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Abstract

This paper studies the problem of scheduling malleable jobs without preemption while min-
imising the cost of delays and extra capacity. Jobs can either have the ascending or descend-
ing property, which means that while they are processed, the number of allocated resources
are either non-decreasing or non-increasing, respectively. We propose a rolling horizon al-
gorithm, and apply it to a line maintenance problem. Our results show that the planning
process benefits from creating a robust baseline schedule.

Keywords: rolling horizon, scheduling, aircraft line maintenance, mathematical
programming

1. Introduction

Many papers on scheduling problems focus on the midterm scheduling of jobs or person-
nel. One might think of creating a feasible production schedule at minimum cost, developing
personnel rosters while trying to satisfy as many personnel requests as possible, or scheduling
jobs while minimising the makespan or the total weighted tardiness. Mostly, the problem
instances are solved offline, and the algorithm has complete access to the whole instance
input. In reality, however, the input for these problems is stochastic and the solution al-
gorithm learns about the input piece by piece, reacting to the new requests with only a
partial knowledge of the input (Pruhs et al. [1]). Examples are treating emergency patients
in hospital applications, absenteeism in personnel scheduling, etc. By incorporating a rolling
horizon to partially account for stochasticity and a dynamic environment, we better succeed
in capturing reality in the scheduling process.
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This research was motivated by a visit to the line maintenance department of an airline
maintenance company at Brussels airport. For this department, one operator is in charge
of allocating technicians to the flights that need maintenance. By considering the available
technicians, the shift sequences that they are following, whether they did or did not have
their lunch break yet, etc., this operator tries to link the technicians with the list of flights
that need maintenance. This linking is done manually and depending on the experience
of the operator and the stochastic behavior of the flight arrivals, the schedule has to be
adjusted frequently in the peak periods. However, the stochasticity of the flight arrivals,
the constraints imposed on the scheduling of the maintenance jobs, and the creation of the
schedule by hand create a far from optimal solution. Moreover, because of the stochasticity
of the flight arrivals, the work rosters that are provided may not be suitable to create a feasi-
ble schedule for all the flights. Therefore, we present a rolling horizon procedure that can be
used for solving various scheduling problems. The basic situation is the following. Each job
is characterized by a demand, a release time, a (soft) due time and a (hard) deadline. The
release time of a job is stochastic and is updated over the time horizon, taking into account
new information. The number of available resources fluctuates over the time horizon and
can be increased within certain limits and at a given cost in the rolling horizon procedure.
The goal is to produce a feasible schedule, which means that each job is assigned to one or
more resources and one or more time slots, while minimising the delay and capacity costs.

In Section 2 we discuss the literature on rolling horizon procedures and we address some
papers with a similar problem setting. The nomenclature and mathematical programming
formulation are presented in Section 3. This is followed by the description of the rolling
horizon algorithm in Section 4. A case study on instances inspired by a scheduling problem
in a line maintenance company is addressed in Section 5, followed by the discussion of the
results in Section 6. Finally, some conclusions are drawn in Section 7.

2. Literature review

The majority of the literature concerning rolling horizon decision making deals with pro-
duction planning problems. In this context, the production schedule aims at minimising
the cost per period, considering for instance the cost of production, inventory, backlogging
or shortage, etc. The demand may either be deterministic or stochastic. Sethi and Sorger
[2] develop a theoretical framework for rolling horizon decision making, considering that
forecasting the future is a costly activity. To this end, they present a dynamic program-
ming formulation for a general, discrete-time, stochastic dynamic optimization problem in
which the decision maker has the possibility to obtain information on the uncertain future
at a given cost. The motivation for incorporating this cost lies in the difficulty to retrieve
accurate forecasts. The forecast of the future is either expensive, unreliable or both and
gets more complicated the more distant the future. As’ad and Demirli [3] develop optimal
master production schedules in a steel rolling mill operating in a dynamic environment. To
capture this dynamic nature, the models are implemented on a rolling horizon basis. A
one product, uncapacitated master production scheduling problem in which decisions are
made under rolling planning horizons is studied by Vargas and Metters [4]. Hereby, they can
explicitly consider the stochastic nature of the demand. This demand is time-varying and
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the effectiveness of their approach is measured by inventory holding, production setup and
backorder costs.

In the personnel scheduling literature, rolling horizon procedures are scarce. Gronalt
and Hartl [5] minimise the total wage costs for the assembly of mid-volume trucks, given a
desired production rate. They develop a solution approach for the assignment of operations
to stations, searching for a loading sequence for the products, and for a worker and floater
time allocation. Bard and Purnomo [6] use the technique to cope with emergencies, call-outs
and normal fluctuations in personnel requirements in hospitals. The problem associated
with making the daily adjustments has to take into account the individual preferences of
the nurses. Bard and Purnomo formulate the problem as an Integer Program (IP), that
they solve with a branch-and-price algorithm. This solution method enables them to solve
problem instances with up to 200 nurses within 10 minutes, considering 24 hours at a time.
Campbell [7] shows that for single-period scenarios, on-call overtime can slightly reduce costs.
Therefore, he discusses the possibility of using multiperiod models within a rolling horizon
framework that can benefit from forecast updating, which is the topic of this paper. Other
applications can be found in disruption management (e.g., Nielsen et al. [8]) or inventory
routing problems (e.g., liquefied natural gas annual delivery program by Rakke et al. [9] or
oil transportation by Shen et al. [10]).

