
 

 

Exact algorithms for single-
machine scheduling with 
time windows and 
precedence constraints 
Davari M, Demeulemeester E, Leus R, Talla Nobibon 
F. 

KBI_1321

 



Working paper

Exact algorithms for single-machine scheduling with time
windows and precedence constraints

Morteza Davari · Erik Demeulemeester

Roel Leus · Fabrice Talla Nobibon

Abstract We study a single-machine scheduling prob-

lem that is a generalization of a number of problems

for which computational procedures have already been

published. Each job has a processing time, a release

date, a due date, a deadline and a weight represent-

ing the penalty per unit-time delay beyond the due

date. The goal is to schedule all jobs such that the to-

tal weighted tardiness penalty is minimized and both

the precedence constraints as well as the time windows

(implied by the release dates and the deadlines) are

respected. We develop a branch-and-bound algorithm

that solves the problem to optimality. Computational

results show that our approach is effective in solving

medium-sized instances, and that it compares favorably

with existing methods for special cases of the problem.
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1 Introduction

Scheduling problems arise in production planning [38],

in balancing processes [37], in telecommunication [28]

and more generally in all situations in which scarce re-

sources are to be allocated to jobs over time [32]. De-

pending on the application, the corresponding schedul-

ing problem can be such that each job must be pro-

cessed within a given time window, where the lower

bound (release date or ready time) of this time win-

dow represents the earliest start of the execution of the

job and the upper bound (deadline) corresponds with

the latest acceptable completion time, for instance the

ultimate delivery time agreed upon with the customer

[15,31,46]. For some of these applications, only release

dates or only deadlines are considered [21,30,33,40]. In

practice, a job often also needs to be processed before
or after other jobs, e.g., due to tool or fixture restric-

tions or for other case-dependent technological reasons,

which leads to precedence constraints [25, 34, 42]. Fi-

nally, the contract with a client can also contain clauses

that stipulate that penalties must be paid when the ex-

ecution of a job is not completed before a reference date

(due date) [1, 12,20,21,39,40].

In this article, we develop exact algorithms for a

single-machine scheduling problem with total weighted

tardiness (TWT) penalties. In the standard three-field

notation introduced by Graham et al. [16], the problem

that we tackle can be denoted as 1|rj , δj , prec|
∑
wjTj :

the execution of each job is constrained to take place

within a time window, and we assume the correspond-

ing deadline to be greater than or equal to a due date,

which is the reference for computing the tardiness of

the job. The scheduling decisions are also subject to

precedence constraints. In the following lines we briefly

summarize the state of the art.
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Abdul-Razaq et al. [2] survey different branch-and-

bound (B&B) algorithms for 1||
∑
wjTj . A benchmark

algorithm is the B&B procedure of Potts and Van Was-

senhove [36]; an older reference is Held and Karp [18],

who present a dynamic programming (DP) approach.

Abdul-Razaq and Potts [1] introduce a DP-based ap-

proach to obtain tight lower bounds for the generalized

version of the problem where the cost function is piece-

wise linear, and Ibaraki and Nakamura [20] extend this

work and construct an exact method, called Successive

Sublimation Dynamic Programming (SSDP), which sol-

ves instances with up to 50 jobs. Tanaka et al. [41]

improve the SSDP of [20] and succeed in solving rea-

sonably large instances (300 jobs) of 1||
∑
wjTj within

acceptable runtimes.

Single-machine scheduling for TWT with (possibly

unequal) release dates (1|rj |
∑
wjTj) has also been stud-

ied by several authors. Akturk and Ozdemir [3, 4] and

Jouglet et al. [21] develop B&B algorithms that solve

small instances. Van den Akker et al. [45] propose a

time-indexed formulation and a method based on col-

umn generation to solve this problem with identical

processing times. Tanaka and Fujikuma [40] present an

SSDP algorithm that can solve instances of 1|rj |
∑
wjTj

with up to 100 jobs.

There are only few papers dealing with single-machine

scheduling with deadlines and/or precedence constraints.

Among these, we cite Posner [33] and Pan [30], who

propose B&B algorithms for 1|δj |
∑
wjCj , Pan and Shi

[31], who develop a B&B algorithm to solve 1|rj , δj |∑
wjCj , and Lawler [25] and Potts [34], who present

exact B&B algorithms to solve 1|prec|
∑
wjCj . Tanaka

and Sato [42] also propose an SSDP algorithm to solve

a generalization of 1|prec|
∑
wjTj (piecewise linear cost

function). To the best of our knowledge, scheduling

problems with release dates, deadlines and precedence

constraints have not yet been studied in the literature.

The goal of this paper is to fill this gap and to propose

efficient B&B algorithms that solve all the foregoing

subproblems within limited computation times.

The remainder of this paper is structured as follows.

In Section 2 we provide some definitions and a formal

problem statement, while Section 3 proposes two dif-

ferent integer programming formulations. In Section 4

we explain the branching strategies for our B&B algo-

rithms, while the lower bounds and dominance rules

are discussed in Section 5 and Section 6, respectively.

Computational results are reported and discussed in

Section 7. We provide a summary and conclusions in

Section 8.

2 Problem description

The jobs to be scheduled are gathered in set N =

{1, 2, . . . , n}. Job i is characterized by a processing time

pi, a release date ri, a due date di, a deadline δi, and

a weight wi, which represents the cost per unit time

of delay beyond di. Jobs can neither be processed be-

fore their release dates nor after their deadlines (0 ≤
ri ≤ di ≤ δi). Precedence constraints are represented

by a graph G = (N ′, A), where N ′ = N ∪ {0, n + 1},
with 0 a dummy start job and n+1 a dummy end. Each

arc (i, j) ∈ A implies that job i must be executed before

job j (job i is a predecessor of job j). We will assume

that G(N ′, A) is its own transitive reduction, that is, no

transitive arcs are included in A. Let Pi be the set of all

predecessors of job i in A (Pi = {k|(k, i) ∈ A}) and Qj
the set of successors of job i (Qi = {k|(i, k) ∈ A}). We

also define an associated graph Ĝ = (N ′, Â) as the tran-

sitive closure of G. We assume that P0 = Qn+1 = ∅,
and that all jobs are successor of 0 and predecessor of

n+ 1 in Ĝ (apart from the job itself).

Throughout this paper, we use the term ‘sequenc-

ing’ to refer to ordering the jobs (establishing a per-

mutation) whereas ‘scheduling’ means that start (or

end) times are determined. We denote by π an arbi-

trary sequence of jobs, where πk represents the job at

the kth position in that sequence. Let π−1(i) be the

position of job i in π; we only consider sequences for

which π−1(i) < π−1(j) for all (i, j) ∈ A. Value Ci is

the completion time of job i. Each sequence π implies

a schedule, as follows:

Cπi =

{
max{rπi , Cπi−1

}+ pπi if i > 1

rπi + pπi if i = 1

Equivalently, the end of job i according to sequence π

can also be written as Ci(π). We denote by D the set

of all feasible permutations, where a permutation π is

feasible (π ∈ D) if and only if it generates a feasible

schedule, which means that

rπi + pπi ≤ Cπi ≤ δπi ∀i ∈ N

Note that the set D may be empty.

The weighted tardiness associated with the job at

the ith position in the sequence π is given by W (πi) =

wπi (Cπi − dπi)
+

, where x+ = max {0, x}. A conceptual

formulation of the problem P studied in this paper is

the following:

P : min
π∈D

TWT(π) =

n∑
i=1

W (πi). (1)

This problem is at least as hard as 1||
∑
wiTi, which

is known to be strongly NP-hard [24,26,32]. A stronger
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Job i pi ri di δi wi
Job 1 2 3 10 14 1
Job 2 3 4 11 13 2
Job 3 4 3 8 15 3
Job 4 2 2 6 9 1

Table 1: Job characteristics.

0 1 2 3

4

5

Fig. 1: Precedence graph G(N ′, A).

result is that the mere verification of the existence of a

feasible schedule that respects a set of ready times and

deadlines is already NP-complete (problem SS1, page

236, [14]); we do not, however, incorporate the feasibil-

ity check as a formal part of the problem statement.

Example 1 Consider the following instance of P with

n = 4 jobs. The processing times, release dates, due

dates, deadlines and weights of the jobs are given in

Table 1. The graph representing the precedence con-

straints is depicted in Figure 1, with arc set A = {(0, 1),

(0, 4), (1, 2), (2, 3), (3, 5), (4, 5)}.
An optimal solution to this instance is π = (4, 1, 2, 3),

which leads to the schedule C1 = 6, C2 = 9, C3 = 13

and C4 = 4. The objective value is w4 × 0 + w1 × 0 +

w2 × 0 + w3 × (13− 8) = 3× 5 = 15.

3 Mathematical formulations

The conceptual formulation for P presented in the pre-

vious section is not linear, therefore it cannot be used by

a standard (linear) mixed-integer programming (MIP)

solver. In this section, we propose an Assignment For-

mulation (ASF) and a Time-Indexed Formulation (TIF)

for the problem. These formulations are adaptations of

those presented in [22,39].

3.1 Assignment formulation

We use binary decision variables xis ∈ {0, 1} (i ∈ N, s ∈
{1, 2, . . . , n}), which identify the position of jobs in the

sequence so that xis is equal to 1 if job i is the sth

job processed and equal to 0 otherwise. In other words,

xis = 1 if and only if πs = i. We also use additional

continuous variables Ti ≥ 0 representing the tardiness

of job i ∈ N and continuous variables τs ≥ 0 repre-

senting the machine idle time immediately before the

execution of the sth job. The MIP formulation is given

by:

ASF : min

n∑
i=1

wiTi (2)

subject to
n∑
s=1

xis = 1 ∀i ∈ N (3)

n∑
i=1

xis = 1 ∀s ∈ {1, 2, . . . , n} (4)

n∑
s=1

xiss ≤
n∑
t=1

xjtt− 1 ∀(i, j) ∈ A (5)

n∑
s=1

xiss ≤
n∑
t=1

xjtt− 1 ∀(i, j) ∈ A (6)

τs ≥
n∑
i=1

xisri −
s−1∑
t=1

(
n∑
i=1

(xitpi) + τt

)
∀s ∈ N (7)

s∑
t=1

τt +

s−1∑
t=1

n∑
i=1

pixit +

n∑
i=1

((pi − δi)xis) ≤ 0

∀s ∈ N (8)

Ti ≥
s∑
t=1

τt +

s−1∑
t=1

n∑
j=1

pjxjt + pi − di − (1− xis)Mi

∀i ∈ N, s ∈ N (9)

xis ∈ {0, 1}, τs, Ti ≥ 0 ∀i ∈ N, s ∈ {1, 2, . . . , n} (10)

The objective function (2) is a reformulation of (1).

The set of constraints (3) ensures that all jobs are ex-

ecuted. Constraints (4) check that each position in the

sequence is occupied by exactly one job. The set of con-

straints (6) enforces the precedence restrictions. The set

of equations (7) computes the idle time of the machine

between the jobs in positions s − 1 and s, and ensures

that each job is not started before its release date. In

this set of constraints,
∑s−1
t=1 (

∑n
i=1 (xitpi) + τt) equals

the completion time of the (s−1)th job. Constraints (8)

ensure that each job is not completed after its deadline,

where
∑s
t=1 τt +

∑s−1
t=1

∑n
i=1 pixit is the start time of

the sth job. Constraints (9) compute the correct value

of the tardiness of job i, with Mi = δi−di the maximum

tardiness of job i.

A variant of ASF is obtained by replacing the set of

constraints (6) by the following:

n∑
s=v

xis+

v∑
s=1

xjs ≤ 1 ∀(i, j) ∈ A,∀v ∈ {1, . . . , n}. (11)

We refer to this alternative formulation as ASF′. We

have the following result:



4 Morteza Davari et al.

Lemma 1 ASF′ is stronger than ASF.

