algorithm to real road networks for vehicle navigation. In contrast
with many classical shortest path algorithms, this hierarchical shortest-path
approximation algorithm integrates in a multi-tier web architecture in such
a way that routing queries as well as a minor data updates are processed in
a short amount of time. The multi-level heuristic node promotion algorithm
was first proposed by Jagadeesh et al. [52] for two levels, although it is only
effective when an irreversible graph transformation has been applied on the
road network during preprocessing. This irreversible transformation, which
consists of slip road removal and dual carriage way reduction, is problematic
in contemporary route planning applications. Several heuristic adaptations to
both the data preprocessing and the algorithm are introduced and motivated.
These adaptations bypass the irreversible graph transformation and restore the
effectiveness of the heuristic node promotion algorithm.

A computational experiment shows the application of the hierarchical algorithm
to the 5-level time-weighted road network graph of Belgium, in combination
with node pruning using a rectangular area. It analyses the effects of each of
the adaptations on the routing performance. This experiment is conducted in
the context of a routing web application for tourism and leisure purposes, but
the suggested approach is effective for hierarchical shortest-path applications in

53

54 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

general.

The research in this chapter has been carried out as part of the industrial
PhD project ‘Structural heuristics for personalised routes’ funded by the IWT
(090726) and the company RouteYou. The present chapter is available as a
technical report.

4.1 Introduction

RouteYou manages a web 2.0 environment enabling users to interactively create,
share and use tourist routes. Besides, it offers a routing platform for various
application developers and digital content providers. One of its basic components
is a routing engine that computes a route of interest, mainly intended for vehicle
navigation, over the road network between two points selected by the user.
This calculation entails finding the path with the lowest cost in a directed
weighted graph. The engine supports several routing modi, each of them
referring to another type of edge weights. For the modus ‘shortest’, the
weights represent the edge length. A time-weighted graph enables finding the
‘fastest’ route. These time weights are estimates of the average time it is
necessary for a vehicle to traverse the edge. Moreover, the engine offers a gamut
of modi, further referred to as ‘nicest’, tailored to subdomains of leisure and
tourism. For these modi, the weights correspond to the multiplications of the
edge length and an unsuitability factor ≥ 1, which is inversely proportional
to the suitability of the edge to the subdomain. For cycling, for example,
unsuitability is determined by both physical and scenic road characteristics and
traffic regulations.

The path calculation infrastructure is a multi-tier architecture consisting of the
following properties.

• All road network graph information is stored exclusively in a relational
database with a spatial extension.

• The actual path calculation is executed on an application server.

• The road network graph is subject to minor updates such as new road
segments or changing costs regarding the traffic situation.

This architecture supports a multi-purpose GIS system with high scalability
with regard to the number of parallel users of services offered by the system. It
gives rise to the following processes supporting the routing application:

INTRODUCTION 55

DB

Application server

Thread

(si, ei) ?

Figure 4.1: Routing process diagram. Upon each routing request from starting
point si to end point ei (step 1), the application server starts a thread (step 2).
Once or repeatedly, this thread loads the portion of the road network nodes and
edges that spatially intersect a bounding box (step 3). When the path finding
process has terminated (step 4), the thread returns the result to the client and
dies, releasing the memory occupied by the thread (step 5).

1. preprocessing the road network. This step involves the transformation
of geographical data into an indexed and annotated road network graph.
The word indexed refers to structures that optimise data consultation in
process 2a, e.g. static clusters or a spatial index, such as an R-tree or
QuadTree. The word annotated refers to the enrichment of the data by
heuristic information (e.g. node coordinates, obstacle segmentation lines,
hierarchical labels) in order to accelerate the search in process 2b. This
step needs only to be executed once.

2. the routing process, triggered by end user requests. It is shown in Figure 4.1
and consists of:

(a) consulting and reindexing relevant data. Reindexing in its turn
involves building structures in the annotated graph, which facilitate
the search process in process 2b.

(b) the shortest path finding process itself.

56 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

3. updating the indexed and annotated road network. An atomic update
involves the update of an edge weight or the insertion or deletion of an
edge or a node.

Peculiarity of the infrastructure. Process 2a does not apply to traditional
infrastructures. In memory-based infrastructures, all data is loaded in memory
only once, after preprocessing. In disk-based infrastructures, the indexed and
annotated data is written on a disk in an adapted format during preprocessing,
and disk access is integrated in the shortest path finding process. When the
shortest path calculation is written as an extension of the RDBMS, elementary
graph operators and indices can be integrated in order to improve performance
and avoid reindexing [38].

Requirements. Given the online nature of the application, the twofold routing
process is evaluated based on the 3 following performance criteria: (1)
computational time: end users need the answer in less than 5 seconds; (2)
memory footprint: a low amount of memory used by the routing process,
increases the number of parallel requests the web application allows handling;
and (3) quality of the route. Quality is expressed in terms of relative error with
regard to the cost of the exact solution. It is required that (4) the computational
time of one atomic update is less than 1 second. Other performance criteria are:
(5) the computational time of preprocessing, and (6) the size of the indexed and
annotated data generated during preprocessing.
Process 2a in the multi-tier architecture is time consuming (criterion (1)). Its
time complexity is at least linear to the size of the consulted data and each
query introduces a constant latency time. Moreover, the size of the consulted
data is proportional to the memory footprint (criterion (2)). This imposes that
the routing algorithm requires only a concise subset of the data, transferred
from the database in a low number of efficient queries, irregardless of the routing
distance.

In the overview of heuristic approaches to one-to-one wayfinding in Section 4.2.1
of the present chapter, we show that classical hierarchical shortest path
algorithms suit the requirements imposed by the application best. Section 4.2.2
discusses the applicability of these approaches to several routing modi and
Section 4.2.3 further outlines this type of approaches in the field. Section 4.3
of this chapter introduces a new hierarchical shortest path algorithm, which is
called multi-level heuristic node promotion (MLHNP).
Similar to other hierarchical path finding approaches, this algorithm can only
be effective on real road network data if the road network graph is transformed
during preprocessing. The application of this transformation is problematic in
contemporary routing applications. Section 4.4 introduces a set of heuristic
adaptations to the MLHNP approach such that it is effective in untransformed

RELATED WORK 57

network graphs. Section 4.5 evaluates the performance of hierarchically finding
the ‘fastest’ routes for a test set of 1000 routing queries in Belgium. Section 4.6
is the conclusion of this chapter.

4.2 Related work

4.2.1 Heuristics for one-to-one shortest path finding

During the last two decades, one-to-one shortest path algorithms for realistic
road networks have received extensive attention. Zhan and Noon [117] compared
15 optimal shortest path algorithms on two test sets covering the U.S. The
most effective one-to-one algorithms are variants of the algorithm proposed by
Dijkstra [30], which differ with regard to the data structure for finding the node
with the smallest label for examination during search. Heuristic shortest path
algorithms use extra knowledge about the road network in order to make the
search process less computationally expensive.

The A* algorithm, first proposed by Hart et al. [48], limits the search area to
an ellipse by including a heuristic estimation of the cost to the end node in the
node traversal priority function. The extra knowledge consists of the node’s
geographical coordinates. The algorithm is guaranteed to find the optimal
solution when the heuristic is admissible i.e. always underestimates the cost. In
distance-weighted networks, Euclidean distance is an admissible heuristic. Jacob
et al. [51] showed that the introduction of an overdo parameter, multiplying the
Euclidean distance to the end node, drastically decreases computational time
while preserving the solution quality to a large extent. The idea behind this
‘overdo heuristic’ is a better estimate of the conservative lower bound of the
A* algorithm. Other A* variants aim at improving the cost estimate itself by:
using a learning algorithm [6], looking ahead one node further [1], precomputing
the shortest paths between a selection of landmarks [41] or modelling obstacles
through segmentation lines [46].

Branch pruning is another form of limiting the search area, which involves
ignoring the nodes during the search process that have low probability to being
on the shortest path from starting to end node. This could be realised by the use
of a stochastic model [36] or just by restraining the search space to a rectangular
area containing start and end node, in the direction of their connecting line
[55], or parallel to the axes of the coordinate system [56]. More recent work
focuses on heavily precomputed data structures defining a set of prunable nodes
for each of the individual edges. Wagner and Willhalm [115] approximate the
set of nodes containing a shortest path by a geometry (so-called consistent

58 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

container). Lauther [65] saves for each of the edges e and each of the predefined
regions r whether there exists a shortest path through e to r. Gutman [44]
introduces the reach of a node v i.e. for all shortest paths P through v, the
maximum of the cost of the prefix and the suffix of P. Next, the nodes are
pruned, for which the reach is higher than the underestimation of both the
prefix and suffix of the shortest path under construction. The same author
also presents a faster preprocessing method, which computes the upper bounds
of the maxima. A bi-directional version of this algorithm has been improved
by Goldberg et al. [42]. Moreover, the introduction of shortcut arcs drastically
increased the preprocessing efficiency.

Hierarchical shortest path algorithms use a road network divided into multiple
levels (e.g. the road classes) in order to limit the search link space drastically:
only close to the start and end node the lower level links are taken into account.
This divide-and-conquer strategy was first introduced and related to the field of
cognitive psychology by Car and Frank [14]. Initially, the preprocessing phase of
this type of approaches started from a hierarchically labelled network, and most
algorithms were approximative. In the context of these classical hierarchical
approaches, Fu et al. [37] identified the hierarchical shortest path algorithm as
the most efficient heuristic in real transportation networks. They refer to the
experiments by Liu [72], which show that the hierarchical algorithm reduces the
average computational time of Dijkstra to one tenth, whereas A* only reduces
it to half and bi-directional search to 80% (as first introduced by Dantzig [22]).
A second type of approaches involves hierarchy computation during preprocess-
ing, and does guarantee optimal results. Sanders and Schultes [92, 93] obtain a
highway hierarchy by iteratively selecting all edges that appear in shortest paths
between any nodes u and v, but outside the local neighbourhood of u and v.
It integrates highway node contraction similar to shortcut arcs. A contraction
hierarchy [39] arises from iteratively contracting any node in a heuristic order
of importance. For the latter approach, path calculation times of 0.2-0.3 ms
are reported. The transit-node approach [7] starts from a map divided into a
set of disjoint regions. It involves identification - for each of the regions - of a
small set of nodes where any shortest path leaving or entering the region passes.
Next, all shortest paths between any two transit nodes of different regions and
between any node of a region r and any transit node of r are precalculated.
This approach further reduces the path calculation time to the order of 5-20
µs. Goldberg et al. [42] found that the performance of their algorithm based
on reach pruning is very similar to the performance of a hierarchical algorithm.
They introduced the concept of cardinality reach, referring to the traversal order
during search, in order to emulate hierarchical behaviour in terms of a reach
algorithm.

Multi-tier and requirement suitability of the heuristics. Both the

RELATED WORK 59

variants of the Dijkstra and A* algorithm can easily be integrated in the
multi-tier architecture, in combination with pruning the nodes by a rectangular
area. This is illustrated in Figure 4.1. Efficient bounding box selection is
supported by almost every spatial DBMS. Nevertheless, these algorithms do
not scale for routing queries over higher distances d, since the size of the data
consulted by process 2a has a worst-case complexity of O(d2), assuming a
uniform spatial distribution of the road network graph.
Branch pruning heuristics have typically been designed for pruning during
the shortest path finding process. Only when the pruning technique can be
adopted by process 2a, i.e. integrated in a few efficient database queries, it
might scale for routing queries over higher distances. This integration is possible
for the algorithms by Wagner and Willhalm [115] and Lauther [65], but does
not realise a significant scalability improvement. In the case of reach pruning,
contemporary spatial DBMS technology does not enable to efficiently query the
spatial points of which one of the attributes (reach number) is higher than the
euclidean distance to two given points. Moreover, a dynamic version of this
algorithm has only been considered for edge weight changes, for the version
without shortcuts and without experimental evaluation [96].
The multi-tier integration of both the highway and contraction hierarchy
approaches is problematic since there is no sound mechanism to reduce the
number of consulted edges in advance in a scalable way. Data updates can
be executed in short computational time [96], but are constrained to changing
the edge weights. The transit-node approach is compatible with the multi-tier
architecture, but burdens the precalculated data size, and is unsuitable for
efficient data updates.
Classical hierarchical approaches integrate generally well in the multi-tier
architecture because the algorithms operate on strongly reduced parts of the road
network graph, which can be indexed by location and level. This enables a low
memory footprint and computational time for process 2a. During preprocessing,
the road network annotation is derived from the source data by simple operators
such as intermediate node reduction and spatial containment. As a consequence,
preprocessing times are rather short, the generated data size is small and minor
data updates can be processed in less than 1 second. The limitations of this
type of approaches are the approximative character of the resulting paths, and
the necessity of a predetermined network hierarchy, which is discussed below.

4.2.2 Applicability of classical hierarchical approaches

Classical hierarchical approaches are mostly applied in transportation network
graphs, in which edge weights represent travel time. The road classes then
simply determine the levels of the network. This road class heuristic is a good

60 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

indicator for the actual speed over the edges and the subnetwork of the n highest
classes is fully connected by nature. The road classes can be easily obtained
from geographic content providers.

Furthermore, classical hierarchical approaches are applicable to a wider domain
of routing modi. For some countries, the road class is also a good heuristic to
find the shortest path in a distance-weighted road network graph. Jagadeesh
et al. [52] showed for Singapore that it was due to the road class reflecting the
inherent hierarchy of the graph topology. Alternatively, Chou et al. [20] suggest
to promote edges with a high length to the higher level for this type of weights.
The same classical hierarchical algorithms can be used in this context of finding
the ‘nicest’ routes, but the generation of hierarchy for these modi is beyond the
scope of this chapter. For hierarchical networks in general, we assume that

• each subnetwork of the n highest classes is fully connected.

• the number of edges in the higher classes is restricted.

• the edges of a higher class are more probable to be included in the shortest
path from any node a to any node b of the graph. This results typically
in a selection of edges of lower unsuitability (higher speed) enriched by
edges that realise topological connectivity (e.g. slip roads, ‘unsuitable’
(‘low speed’) path that is an essential shortcut).

4.2.3 Classical hierarchical shortest path finding

Classical hierarchical wayfinding requires a network graph to be divided in
two or more (connected) graphs. Leave points denote the nodes that enable
traversal from a given level network to a higher level network. The term entry
points is used for the ones that give entry to a lower level network. The term
transition points refers to both entry and leave points. Several algorithms
have been proposed that optimally conduct the search process over different
levels.

Car and Frank [14] proposed a bottom-up approach to multi-level hierarchical
routing. It uses a hierarchical tree of meshes i.e. a set of edges bounded by
higher-level edges, and starts from the lowest level. It involves that first the
shortest path from the start node to the closest leave point and from the closest
entry point to the lower level are found, using a classical algorithm, on the
lowest level network. Next, the infix path is recursively searched for on the
higher level network. The recursion ends when start and end node are situated
in the same or in adjacent meshes, or when no higher level is available. In
this case, the shortest path from start to end node is found using a classical

RELATED WORK 61

algorithm. In the end, the resulting subpaths are concatenated. Later on, Cho
and Lan [19] adopted the bottom-up approach and studied the memory-error
trade-off for different combinations of Dijkstra and A* with ‘overdo heuristic’
on the different levels of operation.

One major drawback of the bottom-up approach is that the choice of the closest
transition point is not necessarily the best choice to produce the path with
the lowest cost. Therefore, Liu [72] introduced the stitching approach, i.e. the
meshes in which the start and end node are located are added to the higher-level
network, and a classical algorithm is used to find the shortest path from the start
to the end node in the stitched network graph. Chou et al. [20] suggested to
calculate the shortest paths from the start node to all leave points and from all
entry points to the end node and to select the combination with the lowest cost
afterwards. Jagadeesh et al. [52] introduced the two-level hierarchical algorithm
with heuristic node promotion. It is a top-down approach that starts routing at
the higher level if start and end node are situated in the same or in adjacent
meshes. This higher level routing stage involves finding the shortest path from
start to end node on the higher level network, enriched by a set of virtual links
from the start node to each of the leave points and from each of the entry points
to the end nodes, using a classical algorithm. The virtual link weights are cost
estimates based on Euclidean distance. Next, the two virtual links selected in
the resulting path are replaced by the shortest path from start to end node of
the virtual links, obtained by routing on the lower level network. The authors
showed that their method outperforms (computation time vs. result quality)
the two-level version of the bottom-up approach.

The algorithms described above typically integrate a pruning technique in order
to speed up the search during each of the subroutings. Jagadeesh et al. [52]
constrain the search space to the subgraph formed by the N closest nodes to
the start and end node. Liu [72] uses cell meshes to prune the search graph. In
the first case, it may be difficult to find a general measure for N or an accurate
distance function for scenic or time-weighted routing modi. The latter case will
certainly work for planar graphs, but may not be effective in non-planar graphs
without intensive preprocessing of overlapping cells.

Strauss [105] raised some issues concerning unconnected higher level network
graphs that apply to the hierarchical approaches above. He identified the case of
(1) a disconnected higher-level graph due to the data selection, (2) a disconnected
higher-level graph because of the topographic restrictions of the dataset, and (3)
the low-level shortcut which connects two high-level subnetworks. Examples of
the latter case are a footpath connecting the railway system with the airport or
a shortcut between two highways which often appears in paths with the lowest
travel time. In this context, Liu [72] suggests to add 1-edge shortcuts within the
higher network during preprocessing. Strauss [105] introduces the multi-level

62 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

hopping algorithm to cope with all these issues. This method alternates between
synchronous and asynchronous search tree spreading in a bidirectional manner.
We argue that each of the issues raised can be avoided by the following
measures: (1) expand the data selection in case the routing algorithm detects a
disconnection, (2) organise the global higher network in such a way that it is
a connected graph (this could be imposed without any loss of route quality)1,
and (3) classify the edges according to the probability of being included in any
shortest path. The last measure has already been suggested by Jagadeesh et
al. [52] for slip roads between motorways.

Concluding remark. Classical hierarchical algorithms can be categorized
into four main algorithmic strategies: top-down, bottom-up, stitching and level
hopping. In combination with a spatial or mesh-based pruning, the first three
strategies integrate well in the multi-tier architecture. Given the upper bound
number u of edges contained in a cell or spatial container, the worst-case size
complexity of the data consulted by process 2a is limited to O(2 · l · u), with l
the number of levels. Section 4.3 introduces a variant of the top-down approach,
which was shown to yield the optimal trade-off of computational time and result
quality. The multi-level hopping algorithm requires process 2a to consult as
much data as a Dijkstra or A* algorithm and therefore it does not fulfil the
requirements.

4.3 Multi-level heuristic node promotion in trans-
formed network graphs

The present section introduces the multi-level heuristic node promotion
algorithm (MLHNP). It is a recursive version of the two-level algorithm by
Jagadeesh et al. [52]. Whereas slip roads and dual carriageways typically occur in
networks for vehicle navigation, the algorithm is only effective on road networks
that have been subjected to the following graph transformations: (1) slip road
removal, and, (2) dual carriage way and multi-lane reduction into single-track
ways. These processes reduce complex intersections to a single node connecting
the main directions.

1Note that a disconnected highway graph due to dataset restriction often coincides with
the inability to produce the real-world fastest path with any algorithm, because this path
runs through one or more neighbouring datasets. This is not a valid excuse for the algorithm
to fail, but it indicates that this type of case applies to rather experimental than operational
planners.

MULTI-LEVEL HEURISTIC NODE PROMOTION IN TRANSFORMED NETWORK GRAPHS 63

Concept Definition

G
ra
ph

G = (V,E) a directed road network graph in which each of the
edges e ∈ E is assigned a weight w(e) and a level
l(e) ∈ [0,maxlevel]. Any directed edge e starts in
node from(e) ∈ V and ends in node to(e) ∈ V . We
will use the symbols ∈̇ and ∈̃ to denote set membership
of V and E.

GL the subgraph of G, consisting of edges e ∈̃ G : l(e) ≥ L.
GL should be connected for each L ∈ [0,maxlevel].

edge(n1, n2, w) an edge from vertex n1 to n2 of weight w
reduced(G,X) the transformed version of G in which all intermediate

nodes (i.e. nodes that only connect to two physical
ways) have been removed. Intermediate node reduction
is achieved by iteratively replacing each pair of edges
edge(a, b, w1) and edge(b, c, w2) with intermediate
node b, by edge edge(a, c, w1 + w2) . The exception
list X is an optional parameter. Any node of X that
is a node of G must not be removed.

P
at
hs P(a, b,G) the set of paths from vertex a to b in graph G. It

consists of any sequence P of subsequent edges from
graph G, for which the first edge starts in a and the
last edge ends in b

Pi the edge with position i in path P
Pi...j the subpath of P starting by Pi and ending by Pj
|P | the cost of path P is defined as the sum of the weights

of all its edges
dist(a, b,G) the shortest path distance from vertex a to b in G

is defined as minP∈P(a,b,G)|P |. The set of shortest
paths shortest(a, b,G) contains any path P for which
|P | = dist(a, b,G)

errorrel(Q) the relative error of an approximate
shortest path Q ∈ P(a, b,G) is defined as
|Q|−dist(a,b,G)
dist(a,b,G)

Table 4.1: MLHNP concept definitions (part 1)

64 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

Concept Definition
C
el
ls cell c a spatial region containing nodes of a graph G.

cells(L) the set of cells of level L in graph G. Each polygon that
is enclosed by edges in GL and eventually the dataset
boundary, and does not overlap any other edges in GL,
is an element of cells(L).

l(c) L|c ∈ cells(L)
cells(n,L) the subset of cells(L) of cells that spatially overlap node

n ∈̇ G. ∀n ∈̇ G,L ∈ [1,maxlevel] : cells(n,L) 6= ∅
contiguous(c1, c2) is true when the cells c1 and c2 are contiguous i.e. their

spatial intersection is at least a line.

