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Abstract

The present thesis introduces the lock scheduling problem and promising
decompositions into sub problems. Several combinatorial optimization methods
have been developed for the lock scheduling problem. Single and parallel
chamber locks and lock operations in both an inland and mixed-traffic setting
are considered, and a mathematical model precisely describing the problem is
presented. Three interrelated sub problems can be discerned: ship placement,
chamber assignment and lockage operation scheduling. These are closely related
to the two dimensional bin packing problem, the assignment problem and the
(parallel) machine scheduling problem respectively. After an in-depth analysis
the ship placement sub problem is decomposed by exploiting its sequence
constraints, and both an exact and a heuristic approach are developed and
tested on a large and diverse test set. A decision support tool for lock masters
is presented and evaluated during live-tests at mixed-traffic locks in a major
port and on an important waterway. These tests reveal that the introduction
of fast and high-quality optimization software in the lock master’s tool suite
can increase lock efficiency by enabling a faster reaction to last-minute changes,
quickly producing good solutions during peak traffic and increasing the lock’s
planning horizon. The lock scheduling problem is solved through Combinatorial
Benders’ decomposition by combining the assignment and scheduling problems
into a master problem and considering ship placement as a sub problem. Efficient
cut separation methods are introduced and tested and the performance of an
exact and of a heuristic solution method for the packing sub problem are
evaluated. Experiments show that the decomposition method outperforms a
monolithic branch-and-bound approach, and that the slow convergence of the
master problem is currently the decomposition method’s limiting factor.






Beknopte samenvatting

Deze thesis introduceert het sluisplanningsprobleem voor sluizen met bin-
nenlands verkeer en in havenomgevingen waar zowel binnen- als zeevaart
aanwezig zijn. Een accuraat mathematisch model voor dit gegeneraliseerde
sluisplanningsprobleem is ontwikkeld en getest op een dataset bestaande uit
gegenereerde en historische data. Het sluisplanningsprobleem bestaat uit
drie geconnecteerde subproblemen: schip positionering, kolktoewijzing en het
plannen van schuttingen. Deze problemen zijn sterk gerelateerd aan het twee
dimensionale bin packing probleem, het assignment probleem en het (parallel)
machine scheduling probleem respectievelijk. Na een diepgaande analyse wordt
het schip positionering subprobleem opgesplitst door gebruik te maken van
volgordebeperkingen, en worden exacte en heuristische oplossingsmethoden
ontwikkeld en getest op een grote en diverse dataset. Het onderzoek vormt de
basis van een beslissingsondersteunende tool die door sluiswachters geévalueerd
is tijdens live-tests op sluizen voor gemengd verkeer. Deze tests tonen aan
dat de toevoeging van performante optimalisatiesoftware aan de huidige tools
van de sluiswachters de efficiéntie van sluizen kan verhogen: door snel hoog
kwalitatieve oplossingen te berekenen, kan er gereageerd worden op last-
minute veranderingen, kan de aanwezige capaciteit beter benut worden tijdens
piekmomenten en kan de planningshorizon van de sluizen verlengd worden. Het
sluisplanningsprobleem wordt vervolgens opgelost via Combinatorial Benders
decompositie door het kolktoewijzingsprobleem en het plannen van schuttingen
te beschouwen in een master problem en de positionering van de schepen in
een sub problem aan te pakken. Efficiénte cut separation methodes worden
geintroduceerd en getest, en de performantie van zowel exacte als heuristische
oplossingsmethoden wordt geévalueerd. De experimenten tonen aan dat deze
decompositiemethode performanter is dan een monolitische branch-and-bound
methode, en dat de trage convergentie van het master problem momenteel de
beperkende factor is van deze oplossingsmethode.

)
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Chapter 1

Introduction

1.1 Motivation

Both ports and waterways are under ever increasing pressure due to growing
maritime traffic and transport. Handle times are constantly reduced while
flexibility is increased to maintain or improve market shares. While many aspects
of handling ships and containers in seaports have been extensively researched
[Stahlbock and Vof}, 2008], locks, a key component of a tide independent port’s
infrastructure, have been utterly neglected in academia. Locks constitute a
complex optimization problem: the vast number of ships entering and leaving the
harbor on a daily basis must be assigned to lock chambers, their exact position
inside the locks has to be defined and the resulting lockages require scheduling.
A ship’s handling time can strongly increase from a lock’s suboptimal usage.
The lock’s incapacity to transfer a given ship in time might lead to missing its
time window at the terminal, resulting in great inefficiency: the ship’s total
time in port increases and the terminal operations are disturbed. Similarly,
inland waterways need to reduce the waiting times at locks to a minimum
to increase the share of waterway transport in multimodal transporation'
[European Commission, 2009, 2011]. Inland navigation is a most promising
transport mode in the multimodal chain due to its excess capacity in the network
and environmentally friendly nature. In Western Europe, and especially Belgium,
inland waterways play a crucial role in hinterland access of major sea ports
[Notteboom and Rodrigue, 2005]. The current increase of barge traffic and
its future prospects make it of paramount importance to reduce ships’ waiting

IMultimodal transportation is the combination of multiple transport modes in a single
transport chain without a change of container for the goods.



2 INTRODUCTION

times, thus enabling inland navigation to compete with road transportation.
However, periods of drought force the lock operators to minimize the number of
lockage operations (i.e. water usage) to transfer these ships. Currently human
experts schedule locks with little or no support from optimization software.

Against the backdrop of these facts, the aim of the present doctoral dissertation
is to formulate exact and heuristic optimization methods for tackling the Lock
Scheduling Problem (LSP). The LSP encompasses three strongly interconnected
sub problems: an assignment, a packing, and a scheduling problem, and therefore
decomposition methods will be of special interest. The development of a
decomposition method, based on existing exact decomposition approaches
applicable in both exact and heuristic frameworks can be considered the
secondary goal of this thesis. Although many exact decomposition methods exist
and have been researched in a multitude of papers, the knowledge behind these
methods has rarely been transferred into practical applications and heuristic
solution approaches. With an accessible explanation of how one such method can
be applied to real-life LSP instances and comparable structured combinatorial
optimization problems, this thesis can thus also be read as an attempt to transfer
this knowledge to heuristic and applied research communities.

1.2 Structure of the thesis

Chapter 2 begins by sketching the LSP in ports and on inland waterways. The
similarities and differences between both environments are clarified, and the
impact of the LSP on the maritime transportation chain is further elucidated.
The chapter continues with an extensive literature review on the LSP, port
operations and inland navigation. A mathematical model for the LSP enables
computing optimal solutions to (very) small LSP instances in both port and
inland settings, and functions as a reference for other solution approaches.

Chapter 3 focusses on the Ship Placement Problem (SPP), which is the packing
sub problem of the LSP. First, the SPP and its interaction with the LSP
are defined, after which the problem is identified as a variant of the two-
dimensional rectangular single bin size bin packing problem (2D rectangular
SBSBPP) [Wischer et al., 2007]. After reviewing several potential solution
methods for the SPP, a mathematical model for the SPP is introduced. Next, a
decomposition scheme is introduced, enabling the transformation of a multi-
lockage SPP into a series of single lockage SPP’s which can be solved efliciently
using exact or heuristic methods. Although the resulting exact solution method
allows for reasonably fast computations in a controlled environment, real-life
applications of the SPP require a much faster and predictable response time.
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The multi-order best-fit, which is an extension of the best-fit heuristic for the
2D orthogonal strip packing problem [Burke et al., 2004], combines such fast
and stable computation time with a low optimality gap. The chapter concludes
with a thorough computational study of the solution approaches for the SPP.

Chapter 4 reports on the real-life application of MOGLi2, a decision support
tool for lock masters. The decision support software proposes one or more
possibilities for executing the next lockage(s) based on a list of arriving ships
and the selected lock configuration. Ships capable of being transferred together
are automatically selected and positioned in a feasible and easy to understand
way. In the case of multi-chamber locks, the lock master can quickly evaluate
the effect of an alternative chamber for transferring some of the arriving ships.
The tool is highly configurable and easily applied to locks both in major ports
and on inland waterways. MOGLi was tested during during a total of four
one-day live-tests on the Boudewijn-Van Cauwelaert lock complex in the port
of Antwerp and at the locks of Terneuzen (The Netherlands) during which it
successfully assisted the lock masters in their daily operations.

The lock scheduling problem is decomposed into a restricted master problem
(MP) and a sub problem (SP) in Chapter 5. The presented decomposition scheme
facilitates interaction between the MP and the SP through the generation of
combinatorial Bender’s cuts. The master problem first assigns the ships to lock
chambers, after which it attempts to schedule the lockages. The sub problem
handles the positioning the ships inside the lock chambers. Whenever the
sub problem identifies an infeasible lockage, i.e. a set of ships that cannot be
transferred simultaneously due to the chamber’s capacity or safety constraints,
combinatorial inequalities (cuts) are generated and added to the master problem.
The master problem and sub problem are solved iteratively until a provable
optimal (and feasible) schedule is obtained. When the MP and/or the SP are
solved heuristically, another stopping criterion can be applied. Several cut
separation methods are proposed and compared in an extensive computational
study.

In Chapter 6 the main contributions of the doctoral research in the fields of lock
scheduling, exact and heuristic decomposition and applications of operations
research are summarized. The dissertation ends with some suggestions for
interesting future research directions.

Appendix A discusses an extension of the best-fit heuristic for the orthogonal
strip packing problem from Burke et al. [2004]. The resulting three-way (best-
fit) heuristic served as the base for the multi-order best-fit heuristic for the
ship placement problem from Chapter 3, and was published in Verstichel et al.
[2013c]. The appendix presents the developed best-fit extensions, several of

2Multilevel Optimization and Generic models for Lock operations
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which were applied in the multi-order best-fit heuristic, and contains a detailed
explanation of how the (multi-order) best-fit heuristic works. This chapter has
been added as an appendix to allow for a main text that is focussed entirely on
the lock scheduling problem.

A short overview of the graphical user interface and configuration options of
MOGTLi is added in Appendix B.



Chapter 2

The generalized lock
scheduling problem

The lock scheduling problem (LSP) is introduced, and a mathematical model
for the LSP is presented. To begin, we sketch the LSP as it is encountered on
the Albertkanaal and on other inland waterways. We then frame the LSP in
a mixed-traffic environment like the Port of Antwerp. An extensive literature
review on the LSP, inland navigation and relevant port operations is provided in
Section 2.3. Section 2.4 continues with a formal description of the LSP, followed
by a mathematical model in Section 2.5. Some improvements to the model
are presented in Section 2.6. A computational study of the presented model is
added in Section 2.7, which demonstrates the applicability of the mathematical
model to very small LSP instances only. Parts of this chapter were published
as Verstichel and Vanden Berghe [2009] and Verstichel et al. [2013b].

2.1 The inland lock scheduling problem

Barges travelling on a network of inland waterways often have to pass several
locks. The locks control the water level and the flow on the inland waterways
and overcome height differences in the landscape. A lock consists of at least one
chamber in which barges can be transferred from one water level to another.
When more than one chamber is available, the chambers can be paired (i.e.
operated together) or operated independently. While some multi-chamber
locks consist of several identical chambers, others have chambers of different
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dimensions and properties. Depending on the size of the chamber, one or more
vessels can be transferred together in a single lockage operation. Processing a
ship in a lock may thus require up to three decisions, each with a significant
impact on the quality of service: selecting the chamber that will transfer the
ship, determining a position for the ship and setting a starting time for the
lockage operation.

The large and well-connected network of inland waterways in Belgium provides
ample applications of locks in all configurations and sizes. One example being the
Albertkanaal, an important inland waterway connecting the port of Antwerp
with the port of Liege. Over the years numerous industrial activities have
emerged on its banks, with a total of over 37 Million Tonnes Equivalent (MTE)
of processed cargo in 2012 [nv De Scheepvaart, 2012]. Six triple-chamber locks
are used to overcome the height difference of 56m between Antwerp and Liege.
Each lock consists of two identical small chambers and a single large chamber,
all of which can be operated independently, and has a height difference between
5.7m and 14m. On the Albertkanaal, the increase of barge traffic and recent
periods of drought make it of utmost importance to optimize the lock operations
by reducing the number of lockage operations (i.e. water usage) and the waiting
time of ships. A top-view of the Wijnegem lock on the Albertkanaal is added
in Figure 2.1.

