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Abstract 

1. The effects of HIV protease inhibitors (PI) on accumulation of the fluorescent bile salt analogue 

cholyl-glycylamido-fluorescein (CGamF) were determined in OATP1B1- and 1B3-expressing CHO 

cells. In addition, interaction studies in Caco-2 monolayers, known to only express the OATP2B1 

isoform, were conducted using the established OATP substrate estrone-3-sulfate (E3S), since no 

CGamF accumulation was observed in Caco-2 monolayers. 2. CGamF appeared an excellent 

substrate for the OATP1B subfamily, with net accumulation clearance values of 7.8 and 142 

µl/min/mg protein in 1B1 and 1B3-transfected cells, respectively. Ki values reflecting inhibition of 

CGamF accumulation by HIV PI correlated well between OATP1B1 and 1B3-expressing cells. 

Lopinavir was the most potent inhibitor (Ki 0.5-1.4 µM) of OATP1B-mediated CGamF 

accumulation, compared to atazanavir, darunavir, ritonavir and saquinavir (Ki between 1.4 and 3.3 

µM). 3. Inhibitory profiles towards OATP2B1-mediated E3S accumulation were different with only 

indinavir, saquinavir and ritonavir showing substantial effects. 4. In conclusion, OATP1B3 appears 

to be a major transport mechanism mediating sodium-independent CGamF accumulation in human 

liver and CGamF could be used as a probe substrate for in vitro drug interaction studies. The 

remarkably potent inhibition of OATP1B1 by lopinavir may explain some clinically relevant drug 

interactions between lopinavir and OATP1B substrates such as fexofenadine.
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Organic anion transporting polypeptides (OATP/Oatp, Human/Rat, SLCO/Slco) belong to a 

growing superfamily of transporters that mediate cellular accumulation of structurally diverse 

amphiphilic organic solutes (Hagenbuch and Gui, 2008). Eleven human OATP isoforms and 14 rat 

Oatp isoforms have thus far been identified. OATP1B1, OATP1B3 and OATP2B1 are the three 

human OATPs that are now considered to play a crucial role in hepatic uptake of exogenous and 

endogenous compounds at the liver sinusoidal membrane domain. OATP1B1 and 1B3 are 

liver-specific, whereas OATP2B1 displays wide tissue distribution (Annaert et al., 2007).  

Many drugs have been identified as OATP substrates and clinical drug interactions that can be 

attributed to the OATP inhibition have been observed (Konig et al., 2006; Hagenbuch and Gui, 

2008). For example, heart transplant patients receiving cyclosporine and rosuvastatin showed a 

sevenfold increase in rosuvastatin AUC as compared to historical controls (Simonson et al., 2004). 

On the other hand, rosuvastatin exhibits no drug interaction when coadministered with the potent 

CYP3A4 inhibitor ketoconazole (Cooper et al., 2003). Rosuvastatin is not transported by the 

canalicular transporters MDR1 (ABCB1) or MRP2 (ABCC2) (Huang et al., 2006), however 

interference with its OATP-mediated hepatic uptake was found to contribute significantly to the 

marked interaction with cyclosporin. Apart from OATP-mediated drug interactions, interindividual 

variability in genes encoding OATP transporters can also result in marked interindividual 

differences in pharmacokinetics; the impact of OATP1B1 polymorphisms has been extensively 

documented. For example, a single-nucleotide polymorphism (c.521T>C, P.Val174Ala) in the 

SLCO1B1 gene encoding OATP1B1 decreases the ability of OATP1B1 to transport simvastatin, 

resulting in markedly increased plasma concentrations of simvastatin and an enhanced risk of 

simvastatin-induced myopathy (Link et al., 2008). The SLCO1B1 polymorphism also has 

implications regarding the hepatic uptake of bile acids in vivo in human (Xiang et al., 2009). 
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These examples illustrate that mechanisms underlying hepatic drug interactions frequently extend 

beyond the classical involvement of P450-mediated drug metabolism (DuBuske, 2005; Endres et al., 

2006). In addition, since endogenous compounds such as bile salts rely on hepatic transporters to 

maintain normal hepatic physiology (e.g., bile flow), drugs that inhibit the function of key 

transporters may also cause important disturbances of endogenous substance elimination via the 

hepatobiliary system.  

The use of probe substrates and inhibitors to determine the relative importance of individual hepatic 

transporters has advanced the value of uptake data obtained using hepatocytes in drug discovery 

(Soars et al., 2007). However, as discussed by Wang et al. (Wang et al., 2008), although the use of 

selective inhibitors of efflux transporters can provide useful mechanistic information on drug 

interactions involving efflux transporters, the potential cross-reaction of inhibitors with multiple 

transporters makes it difficult to discern the role of individual transporters in drug transport. For 

instance, MK 571 has been considered a specific inhibitor for MRP2 (Gekeler et al., 1995), but 

some studies have indicated that it can also inhibit uptake transporters OATP1B1, 1B3 and 2B1 

(Yamazaki et al., 2005; Letschert et al., 2006). Elacridar was originally synthesized to be a selective 

inhibitor for MDR1 (Wallstab et al., 1999), but was found to also potently inhibit BCRP ( ABCG2) 

(de Bruin et al., 1999).  