Proof See Appendix. ut

The number of constraints in (11) is much higher than

in (6). As a result, the additional computational ef-

fort needed to process this higher number of constraints

might offset the improvement of a stronger bound, and

we will empirically compare the performance of the two

variants in Section 7.4.

3.2 Time-indexed formulation

Let TS (respectively TE) be a lower (respectively upper)

bound on the time the execution of any job can be

completed; we compute these values as TS = min{ri +

pi|i ∈ N} and TE = max{δi|i ∈ N}. The time-indexed

formulation uses binary decision variables xit ∈ {0, 1},
for i ∈ N and TS ≤ t ≤ TE , where xit = 1 if job i is

completed (exactly) at time t and xit = 0 otherwise.

We also introduce the set of parameters Tit = (t−di)+,

representing the tardiness of job i when it finishes at

time t. The time-indexed formulation is given by:

TIF : min

n∑
i=1

δi∑
t=ri+pi

wiTitxit (12)

subject to

n∑
i=1

min{δi,t+pi−1}∑
s=max{t,ri+pi}

xis ≤ 1 ∀t, TS ≤ t ≤ TE (13)

δi∑
t=ri+pi

xit = 1 ∀i ∈ N (14)

δi∑
s=ri+pi

xiss ≤
δj∑

t=rj+pj

xjtt− pj ∀(i, j) ∈ A (15)

xit ∈ {0, 1} i ∈ N, ri + pi ≤ t ≤ δi (16)

The set of constraints (13) eliminates the parts of the

solution space where the jobs overlap. The constraint

set (14) ensures that all jobs are scheduled exactly once.

We enforce precedence constraints in the formulation

using the set of constraints (15).

Similarly as for the assignment formulation, we in-

troduce an alternative formulation TIF′ by replacing

the set of constraints (15) by the following:

δi∑
s=t

xis +

t−pi∑
s=rj+pj

xjs ≤ 1 (17)

∀(i, j) ∈ A;∀t,max{ri, rj + pj}+ pi ≤ t ≤ min{δi, δj + pi}

Lemma 2 TIF′ is stronger than TIF.

σB U = EB ∪ EE ∪ EN σE

Fig. 2: The structure of a partial schedule.

Proof See [5, 9]. ut

As explained for the assignment formulation, the per-

formance of the new formulation is not necessarily bet-

ter. In fact, it can be much worse than TIF, since in

a time-indexed formulation the number of additional

constraints is quite large (pseudo-polynomial).

4 Branching strategies

In this section we discuss two different branching strate-

gies for our B&B algorithm. The structure of the B&B

search trees is as follows: each tree consists of a finite

number of nodes and branches, and at each level of the

tree we make a sequencing decision for one job. Each

node thus corresponds with a selection SP ⊂ N contain-

ing the already scheduled jobs and a set of unscheduled

jobs U = N\SP . Each node also has two feasible partial

sequences σB and σE of the scheduled jobs (each i ∈ SP
appears in exactly one of these two): σB (respectively

σE) denotes the partial sequence of jobs scheduled from

the beginning (respectively end) of the scheduling hori-

zon; see Figure 2 for an illustration. All jobs that are

not scheduled, belong to the set of unscheduled jobs

U = EB ∪ EE ∪ EN . EB is subset of unscheduled jobs

that are eligible to be scheduled immediately after the

last job in σB , EE is the subset of unscheduled jobs that

are eligible to be scheduled immediately before the first

job in σE and EN is the subset of unscheduled jobs that

are not in EB ∪ EE .

The root node represents an empty schedule (SP =

σB = σE = ∅). Each node branches into a number of

child nodes, which each correspond with the scheduling

of one particular job, called the decision job, as early as

possible after the last job in σB or as late as possible

before the first job in σE . A branch is called a forward

branch if it schedules a job after the last job in σB , and

is called a backward branch if it schedules a job before

the first job in σE . In our branching strategies, there

will be either only forward branches or only backward

branches emanating from each given node. We will say

that a node is of type FB (respectively BB) if all its

branches are forward (respectively backward) branches.

Although scheduling jobs backward (from the end

of time horizon) often improves the tightness of lower

bounds [36], it is not always possible in the presence
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of non-equal release dates; see Section 4.2 for more de-

tails. Backward scheduling also does not always improve

the performance of the B&B algorithm because the ef-

ficiency of other dominance rules may decrease when

we schedule jobs backward. We propose two B&B algo-

rithms, each applying one of the branching strategies:

BB1 corresponds with branching strategy 1 where only

FB nodes are used and BB2 corresponds with branch-

ing strategy 2 where both FB and BB are created. The

bounding and the dominance properties discussed in

the following sections are the same in both B&B algo-

rithms.

Let Cmax(σ) be the completion time of the last job

in the sequence σ. Throughout the branching proce-

dure, we maintain two vectors of updated release dates,

namely r̂ = (r̂1, . . . , r̂n) and r̄ = (r̄1, . . . , r̄n), defined as

follows:

r̂j = max{rj , Cmax(σB)}

r̄j = max

{
r̂j ,max

k∈Pj
{r̄k + pk}

}
.

Let st(π) denote the start time of the first job according

to sequence π. In line with the two vectors of updated

release dates, we also introduce two vectors of updated

deadlines, namely δ̂ = (δ̂1, . . . , δ̂n) and δ̄ = (δ̄1, . . . , δ̄n),

which are recursively computed as follows:

δ̂j = min{δj , st(σE)}

δ̄j = min

{
δ̂j , min

k∈Qj

{
δ̄k − pk

}}
.

We use these updated release dates and deadlines in

computing lower bounds and dominance rules. δ̄ and

r̄ are more restrictive than δ̂ and r̂ in each node of

the search tree (r̄j ≥ r̂j and δ̄j ≤ δ̂j). Although be-

ing restrictive often is positive, r̂j and δ̂j are occasion-

ally preferred over r̄j and δ̄j , specifically in parts of

computations related to the dominance rules discussed

in Section 6. Further explanations of these occasions

are given in Section 6. There are many cases in which

r̄j = r̂j (respectively δ̄j = δ̂j) and either of the up-

dated release dates (respectively deadlines) can be used.

In these cases, we use r̂j (respectively δ̂j) because less

computations are needed.

4.1 Branching strategy 1

Branching strategy 1 only uses FB nodes. The search

tree is explored depth-first such that among children of

a node, those with larger out-degrees (number of tran-

sitive successors) of their decision jobs in Ĝ are visited

first. As a tie-breaking rule, among children with equal

root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

(1, 2, ∗, ∗)

(1, 2, 3, ∗)

(1, 2, 3, 4)

infeasible schedule

(1, 2, 4, ∗)

infeasible schedule

(1, 4, ∗, ∗)

(1, 4, 2, ∗)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, 1, ∗, ∗)

(4, 1, 2, ∗)

(4, 1, 2, 3)

optimal schedule

Fig. 3: Branching strategy 1 for Example 1 without domi-
nance rules and without lower bounds.

out-degrees of their decision jobs, the node with lower

index is visited first.

Figure 3 illustrates branching strategy 1 applied to

Example 1; an asterisk ‘*’ indicates that the position

has not been decided yet. Among the children of the

root node, the node (1, ∗, ∗, ∗) corresponds with the de-

cision job (job 1) with the largest out-degree (namely 3).

As a result, the node (1, ∗, ∗, ∗) is visited first. The

nodes (2, ∗, ∗, ∗) and (3, ∗, ∗, ∗) are not in the tree be-

cause they violate precedence constraints. Among the

children of (1, ∗, ∗, ∗), the node (1, 2, ∗, ∗) is visited first

because it has the decision job 2 with the largest out-

degree. Among the children of (1, 2, ∗, ∗), the node (1, 2,

3, ∗) is visited first because its decision job has the

largest out-degree and the smallest index. In Figure 3,

green nodes are FB nodes; no BB nodes are present.

Red nodes are considered infeasible because the com-

pletion of a job (namely job 4) occurs after its dead-

line. The node (1, 4, 2, 3) corresponds with a feasible

schedule, but it is not optimal: its objective value is

greater than 15, which is attained by the optimal se-

quence (4, 1, 2, 3).

4.2 Branching strategy 2

In branching strategy 2, we try to exploit the advan-

tages of backward scheduling whenever possible, so the

search tree consists of both FB and BB nodes. If the

inequality Cmax(σB) < rmax(U) = maxj∈U {rj} holds,

then the start times of the jobs in σE will depend on the

order in which unscheduled jobs are processed. There-

fore, if the inequality Cmax(σB) < rmax(U) holds, the

corresponding node is of type FB. Otherwise, the com-

pletion time of the last job in σE can be computed

regardless of the sequencing decisions for the jobs in U ,

and we have a BB node. The branching is depth-first for

both FB and BB nodes. Among the children of a FB

(respectively BB) node, those with higher (respectively
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root: (∗, ∗, ∗, ∗)

(1, ∗, ∗, ∗)

TE = 14

(1, ∗, ∗, 4)

infeasible schedule

(1, ∗, ∗, 3)

(1, ∗, 4, 3)

infeasible schedule

(1, ∗, 2, 3)

(1, 4, 2, 3)

(4, ∗, ∗, ∗)

(4, ∗, ∗, 3)

(4, ∗, 2, 3)

(4, 1, 2, 3)

optimal schedule

Fig. 4: Branching strategy 2 for Example 1 without domi-
nance rules and without lower bounds.

lower) out-degrees of their decision jobs are visited first.

As a tie-breaking rule, among children with equal out-

degrees, the node with lower (respectively higher) index

is visited first.

Figure 4 illustrates branching strategy 2 for Exam-

ple 1; green nodes are of type FB and blue nodes are of

type BB. The root node is FB because Cmax(∅) = 0 <

4 = rmax({1, 2, 3, 4}). At the node labeled (1, ∗, ∗, ∗),
the completion time Cmax(1, ∗, ∗, ∗) = 5 of the decision

job surpasses rmax({1, 2, 3, 4}) = 4, therefore the end of

scheduling horizon is computed (TE = 5+3+4+2 = 14)

and the node is BB. The red nodes are infeasible be-

cause the completion time of job 4 falls after its dead-

line.

5 Lower bounding

In this section we describe the lower bounds that are

implemented in our B&B algorithm. Section 5.1 first

introduces a conceptual formulation for our problem,

and in Section 5.2 we describe several lower bounds,

which are mostly based on Lagrangian relaxation.

5.1 Another conceptual formulation

Let variable Cj ≥ 0 denote the completion time of job

j ∈ N and let variable Tj ≥ 0 represent the tardiness

of job j. An alternative formulation of our problem is

given by:

P : min

n∑
j=1

wjTj

subject to

Tj ≥ Cj − dj ∀j ∈ N (18)

Cj ≥ rj + pj ∀j ∈ N (19)

Cj ≤ δj ∀j ∈ N (20)

Cj ≥ Ci + pj ∀(i, j) ∈ A (21)

Cj ≥ Ci + pj or Ci ≥ Cj + pi ∀i, j ∈ N ; i < j (22)

Tj ≥ 0 ∀j ∈ N (23)

Cj ≥ 0 ∀j ∈ N (24)

In the above formulation, constraints (18) and (23) re-

flect the definition of job tardiness. Constraints (19)

and (20) enforce time windows. Constraints (21) ensure

that each job is scheduled after all its predecessors. Con-

straints (22) guarantee that jobs do not overlap. We will

use this formulation in Section 5.2 for producing lower

bounds.

To the best of our knowledge, a lower-bound proce-

dure specifically for P has to date not been developed

in the literature. Lower bounds proposed for 1||
∑
wjTj ,

1|prec|
∑
wjCj and 1|rj |

∑
wjCj , however, can also func-

tion as a lower bound for P; this is shown in the follow-

ing theorems. These theorems are extensions of those

presented in [3].