Another example is the Strépy-Thieu boat lift on the Canal du Centre (Figure
2.2). This boat lift is the largest in the world, with a height difference between
the upstream and downstream reaches of 73 meters. The lock consists of two
independent and watertight mobile cages (chambers) that are pulled up or
lowered by the combined efforts of a counterbalance and four electrical motors
[Walloon Government, 2013a]. This is a completely different approach from that
of regular locks, where the water level inside the chamber is changed instead of
moving the chamber (and its contents) from one water level to another. This
boat lift has facilitated a large boost of the maritime traffic on the Canal du
Centre, quadrupling the transported cargo from 0.2 MTE on the old lock system
in 2001 to 0.8 MTE in 2003 when the new lift was fully operational. Roughly 1.1
MTE was transported over the boat lift in 2011 [Walloon Government, 2013b].

Locks are quite common in other European countries like The Netherlands,
Germany and Great Britain as well. We will also briefly discuss two examples
of inland locks outside of Europe: the Three Gorges Dam in China and the
Upper Mississippi River (UMR) in the United States.
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Figure 2.1: Photograph of the Wijnegem lock on the Albertkanaal in Belgium.
(©2009 Google, TerraMetrics)

Figure 2.2: Photograph of the boat lift of Strépy-Thieu in Belgium. (©2006
Jean-Pol Grandmont)
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2.2 The mixed-traffic lock scheduling problem

The port of Antwerp (Belgium), one of the largest in Europe, processed more
than 180 MTE of cargo and seventy thousand ships in 2012, averaging at almost
200 ships per day [Port of Antwerp, 2012]. The harbor is situated at the river
Scheldt with tidal differences averaging five meters and acts as a major hub for
both inland and intercontinental cargo traffic. To ensure a constant water level
at the harbor’s docks, they are separated from the main water way by a number
of locks with chamber sizes ranging from 180m x 22m to 500m x 68m. Figure
2.3 shows the Boudewijn-Van Cauwelaert lock complex in the port of Antwerp.

The mixed-traffic LSP (e.g. in the port of Antwerp) and the previously introduced
inland LSP differ considerably. First and foremost, the maritime traffic in a port
environment consists of several ship types, including barges, seagoing vessels,
tugboats, etc. Each ship type requires specialist management and transferring
several ship types in a single lockage operation impacts both the ship placement
and the lockage scheduling sub problems. Contrary to the inland setting, safety
distances are ship-dependent and cannot be assumed part of the ship’s and
the chamber’s dimensions. The minimal safety distances between seagoing
vessels depend upon their dimensions and tugboat requirements, while safety
distances between seagoing vessels and barges depend on the size of the barge
only. Additionally, several mooring restrictions may exist, preventing barges
from mooring to a seagoing vessel, seagoing vessels from mooring to each other,
etc. The presence of large seagoing vessels influences the scheduling part of
the LSP: seagoing vessels may require a certain pre and post-processing time
for entering/leaving the lock, (un)mooring at the quay and (dis)engaging the
tugboats. As the chambers of port locks are typically larger than those from
an inland setting, barges can also influence the lockage duration: when large
numbers of barges are transferred together, the accumulated manoeuvring time
may become significant.

Several other ports, like the ones of Ghent and Terneuzen, are (partially)
situated behind a system of locks. A very famous example of mixed-traffic lock
systems is found on the Panama Canal, which is an important waterway for
international maritime trade.
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Figure 2.3: Photograph of the Boudewijn - Van Cauwelaert lock complex in
the Port of Antwerp, Belgium. (©2012 Google, Aerodata International Surveys,
DigitalGlobe, GeoEye, Cnes/Spot Image)

2.3 Literature review

Only a small number of academic papers focus on lock planning from an
operations research point-of-view. Wilson [1978] investigates the applicability of
different queuing models for lock capacity analysis. The research shows that good
queuing models exist for single chamber locks, but not for locks with parallel
chambers. Coene and Spieksma [2011] study the lockmaster’s problem, which
focusses exclusively on the scheduling sub problem, assuming chambers with
infinite capacity. They identify it as a batch scheduling problem that can, under
certain conditions, be solved in polynomial time using a dynamic programming
algorithm. Other lock scheduling research focuses on the Upper Mississippi
River (UMR), where barges are joined together into tows for transport, which
must be transferred by single chamber locks that are often smaller than the
tow itself. The tow is split into different groups of barges and these groups
are transferred sequentially, after which they are rejoined for the next phase
of their travel. Nauss [2008] presents optimal sequencing of tows/barges for
single chamber locks with set-up times. The approach enables one tow/barge
to be transferred at a time. Furthermore, it considers all tows/barges to be
present at the lock before the first lockage. A simulation model for comparing
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different strategies to relieve congestion problems on the Upper Mississippi
River is presented in Smith et al. [2009]. The strategies aim at increasing the
throughput of the locks and a simulation tool was built for validating them.
Smith et al. [2011] further increase the performance of these locks using more
complex decision rules based on heuristics and mized integer programming
(MIP) models. The Three Gorges dam and Gezhouba dam have also been
researched from a lock scheduling point of view. The Gezhouba lock consists
of three independently operated identical parallel chambers, while the lock at
Three Gorges consists of two single-direction multi-stage chambers. Zhang et al.
[2008] consider navigation co-scheduling of the locks at both dams, compare
it to flexible manufacturing systems and present a non-linear mathematical
model. They consider a simplified version of the ship placement problem, taking
into account standard 2D rectangular bin packing constraints only. A hybrid
simulated annealing meta heuristic is developed and the approach is validated
on historical data. Wang et al. [2013] consider the parallel single-direction locks
at the Three Gorges dam and present a non-linear mathematical model based
on integral calculus where the ship placement problem is considered equal to
2D rectangular bin packing. The convergence of ant colony optimization on
this problem and accuracy of the available historical data are analysed.

Optimization and decision support for lock scheduling is an emerging research
field in academics. While several aspects of the lock scheduling problem have
been considered in literature, several hiatuses remain. The most obvious
example is the absence of research considering seagoing vessels and mixed traffic.
Furthermore, the ship placement problem (if considered at all) was reduced
to 2D rectangular bin packing, thereby ignoring a wide array of operational
limitations. Finally, a mathematical model for the lock scheduling problem with
single or parallel chambers and mixed traffic is also missing.

2.4 Problem definition

The lock scheduling problem can be described as follows. A number of
ships N need to traverse a lock, either in the upstream/incoming, or in the
downstream /outgoing direction. The major components of the lock scheduling
problem are visualised in Figure 2.4, which depicts a multi chamber lock
transferring several ships. These ships constitute the first major component of
the lock scheduling problem. The sets of upstream and downstream ships are
denoted N' and N? respectively, with N' N N? = () and N' UN? = N. Each
ship ¢ € N is characterised by its arrival time (or release date) r;, width w;,
length [;, draught d;, travel direction and type. By assuming rectangular-shaped
ships, we enable a straightforward evaluation of the placement constraints. The
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representation of ships by rectangles is common practice as the exact shape of
the ships is often not available to lock operators. The second major component
of the problem is the lock. A lock consists of one or more independently operated
chambers, which means that the operations of one chamber do not restrict its
neighbouring chamber’s operations in any way. Each chamber is of a specific
type t € T, defining the chamber’s width W;, length L;, maximal draught D,
and minimal lockage duration P;. Each chamber also has a front and back door,
and a left and right quay, each of which are defined with respect to the ship’s
travel direction. The set of chambers of the same type is denoted by Uy.

A solution to the lock scheduling problem is given in the form of a series of
lockage operations and their related lockages (lower part of Figure 2.4). A
lockage operation contains the time table for moving the vessels into the lock,
changing the water level, and enabling the ships to leave the chamber. The
vessels that are transferred in said lockage operation are defined by the related
lockage. A lockage defines the ships that are transferred together and their
positioning in the chamber.

Back door—p. \Left quay Low level

- Chamber1  Right quay

Chamber type 1

Low level

Low level

Low level
Lockage 1 Lockage 2 Lockage operation1  Lockage operation 2
Ship 1 @ (20,10) | i Ship 3 @ (xa,ys) ! {Lockage 1 @ 12h15 | {Lockage 2 @ 12h30 !
Ship2 @ (0,50) i on Chamber 2 i ionChamber 1 i
Position Time

Figure 2.4: Representation of a multi chamber lock, and important lock
scheduling terminology.
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The LSP may have multiple objectives: minimise the total number of lockages,
the completion time of the normal ships and/or the completion time of priority
ships. A ship’s completion time is defined as the time at which its associated
lockage operation is finished, i.e. the chamber doors are completely open.

As aforementioned, the LSP encompasses three strongly interconnected sub
problems: chamber assignment, lockage scheduling and ship placement.

Each ship is assigned a chamber type in the chamber assignment sub problem.
The ship will thus be transferred in one of the lock’s chambers of the assigned
type. The constraining attributes are the ship’s and the chamber type’s
dimensions: the ship’s width, length and draught must be smaller than the
limits for the chamber type.

The lockage scheduling sub problem can be modelled as a parallel machine
scheduling problem where chambers map to machines and lockages to jobs. The
sub problem also encompasses sequence dependent setup times, release dates,
machine eligibility restrictions and time windows. The machines may have
different processing speeds (lockage durations) as multiple chambers of different
chamber types are allowed. This results in the following standard notation for
the scheduling sub problem: Q. |7k, ski, Mi| > wrCk. The sequence dependent
setup times are required for two reasons. Firstly, when two lockages in the same
direction are processed directly after each other on the same chamber, an empty
lockage in the opposite direction must be processed in between, resulting in a
setup time between the two lockages. Secondly, when dealing with large ships
approach and departure times must be considered for each vessel navigating the
lock. Additionally, ships with tugboats require some time for (dis)engaging the
tugboats before and after the actual lockage operation. A ship’s pre-processing
time is defined as the time required for the ship to approach the lock, moor
to the quay or to another ship, disengage the tugboats (if any) and allow the
tugboats to leave the lock. The post-processing time is the time required for
the tugboats (if any) to enter the lock and engage the ship, and for the ship
to unmoor and clear the lock. Both the approach time and departure time
are defined in respect to a given ‘coordination point’ near the lock. Ships can
overtake each other at these coordination points when necessary. Given that
each lockage operation is feasible on one chamber type only machine eligibility
restrictions are required. Otherwise a lockage defined for a large chamber type
might be processed on a chamber of a much smaller type. The processing
times can be ship dependent. For example, when a high number of barges are
processed in a single lockage operation an additional processing time must be
taken into account. Time windows correspond to the tidal windows for large
sea vessels that can only approach or leave a port during high tide. Lastly,
there is one additional constraint that enforces a first-come-first-served (FCFS)
policy with respect to ship arrival times, either for all ships or for a subset.



PROBLEM DEFINITION 13

This constraint defines that for two ships ¢,j : r; < 7}, the lockage containing
ship ¢ must be finished no later than the lockage of ship j, i.e. ¢; < ¢;. Here we
assume that no two ships ever arrive at the lock at exactly the same time.

The ship placement problem is subject to several constraints, visualised in
Figures 2.5 and 2.6. The first set includes the standard 2D bin packing
constraints, violated in Figures 2.5 (a) and (b). Rotating ships is also prohibited
(Fig. 2.5 (c)). The other sub figures represent violations of the mooring
constraints. When a ship is transferred in a lockage, it must be secured
either to the right or left quay. This is achieved by mooring a ship directly to
the quay or by mooring it to a larger ship that is already moored in a correct
way (violated in Figure 2.5 (d), (e)). When mooring a smaller ship to a larger
ship, the smaller ship must be contained within the length of the larger (Figure
2.5 (f)). When several types of vessels can be processed together, limitations
may occur as to the vessel types a ship can moor to. In the case of mixed sea
and inland traffic, for example, inland barges are normally unable to moor to
seagoing vessels. Furthermore, in some locks ships cannot moor to each other
when the difference in hull height above the water is too great (for example fully
loaded and empty ships). These constraints can be viewed as group-mooring
constraints that only allow mooring to ships that belong to a certain group.
Figure 2.5 (g) shows how a barge may not moor to a seagoing vessel.
oK

ﬂ :
(b) (©)
oK
OK
oK SEA
SHIP
I K

(d) (e) () (9)

OK

OK

Figure 2.5: Representation of the hard constraints for the ship placement
problem. (OK: ship placed in a correct way, NOK: ship placed incorrectly.
Removing a NOK ship would make the packing feasible.)
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The last set of additional constraints deals with the typical safety distances
of the ship placement problem. Some manoeuvring space must be allocated
to ships, preventing collisions while sailing in and out of the chamber, and in
case of a possible minor accident during the lockage operation. While these
safety distances can be considered equal for all ship pairs in an inland setting,
traffic in sea ports requires a more individualised approach. The safety distance
constraints for different ship pairs are visualised in Figure 2.6. Based on the
dimensions and type of both ships, a minimal lateral and longitudinal safety
distance can be calculated (Figure 2.6 (a)). When both ships use tugboats a
sufficiently large lateral distance or ‘corridor’ must be present to enable the
tugboats to sail between the ships when leaving the chamber before the lockage
operation starts (Figure 2.6 (b)). The distance between each ship and the
doors of the chamber (Figure 2.6 (c)) determines another set of constraints.
These are required both for safety (i.e. to avoid collisions with the doors) and
practical reasons (position of the mooring poles to which the ship can moor).
This distance is dependent on both the chamber type and the ship’s dimensions.