It follows that continuing efforts are required to identify and thoroughly profile new transporter 

probe substrates and inhibitors. In this context, we recently reported on the characterization of the 

hepatic disposition of the bile salt analog cholyl-glycylamido-fluorescein (CGamF) in animal and 

human hepatocytes (Ye et al., 2008; Ye et al., 2009). CGamF was synthesized by conjugation of 

5-aminofluorescein with the carboxylic group of the natural bile acid cholylglycine yielding a 

fluorescent bile salt analogue (Holzinger et al., 1998). The utility of CGamF as a convenient 
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fluorescent probe simulating bile salt transport in various in vitro and in vivo models of different 

species has been demonstrated previously (Maglova et al., 1995; Bravo et al., 1998; Holzinger et al., 

1998; Mita et al., 2006). Mita et al. (2006) showed that CGamF as well as other fluorescent bile salt 

analogues were transported across LLC-PK1 cells co-expressing NTCP (SLC10A1) and BSEP 

(ABCB11), albeit at a substantially lower rate than the natural bile salt taurocholate. In rat and 

human hepatocytes, we demonstrated that CGamF is mainly accumulated by sodium-independent 

mechanisms that are sensitive to the OATP inhibitor rifampicin (Ye et al., 2008; Ye et al., 2009). 

Coincubation of CGamF with digoxin (to inhibit OATP1B3 in human and Oatp1a4 in rat (Annaert 

et al., 2007)), caused some inhibition but less than following coincubation with rifampicin in rat and 

human, indicating that at least OATP1B3/Oatp1a4 is involved in the hepatic uptake of CGamF in 

the human/rat liver. However, while these data strongly support a pivotal role of OATPs in CGamF 

accumulation, the relative contribution of the three OATP isoforms that are expressed in the 

basolateral membrane of hepatocytes (OATP1B1, OATP1B3 and OATP2B1) are not known.  

A range of expression systems have been utilized to investigate the substrate specificity of OATPs, 

including Xenopus laevis oocytes injected with complementary RNA (Hagenbuch et al., 1996) and 

stable transfections of OATPs in cell lines such as Chinese Hamster Ovary (CHO) cells (Treiber et 

al., 2007; Gui et al., 2008). In addition, the well known Caco-2 cell line shows substantial 

expression of OATP2Bl in the apical membrane, where it contributes predominantly to the 

accumulation of E3S, thus making Caco-2 cells an attractive in vitro tool for assessing 

OATP2B1-mediated drug-drug interactions (Sai et al., 2006). 

In the present study, we expanded our previous in vitro data obtained in animal and human 

hepatocytes by conducting CGamF transport and interaction experiments in OATP1B1 and 1B3 

transfected CHO cells. In addition, E3S was used as model substrate for the OATP2B1-mediated 



THIS IS A PRE-PRINT VERSION OF A PUBLISHED MANUSCRIPT. FINAL ACCEPTED MANUSCRIPT 
AVAILABLE FROM http://informahealthcare.com/doi/abs/10.3109/00498250903509375 

Copyright INFORMA Healthcare Final version of manuscript 6 

interaction with HIV PI since CGamF did not accumulate in Caco-2 cells.
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Materials and Methods 

Chemicals. Amprenavir was kindly provided by GlaxoSmithKline (Middlesex, UK). Ritonavir, 

indinavir sulfate, saquinavir mesylate, nelfinavir mesylate and lopinavir were donated by Hetero 

Drugs Limited (Hyderabad, India). Atazanavir was obtained from Bristol-Myers Squibb (New 

Brunswick, NJ) and darunavir was obtained from Cilag AG (Switzerland). HEPES 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) was purchased from MP Biomedicals 

(Illkirch, France). Dulbecco’s Modified Eagle Medium (DMEM) (containing 1 g/l D-glucose, 1 mM 

L-glutamine, 25 mM HEPES buffer and 110 mg/l sodium pyruvate) and Geneticin G-418 were from 

Invitrogen (Paisley, UK), L-Glutamine, Penicillin-streptomycin-mixture (contains 10,000 units 

potassium penicillin and 10,000 µg streptomycin sulfate per ml in 0.85 % saline), Fetal Bovine 

Serum (FBS), Hanks’ Balanced Salt Solution (HBSS) and Phosphate Buffered Saline 1× (PBS) 

were purchased from Lonza Verviers SPRL (Verviers, Belgium). L-proline, sodium butyrate, 

estrone-3-sulfate, digoxin, rifampicin, rifamycin SV, bromsulphophthalein and Triton X-100 were 

purchased from Sigma-Aldrich (Schnelldorf, Germany). Cholyl-glycylamido-fluorescein was 

kindly provided by Prof. Alan Hofmann (University of California, San Diego). 3H-estrone-3-sulfate 

(E3S; 57.3 Ci/mmol) was obtained from PerkinElmer Life Sciences (Boston, MA). All other 

chemicals and reagents were of analytical grade and were readily available from commercial 

sources. CHO cells expressing OATP1B1 and OATP1B3 have been described previously (Treiber 

et al., 2007; Gui et al., 2008). 