In this work we consider the problem of scheduling malleable jobs. These are jobs that
may be processed simultaneously by several processors, where the number of processors used
influences the processing speed of a job. Two extreme cases exist: in the first case, the job
processing time is independent of the number of processors assigned to the job, while in the
second case the processing time is exactly inversely proportional to the number of processors
assigned to that job (Burke et al. [11]). An overview on the scheduling of multiprocessor
tasks (i.e., multiprocessor or parallel tasks include both malleable and non-malleable tasks,
which require a specific number of processors for specific units of time) can be found in
Drozdowski [12]. Sadykov [13] presents a dominant class of schedules for malleable jobs if
the goal is to minimise the total weighted completion time. He introduces the ascending
property, which states that the number of processors assigned to a job does not decrease
over time while this job is being processed. In order to find an optimal ascending schedule,
however, the sequence of job completion times must be determined. Therefore, an alterna-
tive to reducing the search space by taking advantage of the class of dominant schedules in
solving the problem, can be to enumerate the sequences of jobs without using the ascend-
ing property. In our problem, we expand this to the ascending and descending property.
This means that while jobs are being processed, the number of allocated resources can only
increase or decrease, respectively. We call this the monotonicity property. Note that this
monotonicity property implies non-preemptive execution of jobs. Blazewicz et al. [14] deal
with the problem of scheduling a set of n independent non-preemptive malleable tasks on
an m processors system, starting from a continuous version of the problem. The criterion
they assume is schedule length. In Blazewicz et al. [15], they also schedule multiprocessor
tasks on parallel processors with limited availability. For some specific cases, polynomial
time algorithms are given. This is somewhat related to the problem setting in this paper,
except for the preemptive characteristic of the jobs and the minimisation of the makespan.
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Hu [16, 17] tries to minimise the total tardiness in the model of an identical parallel-machine
version with non-preemptive jobs of the worker assignment scheduling problem. The worker
assignment scheduling problem in this model is shown to be NP-complete. Therefore, he
developed some heuristics to solve the problem in two phases: job scheduling and worker
assignment.

Our decision problem can also be related with another branch in the literature, namely
capacity management or more specificly rough-cut capacity planning (RCCP). In RCCP, the
aim is to compare the available capacity with the resource profile, retrieved from a tentative
scheduling of the jobs. It allows to evaluate different scenarios, such as the usage of non-
regular resource capacity such as overtime work and outsourcing, and the determination of
due dates and other project milestones. Hans [18] distinguishes between two problems in
RCCP: resource driven and time driven RCCP. In resource driven RCCP, all (non-)regular
capacity levels are fixed and one tries to minimise the maximum lateness of the projects,
preferably using regular capacity. In the case of time driven RCCP, each job in a project is
characterized by a deadline, which the company wants to meet while minimising the usage of
nonregular capacity. In his thesis, Hans [18] develops some branch-and-price algorithms to
solve the RCCP with precedence constraints and compares these methods with approxima-
tion techniques such as rounding heuristics and an improvement heuristic. Only time driven
RCCPs are tested and as a result, the projects are not allowed to be tardy. In our paper,
we aggregate the time driven and the resource driven RCCP in one model and evaluate dif-
ferent scenarios by changing the cost parameters for both nonregular capacity and tardy jobs.

The contribution of our model lies in the combination of scheduling malleable tasks
with a soft due time, while respecting the monotonicity property of the tasks. Moreover,
we apply this model to a stochastic problem setting, where the timing of the workload is
uncertain. Therefore, we combine a proactive and reactive scheduling policy into a rolling
horizon framework.

3. Problem setting

In this section, we will present the nomenclature, the problem setting and the mathe-
matical programming formulation.

Nomenclature

Indices and sets
j index of jobs (j = 1,...,n)
t index of time periods (t = 1,...,T )

Decision variables
δj = 1 (0) if job j has the ascending

(descending) property
xjt = 1 if job j is active in period t, 0

otherwise
χjt = 1 if period t is the last active pe-

riod of job j, 0 otherwise
yjt number of resources performing job

j in period t (yjt ∈ N0)
ot number of extra resources in period

t (ot ∈ N0)
Coefficients and parameters
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dj due time of job j
d̄j deadline of job j
rj release time of job j
Lj lower bound on the number of re-

sources assigned to job j when it is
active

Uj upper bound on the number of re-

sources assigned to job j when it is
active

Wj workload of job j (in resource peri-
ods)

Cd
j delay cost per period for job j

Co cost per period for extra capacity
µt available capacity in period t

The problem under consideration consists of n malleable jobs, that need to be processed
without preemption on a set of resources, of which the capacity is time-varying (µt). We
assume the resources to be identical. The release time rj of a job is the first period in which
a job can be processed and is stochastic. Each job is characterized by a (soft) due time dj
and a (hard) deadline d̄j. Completion of a job after its due time is allowed, but it will incur a
cost Cd

j per period of tardiness. If the ascending (descending) property is assigned to a job,
this means that the number of processors assigned to that job does not decrease (increase)
over time while this job is being processed. The processing time of a job j is exactly inversely
proportional to the number of resources assigned to it (yjt), which is bounded by a lower
bound Lj and an upper bound Uj. At a certain limit, the processing time of the jobs can
no longer be decreased by assigning more resources. This is the upper bound Uj. Because
of the stochasticity of the release times and the need to complete all the jobs, the available
capacity µt may not be sufficient. To this end, nonregular resource capacity ot is available
at a cost Co (e.g., outsourcing, extra resources, etc.).
Note that the intensity or the number of resources yjt doing a job j in period t, is re-
quired to be integer. By relaxing this requirement, non-preemption is no longer a valid
assumption. Consider, for instance, four periods 1, 2, 3 and 4. The corresponding yjt-values
are 0.6, 1.5, 1.8, 2.25. These values satisfy the monotonicity constraints by following a non-
decreasing pattern and, at first sight, also ensure non-preemption. However, from the re-
sources’ point-of-view, this pattern could mean that one resource (A) starts executing job j
in period 1 when 40% of the period has passed. In the second period, at least 2 resources
are needed to cover 1.5 resource periods. Resource A needs to keep on working in the second
period (non-preemption constraint) and an additional resource B is called, who starts at the
half of the period, then a problem arises in period 3. Resources A and B are present now,
but they cannot both work a complete period, since only 1.8 resource periods are needed.
Therefore, this execution pattern will lead to preemption in the third period for at least
one of the resources, since in the fourth period, again more than 2 resources are necessary.
Of course, this behavior could be avoided by a new formulation where the float intensities
need to increase (resp. decrease) to at least the next (previous) integer value (i.e., minimally
round up or resp. round down the current float value). Considering the previous example,
this new formulation would demand for the intensity in period 3 to be 2 or higher (intensities
can still be float values). Then, resource B can remain active for the entire period and if the
new value is again a float, this represents a third resource C, starting at a given time in the
period, leading to an adjustment of the intensity in period 4. This formulation, however, has
the drawback that it is no longer possible to aggregate the intensities of all jobs in a given
period to check whether the available capacity is not exceeded by the resource consumption,
since the corresponding resource usage is not uniformly spread over the period. For these
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two reasons, we will keep the integer requirement of the variables yjt.
The integer programming model for minimising the cost of scheduling malleable non-

preemptive jobs is as follows:

minimise
n∑

j=1

Cd
j

 d̄j∑
t=dj+1

(t− dj)χjt

+
T∑
t=1

Coot (1)

subject to

d̄j∑
t=rj

yjt ≥ Wj j = 1, . . . , n (2)