] A4

NO SEA
OK NO
sea| LOUGSI| + TUGS
" TUGS
TUGS
I
OK
BARGE OK
BARGH

@ (b) (©

Figure 2.6: Representation of the lock scheduling problem’s safety distance
constraints. (OK: ship placed correctly, NOK: ship violates a safety distance
constraint)
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2.5 Mathematical model

This section introduces a mized integer linear programming model (MILP)
for the generalized lock scheduling problem. All variables are emboldened,
whereas parameters retain regular formatting. Constraints belonging to the
same sub problem of the LSP are grouped together and visualized, along with
the constraints linking them to each other, in Figure 2.7.

/ Lock Scheduling \

( \ 2.13) [ . )
Chamber Assignment
S J

t Constraints (2.7-2.12)
/Multi Lockage Ship Placement\

Lockage
Scheduling 2.13)

(2.37) [Single Lockage Ship Placement]

N %

Figure 2.7: Representation of the mathematical model for the lock scheduling
problem displaying its sub problems and the constraints linking these sub
problems to each other.

The model contains additional ships that represent the left (shipg) and right
(shipn+¢) quays of each chamber of type t € T. These ‘quay’ ships enable a
straightforward implementation of the mooring constraints as the quays can
now be seen as large ships with a fixed position to which a ship can be moored.
Their functionality is explained below in Constraints (2.18), (2.19), (2.24) and
(2.25), and Figure 2.9. The model also uses a set MOOR,; containing all ships
ship 7 € N is allowed to moor to. In the inland setting, this set contains all
ships that are longer than ship 4, as a ship can only moor to ships that are at
least equally long. In a more general setting, this set may contain only ships
of a specific ship type. Seagoing vessels, for example, may often moor only to
the quay, while no other ships are allowed to moor to a seagoing vessel. By
changing the ships that are available in the M OOR; sets, any such mooring
restriction can be implemented. The model takes into account safety distances
between ships, and between each ship and the chamber doors. These distances
depend on ship properties such as dimensions, types and whether or not the
ship requires tugboats. While the lateral safety distance between a seagoing
vessel and a barge may average at 1.5 m, the minimal lateral distance between
two seagoing vessels both requiring tugboats may be twelve meters.
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The ship placement and chamber type assignment parts are inspired by the
model for 2D bin packing with multiple bin sizes from Pisinger and Sigurd
[2005]. Constraints (2.2) to (2.31) define the chamber assignment and ship
placement parts of the problem. The scheduling part is based on the model for
early/tardy scheduling with sequence dependent setup times on uniform parallel
machines by Balakrishnan et al. [1999]. It is defined by constraints (2.32) to
(2.44). Constraints (2.45) to (2.58) define the variables. All the parameters and
variables are explained below.

Sets:
N,N' N?. N = N!U N? is the set of ships, with [N| = n, divided into

upstream ships N1 and downstream ships N2.
MOOR;: Set of ships to which ship ¢ can moor.
TIDAL: Set of all ships with a tidal window.

FCFS: Set of all ships that must be processed first-come-first-served with
respect to their arrival times.

T: Set of different chamber types.

U: Set of chambers of type t, t € T'.

M: M = M*'U M? is the set of lockages, with |M| = m, thereby
distinguishing between upstream (M?') and downstream (M?)
lockages.

M;: M; = M} U M2 is the set of lockages suitable for chambers of type

t € T, again distinguishing between upstream and downstream
lockages respectively. Note that M; is an ordered set, i.e. M; =
{1,2,....m},m}+1,...,m} +m?}, where mi, i = 1,2, are bounds
on the number of upstream and downstream lockages for chamber
typet € T.
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Parameters:

wiali, d’L
Tt

dFy, dBy:
SWZ‘j, SLij:

pre;, post;:
bi

min max.
(N

wct;:

DPt:
transg;:

Wta Lt7 Dt:
W, L, D:

Variables:
Ti, Yi:

leftij:

b,;jl

ml;;, mrg;:

Zk:
fir:
Vij:
C;:
Ck
P,
Skl
Seqgi:

ProcCg,,

Tmam :

Width, length and draught of ship i, i € N (integer).

Time at which ship ¢, ¢ € N arrives at the lock.

Minimal distance between ship i, ¢ € N and the front, back of a
chamber of type t, t € T.

Minimal safety distance between ships ¢ and j, ¢,j € N when they
are lying next to, or behind each other.

Pre- and post-processing times of ship ¢, ¢ € N.

Additional processing time induced by ship i, ¢ € N.

Lower and upper limit on the completion time of ship i, i € N.
Weight of the completion time of ship 4, ¢ € N.

The minimal processing time of a chamber of type ¢, t € T.
Transition time required between two consecutive lockages k, 1,
k,l € M, t € T performed on the same chamber. transg = p;
if k,1 are both upstream (or downstream) lockages, transy = 0
otherwise.

Width, length and draught of a chamber of type ¢, t € T (integer).
Maximal width, length and draught over all chambers.

Integer variables that define the x and y position of ship i, ¢ € N
(front left corner of the ship, Figure 2.8).

Binary variable, left;; = 1 = ship 4 is completely to the left of
ship j, 4,5 € N.

Binary variable, b;; = 1 = ship ¢ is completely behind ship j,
i,j € N.

Binary variables, 1 when ship i is moored to ship j’s left/right
side, 0 otherwise, 7,7 € N.

Binary variable, 1 when lockage k, k € M, is used, 0 otherwise.
Binary variable, 1 when ship 4, ¢ € N, is processed in lockage k,
k € M, 0 otherwise.

Binary variable, 1 when ship ¢ and j, ¢,7 € N, are processed in
the same lockage, 0 otherwise.

Departure time of ship i, ¢ € N (completion time of the lockage).
Completion time of lockage k, k € M.

Processing time of lockage k, k € M.

Setup time between lockages k and [, k,l € M.

Binary variable, 1 when lockage k precedes lockage [, k,l € M, in
the same chamber, 0 otherwise.

Binary variable, 1 when lockage k, k € M; is processed in chamber
u, u € Uy, t € T, 0 otherwise.

Maximum lock transit time over all ships.
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y (0,0)

8

Figure 2.8: Clarification of the main axis and some important ship variables
and parameters.

A
v

The objective (2.1) minimizes (1) the number of lockage operations, (2) the
weighted completion times of the ships and (3) the maximum lock transit
time, where A1, Ag, A3 are independent weight factors. In case of a drought, for
example, a greater weight can be given to the first part of the objective, ensuring
the number of lockages used for transferring the ships is minimal. When a large
queue of ships is waiting at the lock the weight of the maximum lock transit
time can be increased so that none of the ships must wait a long amount of
time.

min M\ Z Ze + Ao Z wet;ic; + A3Tmax (2.1)

k iEN

The first block of constraints (2.2-2.31) models the ship placement part of the
lock scheduling problem.

Constraints (2.2) to (2.4) ensure that two ships transferred in the same lockage
do not overlap.

leftij + leftji + bij + bji + (1 — fzk:) + (1 — fgk) >1 (2.2)
Vi<j:i,jeEN1Vi,j€ Noyyke M
x; —xj +Wlefty; <W —w;, Vi,j:4,j€ N Vi,j€ Ny (2.3)

yifyj+Lbij§Lfli, Vi,j:i,j€N1Vi,j€N2 (24)

The safety distance between two adjacent ships is modelled in Constraint (2.5)
(Figure 2.6 (a)). The safety distance depends on both ships and their tugboat
requirements. The minimal safety distance sW;; between two vessels both
requiring tugboats, for example, is larger than that between two ships where
only one needs tugboats.

:Bj—:Bi—l—(W-I-SWij)(l—leftij+bij) > wi—i—sWij, VZ,] P, € Nl\/i,j € Ny
(2.5)
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When ship 4 is positioned behind ship j, constraint (2.6) ensures that safety
distance requirements are met. This distance depends on the dimensions of
both ships and on their ship types, see Figure 2.6 (b).

Yj *y—,,‘i’(L‘i’SLl])(l*b” +l€ft”) > ZZ+SL”, Vl,] : Z,] S Nl\/i,j S N2
(2.6)

Each ship must be placed within the dimensions of the chamber type in which
it will be transferred. This restriction is modelled by Constraints (2.7) to (2.9).
These constraints are examples of how the f;z variables connect the x; and y;
variables to a specific lockage.

;o tw, <Wiy+ (1 — fae)W, VieNteT ke M (2.7)
yz—‘rllSLt—F(l—fzk)L, Vie Nyt e T,k € M, (28)
d; < Dy + (1 — f,,,k.)D7 Vie NyteT, ke M, (29)

Constraints (2.10) and (2.11) ensure the minimal safety distance between a
ship and the front and back door of the chamber is maintained. These safety
distances depend on the ship’s type, its dimensions and the chamber used. The
constraints are depicted in Figure 2.6 (c).

Yi > szt(Q.fzk — ].), Vie NteT, ke M, (210)

yi +1; < Ly —dBiy + (1 — fue)L, Vie N,te T, ke M, (2.11)

Constraint (2.12) ensures each ship is transferred by exactly one lockage.

> fie=1 VieN (2.12)

keM

Constraint (2.13) models that each lockage transferring a ship must be executed.
fie <zp, VieNkeM (2.13)

Constraints (2.14) to (2.31) describe the lock scheduling specific mooring
constraints.
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Constraints (2.14) and (2.15) model that ship ¢ can only moor to ship j’s right
side when it is fully contained within ship j’s side.

Yi —Y; < lj —li—|—(1—mr,~j)L, Vie N,j € MOOR; (215)

Only when ships ¢ and j are adjacent can ship ¢ be moored to ship j’s right
side. This is modelled by Constraints (2.16) and (2.17).

Tj — T4 < —wy + (1 — mrij)W, Vi € N,] € MOOR,; (216)
Tr; —x; > —w; — (1 — mrij)W, Vie N,j € MOOR; (217)
A ship can also moor to the right side of the left quay (shipg) of the chamber
by which it is transferred. Mooring a ship to the left quay is modelled by

constraints (2.18) and (2.19), keeping in mind that shipg is the left quay for all
chambers (see Figure 2.9).

zo—x; < (1—mr; o)W, VieN (2.18)

ro—x; > (mryo— )W, Vie N (2.19)

Constraints (2.20) - (2.23) model the constraints for mooring ship ¢ to ship j’s
left side.

y; —y; < (1—ml;;)L, Vie N,je MOOR; (2.20)

yi—y; <lj—li+(1—mly )L, VieN,jeMOOR; (2.21)
zj—x; <w + (1 —ml;;))W, Vie N,je MOOR; (2.22)
zj —x; > w; — (1 —ml;)W, Vie N,je MOOR, (2.23)

Mooring to the left side of the right quay (ship,+:) of a chamber (of type t)
is possible as well and modelled by Constraints (2.24) and (2.25). Constraint
(2.26) ensures that a ship cannot be moored to the right quay of the wrong
chamber type. When, for example, two chamber types are available at the lock,
there will be two right quay ships (n + 1 and n + 2). A ship transferred in
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chamber type 2 may moor to ship,+2, but cannot moor to ship,; (the right
quay of chamber type 1). These constraints are represented in Figure 2.9.

Togt — 3 S w; + (1 —ml; pyt)W, VieNteT (2.24)
Tpgt — X5 > w; — (L —ml pt)W, VieNteT (2.25)
Myt < > fi, VieNteT (2.26)

ke M,

NOK| OK
shipo
shipns
shipn+2

Figure 2.9: Visual representation of the constraints for mooring to the right
quay of the different chamber types. The ship is transferred in a chamber of
type 2 and is therefore unable to moor to the right quay of a chamber of type 1

(8hipn+1)-

All ships have to be moored and this is modelled by Constraint (2.27). A ship
can be moored to another ship, the left quay or one of the right quays.