Cell culture. OATP1B1 and OATP1B3-transfected CHO cells and the wild-type cells were 

cultured at passage 40 to 60. Wild-type cells were grown at 37°C in 75 cm2 T-flasks in a humidified 

5% CO2 atmosphere in DMEM containing 1 g/l D-glucose, 1 mM L-glutamine, 25 mM HEPES and 

110 mg/l sodium pyruvate, supplemented with 10% FBS, 50 µg/ml L-proline, 100 IU/ml penicillin, 
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100 µg/ml streptomycin. The culture medium for the transfected cell lines additionally contained 

geneticin (G-418, 500µg/ml). For accumulation experiments CHO-wild-type and OATP-expressing 

cells were plated at 40,000 cells per well on 24-well plates and culture medium was replaced every 

other day. Accumulation experiments were performed on day 4 to 5 after seeding when cells were 

grown to confluence. One day before starting the accumulation experiments, cells were additionally 

treated with 5 mM sodium butyrate. Caco-2 cells were purchased from Cambrex Biosciences 

(Walkersville, MD) and grown in 75 cm2 culture flasks at 37 °C in an atmosphere of 5% CO2 and 

90% relative humidity. Cells were passaged every 3-4 days (at 70-80% confluence) at a split ratio 

of 1-7. For transport experiments, Caco-2 cells were plated at a density of 40,000 per well on 

24-well plates. Confluence was reached within 3-4 days after seeding and the monolayers were used 

for the experiments 2 weeks post-seeding. Cell passages between 50 and 70 were used in the 

experiments.  

Accumulation studies. Cells were rinsed twice with 0.5 ml/well of standard buffer (Hanks’ 

Balanced Salt Solution with 10 mM HEPES, pH 7.4) and pre-incubated for 10 min at 37°C. For 

experiments in which the effect of inhibitors was investigated, cells were pre-incubated for 10 min 

with 0.5 ml of the standard buffer containing the inhibitor at desired concentration. Subsequently, 

0.5 ml of double-concentrated substrate solution was added to initiate the actual incubation. After 

the incubation, cells were rinsed four times with 1 ml of ice-cold standard buffer and lysed with 0.5 

ml of 0.5% Triton X-100 solution (in PBS) by placing plates on a shaker for 20 min at room 

temperature. Cell lysates were analyzed by fluorescence spectroscopy (ex 490 nm; em 524 nm) in a 

Tecan Infinite M200 plate reader (Austria) for determination of CGamF concentrations, and by 

liquid scintillation spectroscopy (Wallac 1410, Finland) for 3H-E3S. Accumulation was normalized 

to the protein content of the CHO cells and Caco-2 cells in each well which was measured by using 
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the BCATM Protein Assay kit (Pierce Chemical, Rockford, IL). All accumulation data were 

corrected for nonspecific binding to cell-free culture plates. Accumulation values in transfected 

CHO cells were corrected by subtracting accumulation into non-transfected CHO cells. 

Data analysis.  

For the characterization of E3S accumulation kinetics in Caco-2 cells, the following equation was 

used: 

max1 max2

m1 m2

. .
.d

V C V CV K C
K C K C

= + +
+ +

 

with Kd representing the rate constant for the nonsaturable accumulation, and Km and Vmax 

representing the kinetic parameters for the saturable (Michaelis-Menten) accumulation components. 

This equation was used based on previous data reflecting E3S accumulation in Caco-2 cells (Sai et 

al., 2006). The Michaelis-Menten equation was fitted to the data of net accumulation of CGamF in 

transfected CHO cells. All the parameters were obtained by using the Solver tool in Microsoft Excel 

2003. 

In addition, the sigmoid inhibitory effect model was used to describe a concentration-dependent 

inhibitory effect by diagnostic inhibitors and the various HIV PI:  
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with E the accumulation of substrate in cells, Emax representing the accumulation of substrate 

without inhibitor, E0 the accumulation of substrate at the maximum inhibitory effect of inhibitor, 

Emax-E0 the maximum inhibitory effect, C the inhibitor concentration and γ the shape parameter 

(Hill coefficient). The best fits of the above equations to the individual accumulation data sets were 

obtained in Pharsight WinNonlin software v.5.2. (Pharsight, CA). 

The Cheng–Prusoff equation (Cheng and Prusoff, 1973) was used to calculate the Ki from IC50 
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values obtained in this study:  

50

1

ICKi S
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where the IC50 is the concentration of the inhibitor producing a 50% inhibition, S is the substrate 

concentration under which the study is performed and Km is the Michaelis constant reflecting the 

affinity of the substrate (CGamF) for the transporter. 

For comparison with the IC50 values obtained in transfected CHO cells, the IC50 values reflecting 

inhibition of CGamF accumulation in human hepatocytes were calculated from the data obtained 

previously (Ye et al., 2009), by linear regression of the Log(concentration) versus relative 

accumulation data. 

Statistics. ANOVA (Dunnett) was used to evaluate statistical differences (SPSS v. 17.0 for 

Windows, SPSS Inc., Chicago (IL), USA). A p value of 0.01 was used as criterion for statistical 

significance. 
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Results:  

Determination of CGamF accumulation kinetics in transfected CHO cells  

Time-dependent cellular accumulation profiles for CGamF in OATP1B1 and OATP1B3 or 

wild-type CHO cells were determined for concentrations between 0.2 and 50 µM and initial 

accmulation rates were linear for the first 90 s of CGamF accumulation (data not shown). Initial net 

OATP1B1 or OATP1B3 mediated accumulation rates followed Michaelis-Menten kinetics. 

Average estimates for Km and Vmax are shown in Figure 1. CGamF exhibited an approximately 

3-fold higher affinity and 5-fold higher Vmax for OATP1B3 compared to OATP1B1. 