N
od

e
pr
om

ot
io
n leavepoints(c) the set of candidate transition points

between any route starting in cell c planned
in any Gm with m < l(c) and Gl(c)
leavepoints(c) = {n ∈ c|∃e ∈̃ reduced(Gl(c)) :
from(e) = n ∧ to(e) /∈ c}

entrypoints(c) the set of candidate transition points
between Gl(c) and any route ending in
cell c planned in any Gm with m < l(c)
entrypoints(c) = {n ∈ c|∃e ∈̃ reduced(Gl(c)) : to(e) =
n ∧ from(e) /∈ c}

estimate(n1, n2) a cost estimate of the shortest path from n1 to n2
promotest(n,G′) ⇔ ¬(∃e ∈̃ G′ : from(e) = n)
promoteend(n,G′) ⇔ ¬(∃e ∈̃ G′ : to(e) = n)

Table 4.2: MLHNP concept definitions (part 2)

mlhnp(n1, n2, lrestr, G) :
Lcand ← {l|∀c1 ∈ cells(n1, l), c2 ∈ cells(n2, l) : ¬(c1 = c2 ∨ contiguous(c1, c2))}
lexec ← min(lrestr,max(Lcand ∪ {0}))
G′ ← reduced(Glexec , {sglobal, eglobal})
if lexec > 0 then

if promotest(n1, G′) then
G′ ← G′ ∪ {edge(n1, n, estimate(n1, n))|n ∈ leavepoints(cells(n1, lexec))}

end if
if promoteend(n2, G′) then
G′ ← G′ ∪ {edge(n, n2, estimate(n, n2))|n ∈ entrypoints(cells(n2, lexec))}

end if
end if
R← P ∈ shortest(n1, n2, G′)
if l(R0) = ‘v’ then
R← concatenation(mlhnp(from(R0), to(R0), lrestr − 1, G), R1...size(R)−1)

end if
if l(Rsize(R)−1) = ‘v’ then
R← concatenation(R0...size(R)−2,mlhnp(from(R0), to(R0), lrestr − 1, G))

end if
return R

Figure 4.2: Multi-level heuristic node promotion.

MULTI-LEVEL HEURISTIC NODE PROMOTION IN TRANSFORMED NETWORK GRAPHS 65

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4 VIRTUAL LINK PROMOTION ROUTING (A*, Dijkstra, …)

SOLVE VIRTUAL LINK

SOLVE VIRTUAL LINK

Figure 4.3: Recursive run of the multi-level heuristic node promotion algorithm.

4.3.1 Algorithm

MLHNP assumes the availability of the concepts listed in Table 4.1 and 4.2,
applied to a network divided inmaxlevel+1 levels. This algorithm approximates
the path of lowest cost from vertex sglobal to eglobal in graph G, returning an
approximate path Q with a minimal errorrel(Q). It is initiated by the call
mlhnp(sglobal, eglobal,maxlevel,G) to the algorithm listed in Figure 4.2. First,
it determines its level of execution lexec as the highest level for which n1 and n2
are not located in contiguous or same cells. Next, the search graph is pruned and
constrained to the edges of level ≥ L. When lexec > 0 and promotest(n1, G

′),
the search graph is extended by a set of virtual edges, from n1 to n1’s cell leave
points. These virtualisations are part of the so-called node promotion because n1
is promoted to Glexec

. This promotion is heuristic because each of the virtual
edge weights is a heuristic cost estimate of the shortest path from n1 to the
leave point. Analogously, when lexec > 0 and promoteend(n2, G

′), the search
graph is extended by a set of virtual edges, from n2’s cell entry points to n2.
Next, a classical routing algorithm is applied from n1 to n2. This step is further
referred to as the basic shortest path calculation. In the resulting path,
each selected virtual link is replaced by the path resulting from the recursive call
to this function. The recursive decrement of the level of execution guarantees
that the algorithm is finite.

Figure 4.3 shows an example top recursive run of the algorithm. The left
subfigure situates the origin and destination node n1 and n2 in the cell
configuration cell(L) for any level L > 0. Note that a cell of level L is enclosed
by edges of a level greater than or equal to L. lexec = 3, since 3 is the highest
level for which n1 and n2 are located in non-contiguous cells. Next, in the
middle subfigure, the edges of G3 are loaded only the edges of level 3 and 4
are loaded. Blue/red edges belong to level 4/3. This network is enriched with
virtual links (denoted in black). The shortest path from n1 to n2 in this network

66 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

is shown in the right subfigure. It contains two virtual links, which need to be
replaced by the shortest path from the start to the end node of the link. This
path is obtained by a recursive call to the MLHNP algorithm.

4.3.2 The role of transition points and the heuristic estimate

Each cell corner connecting to other edges of the higher level network, is
registered as a transition point. The transition point definitions in Table 4.2
realize this pattern likewise. A recursive run of MLHNP typically generates a
route of the type
(startnode) − virtuallink − (transitionpoint) − fixedroute − (transitionpoint) −
virtuallink − (endnode),
in which the virtual links are solved in deeper recursions. So the solution of the
virtual link typically contains higher level cell border edges and the transition
point in the resulting route is the node where the route switches between the
cell border and rest of the network. This means that the shortest path search
on the border is preferably executed downlevel. This is a scalable approach that
complies with hierarchical road network data containing more than two levels.2.

The ultimate algorithmic choice of transition point is influenced by the virtual
link cost estimate function estimate(n1, n2). The better the approximation,
the higher the chance that the transition point generating the shortest path is
selected. Finding the shortest path in a graph with systematic overestimation of
the virtual link cost, yields preference of transition points close to the starting
node/end node. Systematic underestimation tends to minimise the cost of the
global path apart from the virtual link. Jagadeesh et al. [52] approximate the
real cost by the Euclidean distance in case of distance-weighted edges, and
by the Euclidean distance divided by the average speed of the weights of the
cell’s edges in case of time-weighted edges. The latter approach assumes a
homogeneous speed distribution over the cell. This is certainly not the case for
cells of levels greater than 1. Individual variance between the real virtual link
cost and its approximation leads more easily to a wrong transition point choice
(i.e. resulting in a path with higher cost) than systematic deviation. Moreover,
it requires extra preprocessing time and storage costs. Therefore we just use an

2We have considered alternative transition point definitions. (1) Each transition from the
cell border to the lower level network. This approach involves that the transition points are
candidate points where the shortest path switches between the cell border and the network
inside of the cell. This approach is promising with regard to any of the routing performance
criteria, but is not scalable because at high levels we could easily obtain cells of 10000 transition
points. (2) Each transition from the cell border to edges of one level lower. This approach
scales but imposes some additional requirements. Each cell of level n should overlap edges of
exactly level n− 1. Moreover, it only supports paths that have a level increase/decrease by
one, which deviate greatly from shortest paths in common hierarchies.

MULTI-LEVEL HEURISTIC NODE PROMOTION IN TRANSFORMED NETWORK GRAPHS 67

arbitrary average resistance ravg in order to estimate the virtual link cost for
each of the routing modi as follows:
estimate(n1, n2) = disteucl(n1, n2) · ravg
This value is a single estimate of the ratio of the real path cost from any n1 to
any n2 to the euclidean distance between n1 and n2.

4.3.3 Preprocessing overview

Starting from a road network graph cleared from slip roads and dual carriage
ways, the following transformations and annotations are necessary during the
preprocessing phase.

1. Intermediate node reduction of each graph GL : L ∈ [0,maxlevel]. This
transformation is necessary to speed up the search process of the shortest
path algorithm and it supports higher level scalability of MLHNP. It
is a reversible transformation because each transformed edge can be
unambiguously translated into the original sequence of edges.

2. Appropriate indexing of each of the resulting graphs reduced(GL).

3. Cell generation and cell contiguity registration

4. Appropriate indexing of the cells and contiguities by node.

5. Generation and indexing of the transition points by cell.

Step 3 involves building polygons formed by the minimal cycles of the planar
version of the road network graph GL, for each L ∈ [1,maxlevel]. Planarisation
involves that edge crossings are replaced by dummy vertices, for each subnetwork
GL, and that duplicate line parts are merged into a single line belonging to
the highest level of both sources. Moreover, all directed edges have been made
undirected in the planar graph. The planar graph has been extended by the
border of the routable area, its level labelled by maxlevel + 1. Non-border
edges may end at the border, but must not exceed it. As a result, this planar
graph has a spatial representation in which none of the edges intersect, and any
edge (not part of the border) encloses two minimal cycles of the graph.
This cell generation can be implemented as an iterative top-down process, which
uses GN to split the cells of level N + 1 into cells of level N . At the top level it
starts from one or more cells representing the routable area. In order to split
one cell of level N + 1, all topology of GN overlapping the cell is loaded, and
minimal cycle navigation starts at a random edge of exactly level N (if not
available, the cell can be copied down level). During navigation, the algorithm

68 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

chooses the leftmost edge at each node. Navigation ends when a visited node
is encountered, closing the polygon. The next navigation starts in a random
edge of exactly level N that has only been visited once. The split-down finishes
when no more start edges are available. Each time an edge is visited twice, a
cell contiguity is registered. Note that choosing the same direction (leftmost or
rightmost) for all navigations will guarantee that all minimal cycles are visited
when any edge is visited in forward and backward direction.

4.3.4 Updating overview

Processing an atomic data update is quite straightforward. In case of a weight
update of an edge of level m, it is only required to update the accumulated
weight in any graph reduced(GL) with L ≤ m. In case of insertion or removal
of an edge e of level m, it can be required (1) to break up one or two edges and
(2) to reduce a novel intermediate node in any reduced(GL) with L ≤ m. When
an edge of level m > 0 that encloses both two cells in cells(L) with 0 < L ≤ m
is removed, the cells (and their contiguities) should be merged. The remaining
subset of the union of transition points of both cells should be determined.
When the insertion of an edge of level m > 0 realizes a full separation of a cell
in cells(L) with 0 < L ≤ m into two new cells, the cells (and their contiguities)
should be split. The new cells inherit a subset of the original transition point set,
and new transition points are amongst the nodes of the separation boundary.

4.4 Multi-level heuristic node promotion in real
road networks

Geographic content providers commonly model physically separated lanes as
well as slip roads as separate edges. It is unclear how slip road removal and
dual carriageway reduction, as suggested in the previous section, can be dealt
with in a routing application for vehicle navigation.

• The transformation processes may be ambiguous, or only realisable
in combination with turn restrictions, for instance when a complex
intersection does not interconnect all directions.

• Contemporary routing applications enable visually selecting a starting or
end point located on any of the edges originally provided. So the user may
select a specific lane or slip road. The transformation projects many of
such edges to one edge or node. So the routing in the transformed graph

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 69

node
a high level edge (an arrow restrains the navigation direction)
a low level edge (an arrow restrains the navigation direction)
starting node
end node
path
cell of starting node
cell of end node
virtual link involved
selected virtual link that is replaced after recursion
virtual link that causes problems
useful virtual link

Table 4.3: Legend.

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

Figure 4.4: Scenario 1. The corresponding legend is in Table 4.3.

does not comply with the route-by-click philosophy of the application,
unless the start and end neighbourhood in the graph is enriched by original
data, or the route is corrected after the routing process.

• Contemporary routing services return a line string, which is the exact
route’s geometry including the appropriate lanes and slip roads to be
taken. It is not clear how this geometry can be reconstructed after the
routing process.

This section introduces several heuristic adaptations to the MLHNP approach
in Section 4.3 such that it is effective in network graphs that have not been
subjected to slip road removal and dual carriageway reduction.

70 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

Figure 4.5: Scenario 2. The corresponding legend is in Table 4.3.

A

B

A

B

A

B

(a) Shortest path

A

B

A

B

A

B

(b) Cells and virtual links

A

B

A

B

A

B

(c) Resulting path

A

B

A

B

(d) Corrected cells and
virtual links

A

B

A

B

(e) Resulting path after
correction

Figure 4.6: Scenario 3. The corresponding legend is in Table 4.3.

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 71

Concept New definition

C
el
ls cells(L) the set of cells of level L in graph G. Each polygon that is

enclosed by edges in GL or edges of the dataset boundary,
but does not overlap any other edges in GL, is an element
of cellsold(L). Each merge of each cell in cellsold(L) that
is not part of a DCW or CI, with all of the contiguous
DCWs and CIs, is an element of cells(L).

Table 4.4: Adaptation 1

4.4.1 Adaptation 1: cell classification and merge

Problem

First, when applying MLHNP to a transformed graph, the cell contiguity
function in Table 4.2 is a good heuristic to determine the level of execution lexec.
This is not the case in a graph with dual carriageways and complex intersections.
The routing scenario in Figure 4.4 is a typical routing example that should be
executed at the lowest level because the cells in which start and end node are
located would be contiguous after transformation.
Second, as described in Section 4.3.2, transition points determine where
MLHNP switches between high and low level routing. In graphs with complex
intersections, the cell and transition point definitions do not always generate
optimal transition point locations. Figure 4.5, 4.6a, 4.6b and 4.6c illustrate
that the transition points are located between the (candidate) virtual links and
the complex intersection they are part of. This often restricts the cell border
trajectory, which is planned at the lower level, to one direction.

Solution

Both issues have been sorted out by a heuristic cell definition adaptation,
illustrated in Table 4.4. This adaptation reshapes the cell polygons, emulating
the form they would have after road network graph transformation, using the
classical cell definition. A first effect is that the cells in cells(L) overlap near
dual carriage ways (DCWs) and complex intersections (CIs). The contiguity of
these overlapping cells can be used as an approximation of the contiguity of the
routing graph which has been subject to the removal of DCWs and CIs. The
other effect is that the transition points are located at the right side of the CIs,
such that high level routing only concerns with routing between CIs and low
level routing with routing over the CI, as illustrated in Figure 4.6d and 4.6e. In
other words, the cell form is used as a heuristic to find unique transition points
from/to the outside world of the cell.

72 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

(a) Cells from minimal cycles (b) Cell classification

(c) Cell merge (d) Determination of transition points

Figure 4.7: Cell builder and merger states in the neighbourhood of a complex
intersection.

Realisation

The cell classification and merge procedure need to be executed for achieving
this adaptation, after the iterative top-down cell generation (Section 4.3.3).
Figure 4.7 shows the cell processing phases that produce the adapted cells and
transition points in the neighbourhood of a CI. First, all minimal cells are
generated from the minimal cycles of the planar graph. These cells are depicted
in Figure 4.7a, in which cells have a different colour. Next, 2-step classification
is applied to each of these cells. Figure 4.7b shows regular cells in hatched blue,
CI parts in red, and DCW parts in white. This classification is used by the cell
merge algorithm. It results in only four cells, represented in Figure 4.7c, each
containing as much as possible of the complex intersection. Figure 4.7d shows
how entry points (E) and leave points (L) are assigned to the bottom left cell.

Cell classification. This process discriminates between parts of CIs, parts
of DCWs and regular cells. The classification is twofold. For each of the two
stages, a selection of level 1 cells of a sample area, has been tagged manually in
order to construct a classifier.
A first classifier has been constructed in order to discriminate regular cells from
CI and DCW parts. The graph in Figure 4.8a shows 78 manually tagged cells as
a function of 1) the number of level 0 edges contained in the cell (X-axis) and 2)
the cell’s elongation = perimeter2/area (Y-axis), both on a logarithmic scale.

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 73

(a) Classification of regular cells versus CI or DCW parts. The elongation
is depicted as a function of the number of edges contained, for 78 manually
labelled cells.

(b) Classification of CI versus DCW parts. The perimeter of 78 manually
labelled cells is depicted as a function of the elongation.

Figure 4.8: Classification of regular cells, CI parts and DCW parts.

74 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

These parameters are similar to the area and elongation parameters identified
by Delafontaine et al. [29] in order to detect sliver polygons in map overlaying.
Figure 4.8a contains labels for regular cells, CI parts, DCW parts and cells
that have been described as uncertain. Examples of uncertain cells are those
that are cut off by the global border and cells that are located between the two
edges of a dual carriageway at one side but contain a considerable portion of
urban area at the other side. Note that all unlabelled cells of the sample area
are represented as well.
DCW parts are characterised by high elongation and a relatively small number
of edges. They form a cluster with CI parts, characterised by a small number
of edges. This cluster is disjoint from the cluster of regular cells, which have
high numbers of edges and low elongation. Figure 4.8a depicts a linear classifier,
generated in the logarithmic plane. It identifies a cell as being regular when
elongation < #edges1.3424. In practice, the number of edges contained within
a cell is counted by an SQL query. In order to speed up this query, the count is
limited to 1000, before it is passed to the classifier. This is indicated by the
plateau in the classifier.
The classifier scales well to cells of higher levels. Higher level DCW parts are
even longer, containing more crossing edges. Thus, this category tends to move
up right in the graph. CI parts are quasi static. Regular cells will move to the
right because they become larger. So none of these categories tends to interfere
with the classifier.

Next, non-regular cells are categorised into CI and DCW parts. The graph in
Figure 4.8b shows 78 manually tagged cells as a function of the cell’s elongation
= perimeter2/area (X-axis), and, the cell’s perimeter, here in digital degree
(Y-axis), both on a logarithmic scale.
Figure 4.8b shows the manually assigned labels for CI parts, DCW parts and
cells that have been described as uncertain. A special type of uncertain cells,
i.e. DCW parts in which a canal is situated between the traffic flows, have
been assigned a separate label. Note that all unlabelled non-regular cells of the
sample area are represented as well.
DCW parts are characterised by high elongation and a long perimeter, whereas
these parameters have low numbers for CI parts. Canals in DCWs cause lower
elongation. Figure 4.8b depicts the classifier elongation < 300∧perimeter < 0.3,
which is true in case of a CI part.
The classifier scales well to cells of higher levels. DCW parts of higher levels
tend to have longer perimeters and higher elongation. Thus, this category tends
to move up right in the graph, away from the classification boundaries. CI parts
are static.

Cell merge. For each of the levels, the cell merge algorithm is applied to the
set of classified cells. The algorithm in Figure 4.9 takes the complete set of cells

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 75

merge_cells(ALL,CIS,DCWS) :
Candidates← CIS
while Candidates 6= ∅ do

for each complexInt ∈ Candidates do
if ∃n : contiguous(complexInt, n) ∧ n ∈ Candidates then

for each n : contiguous(complexInt, n) ∧ n ∈ Candidates do
complexInt← merge(complexInt, n)
CIS ← CIS \ {n}
Candidates← Candidates \ {n}
ALL← ALL \ {n}

end for
else
Candidates← Candidates \ {complexInt}

end if
end for

end while
Candidates← CIS

⋃
DCWS

while Candidates 6= ∅ do
planning ← new array
for each cell ∈ Candidates do
planning[cell]← {n : contiguous(cell, n) ∧ n /∈ Candidates}

end for
for each cell ∈ keys(planning) do

for each colonist ∈ planning[cell] do
colonist← merge(colonist, cell)

end for
Candidates← Candidates \ {cell}
ALL← ALL \ {cell}

end for
end while
return ALL

Figure 4.9: Cell merge algorithm.

ALL and its subsets CIS and DCWS that have been identified as CI / DCW
parts, as its input. The algorithm first clusters neighbouring CI parts in singular
cells. Next, all CI clusters and DCW parts are merged iteratively by each of
their neighbouring regular cells. The outcome is illustrated in Figure 4.7c. This
algorithm tries to maximise the cell overlap at CIs but prevents that cells absorb
continuing DCWs along neighbouring regular cells. Note that a cell merge of A
by B involves that B inherits A’s neighbours.

Transition point assignment. Once all cells have been merged, the leave
points and entry points of each cell can be easily determined, according to the
definitions listed in Table 4.2. This is shown in Figure 4.7d.

76 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

A

B

A

B

A

B
A

B

(a) Path without virtuali-
sation

A

B

A

B

A

B
A

B

(b) Cells and virtual links
in case of virtualisation

A

B

A

B

A

B
A

B

(c) Shortest path with
virtualisation

Figure 4.10: Scenario 4. The corresponding legend is in Table 4.3.

Concept New definition
promotest(n,G′) ⇔ n = sglobal
promoteend(n,G′) ⇔ n = eglobal

Table 4.5: Adaptation 2

4.4.2 Adaptation 2: easing the node promotion condition

Problem

In a transformed road network graph, MLHNP node promotion takes place
only if starting node n1 or end node n2 are missing in graph G′. In a graph
with dual carriageways, this can result in paths with extra costs which can
easily be avoided. This is shown in Figure 4.10. The shortest path from A to B
starts and ends at higher level edges, while it consists of lower level links in the
neighbourhoods of A and B.

Solution

This issue is compensated by a change of the node promotion conditions,
as proposed in Table 4.5. It involves node promotion for each recursion
with lexec > 0, producing virtual links from the global start and to the
global end. This intervention enables MLHNP to take into account the lower
level neighbourhood around the global start and end node, as illustrated in
Figure 4.10b and 4.10c. From now on, the MLHNP algorithm in Figure 4.2 no

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 77

(a) Incorrect (b) Correct (c) Incorrect (d) Correct

Figure 4.11: Transition point corrections by length and by couple. The basic
legend is in Table 4.3. Arrows represent the virtual links created from/to any
of the entry/leave points to/from a point within the cell. Green arrows refer to
correct, red to incorrect and blue to corrected transition points. The dots mark
the witness-edges of the transition points.

(a) Network graph (b) Incorrect (c) Correct

Figure 4.12: Transition point correction in case of early access/late exit. The
basic legend is in Table 4.3. Arrows represent the virtual links created from
any of the entry points to a point within the cell. Green arrows refer to correct,
orange to partially correct, red to incorrect and blue to corrected transition
points. The dots mark the witness-edges of the transition points.

longer requires {sglobal, eglobal} as the exception list for the intermediate node
reduction of Glexec

.

4.4.3 Adaptation 3: transition point corrections

Problem

Despite Adaptation 1, some of the transition points are still not on locations
that support the effectiveness of the MLHNP algorithm. This can be caused by
(a) incorrect classification of certain regular, DCW part or CI part cells, (b) the
inability of the cell merge algorithm to merge a cell with the complete CI or

78 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

DCW along its boundaries, or (c) the fact that a very commonly used connection
with the inside of a cell is located outside the cell, as illustrated in Figure 4.12b.
Note that issue (b) is not unlikely to occur because the merge algorithm does not
support self-tangent or multiple polygons as cell representation (Figure 4.11a),
or because the mechanism that prevents the merge of DCW parts located along
contiguous cells is too restrictive (Figure 4.11c). We identified three anomalous
transition point patterns of a cell c.