Z (ml;; + mri;) + mr;o + Z mliptt > 1, Yie N (2.27)
JEMOOR; teTY PES

When ship; is moored to ship;, ship; cannot be moored to ship; and vice versa.
This only occurs when both ships are equal in length, whereupon they could
potentially moor to each other, thus rendering both ships unattached to the
quay. Constraint (2.28) prevents this kind of ‘fake’ mooring.

ml;; +mrj; <1, Vi#j, i,5: 4,7€ N1 Vi, jE Ny (2.28)

When ship; and ship; are in different lockages they cannot moor to each other.
Constraints (2.29) to (2.31) ensure that the mooring constraints are only valid
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for two ships that are transferred in the same lockage.

fik—fjkg(l—vij), Vi<j: i,j€N1Vi,j€N2,k€M (229)
fjk—fikg(l—vij), Vi<j: i,j€N1Vi,j€N2,k€M (230)

mlij +mr;; + mlj,- + mrj; < Vij, Vi<j,: 1, €E N\ Vi,j € Ny (231)

The second block of constraints (2.32-2.44) models the scheduling part of the
lock scheduling problem and is partially based on the model of Balakrishnan
et al. [1999].

Constraints (2.32) and (2.33) ensure that the lockage completion time for ship;
is equal to the completion time of the lockage in which it is transferred. Cp,qz
is a Big_ M constant and should be sufficiently large.

¢i > Conas(fir = 1)+ Cr, Yie NkeM (2.32)

c; < Cmax(l - fzk) +Cr, VieNkeM (233)

When a ship is restricted by a tidal window, it must be processed before the
tidal window ends. This is modelled by constraint (2.34).

C'Zmin <¢; < CanGOU’ Vie TIDAL (234)

Constraint (2.35) ensures that the processing time of lockage k is equal to the
standard lockage duration for the lockage’s chamber type ¢ and is appropriately
increased by the additional processing times of each ship that is transferred by
that lockage.

Pe>pize+ » fiepi, Yk € Myt € TYPES (2.35)
iEN

The setup time between lockage operations k£ and [ is dependent on their
direction and the ships that are processed. This is modelled in Constraint
(2.36). When k and ! process ships in the same direction the minimal setup
time will be equal to p;, the empty lockage operation time for the chamber
type. This is the time required for changing the water level when the chamber
is empty. If the lockage operations were in opposite directions the value would
be zero, given that the water level need not be altered. The next part of the
constraint states that both the post processing times of lockage operation k
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and the pre-processing times of lockage operation [ are accounted for.

Sgy > transy; + Z Ffixpost; + Z fupre;,, Vl#£k, kle M,teT (2.36)
ieN iEN

Constraint (2.37) ensures that all activated lockages are assigned to one of the
physical chambers corresponding to the lockage’s chamber type. Lockages that
that do not transfer any ships are not assigned to a physical chamber.

Z Procig, =z, Vke M,teT (2.37)
ueUy

Constraint (2.38) ensures that two lockages can be sequenced after each other
iff they are processed by the same physical chamber.

ProcCr, + Z procy, + seqi <2, Vi>k, kleMyueUy,teT

veU,v#u
(2.38)

The completion times of lockages that are processed by the same physical
chamber are modelled using Constraints (2.39) and (2.40).

Ci — Ci + 2C142(3 — sequy — procg, — procy,) > Py + sy (2.39)
Vk <, k,l e My,ueU,teT
Cr — C1 4 2Ch0:(2 + seqri — proci, — procyy,) > P + sig (2.40)

Vk <, k,le My, ueU,teT

Lockage k cannot start before all ships in the lockage have arrived at the
coordination point and have sailed into the chamber (Constraints 2.41).

Cx — P, > fir(r; +pre;), Vie NNke M (2.41)

Constraint (2.42) ensures that a lockage is only scheduled when it transfers at
least one ship.

2k <Y fie, VkEM (2.42)
€N

The maximum lock transit time over all ships is defined by Constraint (2.43).

Taw > Ci— 15, VieN (2.43)
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Constraint (2.44) can be used to implement priority due to operational,
economic or safety policies. It ensures that the transfer of ship; may not
be completed before that of ship; when ship; and ship; have a first-come-first-
served restriction (i < 7).

ci <c¢j, Vi<j, i,je FCFS (2.44)

Constraints (2.45-2.58) formulate bounds and integrality constraints on the
variables.

lefti;, bij € {0,1}, Vi j: i,j€ N Vi jeN, (2.45)
ml;;, mr;; € {0,1}, Vie N,j € MOOR,; (2.46)
vi; €{0,1}, Vi<j:ijeN VijeN, (2.47)

0< @ <W, Vie N (2.48)

0<wy; <L, Vie N (2.49)

0< ¢ < Crnaas Vie N (2.50)

fir € {0,1}, Vie Nyke M (2.51)

0< Cl < Crass Vk e M (2.52)
P, >0, Vk e M (2.53)

z € {0,1}, Vke M (2.54)

0 < 811 < Conans Vk,le M (2.55)
seqm € {0,1}, Vk,le M (2.56)
Procg, € {0,1}, Vk e My,ueUsteT (2.57)
Trnaw > 0 (2.58)

A few assumptions were made with respect to safety distances and pre/post-
processing times in the above model. Safety distances are independent of the
chamber type and are defined only by the interaction between ships that are
transferred together. Locks with chamber type-dependent safety distances
between ships can, however, be tackled by the solution methods from Chapter
3 (for the SPP) and Chapter 5 (for the generalized LSP). Additionally, we
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assume weather conditions are constant for the entire lock operation. This
enables us to consider pre/post-processing times that depend only on the ships.
When considering the pre/post-processing times, a distinction can be made
between ships with and ships without tugboats. Ships with tugboats will always
be positioned first in the chamber for any given lockage and their pre/post-
processing times can be considered a constant value for a given weather condition.
Ships without tugboats will be positioned later, and their pre/post-processing
times may depend on the number of ships already in the chamber and on the
remaining free space. The model also considers these much smaller times as
constant, using averages based on the experience of lock masters.

Depending on the type of lock and on the traffic, several of the constraints in
the model may be removed or reduced. When all ships have a draught that is
smaller than the smallest chamber draught, Constraint (2.9) becomes obsolete.
When there are no first-come-first-served limitations, Constraint (2.44) can be
removed.

Another example of redundant constraints applies to inland locks. The
processing times at these locks are not ship dependent, significantly reducing
the impact of Constraints (2.35) and (2.36).

The number of ships in the M OOR,; sets varies significantly between ship types.
For ocean going vessels MOOR; will contain only the quay ships. Barges, on
the other hand, may moor to any other barge, thus their MOOR,; will also
contain all barges that are at least as long as the barge itself.

When constructing the solution for a lock scheduling instance, the values of five
variable groups must be retrieved from the MILP solution:

o The lockage in which each ship is transferred (f;z)

o The chamber used to process this lockage (procg.,)

o The ship’s position in this chamber (x;, y;)

e The time at which the lockage operation ends (Ck or ¢;)

e The lockage operation duration (Pg), enabling the calculation of the

lockage start time

Given these variables’ values, a lock scheduling solution can be constructed
unambiguously.

Figure 2.10 shows how the main MILP variables are mapped to a solution for
the lock scheduling problem. Each lockage contains at least one ship, each of
which is placed at a specific location, with the z; and y; variables indicating the
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location of their front left corner. An example of the interaction between ships
in the same lockage is shown through the mrg 5 and vs ¢ variables, which define
how ship 9 is moored to ship 5, and that ships 5 and 9 are transferred together.
The f5 2 variable tells us that ship 5 is transferred in upstream lockage 2. When
viewing the scheduling part, the figure visualizes how the procg, variables map
each lockage to a lockage operation conducted by a physical chamber. For
example: lockage 1 is transferred in a lockage operation in physical chamber 2
(procy 2 = 1) starting at 09:34 (Cy — Py).

Lockage Lockage

operation2  operation 1 / Chamber 1
R S s p1= 20
: proczi=1 i : prociz=1
P C2=11:15 11 G=10:03 i
i P2=26 ': \ Pi=29 ','
lodager \ Chamber 2
Efs,z: Sh|p5 pi=20
1foo=1
fMros =1 Ship 9 b
1Vs9=1 i X9=10,y9=0

Figure 2.10: Representation of how the primary MILP variables are mapped to
a solution for the lock scheduling problem.

2.6 Model speed ups

Several adaptations can be made to the model to reduce the size of the solution
space and speed the solution process up. Firstly, the z; and v;; variables
can be defined as continuous variables with values between 0 and 1. The
nature of the model is such that omitting the zero-one constraint on the zg and
v;; variables does not lead to incorrect fractional values in feasible solutions.
Indeed, given that in a feasible solution the value of the f;, variables is either
0 or 1, Constraints (2.13) and (2.42) force binary values for the zj variables.
Whenever Constraint (2.31) is active (otherwise v;; is irrelevant) for a specific
i-j combination, the binary values of f;r, mr;; and ml;; and Constraints
(2.29)-(2.31) force a binary value for the corresponding v;; variable. For a large
set of instances that were solved in less than 12 hours, the introduction of these
continuous variables reduces the computation time by an average of 33.75%.
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A second optimization can be obtained by forcing an ordering in the lockages
and lockage operation completion times. The first constraint (Constraint (2.59))
states that lockage [ of type t can only be activated if lockage k < [ of the same
type is already active. This symmetry breaking constraint strongly reduces
computation time when the difference between the optimal solution and the lower
bound is significant. The second constraint states that the completion time of
lockage operation k of type t must be less than or equal to the completion time of
lockage operation [ of type ¢, where k < | (Constraint (2.60)). Both restrictions
are modelled through transitive constraints, which only put limitations on
the subsequent lockage (operation) k + 1 of each lockage (operation) k. The
addition of these transitive constraints decimated computation time on all
tested instances, with a reduction of several orders of magnitude on some large
instances.

Zk+1 < 2k, Vke M VteT (2.59)

Cr <Cry1, VkeM,VteT (2.60)

The third improvement is obtained for instances where a FCFS policy is used
with respect to the ship arrival times. Here we add an ordering constraint
with respect to the lockage index of each ship, reducing the computation
time with several orders of magnitude. When considering a single chamber
lock, this constraint states that for any two ships ¢ and j (i < j), the index
(k) of the lockage that transfers ship ¢ must be less than or equal to the
index () of the lockage that transfers ship j (Constraint 2.61). In the case
of multiple identical chambers this constraint is relaxed, requiring that k <
I+ nrO fChambers (Constraint 2.62), thus allowing that a ship is transferred
up to |U| = nrO fChambers lockages before its predecessor. This relaxation is
necessary as ships can be processed at the same time, but in different chambers.
Figure 2.11 shows an example where the original Constraint (2.61) would exclude
the, otherwise feasible, solution. Using the original constraint, ships 1 and 3 can
be processed together if and only if ship 2 is transferred in the same lockage.
As the presented solution does not violate the FCFS principle, this constraint
should be replaced by constraint (2.62) to avoid excluding such feasible solutions.
When multiple chamber types are available at the lock, the constraint is once
again changed to ensure that the additional FCFS rule is only applied to ships
that are processed in the same chamber type (Constraint (2.63)). By using the
FCFS sets instead of all the ships, these constraints can also be applied when
only a subset of the ships are subject to FCFS constraints.
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> (fie—Fir) 20, Vi<j:i,jEeN VijeNyceM (261)
k<c, ke M

C
S fa—D Fik=0, Vi<j:ijeNVijeNyceM (262
k<c+|U|, keM k=1

—2 Z Jik — Z (fir + Fin) + Z fir > —2, (2.63)

k<c,keM, k>c, ke My cH1<k<cH+|U|, k€EM;

Vi<j:i,jEN Vi,jE NoycE My, teT

Chamber 0
Ship 1 @ 04:34 Ship 3 @ 04:56

Direction: downstream Lockage time: 04:56

Chamber 1
Ship 2 @ 04:47

Direction: downstream Lockage time: 04:56

Figure 2.11: An example of a feasible solution for which the original index
ordering constraint (2.61) does not hold.