 

Effect of diagnostic inhibitors and various HIV PI on CGamF accumulation in transfected 

CHO cells 

To test whether known OATP inhibitors interact with OATP1B1 and 1B3-mediated CGamF 

accumulation, we quantified accumulation of 1 µM CGamF in the OATP1B1 and 1B3-expressing 

CHO cells in the absence and presence of different concentrations of rifampicin, digoxin and 

bromosulphophthalein and different HIV PI . The accumulation rate of 1 µM CGamF in OATP1B1 

and 1B3-expressing CHO cells was linear up to 10 min. The results are summarized in Table 1 and 

Figure 2-3. 

Rifampicin and bromosulphophthalein, known substrates/inhibitors of OATP1B1 and OATP1B3 

(Vavricka et al., 2002; Annaert et al., 2007) were included as a positive control and inhibited almost 

completely the accumulation mediated by both OATPs with Ki values between 0.6 and 1.6 µM. 

Although the OATP1B3 substrate digoxin shows slight inhibiton of CGamF accumulation in 

OATP1B1-expressing CHO cells (Ki ∼ 7 µM), it was 10-fold more potent in OATP1B3-expressing 

CHO cells with a Ki value of 0.7 µM. Digoxin did not completely block the transport of CGamF in 
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OATP1B3-expressing CHO cells. 

Among the HIV PI tested, all except nelfinavir show a concentration-dependent inhibitory effect on 

CGamF accumulation by both OATP isoforms. Table 1 compares the IC50/ Ki values of HIV PI for 

inhibition of OATP1B1 and 1B3-mediated CGamF (1 µM) accumulation with unbound plasma 

concentrations. Lopinavir is the most potent inhibitor with a Ki value around the unbound plasma 

concentration range. All other compounds exhibit Ki values above unbound plasma concentrations. 

The Ki values for the inhibiton by HIV PI in OATP1B1-expressing CHO cells correlated well with 

the values obtained in OATP1B3-expressing CHO cells (Figure 4A). The inhibitory effect of HIV 

PI on the CGamF accumulation in human hepatocytes has been investigated in a previous study (Ye 

et al., 2009). The IC50 values reflecting inhibition of CGamF accumulation by different HIV PI in 

human hepatocytes were estimated by linear regression of the Log(concentration) versus relative 

accumulation data. The corresponding Ki values were 0.1, 0.3, 5.8, 106, 123 and 219 µM for 

atazanavir, darunavir, indinavir, saquinavir, ritonavir, and amprenavir, respectively. Apart from 

saquinavir and ritonavir, some correlation could be discerned between Ki values in human 

hepatocytes and those obtained in OATP1B1- or OATP1B3- expressing CHO cells (Figure 4 B, C).  

 

CGamF and E3S accumulation in Caco-2 cells. 

Transporter expression profiling of the Caco-2 cell populations used in our lab along with those 

obtained from other labs revealed that our Caco-2 cells (as well as those of most other labs tested) 

express high levels of OATP2B1 with absent or very low levels of the other OATP isoforms 

(Hayeshi et al., 2008). Previous work has shown that OATP2B1 is predominantly responsible for 

the apical accumulation of E3S in Caco-2 cells (Sai et al., 2006). In the present study, the 

accumulation activity of OATP2B1 using E3S as substrate showed highest in week 2 Caco-2 
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cultures. No accumulation of CGamF could be detected in Caco-2 cells, indicating that CGamF is 

most likely a very poor OATP2B1 substrate.  

In order to study the inhibitory effects of HIV PI on OATP2B1 activity, E3S was used as probe 

substrate. Initial accumulation of E3S across the apical membrane of Caco-2 cells was determined 

at 2 min. Biphasic saturation kinetics were observed consistent with results from a previous study 

(Sai et al., 2006). The Km values of the high- and low-affinity sites were 3.2 ± 0.3 µM and 2.9 ± 0.1 

mM, and Vmax values were 41.1 ± 3.2 pmol/mg protein/2 min and 7.9 ± 0.5 nmol/mg protein/2 min, 

respectively (Figure 5, A B). By comparing the values of the Vmax/Km ratio for high- and 

low-affinity sites, the contribution of the high-affinity site to overall accumulation clearance at low 

concentration was estimated to be approximately 4 times larger than that of the low-affinity site. 

 

Effect of OATP inhibitors and various HIV PIs on E3S accumulation in Caco-2 cells 

The known OATP inhibitors, rifampicin, rifamycin SV, bromosulphophthalein and E3S itself 

significantly inhibited E3S accumulation in Caco-2 cells, while the specific OATP1B3 substrate 

digoxin had no effect. Among eight tested HIV PI, indinavir, ritonavir and saquinavir showed the 

most potent inhibition of E3S accumulation in Caco-2 cells (Figure 6).  

For the four OATP inhibitors and the three most potent HIV PI, concentration-dependent inhibitory 

effect on the E3S accumulation in Caco-2 cells were studied in more detail (Figure 7). E3S 

accumulation in Caco-2 cells was strongly inhibited by the sulfate conjugate bromosulphophthalein 

(Table 2), yielding an IC50 value comparable with the reported value (2.9 µM) (Sai et al., 2006). 

