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Chapter preview. We give a general discussion of linear mixed models and continue

with illustrating specific actuarial applications of this type of models. Technical details

on linear mixed models follow: model assumptions, specifications, estimation techniques

and methods of inference. We include three worked out examples with the R lme4 package

and use ggplot2 for the graphs. Full code is available from the book project’s web page.

1 Mixed models in actuarial science

1.1 What?

A first example of a linear mixed model. As explained in Chapter XXX , a [Reference to Chapter

on longitudinal data.]

panel data set follows a group of subjects (e.g. policyholders in an insurance portfolio)

over time. We therefore denote variables (e.g. yit, xit) in a panel data set with double

subscripts, indicating the subject (say i) and the time period (say t). As motivated in

Section 1.2 of Chapter XXX, the analysis of panel data has several advantages. Panel

data allow to study the effect of certain covariates on the response of interest (as in

usual regression models for cross–sectional data), while accounting appropriately for the

dynamics in these relations. For actuarial ratemaking the availability of panel data is of

particular interest in light of a posteriori rating. An a posteriori tariff predicts the current

year loss for a particular policyholder, using (among others) the dependence between the

current year’s loss and losses reported by this policyholder in previous years. Credibility

theory, being a cornerstone of actuarial mathematics, is an example of such an a posteriori

rating system. Section 2 in Chapter XXX presents a sequence of models suitable for the

analysis of panel data in the context of linear models. Recall in particular the well–known

linear regression model with common intercept (or: cross–sectional model) (see ‘Linear

Model 1’ in Chapter XXX, Section 2)

Eyit = α + x
′

itβ. (1)
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This model completely pools the data, ignores the panel structure and produces identical

estimates for all subjects i (for a given xit). The linear fixed effects model (‘Linear Model

2’ in Chapter XXX, Section 2) specifies

Eyit = αi + x
′

itβ, (2)

where each subject i has its own unknown - but fixed - intercept αi. Hence, the name

fixed effects model. Independence among all observations is assumed, and Var(yit) = σ2.

This regression model does not pool information and estimates each αi separately using

least squares or maximum likelihood. This approach often results in overfitting and

unreasonable α̂′is (see Gelman (2006)). The linear random effects model (see ‘Linear

Model 3’ in Chapter XXX) is an alternative approach, balancing between no pooling and

complete pooling of data. It allows for random intercepts, with model equation

yit = αi + x
′

itβ + εit, (3)

where εit ∼ (0, σ2
ε )

1. The subject specific intercept αi is now a random variable with

zero mean and variance σ2
α. Hence the name random effects model. Moreover, the

model in (3) is a first example of a linear mixed model ([LMM]), with a combination

(‘mix’ ) of fixed and random effects in the linear predictor. The errors εit with variance

σ2
ε structure variability within subject i, whereas the random intercepts with variance σ2

α

represent variation between subjects. Compared with the no pooling and complete pooling

examples, the linear mixed model has many interesting features, as is explained below.

Mixed or multilevel models for clustered data. Panel data is a first example of so–

called clustered data. As mentioned in Section 4 in Chapter XXX , predictive modeling[Reference to Chapter

on longitudinal and

panel data] in actuarial science (and in many other statistical disciplines) will confront analysts with

data structures going beyond the cross–sectional as well as panel data design. Section 3

in this chapter includes multiple motivating examples. Mixed (or: multilevel) models are

statistical models suitable for the analysis of data structured in nested (i.e. hierarchical)

or non–nested (i.e. cross–classified, next to each other instead of hierachically nested)

clusters or levels. In this chapter we explain the use of linear mixed models for

multilevel data. A discussion of non–linear mixed models follows in Chapter XXX .[Reference to Chapter

on non-linear mixed

models.] Chapter XXX (on longitudinal and panel data), XXX (on credibility), and XXX (on

spatial statistics) in this book include additional examples of clustered data and their

analysis with mixed models.[Reference to Chapters

on credibility, longitu-

dinal data and spatial

stats.] Textbook examples. A standard textbook example of multilevel data is the ‘students

in schools’ data structure. Extended versions are the ‘students in classes in schools’

or ‘students followed repeatedly over time, in classes in schools’ examples, where each

example is adding an extra level of observations to the data hierarchy. Connecting with

the actuarial audience of this book, we consider the example of a collection of vehicles j

(with j = 1, . . . , ni) insured under fleets i (with i = 1, . . . ,m). Let yij be the loss observed

1The notation εit ∼ (0, σ2
ε ) implies E[εit] = 0 and Var[εit] = σ2

ε .
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Linear mixed models for predictive modelling in actuarial science

for vehicle j in fleet i (in a well defined period of exposure). Denote with x1,ij covariate

information at vehicle–level (our level 1). x1,ij is, for example, the cubic capacity or

vehicle age of car j in fleet i. x2,i is a predictor at fleet–level (our level 2). x2,i could,

for example, refer to the size of the fleet, or the business in which the fleet is operating.

The so–called varying intercepts model is a basic example of a multilevel model. It

combines a linear model at vehicle–level (i.e. level 1)

yij = βi + β1,0 + x1,ijβ1,1 + ε1,ij, j = 1, . . . , ni, (4)

with a linear model at fleet–level (i.e. level 2)

βi = ε2,i, i = 1, . . . ,m, (5)

or, when fleet–specific information is available,

βi = x2,iβ2 + ε2,i, i = 1, . . . ,m. (6)

Here ε2,i ∼ (0, σ2
2) and ε1,ij ∼ (0, σ2

1) are mean zero, independent error terms, representing

variability (or heterogeneity) at both levels in the data. Written as a single model

equation, the combination of (4) and, for example, (5), is:

yij = β1,0 + ε2,i + x1,ijβ1,1 + ε1,ij. (7)

This regression model uses an overall intercept, β1,0, a fleet–specific intercept, ε2,i, a

vehicle–level predictor x1,ij with corresponding regression parameter, β1,1, and an error

term ε1,ij. We model the fleet–specific intercepts, ε2,i, as random variables. This allows

to reflect heterogeneity between fleets in an efficient way, even for a large number

of fleets. Indeed, by assigning a distribution to these error terms, we basically only

need an estimate for the unknown parameters (i.e. the variance component σ2
2) in their

distribution. The other regression parameters, β1,0 and β1,1, are considered fixed (in

frequentist terminology); we do not specify a distribution for them. The model in (7) is –

again – an example of a linear mixed model ([LMM]). Mixed refers to the combination

of fixed and random effects, combined in a model specification which is linear in the

random (ε2,i) as well as in the fixed effects (β1,0 and β1,1). Allowing for varying slopes

and intercepts results in the following model equations

yij = βi,0 + x1,ijβi,1 + β1,0 + x1,ijβ1,1 + ε1,ij, i = 1, . . . ,m, j = 1, . . . , ni, (8)

with

βi,0 = ε2,i,0,

βi,1 = ε2,i,1. (9)
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Written as a single model equation, this multilevel model becomes

yij = β1,0 + ε2,i,0 + x1,ijβ1,1 + x1,ijε2,i,1 + ε1,ij. (10)

Besides having random intercepts (ε2,i,0), the model also allows the effect of predictor x1,ij
on the response to vary by fleet. This is modelled here by the random slopes ε2,i,1.

Main characteristics and motivations. The varying intercepts and varying

slopes examples reveal the essential characteristics of a multilevel model: (1) varying

coefficients and (2) a regression model for these varying coefficients (possibly using group–

level predictors). Motivations for using multilevel modeling are numerous (see Gelman

and Hill (2007)); we illustrate many of them throughout this chapter. With data often

being clustered (e.g. students in schools, students in classes in schools, cars in fleets,

policyholder data over time, policies within counties, . . .), statistical methodology should

reflect the structure in the data and use it as relevant information when building statistical

models. Using traditional (say linear or generalized linear models, as in Chapter XXX and

XXX) regression techniques, the clustering in groups is either ignored (‘complete pool-

ing’ ) or groups are analyzed separately (‘no pooling’ ) resulting in overfitting because

even small clusters will get their own regression model. The multilevel model enhances

both extremes, e.g. in the varying intercepts model from (7) complete pooling corresponds

with σ2
2 → 0 and σ2

2 →∞ with no pooling. Multilevel modeling is a compromise between

these two extremes, known as partial pooling. In this case, we impose a distributional

assumption on ε2,i (with variance σ2
2) and estimate σ2

2 from the data. This allows taking

heterogeneity between clusters into account, making appropriate cluster–specific predic-

tions and structuring the dependence between observations belonging to the same cluster.