Let I be an instance of 1|β|
∑
wjTj . We construct

an instance I ′ of 1||
∑
wjTj by removing all constraints

implied by β and an instance I ′′ of 1|β|
∑
wjCj by

replacing all due dates with zeros. Let TWT∗(I) be

the optimal objective value of I. Given any valid lower

bound lbI′ on the optimal value of I ′, we have:

Theorem 1 lbI′ ≤ TWT∗(I).

Proof Straightforward. ut

A job is called early if it finishes at or before its

due date and is said to be tardy if it finishes after its

due date. Let Cj(S) be the completion time of job j in

feasible solution S. For an optimal solution S∗ to I, we

partition N into two subsets: the set E of early jobs and

the set T of tardy jobs. Let lbE be a lower bound on

the value
∑
j∈E wj(dj − Cj(S∗)). Given any valid lower

bound l̄bI′′ on the optimal value of I ′′, we have:

Theorem 2 l̄bI′′ −
∑
j wjdj + lbE ≤ TWT∗(I).
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Proof The following equality holds:

TWT∗(I) =
∑
j∈T

wj(Cj(S
∗)− dj) =

∑
j∈N

wj(Cj(S
∗)− dj)

−
∑
j∈E

wj(Cj(S
∗)− dj) =

∑
j∈N

wjCj(S
∗)

−
∑
j∈N

wjdj +
∑
j∈E

wj(dj − Cj(S∗)).

Recall that l̄bI′′ is a valid lower bound on the value∑
j∈N wjCj(S

∗) and lbE is a valid lower bound on the

value
∑
j∈E wj(dj − Cj(S∗)). ut

In the following, we remove several combinations

of constraints in P to construct subproblems for which

there exist polynomial-time-bounded algorithms for com-

puting lower bounds. These bounds then directly lead

to valid lower bounds for P via Theorem 1.

5.2 Lagrangian-relaxation-based bounds

In this section, we use Lagrangian relaxation for com-

puting various lower bounds. Let P0 be the subprob-

lem of P in which constraints (19), (20) and (21) are

removed. This problem is studied by Potts and Van

Wassenhove [36] and is considered as our base problem.

Let λ be a vector of Lagrangian multipliers. Potts and

Van Wassenhove [36] obtain the following Lagrangian

problem associated with P0:

LRP0
: L0(λ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λj(Cj − dj)

subject to constraints (22)–(24).

Parameter λj is the Lagrangian multiplier associated

with job j (0 ≤ λj ≤ wj). Potts and Van Wassenhove

propose a polynomial-time algorithm to set the multi-

pliers. Their algorithm yields a very good lower bound

for P0; they compute the optimal values of the multipli-

ers in O(n log n) time, and for a given set of multipliers,

the bound itself can be computed in linear time. Let

λPV be the best Lagrangian multipliers computed by

Potts and Van Wassenhove [36]; we refer to this lower

bound as LB0 = L0(λPV). By Theorem 1, LB0 is also

a valid bound for P. Quite a number of aspects of the

definition of P are completely ignored in LB0, however;

in the following sections, we will examine a number of

ways to strengthen LB0.

5.2.1 Retrieving precedence constraints

When A 6= ∅ then incorporating some or all of prece-

dence constraints into the lower bound will improve
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Fig. 5: This figure shows (a) an example graph G, (b) an
associated VSP sub-graph G′ and (c) G′′.

its quality. We partition arc set A as A = A′ ∪ A′′,
where G′ = (N,A′) is a two-terminal vertex serial-

parallel (VSP) graph and G′′ = (N,A′′). Figure 5 de-

picts an example of this graph decomposition. For the

precise definition of VSP graphs, we refer to Valdes et

al. [43]. It should be noted that there exist two types

of serial-parallel graphs: VSP graphs and edge serial-

parallel (ESP) graphs. Valdes et al. [43] describe the

link between these two types: a graph is VSP if and

only if its so-called ‘line-digraph inverse’ is ESP. We

split the set of constraints (21) into two subsets, as fol-

lows:

Cj ≥ Ci + pj ∀(i, j) ∈ A′ (25)

Cj ≥ Ci + pj ∀(i, j) ∈ A′′ (26)

We introduce P1, which is a generalization of P0 where

precedence constraints are retrieved by imposing con-

straints (25) and (26). We create the following associ-
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ated Lagrangian problem:

LRP1
: L1(λ, µ) = min

∑
j∈N

(wj − λj)Tj

+
∑
j∈N

λj(Cj − dj) +
∑
j∈N

∑
k∈Qj

µjk(Cj + pk − Ck)

subject to constraints (22)–(25).

Here λj ≥ 0 is again the multiplier with job j and µjk ≥
0 denotes the Lagrangian multiplier associated with the

arc (j, k) ∈ A. We deliberately keep constraints (25) in

the Lagrangian problem LRP1
. The objective function

can be rewritten as

∑
j∈N

(wj − λj)Tj +
∑
j∈N

Cj

λj +
∑
k∈Qj

µjk −
∑
k∈Pj

µkj


+
∑
j∈N

∑
k∈Qj

µjkpk −
∑
j∈N

λjdj ,

so it can be seen that LRP1
is a total-weighted-completion-

times problem with serial-parallel precedence constraints,

because all Tj will be set to zero. Lawler [25] proposes

an algorithm that solves this problem in O(n log n)

time provided that a decomposition tree is also given

for the VSP graph G′. Valdes et al. [43] propose an

O(n + m)-time algorithm to construct a decomposi-

tion tree of a VSP graph, where m is the number of

arcs in the graph. Calinescu et al. [8] show that any

VSP graph (directed or undirected), including G′, has

at most 2n− 3 arcs. Therefore, for any given λ and µ,

the problem LRP1 is solvable in O(n log n) time. From

the theory of Lagrangian relaxation (see Fisher [13]),

for any choice of non-negative multipliers, L1(λ, µ) pro-

vides a lower bound for P1. By Theorem 1, this lower

bound is also valid for P. In Section 5.2.2, we explain

how to choose appropriate values for λ and µ and Sec-

tion 5.2.3 describes how to select a suitable VSP graph

G′ and how to construct a decomposition tree for G′.

5.2.2 Multiplier adjustment

We present a two-phase adjustment (TPA) procedure

for the multipliers in L1(λ, µ). Let λTPA and µTPA be

Lagrangian multipliers adjusted by TPA; these lead to

a new lower bound LB1 = L1(λTPA, µTPA). The TPA

procedure is heuristic, in the sense that it may not min-

imize L1 in λ and µ.

In the first stage of TPA, we simply ignore prece-

dence constraints altogether. For a feasible solution S,

consider the function g(λ, µ, S) defined as follows:

g(λ, µ, S) =
∑
j∈N

(wj − λj)Tj +
∑
j∈N

λj(Cj − dj)

+
∑
j∈N

∑
k∈Qj

µjk(Cj + pk − Ck).

We start with the Lagrangian problem L̂RP1
where

L̂1(λ, µ) = min g(λ, µ, S) subject to constraints (22)–

(24), which is a relaxation of LRP1
. We simply set all

µjk to zero (µ = µ0 = (0, . . . , 0)); with this choice,

L̂1(λ, µ) = L0(λ) and we set λTPA = λPV.

In the second stage of TPA, the multipliers µjk are

adjusted assuming that λ = λTPA is predefined and

constant. This adjustment is an iterative heuristic; we

adopt the quick ascent direction (QAD) algorithm pro-

posed by van de Velde [44]. One iteration of TPA runs

in O(m + n log n) time, where m = |A|. We have run

a number of experiments to evaluate the improvement

of the lower bound as a function of the number of it-

erations kmax. For a representative dataset, Table 2

shows that the average percentage deviation of LB1

from LB0 significantly increases in the first iterations,

whereas after about five iterations the incremental im-

provement becomes rather limited; more information on

the choices for kmax follows in Sections 5.2.3 and 7.2.

Theorem 3 LB0 ≤ LB1.

Proof We argue that

LB0 = L0(λPV) = L̂1(λPV, µ0) ≤ L̂1(λTPA, µTPA)

≤ L1(λTPA, µTPA) = LB1.

The first inequality follows from Theorem 3 in [44],

where it is shown that TPA generates a series of mono-

tonically increasing lower bounds. The second inequal-

ity corresponds with Theorem 1. ut

5.2.3 Finding a VSP graph

LB1 requires a decomposition of graph G into two sub-

graphs G′ = (N,A′) and G′′ = (N,A′′), such that

A′ ∪ A′′ = A and G′ is a VSP graph. The more arcs

we can include in A′, the tighter the lower bound. In

the following, we discuss procedures to find a VSP sub-

graph G′ with maximum number of arcs; we refer to

this problem as the maximum VSP subgraph (MVSP)

problem.

Valdes et al. [43] state the following result:

Lemma 3 (From [43]) A graph G is VSP if and only

if its transitive closure does not contain the graph of

Figure 6 as a subgraph.
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Table 2: The average percentage deviation of LB1 from LB0.

n kmax = 0 kmax = 5 kmax = 10 kmax = 20 kmax = 50 kmax = 100 kmax =∞
20 11.576 14.579 15.026 15.207 15.296 15.310 15.314
30 8.505 17.454 18.147 18.419 18.503 18.508 18.512
40 6.850 13.493 14.065 14.344 14.466 14.495 14.506

Fig. 6: The forbidden subgraph for VSP graphs.

Valdes et al. refer to the pattern in Figure 6 as the

forbidden subgraph. Polynomial-time exact procedures

exist for finding an ESP subgraph with maximum num-

ber of nodes (see [6], for instance), but to the best of our

knowledge, no exact approach for MVSP has been pro-

posed yet in literature. McMahon and Lim [27] suggest

a heuristic traversal procedure to find and eliminate all

forbidden subgraphs and, at the same time, construct a

binary decomposition tree for the resulting VSP graph.

Their procedure runs in O(n + m) time. The number

of arcs in a VSP graph is bounded by 2n− 3 for an ar-

bitrary non-VSP graph, but the maximum number of

arcs for an arbitrary input graph is O(n2). We imple-

ment a slightly modified variant of the algorithm in [27]

to compute G′; we select arcs for removal so that the

lower bound remains reasonably tight. Simultaneously,

it constructs a decomposition tree for the obtained VSP

graph. The time complexity of O(n+m) is maintained.

The structure of our heuristic decomposition and

arc-elimination procedure is described in the following

lines. The procedure constructs a decomposition tree by

exploiting parallel and serial node reduction [25]. Par-

allel reduction merges a job pair into one single job if

both jobs have the same predecessor and successor set.

In the decomposition tree, such jobs are linked by a P

node, which means they can be processed in parallel

(see Figure 7(b)). Serial reduction merges a job pair

{i, j} into one single job if arc (i, j) ∈ A, job i has only

one successor and job j has only one predecessor. In

the decomposition tree, such two jobs are linked by an

S node, which means they cannot be processed in par-

allel (see Figure 7(d)). Whenever a forbidden subgraph

is recognized, the procedure removes arcs such that the

forbidden subgraph is resolved (removed) and the to-

tal number of removed arcs (including transitive and

merged arcs) is approximately minimized (see Figures

7(b)–7(c)). Notice that some arcs may actually repre-

sent multiple merged arcs, so removing one arc in one

iteration might imply the removal of multiple arcs si-

multaneously in the original network G.

The proposed algorithm is run only once, in the root

node of the search tree. In each other node of the search

tree, graphs G′ and G′′ are constructed by removing

from the corresponding graphs in the parent node the

arcs associated with the scheduled jobs; the resulting

graphs are then the input for computing LB1. Notice

that for each child node, both graphs G′ and G′′ as well

as the associated decomposition tree are constructed in

O(n) time.