Ljxjt ≤ yjt ≤ Ujxjt j = 1, . . . , n t = rj, . . . , d̄j (3)

yj,t−1/Wj ≤ yjt/Wj + (1− δj) + (1− xjt) j = 1, . . . , n t = rj + 1, . . . , d̄j (4)

yjt/Wj ≤ yj,t−1/Wj + δj + (1− xj,t−1) j = 1, . . . , n t = rj + 1, . . . , d̄j (5)

xjt − xj,t+1 ≤ χjt j = 1, . . . , n t = rj, . . . , d̄j (6)∑
j∈J

yjt ≤ µt + ot t = 1, . . . , T (7)

xjt, δjt, χjt ∈ {0, 1} (8)

yjt, ojt ∈ N0 (9)

The objective function (1) minimises the total costs, which consist of the delay costs
and the cost of extra capacity. Constraint set (2) guarantees that each job is completely
maintained. Constraint set (3) makes sure that the number of resources assigned to a job
lies within the specified interval [Lj, Uj]. Constraint sets (4) and (5) are the monotonicity
constraints. They imply that, if δj equals 1 (0), the number of resources assigned to a
certain job j, can only increase (decrease) in successive periods. Constraint set (6) fixes
the χjt-variables, which indicate the last period in which processing takes place. Finally,
constraint set (7) ensures that in every time period, the number of allocated resources does
not outnumber the available capacity (i.e., regular and nonregular capacity). Depending
on the problem under consideration, the nonregular capacity has multiple sources such as,
overtime, outsourcing, inhouse resources from other departments, etc.

Proposition 1. The problem is strongly NP-hard.

Proof: If we consider the instances for which Lj = Uj = 1/Wj and enough resources are
available (µt = M and ot = 0 (t = 1, . . . , T )), the resulting problem of minimizing total
tardiness is equivalent to the parallel machine scheduling problem with ready times and
without preemption. According to the three-field classification system (Graham et al. [19]),
this problem is denoted by P | rj |

∑
Tj and is proven to be NP-hard in the strong sense

(Garey and Johnson [20], Blazewicz [21]). �

Test results based on real-life instances show that IP (1)-(9) is very difficult to solve,
even for small instances (e.g., short planning periods with only a limited number of flights
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to schedule). Relying only on this formulation in the rolling horizon approach leads to very
high computation times. Hereby, one of the main advantages of a rolling horizon approach,
i.e., to quickly reschedule a list of jobs based on updated information fades out. Therefore,
we first create a baseline schedule, which will be adjusted in the rolling horizon approach,
and try to tackle the rescheduling heuristically. If the heuristic fails to create a feasible
schedule, IP (1)-(9) will be invoked.

4. Methodology

Our approach starts with an initialization phase, prior to the rolling horizon algorithm.
Figure 1 presents the steps in the initialization phase. The first step is to transform the job
characteristics (specified in Section 5.1) according to the uncertainty distributions. These
distributions can be based on historical information or assumptions on the stochasticity.
The newly generated list of jobs will be used as input to create a personnel schedule. The
idea is that the personnel schedule(s) generated in this step tend(s) to be more robust than
those that are based on the original list of jobs. In the final step of the initialization phase,
the original list of jobs and the generated work schedule are used to develop a robust base-
line schedule for the rolling horizon algorithm. In the baseline schedule, jobs are scheduled
as late as possible, as if it were a worst case scenario. Hereby, we prevent (small) delays
from disrupting the schedule, since the test results in Section 3 reveal that rescheduling
is computationally expensive. After the initialization phase, the rolling horizon algorithm
is executed (Figure 2). This algorithm gradually moves along the time horizon, each time
adapting the baseline schedule to the most recent information. This information is used to
check whether a job will be available to schedule in the current planning horizon or not.
In each step of the algorithm, the available jobs are sorted by earliest release time. If jobs
can be scheduled earlier than the execution start time according to the baseline schedule,
they are leftshifted heuristically. Hereby, they generate extra capacity in later periods that
can be used for jobs, for which the delay harms the baseline schedule. The initialization
phase can thus be seen as a proactive approach to cope with uncertainty in the timing
of the workload, whereas the rolling horizon algorithm is the reactive approach. Some of
the concepts applied here are related to scheduling strategies in robust project scheduling.
We refer the reader to Demeulemeester and Herroelen [22] for more information on this topic.

5. Case study

As already mentioned in the introduction, the idea for this research originates from an
aircraft line maintenance scheduling problem. In this case study, the workload is determined
by a cyclic weekly list of flights that need maintenance. Each flight is characterized by a
scheduled time of arrival (STA), a scheduled time of departure (STD) and an estimated
workload, which correspond with rj, dj and Wj, respectively. The interval [rj, dj] is the time
window of job j. The arrival time of a flight is stochastic, which is modeled by adjusting the
STA to the real time of arrival, i.e., r∗j . The STD is the latest period to complete the main-
tenance of a flight in order to avoid delay costs. We allow for maintenance being scheduled
beyond this due time to guarantee that all flights can be processed completely. For the same
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 Cycle 1 Cycle 2  

Team size = 5 Team size = 3  

M:  06:00 – 13:30 M:  05:00 – 13:00  

D:  07:00 – 15:00 D:  08:45 – 16:45  

E: 14:00 – 22:00 E:  14:15 – 22:30  

N: 22:00 – 06:00 N:  22:30 – 08:45 

 M D D D D E E  M M E E N N N 

      N N    D D D   

 N N N N N    E E E   M M 

         N N N N N   

            M M M M 

         M M      Original list of jobs

Adjusted list of jobs

P
ro
b
a
b
ili
ty

Delay

Cutoff value

–

Worst case

scenario

Time

Figure 1: Illustration of the initialization phase: 1) data transformation, 2) creation of the
personnel schedule and 3) creation of the baseline schedule.

reason, the deadline d̄j of a flight j is set high enough (see Section 5.2). The time horizon is
discretized into quarters of an hour, i.e., one period equals 15 minutes.