1. A cell c does not have any entry (leave) point located on a complex
intersection along the cell border. Figure 4.11a is an example of this
pattern. MLHNP becomes less effective with lexec = l(c) in this case
because it does not allow that a path enters (leaves) the lower level graphs
of c via the missing intersection.

2. The choice of an entry (leave) point constrains the subsequent (preceding)
path direction on the cell border. This has been exemplified in Figure 4.6a,
4.6b and 4.6c, and occasionally still occurs, as illustrated in Figure 4.11c.
This makes MLHNP less effective because the choice of transition point at
the higher level brings along decisions that should be made at the lower
level.

3. A transition point is located between its cell and a very commonly used
connection with the cell. The network in Figure 4.12a contains examples
of this pattern for both the late exit and the early access case. It is shown
for the latter case in Figure 4.12b. In both cases, MLHNP will never allow
routes from/to this cell using this connection, whereas a significant number
of shortest paths starting (ending) in this cell and ending (starting) in a
non-contiguous cell pass through this connection.

Solution and realisation

Both pattern 1 and 2 can be countered by moving entry points one step
backwards and leave points one step further, out of the cell area, under certain
conditions. We cannot simply apply this correction to any transition point.
This would increase the chance of generating paths of higher cost. It makes
the predictions returned by the cost estimate function more inconsistent, and
causes transition point conflicts in case the algorithm is called between nodes
of cells that have a common neighbouring cell. Consider a set of witness-edges
of a leave point n: {∀e ∈̃ reduced(Gl(c)) : from(e) = n ∧ to(e) /∈ c} and of an
entry point n: {∀e ∈̃ reduced(Gl(c)) : to(e) = n ∧ from(e) /∈ c}. A transition
point t of cell c is moved when

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 79

Concept New definition
N
od

e
pr
om

ot
io
n leavepoints(c) witnesslp(c) = {∀e ∈̃ reduced(Gl(c))|

∃n ∈ c : from(e) = n ∧ to(e) /∈ c}

outerlp(c) = {∀e ∈ witnesslp(c)|
(length(difference(e, c)) < length(e)/2) ∨ (∃e2 ∈
witnesslp(c) : e2 6= e ∧ to(e2) =
to(e) ∧ length(difference(e, c) < σ1)}

leavepoints(c) = {∀n|∃e ∈ outerlp(c) : to(e) =
n}
⋃
{∀n|∃e ∈ witnesslp(c)\outerlp(c) : from(e) = n}

entrypoints(c) witnessep(c) = {∀e ∈̃ reduced(Gl(c))|
∃n ∈ c : to(e) = n ∧ from(e) /∈ c}

outerep(c) = {∀e ∈ witnessep(c)|
(length(difference(e, c)) < length(e)/2) ∨ (∃e2 ∈
witnessep(c) : e2 6= e ∧ from(e2) =
from(e) ∧ length(difference(e, c) < σ1)}

entrypoints(c) = {∀n|∃e ∈ outerep(c) : from(e) =
n}
⋃
{∀n|∃e ∈ witnessep(c)\outerep(c) : to(e) = n}

Table 4.6: Adaptation 3a

• one of its witness-edges has a longer line length outside c than inside c.
In practice, this heuristic measure intercepts any instance of pattern 1.
Figure 4.11b is an example of this correction.

• there exist witness-edges of other (same type) transition points of c that
have the replacement point in common with one of its own witness-edges
which has a line length outside c smaller than σ1. Figure 4.11d is an
example of this correction. In practice, this measure intercepts a reasonable
number of instances of pattern 2. However, there exist cases of pattern 2
that cannot be corrected without generating other anomalous patterns
or violating other constraints. Figure 4.13a shows an example of pattern
2 that requires moving the entry points towards the neighbours of the
neighbours of the cell.

This first adaptation can be achieved by introducing a correction step to the
preprocessing procedure, or by changing the transition point generation step,
as suggested by the new concept definitions in Table 4.6.
Concerning pattern 3, both early accesses and late exits (EA/LE) can be
intercepted by moving the transition point to the EA/LE point. An EA/LE
node of a cell of level L usually is an intermediate node in GL and thus not
contained in reduced(GL). Therefore the new transition point can only be used
when the intermediate node is reintroduced in reduced(GL).

80 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

New concept Definition

C
el
l parent(c2) the singleton of the cell c1 that was used to generate c2

during the iterative top-down cell generation process i.e.
the only cell of level l(c2) + 1 that contained c2 before the
cell classification and merge processes. As CI and DCW
part cells have been merged with regular cells, this function
is applied exclusively to regular cells. It is possible that
c1 does not completely contain c2 anymore or that it has
been classified as non-regular and therefore does not exists
anymore.

has_siblings(c) ⇔ ∃cs : parent(cs) = parent(c) ∧ cs 6= c

ancestors(c) = parent(c) ∪ ancestors(parent(c)); ancestors(∅) = ∅

N
od

e
pr
om

ot
io
n early_accesses(ca) on_backlink(n1, n2, l, e)⇔ e ∈̃ reduced(Gl) : to(e) =

n2 ∧ intersects(n1, e)
has_forwardlink(n1, l)⇔ ∃e ∈̃ G : from(e) =
n1 ∧ l(e) = l

early_accesses(ca) = {(nc, na, e)|∃cc : ca ∈
ancestors(cc)∧ nc ∈ entrypoints(cc)\entrypoints(ca) ∧
na ∈ entrypoints(ca) ∧ distance(nc, na) < σ2 ∧ ∃e :
on_backlink(nc, na, l(ca), e) ∧
has_forwardlink(nc, l(cc)) ∧ has_siblings(cc)}

late_exits(ca) on_forwardlink(n1, n2, l, e)⇔ e ∈̃ reduced(Gl) :
from(e) = n2 ∧ intersects(n1, e)
has_backlink(n1, l)⇔ ∃e ∈̃ G : to(e) = n1 ∧ l(e) = l

late_exits(ca) = {(nc, na, e)|∃cc : ca ∈ ancestors(cc)∧
nc ∈ leavepoints(cc)\leavepoints(ca) ∧
na ∈ leavepoints(ca) ∧ distance(nc, na) < σ2 ∧ ∃e :
on_forwardlink(nc, na, l(ca, e)) ∧
has_backlink(nc, l(cc)) ∧ has_siblings(cc)}

entrypoints′(c) = {nc|∃(nc, na, e) ∈ early_accesses(c)} ∪ {na|na ∈
entrypoints′(c) ∧ ¬(∃(nc, na, e1) ∈ early_accesses(c) ∧
¬(∃e2 : e2 ∈̃ reduced(Gl(c)) ∧ to(e2) = na ∧ e1 6= e2))}

leavepoints′(c) = {nc|∃(nc, na, e) ∈ late_exits(c)} ∪ {na|na ∈
leavepoints′(c) ∧ ¬(∃(nc, na, e1) ∈ late_exits(c) ∧ ¬(∃e2 :
e2 ∈̃ reduced(Gl(c)) ∧ from(e2) = na ∧ e1 6= e2))}

reduced′(GL) = reduced(GL, {(nc, na, e)|∃c : l(c) = L ∧ ∃(nc, na, e) ∈
early_accesses(c) ∪ late_exits(c)})

Table 4.7: Adaptation 3b

MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS 81

An EA/LE pattern is detected by the following heuristic. An EA/LE point
typically connects with a cell ca of level L by a way of a levelM , with 0 < M < L.
Moreover, this node of GM belongs to a CI, which has been merged by a cell cc
during the cell merge procedure, and this point typically is a transition point
of cc. Pattern 3 can efficiently be detected by matching the transition points
na of a cell ca and the transition points nc of the cells cc that originally were
generated by splitting ca. These points form an EA(LE) pattern when:

• the distance between nc and na is lower than σ2,

• nc is located on an edge in reduced(GL) ending/starting in na,

• there is an edge in reduced(GM) of exactly level M starting/ending in nc,
and,

• cc has sibling cells i.e. there must exist a way of level M that crosses ca.

This pattern covers all instances of pattern 3 identified so far. Figure 4.12 shows
two examples of an EA pattern and their corrections. Table 4.7 shows the
extension of preprocessing by an EA/LE correction step. It assumes that from
now on the MLHNP algorithm uses the concepts entrypoints′(c), leavepoints′(c)
and reduced′(GL) instead of the concepts without apostrophe.

4.4.4 Adaptation 4: improving the transition point selection

Problem

Given any shortest path starting and ending in two non-contiguous cells of level
L, MLHNP is able to find the shortest path if (a) all of its edges outside the
cells belong to GL, and (b) it chooses the transition points that generate this
path. Currently, the transition point choice is based on the minimum of the
sum of the cost of the candidate higher level path and the cost estimation(s) of
the lower level path (Section 4.3.2). In certain cases, this choice may not be
the optimal one, because the cost estimation is inconsistent with the real lower
level cost. The inconsistency risk is notably higher when anomalous transition
points of pattern 2 are involved. Figure 4.13e and 4.13f illustrate the wrong
choice of transition point given the transition point situation in Figure 4.13a.
The current adaptation addresses the algorithmic improvement of the transition
point choice.

82 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

Solution and realisation

Higher level correction applies when the non-virtual part of any resulting
path R in the algorithm in Figure 4.2 passes any of the promoted transition
points. This symptom indicates that another transition point was used to enter
or leave the cell border. In this case R is replaced by the path that would result
from the choice of the transition point in which the original non-virtual path
passes. This intervention has few risks because the lower level routing is able to
generate the removed subpath on the cell border.
The applicability of the lower level correction depends on the ability of
the algorithm behind the basic shortest path calculation to generate shortest
paths from or to the other transition points after calculation. If they were all
known, MLHNP would not be the preferred hierarchical strategy in general.
This correction only applies if the algorithm knows some of them. The Dijkstra
algorithm, for example, is able to produce all shortest paths from/to the other
transition points that have a lower cost than the path from a to b. Suppose
that MLHNP has solved a virtual link at execution level m, that was created at
execution level l > m. If it detects a shortest path from or to a nearby (distance
lower than σ3) transition point generated at level l with a significantly lower
cost than the current solution of the virtual link, the algorithm tracks back to
level m, replaces all virtual links by the calculated paths so far and recalculates
the shortest path. If the calculated paths still contain virtual links, these are
solved at a level lower than m. This backtracking mechanism is illustrated in
Figure 4.13.

4.5 Experiment

4.5.1 Objectives and methodology

The goal of this experiment is to validate the MLHNP approach for a database
containing a real road network of a considerable size. In addition, the
experiments have been set up to measure the performance for each of the
adaptations presented in the previous section on a representative test set. A
test set consists of n routing queries represented by a start and end node, which
are part of the road network graph G. Performance on a test set is expressed
in terms of averages or percentiles of the following criteria for the routing
operations generated by all queries in the test set. Note that a single MLHNP
run may consist of several recursive runs.

• The relative error, as defined in Table 4.1. It reflects the quality of the

EXPERIMENT 83

(a) Anomalous pat-
tern

A
B A

B

A
B A

B

A
B A

B

(b) Shortest path and
resulting path after
correction

A
B A

B

A
B A

B

A
B A

B

(c) Virtual links

A
B A

B

A
B A

B

A
B A

B

(d) Path on high level

A
B A

B

A
B A

B

A
B A

B

(e) Low level routing
at front with negative
backtracking analysis

A
B A

B

A
B A

B

A
B A

B

(f) Low level routing
at back with positive
backtracking analysis

Figure 4.13: Example of an uncovered anomalous transition point pattern
(leftmost subfigure) and the backtracking mechanism. The basic legend is in
Table 4.3. In the leftmost subfigure, arrows represent the virtual links created
from any of the entry points to a point within the cell. Green arrows refer to
correct and red to incorrect transition points. The dots mark the witness-edges
of the transition points. In the two rightmost subfigures, red/green dots indicate
transition points subject to a positive/negative backtracking analysis.

resulting route. The number of optimal solutions found is equal to the
number of 0.00% deviations in the test set.

• The number of recursive runs.

• The number of loaded nodes is the sum of the number of graph nodes
that are loaded from the database over all recursive runs.

• The number of visited nodes is the sum of the number of graph nodes
for which the basic routing algorithm has calculated a cost, over all
recursive runs. If the same node has been visited in n runs, it is counted
n times. It indicates the search space reduction of our approach.

84 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

• Two criteria depend on the hardware and software infrastructure3 on
which the routing is executed. The calculation time is the sum of the
basic routing algorithm’s computation time over all recursive runs. It is
strongly related to the number of visited nodes. The memory footprint
is the maximal amount of memory consumed by the routing process. Since
most of the loaded data is flushed before new data is loaded in a new run,
this criterion only depends on the most memory-intensive run.

A test set of routing queries was generated as follows. First, an orthonormal
grid was created over the routable area. The grid distribution is assumed
representative for routing for tourism and leisure purposes. Then, the generator
creates start and end nodes by selecting random grid points. Once a node has
been picked, it cannot occur in any other query. Before routing, the grid nodes
are replaced by the closest node in the road network graph.

4.5.2 Geographical dataset

The network studied here is the time-weighted road network of Belgium, divided
in 5 hierarchical levels. The edge weights were set as the edge distance multiplied
by a discrete speed class value. The test set used in this experiment contains
1000 routing queries, generated from an orthonormal grid (approx. 4 km)
superimposed on the routable area. The road network graph consists of 1190220
directed edges and 526253 nodes. Preprocessing results in 1357/515/211/37
cells of level 1/2/3/4 respectively, after a cell merge with a reduction rate of ca.
91%. The total numbers of transition points per level are 22693/8493/3296/572
(22564/8390/3175/466 after Adaptation 3).

4.5.3 Basic wayfinding and MLHNP settings

MLHNP applied Dijkstra as the basic shortest path algorithm in this experiment.
In order to speed up the search process, we use a rectangular pruning area
parallel to the axes of the coordinate system (Karimi et al. [56]) supported by
the indexing structure of the spatial DBMS. As the infrastructure diagram in
Figure 4.1 may suggest, each basic shortest path calculation is preceded by a
fetch of all links of G′ that start within the rectangular pruning area from the
database. The size and position of this area is determined by the following
rules.

3All tests have been executed using PHP (Command Line Interface) 5.3.3 and a PostGis
database on a Debian 6.0 environment with an Intel Xeon E5520 @ 2.27GHz processor.

EXPERIMENT 85

• Construct the rectangle formed by start node a and end node b.

• Extend the rectangle such that it contains any virtual edge in G′.

• Extend the rectangular by e% equivalent meridian degree in both
directions.

• If the rectangle is too elongated for the current level i.e.
min(breadth, height)/max(breadth, height) < min(rlevel · (lexec · 2 +
1), rmax), elongate the smallest sides such that this condition does not
hold.

• When the Dijkstra algorithm returns an infinite cost, it means that the
pruned area does not contain any path from a to b. In this case, the
rectangular selection is extended by e% digital equivalent meridian degree
again. After a cost reparation process, the Dijkstra algorithm is continued.
This extension is repeated until the algorithm finds a solution.
In this experiment, the road network graph G (and also any directed
subgraph GL) is not a strongly connected graph. Therefore, the number
of repetitions should be limited. When this number is reached in any of
the recursive runs, MLHNP is halted and does not generate a solution,
except in Adaptation 4. In this version, a subcall to the basic shortest
path calculation is able to return an infinite cost path which is taken into
account for a lower level correction.

This heuristic approach tends to minimise the probability that the path with
the lowest cost is not located in the rectangle. It is tailored to the hierarchical
approach. Two rectangular pruning settings are tested during the experiment:
the small box setting with e = 6, rlevel = 0.1 and rmax = 0.6 and the large box
setting with e = 12, rlevel = 0.2 and rmax = 1.
MLHNP’s average resistance ravg has been set to 4. The settings of Adaptation
3 and 4 are σ1 = 3km, σ2 = 1km and σ3 = 2.5km.

4.5.4 Results

Table 4.8 and 4.9 show the routing performance after the stepwise introduction
of each of the MLHNP adaptations over the testset presented in Section 4.5.2,
for both rectangular pruning settings. The optimal costs (on which the error
rate is based) have been obtained by the application of a Dijkstra algorithm
without pruning involved. Three out of 1000 queries in the test set have start
and end nodes that are not connected in the road network graph. These have
not been taken into account in the statistics, neither have the queries that failed
because one of the MLHNP recursive runs could not find a finite path. Their

86 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

Small box pruning
Adapt. 1 Adapt. 2 Adapt. 3 Adapt. 4

solutions not found 3 0 1 0
1% pctl calc. time (s) 0.027 0.036 0.037 0.039

avg calc. time (s) 0.161 0.169 0.158 0.173
99% pctl calc. time (s) 0.732 0.727 0.563 0.566

avg mem.footprint (MB) 19.286 19.496 19.081 18.342
avg # routing runs 4.243 4.408 4.514 5.848
avg # loaded nodes 6966.03 7337.83 7461.49 8621.27

1% pctl # visited nodes 628.30 852.84 884.50 924.88
avg # visited nodes 3591.65 3773.92 3660.50 4123.67

99% pctl # visited nodes 10902.66 11018.52 9607.15 10192.68
exact solutions 137 145 192 240

avg error rate 11.85% 11.08% 8.81% 7.43%
99% pctl error rate 77.76% 66.89% 58.09% 52.74%

error decr. / increase - 72 / 25 300 / 117 274 / 23

Table 4.8: Experiment results (small box pruning). Any average/percentile
number is only based on the found solutions.

Large box pruning
Adapt. 1 Adapt. 2 Adapt. 3 Adapt. 4

solutions not found 3 0 1 0
1% pctl calc. time (s) 0.033 0.040 0.042 0.050

avg calc. time (s) 0.259 0.279 0.263 0.295
99% pctl calc. time (s) 1.051 1.081 0.900 1.057

avg mem.footprint (MB) 28.830 29.347 29.296 28.970
avg # routing runs 4.2263 4.394 4.503 5.821
avg # loaded nodes 16019.19 16831.94 17305.26 20526.69

1% pctl # visited nodes 864.00 1050.56 1065.70 1173.72
avg # visited nodes 5239.80 5498.72 5401.31 6103.70

99% pctl # visited nodes 15256.91 15719.72 14617.90 15990.08
exact solutions 167 175 234 300

avg error rate 9.44% 8.73% 6.47% 4.91%
99% pctl error rate 63.58% 53.05% 50.11% 36.82%

error decr. / increase - 63 / 23 301 / 114 291 / 17

Table 4.9: Experiment results (large box pruning). Any average/percentile
number is only based on the found solutions.

EXPERIMENT 87

numbers are given in the first row. The large box pruning setting yield lower
error rates than the small box setting, at the expense of the average number
of visited nodes. As expected, larger boxes extend the search space but small
boxes may cut away solutions of lower cost. Below, only the large box pruning
numbers are given.
Three out of 997 queries failed in the case of Adaptation 1. Each of these
three queries fails at the top recursion with execution level Ltop. The queries
have a start/end node located on a motorway, which, in reduced(GLtop

), only
connects to a long edge ending/starting at the data set border, whereas paths
from the start node to the rest of the graph exist in G. This issue is fixed by the
next adaptation. Adaptation 1 yields a trade-off between an average number of
visited nodes of 5239.80 and an error rate of 9.44%.
The application of Adaptation 2 improves the solution quality by 8.73%. The
node promotion condition relaxation introduces an extra number of recursive
runs, reflected in the average number, leaving the other runs roughly as they
are. This causes a higher number of visited and loaded nodes. Some individual
solutions show a higher error rate because a higher number of node promotions
increases the risk of choosing a wrong transition point.
Adaptation 3 is the most effective adaptation. It lowers the number of visited
nodes, whereas the error rate is reduced to 6.47%. Most of the transition
point corrections move the points away from their cells. This could explain
the higher average number of runs4 and loaded nodes. Before the introduction
of Adaptation 3, malicious transition point locations often caused detours in
the lower level paths. The elimination of these detours probably decreases the
number of visited nodes. For 1 query, an entry point was selected that only
connects to a motorway dead end in G, making the query fail.
Adaptation 4 further reduces the error rate to 4.91%. Higher level correction
generates a higher average number of runs (for the same reason as Adaptation 3).
Lower level correction introduces an extra number of reparation runs. Therefore,
both corrections increase the average number of loaded and visited nodes. Some
queries generate worse solutions for this adaptation than for the previous one.
This occurs in case of higher level correction because the risk of choosing a
wrong transition point at the lower level increases. It also occurs in case of
lower level correction when the replacing path contains again a virtual link,
which has an estimate-based cost.

4For instance, suppose a front-side virtual link from sglobal to lp ∈ leavepoints′(c), which
is selected in path R. When lp is moved out of c, the level of execution in the recursive
run mlhnp(sglobal, lp, lrestr, G) is on average higher, because on level lrestr, the (previously
same) cells of sglobal and lp become neighbours.

88 WAYFINDING BY MULTI-LEVEL HEURISTIC NODE PROMOTION IN REAL ROAD NETWORKS

4.6 Conclusion

We have introduced the MLHNP algorithm, enabling finding the shortest path
in hierarchically organised road network graphs, while supporting several types
of edge weights. The authors of the two-level version of this algorithm have
suggested a graph transformation in order to cope with dual carriageways and
slip roads in real road networks. This transformation does not fully comply
with the requirements of contemporary routing applications.
Therefore, four adaptations of the MLHNP approach have been proposed
that bypass the graph transformation. The first adaptation introduces a cell
classification and merge during preprocessing. The classification method can be
more generally used for functional road class prediction in GIS. The hierarchical
routing algorithm uses the resulting cell set to emulate contiguity and transition
points as if the network graph were subject to the original graph transformation.
In the here presented application domain, an effective cell merge is to be
preferred over cell grouping because it reduces storage costs and optimises the
routing data indexation. Adaptation 2 makes the algorithm take into account
the local context of dual carriageways and slip roads when the start or end node
is located on these types of way. The third adaptation fine-tunes the transition
point locations of the first one. A last adaptation enables the algorithm to
revise its transition point choices throughout the recursion tree. It applies to
hierarchical node promotion algorithms in general.
The adapted MLHNP approach has been designed for a web application that
uses a spatial database and that enables hierarchical routing for several routing
modi. Here, database operations have a high impact on routing performance.
Both storage costs and calculation time of preprocessing are restricted.
The MLHNP algorithm has been successfully applied to a medium-sized
hierarchical road network with time-weights, using Dijkstra and rectangular
pruning for individual routings. The experiment showed the effectiveness of
each of the adaptations. The combined MLHNP and pruning approach achieves
a low average number of visited nodes, maintaining an average relative error of
4.91%.