Moreover, predictions related to new clusters become readily available. Whereas in clas-

sical regression cluster–specific indicators can not be included along with cluster–specific

predictors, multilevel models allow doing this in a convenient way (see (6)). When spec-

ifying regression models at different levels in the data, interactions between explanatory

variables at different levels (so–called cross–level effects) may appear. The latter is often

mentioned as another advantage of multilevel models.

What’s in a name?: labels and notation. Multilevel models carry many labels

in statistical literature. They are sometimes called hierarchical, because data are often

hierarchically structured (see the students in schools example) and because of the hierar-

chy in the model specifications. However, non–nested models, with levels structured next

to each other, instead of hierarchically nested, can also by analyzed with the multilevel

methodology. Multilevel models are also known as random effects or mixed models,

since they combine (a mix of) fixed and random effects. This distinction is only applica-

ble when using frequentist methodology and terminology. A Bayesian analysis treats all

regression parameters as random variables, specifying an appropriate prior distribution

for each parameter. Besides terminology, mathematical notation can be very different

among statistical sources. This should not be a surprise, taking into account that multi-

level models can be formulated for basically any number of levels, involving nested and

4



Linear mixed models for predictive modelling in actuarial science

non–nested group (or: cluster) effects, predictor information at different levels, and so on.

For instance, Gelman and Hill (2007) denote the varying coefficients and varying slopes

models in (4)+(6) and (10), respectively, in a more intuitive way:

yi = αj[i] + βxi + εi, i = 1, . . . , N

αj = a+ buj + ηj, j = 1, . . . ,m, (11)

and

yi = αj[i] + βj[i]xi + εi, i = 1, . . . , N

αj = a0 + b0uj + ηj1, j = 1, . . . ,m

βj = ηj2. (12)

Observations in the data set are indexed with i, where N is the total number of obser-

vations. j denotes the fleets in the data set, and j[i] is the fleet to which observation i

belongs. xi refers to covariate information available at vehicle–level (i.e. level 1 in (4))

and uj refers to covariate information available at fleet–level (i.e. level 2 in (6)).

The notation used from Section 2 on is motivated by generality, and inspired by Frees

(2004a). This notation allows writing down model equations in a structured way, with

clear reference to the particular level in the data to which the parameter/predictor is

attached. Moreover, this notation can be used for any number of levels in a concise

way. Section 2 explains the connection between this particular notation and the matrix

notation (and corresponding manipulations) often developed in statistical literature on

mixed models. When discussing examples, we replace this general notation with a more

intuitive one, explicitly referring to the structure of the data under consideration.

1.2 Why?: motivating examples from actuarial science

Research on mixed models originated in bio- and agricultural statistics. For example,

the topic of variance components models, a particular example of models with random

effects (see Searle et al. (2008)), was studied extensively in the context of animal breeding

experiments. The following (non–exhaustive) list of illustrations should convince the

reader of the usefulness of mixed models as a modeling tool in actuarial science, with

applications ranging from ratemaking to reserving and smoothing. We will deploy some

of these examples within the framework of linear mixed models, while others are more

appropriate for analysis with generalized linear mixed models (see Chapter XXX). [Reference to Chapter

on non–linear mixed

models.]

Illustration 1 (Credibility models). Credibility theory is an a posteriori ratemaking tech-

nique. Credibility models are designed for the prediction of an insured’s risk premium, by

weighting the insured’s own loss experience and the experience in the overall portfolio. An

extensive discussion of credibility models is available in Chapter XXX in this book. Credi- [Reference to Chapter

on credibility.]

bility models have a natural and explicit interpretation as special examples of mixed models.

Frees et al. (1999) demonstrate this connection, by reinterpreting credibility models using

mixed model parlance. This mapping highly increases the accessibility and usefulness of

such models. Indeed, the complete machinery (including computational methods and soft-
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ware) of mixed models becomes available for the analysis of these actuarial models. The

famous Hachemeister data set (see Hachemeister (1975)) has often been used in credibility

literature. This data set considers 12 periods, from the third quarter of 1970 to the second

quarter of 1973, of bodily injury losses covered by a private passenger auto insurance. For

5 states the total loss and corresponding number of claims are registered. Figure 1 shows

a trellis plot (see Chapter XXX) of the average loss per claim (in black), followed over[Reference to Chapter

on longitudinal and

panel data.] time, per state. The plot also shows a linear regression line (in blue) and corresponding

confidence intervals (in grey). In Section 3 we use linear mixed models to analyze this

data set and predict the next year’s average claim per state. Further analysis – with focus

on credibility theory – follows in Chapter XXX.[Reference to Chapter

on credibility.]
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Figure 1: Trellis plot of average losses per period (in black) and a linear regression line
(in blue) with corresponding confidence intervals (in grey); each panel represents
one state: Hachemeister data.

Illustration 2 (Workers’ Compensation Insurance: losses). The data set is from the

National Council on Compensation Insurance (USA) and contains losses due to permanent

partial disability (see Klugman (1992)). 121 occupation or risk classes are observed over a

period of 7 years. The variable of interest is the Loss paid out (on a yearly basis) per risk
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class. Possible explanatory variables are Year and Payroll. Frees et al. (2001) and Antonio

and Beirlant (2007) present mixed models for the pure premium, PP=Loss/Payroll. For

a random subsample of 10 risk classes, Figure 2 shows the time series plot of Loss (left)

and corresponding Payroll (right).
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Figure 2: Time series plot of losses (left) and payroll (right) for a random sample of 10
risk classes: workers’ compensation data (losses).

Illustration 3 (Workers’ Compensation Insurance: frequencies). The data are from Klug-

man (1992) (see Scollnik (1996), Makov et al. (1996) and Antonio and Beirlant (2007) for

further discussion). Frequency counts in workers’ compensation insurance are observed

on a yearly basis for 133 occupation classes followed during 7 years. Count is the response

variable of interest. Possible explanatory variables are Year and Payroll, a measure of expo-

sure denoting scaled payroll totals adjusted for inflation. Figure 3 shows exploratory plots

for a random subsample of 10 occupation classes. Statistical modeling should take into

account the dependence between observations on the same occupation class and reflect the

heterogeneity between different classes. In ratemaking (or tarification) an obvious ques-

tion for this example would be: ‘What is the expected number of claims for a risk class in

the next observation period, given the observed claims history of this particular risk class

and the whole portfolio?’. Since the response variable in this example is claim frequency,

we will analyze this data set within the context of Generalized Linear Mixed instead of

Linear Mixed Models (in Chapter XXX). [Reference to Chapter

on non–linear mixed

models.]
Illustration 4 (Hierarchical data structures). With panel data a group of subjects is fol-

lowed over time, as in Illustrations 2 and 3. This is a basic and widely studied example

of hierarchical data. Obviously, more complex structures may occur. Insurance data of-

ten come with some kind of inherent hierarchy. Motor insurance policies grouped in

zip codes within counties within states are one example. Workers’ compensation or fire

insurance policies operating in similar industries or branches is another one. Consider

e.g. the manufacturing versus education branch, with employees in manufacturing firms

indicating larger claims frequencies, and restaurants versus stores, with restaurants hav-

ing a higher frequency of fire incidents than stores, and so on. A policy holder holding
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Figure 3: Time series plot of counts (left) and payroll (right) for a random sample of 10
risk classes: workers’ compensation data (counts).

multiple policies (e.g. for theft, motor, flooding, . . .), followed over time, within the same

company, is an example of a hierarchical data structure studied in the context of multidi-

mensional credibility (see Bühlmann and Gisler (2005)). Another detailed multilevel

analysis (going beyond the panel data structure) is Antonio et al. (2010). These authors

model claim count statistics for vehicles insured under a fleet policy. Fleet policies

are umbrella–type policies issued to customers whose insurance covers more than a single

vehicle. The hierarchical or multilevel structure of the data is as follows: vehicles (v)

observed over time (t), nested within fleets (f), with policies issued by insurance compa-

nies (c). Multilevel models allow for incorporating the hierarchical structure of the data

by specifying random effects at vehicle, fleet and company levels. These random effects

represent unobservable characteristics at each level. At vehicle level, the missions assigned

to a vehicle or unobserved driver behavior may influence the riskiness of a vehicle. At

fleet level, guidelines on driving hours, mechanical check-ups, loading instructions and so

on, may influence the number of accidents reported. At insurance company level, under-

writing and claim settlement practices may affect claims. Moreover, random effects allow

a posteriori updating of an a priori tariff, by taking into account the past performance of

vehicle, fleet and company. As such, these models are relevant for a posteriori or experi-

ence rating with clustered data. See Antonio et al. (2010) and Antonio and Valdez (2012)

for further discussion.