5.1 Algorithm

Step 1: Data transformation. Instead of relying on the original list of jobs to create the
initial baseline schedule, we opt to transform this list by taking into account uncertainty
distributions. As mentioned earlier, we only take into account stochasticity in the release
times of the jobs. Assuming that the uncertainty distributions are known upfront, this infor-
mation can be beneficial for the solution approach. In our case study the delay distributions
generated in Van den Bergh et al. [23] are used. The aggregation of these distributions
reveals that 80% of the flights arrive early or within at most 3 quarters of an hour after
the scheduled time of arrival (STA) and 95% arrives within 6 quarters of an hour after the
STA. If this information would be neglected and the personnel schedule is created based on
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the original list of (deterministic) jobs without incorporating robustness constraints, flight
delays will definitely influence the baseline schedule in real-life operations. Therefore, the
time window and/or workload of the initial list of jobs is adjusted in this step. Note that
the time window of a job is the time interval between two consecutive flights for a given
airplane. Jobs that have a wide time window will not be affected by (most of) the delays.
The starting time of the time window of these jobs, that is used as input for building the
personnel schedule, will be rightshifted such that it covers a certain percentage of the arrivals
delays, in our case 95%. Most of our interest goes to jobs with narrow time windows, for
instance less than two hours. If no additional measures are taken, the personnel schedule
only provides capacity during the original time window. Large delays can occur that hinder
these jobs from (partial or complete) execution within their time window. Therefore, the
time window for these jobs, that is used as input for building the personnel schedule, is not
shifted, but prolonged. The reason for prolonging the time window is clear: if no capacity
is available after the original time window, this could lead to very high tardiness values.
On the other hand, the starting time of the (narrow) time window of these jobs cannot be
shifted. If so, these jobs could possibly not be executed when the corresponding flights arrive
on time (or with a short delay), since the scheduled capacity would be situated at the end of,
and beyond the original time window. Therefore, the workload of these jobs is increased to
create a personnel schedules that provides more capacity for these jobs. In Algorithm 1 the
details of the modification are given. The release time, due date and workload followed by a
‘a’ represent the adjusted variables of the adjusted list of jobs. The first IF-statement is used
when the ‘worst-case delay’ of 6 periods (referred to as ‘delay’ in the rest of the paragraph)
prevents a job from being scheduled within its original time window (i.e., the time window of
that job is smaller than or equal to 6 periods). The second IF-statement indicates that the
delay results in an increase in workload, making it impossible to cover the demand with the
maximum number of workers. In the third IF-statement the delay implies that on average
two extra workers per period are needed to cover the job compared to the original case. In
all the previous cases, the due date and workload are adjusted. If these conditions are not
fulfilled, one can start the job after the delay without needing more capacity, time or both.
This is the last case in Algorithm 1.

Algorithm 1 Modification of jobs
for all jobs j ∈ J do

old interval = dj − rj + 1;

new interval = dj − (rj + 6) + 1;

if new interval ≤ 0 then

raj = rj , d
a
j = dj + old interval, new interval = daj − raj + 1,Wa

j = (Wj/old interval) ∗ new interval;

else if Wj/new interval ≥ Uj then

raj = rj , d
a
j = rj + 6 + ⌈Wj/Uj⌉, new interval = daj − raj + 1,Wa

j = (Wj/old interval) ∗ new interval;

else if Wj/new interval ≥Wj/old interval + 2 then

raj = rj , d
a
j = rj + 6 + ⌈(Wj/(Wj/old interval + 1))⌉, new interval = daj − raj + 1,Wa

j = (Wj/old interval) ∗
new interval;

else

raj = rj + 6, daj = dj ,W
a
j = Wj ;

end if

end for
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Step 2: Creation of the personnel schedule. For the second step, we use the heuristic
procedure by Beliën et al. [24] to create personnel schedules. The transformed list of jobs is
used as input and the created personnel schedule is thus capable to cope with the majority of
the delays, assuming the delay distribution of the first step. The problem of deciding on the
number of cycles, team sizes, shift durations and the shift sequence is tackled heuristically
by an enumeration algorithm that is based on the team sizes and the number of cycles. Some
constraints in the formulation of Beliën et al. [24] can be seen as robustness measures. One
of the constraints, for instance, prohibits jobs from execution in the first or last quarter of
the time window. Another constraint ensures that a capacity buffer is provided to cope with
unexpected workload.

Step 3: Creation of the baseline schedule. In the third step, the original list of jobs,
the personnel roster retrieved in step 2 and the IP-model (1)-(9) are used to create the
robust baseline schedule. Since this baseline schedule is a tactical schedule, no nonregular
capacity can be used and all the jobs need to be finished before their due date dj. Hence, the
ot-variables are removed from constraint set (7) and the objective (1) is replaced by (10):

minimise
n∑

j=1

 dj∑
t=rj

Pjtyjt

 (10)

In this new formulation, the objective function is penalized by a penalty Pjt for scheduling
jobs in the beginning of their time window. Different penalty functions can be used to take
into account the delay distributions, i.e., scheduling a job during the first X periods is penal-
ized harder than in the next X periods, etc. This step is very time consuming, but since we
assume a cyclic list of jobs and a personnel schedule that is operational for several months,
this does not harm the effectiveness of our approach.

Step 4: Rolling horizon algorithm. As mentioned earlier, the previous steps can be seen
as the initialization phase or proactive approach to construct a robust schedule that is based
on historical information. In the fourth and final step, real-life information will be considered
within a rolling horizon framework. The rolling horizon procedure gradually moves along the
time horizon. A ‘planning procedure’ has a certain time window, called ‘procedure length’,
which is defined by a start and an end time. Two consecutive planning procedures (or
iterations) are separated by a ‘planning interval’, which is the time between the start times
of planning procedure i and planning procedure i + 1. New iterations are performed until
a certain end criterion is met, which can be a maximum number of iterations or a certain
timing of the time horizon, or a computation time limit. In each step of the rolling horizon
framework, the following information is available:

• The availability (i.e., real release time) of the jobs with a scheduled release time between
the start and end of the current planning procedure and of the jobs with a scheduled
release time after but with a real release time before the end of the current planning
procedure.