The present chapter presented the successful integration of a top-down
hierarchical shortest path algorithm in an environment where database
operations heavily burden the performance of the calculation process. This
subject originated from a concrete question from industry tackling the design
of a shortest path approximation component in a multi-tier architecture. The
next chapter continues the theme of the application of shortest path (cost)
approximation algorithms in resource-constrained environments. It introduces
a component which approximates the cost of the shortest path in instant time,
using low amounts of precomputed data.

Chapter 5

Least squares approximate
distance oracles for spatial
networks

An approximate distance oracle is a compact data structure, which is generated
from a graph in low computational time. Once it is constructed, it returns
network distance approximations between any two vertices of the graph in
instant time. Distance oracles are of particular interest for applications that
require real-time network distance approximations and only have limited time
to build or space to store a predictive model. A conventional distance oracle
employs a guaranteed upper and lower bound to the relative error of the
approximation and often pegs down its required size on these bounds. These
bounds do however not clearly represent the overall performance of the oracle,
and the relaxation of these bounds can produce a reduced complexity of the
precalculation time, the oracle space and the query time. The present chapter
introduces the concept of a distance oracle that minimizes the root-mean-square
error of its network distance approximations. An appropriate distance oracle of
size O(1) is presented for both general and spatial networks. A more advanced
least squares approximate distance oracle is introduced for spatial networks. It
is based on clustering graph vertices that share similar shortest paths starting or
ending in these vertices. Its prediction accuracy is demonstrated in the context
of travel time approximation in a transportation network for vehicle navigation.

The advanced ADO presented in this chapter was designed, developed and
evaluated by Jan Christiaens. This work is available as a technical report.

89

90 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

5.1 Introduction

As introduced by Thorup and Zwick [109], an approximate distance oracle
(ADO) is a data structure that immediately answers network distance queries
between any two vertices of a graph. In contrast to data structures arising
from precomputing the distances between any pair of vertices of the graph,
ADOs require limited space and can be built in limited computational time.
Real-time distance approximation is of particular interest for applications such
as calculating the distance between two people in a social network or retrieving
the distances from the current location to a set of alternative locations [95], e.g.
restaurants, in a transportation network. In these domains an estimate of the
network distance is often sufficient.
Many combinatorial optimization problems from logistics, public transportation
and tourism, require a transportation cost matrix for a set of locations. The
vehicle routing problem [63], for instance, is about finding the path of lowest
cost from one or several depots visiting a set of customer locations. The goal of
the orienteering problem [111] is to find a path, of a travel cost below a given
threshold and along a selection of locations, maximizing the sum of collected
location scores. The matrix mentioned above contains the transportation
cost, often travel time or fuel cost, between any origin-destination pair of the
problem in a transportation network. Using an ADO to determine this matrix is
advantageous when the problem’s locations often change and the transportation
cost calculation must be offered as a portable software component.

We now introduce the following definitions. A graph, further also referred to as
a general network, is denoted G = (V,E), where V is the set of vertices and E
the set of edges of the graph. The number of vertices |V | = n and the number
of edges |E| = m. By default, G is a weighted graph, which means that any
edge e ∈ E has a weight w(e) > 0. A path between the vertices u and v in G is
a sequence of edges consecutive in G, starting in u and ending in v. Its cost
equals the sum of the edge weights. The network distance dG(u, v) is the cost
of the path of lowest cost between u and v in G. A spatial network is a general
network where each v ∈ V corresponds to a position p(v) ∈ Rd. The spatial
distance dS(u, v) is a function of p(u) and p(v) in Rd. An Euclidean network
is a spatial network where the weight of any edge e connecting to vertices u
and v is defined as w(e) = dS(u, v), with dS(u, v) taking the Euclidean distance
between p(u) and p(v). Distances in this type of network satisfy the triangle
inequality i.e. ∀u, v, w ∈ V : dG(u,w) ≤ dG(u, v) + dG(v, w), and the network
distance has a lower bound: ∀u, v ∈ V : dG(u, v) ≥ dS(u, v).

In any of these networks, an ADO is a data structure or model that answers
network distance queries dG(u, v) by a reported distance dR(u, v). Conventional
ADOs assume a guaranteed upper and lower bound to the error of the reported

INTRODUCTION 91

distance. In this context, a distance oracle has a stretch factor α when ∀u, v ∈
V : dG(u, v) ≤ dR(u, v) ≤ α · dG(u, v). Alternatively, an ADO is called ε-
approximate when the relative error of any approximation generated by the
oracle is not more than ε i.e. ∀u, v ∈ V : abs(dG(u, v)− dR(u, v))/dG(u, v) ≤ ε.
Thorup and Zwick [109] showed for any integer k, that building an oracle of
stretch 2k − 1, answering queries in k time, requires a space of at least n1+1/k.
Sommer et al. [100] argue that this bound does not provide useful information for
sparse graphs, and prove for any ADO that a space of at least n1+Ω(1/tα)/lg(n)
is required to build an oracle of stretch α and query time t. Network distance
approximation for spatial networks can be seen as fine-tuning “as the crow flies”
distances towards network distances. ADOs for spatial networks exploit the
spatial coherence of source and destination vertices of similar shortest paths.
Sankaranarayanan and Samet [95] introduce an ε-approximate oracle of this
type based on well-separated pair decomposition in a d-dimensional space. The
oracle’s space requirements are O(n/εd) answering queries in time O(log(n)).
Sankaranarayanan and Samet [95] conducted an experiment on a publicly
available US transportation network with distance-weights. It confirmed the
linear storage requirements and yielded an average relative error of 0.9% for
ε = 0.1, which is 10%. With regard to Euclidean networks, Gudmundsson et
al. [43] refer to a number of solutions based on polyhedral surfaces and obstacles.
They notice that none of these can be used to build an ADO of subquadratic
space answering queries in constant time. They present an oracle for Euclidean
networks with m = O(n) of size O(n · log(n)) and query time O(1). It is based
on partitioning the graph into a set of clusters with a fixed radius. Mainly
for networks satisfying the triangle inequality, many variants of the landmark
embedding technique have been proposed. It involves that a set of landmarks
R is selected from V and that the network distances between any vertex and
V and one or more vertices in R are computed. Real-time network distance
approximation is based on these precomputed distances. In the ADO proposed
by Qiao et al. [88], each landmark covers the set of vertices located within a
given radius. This radius can be linked to the upper bound of the absolute
approximation error. They show that finding the minimal set of landmarks is
NP-hard. Qiao et al. [87] improve the approximation accuracy significantly by
looking up the least common ancestor (LCA) of the two queried vertices i.e.
the last vertex shared by the paths of lowest cost starting in a global landmark,
in efficient indices.

In what follows, we raise several concerns in regard to the practical application
of ADOs.

1. The basic assumption in many ADOs is a guaranteed upper and lower
bound to the relative approximation error, whereas many applications
only require a low average error and a low error variance. Although the

92 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

latter is a weaker condition than the first, the latter condition is a better
indicator of the overall accuracy of the oracle. This duality manifests itself
in the fact that experimental approaches in the field of ADOs starting from
guaranteed error bounds end up in reporting the average error (e.g. [95]).
Qiao et al. [88] showed that the relaxation of these bounds results in a
reduced complexity of the precalculation time, the oracle space and the
query time.

2. Some applications require a minimal absolute approximation error, instead
of a minimal relative one. This is the case when the transportation matrix
for the traveling salesperson problem (TSP) is generated by an ADO. The
stability regions [69] of the TSP edge lengths, i.e. the length domains
within which the optimal sequence of nodes is identical, better fit an
absolute than a relative deviation pattern.

3. Many popular applications of network distance approximation apply
to transportation networks with time weights, supporting travel time
estimation of the ‘fastest’ path between two vertices. These spatial
networks do not satisfy the triangle inequality, which is assumed to hold
or applies to the evaluation network in most ADO research. The ADO for
spatial networks in general by Sankaranarayanan and Samet [95] is solely
validated by experiments on distance-weighted transportation networks.
To the best of our knowledge, not any ADO designed for spatial networks
has been validated on time-weighted transportation networks before.

In order to evaluate an oracle based on the average error and its variance (concern
1), Section 5.2 formalizes the concept of an ADO minimizing the root-mean-
square error (RMSE) of its network distance approximations. The rationale
of this concept is to abandon the guarantee-based ADO design to increase the
overall approximation accuracy (depending on the intrinsic characteristics of
the network) or to reduce the space complexity of the oracle. Considering
the second concern, this concept is introduced for both relative and absolute
deviation. Section 5.3 comprises an ADO design for spatial networks minimizing
the absolute RMSE. This oracle is constructed by partitioning the network
into clusters of vertices that share similar paths of lowest cost. In Section 5.4,
the oracle’s quality is evaluated for a time-weighted transportation network
extracted from the OpenStreetMap project.

5.2 Least squares approximate distance oracles

The following definitions apply to weighted graphs in general as well as to
directed weighted graphs in general. In the latter type of graph G = (V,E),

LEAST SQUARES APPROXIMATE DISTANCE ORACLES 93

any directed edge (or arc) e ∈ E is defined as an ordered pair of vertices,
corresponding to its associated direction. A path in a directed graph is a
sequence of consecutive edges of forward direction.

5.2.1 Basic concepts

Given an ADO approximating a network distance query dG(u, v) by the reported
distance dR(u, v) for any vertex u and v of a general network G = (V,E). We
define two inverse accuracy criteria, the absolute and the relative RMSE, as
follows.

RMSEabs(G) :=

√∑
∀u,v∈V,u 6=v(dG(u, v)− dR(u, v))2

|V |2 − |V |

RMSErel(G) :=

√√√√∑∀u,v∈V,u 6=v [dG(u,v)−dR(u,v)
dG(u,v)

]2
|V |2 − |V |

An oracle has an optimal approximation accuracy on a graph G, if the
RMSE on G is minimal. These definitions however imply that the ADO
accuracy evaluation requires an all-pairs shortest path approach, of which the
processing time has a (nearly) cubic complexity: the time complexity of the
classical Floyd-Warshall algorithm is O(n3); Chan’s algorithm [17] requires
O(n3 · (log(log(n)))3/(log(n))2) time. Therefore, in practice, a representative
query1 sample set S ⊂ V × V is determined. S has a random distribution in
V × V or an expected query distribution for a certain application domain e.g.
long-distance queries. The ADO’s accuracy can be evaluated quickly based on
the sampled RMSE on G as follows.

RMSESabs(G) :=

√∑
∀(u,v)∈S(dG(u, v)− dR(u, v))2

|S|

RMSESrel(G) :=

√√√√∑∀(u,v)∈S

[
dG(u,v)−dR(u,v)

dG(u,v)

]2
|S|

1This query is an unordered/ordered pair, since dG(u, v) is a symmetric/asymmetric
function in undirected/directed graphs.

94 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

5.2.2 Oracles of unit size

The concept of an ADO of unit size was first coined by Sankaranarayanan
and Samet [95], referring to an oracle that computes the network distance
approximation in O(1) time. We now introduce oracles of unit size for both the
absolute and relative cases. These oracles are mainly intended as a reference test
to compare the intrinsic characteristics of different networks, and their difficulty
level of establishing an ADO. We expect for instance that the accuracy of a unit
size oracle for spatial networks is considerably better on a distance-weighted
than on a time-weighted transportation network. Both for general and spatial
networks a unit size configuration based on a single constant is introduced.
Next the constant value generating the highest accuracy for a query sample set
S ⊂ V × V is determined. Straightforward mathematical methods produce the
following constant values.

Oracles of unit size in general networks. An ADO of size O(1) minimizing
RMSESabs(G), responds to each query dG(u, v) by a constant distance dC :

dC =

∑
∀(u,v)∈S

dG(u, v)

|S|

Analogously, it can be shown that an ADO of size O(1) minimizing RMSESrel(G)
and answering to each query a constant distance dC requires

dC =

∑
∀(u,v)∈S

(1/dG(u, v))∑
∀(u,v)∈S

(1/d2
G(u, v))

Oracles of unit size in spatial networks. The distortion for an individual
vertex couple in a spatial network is defined as

γ(u, v) := dG(u, v)
dS(u, v)

Note that the maximum value of γ(u, v) for any u, v ∈ V is often referred to
as the (maximum) distortion, the dilation or the stretch factor of G [95, 82].
Sankaranarayanan and Samet [95] state that a distortion spectrum usually
exhibits large distortion values only for low spatial distances. An ADO of size
O(1) for spatial networks entails the approximation of a query dG(u, v) by the
product γC · dS(u, v), where γC represents a constant distortion. The following

AN ADVANCED ADO BASED ON CLUSTERS AND TRANSIT NODES 95

condition yields an oracle of optimal approximation accuracy with regard to
the absolute RMSE.

γC =

∑
∀(u,v)∈S

(d2
S(u, v) · γ(u, v))∑

∀(u,v)∈S
d2
S(u, v)

An optimal ADO of the same configuration minimizing the relative RMSE
requires

γC =

∑
∀(u,v)∈S

(1/γ(u, v))∑
∀(u,v)∈S

(1/γ2(u, v))

5.3 An advanced ADO based on clusters and
transit nodes

The classical landmark embedding techniques based on spatial coverage,
described in Section 5.1, are less effective in networks that do not necessarily
satisfy the triangle inequality. The core of the ADO introduced in the present
section is therefore based on graph partitioning into disjoint clusters of vertices.
Furthermore, a set of transit nodes of minimal size is determined for each
of the clusters. The network distance approximation algorithm is based on
the precalculated distances between the transit nodes. The design of this
oracle is aimed at minimizing the absolute RMSE. Related approaches to graph
partitioning are discussed in the next paragraphs.

5.3.1 Related work

Several graph clustering algorithms have been proposed optimizing different
objectives. Both Monien and Diekmann [80] and Pothen [85] minimize the
number of edges connecting different partitions. Edge length based clustering
of edges in graphs was proposed by Das and Narasimhan [23] for constructing
sparse spanners in complete Euclidean networks. The Markov cluster algorithm
by van Dongen [110] minimizes the probability of leaving the cluster during a
random walk. It is an iterative algorithm on a matrix of transition probabilities.
The conductance of a graph indicates the number of steps a random walk in
the graph requires for converging to a uniform distribution. Clusters of low
conductance can be seen as bottlenecks. Iterative Conductance Cutting [54, 12]
maximizes the conductance of these bottlenecks.

96 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

In the following cases, graph partitioning has been applied in order to obtain the
path of lowest cost in graphs. This discipline is somewhat different from network
distance approximation because it mainly focusses on returning the complete
path of the exact result, which implies a different trade-off between space and
query time complexity. Lansdowne and Robinson [62] were the first to apply
the concept of spatial decomposition to the shortest path problem in sparse
directed graphs. During query time they assign the vertices of the spatial graph
to a set of regions in order to optimize the performance of the exact calculation
of the n paths of lowest cost. More recent approaches divide the complete
graph into clusters during the preprocessing phase. This phase also implies
that the partitioning description is stored together with a set of precomputed
paths or distances between the clusters. During a shortest path query, this
stored information is used in order to drastically reduce the search space of
the path calculation procedure. Huang et al. [50] advocate the application of
the Spatial Partition Clustering technique in order to minimize I/O costs in
routing systems that require to load the edges from secondary storage to a main
memory buffer. It partitions the arcs of a directed spatial graph such that the
origin vertices of the arc of a partition are bound by a quasi-square polygon.
The routing algorithm by Flinsenberg et al. [33] only considers the edges (1)
belonging to the cells of the start and destination vertex, (2) connecting two
so-called boundary nodes of different cells, and, (3) representing precalculated
paths between boundary nodes of same cells. A hierarchical version of this
algorithm has been presented by Jung and Pramanik [53]. Flinsenberg et
al. [33] introduced the partitioning problem as finding the cell configuration
that yields a minimal average number of loaded edges. Their preprocessing
phase consists of several runs, repeatedly merging 1-vertex-cells until one cell
of size |V | remains. This greedy merge procedure is managed by a priority
function containing a random element. The cell configuration over all the
runs that suits the partitioning problem best is selected. When, however, the
A* algorithm is applied to a transportation network, Flinsenberg et al. [33]
discovered that minimizing the number of loaded edges does not result in the
fastest query results, and reformulated the partitioning problem’s objective
value minimizing the algorithm’s search space. Maue et al. [79] assign each
node to the cluster of the closest node (with regard to the network distance) of
a set of k centre nodes. Their routing algorithm integrates pruning of complete
clusters based on distance bounds. The resulting search space has the shape
of a corridor around the shortest path, of which the narrowness is determined
by the number of clusters k. Note that these approaches are different from
recent successful partition-based approaches to exact shortest path calculation
since the preprocessing phase starts from arbitrary graph partitions such as
administrative divisions. In order to lower the number of precalculated paths,
Bast et al. [7] search for the minimal set of transit nodes outside the partition,

AN ADVANCED ADO BASED ON CLUSTERS AND TRANSIT NODES 97

such that any long-distant shortest path from/to the partition passes one of
these nodes.

5.3.2 Definitions

We first introduce a few definitions supporting the description of the advanced
ADO. A random sample of k < |S| elements of the set S is denoted random(S, k).
The partition of a set S is a collection of pair-wise disjoint subsets of this set
such that the union of these subsets equals S. A directed graph G(V,E) is
connected when for each pair of nodes (u, v) ∈ V × V there exists a path from
u to v. The forward shortest path tree of a connected directed graph G(V,E)
rooted at vertex r ∈ V is a tree T in G, such that, for each node v ∈ V the
downward path from r to v in T corresponds with a path of lowest cost from
r to v in G. The backward shortest path tree of a directed graph G = (V,E)
rooted at vertex r ∈ V is a tree T in G, such that, for each node v ∈ V the
upward path from v to r in T corresponds with a path of lowest cost from v to
r in G.

5.3.3 ADO construction

The construction of the advanced ADO from the connected directed spatial
network G(V,E) comprises stepwise generation of the following elements:

1. two partitions of V , of which PO consists of origin clusters and PD of
destination clusters,

2. a set T ⊂ V of minimal size, containing transit nodes for each cluster C
in PO and PD (we say t ∈ T is a transit node of C),

3. the precalculated distances dG(s, t) for any transit node s of an origin
cluster and any transit node t of a destination cluster (close cluster pairs
excluded, see element 6),

4. the precalculated distances dG(u, s) between any u in an origin cluster
CO and any transit node s of CO,

5. the precalculated distances dG(t, v) between any transit node t of a
destination cluster CD and any v in CD,

6. a set of close cluster pairs (CO, CD) ∈ PO × PD, and,

7. the constant distortions γCO,CD
for any close cluster pair (CO, CD).

98 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

 (a)

 (b)

Figure 5.1: Association graph construction. The subfigures show two consecutive
runs of the recursive algorithm. The backward shortest path tree is indicated by
a solid line. The association edge creation or counter increment (dashed lines) is
only illustrated for one vertex. Ellipses delimit the subtrees withmaxDepth = 2.
Note that any pair of vertices is linked at most once during the processing of
one tree.

x

y

a

b

c

w(exy) c(eax) ·c(eay) + c(ebx) ·c(eby) + c(ecx) ·c(ecy)

Figure 5.2: Association edge weight calculation example. The weight of the
edge between vertices x and y is calculated as the sum of the counter products
of the edges connecting x and y with a common vertex.

AN ADVANCED ADO BASED ON CLUSTERS AND TRANSIT NODES 99

Procedure GenerateOriginPartition(G)
input :G ← spatial network G(V,E)
output : PO ← set of subsets of V
parameters : numberOfRoots, popularityThreshold
B construction of sample backward shortest path trees;
roots ← random(V, numberOfRoots);
trees ← tree set (initially empty);
foreach r in roots do

tree ← backwardShortestPathTree(G,r);
insert(trees, tree);

B association graph construction;
Ga ← association graph Ga(Va, Ea) (initially empty);
B an association graph is an undirected graph where each edge e has a weight w(e) and
a counter c(e), and each vertex v has a vote v(v), all equal to 0 by default;
foreach t in trees do

Ga ← generateAssociations(Ga, t, root(t));
B association edge weight calculation;
foreach edge ea in Ea do
{v1, v2} ← getVertices(Ga, ea);
foreach e1 in getEdges(Ga, v1) do

foreach e2 in getEdges(Ga, v2) do
if (getVertices(Ga, e1)

⋂
getVertices(Ga, e2)) \{v1, v2} 6= ∅ then

w(ea)← w(ea) + c(e1) · c(e2) ;

B determination of principal nodes;
foreach vertex va in Va do
{vh} ← getVertices(Ga, edgeMaxWeight(getEdges(Ga, va))) \ {va} ;
v(vh) ← v(vh) +1 ;

principalNodes ← a subset of Va (initially empty);
foreach vertex va in Va do

popularity ← v(va)/|getEdges(Ga, va)|;
if popularity > popularityThreshold then insert(principalNodes, va) ;

B cluster construction;
PO ← set of singletons of elements in principalNodes;
foreach vertex va in Va\principalNodes do

Ep ← subset of getEdges(Ga, va) connecting to a vertex in principalNodes;
if Ep 6= ∅ then
{vh} ← getVertices(Ga, edgeMaxWeight(Ep)) \ {va} ;
addToSubsetContaining(PO, va, vh);

while Va\(
⋃
C∈PO

C) 6= ∅ do
foreach vertex va in Va\(

⋃
C∈PO

C) do
Ec ← subset of getEdges(Ga, va) connecting to a vertex in

⋃
C∈PO

C ;
if Ec 6= ∅ then
{vh} ← getVertices(Ga, edgeMaxWeight(Ec)) \ {va} ;
addToSubsetContaining(PO, va, vh);

return PO;

Algorithm 1: Generation of the origin cluster partition. The set, tree and
graph functions are explained in Table 5.1.