To evaluate the impact of our arc elimination proce-

dure on the quality of the bounds, we examine two vari-

ations of LB1, namely LB1(VSP) = L1(λTPA, µTPA),

where all forbidden graphs in G are resolved using the

arc elimination procedure, and LB1(NO) = L̂1(λTPA,

µTPA), in which we simply remove all arcs (A′ = ∅ and

A′′ = A). Let kmax be the maximum number of iter-

ations for TPA, as explained in Section 5.2.2. Table 3

demonstrates the success of our proposed algorithm in

tightening the bound. The distance between the bounds

is decreasing with increasing kmax, but in a B&B algo-

rithm, a large value for kmax becomes computationally

prohibitive.

Theorem 4 LB1(NO) ≤ LB1(VSP) for the same value

of kmax.

Proof LB1(NO) is obtained by solving LRP1
with A′ =

∅ and A′′ = A, so with the same multipliers the problem

associated with LB1(NO) is a relaxation of the problem

associated with LB1(VSP). The multipliers are updated

with TPA in both cases, and will indeed be the same

for a given kmax, so the theorem holds. ut

5.2.4 Retrieving release dates

Bound LB1 turns out not be to be very tight when

release dates are rather heterogeneous. Below, we ex-

amine two means to produce a stronger bound, namely

block decomposition and job splitting.

Block decomposition We follow references [17,31,35] in

setting up a decomposition of the job set into sepa-

rate blocks: a block is a subset of jobs for which it is a

dominant decision to schedule them together. We sort

and renumber all jobs in non-decreasing order of their



10 Morteza Davari et al.

s 1 2

43

6

5

7

e

(a)

s 1 2

43

67

5

P

6 7

e

(b)

s 1 2

43

67

5

P

6 7

e

(c)

s 1

43

267

5

S

P2

6 7

e

(d)

s 1267

345

S

1 S

P2

6 7

S

3 S

4 5

e

(e)

s 1234567

P

S

1 S

P2

6 7

S

3 S

4 5

e

(f)

S

s S

eP

S

1 S

P2

6 7

S

3 S

4 5

(g)

Fig. 7: Modified traversal algorithm applied to the input graph in (a).

Table 3: The average percentage deviation of LB1 from LB0.

kmax = 0 kmax = 1 kmax = 2 kmax = 3 kmax = 5 kmax = 10 kmax = 50

LB1(VSP) 6.85 10.515 12.171 12.896 13.493 14.344 14.466
LB1(NO) 0 9.057 11.497 12.538 13.385 14.020 14.458

modified release dates r̄j ; as a tie-breaking criterion, we

consider non-increasing order of wj/pj . The resulting

non-delay sequence of jobs is given by σr = (1, . . . , n),

where a sequence is said to be ‘non-delay’ if the ma-

chine is never kept idle while some jobs are waiting to

be processed [32]. Let Bi = (ui, . . . , vi) be one block (in

which jobs are sorted according to their new indices).

The set B = {B1, . . . , Bκ} is a valid decomposition of

the job set into κ blocks if the following conditions are

satisfied:

1. u1 = 1;

2. for each i, j with 1 < i ≤ κ and 1 ≤ j ≤ n, if ui = j

then vi−1 = j − 1 and vice versa;

3. for each i, j with 1 ≤ i ≤ κ and ui ≤ j ≤ vi, we

have r̄ui +
∑j−1
s=ui

ps ≥ r̄j .

Although the sequencing of the jobs within one block is

actually still open, the sequencing of the blocks is pre-

determined. Given a valid set of blocks B, we compute

LB1 for each block Bi ∈ B separately. The value LB2

is then the sum of the bounds per block; analogously

to [17, 31, 35], LB2 can be shown to be a lower bound

for P.

We define LB∗1 = L1(λ∗, µ∗), where λ∗ and µ∗ are

optimal choices for the Lagrangian multipliers for LB1,

and LB∗2, which is computed by adding the contribution

L1(λ∗Bi , µ
∗
Bi

) for each block Bi, where λ∗Bi and µ∗Bi are

the optimal choices for the multipliers for block Bi.

Theorem 5 LB∗1 ≤ LB∗2.

Proof We introduce gBi(λ, µ, S) as follows:

gBi(λ, µ, S) =
∑
j∈Bi

(wj − λj)Tj +
∑
j∈Bi

λj(Cj − dj)+

∑
j∈Bi

∑
k∈Qj

µjk(Cj + pk − Ck).

Let S∗1 be an optimal solution to LB∗1 and S∗2 = (S∗B1
,

. . . , S∗Bκ) an optimal solution to LB∗2. The following re-
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sult is derived.

LB∗1 = g(λ∗, µ∗, S∗1 ) ≤ g(λ∗, µ∗, S∗2 )

=

κ∑
i=1

gBi(λ
∗, µ∗, S∗Bi) ≤

κ∑
i=1

gBi(λ
∗
Bi , µ

∗
Bi , S

∗
Bi) = LB∗2.

ut

Although TPA might not find λ∗Bi and µ∗Bi and the

same result as Theorem 5 cannot be derived for LB1 and

LB2, experimental results show that LB2 is on average

by far tighter than LB1.

Job splitting It sometimes happens that the decompo-

sition procedure fails to improve the bound (only one

block is created and LB2 = LB1). Another approach

is to explicitly re-introduce the release-date constraints

(which have been removed previously). We define prob-

lem P2, which is a generalization of P1 in which the

release-date constraints (19) are included. The associ-

ated Lagrangian problem is:

LRP2 : L2(λ, µ) = min
∑
j∈N

(wj − λj)Tj

+
∑
j∈N

Cj

λj +
∑
k∈Qj

µjk −
∑
k∈Pj

µkj


+
∑
j∈N

∑
k∈Qj

µjkpk −
∑
j∈N

λjdj

subject to constraints (19),(22)–(24).

Contrary to LRP1
, we now remove the serial-parallel

precedence constraints because they render the Lagrangian

problem too difficult. Problem LRP2 is a total-weighted-

completion-times problem with release dates, where the

phrase λj+
∑
k∈Qj µjk−

∑
k∈Pj µkj is the weight of job j

and the phrase
∑
j∈N

∑
k∈Qj µjkpk −

∑
j∈N λjdj is a

constant. This problem is known to be NP-hard [26],

but a number of efficient polynomial algorithms, which

are based on job splitting, have been proposed to com-

pute tight lower bounds [7, 17, 29]. One of these al-

gorithms is the SS procedure proposed by Belouadah

et al. [7] which runs in O(n log n) time, and which we

adopt here. Essentially, we again decompose the job set

into a set of blocks B and compute L2(λ, µ) for each

block Bi ∈ B. The lower bound LBSSr
2 is again the sum

of the contributions of the individual blocks. Experi-

ments show that LBSSr
2 is typically tighter than LB2

when the release dates are unequal. With equal release

dates, on the other hand, normally LB2 ≥ LBSSr
2 be-

cause LB2 incorporates a part of the precedence graph.

TPA is applied also here for multiplier updates.

5.2.5 Retrieving deadlines

We introduce P′2, which is a generalization of P1 where

deadline constraints are retrieved by inclusion of the

constraint set (20). The associated Lagrangian problem

is:

LRP′2
: L′2(λ, µ) = min

∑
j∈N

(wj − λj)Tj

+
∑
j∈N

Cj

λj +
∑
k∈Qj

µjk −
∑
k∈Pj

µkj


+
∑
j∈N

∑
k∈Qj

µjkpk −
∑
j∈N

λjdj

subject to constraints (20),(22)–(24).

LRP′2
is a total-weighted-completion-times problem with

deadlines, with λj+
∑
k∈Qj µjk−

∑
k∈Pj µkj the weight

of job j and
∑
j∈N

∑
k∈Qj µjkpk −

∑
j∈N λjdj a con-

stant. This problem is known to be NP-hard [26]. Pos-

ner [33] proposes a job-splitting lower bounding scheme

for LRP′2
that uses O(n log n) time; the lower bound

LBSSδ
2 results from block decomposition and computa-

tion of L′2(λ, µ) for each block. We again apply TPA for

setting the multiplies.

5.2.6 Improvement by slack variables

Relaxed inequality constraints can be considered to be

‘nasty’ constraints because they decrease the quality of

lower bounds. We follow Hoogeveen and van de Velde

[19] in exploiting the advantages of slack variables to

lessen the effect of such nasty constraints to improve

the quality of the lower bounds.

We introduce two non-negative vectors of slack vari-

ables: vector y = (y1, . . . , yn) and vector z = (z11, . . . , z1n,

. . . , zn1, . . . , znn). Consider the following sets of con-

straints:

Tj = Cj − dj + yj ∀j ∈ N (27)

Cj = Ci + pj + zij ∀(i, j) ∈ A (28)

yj , zij ≥ 0 ∀i, j ∈ N (29)

Let problem P3 be the variant of problem P1 in which

the sets of constraints (18) and (21) are replaced by the

constraints (27)–(29). The Lagrangian problem associ-
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ated with P3 is:

LRP3 : L3(λ, µ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λjyj+

n∑
j=1

∑
k∈Qj

µjkzjk +

n∑
j=1

Cj

λj +
∑
k∈Qj

µjk −
∑
k∈Pj

µkj


+

n∑
j=1

∑
k∈Qj

µjkpk −
n∑
j=1

λjdj

subject to constraints (22)–(25) and (29).

The values of the variables Tj , yj and zjk are zero in any

optimal solution to LRP3 because for i, j ∈ N the fol-

lowing inequalities hold: 0 ≤ λj ≤ wj and µjk ≥ 0.

In an optimal solution to P3, however, these values

might not be zero. In fact, according to the set of con-

straints (27), unless Cj = dj , either Tj or yj is nonzero.

Also, from constraints (28), zjk may not be zero when

job j has at least two successors or job k has at least two

predecessors in G. We introduce three problems that

each carry a part of the objective function of LRP3
,

one of which is LRP1
and the other two are the follow-

ing two slack-variable (SV) problems, where Y is the

set of all y-vectors corresponding to feasible solutions

to P3 and Z similarly contains all z-vectors.

PSV1 : SV1(λ) = min

n∑
j=1

(wj − λj)Tj +

n∑
j=1

λjyj

subject to constraints (22),(23),(25) and y ∈ Y ;

PSV2 : SV2(µ) = min
n∑
j=1

∑
k∈Qj

µjkzjk

subject to constraint z ∈ Z.

Note that the term
∑n
j=1 (wj − λj)Tj appears in two

of the problems, but it will be set to zero anyway in

LRP1 .

Hoogeveen and van de Velde [19] propose O(n log n)-

time procedures to compute valid lower bounds for PSV1

and PSV2. Let LBSV1 ≥ 0 and LBSV2 ≥ 0 be lower

bounds for PSV1 and PSV2, respectively. By adding LBSV1

and LBSV2 to LB2, a better lower bound LB3 for P

is obtained [19]. The same SV problems can also be

constructed for LBSSr
2 and LBSSδ

2 to lead to bounds

LBSSr
3 = LBSSr

2 +LBSV1 +LBSV2 and LBSSδ
3 = LBSSδ

2 +

LBSV1 + LBSV2. We have the following result:

Observation 1 LB2 ≤ LB3, LBSSr
2 ≤ LBSSr

3 and LBSSδ
2

≤ LBSSδ
3 .

6 Dominance properties

Our search procedure also incorporates a number of

dominance rules, which will be described in this section.

We will use the following additional notation. Given two

partial sequences π = (π1, . . . , πk) and π′ = (π′1, . . . , π
′
k′),

we define a merge operator as follows: π|π′ = (π1, . . . , πk,

π′1, . . . , π
′
k′). If π′ contains only one job j then we can

also write π|j = (π1, . . . , πk, j), and similarly if π = (j)

then j|π′ = (j, π′1, . . . , π
′
k′).