2.7 Experiments

We have applied the mixed integer linear programming model for the LSP to
several instances generated from historical data. These instances are split into
two different sets, one for a single-traffic inland setting and one for locks that
serve mixed traffic. For the inland setting, the influence of lock configurations
(single/parallel small/large chamber(s) with/without FCFS) and ship inter
arrival times on the ship waiting time and computation time will be analysed.
A ship’s waiting time is defined as the time between the completion time of its
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lockage, and the earliest possible completion time of a lockage transferring the
ship when no other traffic would be present at the lock. The influence of the
increased complexity due to ship dependent safety distances on the computation
time is analysed on the mixed-traffic instances, as well as the effect of dropping
the FCFS policy. We assume that all ship arrival times are known beforehand.
All experiments were run on an Intel® Core2Duo™E8400 cpu with 4GB memory
running Windows XP SP3 and Gurobi 4.5.2 under an academic license. Gurobi
was set to time-out after 12 hours and return the best solution found.

2.7.1 Single-traffic locks

The single-traffic test set is based on data from the waterway traffic on the
Albertkanaal in Belgium. The locks on this canal have two identical small
chambers and one large chamber, all of which can be operated independently.
Table 2.1 presents the properties of these locks. The traffic at the locks was
generated based on actual traffic from 2008 and the settings from Table 2.2.
The instance properties are identifiable via the following convention: ‘mean
inter arrival time’-‘number of ships’-‘fraction of ships travelling upstream’. The
ship sizes were extracted from 2008’s traffic, which did not contain accurate
information on ship arrivals. Therefore the ship sequence was determined
randomly, and the inter arrival times were generated randomly between zero
and two times the given mean inter arrival time. The data set is available
online [Verstichel, 2012]. A first-come-first-served policy is used with respect
to the ship arrival times to maintain fairness among the ships. This FCFS
policy corresponds to the actual practice at the locks. Therefore, the additional
constraints described in Section 2.6 were added to the model. We assume that
all safety distances are included in the ship and chamber dimensions and that
the number of ships in a lockage does not influence the processing time.

Table 2.1: Attributes of the locks on the Albertkanaal.

| Width (m) Length (m) p (min) Chamber ID
Chamber type 1 16.0 136.0 16 1,2
Chamber type 2 24.0 200.0 16 3

First, we compare the model’s performance in four different lock configurations.
In the single small chamber (SSC) setting only one chamber of type 1 is available
at the lock. In the single large chamber (SLC) setting, one chamber of type 2
is available at the lock. The parallel small chamber (PSC) setting assumes a
lock with two parallel chambers of type 1, while the multi chamber type (MCT)
setting considers the actual lock from the Albertkanaal (Table 2.1). These
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Table 2.2: Properties of the generated single-traffic instances.

Traffic properties Instances

Mean inter arrival time (min) 5, 10, 15, 30
Number of ships 10, 20, 30
Upstream/Downstream traffic 50/50, 30/70

Safety distances Included in ship dimensions
Example instance name 5-20-0.3

settings allow a thorough comparison of the computation and waiting times
for different lock settings. The difference between using a single small and a
single large chamber is also indicative of the influence of the ship placement
part on calculation time. Table 2.3 shows an overview of the results for these
four different inland test settings. The results were obtained under a weighted
completion time objective (A2 = 1.0), with the minimization of the maximum
waiting time as a secondary objective (A3 = 0.1). The total number of lockages
was not taken into account for these experiments (A; = 0.0). All single small
chamber instances were solved to optimality in less than 20 seconds, while the
large chamber instances required up to 336 seconds for attesting optimality.
This suggests that the ship placement part of the lock scheduling problem
strongly influences the hardness of an instance. While instances with parallel
chambers took significantly more time for solving than the single small chamber
cases, a reduction in the waiting time of at least 66.8% and a maximum of 100%
was obtained. When comparing the waiting times for a single large chamber
and the parallel small chambers, there are some interesting differences. Using
the single large chamber is on average 14% faster than using the small parallel
chambers for small ship inter arrival times (5 minutes). When the inter arrival
time increases to 10, 15 or 30 minutes, the lock with parallel chambers reduces
the average waiting time by 15%, 73% and 90% respectively compared to using
the single large chamber. Regarding the MCT setting, the optimal solutions
are found slower than in cases with a single chamber type, but the resulting
reduction in waiting time remains significant. Careful examination of the search
logs provided by Gurobi did however show that the optimal solution was found
early in the search in almost all cases and that the remaining computation time
was used to prove optimality.

A second set of experiments was performed on the smallest test instances for
inland locks. We removed the first-come-first-served policy from the model
for the SSC, PSC and MCT settings. As a consequence the lockage index
constraints (2.61-2.63) could not be applied. The results for these experiments
are presented in Table 2.4, from which it is clear that the FCFS constraints
strongly reduce the calculation time. For the single chamber setting, the model
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with FCFS constraints is between 43 and 293 times faster, while the waiting
time increases between 0% en 27.4%. For parallel chambers, the FCFS model is
between 1.5 and 159 times faster, while the total waiting time is increased for
just one instance. When considering the real-life lock, both approaches are the
fastest on 50% of the instances. In the first two lock configurations the number
of explored branch&bound nodes became much larger after dropping the FCFS
policy. For the SSC setting the average number of explored nodes increased
from 5 to 903, while the PSC setting results in an average increase from 3071
to 15394 explored nodes. For the MCT setting the average number of explored
nodes is 45177 and 3096 respectively. The efficiency of the FCFS lockage index
constraint decreases with each relaxation from the single chamber (Constraint
(2.61)) to the parallel chamber (Constraint (2.62)) and to the multi chamber
type (Constraint (2.63)) version. Where the original single chamber constraint
reduced the number of explored nodes by a factor of 180, the reduction drops
to a factor 5 after the first relaxation. However, in both cases the effect on the
calculation time is considerable. While the relaxation to the multi chamber
type version of the constraint reduced the number of explored nodes by a factor
15, the computation time improvement is less pronounced than for the other
two settings.

Table 2.3: Results for the single-traffic instances. ‘#’ Shows the number of
lockages, ‘WT’ the total waiting time in minutes and ‘Calc’ the calculation time
in seconds.

SsC SLC PSC MCT
Instance | # WT Calc | # WT Calc | # WT Calc | # WT Calc
5-10-0.3 6 218 048] 4 110 275 | 6 66 2.33| 6 21 41.73
5-10-0.5 7 292 0.11| 4 74 273 | 7 52 2.28 | 8 5 28.02
10-10-0.3 | 10 467 0.09 | 6 107 090 | 9 115 1.14 | 9 11 33.63
10-10-0.5 | 8 252 0.08| 5 103 1491 9 54 126 9 15 30.64
15-10-0.3 | 9 148 0.09| 7 64 1.65 | 10 2 0.28 | 10 0 25.69
15-10-0.5 | 7 182 0.13| 7 81 241 9 17 0.33 | 10 0 25.63
30-10-0.3 | 8 15 0.2 8 15 1.71 | 10 0 0.11 | 10 0 24.45
30-10-0.5 | 10 48 0.64 | 10 48 1.71 | 10 0 0.11 | 10 0 26.34
5-20-0.3 |15 1829 1.28 | 6 297 251.51 |16 606 353.91| 14 59 ~ 3.9h
5-20-0.5 |13 1350 0.83| 7 211 10.32 | 13 379 ~ 2h | 13 37 ~ 5h
10-20-0.3 | 16 1352 1.08 | 8 203 11.16 |16 241 177.03| 18 17 1305.73
10-20-0.5 | 16 1025 0.59 | 8 163 9.34 | 17 130 478.62 | 17 16 3207.56

15-20-0.3 | 14 600 19.58 | 10 148 10.00 | 17 77 215.21 | 18 9 ~6.2h
15-20-0.5 | 16 863 1.27 113 171 18.65 | 20 7 4.42 | 20 0 29.72
30-20-0.3 | 19 679 1.19 |12 117 10.12 | 19 33 5.05 | 20 2 > 12h
30-20-0.5 | 17 182 1.17 | 15 123 10.43 | 19 14 1.7 | 20 0 30.12

5-30-0.3 | 18 2034 6.64| 8 350 157.74 |19 422 > 12h |19 75 > 12h
5-30-0.5 15 1017 6.31 | 9 340 45.36 | 17 183 > 12h | 20 52 > 12h
10-30-0.3 | 23 2407 11.78 | 13 188 56.65 | 26 136 ~ 2.8h | 24 15 > 12h
10-30-0.5 | 22 1308 3.7116 290 336.32 |23 227 > 12h |28 13 > 12h
15-30-0.3 | 23 1410 4.36 | 17 218 123.51 |26 111 > 12h | 28 3 > 12h
15-30-0.5 | 24 795 4.59 | 18 197 135.54 | 26 57 ~ 1h | 27 10 > 12h
30-30-0.3 [ 26 119 6.11 | 26 98 121.34 | 29 12 89.39 | 29 2 454.58
30-30-0.5 | 27 114  3.66 | 26 82  48.89 | 29 7 40.83 | 28 1 83.47
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Table 2.4: Results for the experiments without FCFS policy on the single-traffic
instances. ‘#’ Shows the number of lockages, ‘W'T’ the total waiting time in
minutes and ‘Calc’ the calculation time in seconds.

SSC PSC MCT
Instance | # WT Cale | # WT Calc | # WT Calc
5-10-0.3 6 218 2339 | 6 66 3434 | 5 21 65.61
5-10-0.5 7T 258 2723 | 7 52 444 | 8 5 30.19
10-10-0.3 | 9 339 2716 | 9 81 2333 | 9 11 1681.97
10-10-0.5 | 8 220 21.94| 9 54 2641 | 9 15 45.36
15-10-0.3 | 9 136 27.58 | 10 2 04710 0 19.25
15-10-0.5 | 7 150 2745 | 9 17 19.08 | 10 0 23.52
30-10-0.3 | 8 15 27.50 | 10 0 17.42 | 10 0 0.72
30-10-0.5 | 10 48 28.02 | 10 0 17.28 | 10 0 0.70

2.7.2 Mixed-traffic locks

The mixed-traffic test set is based on historical data from the port of Antwerp.
The tide-independent docks of this port are connected to the river Scheldt
through four different lock complexes. The presented test instances are based on
historical data from the Berendrecht-Zandvliet (BE-ZV) lock complex and the
Van Cauwelaert (VC) lock, with instance sizes ranging from 10 to 28 ships. The
independent weight factors for the objective are the same as for the previous
experiments: A\; = 0.0, Ay = 1.0, A3 = 0.1. The instances were provided to the
authors under a non-disclosure agreement and can therefore not be published
online. The properties of the locks are provided in Table 2.5.

The results, both with and without the first-come-first-served constraints, are
presented in Table 2.6. These results show that ship dependent safety distances,
setup times and processing times significantly increase the calculation time, even
for the smallest instances, when compared with the single-traffic case. Adding
a FCFS policy again strongly reduces the calculation time and has a limited
impact on the weighted completion time objective. For one instance, VC-28,
the FCF'S solution is better than the solution of the original model. This can be
explained by the slow convergence of the model without first-come-first-served
limitations: the objective was still improving at the 12h time-out, so optimality
was yet to be reached. Given this limited influence of the first-come-first-served
policy on the solution quality and its large decrease in calculation time, its
application is definitely worthwhile. Even when the FCFS policy is applied to
only a subset of the ships, the resulting decrease in computation time may be
considerable.
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Table 2.5: Attributes of selected locks from the Port of Antwerp.

| Width (m) Length (m) p (min) Chamber ID

Berendrecht 68.0 500.0 30 BE
Zandvliet 57.0 500.0 30 A%
Van Cauwelaert 35.0 270.0 30 VC

Table 2.6: Experiment results for the mixed-traffic instances. ‘Calc’ shows the
calculation time in seconds, ‘Cost’ the objective cost of the solution.

No FCFS FCFS
Lock #Ships Cost Calc Cost Calc
BE-ZV 10 3076.5 4917.96 3086.8 23.15
BE-ZV 12 2493.7 > 12h 2623.5 72.28
BE-ZV 13 3611.8 > 12h 3615.3  129.78
vC 10 2920.2 18.50 | 2920.2 17.40
vC 12 5683.3 20.37 | 5683.3 17.83
vC 23 16522.3 3906.45 | 16522.3 76.00
vC 28 32634.6 > 12h | 32589.5 2628.35

2.8 Conclusion

Locks are an important part of the maritime infrastructure. They are used to
transfer ships from one water level to another on inland waterways, between
tide-dependent and tide-independent parts of ports and even between oceans.
While some research has been published on lock scheduling, up until now a
complete description and realistic model for single and parallel chamber locks
transferring one or more ships in a single lockage operation was missing from
academic literature. Furthermore, the ship placement problem, one of the LSP’s
sub problems, was either ignored or simplified to the well known two-dimensional
rectangular bin packing.