100 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

Function Definition
Se

ts random(S, k) returns a random sample of k < |S|
elements of the set S

insert(S, e) inserts e in the set S
addToSubsetContaining(S, eadd, eref) inserts eadd in the subset of S containing

eref

T
re
es root(T) returns the root of tree T

depth(e, T) returns the depth of element e in tree T
(the root of T has depth 0)

next(e, T) returns the set of children of element e in
tree T

getSubtrees(e, T, d) returns the set of trees rooted at the child
elements of e in tree T and chopped of at
depth d relative to the child elements

G
ra
ph

s getV ertices(G, e) returns the set of 2 vertices connected by
edge e in graph G

getEdges(G, v) returns the set of edges connecting vertex
v in graph G

edgeMaxWeight(E) returns the edge e that has the highest
weight w(e) in edge set E

connected(G, v1, v2) there exists an edge between v1 and v2 in
graph G

constructEdge(G, v1, v2) inserts an edge between v1 and v2 in
graph G

backwardShortestPathTree(G, r) returns the backward shortest path tree
(defined in the definitions paragraph of
Section 5.3) of graph G rooted at vertex
r

Table 5.1: Set, tree and graph functions

Element 1 implies clustering of vertices sharing many similar paths in the set
of all paths of lowest cost starting (partition PO) or ending (partition PD) in
these vertices. This similarity can be described best in terms of the LCA of two
vertices in a forward/backward shortest path tree. Two nodes are similar when
their LCA is only a few edges away for many paths of lowest cost. Algorithm 1
describes a sampling-based method of low computational time to generate the
origin cluster partition PO. It generates an association graph Ga from a set
of numberOfRoots backward shortest path trees in G rooted in a sample of
V . This undirected graph registers in its edge counters how many times two
vertices have a close LCA, over the set of trees. This registration (Algorithm 2)
is realised for one tree t by linking the vertices between any pair of subtrees,
cropped at depth maxDepth, of any vertex located at least at depth minDepth
in t. This is shown in Figure 5.1. The edge weight calculation propagates the
edge counters over triangle subgraphs of Ga, as illustred in Figure 5.2. Principal

AN ADVANCED ADO BASED ON CLUSTERS AND TRANSIT NODES 101

Procedure generateAssociations(Ga, t, el)
input :Ga ← association graph Ga(Va, Ea)
input : t ← tree of elements in Va and branches in Ea
input : el ← an element in t
output :Ga ← association graph Ga(Va, Ea)
parameters :minDepth, maxDepth
if depth(el, t) > minDepth then

subtrees ← getSubtrees (el, t,maxDepth)
foreach 2-element combination (tree1, tree2) in subtrees do

foreach element elx in tree1 do
foreach element ely in tree2 do

if not(connected(Ga, elx, ely)) then
constructEdge(Ga, elx, ely)

c(getEdge(Ga, elx, ely)) ← c(getEdge(Ga, elx, ely)) +1
foreach element eln in next(el, t) do

Ga ← generateAssociations(Ga, t, eln)
return Ga

Algorithm 2: Recursive generation of the association graph. The set, tree and
graph functions are explained in Table 5.1.

nodes are the vertices of Va around which the clusters will be built. Principal
node determination starts by a voting mechanism. Any vertex in Va submits a
vote for the vertex connected by the edge of heaviest weight. Next, vertices that
have a vote-degree ratio above the popularityThreshold parameter, become
the principal nodes. Any vertex connected in Ga to a principal node is assigned
to the cluster of the principal node connected to the vertex by the edge of
heaviest weight. Finally, the other vertices are iteratively added to the clusters
corresponding to their edge of heaviest weight. The algorithm generating the
destination cluster partition PD is the same but starts from a set of forward
shortest path trees. Note that both types of shortest path tree can be generated
by the Dijkstra algorithm. In case of a backward shortest path tree, it is required
to invert any of the graph’s edge directions before calculation, and to interpret
the results accordingly.
For element 2, a minimal set of transit nodes for any cluster is determined. In
case of origin/destination clusters, the paths in the sample backward/forward
shortest path trees starting/ending in any vertex of the cluster are considered.
The coverage of the transit nodes of a cluster is the proportion of these paths
that passes at least one of the transit nodes. The minimal set of transit nodes
for any cluster is determined, which has at least a specified coverage tnCoverage
(e.g. 95%). This minimal set is retrieved through a mixed integer programming
approach. The precalculated distances in the elements 3, 4 and 5 are calculated
using a one-to-many shortest path algorithm. While the above distances are
used to approximate long network distance queries, the probability that short
paths of lowest cost pass through the transit nodes is remarkably lower. For

102 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

element 6, a set of close cluster pairs is determined. Two clusters are close
if they have at least one vertex in common. For queries from cluster CO to
CD, the network distance approximation will not be based on the precalculated
distances, but on the constant distortion minimizing the absolute RMSE for
queries in CO ×CD. These distortions (of the last element) are calculated for a
sample query set random(CO × CD, kavdist).

5.3.4 Network distance approximation algorithm

During a query for the network distance dG(u, v), the origin cluster CO and
destination cluster CD are retrieved where u ∈ CO and v ∈ CD. When
(CO, CD) is not a close cluster pair, dR(u, v) equals the minimal value of
dG(u, s) + dG(s, t) + dG(t, v) for any combination of transit node s of CO and
transit node t of CD. Otherwise, dR(u, v) is γCO,CD

· dS(u, v).

5.3.5 Complexity

c denotes the average number of partitions in PO and PD, t denotes the average
number of transit nodes per cluster, and l denotes the average number of clusters
in PD that forms a close cluster with a cluster in PO. Suppose that any of the
7 elements of the advanced ADO is stored in a hash table of space complexity
O(k) and average time complexity O(1). The space complexity built up by these
elements is: O(2 ·n+ 2 · c · t+ c · (c− l) · (t)2 +n · t+n · t+ c · l+ c · l) = O(n+ c2),
assuming that l and t are much smaller than c and n. This means that the
space complexity is linear with regard to the number of nodes and quadratic
with regard to the number of clusters. The query time complexity is O(1) in
case the origin and destination are located in a close cluster pair. Otherwise, it
is O(t2).

5.4 Experiment

The advanced ADO introduced in the Section 5.3 is evaluated on a time-weighted
transportation network extracted from OpenStreetMap, which is a source of
publicly available geographical data. Mapping individual way objects in an
OpenStreetMap map extract to a directed weighted spatial graph is described
in Appendix A. After this extraction, a minimal number of vertices is removed
from the graph such that the graph becomes connected. This process starts by
the manual selection of a vertex r which is known to be in the largest connected
subgraph. Next, both a forward and a backward shortest path tree rooted in r

EXPERIMENT 103

Figure 5.3: Instance of an origin cluster in the Ghent dataset. All vertices
belonging to the cluster are connected by a star (trivial centre point). The other
lines indicate the edges of the transportation network. Arrows indicate the major
part of edges that are traversable in single direction. The 5 boxes represent the
cluster’s associated transit nodes, covering at least 90% of the sample paths
leaving the cluster. Network and waterways derived from © OpenStreetMap
contributors.

is constructed. The subgraph consisting of the nodes belonging to both trees is
a connected graph.

The Ghent dataset is the OpenStreetMap map extract of latitude range [51.0258,
51.0834] and longitude range [3.6685, 3.7856], datedMay 16, 2012. The derived
connected graph contains 4296 vertices.

104 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

percentile
RMSEabs avg 1% 5% 10% 90% 95% 99% max

Unit size ADO 2.814 2.207 0.03 0.17 0.33 4.64 5.60 7.42 13.60

Advanced ADO 0.777 0.253 0.00 0.00 0.00 0.90 1.79 3.63 9.01

Table 5.2: Absolute error statistics (in minutes) of network distance
approximations for the query sample set S in the Ghent dataset.

The basic evaluation for this directed weighted spatial graph G(V,E) assumes
construction of two independent sets S and T of random ordered pairs
(queries) in V × V . Both sets contain 10000 elements. The positions of the
individual vertices in the pairs of S and T have a uniform distribution over
the rectangular area of interest. We assume that this is the expected query
distribution for main-purpose applications of ADOs. Next, an ADO of unit size
minimizing RMSETabs(G), and the advanced ADO introduced in Section 5.3
are constructed. The construction parameter settings for the latter oracle were
numberOfRoots = 50, popularityThreshold = 0.07, minDepth = 15,
maxDepth = 10, tnCoverage = 0.90, kavdist = 20. These settings resulted in
87 origin and 79 destination clusters. One of the origin clusters, generated by
this oracle, is shown together with its associated transit nodes in Figure 5.3.
Table 5.2 shows the absolute error RMSESabs(G) and some other absolute error
statistics for both oracles.
In order to analyse the oracle’s approximation accuracy for different categories
of “as the crow flies” distance between the origin and destination vertex of
a query, we introduce the set U of 10000 random queries (u, v) in V × V
where dS(u, v) has a uniform distribution. Both RMSEUabs(G) and the average
absolute error for U were found to be lower sc. 0.730 and 0.211. Figure 5.4
shows the unit size oracle’s absolute approximation error as a function of the
query’s spatial distribution for any query in the sample set of universal spatial
distance distribution U . This data is averaged for discrete spatial distance
ranges in the histogram of Figure 5.6. The same data on the advanced oracle’s
approximation accuracy is represented in Figure 5.5 and 5.7. The first histogram
shows that the unit size oracle’s absolute error average is around 2 minutes
for medium-distant queries, but increases for longer distances up to 8 minutes.
The other oracle’s absolute error average is close to 0 minutes for long-distant
queries, shows a peak of about 1.2 minutes around queries of distance 500m.
This shows that the latter oracle is able to drastically reduce the absolute
error and that it is the most susceptible to absolute errors when the origin and
destination vertices are located in a close cluster pair. While the approximation
mechanism for non-close cluster pairs yields a reasonable chance to have an
exact approximation, the mechanism for close cluster pairs is based on spatial

CONCLUSION 105

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5.4: Unit size oracle’s absolute
error as a function of spatial distance.

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 5.5: Advanced oracle’s absolute
error as a function of spatial distance.

0

2

4

6

8

10

0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
4
0
0

4
8
0
0

5
2
0
0

5
6
0
0

6
0
0
0

6
4
0
0

6
8
0
0

7
2
0
0

7
6
0
0

8
0
0
0

8
4
0
0

8
8
0
0

9
2
0
0

9
6
0
0

Figure 5.6: Unit size oracle’s average
absolute error histogram for spatial
distance ranges.

0

0.5

1

1.5

0

4
0
0

8
0
0

1
2
0
0

1
6
0
0

2
0
0
0

2
4
0
0

2
8
0
0

3
2
0
0

3
6
0
0

4
0
0
0

4
4
0
0

4
8
0
0

5
2
0
0

5
6
0
0

6
0
0
0

6
4
0
0

6
8
0
0

7
2
0
0

7
6
0
0

8
0
0
0

8
4
0
0

8
8
0
0

9
2
0
0

9
6
0
0

Figure 5.7: Advanced oracle’s average
absolute error histogram for spatial
distance ranges.

distance multiplication by a constant. The latter mechanism can be seen as an
improved version of the unit size oracle. For queries of length 400-500m, its
approximations error is the halve of the one of the unit size oracle.

5.5 Conclusion

The present chapter introduces a framework for the evaluation of ADOs based
on the root-mean-square error (RMSE) of the absolute or relative error of
a sample set of network distance approximations in a graph G(V,E). This
framework applies both to general and spatial networks. An RMSE minimizing
unit size oracle for general networks generates a constant approximation. The
version for spatial networks approximates the network distance by the product
of the spatial distance and a constant distortion.

An advanced ADO was introduced. It organizes the vertices V into a partition
of origin clusters and one of destination clusters. Each cluster is assigned a set
of transit nodes. A close cluster pair is a couple of an origin and a destination
cluster sharing at least one vertex. Network distance approximation between
vertices of a close cluster pair is based on the constant distortion minimizing
the absolute RMSE for a sample set of queries from the first to the second
cluster of the pair. Approximation between remote vertices is based on a set of

106 LEAST SQUARES APPROXIMATE DISTANCE ORACLES FOR SPATIAL NETWORKS

precalculated distances between the vertices and the transit nodes and between
transit nodes of different clusters. The oracle’s average space complexity is
O(n+ c2) and its average query time complexity is O(t2), where c is the average
number of clusters in a partition and t the average number of transit nodes of
a cluster. Its prediction accuracy was evaluated in terms of the RMSE of the
absolute error of the reported distances. The comparison with a unit size oracle
for spatial networks was made for the Ghent dataset for a query sample set of
size 10000. The positions associated with the individual vertices in this query
sample set are uniformly distributed over the rectangular dataset area. The
advanced ADO realizes a reduction of 3.5 times the RMSE and of 8.5 times the
average absolute error, in comparison with the unit size oracle.

This work on distance oracles concludes the theme of shortest path (cost)
approximation in resource-constrained environments. In Section 1.2 the concept
of attractiveness has been denoted, supporting the retrieval of the nicest or most
suitable path between two nodes in a network. Section 4.1 details the realization
of this type of navigation in graphs where the edges have both a length and
an attractiveness score. The next theme focusses on novel applications and
services in this type of graphs. A tour suggestion module for outdoor activities
is an example of such a service and is introduced in the next chapter. It has
attractiveness-based point-to-point navigation as a component.

Chapter 6

Tour suggestion for outdoor
activities

The present chapter introduces the outdoor activity tour suggestion problem
(OATSP). This problem involves finding a closed path of maximal attractiveness
in a transportation network graph, given a target path length and tolerance.
Total path attractiveness is evaluated as the sum of the average arc attractiveness
and the sum of the vertex prizes in the path. This problem definition takes its
rise in the design of an interactive web application, which suggests closed paths
for several outdoor activity routing modi, such as mountain biking. Both path
length and starting point are specified by the user. The inclusion of POIs of
some given types enrich the suggested outdoor activity experience.

A fast method for the generation of heuristic solutions to the OATSP is presented.
It is based on spatial filtering, the evaluation of triangles in a simplified search
space and shortest path calculation. It generates valuable suggestions in the
context of a web application. It is a promising method to generate candidate
paths used by any local search algorithm, which further optimizes the solution.

The research has been carried out as part of the industrial PhD project
“Structural heuristics for personalized routes” funded by the IWT (090726)
and the company RouteYou. The present chapter is a slightly adapted version
of Maervoet, J., Brackman, P., Verbeeck, K., De Causmaecker, P., Vanden
Berghe, G. (2013). Tour Suggestion for Outdoor Activities. In Liang, S. (Ed.),
Wang, X. (Ed.), Claramunt, C. (Ed.), Lecture Notes in Computer Science:
Vol. 7820. W2GIS 2013. Banff, AB, Canada, 4-5 April 2013 (pp. 54-63).
Heidelberg, Germany: Springer.

107

108 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

6.1 Introduction

The company RouteYou offers recreational navigation for several outdoor activity
modes such as hiking and mountain biking. This involves maintenance of a
set of transportation network graphs, in which each arc r has a length lr
and attractiveness 0 < ar ≤ 1. The latter parameter models suitability to
the applicable outdoor activity mode, in terms of the arc’s scenic context,
physical condition and relation to traffic. Point-to-point wayfinding is the key
functionality of the company’s web application. It implies finding the path with
the lowest cost between two nodes of the graph, in which the arc costs equal
lr/ar.

The motive behind the present chapter is the design of a tour suggestion
module, which plans attractive round trips for any of the company’s outdoor
activity modes. This module requires that the user chooses an outdoor activity
mode and specifies a target path length and a starting point. Within some
seconds, it returns a closed path, consisting of arcs of optimal attractiveness
and satisfies the length and starting point constraints. The desirable path has
some constraints because users tend not to accept paths with a considerable
number of self-intersections or with recurring subpaths. Paths in clockwise
direction are usually prefered in countries with right-hand traffic because they
ease turn traffic manoeuvres. Moreover, the user is able to select one or several
POI types of preference, such that the output path results from a trade-off of
arc attractiveness and the number of contained POIs of the preferred types.
Examples of interesting mode - POI type combinations are hiking with mountains
and motorcycling with scenic viewpoints. Another scenario is that external
organizations set the mode and POI types of preference in a customized planner.
This sort of planner aims at promoting a peculiar type of tourism in a specific
region e.g. cycling along the Châteaux of the Loire Valley in France. In some
cases POIs have a degree of membership to multiple categories.
An extension to this module is the generation of multiple suggestions. This
means that the user can browse through a set of m path suggestions, for the
same set of preferences and constraints. It involves finding the set of m most
attractive tours that are spatially different.

The company determines the attractiveness in graphs by means of a linear
combination of a set of parameters referring to an arc’s scenic, physical and
traffic-related context. The parameters have been extracted from a third-party
geographical dataset. When a new outdoor activity mode is launched, the
scalars of the linear combination are fine-tuned during a manual point-to-point
navigation sensitivity analysis in the company’s labs. The POIs originate from
end user contributions on the web platform of the company. The types of these
POIs have also been provided by the users. The contributions in the present

TOUR SUGGESTION MODELS FOR LEISURE AND TOURISM 109

chapter do not depend on this data composition method and even apply to a
more general setting where any form of edge-based and vertex-based suitability
can be mapped to edge attractiveness and vertex prizes.

The next section gives a literature overview of models applied in the domain
of leisure and tourism. Section 6.3 introduces the OATSP, which formalizes
the tour suggestion problem described above. The approach presented in
Section 6.4 enables generating a set of heuristic solutions to the OATSP in a
low computational time. The following section discusses two sets of individual
tours obtained by this approach. Section 6.6 is the conclusion of this work.

6.2 Tour suggestion models for leisure and tourism

The tour suggestion problem for leisure and tourism (TSPLT) involves generating
a path through a transportation network visiting some arcs and/or points of
interest (POIs). The path should optimally match the end user’s preferences or
some general recreational preference, given a set of constraints (adapted from
the itinerary planning problem formulated by Shcherbina and Shembeleva [98]).
It has applications in several subdomains of leisure and tourism. Recreational
point-to-point navigation aims at generating a path from A to B, which is tailored
to a specific recreational navigation mode, such as nordic walking. Individual
city trip planning involves providing a tour schedule along a selection of POIs,
satisfying the personal preferences of an individual intending to visit a city for a
certain amount of time. This kind of services are often realized as a web-based
application or a mobile client-server application (e.g. [18, 101]), generating on-
the-fly suggestions for the end user. This is usually not required for applications
in collective tourism planning (bus tour planning, cruise itinerary planning).
The path generated in the TSPLT may be open or closed. In individual city
tour planning for instance, the path is - in most cases - closed. The trip typically
both starts at and ends in the tourist’s hotel, a parking lot or a train station.

A first type of systems model the problem as a shortest path (SP) problem.
This model generates exclusively open paths and focuses on the suitability of
the arcs for a certain purpose. In the most common recreational SP approach,
the inverse suitability is encoded in single arc weights of a directed weighted
graph, corresponding to the transportation network. Path generation involves
that common SP algorithms are used to find the path with the lowest cost
between two nodes of this graph. Traditional SP algorithms are Dijkstra [30]
and its variants [117] and A* [48]. The use of single scenic/attractive weights
has often been suggested in this context (e.g. [94, 75]). The company presented
in the introduction adapted this concept by introducing weight attractiveness

110 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

for a series of recreational routing modi. Attractiveness also deals with physical
conditions and traffic aspects of the roads. Rogers and Langley [91] model
the attractiveness of weights by a linear combination of criteria that reflect
the end user’s preferences. Niaraki and Kim [83] developed an ontology-based
technique that generates network weights for personalized routing planning.
Tarapata [108] states that single-objective functions are not sufficiently adequate
to model real SP problems. He presents a classification of multi-objective
shortest path (MOSP) problems, which are used in other real application
domains, such as routing with quality-of-service in computer networks. The
author identifies six general solution methods to MOSP problems, including
mathematical optimization and objective function hierarchization. Hochmair
and Navratil [49] argue that the computation of attractive routes is generally
beyond the ability of SP algorithms, since an SP algorithm is not able to find
a route that maximizes a benefit criterion. However, they demonstrate the
practical value of single criterion SP computation for finding this type of routes.

A second type of systems use a problem model that trades off POI selection
with time or distance. It originates from the field of Operations Research. It
involves selecting a sequence of POIs from an eventually larger input set of
POIs. This sequence should meet certain preferences and/or must satisfy a set
of constraints. The POI sequence selection is often preceded by a POI filtering
mechanism, improving the sequence selection performance. The model takes
into account the travel time or distance between candidate POIs, aided by a
precalculated travel time/distance matrix or a heuristic estimation function.
The resulting path is obtained by concatenating precalculated (shortest) paths
between the selected POIs, or by recalculating the complete path using via-
points. The latter approach is useful in order to avoid undesirable U-turns
and forbidden traffic manoeuvres passing through a selected POI. Godart [40]
presented a version of the traveling salesperson problem (TSP) that integrates
activity selection and lodging availability for trip planning problems. Deitch
and Ladany [28] introduced the bus touring problem (BTP). It requires an
undirected graph in which the vertices represent visiting sites and the edges
represent connecting scenic routes. Both edges and vertices have associated
attractivity values and require traveling/visiting times. The goal is to find a
(closed path) bus tour of maximal total attractivity, below a given maximal
tour time. The attractivity of recurrently visited vertices and edges is only
counted once. The authors show that the BTP can be transformed to the
Orienteering Problem (OP). Both Suna and Lee [106] and Maruyama et al. [78]
have built tourist trip recommender systems based on variants of the prize
collecting TSP (PCTSP). The original model minimizes the total travel cost
minus the sum of the benefit criterion values of the POIs along the selected path.
Suna and Lee integrate a personal interest factor in the travel cost weights.
The two following query models in the field of spatial databases focus on trip

THE OUTDOOR ACTIVITY TOUR SUGGESTION PROBLEM 111

planning with typed locations. Li et al. [68] introduce the trip planning query,
which involves a request for the shortest route from and to a given point that
passes through at least one point of any of the specified set of location types.
The optimal sequenced route query [97] looks for the shortest path that visits
locations according to a specified sequence of POI types. An example of a
POI type sequence for leisure is: (1) hair dresser (2) restaurant (3) cinema.
Vansteenwegen and Van Oudheusden [114] introduced the tourist trip design
problem (TTDP), which is modelled as an OP with time windows. This model
starts from a fully interconnected distance/time-weighted graph in which the
vertices represent POIs with a personalized [103] score. It involves finding the
sequence of POIs that maximizes the total score of the selected POIs, while the
total path weight must not exceed a given value. Each POI can only be visited
once. Moreover, certain POIs are only available within certain time windows (cf.
opening hours). Very good approximate solutions are found with iterated local
search by Vansteenwegen et al. [112, 113]. They have shown the practicability
of the TTDP in city trip planning.
All problems in this second class are NP-hard. Both Shcherbina and
Shembeleva [98] and Souffriau and Vansteenwegen [102] provide a more detailed
overview of the models and functionalities of this type of systems.