6.1 General dominance rules

We use the lower bounds proposed in Section 5 to prune

the search tree. Let LB(U) represent any of the lower

bounds described in Section 5, applied to the set U of

unscheduled jobs, and let Sbest be the currently best

known feasible solution. The following dominance rule

is then immediate:

Dominance rule 1 (DR1) Consider a node associ-

ated with selection SP . If

TWT(SP ) + LB(U) ≥ TWT(Sbest),

then the node associated with SP can be fathomed.

As we already introduced in Section 4, a partial sched-

ule can be denoted by either SP or (σB , σE). Multiple

lower bounds can be used to fathom a node. The se-

lection of lower bounds and the order in which they

are computed, obviously influences the performance of

the B&B algorithm. These issues are examined in Sec-

tion 7.2.

The subset of active schedules is dominant for total

weighted tardiness problems [10, 32]. A feasible sched-

ule is called active if it is not possible to construct an-

other schedule by changing the sequence of jobs such

that at least one job is finishing earlier and no other

job finishes later. The dominance of active schedules

holds even when deadlines and precedence constraints

are given.

Dominance rule 2 (DR2) Consider a node associ-

ated with (σB , ∅) that is selected for forward branching,

and let j be a job belonging to EB. If r̄j ≥ mink∈EB{r̄k+

pk}, then the child node associated with the schedule

(σB |j, ∅) can be fathomed.

We also prune a branch whenever an obvious vio-

lation of the deadline constraints is detected. A partial

schedule associated with a particular node is not always

extended to a feasible schedule. Scheduling a job in one

particular position may force other jobs to violate their

deadline constraints, even though it does not violate its
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own constraints. Let A be an arbitrary subset of U and

let ΠA be the set of all possible permutations of jobs in

A. The following theorem states when a job is sched-

uled in a ‘wrong position’, meaning that it will lead to

a violation of deadline constraints.

Theorem 6 Consider a partial schedule (σB , σE). If

there exists any non-empty subset A ⊂ U such that

the inequality minπ∈ΠA{Cmax(σB |π)} > maxj∈A {δ̄j}
holds, then the schedule (σB , σE) is not feasible.

Proof If minπ∈ΠA{Cmax(σB |π)} > maxj∈A {δ̄j} then

at least one job in A cannot be scheduled before its

deadline and the schedule (σB , σE) is not feasible. ut

The problem minπ∈ΠA{Cmax(σB |π)}, which equates with

1|rj , δj , prec|Cmax, is NP-hard because the mere verifi-

cation of the existence of a feasible schedule is already

NP-complete. We remove deadlines and create a new

problem whose optimal solution is computed in O(n2)

[23]. For computational efficiency, we use a linear-time

lower bound for this new problem. This lower bound is

computed as follows: minj∈A∩EB {r̄j}+
∑
j∈A pj .

Dominance rule 3 (DR3) The node associated with

(σB , σE) can be eliminated if at least one of the follow-

ing conditions is satisfied:

1. if σE = ∅ and the condition of Theorem 6 is satisfied

for the partial schedule (σB , ∅);

2. if σE 6= ∅ and maxj∈U{δ̄j} < st(σE).

6.2 Dominance rule based on two-job interchange

We describe a dominance rule based on job interchange.

This dominance rule consists of two parts. The first part

deals with the interchange of jobs in a FB node whereas

the second part deals with the interchange of jobs in a

BB node.

6.2.1 Interchanging jobs in a FB node

In an FB node, consider jobs j, k ∈ EB that are not

identical (they differ in at least one of their parame-

ters). We will always assume that r̂k < r̂j + pj and

r̂j < r̂k + pk, because otherwise Dominance rule 2 en-

forces the scheduling of the job with smaller r̂ before the

job with larger r̂; note here that r̂j = r̄j and r̂k = r̄k be-

cause all predecessors of jobs j and k has already been

scheduled and therefore the branching decisions cover

the propagation of precedence constraints. We also as-

sume that any successor of job k is also a successor of

job j (Qk ⊂ Qj). Consider a node of the search tree

in which job k is scheduled at or after the completion

of the sequence σB . Suppose that the partial schedule

S1 σB k B j B

S′1 σB j B k B

Fig. 8: Schedules S1 and S′1.

associated to the current node can be extended to a

feasible schedule S1 in which job j is scheduled some-

where after job k. We define a set B = U\{j, k} of jobs.

We also construct a schedule S′1 by interchanging jobs

j and k while the order of jobs belonging to B remains

unchanged. Figure 8 illustrates schedules S1 and S′1.

To prove that interchanging jobs j and k does not

increase the total weighted tardiness, we argue that the

gain of interchanging jobs j and k, which is computed

as TWT(S1) − TWT(S′1), is greater than or equal to

zero, no matter when job j is scheduled. Let stj(S)

denote the start time of job j in schedule S. Remember

that st(π) denotes the start time of a sequence π. Let

τ1 be the difference between the start time of job j in

S1 and the start time of k in S′1. If stk(S′1) is less than

stj(S1) then τ1 is negative, otherwise it is non-negative.

By interchanging jobs j and k each job that belongs to

set B may be shifted either to the right or to the left.

Let τ2 ≥ 0 be the maximum shift to the right of the

jobs belonging to set B. Notice that if all jobs in B are

shifted to the left, then τ2 = 0. For each t as the start

time of job j in S1, Jouglet et al. [21] define a function

Γjk(t, τ1, τ2) as follows:

Γjk(t, τ1, τ2) = wj max{0, t+ pj − dj}
− wk max{0, t+ τ1 + pk − dk}
+ wk max{0, r̂k + pk − dk}

− wj max{0, r̂j + pj − dj} − τ2
∑
i∈B

wi.

For the sub-problem of P where precedence and

deadline constraints are removed, Jouglet et al. [21]

show that Γjk(t, τ1, τ2) is a lower bound for the gain of

interchanging jobs j and k when t = stj(S1). This re-

sult can be improved by adding the gain of shifting the

jobs which are tardy in both schedules S1 and S′1. We

introduce the set B′ of jobs where each job i ∈ B′ is cer-

tainly a tardy job in S′1. Let P̂i be the set of transitive

predecessors of job i. The following set of jobs, which is

a subset of B′, is used in our implementations because

the order based on which the jobs in B are scheduled

has not yet been defined and therefore computing B′ is
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not possible:i ∈ B
∣∣∣∣∣∣r̂j + pj +

∑
l∈(B∩P̂i)

pl + pi ≥ di

 .

Let τ ′2 ≥ 0 be the minimum shift to the left of the

jobs belonging to set B. Note that at least one of the

values τ ′2 and τ2 equals zero. We define the function

Γ̂jk(t, τ1, τ2, τ
′
2) as follows:

Γ̂jk(t, τ1, τ2, τ
′
2) = Γjk(t, τ1, τ2) + τ ′2

∑
i∈B′

wi.

The values τ2 and τ ′2 cannot be negative. Therefore, we

immediately infer Γjk(t, τ1, τ2) ≤ Γ̂jk(t, τ1, τ2, τ
′
2). We

need the following result:

Theorem 7 Γ̂jk(t, τ1, τ2, τ
′
2) is a valid lower bound for

the gain of interchanging jobs j and k.

Proof If τ ′2 = 0, then Γjk(t, τ1, τ2) = Γ̂jk(t, τ1, τ2, τ
′
2)

and the theorem holds based on [21]. If τ ′2 > 0, all jobs

in B are shifted to the left at least τ ′2 units. Also, τ2
equals zero because no job is shifted to the right. For

all jobs i ∈ B′ we have Ci(S1) ≥ Ci(S
′
1) ≥ di. Conse-

quently, τ ′2
∑
i∈B′ wi ≥ 0 is a lower bound for the gain

of rescheduling jobs in B. The value wj max{0, t+ pj −
dj}−wj max{0, r̂j+pj−dj} equals the gain of reschedul-

ing job j and the value wk max{0, r̂k + pk − dk} −
wk max{0, t+τ1 +pk−dk} equals the gain of reschedul-

ing job k. By adding lower bounds for rescheduling

gains of all jobs in U = B ∪ {j, k}, a lower bound for

the gain of interchanging jobs j and k is obtained. ut

In a general setting (problem P), however, job in-

terchanges are not always feasible for every starting

time t. We opt for verifying the feasibility of an in-

terchange by ensuring that it does not cause any vi-

olation of deadlines and/or precedence constraints for

all possible t = stj(S1). Let Ψ be an upper bound for

the completion time of the sequence S′1, computed as

follows:

Ψ = max

{
max{r̂j + pj , r̂k}+ pk,max

i∈B
{r̂i}

}
+
∑
i∈B

pi.

The following theorem provides the conditions under

which for every possible t = stj(S1) interchanging jobs

j and k is feasible.

Theorem 8 For each feasible schedule S1, an alterna-

tive feasible schedule S′1 is created by interchanging jobs

j and k, if the following conditions are satisfied:

1. δ̄j − pj ≤ δ̄k − τ1 − pk or Ψ ≤ δ̂k;

2. τ2 = 0 or Ψ ≤ min
i∈B
{δ̂i}.

Proof We examine under which conditions the jobs be-

longing to the set U = B ∪ {j, k} do not violate any of

their deadlines and/or precedence constraints. Prece-

dence constraints are not violated because jobs j, k ∈
EB are deliberately chosen such that Qk ∩ Qj = Qk
and job j does not violate its deadline simply because

Cj(S
′
1) ≤ Cj(S1) ≤ δ̄j .

Condition 1 ensures that job k does not violate its

deadline. We argue that t = stj(S1) ≤ δ̄j − pj . If δ̄j −
pj ≤ δ̄k − τ1 − pk holds, then we infer Ck(S′1) = t +

τ1 + pk ≤ δ̄k. Also, if Ψ ≤ δ̂k, then all unscheduled

jobs including j and k are completed at or before δ̂k.

Note that δ̂k is preferred over δ̄k because δ̄k ≤ δ̂k, thus

condition 1 is less violated, and the inequality Ψ ≤ δ̂k
also implies Ck(S′1) ≤ δ̄k.

Condition 2 verifies that no job in B violates its

deadline. On the one hand, if τ2 = 0, then no job in B is

shifted to the right, which means Ci(S
′
1) ≤ Ci(S1) ≤ δ̄i

for each job i ∈ B. On the other hand, if τ2 > 0 and

Ψ ≤ mini∈B{δ̂i}, then for all jobs i ∈ B we conclude:

Ci(S
′
1) ≤ Ψ ≤ mini∈B{δ̂i} ≤ δ̂i. Again, δ̂i is preferred

over δ̄i because of the same reasoning as for the prefer-

ence of δ̂k over δ̄k. ut

Jouglet et al. [21] prove that if wj ≥ wk then the

value Γjk(max{dj − pj , r̂k + pk}, τ1, τ2) is the minimum

gain obtained by interchanging jobs j and k for the

setting where deadlines and precedence constraints are

removed. We derive a more general result using the fol-

lowing lemma.

Lemma 4 Let f : t → αmax{0, t − a} − βmax{0, t −
b} + C be a function defined on [u, v] for a, b, C ∈ R
and α, β, u, v ∈ R+. The function f reaches a global

minimum at value t∗ computed as follows:

t∗(α, β, a, b, u, v) =
min{ū, v} if α ≥ β
u if α < β, b > a, α(v̄ − ū) ≥ β(v̄ − b)
v otherwise

where ū = max{u, a} and v̄ = max{v, b}.

Proof See Appendix. ut

Theorem 9 below follows from Theorem 7, Theo-

rem 8 and Lemma 4, if we choose α = wj , β = wk,

a = dj − pj , b = dk − τ1 − pk, u = r̂k + pk, v = δj − pj
and C = wk max{0, r̂k + pk− dk}−wj max{0, r̂j + pj −
dj}−τ2

∑
i∈B wi+τ ′2

∑
i∈B′ wi. Let st∗j be computed as

follows:

st∗j = t∗(wj , wk, dj − pj , dk − τ1 − pk, r̂k + pk, δj − pj).
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Theorem 9 Γ ∗jk(τ1, τ2, τ
′
2) = Γ̂jk(st∗j , τ1, τ2, τ

′
2) is the

minimum gain obtained by interchanging jobs j and k,

provided that for every possible stj(S1) interchanging

jobs j and k is feasible.