When solving the lock scheduling problem, three strongly interconnected sub
problems can be identified: chamber assignment, lockage scheduling and ship
placement. A mixed integer linear programming model comprising all three
sub problems was developed. The model represents real-life lock scheduling
for both single and mixed-traffic locks, under a wide range of operational and
economical constraints while using a weighted objective function. Through
detailed modelling with great attention for real-life issues, this model generates
optimal and real-life feasible solutions to small lock scheduling instances.
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Furthermore, the model is very flexible, since its modular structure allows
for easy addition and removal of constraints and objective terms, depending
on the given situation. This includes specific settings for locks in ports or
on inland waterways, but also environmental problems such as drought and
operational issues like large queues. The model is further improved upon by
adding constraints that reduce calculation time and tree size by several orders
of magnitude when a first-come-first-served policy is applicable.

Experiments on instances generated from historical data demonstrate how some
single-traffic instances with up to 30 ships can be solved to optimality in less
than 12 hours for an inland setting, while mixed-traffic instances with only 12
ships could not be solved in less than half a day. These long calculation times
for small to medium instances limit the practical applicability of the presented
model. In practice, five to ten minutes of computation time is an absolute
maximum for generating solutions, and calculation time should be predictable.
Furthermore, the current approach does not guarantee any kind of convergence
(and thus solution quality) in such short calculation times. Consequently, a
solution generated in five minutes might easily be improved upon by a human
expert. From the experimental point of view, the model’s true value lies in its
application as a reference for faster (heuristic) solution methods: while most
exact solution methods for complex combinatorial problems solve a simplified
version of the actual problem (thus actually providing a lower bound instead of
an optimal solution) the presented model generates optimal solutions for the
actual real-life generalized lock scheduling problem.



Chapter 3

The ship placement problem

The ship placement problem is the sub problem of the LSP that determines
the position of the ships in the chambers during the lockage operation. These
positions are determined by constraints (2.2) to (2.31) in the mathematical
model for the lock scheduling problem (Section 2.5). Placing ships in a chamber
can however also be considered separate from the chamber assignment and
scheduling aspects of the LSP. Either as a stand-alone problem (Chapter 4), or
as part of a (decomposition-based) solution method for the LSP (Chapter 5). In
the latter case, some interaction between the SPP and the other sub problems
must be possible, allowing the supervising method to alter the play field of
the SPP, enabling the generation of different (possibly worse) ship placement
solutions in its search towards a better LSP solution.

We start this chapter with a formal definition of the ship placement problem and
the identification of similar 2-dimensional (2D) packing problems from literature
in Section 3.1. We continue with a literature review of 2D rectangle packing
problems in Section 3.2. A mathematical model is presented in Section 3.3. In
Section 3.4 the first-in-first-out constraints of the ship placement problem are
exploited to partition it into a sequence small single-lockage ship placement
instances. An exact approach to this decomposed SPP is presented in Section
3.5, while a heuristic method is presented in Section 3.6. Section 3.7 contains a
thorough computational study of the algorithms.

This chapter is based on Verstichel et al. [2013a] and Verstichel et al. [2013c].

35
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3.1 Problem definition

Given an ordered list of n ships, the SPP aims at minimising the number of
lockages needed to place all ships, subject to a number of specific placement
and sequence constraints. The problem is reminiscent of the classic 2D bin
packing problem (or 2D rectangular SBSBPP [Wischer et al., 2007]) where a
set of rectangular items (ships) needs to be positioned inside as few rectangular
bins (lockages) as possible, and where rotation of the items is not allowed.
However, there are a number of relevant differences. First, a sequence constraint
stipulates that the ships need to be processed in a first-in-first-out (FIFO) way
with respect to their position in the ship list. If we assume that the lockages
are ordered by their index, and that the ship at position ¢ in the ship list is
positioned in lockage k, then the ships at position j > ¢ in this list are not
allowed in any lockage with index | < k. Second, all ships should be placed in
the first lockage they fit in. This means that if the optimal number of lockages is
5, and ship 7 can be placed in either lockage 3 or lockage 4, it should be placed
in lockage 3. Although it may seem that these constraints are of no immediate
relevance for the ship placement itself, they are vital when connecting the ship
placement problem to the scheduling part of the LSP. The lockages generated
by a ship placement algorithm can be used by scheduling algorithms for the
generalized lock scheduling problem. If the obtained lockages are sub-optimal
from a scheduling point-of-view, the scheduling algorithm can change the ship
order or reduce the number of ships that are transferred in a specific lockage,
effectively generating a new instance for the ship placement algorithm. By
iterating between both solution methods, a globally better solution to the lock
scheduling problem can be found.

The third difference is the set of mooring and safety distance constraints. The
mooring constraints state that each ship must be moored either to the quay,
or to another ship. Geometrically, ship ¢ is said to be moored to ship j, when
ship 7 is adjacent to ship j over its entire length. This constraint implies that
each ship will be connected to the quay through larger ships, or through ships
of equal size. It should be noted that, contrary to its type, the width of a ship
does not affect the evaluation of the mooring constraint. The safety distance
constraints ensure that some ‘room’ is given to ships, allowing for corrections
to prevent collisions while manoeuvring in and out of the chamber, and in case
of a possible minor accident during the lockage operations. The same type
of constraints ensure that a ‘corridor’ remains free for tugboats. Section 2.4
presents an in-depth analysis of mooring and safety distance constraints.

In the absence of the mooring and safety constraints, the ship placement problem
is NP-hard. This follows from a result in Leung et al. [1990] stating that the
problem of determining whether a given set of squares fits in a given square is
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NP-complete.

One might wonder whether the mooring constraint adds to the complexity, or
in other words, whether instances exist for which the 2D rectangular SBSBPP
requires fewer bins (lockages) than the ship placement problem. The answer to
this question is positive, and we provide two instances with this property. The
first instance is shown in Figure 3.1 where application of the ship placement
constraints results in a solution with two lockages, while the 2D bin packing
problem requires only one bin. The 8 ships have the following dimensions: 12x3,
10x4, 9x4, 7x6, 7x4, 6x3, 6x3 and 5x2, while the chamber has dimension 19x13.
Due to the small number of ships, the MILP model can be solved to optimality
in less than 100 seconds. The obtained solution confirms that two lockages
are required to place all ships when the ship placement constraints are taken
into account. The second instance considers a perfect packing where the items
have to be placed in three rows to obtain an optimal single bin solution. All 14
rectangles have a width of 1, and their lengths are 27 (2 items), 12 (5 items),
10 (6 items) and 6 (1 item), while the chamber has a dimension of 60x3. There
exist six different optimal solutions for the 2D bin packing problem for the
given instance, each of which violates at least one ship placement constraint. It
follows that when this instance is viewed as a ship placement problem, at least
two lockages are required. Figure 3.2 visualises these single bin solutions and
highlights items that are placed in violation with the ship placement constraints.
For simplicity’s sake, the group mooring and safety constraints are omitted
in these examples. When taken into consideration, they would lead to larger
differences between the bin packing and ship placement solutions.

Figure 3.1: Example of an infeasible single lockage ship placement problem.
(NOK: ship in violation with the ship placement constraints)
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Figure 3.2: The six optimal 2D bin packing solutions for this problem all violate
at least one ship placement constraint. (NOK: ship in violation with the ship
placement constraints)

3.2 Literature review

The ship placement problem has not been addressed in the academic literature.
Some papers do mention positioning ships inside lock chambers at the Three
Gorges dam [Wang et al., 2013; Zhang et al., 2008], but they consider it identical
to 2D bin packing. Contrastingly, numerous papers were published on the related
two-dimensional packing problem, for which Dyckhoff [1990] and Wéscher et al.
[2007] developed a topology. One of the proposed solution methods for the ship
placement problem is derived from the best fit heuristic, which is an orthogonal
strip packing heuristic. Therefore, the overview in this dissertation focusses on
said problem. The aim of the orthogonal strip packing problem is to place a
number of rectangular items on an infinitely tall rectangular sheet with a fixed
width, without any of the items overlapping, resulting in the minimum sheet
height requirement for placing every item. This problem proves to be NP-hard
[Garey and Johnson, 1979]. The sheet is infinitely long, and therefore all items
can be placed on one single sheet. 90 degree rotations of the items is allowed,
so without loss of generality it can be assumed that the width (horizontal
dimension) of a non-rotated item constitutes its largest dimension. This is
called the item’s default configuration, whereas an item rotated by 90 degrees is
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labelled the rotated configuration. Several approaches have been established to
this problem. Heuristic approaches, such as the bottom left (fill) heuristic and
its variants are applied by Baker et al. [1980]; Chazelle [1983]; Jakobs [1996].
Burke et al. [2004] present a best-fit heuristic outperforming the bottom left
based heuristics on all benchmarks with more than 50 items and the majority
of smaller instances. Imahori and Yagiura [2010] reduce the time complexity
of the best-fit heuristic to an optimal O(nlogn) and show that the heuristic
performs very well for very large instances. Agik and Ozcan [2009] also improve
the results of the best-fit heuristic by considering the height of the gap and by
introducing a more complex rectangle selection procedure. The improvement,
however, comes at considerable computational cost.

Metaheuristic approaches to the orthogonal strip packing problem are often
hybridisations that generate different input sequences for existing heuristic
approaches in order to improve results. Hopper and Turton [2001] present an
interesting comparison of metaheuristic approaches and genetic algorithms. A
metaheuristic combining the best-fit heuristic and a simulated annealing bottom
left fill hybridisation [Burke et al., 2009] further improves the results of Burke
et al. [2004]. Alvarez-Valdes et al. [2008] introduce a GRASP based heuristic to
solve the orthogonal strip packing problem with fixed orientation. Although
their approach does not allow for rotation of the rectangles, the GRASP
heuristic outperforms the other, rotating, metaheuristics on the orthogonal
strip packing problem, while its computation time is comparable. Both the
simulated annealing hybridisation and the GRASP approach have a time limit
of 60 seconds in which to produce their results.

A mixed integer linear programming model for the ship placement problem is
formulated in the following section. The applicability of this exact solution
method for the NP-hard SPP is, however, limited: the computation times for
realistic instance sizes are too long and unpredictable for application in the
aforementioned settings, where short and predictable computation times are
paramount. The best-fit heuristic combines these requirements with a high
solution quality in a simple, flexible and easily extendible constructive heuristic
and is therefore transformed into a ship placement algorithm in Section 3.6.

3.3 A mathematical model for the ship placement
problem

By isolating the ship placement constraints from the LSP model presented
in Section 2.5, a mathematical model for the ship placement problem can be
formulated. A separate SPP can be solved for each chamber type, and therefore
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several constraints can be simplified or removed altogether. In the remainder of
this section, a multi-lockage or ‘full’ model for the SPP is presented. The model
below is the single direction, single chamber type version of the ship placement
part (Constraints (2.2) to (2.31)) of the mathematical model for the LSP from
Chapter 2. It is added because some constraints could be simplified and several
indexes removed. Figure 3.3 displays this model’s position in the mathematical
model for the LSP.

/ Lock Scheduling \
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Chamber Assignment
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t Constraints (2.7-2.12)

4 Multi Lockage Ship Placement A

Lockage
Scheduling @2.13)

(2.37) [Single Lockage Ship Placement]
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Figure 3.3: Representation of the mathematical model for the multi-lockage
ship placement problem in the model for the lock scheduling problem.