6.3 The outdoor activity tour suggestion problem

The BTP model suits the requirements of company’s tour suggestion module best.
The objective function takes into account both edge and vertex attractiveness,
whereas tour time (or length) resides under the constraints. However, the
arc attractiveness ar has been optimized for point-to-point wayfinding in the
company’s labs. In this setting, ar is composed as a linear combination of a
set of parameters referring to various aspects of attractiveness. During a SP
analysis, the scalars of this linear combination are fine-tuned such that paths of
minimal

∑ lr
ar

hold the optimal balance between length and attractiveness. This
process is very similar to the determination of the optimal buffer radius settling
a trade-off between scenic sections and detour, by Hochmair and Navratil [49].
It implies that (sub)paths of optimal attractiveness below a specified length,
as produced by the BTP, often lack this trade-off. This is illustrated for a
sample Manhattan graph in Figure 6.1 at the left side. Therefore we introduce
a problem model for which a feasible tour suggestion consists of a small number
of concatenated paths of minimal lr/ar, aiming at optimal edge and vertex
attractiveness. The target path length required by the tour suggestion module
gives rise to a distance window constraint. A sample optimal path for this
model is shown at the right side of Figure 6.1.

112 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

• 0.2 • 1 • 0.2 •

0.2 0.5 0.5 0.33

• 0.2 • 0.2 • 0.2 •

0.2 0.2 0.5 0.2

• 0.2 • 0.2 • 0.2 •

0.2 0.2 0.5 0.2

• 0.5 • 1 • 0.5 •

1 1 1 1

• 0.5 • 1 • 0.5 •

0.2 1 1 0.2

• 0.2 • 1 • 0.2 •

(a)

• 5 • 1 • 5 •

5 2 2 3

• 5 • 5 • 5 •

5 5 2 5

• 5 • 5 • 5 •

5 5 2 5

• 2 • 1 • 2 •

1 1 1 1

• 2 • 1 • 2 •

5 1 1 5

• 5 • 1 • 5 •

(b)

Figure 6.1: Optimal paths for (a) the BTP with a distance window constraint
and (b) the OATSP with ϕ = 1, in a sample Manhattan graph. The total path
length must be in the range of [14, 18]. In this graph any arc has a reverse
arc of equal ar and any lr = 1. At the left, the values indicate the arcs’ ar; at
the right they indicate lr/ar. The circle indicates the starting vertex vs. Any
vertex prize pv = 0 except for the prize of the squared vertex where pv = 1.
The arrows point to the vertices between which subpaths of minimal lr/ar are
constructed.

Definitions. Xi denotes the element at the i-th position in any series X. In a
directed graph G = (V,A)

• any arc r ∈ A is an ordered pair (v1, v2) ∈ V 2,

• any arc r ∈ A has an associated attractiveness 0 < ar ≤ 1 and length lr,

• reverse arcs have equal attractiveness and length,

• each vertex v has an associated prize 0 ≤ pv ≤ 1, and,

• each vertex has a latitudinal coordinate y(v) and a longitudinal coordinate
x(v) in an authalic map projection.

THE OUTDOOR ACTIVITY TOUR SUGGESTION PROBLEM 113

A closed path C is a series of arcs, which are circularly subsequent in G. CV
is the corresponding series of vertices visited by C. The sets AC ⊆ A and
VC ⊆ V consist of the arcs and vertices visited by the closed path C. The set
A′C contains any arc Ci = (v1, v2) of C that is not preceded by its reverse arc
Cj = (v2, v1) with j < i. The shortest path sp(va, vb) refers to the path S from

va to vb for which
∑
r∈AS

lr
ar

is minimal.

Problem specification. Given a prefered path length lp, length tolerance
t, small maximal sequence length k and starting vertex vs, a solution to the
OATSP is a series of intermediate vertices I with |I| ≤ k, such that the closed
path C in G(V,A), arising from the concatenation of sp(vs, I1), sp(I1, I2), ...,
sp(In, vs) satisfies

1. Each element of A appears at most once in C.

2. (1− t) · lp ≤
∑
r∈AC

lr ≤ (1 + t) · lp

3. 2π(∑
r∈AC

lr

)2 ·
∑

i=1...|CV |
j=(i mod|CV |)+1

(x(CVj)− x(CVi)) · (y(CVj) + y(CVi)) > σ

4. ϕ ·

∑
r∈A′

C

(ar · lr)

∑
r∈AC

lr
+
∑
v∈VC

pv is maximal

This model suits the requirements of the tour suggestion module. It is able to
suggest closed paths of a target length and optimal arc and POI attractiveness,
by setting the vertex prizes to the degree of membership to the specified
categories.
The first constraint prevents recurring arcs in a tour. Since recurrent visits to
reverse arcs and nodes are penalized by the objective function (item 4), solutions
tend to avoid U-turns and recurring reverse subpaths. The model does allow
multiple vertex and reverse arc visits since the starting vertex or any of the
POIs may be located on a subgraph with low connectivity.
The second constraint specifies a length window around target lp of width 2 · t.
The inequality under item 3 specifies a lower bound σ for the clockwise area
measure. This measure evaluates the linestring resulting from CV , which may
be self-intersecting or self-tangent. Substracting the portions of enclosed area
surrounded in counter-clockwise direction from those surrounded in clockwise
direction, it indicates the clockwiseness of a tour. In countries with left-hand
traffic, the > inequality should be changed to <, since counter-clockwise tours
result in negative clockwise area values. Moreover, this measure evaluates the

114 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

linestring’s normalized area-perimeter ratio, which approaches 1 in case of a
clockwise circle.
The objective function in item 4 takes into account the average attractiveness
along the tour and the prizes of the vertices in CV . The parameter ϕ determines
the relative importance of arc to node attractiveness.

A multiple suggestion extension to the model requires a distance function
between the linestrings of two closed paths.

6.4 Approach

A multiple tour suggestion module has been designed for the web application of
the company. It enables generating a set of m heuristic solutions to the OATSP
within a low computational time, in an environment without precalculated paths
nor distances available. The main algorithm starts by determining a feasibility
window (FW). This square area discerns the arcs and nodes reachable in a
round trip through vs given the path length window constraint. The algorithm
assumes that, within the FW,

• only a few (ranging from none to the order of tens) vertices v have pv > 0,

• there is a diversity of attractiveness ar amongst the arcs r, and,

• vertices with pv > 0 have a high probability to be located along trajectories
of higher attractiveness than vertices in their local neighbourhoods.

These conditions often hold for the tour suggestion module presented, where
the user selects few POI categories and relatively low values for lp. Moreover, it
assumes low values of ϕ.

Figure 6.2 shows the state diagram of the main algorithm. The underlined
numbers in the diagram description below have been experimentally determined.
In state (1), the FW is generated in the geographic coordinate plane, such that
vs is in the center and the projected width and height measured through vs,
equals lp/

√
2. If it contains more than 5 feasible POIs (pv > 0), the algorithm

continues with triangle search. Otherwise, the window is enriched by highly
attractive vertices (HAVs), in state (2). HAVs are auxiliary POIs representing
the most attractive arcs in the FW. This phase looks for the maximal value
amin for which there exist at least 20 arcs r with ar ≥ amin. Any vertex that is
connected by an arc r with ar ≥ amin, is an HAV. The maximal attractiveness
of the connecting arcs of an HAV v is denoted av. Next, all HAVs are promoted
as POIs, with pv set to ϕav/#HAV s. If the total number of POIs does not

APPROACH 115

 x x
•

 x

 x x
•

 x

(1) Feasibility and POIs (2) Addition of HAVs

. . . .

. .
.

.
. .

.

.
.

.

. . . .

. .
.

.
. .

.

.

.
.

(3) HAV spatial filtering

 x x
•

 x

(4) Triangle search

 x x
•

 x

(4) Triangle search

. . . .

. .
.

.
. .

.

.
.

.

 x .
•

(5) Shortest path calculation (6) No solution

Figure 6.2: State diagram of the fast heuristic algorithm for the OATSP.

exceed 60, the algorithm continues with triangle search. Otherwise, the HAVs
are subjected to spatial filtering (state (3)). This involves that all points are
categorized into one of the boxes of the g1×g1 grid constructed over the window.
Only one auxiliary POI per box is kept, absorbing the sum of pv-values of the
other points in the box.
Triangle search in state (4) involves the brute-force evaluation of any directed
triangle made up by vs and any other two POIs within the window. This
evaluation consists of two steps. First, a triangle undergoes a fast feasibility
check. A triangle is feasible if its direction is clockwise (in case of right-hand
traffic) and if its perimeter is between (1 ± t) · lp/1.6. Next, an evaluation
function computes a score for a feasible triangle in this simplified window
representation. This function returns a weighted sum of the prizes pv for any of
the POIs involved. Prizes of POIs located at one of the triangle vertices are
given double weights. POIs located on one of the triangle edges generate pv,
which decreases as the elliptical distance to the closest triangle edge increases.
If all angles are greater than 40◦, a global bonus (∗1.5) is granted.
When no feasible triangle is found in a window containing auxiliary POIs, the
algorithm does not return any solution (state (6)). Otherwise, the triangle of
highest score is passed to the SP calculation state. Given a triangle abc, this
fifth state entails finding the concatenation of paths of lowest cost between
(a, b), (b, c) and (c, a) in a graph with arc weights equal to lr/ar. In order to
avoid U-turns and recurring subpaths, the weights of both the forward and

116 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

available reverse arcs of the resulting subpath are drastically increased, after
each subrouting. If the concatenated path infringes the recurring arc, the length
window or the clockwise area constraint, the paths between (a, b), (b, c) and
(c, a) are calculated in a changed order and again concatenated. If it still does
not meet the constraints, it is rejected after which the second best triangle is
processed, and so on.

The multiple suggestion extension is realized by the integration of a simple
competitive learning algorithm in the triangle search. It relies on a triangle
distance function which is defined as follows. The two variable vertices of a
triangle are categorized into one of the boxes of the g2 × g2 grid constructed
over the window. The distance between two (clockwise) triangles is the sum of
the Manhattan distance between the first vertices and the Manhattan distance
between the second vertices in the grid. Two triangles are called resemblant if
one of the Manhattan distances is lower than 2. During the brute-force triangle
evaluation, the algorithm manages a store of maximally m prototype solutions.
Suppose the current solution does not resemble any prototype solution. If there
are less than m prototype solutions, the current solution enters the store as
a new prototype. If the store is full and the current solution is better than
the worst prototype, it replaces the prototype. Suppose the current solution
resembles one or more prototype solutions. If it is better than the closest
prototype, it replaces the prototype. In the end, the m prototype solutions are
passed to the SP calculation state.

6.5 Results

The approach introduced in the previous section has been tested for the outdoor
activity mode ‘attractive cycling’. The transportation network graph for this
mode contains both paved and unpaved roads. Further settings are σ = 0.3,
ϕ = 1, g1 = g2 = 10, m = 10 and t = 0.30.

A first experiment, called experiment SN-1, assigns the centre of a medium-sized
city in Belgium as starting vertex vs and sets lp = 30km. No POI category
of interest is specified, so initially any vertex prize pv = 0. Figure 6.3 shows
the arc attractiveness map within the FW and the 3 out of 10 tours of highest
scores in the solution store. Most of the arcs within the city are substantially
less attractive than the arcs in the neighbourhood. The arcs in the south of
the window, either along the rivers or within a woody region, have the highest
attractiveness. Each of the top-3 tours visits this region. Any of the 10 tours in
the store were assessed by amateur cyclists as attractive tours. They valued
the solution diversity in the store highly.

RESULTS 117

(a) Arc attractiveness (b) Best solution

(c) Second-best solution (d) Third-best solution

Figure 6.3: Arc attractiveness map and the three best tours in the solution
store for experiment SN-1. Each subfigure is shown in the FW, centered around
vs. Highly attractive arcs are depicted by thick green lines, and less attractive
arcs by thin blue lines.

(a) Arc attractiveness (b) Best and second-best solution

Figure 6.4: Arc and node attractiveness map and the two best tours in the
solution store for experiment SN-2. Each subfigure is shown in the FW, centered
around vs. The red dots indicate the POIs of the type ‘interesting church’. The
best solution is indicated by a solid line.

118 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

Experiment SN-2 adds the POI category ‘interesting church’ to the specifications
of experiment SN-1. Each closest vertex to a POI of this category gets pv = 1.
Figure 6.4 shows these POIs, and the 2 out of 5 tours of highest scores in the
solution store. One of the POIs is located very close to and to the west of vs.
This gives tours in the west containing this POI, priority over the other tours.

SN-1 SN-2
POIs 0 9
HAVs 764 0

HAVs after reduction 84 0
feasible triangles 1256 13

comput.time of triangle search 752 ms 2 ms
solutions in store 10 5

Table 6.1: Experiment SN-1 and SN-2 statistics.

Table 6.1 indicates that in experiment SN-1, 764 HAVs were added to the FW and
reduced to a set of 84. It took 752 ms to evaluate 84 · 83 triangles1. Experiment
SN-2 only went through states (1), (4) and (5), so no HAVs were added. It
results in a very constrained triangle set. Only 5 out of 13 feasible triangles
were considered sufficiently diverse by the competitive learning algorithm. The

Triangle eval. fct. Tour length OATSP obj. fct.
SN-1 # 1 0.4477 37.6 km 0.8126
SN-1 # 2 0.3937 34.9 km 0.8316
SN-1 # 3 0.2998 31.8 km 0.7800
SN-1 # 4 0.2619 28.6 km 0.7297
SN-1 # 5 0.2280 30.4 km 0.6826
SN-2 # 1 4.9709 25.1 km 3.7618
SN-2 # 2 4.9073 30.1 km 3.7265
SN-2 # 3 4.3079 34.1 km 2.7078
SN-2 # 4 4.0000 32.3 km 2.7393
SN-2 # 5 4.0000 25.6 km 2.7660

Table 6.2: Top-5 result characteristics for experiments SN-1 and SN-2.

triangle evaluation scores, tour lengths and OATSP objective function scores of
the 5 best SN-1 and SN-2 results in the solution store are given in Table 6.2.
Specifically in SN-1, the OATSP objective function equals the attractiveness
average of arcs visited by the tour. The triangle evaluation score correlates with
the objective function. Only the solution of rank 1 has been overestimated. The

1The experiments have been executed using PHP (Command Line Interface) 5.3.6 in
Ubuntu 11.10, with an Intel Core i7-920 Processor.

CONCLUSION 119

average arc attractiveness along the (a, b) subpath of this solution is remarkably
lower than the average along the other subpaths. In the case of SN-2, the
OATSP objective function takes into account both arc and node attractiveness.
Only POIs were assigned to the triangle vertices, and therefore each tour scores
at least two. Since no HAVs were used to calculate the triangle evaluation score,
this function is only effective in predicting the number of POIs contained by a
tour.

6.6 Conclusion

The OATSP, introduced in the present chapter, involves finding attractive closed
paths in a transportation network graph, tailored for a specific outdoor activity
mode. The objective function is based on both the arc attractiveness along the
path and the prizes of the visited vertices. A window constraint restricts the
total path length.

An experiment showed that the presented algorithm is able to generate a set
of heuristic solutions to the OATSP, satisfying the constraints. The core of
this algorithm is a brute-force triangle evaluation in the FW, containing the
POIs with pv > 0 and a set of auxiliary POIS, constrained to the number of
g2

1 . Although a quadratic number of triangles is evaluated, the evaluation runs
in low computational time. The triangle that receives the best evaluation is
passed to an SP calculation module, prioritizing paths along attractive arcs.
The triangle evaluation function has been found an efficient heuristic for the
OATSP objective value of the resulting path. A simple competitive learning
algorithm enables generating m tours of high objective value, which are spatially
different. This algorithm of low computational impact showed to be effective.

The algorithm has been integrated in a web application. Further work comprises
an evaluation of the objective function scores and computational time of the
results generated by this algorithm, an exact method and a local search method.
Moreover there are opportunities to improve the introduced algorithm. If
precalculated subpaths are introduced in the triangle evaluation, the OATSP
objective function can be evaluated for each triangle during triangle search.
Through this, the real OATSP objective scores instead of heuristic triangle
scores will determine which triangle is selected. The replacement of the brute-
force triangle enumeration technique by a heuristic selection of triangles will
decrease the computation time drastically. Obviously, the triangle approach will
fail to produce a heuristic solution to the OATSP when the feasibility window
exhibits many POIs or many regional variance in attractiveness. In these cases,

120 TOUR SUGGESTION FOR OUTDOOR ACTIVITIES

the evaluation of polygons could generate better results, at the expense of the
search space size.

This work in close collaboration with industry resides under the third theme
of the present dissertation, about the discovery of structures related to
attractiveness in spatial graphs. Tour suggestion for outdoor activities entailed
a novel type of service in spatial networks where the edges have both a length
and attractiveness score.

Chapter 7

Conclusion

7.1 Contribution

In the present dissertation various applications of high importance to GIS
practice have been introduced and validated. The quality of large amounts of
dynamic geographical data originating from multiple sources can be maintained
effectively by tools and methods based on relational datamining. Furthermore,
three service components for spatial networks have been presented and validated,
dealing with efficiency in environments with a limited amount of resources. Both
scientific and economic contributions are clarified below for each of the three
themes contributing to the present thesis.

Geographical data quality. DILP was identified as a suitable class of
techniques to identify anomalies in geographical data. An experiment showed
the practical value of considering almost complete rules, i.e. regularities that
hold over all the geographical data apart from a small number of exceptions,
and looking up these exceptions afterwards. Exceptions indicate either errors
or correct but exceptional situations in the data. The experiment showed the
restrictions of both the input data size and the number of geographical relations
and feature and attribute types involved in a single experiment. It revealed
the need for a more generic infrastructure, supporting an evolving data model
and facilitating the automated geographical data extraction and preparation
and pattern modelling and evaluation. This dissertation further addresses this
concern by the introduction of a generic tool to mine for relational regularities
and corresponding outliers in geographical data. It is adaptive to data model
changes since it integrates a geographical metamodel in the knowledge discovery

121

122 CONCLUSION

process. Its value is supported by two experiments and a sanity check. Data
engineers of Tele Atlas identified previously unknown and valuable patterns
in the experiment results, and the sanity check showed that the tool is able
to identify three out of four rules that are known by the company’s quality
maintenance system. The missing rule was not found because there were too
few instances in the sample data to which it applies.

The feasibility study of applying descriptive ILP to large geographic databases,
now an integral part of the present dissertation, was at the time the first instance
where relational datamining is applied for outlier detection. The approach is
more broadly applicable for outlier detection and quality maintenance in data-
rich intelligent systems.
For the field of data quality analysis in GIS, traditionally relying on techniques
prospecting for statistical deviation in geographical data, this work entailed the
first application of relational data mining techniques. The resulting tool was
adopted by the quality maintenance team of Tele Atlas in December 2008 for
further integration in the quality infrastructure. This infrastructure comprises a
geographical rule language, operational tools for the creation and management
of quality rules, and, autonomous processes for the tracing and reporting of
outliers. The tool has received a lot of positive feedback both from the data
engineers and the engineering management of the company. The underlying
concepts of the tool can be applied seamlessly to any GIS.

Shortest path (cost) approximation. Amulti-tier architecture was depicted
where database operations heavily burden the performance of the shortest path
calculation process. Moreover, both storage costs and calculation time of
preprocessing procedure are restricted. An analysis showed that the class of
(often approximate) hierarchical shortest path algorithms operating on graphs
divided into predefined levels suits these requirements best. Prior experiments
showed that the heuristic node promotion algorithm exhibits the best trade-off
between calculation time and cost of the approximate path. As this algorithm
originally was defined for two hierarchic levels, it was redefined such that it
is effective for any number of levels. Since the original algorithm requires a
problematic irreversible graph transformation, two alternative geographical data
processing steps and two algorithmic adaptations were proposed restoring the
algorithm’s effectiveness. An experimental evaluation showed the effectiveness
of each of the proposed adaptations. The combination of the resulting algorithm
and a rectangular pruning mechanism generates paths of which the cost
approximates the path of lowest cost and achieves low average number of
visited nodes.

This approach illustrated the applicability of geographical data processing
in order to increase the efficiency of an algorithm operating on this data.
The cell classification method presented in one of the additional geographical

CONTRIBUTION 123

data processing steps, can be more generally applied for functional road
class prediction for transportation networks in GIS. The approach has been
operational in the multi-tier environment of the company RouteYou for
approximately 3.5 years.

An evaluation framework for approximate distance oracles was introduced, based
on the relative or absolute RMSE of its network distance approximations in a
graph. An advanced oracle for distance approximation minimizing the absolute
RMSE in spatial graphs was presented. It is based on partitioning graph vertices
into clusters of vertices sharing an LCA only a few edges away for the greater
part of paths of lowest cost. The approximation accuracy of this oracle and
a unit size oracle were evaluated for a set of 10000 query samples. The first
oracle reduced 3.5 times the RMSE and 8.5 times the average absolute error of
the latter oracle.

The framework introduced shifts the emphasis for ADO evaluation in general
from guaranteed upper and lower bounds towards overall accuracy performance,
and allows both absolute and relative errors. The RMSE of the presented
oracles of unit size can be used as a reference value for ADO evaluation.
Various design concepts behind the advanced ADO, such as shortest path tree
sampling, association graph construction and determination of a minimal set of
transit nodes, can be reused in related application domains e.g. shortest path
calculation. In as far as it has been possible to backtrack publications on the
subject, it was the first time that an ADO designed for spatial networks was
validated on a time-weighted transportation network.
This work resulted in a compact component, which can be integrated in any
application requiring shortest path cost approximation, such as solvers of
combinatorial optimization problems.