To compute Γ ∗jk(τ1, τ2, τ
′
2), the values of τ1, τ2 and

τ ′2 must be known. We establish an exhaustive list of
cases for which τ1, τ2 and τ ′2 can be computed, which
is summarized in Table 4. Given a particular case, the
values τ1, τ2 and τ ′2 are computed as follows:

τ1 =


0 Cases 1,5

maxi∈U{r̂i} − r̂k − pk Case 2

max{r̂j + pj ,maxi∈B{r̂i}} − r̂k − pk Cases 3,4,6

r̂j + pj − r̂k − pk Cases 7,8

τ2 =



pk − pj Case 1

maxi∈U{r̂i} − r̂k − pj Case 2

0 Cases 3,5,6

max{r̂j + pj ,maxi∈B{r̂i}} − r̂k − pj Case 4

r̂j − r̂k Case 7

r̂j + pj − r̂k − pk Case 8

τ ′2 =


0 Cases 1,2,4,5,7,8

r̂k − r̂j Case 3

r̂k + pk −max{r̂j + pj ,maxi∈B{r̂i}} Case 6

Following the above results, the first part of Dominance

rule 4 is derived.

Dominance rule 4 (DR4; first part) Given an FB

node associated with (σB , ∅), if there exist two non-

identical jobs j, k ∈ EB with Qk ∩ Qj = Qk and the

inequality Γ ∗jk(τ1, τ2, τ
′
2) > 0 holds, then (σB |j, ∅) dom-

inates (σB |k, ∅).

6.2.2 Interchanging jobs in a BB node

Let j, k ∈ EE where jobs j and k are not identical. We

also assume that any unscheduled predecessor of job k

is also a predecessor of job j. In other words, we have

Pk∩Pj∩U = Pk∩U . Consider a BB node of the search

tree with decision job k. The partial schedule associated

with the current node can be extended to a feasible

schedule S2 in which job j is scheduled before job k but

after all jobs in the sequence σB . The set B is the set

of all remaining unscheduled jobs where B = U\{j, k}.
Let schedule S′2 be constructed by interchanging jobs j

and k while keeping the order based on which the jobs

belonging to B will be scheduled. Figure 9 illustrates

schedules S2 and S′2.

S2 σB B j B k σE

S′2 σB B k B j σE

Fig. 9: Schedules S2 and S′2.

For each t as the start time of job j in S2, we define

a function ∆jk(t) as follows:

∆jk(t) = wj max{0, t+ pj − dj}
− wk max{0, t+ pk − dk}
+ wk max{0, st(σE)− dk}

− wj max{0, st(σE)− dj} −max{0, pk − pj}
∑
i∈B

wi.

In a BB node, for each t as the start time of job j,

∆jk(t) is a lower bound of the gain of interchanging

jobs k and j, if the conditions of Theorem 10 are satis-

fied. Theorem 10 provides the conditions on which for

every possible t = stj(S1) interchanging jobs j and k is

feasible.

Theorem 10 For each feasible schedule S2, a feasible

schedule S′2 can be created by interchanging jobs j and

k, if the following conditions are satisfied:

1. st(σE) ≤ δ̂j;
2. pk − pj ≤ 0 or st(σE)− pj ≤ min

i∈B
δ̂i.

Proof Similar to the proof of Theorem 8. ut

Theorem 11 follows from Theorem 10 and Lemma 4,

if we choose α = wj , β = wk, a = dj − pj , b =
dk − pk, u = Cmax(σB), v = st(σE) − pk − pj and

C = wk max{0, st(σE)−dk}−wj max{0, st(σE)−dj}−
max{0, pk − pj}

∑
i∈B wi. Let st∗j

′ be computed as fol-

lows:

st∗j
′ = t∗(wj , wk, dj − pj , dk − pk,

Cmax(σB) +
∑

i∈Pj∩U
pi, st(σE)− pk − pj).

Theorem 11 ∆∗jk = ∆jk(st∗j
′) is the minimum gain

obtained by interchanging jobs j and k, provided that

for every possible t = stj(S1) interchanging jobs j and

k is feasible.

Following the above results, the second part of Dom-

inance rule 4 is derived.

Dominance rule 4 (DR4; second part) Given a BB

node associated with (σB , σE), if there exist two non-

identical jobs j, k ∈ EE with Pk ∩Pj ∩U = Pk ∩U and

∆∗jk > 0, then (σB , j|σE) dominates (σB , k|σE).
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Case (r̂j + pj − r̂k − pk) (pj − pk) (max
i∈U
{r̂i} − r̂k − pk) (r̂j − r̂k) (max

i∈U
{r̂i} − r̂k − pj)

1 ≤ 0 < 0 ≥ 0 - -
2 ≤ 0 < 0 < 0 ≤ 0 > 0
3 ≤ 0 < 0 < 0 ≤ 0 ≤ 0
4 ≤ 0 < 0 < 0 > 0 -
5 ≤ 0 ≥ 0 ≥ 0 - -
6 ≤ 0 ≥ 0 < 0 - -
7 > 0 < 0 - - -
8 > 0 ≥ 0 - - -

Table 4: Interchange cases.

S′′1 σB j k B

Fig. 10: Schedule S′′1 .

6.3 Dominance rule based on job insertion

We describe a dominance rule based on job insertion.

This dominance rule, similar to the dominance rule

based on job interchange, consists of two parts. The

first part deals with the insertion of a job in an FB

node whereas the second part deals with the insertion

of a job in a BB node.

6.3.1 Inserting a job in an FB node

In a FB node, let j, k ∈ EB where jobs j and k are

not identical. Again we assume that r̂k < r̂j + pj and

r̂j < r̂k + pk, otherwise Dominance rule 2 enforces

scheduling the job with smaller r̂ before the job with

larger r̂ (remind that r̂j = r̄j and r̂k = r̄k because all

predecessors of jobs j and k have already been sched-

uled and therefore the branching decisions cover prece-

dence constraints propagation). Consider an FB node

of the search tree in which job k is scheduled after the

jobs in sequence σB . Assume that the partial schedule

associated with the current node can be extended to the

feasible schedule S1 depicted in Figure 8. We construct

a schedule S′′1 by inserting the job j before job k while

keeping the order of jobs belonging to B. Figure 10 il-

lustrates the construction of the schedule S′′1 .

Let τ3 be the maximum shift to the right of the jobs

belonging to B, which is computed as follows:

τ3 = max

{
0, r̂j + pj + pk −max

{
r̂k + pk,min

i∈B
{r̄i}

}}
.

For each t as the start time of job j in schedule S1, we

define a function Γ ′jk(t, τ3) as follows:

Γ ′jk(t, τ3) = wj max{0, t+ pj − dj}
− wk max{0, r̂j + pj + pk − dk}
+ wk max{0, r̂k + pk − dk}

− wj max{0, r̂j + pj − dj} − τ3
∑
i∈OJ

wi.

Job insertion, similar to job interchange, is not al-

ways feasible for every starting time t of job j. We verify

feasibility of an insertion by ensuring that it does not

cause any deadline and/or precedence-constraint vio-

lation for all possible t = stj(S1). Let Ψ ′ be an upper

bound for the completion time of the sequence S′1, com-

puted as follows:

Ψ ′ = max

{
r̂j + pj + pk,max

i∈B
{r̂i}

}
+
∑
i∈B

pi.

The following theorem provides the conditions under

which for every possible t = stj(S1) inserting job j

before job k is feasible.

Theorem 12 For each feasible schedule S1, another

feasible schedule S′′1 can be created by inserting job j

before job k if the following conditions hold:

1. r̂j + pj + pk ≤ δ̂k;

2. τ3 = 0 or Ψ ′ ≤ min
i∈B
{δ̂i}.

Proof Similar to the proof of Theorem 8. ut

Theorem 13 below follows from Theorem 12.

Theorem 13 Γ ′∗jk(τ3) = Γ ′jk(r̂k + pk, τ3) = Γjk(r̂k +

pk, r̂j + pj − r̂k − pk, τ3) is the minimum gain obtained

by inserting job j before job k provided that for every

possible t = stj(S1) inserting job j before job k is fea-

sible.

Following the above results, the first part of Domi-

nance rule 5 is derived.

Dominance rule 5 (DR5; first part) Consider an FB

node associated with (σB , ∅). If there exist two non-

identical jobs j, k ∈ EB for which the inequality Γ ′∗jk(τ3) >

0 holds, then (σB |j, ∅) dominates (σB |k, ∅).
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S′′2 σB B B k j σE

Fig. 11: Schedule S′′2 .

6.3.2 Inserting a job in a BB node

In a BB node, let j, k ∈ EE where jobs j and k are not

identical. Consider a node of the search tree in which

job k is scheduled before sequence σE . Assume that

the partial schedule associated with the current node

can be extended to the feasible schedule S2 depicted in

Figure 9. We also construct a schedule S′′2 by inserting

the job j to be scheduled after job k but before the

jobs in the sequence σE and by keeping the order of

jobs belonging to B. Figure 11 illustrates schedule S′′2 .

For each t, which is the start time of job j in schedule

S2, we define the function ∆′jk(t) as follows:

∆′jk(t) = wj max{0, t+ pj − dj}
− wk max{0, st(σE)− pj − dk}
+ wk max{0, st(σE)− dk}
− wj max{0, st(σE)− dj}.

Similarly to the previous results, for each feasible

schedule S2, a feasible schedule S′′2 is constructed by

inserting jobs j after job k, if st(σE) ≤ δ̂j . The following

theorem is obtained:

Theorem 14 ∆′∗jk = ∆′jk(Cmax(σB) +
∑
i∈Pj∩U pi) is

the minimum gain obtained by inserting job j after job

k provided that st(σE) ≤ δ̂j.

Following the above results, the second part of Dom-

inance rule 5 is derived.

Dominance rule 5 (DR5; second part) Consider a

BB node associated with (σB , σE). If there exist two

non-identical jobs j, k ∈ EE for which the inequality

∆′∗jk > 0 holds, then (σB , j|σE) dominates (σB , k|σE).

6.4 Dominance rules on scheduled jobs

The dominance theorem of dynamic programming (see

Jouglet et al. [21]) is another existing theorem that can

be used to eliminate nodes in the search tree. It com-

pares two partial sequences that contain identical sub-

sets of jobs and eliminates the one having the larger to-

tal weighted tardiness. When total weighted tardiness

values are the same, then only one of the sequences is

kept. Let us consider two feasible partial sequences σ1
and σ2 (σ2 is a feasible permutation of σ1) of k jobs,

where k < n. Let C be the set of jobs in either σ1 or σ2.

We are going to decide whether it is advantageous to

replace σ2 by σ1 in all (partial) schedules in which σ2
orders the last k jobs. The set of scheduled jobs and the

set of unscheduled jobs are identical for both σ1 and σ2.

Sequence σ1 is as good as sequence σ2 if it fulfills one

of the following conditions:

1. Cmax(σ1) ≤ Cmax(σ2) and TWT(σ1) ≤ TWT(σ2);

2. Cmax(σ1) > Cmax(σ2) and the following inequality

also holds:

TWT(σ1)+(min
i∈U
{r̄σ1
i }−min

i∈U
{r̄σ2
i })

∑
i∈U

wi ≤ TWT(σ2),

where r̄σ1
i is the updated release date associated

with the sequence σ1 and r̄σ2
i is the updated release

date associated with the sequence σ2.