Illustration 5 (Non–nested or cross–classified data structures). Data may also be struc-

tured in levels which are not nested or hierarchically structured, but instead act next to

each other. An example is the data set from Dannenburg et al. (1996) on private loans

from a credit insurer. The data are payments of the credit insurer to several banks for

covering losses caused by clients who were no longer able to pay off their loans. These

payments are categorized by civil status of the debtors and their work experience. The civil

status is single (1), divorced (2) or other (3), and the work experience is less than two
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years (< 2, category 1), from 2 up to 10 years (≥ 2 and < 10, category 2) and more than

then years (≥ 10, category 3). Table 1 shows the number of clients and the average loss

paid per risk class.

experience

status 1 2 3

1 40 43 41

2 54 53 48

3 39 39 44

experience

status 1 2 3

1 180.39 246.71 261.58

2 172.05 232.67 253.22

3 212.30 269.56 366.61

Table 1: Number of payments (left) and average loss per combination of status and expe-
rience risk class: credit insurance data.

Boxplots of the observed payments per risk class are in Figure 4. Using linear mixed

models we estimate the expected loss per risk category, and compare our results with the

credibility premiums derived by Dannenburg et al. (1996).
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Figure 4: Boxplots of payments versus combination of status and experience: credit insur-
ance data.
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Illustration 6 (Loss reserving). Zhang et al. (2012) analyze data from the workers’

compensation line of business of 10 large insurers, as reported to the National Association

of Insurance Commissioners 2. Common accident years available are from 1988 to 1997.

Losses are evaluated at 12–month intervals, with the highest available development age

being 120 months. The data have a multilevel structure with losses measured repeatedly

over time, among companies and accident years. A plot of the cumulative loss over time

for each company clearly shows a nonlinear growth pattern, see Figure 5. Predicting the

development of these losses beyond the range of the available data, is the major challenge

in loss reserving. Figure 5 reveals that the use of a nonlinear growth curve model is an

interesting path to explore. Random effects will be included to structure heterogeneity

among companies and between accident years.
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Figure 5: Observed growth of cumulative losses for the 10 companies in study. The colored
lines represent accident years.

2 Linear mixed models

This Section is based on Verbeke and Molenberghs (2000), McCulloch and Searle (2001),

Ruppert et al. (2003), Czado (2004) and Frees (2004a).

2NAIC is a consortium of state–level insurance regulators in the United States.
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2.1 Model assumptions and notation

The basic linear model specifies E[Y ] = Xβ with Y the response vector, β the vector of

regression parameters and X the model design matrix. In traditional statistical parlance,

all parameters in β are fixed, i.e. no distribution is assigned to them. They are unknown,

but fixed constants that should be estimated. In a linear mixed model we start from

Xβ, but add Zu to it, where Z is a model matrix, corresponding with a vector of

random effects u. A distribution is specified for this random effects vector u with mean

zero and covariance matrix D. As discussed in Section 1 and illustrated below, these

random effects structure between–cluster heterogeneity and within–cluster dependence.

All together, textbook notation for linear mixed models is as follows 3

y = Xβ +Zu+ ε

u ∼ (0,D)

ε ∼ (0,Σ), (13)

with ε a N × 1 vector of error terms with covariance matrix Σ (see below for examples),

which is independent of u. This is the hierarchical specification of a linear mixed model.

For given u the conditional mean and variance are

E[y|u] = Xβ +Zu,

Var[y|u] = Σ. (14)

The combined, unconditional or marginal model states

y ∼ (Xβ,V := ZDZ
′
+ Σ), (15)

showing that fixed effects enter the (implied) mean of Y and random effects structure the

(implied) covariance matrix of y.

Usually, normality is assumed for u and ε, thus(
u

ε

)
∼ N

((
0

0

)
,

(
D 0

0 Σ

))
. (16)

With these distributional assumptions the hierarchical LMM becomes

y|u ∼ N(Xβ +Zu,Σ)

u ∼ N(0,D). (17)

This implies the marginal model y ∼ N(Xβ,V ), but not vice versa. When interest is

only in the fixed effects parameters β the marginal model can be used. With explicit

interest in β and u the specification in (13) and (17) should be used.

3The notation u ∼ (0,D) implies E[u] = 0 and Var[u] = D.
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Illustrations 7 and 8 below focus on particular examples of 2 and 3 level data and explain

in detail the structure of vectors and matrices in (13) and (15).

Illustration 7 (A 2–level model for longitudinal data.). Yij represents the jth measure-

ment on a subject i (with i = 1, . . . ,m and j = 1, . . . , ni). m is the number of subjects

under consideration and ni the number of observations registered on subject i. xij (p× 1)

is a column vector with fixed effects’ covariate information from observation j on subject i.

Correspondingly, zij (q × 1) is a column vector with covariate information corresponding

with random effects. β (p × 1) is a column vector with fixed effects parameters and ui
(q × 1) is a column vector with random effects regression parameters. These are subject–

specific and allow to model heterogeneity between subjects. The combined model is

yij = x
′

ijβ︸︷︷︸
fixed

+ z
′

ijui︸ ︷︷ ︸
random

+ εij︸︷︷︸
random

. (18)

The distributional assumptions for the random parts in (18) are

ui ∼ (0,G) G ∈ Rq×q

εi ∼ (0,Σi) Σi ∈ Rni×ni . (19)

The covariance matrix G is left unspecified, i.e. no particular structure is implied. Var-

ious structures are available for Σi. Very often just a simple diagonal matrix is used:

Σi := σ2Ini
. However, when the inclusion of random effects is not enough to capture the

dependence between measurements on the same subject, we can add serial correlation to the

model and specify Σi as non–diagonal (e.g. unstructured, Toeplitz or autoregressive struc-

ture, see Verbeke and Molenberghs (2000) for more discussion). u1, . . . ,um, ε1, . . . , εm
are independent. Typically, normality is assumed for both vectors, as in (17). In vector

notation we specify

yi = X iβ +Ziui + εi, i = 1, . . . ,m,

ui ∼ (0,G)

εi ∼ (0,Σi), (20)

where

X i :=

 x
′
i1
...

x
′
ini

 ∈ Rni×p, Zi =

 z
′
i1
...

z
′
ini

 ∈ Rni×q, yi =

 yi1
...

yini

 ∈ Rni×1. (21)
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Combining all subjects or clusters i = 1, . . . ,m, (13) is the matrix formulation of this

LMM for longitudinal data (with N =
∑m

i=1 ni the total number of observations)

y =

 y1

. . .

ym

 ∈ RN×1, X =

 X1

...

Xn

 ∈ RN×p, ε =

 ε1
...

εm

 ∈ RN×1,

Z =


Z1 0n1×q . . . 0n1×q

0n2×q Z2

...
. . .

0nm×q Zm

 ∈ RN×(m·q), u =

 u1

...

um

 ∈ R(m·q)×1. (22)

The covariance matrix of the combined random effects vector u on the one hand, and the

combined residual vector ε on the other hand, are specified as:

D =

 G
. . .

G

 ∈ Rm·q×m·q, Σ =

 Σ1

. . .

Σm

 ∈ RN×N . (23)

Covariance matrix V in this particular example is block diagonal and given by

V = ZDZ
′
+ Σ

=

 Z1GZ
′

1 + Σ1 . . . 0
. . .

0 ZmGZ
′

m + Σm


=

 V 1

. . .

V m

 , (24)

with V i = ZiGZ
′

i + Σi.