• The current schedule of the jobs, which is the baseline schedule for the newly released
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jobs or the adjusted schedule if these newly released jobs have been rescheduled in the
previous planning procedure, but have not yet been finished before the starting time
of the current procedure.

• The capacity availability of the resources during the current planning procedure.

Each planning procedure starts with an update of the jobs, based on the newly generated
information. Jobs that have a scheduled release time within the time window of the planning
procedure could for instance be delayed, resulting in a new release time after the end time
of the procedure length. The opposite can also be true: jobs that originally had a release
time greater than the end time of the current planning procedure, arrived early and can be
planned in the current planning procedure. Of course, in the last scenarios, the actual release
time differs positively or negatively from the scheduled release time, but the job still needs
to be scheduled in the current planning procedure, since its time window overlaps with the
time window of the current planning procedure.

An example of the rolling horizon algorithm is presented in Figure 2. Using the start
and end period in Figure 2, jobs 5 to 7 will definitely be addressed in the current planning
procedure i. The release time for job 8 lies beyond the end of the planning horizon, hence,
it is eliminated from the set. Job 1 will also be excluded, as its deadline lies before the start
time of the current planning horizon, and therefore, has already been completed. Jobs 2, 3
and 4 have a release time which is smaller than the current start period. Since their time
windows overlap with the current planning procedure, one has to check whether they have
been completely processed in the previous planning procedure. Since the workload for job
2 and 4 was only partly covered in the previous planning procedure, it has to be processed
from the start period until it is finished because of the non-preemptive constraint. Not only
the non-preemption is important, also the value of δj has to be passed from the previous
planning procedure to the current one, ensuring the ascending or descending property of job
j. Job 4 was already assigned the ascending property. In the current planning horizon, δ4
remains 1 and the minimum number of resources to be assigned to job 4 equals y4t, where
t is the period just before the start period of the current planning horizon. Full flexibility
remains in the current planning procedure with respect to the monotonicity property for
job 2. However, the value of y2t in the last period of the previous planning period needs to
be saved. Because of the non-preemption constraint, this value has an influence on δ2. No
workload has been covered for job 3 in the previous planning procedure, so full flexibility
remains with respect to the monotonicity and the start time of processing.
Considering the next start period in Figure 2, jobs 2, 4 and 5 definitely join job 1 in the set
of finished jobs, while jobs 3, 6 and 7 can have the partly or completely processed status or
might not be started yet. Job 8 will be added to the set of jobs that need to be scheduled.

In the rolling horizon algorithm (Algorithm 2), a greedy heuristic is used to schedule the
newly released jobs. This greedy heuristic tries to schedule a job as close as possible to the
release time (i.e., a leftshifted schedule). Per job, it enumerates all the possibilities for non-
decreasing and non-increasing monotonocity, considering the remaining capacity in these
periods. Of course, this approach does not guarantee the creation of an optimal schedule.
Multiple jobs can interfere with each other because of overlapping time windows and limited
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Figure 2: Illustration of the rolling horizon procedure: each job is defined by its workload
(divided into covered and uncovered workload), release time, due time, deadline and delta.
The value of delta is only shown if the job already possesses the ascending or descending
property.

capacity. However, the approach is quite effective to transform the robust base schedule into
a leftshifted schedule. The jobs are sorted by earliest (real) release time and by this ap-
proach we try to generate as much available capacity as possible in later periods. Of course,
the greedy approach does not (always) give the optimal solution. Consider, for instance,
two jobs, with r1 < r2 and d1 > d2. The greedy heuristic will schedule job 1 before job 2,
whereas this could lead to capacity problems. The main reason behind this approach is that
this capacity can be used by delayed jobs. In the worst case, when a job was not delayed (or
arrived early), it cannot be leftshifted by the heuristic. Thus, the baseline schedule for this
job becomes the actual schedule. Delayed jobs, however, have to be rescheduled if the actual
release time is later than the start of the execution time according to the baseline schedule.
In this case, a part or even the total workload of that job needs to be (re)scheduled. The
greedy heuristic, however, might fail to provide a feasible solution since it does not allow
nonregular capacity. In that case we rely on the IP-formulation (1)-(9). All jobs that are
available in the current procedure (i.e., all jobs of which the available time window partly
overlaps that of the current planning procedure) are then rescheduled in order to obtain a
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feasible schedule while minimizing the use of nonregular capacity.

Algorithm 2 Rolling horizon algorithm
INITIALIZATION;

Set S = { };
while (end criterion met = FALSE) do

for all jobs j ∈ J do

update r∗j ← rj+delay;

update d∗jand d̄∗j ;

update schedule and available capacity;

add job to or remove it from active set S;

end for

sort all jobs of S by earliest r∗j ;

MAIN STEP

still feasible ← TRUE;

j ← 1;

while (j ≤ |S| AND (still feasible)) do

try greedy heuristic for job j;

if not all workload covered then

solve IP (1)-(9);

still feasible ← FALSE;

end if

update schedule and available capacity;

end while

save solution;

check end criterion;

renew start period, end period, next start period;

end while

In Algorithm 2, the complete procedure is given. The variables r∗j , d
∗
j and d̄∗j represent,

respectively, the real release time, the real due date and the real deadline of job j (instead
of the scheduled times).

Algorithm 3 shows how the due dates of the jobs are adjusted according to the simulated
delays and shows similarities to Algorithm 1. If the job cannot be completed within its new
interval or it needs at least one extra worker per period (on average) to complete the job
before the due date, then the due date, and correspondingly the time window, of that job
will be adjusted (first IF-statement). This due date is also extended when the number of
workers needed to execute the job before the due date exceeds the maximum number of
workers allowed to process that job. If these two conditions are not fulfilled, the original due
date remains.