The objective (3.1) is to minimize the number of lockages required for placing
all the ships (D, < 2x). Among different solutions with an equal number of
lockages, the one where all ships are placed in the lockage with the lowest
possible index is favoured (Y, cn k> icn Fir). In other words, when ship;
can be placed in either lockagey or lockageyy1, while the resulting solutions
have the same total number of lockages, it should be placed in lockage;. To
ensure that the total number of lockages is more important than the lockage in
which a ship is placed, the main objective is multiplied by A, which should be
sufficiently large (e.g. A\ = |M]|?).

minimize \ Z zE + Z k Z Ffik (3.1)

keM keM €N
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Constraints (3.2) to (3.4) ensure that two ships transferred in the same lockage
do not overlap.

leftyj +leftj; + by +bjs + (1 — far) + (1 = fje) > 1, (3.2)
Vi<j,i,j€ N ke M

zi+w <z; +W(1-left;;), Yi#j, i,jEN (3.3)

yi+li <y; + L(1-bi;), Vi#j i,jeN (3.4)

The SPP is solved for a single chamber type at a time, therefore Constraints

(3.5) and (3.6) suffice to ensure that all ships are placed inside the chamber and
that the safety distances between ships and doors are respected.

xz; €{0,...., W —w;}, VieN (3.5)

Yi € {dFi,...,L—li—dBi}, Vie N (36)

Safety distances between ships are modelled in Constraints (3.7) and (3.8).

x; + W+ SWij)(l —left;; + bij) > x; +w; + Wi, Vi #3, 1,7 €N (3.7)
Yj + (L4 sLi)(1 = bsj +leftij) > yi +1; +sLij, Vi#j, i,j €N (3.8)
Constraint (3.9) ensures that each ship is transferred by exactly one lockage,

while Constraint (3.10) models that each lockage transferring a ship must be
executed.

> fie=1 VieN (3.9)
keM

Ship 4 can only moor to ship j’s right side when it is fully contained within
ship j’s side and when both ships are adjacent. This is modelled by Constraints
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(3.11), (3.12), (3.13) and (3.14).

y; <y;(1—-mry;)L, VieN,je MOOR; (3.11)
vi+l>y;+1;+(1—mry)L, VieN,je MOOR; (3.12)
xj+w; <x; + (1 —mr;;)W, Vie N,je€ MOOR, (3.13)
xj+w; >z — (1 —mry;)W, Vie N,j € MOOR; (3.14)

A ship can also moor to the right side of the left quay (ship 0). Here it suffices
to check that ships ¢ and 0 are adjacent (Constraints (3.15) and (3.16)) because
ship ¢ will always be contained within the quay’s length.

zo<xi+(1—mr; o)W, VieN (3.15)
zo > ;i — (1 —mr, o)W, VieN (3.16)
Ship i can only moor to ship j’s left side when it is fully contained within ship

j’s side and when both ships are adjacent. This is modelled by Constraints
(3.17), (3.18), (3.19) and (3.20).

y; <yi+ (1—ml;;)L, Yie N,je€ MOOR; (3.17)

yi+1li <yj+1+(1—-ml )L, Vic N,jc MOOR; (3.18)
xj < x;+w; + (1 —ml )W, VieN,je MOOR; (3.19)
x; > m; +w; — (1 —mly;)W, VieN,je MOOR, (3.20)

A ship can also moor to the left side of the right quay (ship n + 1). Here it
suffices to check that ships ¢ and n + 1 are adjacent (Constraints (3.21) and
(3.22)) because ship ¢ will always be contained within the quay’s length.

Tpat <@g +w; + (1 — mli,n+1)W, Vie N (3.21)

Tnat > i +w; — (1 —mlj )W, Vie N (3.22)
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All ships have to be moored which is modelled by Constraint (3.23). A ship
can be moored to another ship, the left quay or the right quay.

Z (mlij + mrij) +mrio+mlnp1>1, VieN (3.23)
J#i, JEN

When ship; is moored to ship;, ship; cannot be moored to ship; and vice versa.
This only occurs when both ships are equal in length, whereupon they could
potentially moor to each other, thus rendering both ships unattached to the
quay. Constraint (3.24) prevents this kind of ‘fake’ mooring.

mlz; +mry; <1, Vi#j i,jEN (3.24)
Ships transferred in different lockages cannot moor to each other. Constraints

(3.25) to (3.27) ensure that the mooring constraints are only valid for two ships
that are transferred in the same lockage.

fiw — fix <wvg5, Yi<j, i,jeNkeM (3.26)
mlij + mr;; + mlji +mrj; < (]. - U,;j), Vi<j, 1,5 €N (327)

A first-in-first-out policy with respect to the ship indices is enforced by Constraint
(3.28). This constraint makes sure that ship j > ¢ cannot be placed in a lockage
I < k when ship ¢ is transferred in lockage k.

> (fie—Fir) 20, Vi<j ijeNceM (3.28)
k<c, ke M

Constraints (3.29) to (3.33) formulate bounds and integrality constraints on the
variables.

leftij, bi; € {0,1}, Vi#j, i,jEN (3.29)
ml;;, mri; € {0,1}, Vie N,j e MOOR, (3.30)
vi; €{0,1}, Vi<j, i,jEN (3.31)

2z, €{0,1}, Vke M (3.32)

fi €{0,1}, Vie Nke M (3.33)
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3.4 A decomposition method for the ship place-
ment problem

Solving the MILP model for the multi lockage ship placement problem is not the
most efficient way of tackling the SPP. In fact, producing optimal solutions for
the SPP with this model becomes very time consuming when the problem size
increases. Fortunately, the SPP can be decomposed into a sequence of single-
lockage ship placement instances by exploiting the first-in-first-out constraints.
By constructing lockages one ship at a time and closing each lockage only
when it is full, any SPP instance can be solved as a series of small to medium
sized single-lockage instances. The solution method starts with a single empty
lockage. Ships are added to this lockage one at a time in the order in which
they appear in the ship list until no feasible solution can be found. At this
point, the lockage is considered full, and the last feasible solution is stored. The
algorithm now continues with the remaining ships. The pseudo code of the
decomposition method is presented in Algorithm 1, in which the ship placement
algorithms, either exact or heuristic, are called at line 6.

The advantage of applying this FIFO based partitioning method is threefold.
Optimality is guaranteed when using an exact placement algorithm. By solving
a single-lockage SPP, the mathematical model becomes much tighter than
the multi lockage variant: a significant number of Big M constraints and a
multitude of binary variables can be removed. In addition, the decomposition
method generates small to medium sized sub problems (The number of ships
that can fit in a single lockage is seldom more than 18 in real lock settings).

Algorithm 1 Pseudo code of the SPP decomposition method.
Input: ShipList
1: LockageList <— empty list
Lockage < new Lockage
while not all ships placed do
if Placement feasible then
Lockage < Placement
add next ship of ShipList to Placement
else
add Lockage to LockageList
Clear Placement
end if
- end while
: return LockageList

=
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3.5 An exact approach for the single-lockage ship
placement problem

A compact mathematical model for the single-lockage SPP can be formulated
based on the decomposition method introduced in the previous section. Most
of the constraints, parameters and variables in this model are the same as in
the model of Section 3.3. In the model below, only the altered constraints are
discussed. For the unaltered ones, we refer to the aforementioned model. The
objective is optional, as the only requirement is to find a feasible solution for
the current number of ships. The position of this model in the model for the
LSP is visualized in Figure 3.4.
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Figure 3.4: Representation of the mathematical model for the single-lockage
ship placement problem in the model for the lock scheduling problem.

N
minimize Z L ys (3.34)
i=1
s.t.
left;j +leftj; +b;; +b;; > 1, Vi<j i,jEN (3.35)

(3.3), (3.4), (3.5), (3.6), (3.7), (3.8), (3.11), (3.12), (3.13), (3.14), (3.15), (3.16),
(3.17), (3.18), (3.19), (3.20), (3.21), (3.22), (3.23), (3.24)

wiS:IIj, Vi<j, i,jeN:wi:wj,li:lj (336)

Constraint (3.35) guarantees that for each ship pair in the lockage, one is left
of and/or behind the other and corresponds to the single chamber version of
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Constraint (3.2). Constraint (3.36) is new, and breaks some of the symmetry
that is introduced when the problem deals with ships of the same size, by
imposing an order in their x-position based on their position in the ship list.
Thus, if two ships ¢ and j > ¢ are identical, ; will never be larger than x;,
and a solution where ship ¢ and ship j swap places will not be considered when
searching for/proving the optimal solution. Adding this constraint results in a
considerable speedup of the solution generation when an objective is taken into
account, as opposed to returning the first feasible result.

The combination of the mooring constraints and the integer widths and lengths
forces the x and y variables to be integer in any feasible solution. As a result,
they can be defined as real variables, with bounds ensuring that they are placed
inside the chamber’s dimensions.

An additional speedup can be achieved by applying a lower bound heuristic. The
current single-lockage ship placement instance is first solved by some heuristic. If
this heuristic is able to position all ships in the chamber, its solution is returned.
When the heuristic fails, the exact method is applied guaranteeing that the
solution returned will be optimal. Applying a fast and effective heuristic such
as the multi-order best-fit heuristic (Section 3.6), enables generating optimal
solutions faster than solving the mathematical model at each step.

The mathematical model can be considered a feasibility problem, which can
be solved faster than the corresponding optimization problem. There is no
difference between the solutions of the feasibility problem and the optimization
problem, apart from the position of the ships in the chamber. These actual
positions do not influence the solution quality. Nevertheless, considering an
objective such as placing the longest ships front-most in the chamber (3.34)
may produce solutions that have some features in common with the results that
are currently produced by human planners. Examples of such objectives are:
positioning the first arriving ships at the front-most positions, mooring as many
ships as possible to the left quay, etc.

3.6 A multi-order best-fit heuristic for the single-
lockage ship placement problem

The multi-order best-fit heuristic for the single-lockage ship placement problem
is based on the three-way best-fit heuristic [Verstichel et al., 2013c], which is
an extension of the best-fit heuristic for the orthogonal strip packing problem
[Burke et al., 2004]. Throughout the section which follows hereunder, the
multi-order best-fit heuristic is presented. Only those aspects of the three-way
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best-fit heuristics that are relevant for the ship placement problem are discussed
in this section. A complete and detailed discussion of the three-way best-fit
heuristic (including item rotation, optimal time behaviour and a comparison to
other methods) is included in Appendix A which summarizes Verstichel et al.
[2013c].
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Figure 3.5: Representation of the gaps, based on a single best-fit iteration with
a decreasing width ordering and a leftmost placement strategy. Newly placed
ships are dark grey, safety distances are light grey with dashed lines, gaps are
red, and wasted space is hatched.

The multi-order best-fit heuristic is a constructive heuristic that generates a
limited number of solutions while searching for a feasible ship placement solution.
It consists of three core components: a ship ordering method, a ship placement
policy and an array of gaps. The ordering method determines the priority with
which each ship will be placed. Any ordering can be applied, but a good balance
between computation time and solution quality can be obtained by applying a
few orderings, where each one introduces a significant disruption in the ship
sequence of the other orderings. The placement policy determines the preferred
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mooring side (left or right). The gaps form a skyline determining the free space
in the chamber, thereby removing the need for costly overlap checks. Figure 3.5
illustrates the attributes of a gap. The figure visualizes a single best-fit solution
construction, using a decreasing width ordering and a leftmost placement policy.
Aside from the gap’s width, its left and right neighbouring ships also determine
whether or not a ship can ‘fill’ it: the candidate ship must be allowed to moor
to either the left or the right neighbouring ship. Furthermore, the new ship
must respect the minimum lateral safety distance (‘2’ and ‘3”) between itself and
its neighbours (Figure 3.5 (b) and (d) respectively). Each gap also has some
so-called bottom allocations that determine the minimal y-position of the newly
placed ship. The front door denotes the bottom allocation in Figure 3.5 (a), and
a minimal safety distance ‘1’ is required. Ship ¢ forms the bottom allocation of
the lowest gap in Figure 3.5 (f), inducing safety distance ‘4’ between ship ¢ and
the newly placed ship. These neighbouring ships and bottom allocations help
determining the safety distances that must be accounted for when positioning a
ship in a gap.

A pseudo code of the multi-order best-fit heuristic for the ship placement
problem is presented in Algorithm 2. The pseudo code refers to corresponding
parts of Figure 3.6. In what follows, this heuristic is informally described, using
three orderings: decreasing width, decreasing length and decreasing surface,
and the leftmost placement policy. Other orderings such as increasing arrival
time, can also be included in the multi-order best-fit heuristic.