The IC50/Ki values for ritonavir, saquinavir and indinavir were all above the unbound plasma 

concentration reported for these HIV PI (see Table 1). 
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Discussion 

In the present study, we first investigated the relative roles of the three different human 

hepatic OATP isoforms in CGamF accumulation. Relatively high CGamF accumulation rates were 

observed in OATP1B1- and OATP1B3-transfected CHO cells (Figure 1), yielding accumulation 

clearance values (Vmax/Km) of 7.8 and 142 µl/min/mg protein, respectively. For comparison, 

reported values (Treiber et al., 2007; Gui et al., 2008) for accumulation of previously tested 

OATP1B1 and 1B3 substrates in these transfected cells are: 30 and 23 µl/min/mg protein for 

bosentan, 67 and 23 µl/min/mg protein for estradiol-17β-D-glucuronide, 142 and 32 µl/min/mg 

protein for E3S, and 0.034 and 0.203 µl/min/mg protein for Fluo-3. This allows categorizing 

CGamF as an excellent substrate for the OATP1B transporter subfamily. In contrast, no 

accumulation of CGamF could be detected in Caco-2 monolayers, indicating that OATP2B1, by far 

the most abundant transporter among the OATPs expressed in this cell line (Sai et al., 2006; 

Hayeshi et al., 2008), is not mediating CGamF accumulation to any appreciable extent. Assuming 

that the transport behaviour of CGamF is mainly determined by its bile salt moiety, the latter 

finding is consistent with previous reports stating that OATP2B1, in contrast to the 1B1 and 1B3 

isoforms, does not mediate bile acid transport (Kullak-Ublick et al., 2001). Along with our previous 

in vitro data on CGamF accumulation in human hepatocytes, demonstrating significant inhibition of 

sodium-independent CGamF accumulation by the OATP inhibitor rifampicin (as well as various 

HIV PI) (Ye et al., 2009), OATP1B3 appears to be the main sodium-independent transporter 

mediating human hepatic CGamF accumulation. In addition, incubations with human hepatocytes in 

the absence of sodium had implied NTCP supporting about 36 % of active CGamF accumulation 

(Ye et al., 2009). Although the combination of in vitro data thus far obtained for CGamF (in human 

hepatocytes and transfected systems) do not allow to completely exclude a role for other 
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sodium-independent mechanisms (e.g. OAT2; SLC22A7) mediating hepatic CGamF accumulation, 

the fact that CGamF is an amphiphilic bile acid analogue provides further evidence for the key role 

of OATP transporters, in casu the 1B3 isoform. Even though the relative expression level of 

OATP1B1 is about 2-fold higher than OATP1B3 in human liver (Hilgendorf et al., 2007), these 

data support the use of CGamF as an in vitro probe substrate for sodium-independent substrate 

accumulation in human hepatocytes essentially mediated by OATP1B3.  

Interference with OATP1B1 and 1B3-mediated CGamF accumulation was studied for the 

diagnostic OATP inhibitors/substrates rifampicin, digoxin and bromosulphophtalein, as well as for 

most HIV PI in clinical use today (Table 1; Figure 1-2). The inhibition by rifampicin and 

bromosulphophthalein is comparable for both OATP isoforms (Ki values between 0.6 and 1.6 µM), 

whereas upon coincubation with digoxin a much higher potency was observed for inhibiting 

OATP1B3 (Ki = 0.7 µM) compared to OATP1B1 (Ki = 7 µM). The observation that digoxin 

affected OATP1B1-mediated accumulation, albeit at a lower potency than for OATP1B3, is 

remarkable in light of reports classifying digoxin as a specific OATP1B3 substrate (Kullak-Ublick 

et al., 2001). However, its specificity as an inhibitor was not tested in the latter study and weak 

interference of digoxin with OATP1B1-mediated pitavastatin accumulation has also been reported 

(Ki=32 µM) (Hirano et al., 2006). It should be emphasized that the latter observation as well as our 

present data do not imply that OATP1B1 mediates digoxin transport, but only indicate some affinity 

of digoxin for OATP1B1. Digoxin accumulation in transfected oocytes has indeed been shown for 

OATP1B3 only, and not for the 1B1, 2B1 or 1A2 isoforms (Kullak-Ublick et al., 2001). It is also 

noteworthy that digoxin showed relatively poor efficacy for inhibition of CGamF accumulation by 

both OATP1B isoforms (38% - 54% max inhibition), which may indicate that multiple binding sites 

are involved. Using estradiol-17β-D-glucuronide as a substrate and/or inhibitor, multiple binding 
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sites on rat Oatp1a4 have been suggested to explain activation as well as inhibition of 

Oatp-mediated substrate accumulation in hepatocytes (Sugiyama et al., 2002; Annaert and Brouwer, 

2005).  