5.2 Parameters

Random instances. To get an insight into the effects of the different parameters, a test
set of 20 instances in total is created with a random generator, based on real-life data from
the company. These instances differ in two factor settings, listed in Table 1. For each com-
bination, 5 instances are created. They are called ‘a b c’, where the first two parameters
represent the factor settings and the last one c ∈ {1, 2, 3, 4, 5}, the instance number. The
distribution of the workload depends on the duration of the time window and the maximum
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Algorithm 3 Incorporation of delays
for all jobs j ∈ J do

old interval = dj − rj + 1;

new interval = dj − r∗j + 1;

if new interval ≤ 0 or Wj/new interval ≥Wj/old interval + 1 then

d∗j = r∗j + old interval − 1;

else if Wj/new interval ≥ Uj then

d∗j = r∗j + ⌈Wj/(Uj − 1)⌉ − 1;

else

d∗j = dj ;

end if

end for

number of workers allowed to be allocated to a flight. The parameters of the uniform dis-
tribution are 0 and the minimum of, on the one hand, a workload of 10 hours and, on the
other hand, the maximum workload that can be covered by 4 workers in the time window
of the flight. The generated value (r) of the triangular distribution (0.125; 0.375; 1) repre-
sents the average number of workers needed per period to maintain the flight before its STD
(Wj = r ∗ (STD−STA+1)). This value r is not limited by a maximum workload (as in the
instances with uniform distribution), but by a maximum average value of workers/period
of 1. In the instances with peak arrivals, there are more arrivals during the morning and
evening hours, whereas in the instances with spread arrivals, the arrivals are uniformly dis-
tributed over the day.

Table 1: Factor settings

1 2

a) Distribution of workloads (hours) Uniform Triangular

b) Flight arrivals Peak arrivals Spread arrivals

Overtime and extra capacity. As stated in Section 3, the nonregular capacity can have
multiple sources. In our case study, extra capacity can be retrieved by allowing workers to do
overtime or by hiring workers either from another maintenance division within the company
or from a partner company.
The cost of overtime depends on the shift type to which overtime was added and on the day
of the week. In our instances, 4 different shifts are used: morning (M), day (D), evening (E)
and night (N). The shift premium for a morning, evening or night shift is respectively, 7%,
16.67% or 20%. This premium is added to the regular cost of one hour of overtime. We used
a 50% premium for the overtime cost per period compared to a regular work hour for a day
shift (15 EUR), resulting in 22.5 EUR/hour of overtime after a day shift, and, e.g., (15 *
1.07) * 1.5 EUR/hour of overtime after a morning shift, etc.

To take into account the overtime constraints, the following nomenclature is used:
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i index of shift in the planning procedure (i=1,. . . ,I)
Co

i cost of overtime in shift i
Si start time of shift i
Ei end time of shift i
Ni number of times shift i is scheduled
Ti team size of shift i
oit number of workers doing overtime of shift i in period t (oit ∈ N0)

Note that overtime is allowed to start at most two hours before a shift and to
end at most two hours after a shift.
oit = 0 if t ≤ Si - 9 or if t ≥ Ei + 9

γt number of extra workers needed in period t
Cγ cost of extra worker per period

The shifts set I is composed of those shifts that are active in the planning horizon. Model
(1)-(9) needs to be adjusted by adding (11)-(14).

oit ≤ TiNi i = 1, . . . , I t = 1, . . . , T (11)

T∑
t=1

oit ≤ 8TiNi i = 1, . . . , I (12)

oi,t−1 ≤ oit i = 1, . . . , I t = Si − 1, . . . , Si − 7 (13)

oi,t+1 ≤ oit i = 1, . . . , I t = Ei + 1, . . . , Ei + 7 (14)

In each period and for every shift, the number of workers doing overtime, cannot exceed
the team size of that shift, multiplied by the number of times that shift is scheduled (11).
Additional constraints state that the total number of periods of overtime per team member
needs to be smaller than two hours (i.e., eight quarters of an hour) for each shift (12).
Constraint sets (13-14) ensure that the number of workers doing overtime fades when the
time difference to the start or end of a shift increases. This constraint is used to guarantee
continuity in the work patterns, hereby avoiding idle time between two successive working
periods on the level of an individual worker.
During a preliminary test, it became clear that the overtime variables cannot guarantee
a feasible solution. Sometimes overtime cannot be used (e.g., if there are no preceeding
or succeeding shifts to which the overtime can be added). However, our rolling horizon
procedure requires a feasible solution for every horizon in order to allow the procedure to
continue. Hence, we introduce the variable γt, which represents the number of workers
added to period t. A high cost Cγ for every man-period of this extra capacity is added to
the objective function. Since the overtime variables are now stated for every shift and period,
the capacity constraint set (7) needs to be changed into (16) and the objective function (1)
becomes (15):
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minimise
n∑

j=1

Cd
j

 d̄j∑
t=dj+1

(t− dj)χjt

+
T∑
t=1

((
I∑

i=1

Co
i oit) + Cγγt) (15)

J∑
j=1

yjt ≤ µt +
I∑

i=1

oit + γt t = 1, . . . , T (16)

Delay cost and distributions. In model (1)-(9) tardy flights are penalized by a tardiness
cost Cd

j per period of delay per flight, considering the due dates. The deadline of a job has
been set 8 periods higher then the due date in order to ensure that a flight can be finished
on time and to prevent huge tardiness values. Many studies have been conducted to esti-
mate the delay cost to airlines. In the NEXTOR-report (Ball et al. [25]), for instance, a
variety of cost components caused by flight delays are analyzed, including cost to airlines,
cost to passengers, cost of lost demand, as well as the indirect impact of delay on the US
economy. In other approaches the overall cost of delay for both airlines and passengers is
computed (e.g., Zou and Hansen [26]). They calculate the total cost, without breaking it
down into crew, maintenance, fuel and other costs. In this study, data provided by Eu-
rocontrol (the European Organisation for the Safety of Air Navigation) will be used . In
2004, Cook et al. [27] developed a rigorous methodology and collected data for estimating
the components of airline delay costs for various segments of a scheduled flight by order of
Eurocontrol (a more recent version of this study can be found in Cook and Tanner [28]). We
use the values of the three scenarios recommended by Eurocontrol for the overall delay cost
per minute. The recommended values are presented as a range from a low value to a high
value with a base value as the medium term. For the ground delays with network effect (i.e.,
taking into account the effect of consequential delay), these values are represented in Table 2.