Discovery of structures related to attractiveness in spatial graphs.
The tour suggestion problem for outdoor activities in graphs was introduced.
This problem model aims at optimizing the arc and vertex attractiveness of a
closed path in a transportation network graph, satisfying a set of constraints:
no recurring arcs are allowed in the closed path; the total path length is
restricted by a window constraint, and, only (counter-)clockwise paths of a high
area-perimeter ratio are allowed. An algorithm of low computational impact
generating heuristic solutions to this problem was presented. An extension of
this algorithm based on competitive learning collects multiple tours of high
attractiveness, visiting different spatial regions. It was shown that this algorithm
produces valuable solutions satisfying the constraints.

The application domain of this type of discovery models is not limited to tourism
and leisure. They generally apply to problems where attractiveness corresponds
to inverse cost or a degree of urgency or demand.

124 CONCLUSION

The presented algorithm is of added value to the company RouteYou. The tour
suggestion algorithm was integrated in the company’s operational multi-tier
architecture, in order to plan closed paths which are attractive with regard to
any of the outdoor activity modes available.

The results of the present thesis have been achieved by a multi-disciplinary
approach combining the fields of relational data mining and heuristic algorithms
with techniques from software engineering, geographical data processing,
complex data modelling and computational experimentation.

7.2 Further directions

The work presented in this thesis offers many opportunities to further improve
and validate (1) quality maintenance in geographical data and (2) components
delivering services regarding spatial networks. Directions for further research
and for extending the above contributions are clarified below by theme.

Geographical data quality

• The two-fold process of discovering regularities and corresponding
violations has proven its efficiency in providing the data engineers with
complete information. This finding clears the path for the further
formalization of relational outlier detection and the design of corresponding
algorithms for direct detection. The formalization and algorithm design
for related models was treated by Angiulli et al. [4] and Angiulli and
Fassetti [3].

• It was shown that rules expressed in (a subset of) first-order logic are
useful to model regularities in GIS. Relational regularities of different
structures e.g. decision trees are latently present in the geographical data,
although to a lesser extent. The integration of the corresponding mining
algorithms in the generic tool introduced in Chapter 3 is a potential
complementary approach.

• The tool enables detection experiments for outliers relating to a limited
number of types and relations in a limited amount of geographical data.
The integration of these experiments in the global quality process leaves a
number of open questions. Which combinations of geographical features,
attributes and spatial relations are worthy of being considered in one
experiment? Is there any heuristic to design fruitful combinations e.g.
themed maps? The large scale application of experiments will produce
many redundant equivalent rules: what are the appropriate measures for

FURTHER DIRECTIONS 125

detection and prevention? How should the rule repository deal with a set
of inequivalent rules producing the same outliers? Should the company
maintain a repository of rules or a repository of outliers? Can we apply
the data mining process over multiple partitions of geographical data in a
distributed and asynchronous manner?

• A similar tool for OpenStreetMap data would enable individuals to trace
anomalies and hence improve the quality of this collaboratively produced
data. Moreover, it would contribute to the formalization of the project’s
map feature specification, which is collaboratively edited.

Shortest path (cost) approximation

• In Chapter 4, the top-down, bottom-up and stitching algorithmic strategies
were identified to integrate well in the multi-tier architecture. An adapted
version of the top-down strategy was evaluated, but the integration,
modification and evaluation of the two other approaches were not tackled.

• The advanced ADO’s design presented in Chapter 5 is still open to
improvement. Currently, the minimal set of transit nodes, for a specified
coverage ratio, is determined by a mixed integer programming approach.
Instead, an approximation of the minimal set for this ratio will streamline
the time performance of the oracle’s construction. The integration of a
hierarchical approach, implying graph partitions of multiple coarsenesses,
offers perspectives for enhancing the ADO’s scalability.

• The introduced graph partitioning concepts can be applied to exact
shortest path algorithms. The very effective transit node approach by Bast
et al. [7], for instance, minimizes the number of transit nodes per cluster,
but does not consider the graph partitioning as such. The introduction of
an LCA-based partitioning method would enable further reduction of the
global number of transit nodes.

Discovery of structures related to attractiveness in spatial graphs

• Further research implies the generation and user-oriented evaluation of
solutions that are optimal to the OATSP. It would be interesting to
compare the objective function scores of the optimal solution and the
solutions generated by the algorithm presented in Chapter 6. Alternative
(meta-heuristic) approaches generating good solutions to the problems
introduced, such as local search and genetic algorithms are left to
investigate.

126 CONCLUSION

• The discovery of connected subgraphs of high attractiveness is an
interesting subject of equal contribution to the last theme. For the
company RouteYou, this type of subnetwork serves (1) as a data structure
enhancing route computation performance (as in the second theme), (2)
as a visual map overlay aiding web platform users to plan highly attractive
routes, and, (3) as a reference network of a hardcopy themed recreation
guide. This subject of high industrial relevance is closely related to the
latent natural hierarchy in graphs. An example concept revealing this
hierarchy is the reach metric introduced by Gutman [44]. This metric
encodes for each vertex the maximum length of the paths of lowest cost
on which it lies, and enables the exactness of reach-based shortest path
algorithms of low computation time. It is currently unclear whether this
concept can be used to harvest a discrete hierarchy guaranteeing exactness
for classical hierarchical shortest path algorithms.

• The application of closed path and connected subgraph discovery
algorithms to other domains is left to investigate. The discovery of
closed paths of high attractiveness can be applied to schedule tours for a
mobile team in a transportation network e.g. police surveillance scheme,
city cleaning tour. In this case, arc attractiveness represents a certain
urgency of a task or a degree of demand along the arcs. The discovery
of connected subgraphs of high attractiveness has also applications in
the domain of urban planning. Here, attractiveness models the inverse
(infrastructural) costs and the demand for promoting an arc to for instance
a safe cycling network or a public transportation network.

As two important evolutions in digital map-making and offering online maps
were introduced in Chapter 1, a third more recent evolution involves the
widespread use of smartphones and the breakthrough of mobile internet and
social networking. Since smartphone devices are equipped by a set of sensors
such as accelerometers and positioning components, this trend paves the path for
crowdsourcing of geo-referenced data, implying the collection and compilation
of this type of data originating from online communities. Crowdsourcing can be
based on various types of contributions, ranging from active data mediation and
provision e.g. collaborative mapping, to the implicit retrieval of data resulting
from the actions of a user actively performing other tasks. An example of the
latter form is a navigation app on a smartphone collecting traffic information.

Crowdsourcing offers a gamut of opportunities both for quality maintenance
and service enhancement regarding geographical data. Most of the current
navigation applications can be extended by a component enabling individuals
in actively reporting anomalies encountered in the geographical data. Another
way of data quality improvement involves detection of inconsistencies between

FURTHER DIRECTIONS 127

traffic information and the current map data. Implicitly retrieved geo-referenced
sensor data can be used to verify certain attributes of a geographic object e.g.
a way’s surface type. Inconsistencies between suggested paths and tours and
the actual traversed trajectory - in combination with user feedback - are caused
by inconsistencies in the data or by inadequacies in the path suggestion module.
Collaborative mapping can contribute to the fine-tuning of a themed reference
network produced by the connected subgraph discovery algorithm.

This dissertation supports further developments in various research areas such
as relational datamining, shortest path algorithms and operations research. For
the application domains of quality maintenance in GIS and routing in resource-
constrained environments, the continuation of this work offers perspectives for
further enhancement of the quality of both geographical data and the services
built upon this data.

Appendix A

Extraction of a directed
weighted spatial graph from
OpenStreetMap data

The following rules describe a mapping of OpenStreetMap (OSM) data to a car
transportation network, in the form of a directed weighted spatial graph G(V,E).

An OSM way instance is traversable if

• it does not have a visible-tag of value false,

• it does have a highway-tag, and,

• the value of this tag is different from bridleway, bus_guideway,
construction, cycleway, footway, path, pedestrian, proposed, raceway, service
or steps.

If a way instance has a oneway-tag, this way is traversable

• in the forward direction if this tag’s value equals yes, true or 1,

• in the backward direction if this tag’s value equals -1,

• in both directions if this tag’s value equals no, false or 0.

129

130 EXTRACTION OF A DIRECTED WEIGHTED SPATIAL GRAPH FROM OPENSTREETMAP DATA

Otherwise, if this way instance has a junction-tag, this way is traversable in
the forward direction if this tag’s value equals roundabout.
Otherwise, if the highway-tag’s value of this way equals motorway_link this
way is traversable in the forward direction.
In any other case this way is traversable in both directions.

If a way instance has a maxspeed-tag, its speed in km/h is defined as:

• 130 if this tag’s value equals none,

• 50 if this tag’s value equals signals,

• this tag’s value if it is a number,

• this tag’s value multiplied by 1.609344 if it is a number followed by mph.

Otherwise, when the way instance has a maxspeed-tag and its value has the
countrycode:waytype pattern, the country code and way type yield a speed
according to the following mapping.
(((BE, motorway), 120), ((BE, trunk), 90), ((BE, primary), 90), ((BE, sec-
ondary), 90), ((BE, tertiary), 90), ((BE, residential), 30), ((BE, living_street),
20),
((NL, motorway), 120), ((NL, trunk), 100), ((NL, primary), 80), ((NL,
secondary), 80), ((NL, tertiary), 80), ((NL, living_street), 15),
((ES, motorway), 120), ((ES, trunk), 100), ((ES, primary), 90), ((ES,
secondary), 90), ((ES, tertiary), 90), ((ES, residential), 30), ((ES, living_street),
20))
Otherwise, the same mapping applies to the country code derived from the data
extract’s metadata and the value of the highway-tag.
When the mapping failed, its speed is 50.

We define the reduced node reference list of a traversable way instance as
the list of node references appearing as the first or the last element in the node
reference list of any traversable way instance. The waylength between the
nodes ni and nj appearing in a full node reference list of a way instance equals
the sum of the spherical distances in metres between any two consecutive nodes
nk and nk+1 in the full node reference list, where i ≤ k < j.

Any OSM node instance appearing in the reduced node reference list of a
traversable way instance maps to a vertex of V . The values of its lon-tag and
lat-tag map to the spatial position in R2 of the vertex. dS(u, v) indicates the
spherical distance in metres between the vertices u and v.
Any two consecutive nodes of the reduced node reference list of a way traversable

EXTRACTION OF A DIRECTED WEIGHTED SPATIAL GRAPH FROM OPENSTREETMAP DATA 131

in the forward or in both directions maps to a directed edge of E starting in
the first corresponding vertex and ending in the second corresponding vertex.
Any two consecutive nodes of the reduced node reference list of a way traversable
in the backward or in both directions maps to a directed edge of E starting in
the second corresponding vertex and ending in the first corresponding vertex.
The weight of an edge e from vertex u to v corresponds to waylength(u,v)·0.06

speed(e) +
0.167, where speed(e) refers to the speed of the way instance from which e is
generated.

Bibliography

[1] Adler, J. L. A best neighbor heuristic search for finding minimum paths
in transportation networks. Transportation research record 1651 (1998),
49–53.

[2] Aggarwal, C. C., and Yu, P. S. Outlier detection for high dimensional
data. In SIGMOD Conference (2001).

[3] Angiulli, F., and Fassetti, F. Exploiting domain knowledge to detect
outliers. Data Mining and Knowledge Discovery (2013), 1–50.

[4] Angiulli, F., Greco, G., and Palopoli, L. Outlier detection by logic
programming. ACM Trans. Comput. Logic 9, 1 (2007), 7.

[5] Appice, A., Ceci, M., Lanza, A., Lisi, F. A., and Malerba, D.
Discovery of spatial association rules in geo-referenced census data: A
relational mining approach. Intelligent Data Analysis 7 (2003), 541–566.

[6] Bander, J. L., and White III, C. C. A heuristic search algorithm for
path determination with learning. IEEE Transactions on Systems, Man,
and Cybernetics - Part A: Systems and Humans 28, 1 (1998), 131–134.

[7] Bast, H., Funke, S., Sanders, P., and Schultes, D. Fast routing
in road networks with transit nodes. Science 316, 5824 (2007), 566.

[8] Berzal, F., Cubero, J.-C., and Marín, N. Anomalous association
rules. In IEEE ICDM Workshop Alternative Techniques for Data Mining
and Knowledge Discovery (2004).

[9] Blockeel, H., De Raedt, L., Jacobs, N., and Demoen, B. Scaling
up inductive logic programming by learning from interpretations. Data
Mining and Knowledge Discovery 3, 1 (1999), 59–93.

[10] Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., and
Vandecasteele, H. Improving the efficiency of inductive logic

133

134 BIBLIOGRAPHY

programming through the use of query packs. Journal of Artificial
Intelligence Research 16 (2002), 135–166.

[11] Blockeel, H., Dehaspe, L., Ramon, J., Struyfand, J., Assche,
A. V., Vens, C., and Fierens, D. The ACE Data Mining System,
User’s Manual. DTAI, K.U.Leuven, March 2009.

[12] Brandes, U., Gaertler, M., and Wagner, D. Experiments on
graph clustering algorithms. In Algorithms - ESA 2003, G. Battista and
U. Zwick, Eds., vol. 2832 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2003, pp. 568–579.

[13] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof:
Identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18,
2000, Dallas, Texas, USA (2000), W. Chen, J. F. Naughton, and P. A.
Bernstein, Eds., ACM, pp. 93–104.

[14] Car, A., and Frank, A. General principles of hierarchical spatial
reasoning: The case of wayfinding. In Proceedings of the 6th International
Symposium on Spatial Data Handling (September 1994), Taylor and
Francis.

[15] Caruso, C., and Malerba, D. A data mining methodology for anomaly
detection in network data. In KES ’07: Knowledge-Based Intelligent
Information and Engineering Systems and the XVII Italian Workshop
on Neural Networks on Proceedings of the 11th International Conference
(Berlin, Heidelberg, 2007), Springer-Verlag, pp. 109–116.

[16] Ceci, M., and Appice, A. Spatial associative classification:
propositional vs structural approach. J. Intell. Inf. Syst. 27, 3 (2006),
191–213.

[17] Chan, T. M. More algorithms for all-pairs shortest paths in weighted
graphs. In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing (New York, NY, USA, 2007), STOC ’07, ACM,
pp. 590–598.

[18] Cheverst, K., Davies, N., Mitchell, K., Friday, A., and
Efstratiou, C. Developing a context-aware electronic tourist guide:
some issues and experiences. In Proceedings of the Conference on Human
Factors in Computing Systems (2000), ACM, pp. 17–24.

[19] Cho, H.-J., and Lan, C.-L. Hybrid shortest path algorithm for vehicle
navigation. J. Supercomput. 49, 2 (2009), 234–247.

BIBLIOGRAPHY 135

[20] Chou, Y.-L., Romeijn, H. E., and Smith, R. L. Approximating
shortest paths in large-scale networks with an application to intelligent
transportation systems. INFORMS Journal on Computing 10, 2 (1998),
163–179.

[21] Clare, A., and King, R. D. Data mining the yeast genome in a lazy
functional language. In PADL ’03: Proceedings of the 5th International
Symposium on Practical Aspects of Declarative Languages (London, UK,
2003), Springer-Verlag, pp. 19–36.

[22] Dantzig, G. On the shortest route through a network. Management
Science 6 (1960), 187–190.

[23] Das, G., and Narasimhan, G. A fast algorithm for constructing sparse
euclidean spanners. Int. J. Comput. Geometry Appl. 7, 4 (1997), 297–315.

[24] De Raedt, L., Blockeel, H., Dehaspe, L., and Van Laer, W.
Three companions for data mining in first order logic. In Relational
Data Mining, S. Džeroski and N. Lavrač, Eds. Springer-Verlag, 2001,
pp. 105–139.

[25] De Raedt, L., and Dehaspe, L. Clausal discovery. Mach. Learn. 26,
2-3 (1997), 99–146.

[26] Dehaspe, L. Frequent Pattern Discovery in First-Order Logic. PhD
thesis, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium, 1998.

[27] Dehaspe, L., and Toivonen, H. Discovery of frequent datalog patterns.
Data Min. Knowl. Discov. 3, 1 (1999), 7–36.

[28] Deitch, R., and Ladany, S. The one-period bus touring problem:
Solved by an effective heuristic for the orienteering tour problem and
improvement algorithm. European Journal of Operational Research 127, 1
(2000), 69–77.

[29] Delafontaine, M., Nolf, G., van de Weghe, N., Antrop, M.,
and de Maeyer, P. Assessment of sliver polygons in geographical vector
data. Int. J. Geogr. Inf. Sci. 23, 6 (2009), 719–735.

[30] Dijkstra, E. W. A note on two problems in connexion with graphs.
Numerische Mathematik 1 (1959), 269–271.

[31] Džeroski, S. Multi-relational data mining: an introduction. SIGKDD
Explor. Newsl. 5, 1 (2003), 1–16.

136 BIBLIOGRAPHY

[32] Ester, M., Frommelt, E., peter Kriegel, H., and Sander, J.
Algorithms for characterization and trend detection in spatial databases.
In Proc. 4th Int. Conf. on Knowledge Discovery and Data Mining (KDD
(1998), pp. 44–50.

[33] Flinsenberg, I. I., van der Horst, M. M., Lukkien, J. J., and
Verriet, J. J. Creating graph partitions for fast optimum route planning.
WSEAS Transactions on Computers 3, 3 (2004), 569 – 574.

[34] Frank, R., Ester, M., and Knobbe, A. A multi-relational approach to
spatial classification. In KDD ’09: Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining (New
York, NY, USA, 2009), ACM, pp. 309–318.

[35] Frank, R., Jin, W., and Ester, M. Efficiently mining regional outliers
in spatial data. In Advances in Spatial and Temporal Databases, 10th
International Symposium, SSTD 2007, Boston, MA, USA, July 16-18,
2007, Proceedings (2007), D. Papadias, D. Zhang, and G. Kollios, Eds.,
vol. 4605 of Lecture Notes in Computer Science, Springer, pp. 112–129.

[36] Fu, L. Real-time vehicle routing and scheduling in dynamic and stochastic
traffic networks. PhD thesis, University of Alberta, Edmonton, Alberta,
1996.

[37] Fu, L., Sun, D., and Rilett, L. R. Heuristic shortest path algorithms
for transportation applications: state of the art. Computers and Operations
Research 33, 11 (2006), 3324–3343.

[38] Gao, J., Jin, R., Zhou, J., Yu, J. X., Jiang, X., and Wang, T.
Relational approach for shortest path discovery over large graphs. PVLDB
5, 4 (2011), 358–369.

[39] Geisberger, R., Sanders, P., Schultes, D., and Delling, D.
Contraction hierarchies: faster and simpler hierarchical routing in
road networks. In Proceedings of the 7th international conference on
Experimental algorithms (Berlin, Heidelberg, 2008), WEA’08, Springer-
Verlag, pp. 319–333.

[40] Godart, J. Combinatorial optimisation based decision support system
for trip planning. In Information and Communication Technologies in
Tourism 1999 (1999), D. Buhalis and W. Schertler, Eds., Springer, pp. 318–
327.

[41] Goldberg, A. V., and Harrelson, C. Computing the shortest path:
A search meets graph theory. In Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms (Philadelphia, PA, USA, 2005),
SODA ’05, Society for Industrial and Applied Mathematics, pp. 156–165.

BIBLIOGRAPHY 137

[42] Goldberg, A. V., Kaplan, H., and Werneck, R. F. Reach for
A*: Efficient point-to-point shortest path algorithms. In Proceedings
of the eighth Workshop on Algorithms Engineering and Experiments
(2006), vol. MSR-TR-200, Society for Industrial and Applied Mathematics,
pp. 129–143.

[43] Gudmundsson, J., Levcopoulos, C., Narasimhan, G., and Smid,
M. Approximate distance oracles for geometric spanners. ACM Trans.
Algorithms 4, 1 (Mar. 2008), 10:1–10:34.

[44] Gutman, R. J. Reach-based routing: A new approach to shortest
path algorithms optimized for road networks. In Proceedings of the
Sixth Workshop on Algorithm Engineering and Experiments and the First
Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA,
USA, January 10, 2004 (2004), L. Arge, G. F. Italiano, and R. Sedgewick,
Eds., SIAM, pp. 100–111.

[45] Haglin, D. J., and Manning, A. M. On minimal infrequent itemset
mining. In Proceedings of the 2007 International Conference on Data
Mining, DMIN 2007, June 25-28, 2007, Las Vegas, Nevada, USA (2007),
R. Stahlbock, S. F. Crone, and S. Lessmann, Eds., CSREA Press, pp. 141–
147.

[46] Hahne, F., Nowak, C., and Ambrosi, K. Acceleration of the a*-
algorithm for the shortest path problem in digital road maps. In OR
(2007), J. Kalcsics and S. Nickel, Eds., Springer, pp. 455–460.

[47] Han, J., Koperski, K., and Stefanovic, N. Geominer: a system
prototype for spatial data mining. SIGMOD Rec. 26, 2 (1997), 553–556.

[48] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions On
Systems Science And Cybernetics 4, 2 (1968), 100–107.

[49] Hochmair, H. H., and Navratil, G. Computation of scenic routes in
street networks. In Proceedings of the Geoinformatics Forum (Salzburg,
Austria, 2008), A. Car, G. Griesebner, and J. Strobl, Eds., Heidelberg:
Wichmann Verlag, pp. 124–133.

[50] Huang, Y.-W., Jing, N., and Rundensteiner, E. A. Optimizing path
query performance: graph clustering strategies. Transportation Research
Part C: Emerging Technologies 8, 1–6 (2000), 381 – 408.

[51] Jacob, R., Marathe, M., and Nagel, K. A computational study
of routing algorithms for realistic transportation networks. J. Exp.
Algorithmics 4 (1999), 6.

138 BIBLIOGRAPHY

[52] Jagadeesh, G. R., Srikanthan, T., and Quek, K. H. Heuristic
techniques for accelerating hierarchical routing on road networks. IEEE
Transactions on Intelligent Transportation Systems 3, 4 (2002), 301–309.

[53] Jung, S., and Pramanik, S. An efficient path computation model for
hierarchically structured topographical road maps. Knowledge and Data
Engineering, IEEE Transactions on 14, 5 (2002), 1029–1046.