The concentration-dependent inhibition curves (Figure 2-3) for the various HIV PI with 

respect to CGamF accumulation in OATP1B1- and OATP1B3-expressing CHO cells illustrate that 

most HIV PI exhibit significant affinity for the OATP1B transporter subfamily. Ki values covered a 

rather broad range (Table 1; Figure 4A), between 0.5 and 12.8 µM for OATP1B1 inhibition and 

between 1.4 and 13.1 µM for OATP1B3 inhibition. As compared to the other HIV PI tested, 

lopinavir was remarkably potent for inhibiting OATP1B-mediated CGamF accumulation. With Ki 

values all within the 1.4 - 3.3 µM range, the inhibiting potencies of saquinavir, ritonavir, atazanavir 

and darunavir were very similar, whereas much higher Ki values were observed for indinavir and 

amprenavir (8.5-13 µM). The remarkably potent effect of lopinavir is certainly of interest in light of 

results from a clinical drug interaction study including lopinavir/ritonavir and the OATP substrate 

fexofenadine (van Heeswijk et al., 2006). In this article, the authors had speculated about the 

possible interference of transporters different from P-glycoprotein, such as OATPs, to explain the 

increased fexofenadine plasma levels. In another study, coadministration of rosuvastatin and 

lopinavir/ritonavir in healthy volunteers was associated with an approximately 2- and 5-fold 

increase in rosuvastatin steady-state AUC and Cmax, respectively (Kiser et al., 2008). This increase 

was considered to be clinically significant requiring dose adjustment and this drug interaction was 

suggested to be mediated via inhibition of OATP1B1 by either ritonavir and/or lopinavir (Ayrton 

and Morgan, 2008). Our in vitro data appear to support inhibition of OATP1B1 by lopinavir (rather 

than ritonavir) as a major mechanism here, since the unbound plasma Cmax level for lopinavir (0.3 

µM) is only slightly lower than the Ki value in our in vitro system. 
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Figure 4A illustrates that there is a rather good correlation between inhibition potencies of 

both isoforms, which may indicate binding to corresponding sites on both isoforms. This is not 

surprising given the 80% amino acid identity between the 1B1 and 1B3 isoforms (Hagenbuch and 

Meier, 2003). In the present study, the most pronounced difference between both isoforms in terms 

of inhibiting potency was observed for lopinavir with a 3-fold higher affinity for OATP1B1 

compared to OATP1B3. For all other HIV PI, the difference was less than 2-fold. Nevertheless, 

considering the unbound Cmax concentration of lopinavir (0.3 µM), the difference in potency for 

lopinavir towards both isoforms may be critical with respect to the clinical relevance of drug 

interactions occurring at the level of OATP1B1 versus OATP1B3. In light of the above mentioned 

clinically relevant drug interaction between fexofenadine and lopinavir/ritonavir, inhibition of 

OATP1B1 by lopinavir would be the most likely mechanism. However, the relative contribution of 

multiple OATP isoforms to fexofenadine disposition remains controversial. Shimizu et al. (Shimizu 

et al., 2005) have demonstrated that OATP1B3 contributes mainly to the hepatic accumulation of 

fexofenadine using transporter-expressing HEK293 cells. On the other hand, Niemi et al. (Niemi et 

al., 2005) reported that the genetic polymorphism of OATP1B1 (T521C), which was been shown to 

decrease the transport clearance, increased the plasma AUC of fexofenadine. These results 

suggested that OATP1B1 as well as OATP1B3 are involved in the accumulation of fexofenadine 

into human liver. The exact relative roles of both isoforms in the drug interaction between 

fexofenadine and lopinavir/ritonavir remain to be elucidated. 

As mentioned before, in contrast to the efficient accumulation of CGamF by the human 

OATP1B isoforms, no accumulation of CGamF could be detected in Caco-2 cells. As virtually 

exclusive expression of the 2B1 isoform among multiple members of the OATP family was shown 

in the Caco-2 clone used in the present study (Hayeshi and others 2008), any role for OATP2B1 in 
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the disposition of CGamF in human liver is highly unlikely. However, consistent with previous 

reports, efficient accumulation of E3S was observed across the apical membrane of Caco-2 cells, 

thus enabling the use of this cell line as a surrogate in vitro tool for hepatic OATP2B1-mediated 

substrate accumulation. Based on observed kinetics for E3S (Figure 5), accumulation clearance 

values of 1.4 and 6.4 µl/min/mg protein were obtained for the low and high capacity components, 

respectively. As illustrated in Figure 6, the low affinity of digoxin for the OATP2B1 isoform was 

confirmed with no effect on E3S accumulation. In contrast, the less specific and/or more potent 

OATP inhibitors bromosulphophthalein , rifamycin SV and rifampicin all significantly reduced E3S 

accumumation. Among the HIV PI tested at high concentrations (10-50 µM; Figure 6), only 

indinavir, ritonavir and saquinavir exhibited significant effects. However, with Ki values between 

3.0 and 4.8 µM (Table 2, Figure 6), these PI were less potent compared to typical OATP inhibitors 

(Ki = 1.5-2.3 µM). 

Since interaction studies for OATP2B1 were necessarily conducted with E3S instead of 

CGamF as substrate, comparison of inhibitory effects of HIV PI on 2B1 with the effects of HIV PI 

on OATP1B1 and 1B3-mediated CGamF accumulation should occur with caution; the inhibitory 

effects will be substrate-dependent. Nevertheless, it appears that only ritonavir and saquinavir 

exhibited comparable potency for inhibition of all OATP isoforms tested. Indeed, the potent effects 

of lopinavir on the OATP1B subfamily was not observed for OATP2B1, while indinavir as the 

most potent OATP2B1 inhibitor (Ki =3 µM) among the HIV PI, was about 3-fold less potent 

against OATP1B-mediated CGamF accumulation.  