Jouglet et al. [21] determine the sequences that can

be replaced by a dominant permutation. They find that

sequence σ1 dominates sequence σ2 if the following two

conditions hold:

1. sequence σ1 is as good as sequence σ2;

2. sequence σ2 is not as good as σ1 or σ1 has lexico-

graphically smaller release dates than σ2.

Note that the second condition enforces a tie-breaking

rule where a lexicographical number associated to each

sequence is computed and among those sequences that

are equivalent, the one with lower lexicographic number

is selected. To avoid conflicts with Dominance rule 2,

jobs are renumbered in non-decreasing order of their

release dates rj .

Dominance rule 6 (DR6) If there exists a better fea-

sible permutation of σB and/or a better feasible permu-

tation of σE, then the node (σB , σE) is fathomed.

If σE = ∅ and there is a better feasible permutation

of σB , then the dominance is proven similarly to The-

orem 13.6 in [21]. If σE 6= ∅, then all jobs belonging

to the set U will be scheduled between Cmax(σB) and

st(σE) = Cmax(σB) +
∑
j∈U pj . Therefore, all permu-

tations of σE start at time st(σE) and if there exists

at least one better feasible permutation of σE , then

fathoming the node associated with (σB , σE) does not

eliminate the optimal solution.

Dominance rule 6 where only permutations of the

last k jobs are considered, is referred to as DRk
6 . Com-

puting DRn
6 amounts to enumerating all O(n!) feasible

solutions, which would yield an optimal solution but is

computationally prohibitive. In our B&B algorithm, we

therefore choose k < n. There is a trade-off between the

computational effort needed to compute DRk
6 and the

improvement achieved by eliminating dominated nodes.
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Based on initial experiments, we observe that the algo-

rithms perform worse when k > 4 and we therefore only

implement DR2
6, DR3

6 and DR4
6.

7 Computational results

All algorithms have been implemented in VC++ 2010,

while CPlex 12.3 is used to solve the MIP formulations.

All computational results were obtained on a laptop

Dell Latitude with 2.6 GHz Core(TM) i7-3720QM pro-

cessor, 8GB of RAM, running under Windows 7.

7.1 Instance generation

To the best of our knowledge, there are no benchmark

sets of instances of problem P available, and so we

have generated our own instances with |N | = n =

10, 20, 30, 40 and 50 jobs. Two different instance sets

are generated: InsS and InsL. The former set contains

instances with small processing times, the latter holds

instances with large processing times: the values pi (1 ≤
i ≤ n) are sampled from the uniform distribution U [1, α],

where α = 10 for InsS and α = 100 for InsL. Release

dates ri are drawn from U [0, τP ], where P =
∑
i∈N pi

and τ ∈ {0.0, 0.5, 1.0}. Due dates di are generated from

U [ri + pi, ri + pi + ρP ] with ρ ∈ {0.05, 0.25, 0.50} and

weights wi stem from U [1, 10]. Deadlines are chosen

from U [di, di + φP ] with φ ∈ {1.00, 1.25, 1.50}. The

precedence graph is constructed using RanGen [11] with

OS ∈ {0.00, 0.25, 0.50, 0.75}, where OS is the order

strength of the graph (a measure for the density of the

graph). For each combination of (α, n, τ, ρ, φ,OS), four

instances are generated; the total number of instances

is thus 2 × 5 × 3 × 3 × 3 × 4 × 4 = 4320. In all our

experiments, the time limit is set to 1200 seconds. If

an instance is not solved to guaranteed optimality, it is

labeled ‘unsolved’ for the procedure. Throughout this

section, we report the averages computed only over the

solved instances.

7.2 Lower bounds

We compare the quality of the lower bounds for the

subset of instances with large processing times and n =

30. We set kmax = 10 for all lower bounds. The detailed

results of this comparison are reported in Table 5.

The average gap for LB1 is less than or equal to

that for LB0, especially when the precedence graph is

dense; for OS = 0, on the other hand, there are no

precedence constraints and LB0 and LB1 are essentially

the same. A similar observation can be made for LB1

and LB2, where the gap for LB2 is noticeably smaller

than that for LB1 when release dates are imposed, while

in the case τ = 0, only one block is created and the

lower bounds LB1 and LB2 coincide. The average gap

for LB3 is indeed smaller than that for LB2, as was to

be expected according to Observation 1.

Although we have no theoretical result that would

indicate a better performance of LBSSr
2 in comparison

with LB2, the average gap for LBSSr
2 is less than that

for LB2 in case of non-zero release dates. When release

dates are zero, however, the gap for LBSSr
2 is larger than

or equal to that for LB2. In fact, when release dates are

zero, only one block is created and constraints (19) can

be removed from LRP2 , and thus LRP2 is a relaxation

of LRP1
. LBSSδ

2 performs better than LB2 and LBSSr
2

for most of the instances. The gap for LBSSr
3 is less

than that for LBSSr
2 and a similar observation holds for

LBSSδ
3 versus LBSSδ

2 , which again confirms the result in

Observation 1.

In our final implementation, we will not compute all

the bounds for all the nodes because this consumes too

much effort. We start with computing LB0 and LBSV1

for the unscheduled jobs. Let Sbest be the best feasible

schedule found. If the node is fathomed by DR1, then

we backtrack; otherwise if TWT(SP )+dLB0+LBSV1e×
1.4 < TWT(Sbest) then we do not compute the remain-

ing lower bounds and continue branching. If the latter

equality does not hold, then we anticipate that with

a better bound we might still be able to fathom the

node, and we compute LB3 and/or LBSSδ
3 . For all lower

bounds we choose kmax = 0 if OS < 0.5 and kmax = 1

otherwise. Preliminary experiments indicate that the

extra computational effort to compute LBSSr
2 and LBSSr

3

typically outweighs the improvement in the bound, and

so we decide not to use these two values.

7.3 Dominance rules

In each node of the B&B algorithm, dominance rules are

tested. Based on some preliminary experiments, we find

that applying the rules in the following order performs

well, and we will therefore follow this order throughout

the algorithm:

DR2,DR3,DR2
6,DR4,DR5,DR3

6,DR4
6,DR1.

In order to evaluate the effectiveness of the rules, we

examine a number of scenarios with respect to the se-

lection of the implemented bounds; the list of scenar-

ios is given in Table 6. Scenario 1 includes the simplest

combination of dominance rules, namely DR2 and DR3.

From Scenario 2 to Scenario 5, extra rules are gradu-

ally added. In Scenario 6, all dominance rules are active
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Table 5: Average percentage gap from optimal value.

LB0 LB1 LB2 LBSSr
2 LBSSδ

2 LB3 LBSSr
3 LBSSδ

3 LBBest

OS

0.00 50.505 50.505 44.369 43.313 36.857 43.142 42.086 35.630 35.372
0.25 67.776 63.465 53.444 52.702 52.300 51.955 51.013 50.568 49.834
0.50 71.461 66.108 52.378 51.890 52.021 51.216 50.727 50.767 50.352
0.75 77.055 69.836 50.769 50.520 50.565 49.430 49.182 49.041 48.863

τ
0.00 38.141 29.169 29.169 29.182 24.784 28.152 28.165 23.667 23.667
0.50 76.712 73.157 59.554 58.724 57.699 57.876 57.046 55.922 55.656
1.00 85.704 85.539 62.494 61.255 61.655 61.117 59.878 60.233 59.309

All - 67.161 62.911 50.638 49.950 48.268 49.275 48.586 46.824 46.425

except DR1, and in Scenario 7, only DR4 is inactive.

Scenario 8 and Scenario 9 similarly include all domi-

nance rules except DR5 and DR6, respectively. Finally,

in Scenario 10, all dominance rules are active.

For each of these implementations, we report the av-

erage CPU times and the average number of nodes ex-

plored in the search tree in Table 7; the results pertain

to the instances of InsL with n = 10, 20, 30. We observe

that both the CPU time as well the number of nodes

in Scenario 2 are significantly lower than in Scenario 1;

this confirms the value of DR6 for two successive jobs.

Scenarios 3 and 4 show the effect of DR4 and DR5. In

Scenario 3, DR4 improves the performance of both al-

gorithms whereas in Scenario 4, DR5 has a beneficial

effect only for BB2. Scenarios 5 and 6 reflect the im-

pact of DR6 for three and four jobs, respectively. It can

be seen that permutation of three and four successive

jobs does not improve the results in small instances. For

larger instances, however, the improvement is distinct.

Comparing Scenario 6 to Scenario 10, we see that in-

clusion of DR1 has a strong beneficial effect on both al-

gorithms; the effect is strongest in BB2 because tighter

bounds can be computed by scheduling backward. From

Table 7, we learn that apart from DR2, which is always

crucial in total tardiness scheduling problems, the most

important dominance rule is DR6: deactivating this rule

triggers a huge increase in the average number of nodes

and the average CPU times; incorporating DR4 also has

a marked effect (compare Scenarios 7 and 10). Among

all dominance rules tested, DR5 is the least important;

removing DR5 slightly increases the node count and

the runtimes in BB2. In BB1, removing DR5 even de-

creases the number of nodes and the runtimes; it turns

out that for n > 30, however, the effect of DR5 is also

(slightly) beneficial for BB1, and so we decide to adopt

Scenario 10 as the final setting in which the experiments

in the following sections will be run.

As a side note, we observe that for all the forego-

ing dominance rules, after the root node, omitting the

precedence constraints implied by sets Qj and Pj from

the updates of r̄j and δ̄j has only little effect. We will

therefore not include these precedence constraints into

the updated release dates and deadlines and thus avoid

the additional computational overhead.

7.4 Branch-and-bound algorithms

In this section we discuss the performance of our B&B

algorithms. We compare the performance of BB1 and

BB2 with the MIP formulations discussed in Section 3

in Table 8; the columns labeled ‘#’ indicate the number

of instances solved (out of 432).

Based on Table 8, we conclude that the time-indexed

formulations are far better than the assignment for-

mulations when processing times are small. For large

processing times, the performance of ASF is slightly

better than TIF. Although ASF′ and TIF′ are tighter

than their counterparts with aggregate precedence con-

straints, the extra computational effort needed to pro-

cess the larger models increases CPU times in both TIF′

and ASF′. The B&B algorithms BB1 and BB2 both

clearly outperform the MIP formulations regardless of

the size of the processing times. On average, BB1 per-

forms better than BB2, although this does not hold for

all parameter settings (more details follow below). The

algorithms fail to solve a few instances with 40 jobs and

around 5% of the instances with 50 jobs. We will indi-

cate below that all these unsolved instances belong to

a specific class; it is worth mentioning that the difficult

instances are not the same for the two B&B algorithms.

The number of precedence constraints obviously af-

fects the performance of the algorithms. On the one

hand, by adding precedence constraints, the set of fea-

sible sequences shrinks; on the other hand, the lower

bounds also become less tight. The net result of these

two effects is a priori not predictable. For instance classes

without release dates and deadlines (rj = 0 and δj =

∞), the quality of the lower bound is very good when

OS = 0, therefore the effect of a weaker bound due to

higher OS will be more pronounced than when release

dates and deadlines are also imposed.

To identify the classes of difficult instances, we fo-

cus on case n = 50. Table 10 shows the outcomes of the
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Table 6: The list of scenarios.