[54] Kannan, R., Vempala, S., and Veta, A. On clusterings-good, bad
and spectral. In Foundations of Computer Science, 2000. Proceedings.
41st Annual Symposium on (2000), pp. 367–377.

[55] Karimi, H. A. Real-time optimal route computation: a heuristic
approach. ITS Journal 3, 2 (1996), 111–27.

[56] Karimi, H. A., Sutovsky, P., and Durcik, M. Accuracy and
performance assessment of a window-based heuristic algorithm for real-
time routing in map-based mobile applications. In Map-based Mobile
Services, L. Meng, A. Zipf, and S. Winter, Eds., Lecture Notes in
Geoinformation and Cartography. Springer Berlin Heidelberg, 2008,
pp. 248–266.

[57] Knorr, E. M., Ng, R. T., and Tucakov, V. Distance-based outliers:
Algorithms and applications. VLDB Journal: Very Large Data Bases 8,
3–4 (2000), 237–253.

[58] Koh, Y. S., and Rountree, N. Finding sporadic rules using apriori-
inverse. In PAKDD (2005), T. B. Ho, D. W.-L. Cheung, and H. Liu, Eds.,
vol. 3518 of Lecture Notes in Computer Science, Springer, pp. 97–106.

[59] Koh, Y. S., Rountree, N., and O’Keefe, R. A. Mining interesting
imperfectly sporadic rules. Knowl. Inf. Syst. 14, 2 (2008), 179–196.

[60] Koperski, K., and Han, J. Discovery of spatial association rules in
geographic information databases. In Proc. 4th Int. Symp. Advances in
Spatial Databases, SSD (6–9 1995), M. J. Egenhofer and J. R. Herring,
Eds., vol. 951, Springer-Verlag, pp. 47–66.

[61] Kuramochi, M., and Karypis, G. Finding frequent patterns in a large
sparse graph. Data Min. Knowl. Discov. 11, 3 (2005), 243–271.

[62] Lansdowne, Z. F., and Robinson, D. W. Geographic decomposition
of the shortest path problem, with an application to the traffic assignment
problem. Management Science 28, 12 (1982), 1380–1390.

BIBLIOGRAPHY 139

[63] Laporte, G. The vehicle routing problem: An overview of exact and
approximate algorithms. European Journal of Operational Research 59, 3
(1992), 345–358.

[64] Laros, J. F. J. Unique factors in the human genome. Master’s thesis,
Leiden University, 2005.

[65] Lauther, U. An extremely fast, exact algorithm for finding shortest
paths in static networks with geographical background. IfGI prints,
Institut für Geoinformatik, Universität Münster 22 (2004), 219–230.

[66] Lavrač, N., and Džeroski, S. Inductive Logic Programming:
Techniques and Applications. Ellis Horwood, New York, 1994.

[67] Lazarevic, A., Srivastava, J., Kumar, V., Banerjee, A., and
Chandola, V. Data mining for anomaly detection (tutorial). In European
Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (2008).

[68] Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., and hua
Teng, S. On trip planning queries in spatial databases. In Proc. of
SSTD-05 (2005), Springer, pp. 273–290.

[69] Libura, M., van der Poort, E. S., Sierksma, G., and van der
Veen, J. A. Stability aspects of the traveling salesman problem based on
k-best solutions. Discrete Applied Mathematics 87, 1–3 (1998), 159 – 185.

[70] Lin, Y.-W. A qualitative enquiry into openstreetmap making. New Rev.
Hypermedia Multimedia 17, 1 (Apr. 2011), 53–71.

[71] Lisi, F. A., and Malerba, D. Inducing multi-level association rules
from multiple relations. Machine Learning 55, 2 (2004), 175–210.

[72] Liu, B. Route finding by using knowledge about the road network. IEEE
Transactions on Systems, Man, and Cybernetics–Part A: Systems and
Humans 27(4) (1997), 436–448.

[73] Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind,
D. W. Geographic Information Systems and Science. John Wiley & Sons,
Apr. 2005.

[74] Maervoet, J. Rule induction for geographical databases. Master’s thesis,
Vrije Universiteit Brussel, 2007.

[75] Malaka, R., and Zipf, A. Deep map - challenging IT research
in the framework of a tourist information system. Information and
Communication Technologies in Tourism (2000), 15–27.

140 BIBLIOGRAPHY

[76] Malerba, D., Esposito, F., Lanza, A., Lisi, F., and Appice, A.
Empowering a gis with inductive learning capabilities: The case of ingens.
Journal of Computers, Environment and Urban Systems 27 (2003), 265–
281.

[77] Malerba, D., Esposito, F., Lisi, F., and Appice, A. Mining spatial
association rules in census data. Research in Official Statistics 5, 1 (2002),
19–44.

[78] Maruyama, A., Shibata, N., Murata, Y., Yasumoto, K., and Ito,
M. A personal tourism navigation system to support traveling multiple
destinations with time restrictions. In Proceedings of AINA 2004 (2004),
IEEE Computer Society, pp. 18–22.

[79] Maue, J., Sanders, P., and Matijevic, D. Goal-directed shortest-
path queries using precomputed cluster distances. J. Exp. Algorithmics
14 (Jan. 2010), 2:3.2–2:3.27.

[80] Monien, B., and Diekmann, R. A local graph partitioning heuristic
meeting bisection bounds. In Proceedings of the Eighth SIAM Conference
on Parallel Processing for Scientific Computing, PPSC 1997, March 14-17,
1997, Hyatt Regency Minneapolis on Nicollel Mall Hotel, Minneapolis,
Minnesota, USA (1997), SIAM.

[81] Münz, G., Li, S., and Carle, G. Traffic anomaly detection
using k-means clustering. In Proc. of Leistungs-, Zuverlässigkeits-
und Verlässlichkeitsbewertung von Kommunikationsnetzen und Verteilten
Systemen, 4. GI/ITG-Workshop MMBnet 2007 (Hamburg, Germany,
Sept. 2007).

[82] Narasimhan, G., and Smid, M. Approximating the stretch factor of
euclidean graphs. SIAM J. Comput. 30, 3 (May 2000), 978–989.

[83] Niaraki, A. S., and Kim, K. Ontology based personalized route
planning system using a multi-criteria decision making approach. ESWA
36, 2 (2009), 2250–2259.

[84] Plantevit, M., Goutier, S., Guisnel, F., Laurent, A., and
Teisseire, M. Mining unexpected multidimensional rules. In DOLAP
(2007), I.-Y. Song and T. B. Pedersen, Eds., pp. 89–96.

[85] Pothen, A. Graph partitioning algorithms with applications to scientific
computing. In Parallel Numerical Algorithms (1997), Kluwer Academic
Press, pp. 323–368.

BIBLIOGRAPHY 141

[86] Provost, F. J., and Kolluri, V. A survey of methods for scaling up
inductive algorithms. Data Mining and Knowledge Discovery 3, 2 (1999),
131–169.

[87] Qiao, M., Cheng, H., Chang, L., and Yu, J. X. Approximate
shortest distance computing: A query-dependent local landmark scheme.
In IEEE 28th International Conference on Data Engineering (ICDE
2012), Washington, DC, USA (Arlington, Virginia), 1-5 April, 2012
(2012), A. Kementsietsidis and M. A. V. Salles, Eds., IEEE Computer
Society, pp. 462–473.

[88] Qiao, M., Cheng, H., and Yu, J. X. Querying shortest path
distance with bounded errors in large graphs. In Proceedings of the 23rd
international conference on Scientific and statistical database management
(Berlin, Heidelberg, 2011), SSDBM’11, Springer-Verlag, pp. 255–273.

[89] Ramaswamy, S., Rastogi, R., and Shim, K. Efficient algorithms for
mining outliers from large data sets. SIGMOD Rec. 29, 2 (2000), 427–438.

[90] Ramon, J. Clustering and instance based learning in first order logic.
PhD thesis, K.U.Leuven, 2002.

[91] Rogers, S., and Langley, P. Personalized driving route
recommendations. In Proceedings of the AAAI Workshop on Recommender
Systems (1998), Madison, pp. 96–100.

[92] Sanders, P., and Schultes, D. Highway hierarchies hasten exact
shortest path queries. In Algorithms - ESA 2005, G. S. Brodal and
S. Leonardi, Eds., vol. 3669 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2005, pp. 568–579.

[93] Sanders, P., and Schultes, D. Engineering highway hierarchies. In
Proceedings of the 14th conference on Annual European Symposium -
Volume 14 (London, UK, UK, 2006), ESA’06, Springer-Verlag, pp. 804–
816.

[94] Sanders, P., and Schultes, D. Engineering fast route planning
algorithms. In Experimental Algorithms, vol. 4525 of LNCS. Springer,
2007, pp. 23–36.

[95] Sankaranarayanan, J., and Samet, H. Distance oracles for spatial
networks. In Data Engineering, 2009. ICDE ’09. IEEE 25th International
Conference on (2009), pp. 652–663.

[96] Schultes, D., and Sanders, P. Dynamic highway-node routing. In
Experimental Algorithms, C. Demetrescu, Ed., vol. 4525 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2007, pp. 66–79.

142 BIBLIOGRAPHY

[97] Sharifzadeh, M., and Shahabi, C. Processing optimal sequenced route
queries using voronoi diagrams. Geoinformatica 12, 4 (2008), 411–433.

[98] Shcherbina, O., and Shembeleva, E. Modeling recreational systems
using optimization techniques and information technologies. Annals of
OR (2011), 1–21.

[99] Shekhar, S., Zhang, P., Huang, Y., and Vatsavai, R. R. Data
Mining: Next Generation Challenges and Future Directions. AAAI/MIT
Press, 2003, ch. Trends in Spatial Data Mining.

[100] Sommer, C., Verbin, E., and Yu, W. Distance oracles for sparse
graphs. In 50th IEEE Symposium on Foundations of Computer Science
(FOCS) (2009), pp. 703–712.

[101] Souffriau, W., Maervoet, J., Vansteenwegen, P., Van-
den Berghe, G., and Van Oudheusden, D. A mobile tourist decision
support system for small footprint devices. In Bio-Inspired Systems:
Computational and Ambient Intelligence (2009), vol. 5517 of Lecture Notes
in Computer Science, Springer, pp. 1248–1255.

[102] Souffriau, W., and Vansteenwegen, P. Tourist trip planning
functionalities: State-of-the-art and future. In Current Trends in Web
Engineering (2010), F. Daniel and F. Facca, Eds., vol. 6385 of LNCS,
Springer, pp. 474–485.

[103] Souffriau, W., Vansteenwegen, P., Vertommen, J., Van-
den Berghe, G., and Van Oudheusden, D. A personalised tourist trip
design algorithm for mobile tourist guides. Applied Artificial Intelligence
22, 10 (2008), 964–985.

[104] Stolle, C., Karwath, A., and De Raedt, L. Classic’cl: An integrated
ilp system. In Proceedings of the 8th International Conference of Discovery
Science (2005), Springer-Verlag, pp. 354–362.

[105] Strauss, C. A note on hierarchical routing algorithms based on
traverse-oriented road networks. International Journal of Spatial Data
Infrastructures Research 4 (2009), 239–264.

[106] Sun, Y., and Lee, L. Agent-based personalized tourist route advice
system. In SPRS Congress Istanbul 2004, Proceedings of Commission II
(2004), pp. 319–324.

[107] Suzuki, E. Undirected discovery of interesting exception rules. IJPRAI
16, 8 (2002), 1065–1086.

BIBLIOGRAPHY 143

[108] Tarapata, Z. Selected multicriteria shortest path problems: An analysis
of complexity, models and adaptation of standard algorithms. Int. J. Appl.
Math. Comput. Sci. 17, 2 (2007), 269–287.

[109] Thorup, M., and Zwick, U. Approximate distance oracles. In
Proceedings on 33rd Annual ACM Symposium on Theory of Computing,
July 6-8, 2001, Heraklion, Crete, Greece (2001), J. S. Vitter, P. G. Spirakis,
and M. Yannakakis, Eds., ACM, pp. 183–192.

[110] van Dongen, S. M. Graph Clustering by Flow Simulation. PhD thesis,
University of Utrecht, The Netherlands, 2000.

[111] Vansteenwegen, P., Souffriau, W., and Van Oudheusden, D.
The orienteering problem: A survey. European Journal of Operational
Research 209, 1 (2011), 1 – 10.

[112] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., and
Van Oudheusden, D. A guided local search metaheuristic for the team
orienteering problem. European Journal of Operational Research 196, 1
(2009), 118–127.

[113] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., and
Van Oudheusden, D. Iterated local search for the team orienteering
problem with time windows. Comput. Oper. Res. 36, 12 (2009), 3281–3290.

[114] Vansteenwegen, P., and Van Oudheusden, D. The Mobile Tourist
Guide: an OR Opportunity. OR Insight 20, 3 (2007), 21–27.

[115] Wagner, D., and Willhalm, T. Geometric speed-up techniques for
finding shortest paths in large sparse graphs. In Proceedings of Algorithms
- ESA 2003, 11th Annual European Symposium, Budapest, Hungary,
September 16-19, 2003, Lecture Notes in Computer Science (2003), G. D.
Battista and U. Zwick, Eds., vol. 2832, Springer, pp. 776–787.

[116] Zeitouni, K. A survey of spatial data mining methods databases and
statistics point of views. IRM Press, Hershey, PA, United States, 2002,
pp. 229–242.

[117] Zhan, B. F., and Noon, C. E. Shortest path algorithms: An evaluation
using real road networks. Transportation Science 32, 1 (February 1998),
65–73.

[118] Zhu, C., Kitigawa, H., Papadimitriou, S., and Faloutsos, C.
Outlier detection adaptive to users’ intentions. In Proceedings of the 15th
IEICE Data Engineering Workshop (2004).

Curriculum vitae

Joris Maervoet obtained a master in Industrial Science Electronics/ICT (KdG,
Antwerp) and started as an applied research associate at KaHo Sint-Lieven in
2002. From 2002 to 2007, he was involved in technology transfer projects on
software development for mobile devices and mobile agents. In 2007 he graduated
as a master in Computer Science at Vrije Universiteit Brussel. From 2007 to
2009 he worked on various technology transfer projects including relational
data mining for quality maintenance in dynamic geographical databases (Tele
Atlas, currently TomTom) and Java ME porting of a decision component for
tourist trips (citytripplanner.com). In December 2009, he obtained a grant of
more than 300k€ for a 4-year industrial PhD mandate at KU Leuven in close
collaboration with the company RouteYou.com. This company manages a web
2.0 environment which enables users to create, share and use tourist routes in
an interactive way.

Joris has a hands-on attitude of applying and valorising methods and concepts
from academia in industry. His research interests include almost everything in
the intersection of geoinformatics and artificial intelligence, as well as geographic
information systems and relational data mining. He is also experienced in the
organisation of conferences and seminars and in project-based teaching and the
supervision of thesisses at the ’Faculty of Engineering Technology’. Joris is a
member of the Combinatorial Optimisation and Decision Support (CODeS)
research group at KU Leuven.

145

List of publications

Articles in internationally reviewed academic journals

Maervoet, J., Vens, C., Vanden Berghe, G., Blockeel, H., De Causmaecker, P.
(2012). Outlier detection in relational data: a case study in geographical
information systems. Expert Systems with Applications, 39 (5), art.nr.
ESWA7039, 4718-4728.

Technical reports

Maervoet, J., Christiaens, J., De Causmaecker, P., Vanden Berghe, G. Least
squares approximate distance oracles for spatial networks.

Maervoet, J., Brackman, P., De Causmaecker, P., Verbeeck, K., Vanden Berghe,
G. Wayfinding by multi-level heuristic node promotion in real road networks.

Other academic books; as editor

Proceedings of BNAIC 2011. (De Causmaecker, P., Ed., Maervoet, J., Ed.,
Messelis, T., Ed., Verbeeck, K., Ed., Vermeulen, T., Ed.). Drongen: Nevelland.

147

148 LIST OF PUBLICATIONS

Papers at international scientific conferences and
symposia, published in full in proceedings

Maervoet, J., Brackman, P., Verbeeck, K., De Causmaecker, P., Vanden Berghe,
G. (2013). Tour Suggestion for Outdoor Activities. In Liang, S. (Ed.), Wang,
X. (Ed.), Claramunt, C. (Ed.), Lecture Notes in Computer Science: Vol. 7820.
W2GIS 2013. Banff, AB, Canada, 4-5 April 2013 (pp. 54-63). Heidelberg,
Germany: Springer.

Vermeulen, T., Vangheluwe, K., Maervoet, J., Verbeeck, K., Verhoeve, P.,
Stubbe, B. (2010). NuCiA - Nurse call simulation in agent environments. In
Janssens, G. (Ed.), Ramaekers, K. (Ed.), Caris, A. (Ed.), Proceedings of the
2010 European Simulation and Modelling Conference. European Simulation
and Modelling Conference. Hasselt, 25-27 October 2010 (pp. 276-279). Ostend,
Belgium: Eurosis-eti.

Souffriau, W., Maervoet, J., Vansteenwegen, P., Vanden Berghe, G., Van
Oudheusden, D. (2009). A mobile tourist decision support system for small
footprint devices. In: Cabestany J., Sandoval F., Prieto A., Corchado J. (Eds.),
Bio-inspired systems: computational and ambient intelligence. Berlin: Springer-
verlag, 1248-1255.

Maervoet, J., De Causmaecker, P., Nowé, A., Vanden Berghe, G. (2008).
Feasibility Study of Applying Descriptive ILP to Large Geographic Databases.
Proceedings of the Workshop on Mining Multidimensional Data (MMD).
European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML PKDD). Antwerp, 15-19 September
2008 (pp. 1-15).

Demonstration papers at international scientific con-
ferences and symposia, published in proceedings

Maervoet, J., Blomme, L., Verbeeck, K., Vanden Berghe, G., De Causmaecker,
P. (2010). Road Network Hierarchy Generation by Distributed Agents for a
Routing Application. Proceedings of BNAIC 2010. Benelux Conference on
Artificial Intelligence. Luxembourg, 25-26 October 2010.

Maervoet, J., Souffriau, W., Vansteenwegen, P., Vanden Berghe, G., Van
Oudheusden, D. (2009). Tourist Decision Support for Mobile Navigation
Systems: a Demonstration. In Calders, T. (Ed.), Tuyls, K. (Ed.), Pechenizkiy, M.

LIST OF PUBLICATIONS 149

(Ed.), Proceedings of BNAIC 2009. Benelux Conference on Artificial Intelligence.
Eindhoven, 29-30 October 2009 (pp. 393-394).

Maervoet, J., De Causmaecker, P., Vanden Berghe, G. (2008). A generic rule
miner for geographic data (demonstration paper). In Nijholt, A. (Ed.), Pantic,
M. (Ed.), Poel, M. (Ed.), Hondorp, H. (Ed.), Proceedings of BNAIC 2008.
Belgian-Dutch Conference on Artificial Intelligence. Boekelo, 30-31 October
2008.

Meeting abstracts, presented at other scientific con-
ferences and symposia, published or not published in
proceedings or journals

Maervoet, J., Baker, K., Vanden Berghe, G. (2013). Route Planning
Enhancement through Collective Intelligence. LICT Scientific Symposium
on Adaptivity in ICT. Heverlee, 11 September 2013.

Maervoet, J., De Causmaecker, P., Vanden Berghe, G. (2012). Structural
heuristics for personalised routes. Doctoral Symposium 2012 (colocated with
ECUMICT 2012). Gent, 23 March 2012.

Maervoet, J. (2008). A theoretical framework and algorithms for the detection
of irregularities in relational data. Doctoral symposium - Onderzoek in de kijker
bij KaHo Sint-Lieven en KHBO. Gent, 9 December 2008.

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

COMBINATORIAL OPTIMISATION AND DECISION SUPPORT
Celestijnenlaan 200A box 2402

3001 LEUVEN, Belgium

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Research context and industrial cooperation
	Themes and objectives
	Structure of the thesis

	Feasibility study of applying descriptive ILP to large geographic databases
	Introduction
	Problem description
	Quality control for geographical data
	Data model and rule examples
	Challenges

	Applicability of ILP to Quality Gate
	Motivation
	ILP subdomains
	Quality Gate in relation to ILP subdomains

	Case study
	Our approach based on WARMR
	Data preparation and modelling: the Beggen data
	Results
	Tracing anomalies and rule export

	Discussion
	A reflection on the experiment
	Towards a larger scale application of the experiment

	Conclusion

	Outlier detection in relational data: a case study
	Introduction
	Related work
	Outlier detection
	Spatial rule mining

	Problem description
	System analysis
	The dynamic data model
	Rule and outlier type analysis
	The integration of a relational datamining technique

	System design
	Rationale
	Generic rule language
	Data preprocessing
	Data mining and pattern postprocessing

	Results
	Experiment 1: discovering inter-feature relations
	Experiment 2: discovering intra-feature relations
	Rule set for experiment reconstruction

	Future work
	Conclusion

	Wayfinding by multi-level heuristic node promotion in real road networks
	Introduction
	Related work
	Heuristics for one-to-one shortest path finding
	Applicability of classical hierarchical approaches
	Classical hierarchical shortest path finding

	Multi-level heuristic node promotion in transformed network graphs
	Algorithm
	The role of transition points and the heuristic estimate
	Preprocessing overview
	Updating overview

	Multi-level heuristic node promotion in real road networks
	Adaptation 1: cell classification and merge
	Adaptation 2: easing the node promotion condition
	Adaptation 3: transition point corrections
	Adaptation 4: improving the transition point selection

	Experiment
	Objectives and methodology
	Geographical dataset
	Basic wayfinding and MLHNP settings
	Results

	Conclusion

	Least squares approximate distance oracles for spatial networks
	Introduction
	Least squares approximate distance oracles
	Basic concepts
	Oracles of unit size

	An advanced ADO based on clusters and transit nodes
	Related work
	Definitions
	ADO construction
	Network distance approximation algorithm
	Complexity

	Experiment
	Conclusion

	Tour suggestion for outdoor activities
	Introduction
	Tour suggestion models for leisure and tourism
	The outdoor activity tour suggestion problem
	Approach
	Results
	Conclusion

	Conclusion
	Contribution
	Further directions

	Extraction of a directed weighted spatial graph from OpenStreetMap data
	Bibliography
	Curriculum vitae
	List of publications