Table 2: Eurocontrol [29] recommended values for the delay cost of ground delay consid-
ering network effects (in e/minute)

Base Low High

Fuel costs 0.1 0.1 0.2

Maintenance costs 0.5 0.5 0.7

Crew costs 8.8 - 18.7

Ground and passenger handling - - 2.7

Airport charges 0.5 0.4 2.1

Passenger compensation 27.8 15.3 45.9

Direct cost to an airline 37.8 16.3 70.3

Passenger opportunity cost 43.5 7.0 43.8

Overall cost 81.3 23.3 114.1

Procedure length and interval. The considered lengths for the planning procedures are 8,
12, 16 and 20 periods of 15 minutes. With the small planning horizons, we can assume that
perfect information exists about the flight arrivals. Two consecutive planning procedures are
separated by an interval of 4, 6 or 8 periods. This interval is set low enough to be able to
update the schedule regularly based on the new information. The total horizon length (i.e.,
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the time difference between the start time of the first and the last planning procedure) is set
to 100 weeks, resulting in a different number of iterations according to the interval length.
In Table 3 we give an overview of the different parameter combinations.

Table 3: Parameter combinations

Procedure Procedure Delay Workload Arrival

length interval cost distribution distribution

(15-min periods) (15-min periods)

8 4 Base Uniform Peak

12 6 Low Triangular Spread

16 8 High

20

6. Results and discussion

Before analyzing the influence of the different parameters on the decisions made in the
rolling horizon procedure, note that since we are examining a rolling horizon procedure,
decisions made in one planning procedure affect those in the following one(s). Therefore,
some results can seem counter-intuitive. The solution method was programmed using C++
and CPLEX 12.5 and tested using a Duo Core Processor of 2.4 GHz.

Table 4: Average cost and time for random instance parameters

Arrival distribution Workload distribution

Uniform Triangular Total

Cost (EUR) Time (s) Cost (EUR) Time (s) Cost (EUR) Time (s)

Peak 22,476 411 17,800 1,813 20,138 1,112

Spread 17,960 371 5,041 1,010 11,501 691

Total 20,218 391 11,421 1,412 15,819 901

Table 5: Comparison exact and heuristic approach for cost, time, extra capacity (E),
overtime (O), and tardiness (T)

Approach Cost (EUR) Time (s) E O T

Exact 17,480 5,161 12.7 42.3 4.6

Heuristic 15,587 862 12.2 28.1 3.5

We first focus on the computation times (Table 4-7). The results show that the instances
with peak arrivals are nearly twice as hard to solve as those with the spread arrivals (1,112s
vs 691s). The main differences in computation time, however, result from the workload
distribution. The instances with triangularly distributed workload take more than 3.6 times
the computation time of the ones with uniformly distributed workload (1,412s vs 391s). The
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Table 6: Average cost and time for procedure length and replication interval parameters

Procedure length Replication interval

4 6 8 Total

Cost (EUR) Time (s) Cost (EUR) Time (s) Cost (EUR) Time (s) Cost (EUR) Time (s)

8 16,260 965 16,712 910 38,024 90 23,665 655

12 15,493 1,042 15,213 946 15,322 991 15,342 993

16 12,979 870 13,990 1,035 13,787 1,032 13,586 979

20 9,856 1,025 10,703 871 11,492 1,037 10,684 978

Total 13,647 976 14,154 941 19,656 787 15,819 901

Table 7: Average cost and time for delay cost and extra capacity cost parameters

Cost extra capacity Delay cost

Low Base High Total

Cost (EUR) Time (s) Cost (EUR) Time (s) Cost (EUR) Time (s) Cost (EUR) Time (s)

200 5,210 1,252 3,858 817 3,911 784 4,326 951

500 8,763 935 10,895 815 10,859 905 10,172 885

1,000 11,626 928 21,423 953 24,498 826 19,182 902

2,000 16,238 864 31,971 834 40,579 901 29,596 866

Total 10,459 995 17,037 855 19,962 854 15,819 901

parameters on replication interval or procedure length do not really influence the computa-
tion time, except for the case where both parameters take value 8 (i.e., there is no overlap
between consecutive planning procedures). In this case, the computation time is only 10% of
the average computation time for the other parameter combinations, but the costs increase
significantly. In this worst case, one cannot leftshift the jobs as effective as in the other sce-
narios, which decreases the flexibility of the approach, leading towards costly solutions. For
the cost parameters, we see that the situation with base cost for delays and the lowest cost of
non-regular capacity (200 EUR/man-period) takes about 30% more computation time than
the other combinations. This is mainly due to the trade off between these two options. In
the Low cost case, delaying a flight for one period costs about 350 EUR. For this amount,
you can almost hire two extra workers for one period in the scenario under consideration.
This offers many more trade off effects as in the scenarios with a higher cost for non-regular
capacity. The switch towards the heuristic approach (5) results in a gain of factor six in
terms of computation time (5,160s vs 862s). These results are based on only a subset of the
instances (220 combinations), since it takes too much time to do the computations for all
the instances. Since we stop the IP in the exact approach after 3,600s and continue with the
best obtained solution, the exact approach is in a sense also a heuristic approach. Without
drawing conclusions, we see that the solution quality of the heuristic approach is better than
that of the exact approach.

The total costs (measured for all the flights over the entire planning horizon, averaged
per parameter combination) depend greatly on the instance (Table 4-7). Instances with peak
arrivals and those with uniformly distributed workload are both 75% more costly than in-
stances with spread arrivals and triangularly distributed workload, respectively. This results

18



in a factor of 4.45 for the instances with both uniformly distributed workload and peak ar-
rivals compared to the instances with triangularly distributed workload and spread arrivals.
During the peak hours (in the case with peak arrivals), a high utilization rate is observed.
As these jobs have typically narrow time windows, a delay implies expensive solutions such
as non-regular capacity or delays, whereas for the spread arrivals rescheduling could be ben-
eficial without incurring extra costs. This should motivate the airlines to spread the flights
as much as possible. Moreover, maintenance companies should take this behavior into ac-
count while negotating the service contracts with the airlines. Shorter replication intervals
and, especially, longer procedure lengths result in lower aggregated costs. However, short
replication intervals are expensive in computation time. On the other hand, we might not
be able to predict the (uncertain) behavior of the release times of jobs for longer procedure
lengths.