Illustration 8 (A 3–level example.). yijk is the response variable of interest, as observed

for, say, vehicle k, insured in fleet j by insurance company i. At vehicle level (or: level

1) we model this response as:

yijk = z
′

1,ijkβij + x
′

1,ijkβ1 + ε1,ijk. (25)

Hereby, predictors z1,ijk and x1,ijk may depend on insurance company, fleet or vehicle.

β1 is a vector of regression parameters which will not vary by company nor fleet; they are

fixed effects regression parameters. Parameters βij vary by company and fleet. We model

them in a level 2–equation:

βij = Z2,ijγi +X2,ijβ2 + ε2,ij. (26)
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X2,ij and Z2,ij may depend on company or fleet, but not on the insured vehicle. The

regression parameters in γi are company–specific and modeled in (27):

γi = X3iβ3 + ε3i, (27)

where the predictors in X3i may depend on company, but not on fleet or vehicle. The

combined level 1, 2 and 3 models lead to the following model specification:

Yijk = z
′

1,ijk(Z2,ij(X3,iβ3 + ε3i) +X2,ijβ2 + ε2,ij) + x
′

1,ijkβ1 + ε1,ijk

= x
′

ijkβ + z
′

ijkuij + ε1,ijk, (28)

where x
′

ijk = (x
′

1,ijk z
′

1,ijkX2,ij z
′

1,ijkZ2,ijX3i), β = (β
′

1 β
′

2 β
′

3)
′
, z

′

i,j,k =

(z
′

1,i,j,k z
′

1,i,j,kZ2,ij) and uij = (ε
′
2,ij ε

′
3,i)

′
. Formulating this 3–level model in matrix

notation follows from stacking all observations Yijk.

More examples of LMM specifications are in McCulloch and Searle (2001). A standard

notation for a k–level model is in Frees (2004a) (Appendix 5A).

2.2 The structure of random effects

Since the random effects u often correspond to factor predictors, the design matrix Z is

often highly sparse, with a high proportion of elements to be exactly zero. Moreover, the

covariance matrix D is highly structured and depends on some parameter vector θ that

is to be estimated.

� Single random effect per level. This is the simplest yet most common case

where the random effect corresponds to a certain level of a single grouping factor.

For example, we may have the state indicator in the model and each state has its

own intercept, i.e. y ~ (1|state) (in R parlance). We illustrate this structure in

Section 3 with the workers’ compensation losses data.

� Multiple random effects per level. Another common case is that the model has

both random intercepts and random slopes that vary by some grouping factor. For

example, each state in the model has its own intercept and also its own slope with

respect to some predictor, i.e., y ~ (1 + time|state). In general, the multiple

random effects are correlated, and so the matrix D is not diagonal. We illustrate

this structure in Section 3 with the workers’ compensation losses data.

� Nested random effects. In the nested classification, some levels of one factor

occur only within certain levels of a first factor. For example, we may have obser-

vations within each county, and then the counties within each state. The county

from state A never occurs for state B, so counties are nested within states, forming

a hierarchical structure, i.e., y ~ (1|county/state). Antonio et al. (2010) is an

example of this type of structuring.

14



Linear mixed models for predictive modelling in actuarial science

� Crossed random effects. This happens when each level of each factor may oc-

cur with each level of each other factor. For example, we may have both state

and car make in the model, cars of different makes can occur with each state, i.e.,

y ~ (1|state) + (1|make). The credit insurance example in Section 3 is an ex-

ample of crossed random effects.

2.3 Parameter estimation, inference and prediction

Mixed models use a combination of fixed effects regression parameters, random effects

and covariance matrix parameters (also called: variance components). For example, in

the varying intercepts example from (4) and (5), β1,0 and β1,1 are regression parameters

corresponding with fixed effects, σ2
1 and σ2

2 are variance components and ε2,i (i = 1, . . . ,m)

are the random effects. We will use standard statistical methodology, like maximum

likelihood, to estimate parameters in a LMM. For the random effects we apply statistical

knowledge concerning prediction problems, see McCulloch and Searle (2001) (Chapter 9)

for an overview. The difference in terminology stems from the non–randomness of the

parameters versus the randomness of the random effects.

We first derive an estimator for the fixed effects parameters in β and a predictor for the

random effects in u, under the assumption of known covariance parameters in V (see

(15)).

Estimating β. The Generalized Least Squares ([GLS]) estimator – which coincides

with the maximum likelihood estimator ([MLE]) under normality (as in (17)) – of β is:

β̂ = (X
′
V −1X)−1X

′
V −1y. (29)

See Frees (2004a) or Czado (2004) for a formal derivation of this result.

Predicting u. In the sense of minimal Mean Squared Error of Prediction ([MSEP])

the best predictor ([BP]) of u is the conditional mean E[u|Y ]. This predictor obviously

requires knowledge of the conditional distribution u|Y . The BP is often simplified by

restricting the predictor to be a a linear function of Y : the Best Linear Predictor ([BLP]).

The BLP of a random vector u is

BLP[u] = û = E[u] +CV −1(y − E[y]), (30)

where V = Var(y) and C = Cov(u,y
′
). BP(u) and BLP(u) are unbiased, in the sense

that their expected value equals E[u]. Normality is not required in BP or BLP, but with

(y u) multivariate normally distributed, the BP and BLP coincide. See McCulloch and

Searle (2001) (Chapter 9) for more details.
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In the context of the LMM sketched in (17) the predictor of u is usually called the Best

Linear Unbiased Predictor ([BLUP]). Robinson (1991) describes several ways to derive

this BLUP. For instance, under normality assumptions:

Cov(y,u
′
) = Cov(Xβ +Zu+ ε,u

′
)

= Cov(Xβ,u
′
) +ZVar(u,u

′
) + Cov(ε,u

′
)

= ZD,

which leads to the multivariate normal distribution(
y

u

)
∼ N

((
Xβ

0

)
,

(
V ZD

DZ
′

D

))
. (31)

Using either properties of this distribution 4 or the result in (30) the BLUP of u follows:

BLUP(u) := û = DZ
′
V −1(y −Xβ). (32)

Of course, (32) relies on the (unknown) vector of fixed effects β, as well as on unknown

covariance parameters in V . Replacing both with their estimates, we call the BLUP an

empirical or estimated BLUP. Estimated BLUPs are confronted with multiple sources

of variability: variability from the estimation of (β,u) and from the estimation of V .

Histograms and scatter plots of components of û are often used to detect outlying clusters,

or to visualize between–cluster heterogeneity.

A unified approach: Henderson’s justification. Maximizing the joint log likelihood

of (y
′
,u

′
)
′
(see assumptions (17)) with respect to (β,u) leads to Henderson’s mixed model

equations:

f(y,u) = f(y|u) · f(u)

∝ exp

(
−1

2
(y −Xβ −Zu)

′
Σ−1(y −Xβ −Zu)

)
· exp (−1

2
u

′
D−1u).(33)

It is therefore enough to minimize

Q(β,u) := (y −Xβ −Zu)
′
Σ−1(y −Xβ −Zu) + u

′
Du, (34)

which corresponds to solving the set of equations

∂

∂β
Q(β,u) = 0 and

∂

∂u
Q(β,u) = 0

⇔

(
X

′
Σ−1X X

′
Σ−1Z

Z
′
Σ−1X Z

′
Σ−1Z +D−1

)(
β̃

ũ

)
=

(
X

′
Σ−1y

Z
′
Σ−1y

)
. (35)

4Namely: with X =

(
Y
Z

)
∼ N

((
µY

µZ

)
,

(
ΣY ΣY Z

ΣZY ΣZ

))
we know Z|Y ∼ N(µZ|Y ,ΣZ|Y )

where µZ|Y = µZ + ΣZY Σ−1Y (Y − µY ) and ΣZ|Y = ΣZ −ΣZY Σ−1Y ΣY Z .
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(29) and (32) solve this system of equations.

More on prediction. With β̂ from (29) and û from (32), the profile of cluster i is

predicted by

ŷi := X iβ̂ +Ziûi

= X iβ̂ +ZiDZ
′

iV
−1
i (Y i −X iβ̂)

= ΣiV
−1
i X iβ̂ + (Ini

−ΣiV
−1
i )Y i, (36)

using V i = ZiDZ
′

i + Σi and ni the cluster size. ŷi is a weighted mean of the global

profile X iβ̂ and the data observed on cluster i, yi. ŷi is a so–called shrinkage estimator.