Comparison of the effects of these HIV PI on CGamF accumulation between human 

hepatocytes and OATP1B-transfected CHO cells (Figure 4B,C) reveals some relationship for 

atazanavir, darunavir, indinavir and amprenavir. However, much higher Ki values were obtained for 
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ritonavir and saquinavir in human hepatocytes compared to OATP1B1 and 1B3-transfected CHO 

cells. This discrepancy may be explained in different ways. One explanation for this observation 

may be that sinusoidal efflux mechanisms (e.g. ABCC3; MRP3) present in human hepatocytes but 

not in transfected CHO cells limit the intracellular concentrations of saquinavir and ritonavir to a 

larger extent compared to other PI. However, this would imply binding that these PI inhibit 

OATP1B by binding to its intracellular domain, while to date no evidence has been reported for 

OATP inhibition from the cytoplasmic side. Alternatively, it should be noted that inhibition of 

active CGamF accumulation in human hepatocytes (Ye et al., 2009) was studied under conditions 

supporting contribution of both sodium-independent (OATP-mediated) as well as sodium 

dependent (NTCP-mediated; 35%) pathways. The relatively higher concentrations which may be 

needed to inhibit NTCP-mediated CGamF transport by saquinavir and ritonavir, may exlain the 

higher Ki values in hepatocytes compared to OATP1B1 and 1B3-transfected cells. However, even 

when using taurocholate as the prototypical NTCP substrate, both ritonavir and saquinavir were 

shown to be relatively potent inhibitors (IC50 = 2.1 and 6.7 µM) of human NTCP (McRae et al., 

2006). It will be necessary to also study the effects of the various HIV PI on NTCP-mediated 

CGamF transport in order to gain a better understanding of the inhibition profiles observed in 

human hepatocytes. 

In conclusion, we have obtained in vitro data illustrating isoform-specific interaction of HIV 

PI with the OATP family of human hepatic transporters. The interaction profiles obtained in cells 

transfected with a single OATP1B isoform correlated only partly with the interaction profiles 

obtained in human hepatocytes. Lopinavir was shown to be remarkably potent in inhibiting 

OATP1B1 (and to a lesser extent OATP1B3) and this inhibition may explain clinically relevant 

drug interactions involving drugs (e.g. fexofenadine) relying on OATPs for their hepatobiliary 
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elimination. Although a different substrate had to be used to study OATP2B1 interaction, HIV PI 

displayed completely different interaction profiles for this isoform compared to the OATP1B 

subfamily. Generating drug interaction profiles in various in vitro systems, including human 

hepatocytes and transfected cells, will ultimately contribute to a better understanding of the 

mechanisms underlying clinically relevant drug interactions. 
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Table 1. Comparison of IC50 and Ki values of HIV PI for inhibition of OATP1B1 and 1B3-mediated CGamF (1 µM) accumulation with unbound 
plasma concentrations, IC50 values were calculated according to the sigmoid inhibitory effect model as described in the Methods section. 

 

Inhibitors 
Maxium inhibition (% of control) IC50 (µM) Ki (µM) Plasma 

protein binding* 
Cmax corrected for 

plasma protein binding (µM)* 
OATP1B1 OATP1B3 OATP1B1 OATP1B3 OATP1B1 OATP1B3 

amprenavir 61 ±9 75 ± 2 14.4 ± 3.8 19.1 ± 2.0 12.8 13.1 90% 1.0-3.2 

atazanavir 72 ± 8 87 ± 7 1.7 ± 0.2 3.0 ± 1.0 1.5 2.0 86% 0.6-1.3 

darunavir 66 ± 3 83 ± 2 3.5 ± 1.1 4.8 ± 0.8 3.1 3.3 93% 0.3-1.1 

indinavir 63 ± 4 76 ± 2 12.2 ± 4.2 12.3 ± 1.1 10.8 8.5 65% 1.7-4.4 

lopinavir 76 ± 3 89 ± 2 0.5 ± 0.1 2.0 ± 0.1 0.5 1.4 98% 0.3 

nelfinavir** 38 ± 9 34 ± 6 ND ND ND ND 98% 0.10 

ritonavir 73 ± 1 86 ± 4 1.6 ± 0.3 3.6 ± 1.1 1.4 2.5 99% 0.16 

saquinavir 74 ± 0.3 80 ± 4 2.1 ± 1.2 4.1 ± 1.0 1,8 2.8 98% 0.11-0.30 

rifampicin 79 ± 5 94 ± 3 1.8 ± 0.3 1.3 ± 0.7 1.6 0.9 - - 

digoxin 38 ± 7 54 ± 9 7.9 ± 2.1 1.0 ± 0.4 7.0 0.7 - - 

bromosulphophthalein 74 ± 9 92 ± 3 0.7 ± 0.4 1.4 ± 0.4 0.6 1.0 - - 

 
ND: Not determined. 
*: from (Williams and Sinko, 1999; Hoetelmans R, 2003; Perry et al., 2005; Swainston Harrison and Scott, 2005; Marin-Niebla et al., 2007; Ruane et 
al., 2007; Chandwani and Shuter, 2008) 
**: due to solubility limitations, nelfinavir could only be tested up to a concentration of 20 µM   
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Table 2. IC50 and Ki values of human OATP inhibitors and various HIV PI for inhibition of 

OATP2B1 mediated E3S (1 µM) accumulation across the apical membrane of Caco-2 monolayers, 

IC50 and Ki values were calculated as described in the Methods section. 