Table 8: Average use of extra capacity (E), overtime (O) and tardiness (T) for random
instance parameters. E and O are expressed in worker-periods. T is expressed in periods.

Arrival distribution Workload distribution

Uniform Triangular Total

E O T E O T E O T

Peak 15.2 30.1 8.0 11.3 34.5 4.7 13.3 32.3 6.4

Spread 13.0 49.6 7.5 4.0 11.6 1.5 8.5 30.6 4.5

Total 14.1 39.8 7.7 7.6 23.1 3.1 10.9 31.5 5.4

Table 9: Average use of extra capacity (E), overtime (O) and tardiness (T) for procedure
length and replication interval parameters. E and O are expressed in worker-periods. T is
expressed in periods.

Procedure length Replication interval

4 6 8 Total

E O T E O T E O T E O T

8 10.4 22.3 5.8 10.4 18.8 6.2 32.4 24.4 6.3 17.7 21.8 6.1

12 10.3 27.2 5.9 9.8 24.5 5.7 10.0 24.4 5.8 10.0 25.4 5.8

16 9.0 34.9 5.1 9.3 32.5 5.7 8.9 30.7 5.5 9.0 32.7 5.4

20 6.4 50.6 3.9 6.9 42.8 4.4 7.1 44.4 4.9 6.8 45.9 4.4

Total 9.0 33.8 5.2 9.1 29.6 5.5 14.6 31.0 5.6 10.9 31.5 5.4

Another evaluation criterion is the tardiness (Table 8-10). This value represents the
aggregated tardiness for all the flights over the entire planning horizon (averaged per pa-
rameter combination). In instances with peak arrivals, tardiness is 42.5% higher compared
to instances with spread arrivals. This is partly due to the increased frequency of tardy
flights (33%), but is also due to the increased length of the tardiness. The instances with
uniformly distributed workload even face an increase of 150% regarding tardiness and an
increase of 227% of departure delays (i.e., departures between the due date and the hard
deadline) compared to the instances with triangularly distributed workload. Again, the in-
creased flexibility of longer procedure lengths results in lower tardiness values. Whereas the
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Table 10: Average use of extra capacity (E), overtime (O) and tardiness (T) for cost
parameters. E and O are expressed in worker-periods. T is expressed in periods.

Extra capacity Delay cost

Low Base High Total

E O T E O T E O T E O T

200 11.6 30.2 3.3 18.3 28.5 0.0 18.3 28.3 0.0 16.1 29.0 1.1

500 5.7 31.5 9.0 17.6 30.1 0.4 17.2 29.6 0.3 13.5 30.4 3.2

1000 4.6 33.8 11.6 11.1 31.3 3.5 11.0 30.6 3.3 8.9 31.9 6.2

2000 3.6 40.0 15.3 5.5 32.1 9.5 6.1 31.4 8.8 5.1 34.5 11.2

Total 6.4 33.9 9.8 13.1 30.5 3.3 13.1 30.0 3.1 10.9 31.5 5.4

difference in terms of average tardiness between the base cost scenario (81.3 EUR/minute
of delay) and the high cost scenario (114.1 EUR/minute of delay) is only 7%, the difference
between the low (23.3%) and the high cost scenario is more than 215%.

Overtime (O) represents the aggregated use of overtime in worker-periods for all the
flights over the entire planning horizon (averaged per parameter combination). The results
(Table 8-10) indicate that the instances with uniformly distributed workload need 75% more
overtime than those with triangularly distributed workload, whereas the difference between
the instances with peak and with spread arrivals is quite neglectible (1%). However, espe-
cially the instances with spread arrivals and uniformly distributed workload are the main
consumers of overtime, i.e., more than twice the amount of the average of the other instances.
Furthermore, it is particularly the length of the planning horizon that creates possibilities
for overtime. Considering the base procedure length of 8 periods, a procedure length of 12,
16 or 20 periods results in 4.24%, 29.9% or 81.64% more overtime usage, respectively. This
is mainly because of the restriction to allow overtime before the start of a shift only if that
shift starts within the following two hours. This restriction is used to enable the personnel
to commute to their work. Of course, when a longer procedure length is considered, the
possibility of a shift ending in that planning procedure also increases.

The last cost component addresses the non-regular capacity (E), which represents the
aggregated use of extra capacity in worker-periods for all the flights over the entire planning
horizon (averaged per parameter combination). In (Table 8-10), we see similar results as for
the other two components regarding the set of instances. Again, peak arrivals (55%) and
uniformly distributed workload (85%) are more costly than spread arrivals and triangularly
distributed workload. Compared to the case of 2,000 EUR/man-period of extra capacity, the
case of 1,000, 500 and 200 EUR/man-period, consumes 75%, 166% and 217% more extra ca-
pacity. Logically, as the cost of non-regular capacity decreases, usage goes up. The longer the
procedure length, the less extra capacity is needed (-32% for a length of 20 periods compared
to 12 periods). Looking at the interaction effects between the usage of non-regular capacity
and the delay costs, we see that for the low delay cost scenario, the usage of non-regular
capacity drops with more than 50% compared to the base and high delay cost scenario.
Again, the case where both the replication interval and the replication length take value 8
is very costly. In this scenario, flexibility is limited, resulting in numerous costly measures

20



to guarantee the processing of the jobs.

7. Conclusion and future research

This paper describes a rolling horizon procedurefor scheduling malleable tasks with an
ascending or descending property without preemption. The goal is to minimise the cost of
overtime and delays. The approach consists of a proactive and reactive policy to ensure
robustness regarding the stochasticity in the release times of the jobs. The results indicate
that huge time savings can be achieved by considering a base case scenario, which can be
adjusted heuristically or with an exact approach. Furthermore, there exists a clear trade-off
between non-regular capacity and delays. The results also indicate that a longer planning
procedure length can result in lower costs. However, one has to consider the (lower) quality
of the retrieved information and the higher costs of getting this information. Also, shorter
replication intervals result in lower delay costs, but increase the computation time.

This research creates some interesting possibilities for further research. First, other
heuristics can be developed to further improve the speed and quality of the approach. Sec-
ond, the problem formulation can be improved. Some possible extensions that deserve our
attention are adding valid inequalities and decomposing the model. Finally, other sources of
uncertainty can be incorporated.
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