Actuaries will recognize a credibility type formula in (36).

The prediction of a future observation is discussed in detail in Frees (2004b) (Sec-

tion 4.4). The case of non–diagonal residual covariance matrices Σi requires special at-

tention. For instance, with panel data the BLUP for yi,Ti+1 is x
′
i,Ti+1β + z

′
i,Ti+1ûi +

BLUP(εi,Ti+1). From (30) we understand that the last term in this expression is zero [Here we connect with

Chapter 17 from the

book.]when Cov(εi,Ti+1, εi) = 0. This is not the case when serial correlation is taken into ac-

count. Chapter XXX of this book (on Credibility and Regression Modeling) carefully

explains this kind of prediction problems.

Estimating variance parameters. The parameters or variance components used in

V are in general unknown and should be estimated from the data. With θ the vector

of unknown parameters used in V = ZD(θ)Z
′
+D(θ), the log–likelihood for (β,θ) is

(with c a constant)

`(β,θ) = log {L(β,θ)}

= −1

2

(
ln |V (θ)|+ (y −Xβ)

′
V (θ)−1(y −Xβ)

)
+ c. (37)

Maximizing (37) with respect to β and with θ fixed, we get

β̂(θ) = (X
′
V (θ)−1X)−1X

′
V (θ)−1y. (38)

We obtain the so–called profile log–likelihood by replacing β in (37) with β̂ from (38)

`p(θ) := `(β̂,θ)

= −1

2

{
ln |V (θ)|+ (y −Xβ̂(θ))

′
V (θ)−1(y −Xβ̂(θ))

}
. (39)

Maximizing this profile log–likelihood with respect to θ gives the maximum likelihood

estimates θ̂MLE of the variance components in θ.

With LMMs Restricted (or Residual) maximum likelihood (REML) is a popular alter-

native to estimate θ. REML accounts for the degrees of freedom used for fixed effects

estimation. McCulloch and Searle (2001) (Section 6.10) is an overview of important ar-

guments in the discussion ‘ML versus REML?’. For example, estimates with REML (for
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balanced data) are minimal variance unbiased under normality 5, and are invariant to the

value of β. The REML estimation of θ is based on the marginal log–likelihood obtained

by integrating out the fixed effects in β:

`r(θ) := ln

(∫
L(β,θ)dβ

)
, (41)

where (see Czado (2004))∫
L(β,θ)dβ =

∫
1

(2π)N/2
|V (θ)|−1/2 exp

(
−1

2
(y −Xβ)

′
V (θ)−1(y −Xβ)

)
dβ

...

= `p(θ)− 1

2
ln
∣∣∣X ′

V (θ)−1X
∣∣∣+ constants. (42)

2.3.1 Standard errors and inference

Estimation of standard errors. In the marginal model y ∼ N(Xβ,V (θ)), the co-

variance of β̂ in (29) is

Cov(β̂) = (X
′
V −1(θ)X)−1, (43)

where Cov(y) = V (θ) is used. Replacing the unknown θ with its ML or REML estimate

θ̂ and using V̂ := V (θ̂), a natural estimate for Cov(β̂) is (X
′
V̂
−1
X)−1. However, this

estimate ignores the extra variability originating from the estimation of θ. Kacker and

Harville (1984) (among others) discuss attempts to quantify this extra variability through

approximation, but only a fully Bayesian analysis allows to account for all sources of

variability (see Chapter XXX where we demonstrate a Bayesian analysis of a Generalized

Linear Mixed Model).

The covariance of the empirical BLUP in (32) is equal to

Cov(û) = Cov(DZ
′
V −1(y −Xβ̂))

= DZ
′
{
V −1 − V −1X

(
X

′
V −1X

)−1
X

′
V −1

}
ZD. (44)

5A well known example of ‘REML versus ML’ considers the case of a random sample X1, . . . , XN ∼
N(µ, σ2). The resulting estimators for the unknown variance σ2 are

σ̂2
ML =

1

N

N∑
i=1

(Xi − X̄)2, σ̂2
REML =

1

N − 1

N∑
i=1

(Xi − X̄)2, (40)

with X̄ the sample mean. The REML estimator is unbiased for σ2. The (N − 1) in σ̂2
REML accounts

for the estimation of µ by X̄.
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However, the estimator in (44) ignores the variability in the random vector u. Therefore,

as suggested by Laird and Ware (1982), inference for u is usually based on Cov(û− u).

Estimates of the precision of other predictors involving β̂ and û are based on

Cov

[
β̂

û− u

]
, (45)

and are available in McCulloch and Searle (2001) (Section 9.4 (c)). Accounting for the

variability induced by estimating the variance components θ would require – once again –

a fully Bayesian analysis. Using Bayesian statistics posterior credible intervals of cluster–

specific effects follow immediately. These are useful to understand the between–cluster

heterogeneity present in the data.

Inference. We consider testing a set of s (s ≤ p) hypotheses concerning the fixed effects

parameters in β

H0 : Cβ = ζ

versus H1 : Cβ 6= ζ. (46)

The Wald test statistic

[Cβ̂ − ζ]
′
[CVar(β̂)C

′
][Cβ̂ − ζ] (47)

is approximately χ2
s distributed. With `(β̃, Σ̃) the log–likelihood obtained with ML in

the restricted model (i.e. under H0) and `(β̂, Σ̂) the log–likelihood with ML in the

unrestricted model, the likelihood ratio test statistic ([LRT]) for nested models

−2[`(β̃, Σ̃)− `(β̂, Σ̂)], (48)

is approximately χ2
s distributed. Estimation should be done with ML instead of REML,

since REML maximizes the likelihood of linear combinations of Y that do not depend on

β.

Testing the necessity of random effects requires a hypothesis test involving the variance

components. For example, in the varying intercepts model from (7), we want to investigate

whether the intercepts of different subjects are significantly different. This corresponds

with

H0 : σ2
2 = 0 versus H1 : σ2

2 > 0. (49)

However, because 0 is on the boundary of the allowed parameter space for σ2
2, the like-

lihood ratio test statistic should not be compared with a χ2
1 distribution, but with a

mixture 1
2
χ2
0 + 1

2
χ2
1. When testing a hypothesis involving s fixed effects parameters and

one variance component, the reference distribution is 1
2
χ2
s + 1

2
χ2
s+1. When more variance

components are involved, the complexity of this problem increases, see Ruppert et al.

(2003) and related work from these authors.
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3 Examples

3.1 Workers’ compensation insurance losses

We analyze the data from Illustration 2 on losses observed for workers’ compensation

insurance risk classes. Variable of interest is Lossij observed per risk class i and year j. The

distribution of the losses is right skewed, which motivates the use of log (Lossij) as response

variable. To enable out-of-sample predictions, we split the data set in a training (without

Lossi7) versus test set (the Lossi7 observations). We remove observations corresponding

with zero payroll from the data set. Models are estimated on the training set, and

centering of covariate Year is applied. Throughout our analysis we include log (Payroll)ij
as an offset in the regression models, since losses should be interpreted relative to the size

of the risk class.

Complete pooling. We start with the ‘complete pooling’ model, introduced in (1).

The model ignores the clustering of data in risk classes and fits an overall intercept (β0)

and an overall slope (β1) for the effect of Year.

log (Lossij) = log (Payrollij) + β0 + β1Yearij + εij (50)

εij ∼ N(0, σ2
ε ) i.i.d. (51)

We fit the model with lm in R.

>fitglm.CP <- lm(log(loss)~yearcentr, offset=log(payroll),data=wclossFit)

>summary(fitglm.CP)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.34023 0.04105 -105.733 <2e-16 ***

yearcentr 0.03559 0.02410 1.477 0.14

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 1.062 on 667 degrees of freedom

Multiple R-squared: 0.7282, Adjusted R-squared: 0.7278

F-statistic: 1787 on 1 and 667 DF, p-value: < 2.2e-16

According to this R output β̂0 = −4.34 (with s.e. 0.041), β̂1 = 0.036 (with s.e. 0.024) and

σ̂ε = 1.062.

No pooling. The fixed effects linear regression model in (2) estimates an intercept

for each of the 118 risk classes in the data set. According to model equation (52), the

intercepts β0,i are unknown, but fixed, whereas the error terms εij are stochastic.

log(Lossij) = log (Payrollij) + β0,i + β1Yearij + εij

εij ∼ N(0, σ2
ε ) i.i.d. (52)
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We fit this model in R by identifying the risk class variable as a factor variable.