 

Inhibitors IC50 (µM) Ki (µM) 

Bromosulfophthalein 2.0 � 0.5 1.5  

Rifampicin 2.1 � 1.5 1.6  

Estrone-3-sulfate 2.5 � 0.9 1.9  

Rifymicin SV 3.0 � 1.1 2.3  

Indinavir 3.9 � 0.6 3.0  

Saquinavir 5.3 � 1.3 4.0  

Ritonavir 6.3 � 2.9 4.8  
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Figure Legends 

Figure 1. Concentration-dependent net accumulation of CGamF in OATP1B1- (panel A) and 

OATP1B3- (panel B) expressing CHO cells. Net accumulation values were obtained by subtracting 

accumulation in wild-type CHO cells from total accumulation in transfected cells. Points represent 

mean (± S.D.) of triplicate measurements. Solid lines were obtained by fitting the Michaelis-Menten 

equation to the experimental data by using the Solver tool in Microsoft Excel 2003. 

 

Figure 2. Concentration dependent inhibition of CGamF accumulation in OATP1B1-expressing 

CHO cells. Accumulation of 1µM CGamF was measured at 37 °C for 10 min in 

OATP1B1-expressing and wild type CHO cells in the absence or presence of different 

concentrations of rifampicin, digoxin, bromosulphophthalein and various HIV PI. Net accumulation 

values were obtained by subtracting accumulation in wild-type CHO cells from total accumulation 

in transfected cells. Points represent mean (± S.D.) of triplicate measurements. Lines represent best 

fit to the data according to the sigmoid inhibitory effect model as described in the Methods section. 

 

Figure 3. Concentration dependent inhibition of CGamF accumulation in OATP1B3-expressing 

CHO cells. Accumulation of 1µM CGamF was measured at 37 °C for 10 min in 

OATP1B3-expressing and wild type CHO cells in the absence or presence of different 

concentrations of rifampicin, digoxin, bromosulphophthalein and various HIV PI. Net accumulation 

values were obtained by subtracting accumulation in wild-type CHO cells from total accumulation 

in transfected cells. Points represent mean (± S.D.) of triplicate measurements. Lines represent best 

fit to the data according to the sigmoid inhibitory effect model as described in the Methods section. 
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Figure 4. Relationship between Ki values obtained in OATP1B1-expressing CHO cells and 

OATP1B3-expressing CHO cells (A); and between Ki values obtained using human hepatocytes 

(Ye et al., 2009) versus OATP1B1-expressing CHO cells (B) or versus OATP1B3-expressing CHO 

cells (C). 

 

Figure 5. Concentration dependent accumulation of E3S in Caco-2 cells. Points represent mean (± 

S.D.) of triplicate measurements. Dotted and solid lines represent the saturable and nonsaturable 

accumulation obtained by a model incorporating both a two phase Michaelis-Menten (saturable) 

and a linear (non-saturable) component (A). Saturable accumulation of E3S is also shown as an 

Eadie-Hofstee plot (B).  

 

Figure 6. Effect of different inhibitors on the accumulation of E3S in Caco-2 cells. Each bar 

represents mean (± S.D.) relative to control accumulation as function of different inhibitors. **,  

p<0.01 (ANOVA, Dunnet), compared to the control accumulation. 

 

Figure 7. Concentration-dependent inhibition of E3S (1 µM) accumulation (10 min, 37 °C ) across 

the apical membrane of Caco-2 monolayers. Points represents the mean (± S.D.) relative to control 

accumulation as function of different concentrations of rifampicin, rifamycin SV, 

bromosulphophthalein, estrone-3-sulfate and various HIV PI. Lines represent best fit to the data 

according to the sigmoid inhibitory effect model as described in the Methods section.   
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Figure 1 
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Figure 2 
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Figure 3 

��

	��


��

���

���

����

���� ��� � �� ��� ����

�������������� 

�
��
��
��
��
��
��
��
���

��
���
��
���

��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

����!�����"�

�
��
��
� 
��
��

��
��

���
��
���

��
���

��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

������!������ ���������#�

�
��

� 
�"

��
!�

 �
��

���
��

���
��

 ��
��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

������� �����!�

�
��
��
� 
��
��

��
��

���
��
���

��
���

��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

��� ���������!�

�
��
��
��
��
��

��
��

���
��
���

��
���

��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

������������ �

�
��
��
��
��
��
��
��
���

��
���
��
���

��

  



THIS IS A PRE-PRINT VERSION OF A PUBLISHED MANUSCRIPT. FINAL ACCEPTED MANUSCRIPT 
AVAILABLE FROM http://informahealthcare.com/doi/abs/10.3109/00498250903509375 

Copyright INFORMA Healthcare Final version of manuscript 36 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

������ �����!�

�
��
��
� 
��
��

��
��

���
��
���

��
���

��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

������������ �

�
��
��
��
��
��
��
��
���

��
���
��
���

��

 

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

��������������

�
��
��
��
��
��
��
��
���
��
���
��
���
��

 

��

	��


��

���

���

����

�	��

���� ��� � �� ��� ����

�������� �����!

�
��
��
� 
��
��

��
��

���
��
���

��
���

��

 

 



THIS IS A PRE-PRINT VERSION OF A PUBLISHED MANUSCRIPT. FINAL ACCEPTED MANUSCRIPT 
AVAILABLE FROM http://informahealthcare.com/doi/abs/10.3109/00498250903509375 

Copyright INFORMA Healthcare Final version of manuscript 37 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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