Scenario DR2 DR3 DR2
6 DR4 DR5 DR3

6 DR4
6 DR1

1 X X - - - - - -
2 X X X - - - - -
3 X X X X - - - -
4 X X X X X - - -
5 X X X X X X - -
6 X X X X X X X -
7 X X X - X X X X
8 X X X X - X X X
9 X X - X X - - X
10 X X X X X X X X

Table 7: The effect of the dominance rules.

n = 10 n = 20 n = 30
Method Scenario CPU Nodes CPU Nodes CPU Nodes

BB1

1 0.002 342.252 - - - -
2 0.001 55.046 0.033 15191.410 - -
3 0.001 34.743 0.028 5636.516 5.538(1) 6845380.421
4 0.001 33.081 0.026 5563.919 5.924(1) 6726021.116
5 0.001 27.688 0.021 1735.356 0.469 396619.023
6 0.001 27.088 0.025 1248.784 0.302 168552.146
7 0.001 37.407 0.012 2114.178 1.483 1177730.269
8 0.001 25.634 0.010 598.218 0.080 21240.525
9 0.001 111.405 0.667 655033.273 - -
10 0.001 24.729 0.011 596.940 0.091 22575.081

BB2

1 0.002 149.144 - - - -
2 0.001 48.016 0.022 9936.183 - -
3 0.001 29.951 0.026 4353.984 3.202 4719358.465
4 0.001 26.741 0.020 4063.060 2.459 2735455.618
5 0.001 24.222 0.022 1561.509 0.647 557498.373
6 0.001 23.829 0.022 1228.444 0.459 293902.986
7 0.001 36.725 0.012 1649.051 0.499 356457.007
8 0.001 23.981 0.009 592.192 0.123 50681.481
9 0.001 53.252 0.106 154295.438 - -
10 0.001 21.340 0.009 523.567 0.087 31303.123

The number in brackets indicates the number of instances that are not solved within the time limit of 1200 seconds.
‘-’ means that the implementation fails to solve most of the instances within the time limit.

experiments for each combination of τ , ρ and OS. Ac-

cording to this table, the most time-consuming class of

instances is the one where release dates are neither loose

nor tight (τ = 0.50), due dates are loose (ρ = 0.50) and

the set of precedence constraints is empty (OS = 0).

No clear pattern can be distinguished for the algorith-

mic performance as a function of the tightness of the

deadlines, so these results are excluded from the table.

We distinguish subsets of instances: the set of all in-

stances is Ins = InsS ∪ InsL. The subset of Ins with

τ = 0 is denoted by Insτ=0. Similarly, we introduce

Insτ=0.5,Insτ=1,Insρ=0.05,Insρ=0.25 and Insρ=0.50. Each

of these six subsets contains 1440 instances. The un-

solved instances are distributed differently for the two

algorithms. For BB1, Insτ=0 contains three unsolved

instances, Insτ=0.5 contains 32 unsolved instances and

Insτ=1 contains three such instances. For BB2, 36 un-

solved instances are in Insτ=0.5 and only two unsolved

instances are in Insτ=1. Clearly, BB2 performs better

than BB1 when release dates are equal (zero) and BB1

performs faster than BB2 when release dates are non-

equal. In both B&B algorithms, the unsolved instances

are mostly in Insρ=0.50 rather than in Insρ=0.25 and

Insρ=0.05. The runtimes of both algorithms are increas-

ing with ρ, but BB2 performs better than BB1 when

due dates are tight (ρ is small) and performs worse than

BB1 when due dates are loose (ρ is large).

7.5 Branch and bound versus SSDP

We compare the performance of our B&B algorithms

with the SSDP algorithm proposed by Tanaka and Sato

[42]. Since the procedure in [42] was not developed for

instances with time windows, we remove all deadlines

from the instances in Insτ=0; we refer to the new set as

Insτ=0,φ=∞. Table 11 shows the computational results

for our B&B algorithms and for the SSDP algorithm
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Table 8: Overall results.

α Method
n

10 20 30 40 50
CPU # CPU # CPU # CPU # CPU #

10

ASF 0.81 432 – – – – – – – –
ASF′ 0.80 432 – – – – – – – –
TIF 0.43 432 2.02 432 53.47 429 – – – –
TIF′ 0.64 432 2.97 432 88.17 420 – – – –
BB1 0.00 432 0.01 432 0.05 432 3.43 432 28.15 418
BB2 0.00 432 0.00 432 0.05 432 3.30 432 32.46 407

100

ASF 0.92 432 – – – – – – – –
ASF′ 0.95 432 – – – – – – – –
TIF 6.54 432 – – – – – – – –
TIF′ 21.783 432 – – – – – – – –
BB1 0.00 432 0.01 432 0.09 432 6.65 430 24.92 408
BB2 0.00 432 0.01 432 0.09 432 5.29 430 29.35 413

Table 9: Number of jobs versus density of the precedence graph.

Method n
OS

0 0.25 0.50 0.75
CPU # CPU # CPU # CPU #

BB1
30 0.20 216 0.04 216 0.02 216 0.01 216
40 18.89 214 1.23 216 0.12 216 0.02 216
50 59.92 179 49.58 210 2.42 216 0.05 216

BB2
30 0.13 216 0.10 216 0.03 216 0.01 216
40 12.72 214 4.07 216 0.42 216 0.02 216
50 38.94 189 74.43 202 13.71 214 0.18 216

Table 10: Effect of release-date tightness, due-date tightness and density of the precedence graph for the instances with 50
jobs.

Method τ ρ
OS

0 0.25 0.50 0.75
CPU # CPU # CPU # CPU #

BB1

0
0.05 1.90 24 2.54 24 0.68 24 0.03 24
0.25 45.57 24 81.43 24 2.04 24 0.06 24
0.50 227.66 21 146.48 24 10.08 24 0.06 24

0.5
0.05 34.70 22 15.67 24 1.84 24 0.04 24
0.25 74.67 16 37.84 24 1.56 24 0.05 24
0.50 567.96 3 150.36 23 4.88 24 0.08 24

1
0.05 5.56 24 0.48 24 0.28 24 0.04 24
0.25 15.86 23 1.74 24 0.18 24 0.03 24
0.50 29.35 22 14.63 24 0.26 24 0.02 24

BB2

0
0.05 0.67 24 3.22 24 0.73 24 0.16 24
0.25 0.64 24 6.99 24 0.57 24 0.02 24
0.50 1.29 24 7.48 24 0.40 24 0.02 24

0.5
0.05 6.53 24 132.87 23 18.80 24 0.11 24
0.25 195.90 22 240.35 22 27.47 24 0.16 24
0.50 0 0 392.75 13 77.23 22 0.98 24

1
0.05 12.26 24 1.27 24 0.36 24 0.07 24
0.25 67.47 24 1.90 24 1.99 24 0.05 24
0.50 39.87 22 45.24 24 1.15 24 0.05 24

(which was run on the same computer). The SSDP al-

gorithm solves instances in very short runtimes when

there are no precedence constraints. SSDP performs

worse, however, when the precedence graph is dense,

while the B&B algorithms will tend to perform better

exactly in this case. To conclude this comparison, we

underline the fact that our algorithms have been devel-

oped to solve the more general setting in which time

windows are also imposed, whereas the instance set ex-

amined here does not contain such time windows.
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Table 11: The comparison of the performance of B&B and SSDP for Insτ=0,φ=∞.

α n Method
OS

0 0.25 0.50 0.75
CPU # CPU # CPU # CPU #

10

40
BB1 3.45 36 165.38 32 0.18 36 0.01 36
BB2 0.04 36 0.70 36 0.06 36 0.00 36

SSDP 0.05 36 2.08 36 1.41 36 0.33 36

50
BB1 19.70 34 165.78 32 8.48 36 0.07 36
BB2 0.21 36 34.40 36 0.62 36 0.05 36

SSDP 0.11 36 6.24 36 3.39 36 1.66 36

100

40
BB1 1.68 36 2.03 36 0.13 36 0.03 36
BB2 0.11 36 0.45 36 0.07 36 0.03 36

SSDP 0.10 36 7.58 36 4.05 36 0.40 36

50
BB1 7.62 36 137.14 34 2.52 36 0.06 36
BB2 0.60 36 21.81 36 0.81 36 0.06 36

SSDP 0.23 36 26.44 36 17.38 36 1.55 36

8 Summary and conclusion

In this article, we have developed exact algorithms for

the single-machine scheduling problem with total weighted

tardiness penalties. We work with a rather general prob-

lem statement, in that both precedence constraints as

well as time windows (release dates and deadlines) are

part of the input; this generalizes quite a number of

problems for which computational procedures have al-

ready been published. We develop a branch-and-bound

algorithm that solves the problem to guaranteed opti-

mality. Computational results show that our approach

is effective in solving medium-sized instances, and that

it compares favorably with two straightforward linear

formulations. Our procedure was also compared with

an existing method (SSDP) for a special case of the

problem without time windows. The SSDP algorithm

requires only very low runtimes in the absence of prece-

dence constraints, but it performs worse when the prece-

dence graph is dense, which is exactly the easiest setting

for our B&B algorithms.
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Appendix

Proof of Lemma 1

Lemma 1. ASF′ is stronger than ASF.

Proof Consider the set of constraints (11). For each

(i, j) ∈ A, the following inequalities hold:

xi1 + · · ·+ xin ≤ 1− xj1 = xj2 + · · ·+ xjn

xi2 + · · ·+ xin ≤ 1− xj1 − xj2 = xj3 + · · ·+ xjn

...

xi(n−1) + xin ≤ 1− xj1 − · · · − xj(n−1) = xjn

xin ≤ 1− xj1 − · · · − xjn = xj1 + · · ·+ xjn − 1

By adding the above inequalities, we obtain

xi1 + 2xi2 + 3xi3 + · · ·+ nxin ≤
xj1 + 2xj2 + 3xj3 + · · ·+ nxjn − 1.

This is exactly the associated constraint in the set of

constraints (6). As a result, the solution space of the LP

relaxation of ASF′ is included in that of ASF. To show
that the inclusion is strict, consider the following frac-

tional values for the decision variables corresponding

with a couple (i, j) ∈ A: xi1 = xi5 = 0.5 and xj4 = 1.

These values can be seen to respect the weak but not

the strong formulation. ut

Proof of Lemma 4

Lemma 4. Let f : t→ αmax{0, t− a} − βmax{0, t−
b} + C be a function defined on [u, v] for a, b, C ∈ R
and α, β, u, v ∈ R+. The function f reaches a global

minimum at value t∗ computed as follows:

t∗(α, β, a, b, u, v) =
min{ū, v} if α ≥ β
u if α < β, b > a, α(v̄ − ū) ≥ β(v̄ − b)
v otherwise

where ū = max{u, a} and v̄ = max{v, b}.
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Fig. 12: Four possible cases for the parameter combinations in the proof of Lemma 4.

Proof Let f have a global minimum at value t∗. De-

pending on the values of the parameters α, β, a and b,

the function f behaves differently. We discuss four pos-

sible cases for the parameter combinations to prove this

lemma (see also Figure 12). In the two first cases, we

assume that α ≥ β. Case (a): in this case, a ≤ b, and

then f is constant on interval [u, a] and is increasing

on interval [a, v], as shown in Figure 12(a). Case (b):

a > b, f is constant on interval [u, b], decreasing on in-

terval [b, a] and increasing on interval [a, v], in line with

Figure 12(b). The following results are valid for these

two cases: 1- If u ≤ a ≤ v then t∗ = a. 2- If a < u,

t∗ = u because f is always increasing on interval [u, v].

3- If a > v, t∗ = v because f is always decreasing on in-

terval [u, v]. We conclude that t∗ = min{max{a, u}, v}
for the first two cases.

In the next two cases, we assume that α < β. Case (c):

a < b, f is constant for [u, b], increasing for [b, a] and

decreasing for [a, v], as shown in Figure 12(c). In this

case, t∗ equals either u or v. On the one hand, if α(b−
max{a, u}) ≥ (β − α)(max{v, b} − b) ⇒ α(v̄ − ū) ≥
β(v̄ − b) then f(v) ≥ f(u) is inferred and t∗ = u is

concluded. On the other hand, if α(v̄ − ū) < β(v̄ − b)
then t∗ = v is concluded. Case (d): a ≥ b, f is constant

for [u, b] and decreasing for [b, v]; see Figure 12(d). We

find that t∗ equals v for this case. ut
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