>fitglm.NP <- lm(log(loss)~0+yearcentr+factor(riskclass), offset=log(payroll),

data=wclossFit)

>summary(fitglm.NP)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

yearcentr 0.03843 0.01253 3.067 0.00227 **

factor(riskclass)1 -3.49671 0.22393 -15.615 < 2e-16 ***

factor(riskclass)2 -3.92231 0.22393 -17.516 < 2e-16 ***

factor(riskclass)3 -4.48135 0.22393 -20.012 < 2e-16 ***

factor(riskclass)4 -4.70981 0.22393 -21.032 < 2e-16 ***

...

Residual standard error: 0.5485 on 550 degrees of freedom

Multiple R-squared: 0.9986, Adjusted R-squared: 0.9983

F-statistic: 3297 on 119 and 550 DF, p-value: < 2.2e-16

The null hypothesis of equal intercepts, H0 : β0,1 = β0,2 = . . . = β0,118 = β0, is re-

jected (with p–value < 0.05). Therefore, the ‘no pooling’ model significantly improves the

‘complete pooling’ model.

> anova(fitglm.CP,fitglm.NP)

Analysis of Variance Table

Model 1: log(loss) ~ yearcentr

Model 2: log(loss) ~ 0 + yearcentr + factor(riskclass)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 667 751.90

2 550 165.48 117 586.42 16.658 < 2.2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Figure 6 (left) shows the estimates β̂0,i, plus/minus one standard error, against the size

(on log–scale) of the risk class. The size of a risk class is here defined as
∑6

j=1 Payrollij.

The ‘no pooling’ model estimates risk class specific intercepts with reasonable precision.

Linear mixed models: random intercepts. A linear mixed model with random risk

class specific intercepts is a meaningful alternative for the ‘no pooling’ model in (52). The

regression equation is

log (Lossij) = log (Payrollij) + β0 + u0,i + β1Yearij + εij

u0,i ∼ N(0, σ2
u) i.i.d.

εij ∼ N(0, σ2
ε ) i.i.d. (53)
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Random intercepts u0,i are independent across risk classes, and independent of the error

terms εij. In R we use the lme4 package to fit this linear mixed model. The package

uses REML by default. Results with ML follow by adding REML=FALSE in the lmer(...)

statement.

> lmm1 <- lmer(log(loss) ~ (1|riskclass)+yearcentr+offset(log(payroll)),

data=wclossFit)

> print(lmm1)

Linear mixed model fit by REML

Formula: log(loss) ~ (1 | riskclass) + yearcentr + offset(log(payroll))

Data: wclossFit

AIC BIC logLik deviance REMLdev

1448 1466 -720.2 1431 1440

Random effects:

Groups Name Variance Std.Dev.

riskclass (Intercept) 0.88589 0.94122

Residual 0.30145 0.54904

Number of obs: 669, groups: riskclass, 118

Fixed effects:

Estimate Std. Error t value

(Intercept) -4.31959 0.08938 -48.33

yearcentr 0.03784 0.01253 3.02

Correlation of Fixed Effects:

(Intr)

yearcentr 0.001

The R output shows the following parameter estimates: β̂0 = −4.32 (s.e. 0.089), β̂1 = 0.037

(s.e. 0.013), σ̂u = 0.94 and σ̂ε = 0.55. In Figure 6 (right) we plot the point predictions

for the ui,0’s, and their corresponding standard errors, against size of the risk class. To

create this plot we refit the linear mixed model and do not include an intercept.

The point estimates of the random intercepts obtained with the ‘no pooling’ model in

(52) and the linear mixed model in (53) are similar in this example. For the standard

errors of the random intercepts in the LMM we use the following instructions

str(rr1 <- ranef(lmm0, condVar = TRUE))

my.se.risk = sqrt(as.numeric(attributes(rr1$riskclass)$postVar)),

which calculates the variance of u|y (see XXX and the footnote below (30)), conditional on

the maximum likelihood estimates for β and θ. Thus, these standard errors are different

from the approach outlined in (44). We are aware of the fact that they do not account

for all sources of variability involved.
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Figure 6: Point estimates for risk class specific intercepts, plus/minus one standard error.
Results from no pooling approach (left) and linear mixed model (right). The
dashed line is y = −4.34, i.e. the overall intercept from the complete pooling
model.

Linear mixed models: random intercepts and slopes. We now extend the LMM

in (53) and allow for random slopes as well as random intercepts. This is an example of

the ‘multiple random effects per level’ setting from Section 2.2. The model equation is

log (Lossij) = log (Payrollij) + β0 + u0,i + β1Yearij + u1,iYearij + εij,

ui ∼ N(0,D(θ)) i.i.d.

εij ∼ N(0, σ2
ε ) i.i.d. (54)

The random effects vector ui is now bivariate, say with Var(ui,0) = θ0, Var(ui,1) = θ1 and

Cov(ui,0, ui,1) = θ01. Random effects are independent across risk classes, and independent

of the error terms εij. We fit this model with lmer as follows.

> lmm2 <- lmer(log(loss) ~ (1+yearcentr|riskclass)+yearcentr+offset(log(payroll)),

data=wclossFit)

> print(lmm2)

Linear mixed model fit by REML

Formula: log(loss) ~ (1 + yearcentr | riskclass) + yearcentr + offset(log(payroll))

Data: wclossFit

AIC BIC logLik deviance REMLdev

1451 1478 -719.4 1429 1439

Random effects:

Groups Name Variance Std.Dev. Corr

riskclass (Intercept) 0.885937 0.941242

yearcentr 0.003171 0.056312 -0.195

Residual 0.290719 0.539184

Number of obs: 669, groups: riskclass, 118
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Fixed effects:

Estimate Std. Error t value

(Intercept) -4.32030 0.08929 -48.38

yearcentr 0.03715 0.01340 2.77

Correlation of Fixed Effects:

(Intr)

yearcentr -0.072

In this output θ̂0 = 0.89, θ̂1 = 0.0032 and θ̂01 = −0.010. We test whether the structure

of random effects should be reduced, i.e. H0 : θ1 = 0 (with θ1 the variance of random

slopes), using an anova test comparing models (53) and (54).

> anova(lmm1,lmm2)

Data: wclossFit

Models:

lmm1: log(loss) ~ (1 | riskclass) + yearcentr + offset(log(payroll))

lmm2: log(loss) ~ (1 + yearcentr | riskclass) + yearcentr + offset(log(payroll))

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

lmm1 4 1438.5 1456.6 -715.27

lmm2 6 1440.9 1468.0 -714.46 1.6313 2 0.4423

When performing the corresponding LRT the software automatically refits lmm1 and lmm2

with ML (instead of REML), as required (see our discussion in Section 2.3.1). This ex-

plains why the AIC, BIC and logLik values differ from those printed above. The observed

Chisq test statistic and reported p–value indicate that H0 : σ2
1 = 0 can not be rejected.

The model with only random intercepts is our preferred specification.

Out–of–sample predictions. We compare out–of–sample predictions of Lossi7, for

given Payrolli7, as obtained with models (50), (52) and (53). Figure 7 plots observed

versus fitted losses (on log scale) for (from left to right) the complete pooling, the random

intercepts and the no pooling linear regression model.

3.2 Hachemeister data

We present an analysis of the Hachemeister data using three simple linear mixed mod-

els. Chapter XXX presents an in depth discussion of credibility models for this data

set (namely the Bühlmann, Bühlmann–Straub and Hachemeister credibility models). By

combining the R scripts prepared for our illustration with the scripts from Chapter XXX,

readers obtain relevant illustrations of credibility models in R and their analogue inter-

pretation as LMMs.
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Figure 7: Out–of–sample predictions for Lossi7 versus observed losses, as obtained with
model (50) (‘CP’, complete pooling), (53) (‘lmm1’, random intercepts) and (52)
(‘NP’, no pooling): losses on workers’ insurance compensation.

Random intercepts, no weights. Response variable is the average loss per claim (i.e.

Ratioij), per state i (i = 1, . . . , 5) and quarter j (j = 1, . . . , 12). A basic random state

intercept model for Ratioij is

Ratioij = β0 + ui,0 + εij

ui,0 ∼ N(0, σ2
u) i.i.d.

εij ∼ N(0, σ2
ε ) i.i.d. (55)

Apart from the normality assumption, actuaries recognize the so–called Bühlmann cred-

ibility model, as Chapter XXX explains.

Random intercepts, including weights. Our response variable is average loss per

claim, constructed as total loss (per state and quarter) divided by the corresponding

number of claims. This average loss is more precise when more claims have been observed.
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We therefore include the number of observed claims as weights (wij) in our LMM.

Ratioij = β0 + ui,0 + εij

ui,0 ∼ N(0, σ2
u) i.i.d.

εij ∼ N(0, σ2
ε/wij) i.i.d. (56)

The model equation and variance assumptions (apart from normality) correspond with

the Bühlmann–Straub credibility model. Including weights goes as follows in R lme4:

> lmmBS <- lmer(ratio ~ (1|state),weights=weight,data=hach)

> print(lmmBS)

Linear mixed model fit by REML

Formula: ratio ~ (1 | state)

Data: hach

AIC BIC logLik deviance REMLdev

1301 1307 -647.5 1306 1295

Random effects:

Groups Name Variance Std.Dev.

state (Intercept) 22.326 4.725

Residual 47928.954 218.927

Number of obs: 60, groups: state, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 1688.934 2.265 745.6

The risk (or: credibility) premium for state i is β̂0 + ûi,0, and is available in R as follows

## get fixed effects

fe <- fixef(lmmBS)

## get random intercepts

re <- ranef(lmmBS)

## calculate credibility premiums in this lmm

pred.lmmBS <- fe[1]+re$state

> t(pred.lmmBS)

1 2 3 4 5

(Intercept) 2053.18 1528.509 1790.053 1468.113 1604.815

Chapter XXX illustrates how traditional actuarial credibility calculations are available in

the actuar package in R. The credibility premiums obtained with Bühlmann–Straub are

close to – but not exactly the same as – the premiums obtained with (56). Note that

the actuarial credibility calculations use method of moments for parameter estimation,

whereas our LMMs use (RE)ML.

> ## BS model (Buhlmann-Straub credibility model)
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> ## use actuar package, and hachemeister data as available in this package

> fitBS <- cm(~state, hachemeister,ratios = ratio.1:ratio.12,

weights = weight.1:weight.12)

> pred.BS <- predict(fitBS) # credibility premiums

> pred.BS

[1] 2055.165 1523.706 1793.444 1442.967 1603.285

Random intercepts and slopes, including weights. We extend the random inter-

cepts model to a random intercepts and slopes model, using the period of observation as

regressor.

Ratioij = β0 + ui,0 + β1periodij + ui,1periodij + εij

ui ∼ N(0,D(θ)) i.i.d.

εij ∼ N(0, σ2
ε/wij) i.i.d. (57)

Our analysis uses periodij as the quarter (j = 1, . . . , 12) of observation. The use of a

centered version of period is discussed in Chapter XXX. In R the (1+period|state)

instruction specifies random intercepts and slopes per state.

> lmmHach <- lmer(ratio ~ period+(1+period|state),weights=weight,data=hach)

> lmmHach

Linear mixed model fit by REML

Formula: ratio ~ period + (1 + period | state)

Data: hach

AIC BIC logLik deviance REMLdev

1242 1255 -615.1 1247 1230

Random effects:

Groups Name Variance Std.Dev. Corr

state (Intercept) 4.1153e+00 2.02863

period 1.9092e-01 0.43695 1.000

Residual 1.6401e+04 128.06735

Number of obs: 60, groups: state, 5

Fixed effects:

Estimate Std. Error t value

(Intercept) 1501.5452 1.1265 1333.0

period 27.7333 0.2172 127.7

Correlation of Fixed Effects:

(Intr)

period 0.540

Using LMM (57) the state specific risk premium for the next time period, is

̂E[Ratioi,13|ui] = β̂0 + ûi,0 + β̂1 · 13 + ûi,1 · 13 (58)
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> t(pred.lmmHach)

[,1] [,2] [,3] [,4] [,5]

[1,] 2464.032 1605.676 2067.279 1453.923 1719.48.

These premiums correspond with the results (obtained with SAS) reported in Frees et al.

(1999) (see Table 3, columns ‘Prediction and standard errors’). These authors also inves-

tigate linear mixed models as a user friendly and computationally attractive alternative

for actuarial credibility models. The traditional Hachemeister credibility premiums are

available in R as follows (see also the ‘Base’ results in Table 3 from Frees et al. (1999))

fitHach <- cm(~state, hachemeister,regformula = ~time, regdata =

data.frame(time = 1:12),ratios = ratio.1:ratio.12,

weights = weight.1:weight.12)

pred.Hach <- predict(fitHach, newdata = data.frame(time = 13))

# cred.premium

# > pred.Hach

# [1] 2436.752 1650.533 2073.296 1507.070 1759.403

Once again, with linear mixed models we obtain premiums that are close to, but do not

replicate, the traditional actuarial credibility results. Differences in parameter estimation

techniques explain why these results are not identical.

Using a LRT we verify whether model (57) should be reduced to the model with random

intercepts only. The p–value indicates that this is not case.

lmmHach2 <- lmer(ratio ~ period+(1|state),weights=weight,data=hach)

anova(lmmHach,lmmHach2)

#Data: hach

#Models:

#lmmHach2: ratio ~ period + (1 | state)

#lmmHach: ratio ~ period + (1 + period | state)

# Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

#lmmHach2 4 1272.2 1280.5 -632.08

#lmmHach 6 1258.7 1271.2 -623.32 17.521 2 0.0001568 ***

#---

#Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Figure 8 illustrates the fit of a complete pooling (dark grey, dashed line), a no pooling

(black, dashed line) and a LMM with random intercepts and slopes (black, solid line).

The regression equations for the complete and no pooling model are

Ratioij = β0 + β1periodij + εij

εij ∼ N(0, σ2
ε/wij), (59)
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and

Ratioij = β0,i + β1,iperiodij + εij

εij ∼ N(0, σ2
ε/wij), (60)

respectively.
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Figure 8: Fit of a complete pooling (dark grey, dashed line), a no pooling (black,
dashed line) and a LMM with random intercepts and slopes (black, solid line):
Hachemeister data (no centering of period).

3.3 Credit insurance data

We analyze the data from Illustration 5 and demonstrate the use of crossed random

effects (see Section 2.2) with lme4. The response variable of interest is Paymentijt, where

i = 1, 2, 3 denotes status and j = 1, 2, 3 is for working experience of the insured, t is an

index going over all observation in cell (i, j). Dannenburg et al. (1996) use these data to

demonstrate the principles of a so–called cross classification credibility model, with model

equation (in typical actuarial credibility notation)

Paymentijt = m+ Ξ
(1)
i + Ξ

(2)
j + Ξ

(12)
ij + Ξ

(123)
ijt . (61)
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Hereby, m is an overall intercept, Ξ
(1)
i is a random effect for level i in factor (1) (i.e.

status), Ξ
(2)
j a random intercept for level j in factor (2) (i.e. experience) and Ξ

(12)
ij is a

random effect for the interaction of level i and j. Ξ
(123)
ijt is an error term for observation t

from the combined level i and j. Dannenburg et al. (1996) obtain the following credibility

premiums

experience

status 1 2 3

1 181.05 238.18 277.77

2 172.11 229.16 268.8

3 225.29 282.24 323.68

Table 2: Credibility premiums obtained with crossed classification credibility model per
combination of status and experience risk class: credit insurance data.

The analysis of this data by means of a linear mixed model with crossed random effects

(i.e. (1 | status:experience)), is directly available in R.

Paymentijt = m+ u
(1)
i + u

(2)
j + u

(12)
ij + εijt

u
(1)
i ∼ N(0, σ2

1)

u
(2)
j ∼ N(0, σ2

2)

u
(12)
ij ∼ N(0, σ2

12)

εijt ∼ N(0, σ2
ε ), (62)

where i and j run over all levels in factors 1 (status) and 2 (experience) and we assume all

random variables to be independent.

> lmm2 <- lmer(payment ~ 1+(1|experience)+(1|status)+(1|status:experience)

,data=credit)

> print(lmm2)

Linear mixed model fit by REML

Formula: payment ~ 1 + (1 | experience) + (1 | status) + (1 | status:experience)

Data: credit

AIC BIC logLik deviance REMLdev

5241 5261 -2616 5240 5231

Random effects:

Groups Name Variance Std.Dev.

status:experience (Intercept) 14.611 3.8224

status (Intercept) 992.791 31.5086

experience (Intercept) 2569.330 50.6886

Residual 26990.398 164.2875

Number of obs: 401, groups: status:experience, 9; status, 3; experience, 3
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Fixed effects:

Estimate Std. Error t value

(Intercept) 244.25 35.44 6.892

The resulting risk premiums as obtained with lme4 are very close to the credibility pre-

miums in Table 2.

experience

status 1 2 3

1 181.0253 238.1813 277.7692

2 172.1086 229.1551 268.7954

3 225.2921 282.2424 323.6784

Our analysis directly uses Payment as response variable to facilitate the comparison be-

tween the credibility and linear mixed model calculations. However, the positivity and

right skewness of Payment suggests the use of a lognormal or gamma distribution for this

response.

4 Further readings and illustrations

We recommend Czado (2004), Gelman and Hill (2007), Frees (2004a), McCulloch and

Searle (2001), Ruppert et al. (2003) and Verbeke and Molenberghs (2000) as further read-

ings on linear mixed models. The use of LMMs for smoothing purposes is not discussed

above, but interested readers can find below a brief introduction and useful references.

Illustration 9 (Smoothing with mixed models). A semiparametric regression model in-

corporates both parametric as well as nonparametric functional relationships between a

response and a set of covariates. These models are particularly useful when a globally

linear pattern is inappropriate or parametric nonlinear curves are difficult to determine.

Such nonlinear effect frequently occurs when time related covariates are present, such as

driver’s age, development lag or years in business of the insured company. For example,

in a LM the effect of age of the insured on the number of claims reported is often ex-

pressed with a categorical Age covariate. The analyst splits Age in several categories and

estimates a regression parameter for each of them. In a nonparametric analysis we model

the effect of Age on the response with an unknown, smooth function, in comparison with

the piece-wise constant assumption in linear models.

Penalized splines (also called P–splines) are popular nonparametric tools that specify

the smoothing function as a linear combination of basis functions, in which some coef-

ficients associated with the basis functions are constrained in order to avoid overfitting.

That is, they are penalized, or shrunk towards zero, reducing the effective number of coef-

ficients to be estimated. The broad popularity of P–splines is largely because they can be

written in the form of mixed models (Ruppert et al., 2003; Wood, 2006) so that we

can rely on software, diagnostic and inferential tools designed for mixed models directly in

fitting P–splines, or use a Bayesian implementation of the model to make inference of the
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full posterior distribution. Of course, hierarchical components can be included in addition

to smoothing terms, thus often leading to models that are both intuitively appealing and

structurally flexible when studying practical problems in predictive modeling.

For example, Figure 9 shows an application of the P–splines in estimating insurance

loss reserves. In this example, the incremental paid insurance losses, represented by the

dots in the plot, exhibit a nonlinear dependence upon the report lag (the x-axis). Standard

loss reserving methods will specify a model with these lags as categorical covariates. In

contrast, P–splines allow us to estimate a smooth functional relationship between paid

losses and report lags. One advantage over the reserving model with dummy variables

is the reduced number of model parameters because generally a small number of knots

can capture the observed pattern sufficiently well. The example shown here is based on a

four-knot penalized spline, and Zhang and Dukic (2012) find that the resulting model has

significantly better predictive performance than a dummy-variable-based reserving model.

Another benefit is that estimates at any time point can be produced based on interpolation

or extrapolation of the estimated functional form. This can be very helpful when the goal

of a reserving study is to make forecasts for a short period ahead, say one month or a

quarter.

More examples of semiparametric models in insurance loss reserving can be found in

Antonio and Beirlant (2008) and Zhang and Dukic (2012). Multivariate extensions of

penalized splines are available for spatial regression (e.g. in postcode rating). See Chapter

XXX for further discussion.[Reference to Chapter

on GAMS / spatial

statistics.]
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Figure 9: The plot of the company-level smoother (incremental losses) along with the 50%
prediction interval for a loss triangle.
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Bühlmann, H. and Gisler, A. (2005). A course in credibility theory and its applications.
Springer Verlag, Berlin.

Czado, C. (2004). Linear Mixed Models. Lecture slides on GLM, TU Munchen.
Dannenburg, D., Kaas, R., and Goovaerts, M. (1996). Practical actuarial credibility

models. Institute of actuarial science and econometrics, University of Amsterdam.
Frees, E. (2004a). Longitudinal and panel data. Analysis and applications in the social

sciences. Cambridge University Press.
Frees, E. (2004b). Longitudinal and Panel Data: Analysis and Applications in the Social

Sciences. Cambridge University Press, Cambridge.
Frees, E., Young, V., and Luo, Y. (1999). A longitudinal data analysis interpretation of

credibility models. Insurance: Mathematics and Economics, 24(3):229–247.
Frees, E., Young, V., and Luo, Y. (2001). Case studies using panel data models. North

American Actuarial Journal, 5(4):24–42.
Gelman, A. (2006). Multilevel (hierarchical) modeling: what it can and cannot do. Tech-

nometrics, 48(3):432–435.
Gelman, A. and Hill, J. (2007). Applied Regression and Multilevel (Hierarchical) Models.

Cambridge University Press, Cambridge.
Hachemeister, C. (1975). Credibility: Theory and Applications, chapter ‘Credibility for

regression models with application to trend’, pages 129–163. Academic Press, New
York.

Kacker, R. and Harville, D. (1984). Approximations for standard errors of estimators of
fixed and random effects in mixed linear models. Journal of the American Statistical
Association, 79:853–862.

Klugman, S. (1992). Bayesian statistics in actuarial science with emphasis on credibility.
Kluwer, Boston.

Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics,
38(4):963–974.

Makov, U., Smith, A., and Liu, Y. (1996). Bayesian methods in actuarial science. The
Statistician, 45(4):503–515.

McCulloch, C. and Searle, S. (2001). Generalized, Linear and Mixed Models. Wiley Series
in Probability and Statistics, Wiley, New York.

Robinson, G. (1991). That blup is a good thing: the estimation of random effects.
Statistical Science, 6:15–51.

Ruppert, D., Wand, M., and Carroll, R. (2003). Semiparametric regression. Cambridge
University Press, Cambridge.

33



Scollnik, D. (1996). An introduction to Markov Chain Monte Carlo methods and
their actuarial applications. Proceedings of the Casualty Actuarial Society Forum,
LXXXIII:114–165.

Searle, S., Casella, G., and McCulloch, C. (2008). Variance components. Wiley.
Verbeke, G. and Molenberghs, G. (2000). Linear mixed models for longitudinal data.

Springer Series In Statistics, New York.
Wood, S. (2006). Generalized Additive Models: An introduction with R. Chapman & Hall,

CRC Texts in Statistical Science.
Zhang, Y. and Dukic, V. (2012). Predicting multivariate insurance loss payments under

the bayesian copula framework. The Journal of Risk and Insurance. in press, DOI:
10.1111/j.1539-6975.2012.01480.x.

Zhang, Y., Dukic, V., and Guszcza, J. (2012). A bayesian nonlinear model for forecasting
insurance loss payments. Journal of the Royal Statistical Society, Series A, 175:637–656.

34



 

 

 

FACULTY OF ECONOMICS AND BUSINESS 
Naamsestraat 69 bus 3500 

3000 LEUVEN, BELGIË 
tel. + 32 16 32 66 12 
fax + 32 16 32 67 91 

info@econ.kuleuven.be 
www.econ.kuleuven.be 


	vb onderzoeksrapport voorblad
	2013-08-29 LinearMixedModels
	Mixed models in actuarial science
	What?
	Why?: motivating examples from actuarial science

	Linear mixed models
	Model assumptions and notation
	The structure of random effects
	Parameter estimation, inference and prediction
	Standard errors and inference


	Examples
	Workers' compensation insurance losses
	Hachemeister data
	Credit insurance data

	Further readings and illustrations

	vb onderzoeksrapport achterblad