Similar to the exact approach, ships are added to the chamber one by one
until no more ships can be added without violating constraints. The set of
ships currently under consideration for placement in the chamber is ordered
by decreasing width. The heuristic detects the front most free space in the
chamber, i.e. the lowest gap, in step (i). The first ship in the ordered list
with a width smaller than or equal to the gap is selected for placement. It
should be recalled that this list contains only ships that are currently under
consideration for placement in the chamber. In step (ii), this ship will first
be placed at the left-hand side of the gap (Figure 3.5 (a)). If this results in
a feasible placement, the heuristic proceeds to step (i). When the left-hand
side placement leads to a constraint violation (for example: Figure 3.5 (b), the
current ship is not allowed to moor to the ship at the left-hand side of the gap),
the heuristic proceeds to step (iii), where the ship is placed at the right-hand
side of the gap. In case a feasible placement is obtained, the heuristic will
proceed to step (i). If this alternative placement also leads to an infeasible
solution, the heuristic selects the next ship in the ordered list that fits the
width of the gap, and proceeds to step (ii). If at any time during the search
none of the remaining ships fit the width of the gap, the gap is filled up to
the level of the least-protruding gap-defining-ship and stored as wasted space
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(Figure 3.5 (c) and (e)). The search procedure then proceeds to step (i) and it
continues until all ships are placed. Afterwards, the occupied chamber length is
checked. If this length is smaller than or equal to the length of the chamber, the
obtained (feasible) solution is returned. Otherwise, a second attempt is made at
solving the problem by ordering the ships by decreasing length. The constructed
solution is returned if feasible. Otherwise, a final attempt is made by ordering
the ships by decreasing surface. The alternative orderings are applied only
when the previous ones have failed to construct a feasible solution. Hence, the
computational cost of applying multiple orderings is very small compared to
using only one ordering. This is illustrated with a small example: The first
three ships can be placed in a feasible way using the decreasing width order.
Hence neither the decreasing length nor the decreasing surface orderings will be
used. When adding a fourth ship, the heuristic fails to find a feasible solution.
It makes a second attempt by applying the decreasing length order, which
yields a feasible solution. The algorithm continues by adding a fifth ship. The
algorithm now fails when applying the decreasing width, decreasing length and
decreasing surface orders, and returns the four-ship-solution. Section 3.7 shows
that this multi-order approach does indeed generate better results than any of
the orderings on their own, while the computational cost remains very small.

0z
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Figure 3.6: Example of the steps taken when placing a ship in the gap. OK
indicates a feasible position for the ship, NOK an infeasible one.
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Algorithm 2 Pseudo code of the multi-order best-fit heuristic for the lock
scheduling problem using the leftmost placement policy.

Input: lockage L

Input: ship to add S

1: if L empty then

2 L + S at position (0,0)

3 return L

4: else

5: while next ordering policy Ordering available do
6: newL <+ new Lockage

7 ShipList <« all ships in L
8

9

ShipList < S

: order ships using Ordering
10: while not all Ships added to newL do
11: Find Lowest Gap
12: while next Best-Fitting Ship available do
13: if Ship can be moored to the left gap defining ship then
14: newL < Ship at leftmost position in gap (Subfigure a)
15: Raise chamber skyline to reflect addition of Ship
16: goto 10
17: else if Ship can be moored to the right gap defining ship then
18: newL <« Ship at rightmost position in gap (Subfigure b)
19: Raise chamber skyline to reflect addition of Ship
20: goto 10
21: end if
22: Current ship cannot be placed in the gap (Subfigure c)
23: end while
24: Raise Gap to Lowest Neighbour
25: end while
26: if Packing length < Chamber length then
27: return newL
28: end if

29:  end while

30: set newL infeasible (No feasible packing could be produced)
31: return newL

32: end if

3.7 Experiments

We compare the performance of the three approaches on a set of instances
generated based on real data. First, the two exact solution methods for the
SPP are compared to display the tremendous reduction in computation time
obtained by applying the FIFO based decomposition. Next, the performance of
different settings for the multi-order best-fit is reviewed to identify the most
interesting best-fit configuration with respect to solution quality, while showing
the limited influence of additional orderings on the heuristic’s computation time.
Finally, the results of the multi-order best-fit heuristic are compared with the
results obtained by the exact decomposition approach on two test sets to show
each method’s solution quality, computational cost and practical applicability.
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3.7.1 Experimental setup

Both inland (single-traffic) and mixed-traffic data sets are used in the
experiments. The first test set contains examples of ship arrivals for an inland
setting, with a wide variety of properties. These properties are the number of
ships in the problem, the size of the chamber, the sizes of the ships and the
order in which the ships need to be placed. Both the chamber sizes and ship
dimensions correspond to the actual dimensions of the locks and traffic on the
Albertkanaal (Belgium). The ship dimensions have been randomly sampled
from all traffic on the Albertkanaal over a 12 month period. In this test set, the
ships are allowed to moor to any other ship. Thus, the set M OOR; will contain
all ships that are not shorter than ship ¢. We assume that all safety distances
are already part of the ship and chamber dimensions. Therefore, ship dependent
safety distances are not used in the inland test set. The test set is available
online [Verstichel, 2012]. Ten instances were generated for each instance size.
The small instances (containing between 10 and 25 ships) were used for the
experiments in Section 3.7.2 only. The properties of the inland instances are:

e Number of ships: 10, 20, 50, 100, 200, 500, 1000, and 10 to 25
e Chamber size: 16m x 136m, 24m x 200m
e Ship size: between 4.25m x 16.27m and 10.50m x 110m

The first mixed-traffic test set has been extracted from one month of actual
lockage operations in the port of Antwerp. Ship size dependent safety distances
must be taken into account, and two different ship types are considered. The
presence of tugboats, which leave the chamber before the lockage operation
starts, adds an extra dimension to the safety distances. No ships are allowed to
moor to a ‘SEA’ ship, which can only moor directly to the quay, while ‘BARGE’
ships may moor to another barge. The chambers correspond to configurations
of the Berendrecht (BE), Zandvliet (ZV), Boudewijn (BO), Van Cauwelaert
(VC), Royers (RO) and Kallo (KL) locks. The test instances can be obtained
upon e-mail request to the author. Some figures about the mixed-traffic test
instances include

e Total number of ships: ~ 9000
e Number of ships per lockage: 1 to 18
e Chamber size: between 35m x 270m and 68m x 500m

e Ship size: up to 43m x 350m
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The second mixed-traffic test set has been extracted from one month of actual
lockage operations at the lock complex of Terneuzen (The Netherlands). Ship
type dependent safety distances must be taken into account, and two different
ship types are considered. No ships are allowed to moor to a ‘SEA’ ship,
which can only moor directly to the quay, while ‘BARGE’ ships may moor to
another barge. The chambers correspond to configurations of the Westsluis (W),
Oostsluis (O) and Middensluis (M) locks. Some figures about these mixed-traffic
test instances include

¢ Total number of ships: ~ 5400

Number of ships per lockage: 1 to 11
e Chamber size: between 24m x 140m and 38m x 290m

e Ship size: up to 36m x 229m

All experiments were performed on a Dell Optiplex 790 with an Intel® Core™ i7-
2600 (3.40GHz) and 8GB of memory running a 64-bit Linux Mint. The multi-
order best-fit heuristic was implemented using Sun JDK 1.6, using the data
structures of the three-way best-fit heuristic (Section A.2). The optimal solutions
were obtained with Gurobi 5.1 under an academic license, with a time limit of 1
hour.

3.7.2 Exact approaches

We compare the multi-lockage SPP model from Section 3.3 with the decomposed
single-lockage model from Section 3.5. Both models always yield an optimal
solution to the ship placement problem. The exact position of each ship in the
chambers, however, may differ between the two approaches. Both models were
first evaluated on a set of inland instances with 10 to 13 ships, transferred by a
single large chamber (24m x 200m). For larger instances, the original model
frequently required more than 1 hour to attest optimality. Table 3.1 shows that
the decomposed model exploiting the FIFO constraints is significantly faster
than the full model. This indicates that generating a feasible solution to many
single-lockage ship placement problems is easier than solving a single multi-
lockage instance to optimality. Consider, for example, a 13 ship instance from
Table 3.1 with a known upper bound of 5 required lockages. The experiments
show that the corresponding 13 single-lockage ship placement problems are
solved much faster than the single 5 lockage instance. In the second experiment,
we compare the time required by the full model to discover an optimal solution,
and the time require to prove its optimality. This is achieved by providing the
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full model with a lower bound, generated from the optimal solutions of the
decomposed model. Adding this lower bound to the model drastically reduced
the computation time and enabled solving all instances with up to 21 ships in
less than 1 hour. For instances with 22 and more ships, optimality was often
not reached in less than one hour, and for sizes 26 and above the full model
frequently failed to find an initial feasible solution in the same amount of time.
Figure 3.7 shows a summary of this experiment, plotting the computation time
of the full model with and without attesting optimality, and the decomposed
approach, whereas Table 3.2 contains detailed information for each instance
size. All other experiments are based on the decomposed exact approach only.
Figure 3.8 shows the solution of one specific ship placement problem, where 10
ships are placed in one single chamber. This solution was found in 1 second
and leaves less than 10% of the chamber’s surface free.

Table 3.1: Comparison of the average and maximum calculation time in seconds
for the full and decomposed models. Ten instances were solved for each problem
size.

Average time (s)  Maximum time (s)
#Ships Full Decomp Full Decomp

10 8.55 0.44 30.01 1.29
11 25.30 0.31 121.26 0.73
12 61.80 0.52  393.33 2.19
13 167.32 1.53 988.74 11.83
Average computation time Maximum computation time
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1000 1000
= FullProof
10 FullNoProof
= Decomp
1
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Figure 3.7: Comparison of the computation time required by three exact
approaches. ‘FullNoProof’ shows the time required by the full model to find
the optimal solution, while ‘FullProof” also includes the time required to prove
optimality. ‘Decomp’ shows the time required by the decomposition approach
to find and prove the optimal solution.
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Table 3.2: Comparison of the number of feasible (‘Feas’) and optimal (‘Opt’)
solutions generated and the average calculation time required in seconds (‘Time’).
‘FullNoProof’ shows the results for the full model when finding the optimal
solution suffices, while ‘FullProof’ shows the results when optimality also has to
be attested. ‘Decomp’ shows the results of the exact decomposition approach.
Ten instances were solved for each problem size.

FullProof FullNoProof Decomp
#Ships Feas(Opt) Time Feas(Opt) Time Feas(Opt) Time
10 10(10) 8.6 10(10) 0.1 10(10) 0.4
11 10(10) 25.3 10(10) 0.1 10(10) 0.3
12 10(10) 61.8 10(10) 0.3 10(10) 0.5
13 10(10) 167.3 10(10) 0.2 10(10) 1.5
14 10(7) 1585.8 10(10) 0.3 10(10) 0.8
15 10(6) 1790.5 10(10) 0.6 10(10) 19.2
16 10(10) 1.9 10(10) 1.8
17 10(10) 1.7 10(10) 1.5
18 10(10) 2.1 10(10) 0.7
19 10(10) 3.6 10(10) 0.9
20 10(10) 5.9 10(10) 1.6
21 10(10) 16.1 10(10) 1.9
22 10(9) 373.0 10(10) 1.3
23 10(10) 28.1 10(10) 2.7
24 10(9) 1047.0 10(10) 3.5
25 10(7) 1465.7 10(10) 1.5
26 4(4) 2282.0 10(10) 0.9
27 2(2) 2901.7 10(10) 1.4
28 0(0) 3600.0 10(10) 3.5
29 0(0) 3600.0 10(10) 52.2
30 0(0) 3600.0 10(10) 6.7
ORCA |ALEEMAR |ROGER
EMERALDE L ——
MOSAN | DELTA SURAIESR ‘
MATRICARIA [

Figure 3.8: Example of a ship placement solution with 10 ships where less than
10% of the chamber’s surface is free.
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3.7.3 Multi-order best-fit heuristic

The multi-order best-fit heuristic was applied to the inland test instances and
the results of a single-ordering best-fit are compared with the results obtained
after applying three orderings (Section 3.6). The single-ordering heuristics are
stripped versions of the multi-order best-fit heuristic, based on a single ship
ordering. The results over all inland test instances for a single large chamber
lock are shown in Table 3.3, which also contains the required number of lockages
and the total calculation time needed for solving the entire test set. These
results clearly indicate that the combination of multiple orderings outperforms
the heuristics based on one single ordering. The calculation time needed by the
multi-order best-fit heuristic stays well below the combined calculation times of
the single-ordering best-fit heuristics. This is due to the conditional application
of the alternative orderings, i.e. only when another ordering fails. The results for
a single small chamber lock have been omitted because the heuristics generated
a different number of lockages for a few instances only.

We conclude from these experiments that applying alternative orderings when
necessary leads to an improved solution quality compared to applying one single
ordering. Furthermore, this quality increase comes at a low computational cost.
Finally, we point out that the multi-order best-fit heuristic is significantly better
than the best of the single-ordering heuristics. In other words, conditionally
applying the alternative ordering strongly outperforms selecting the best of the
three single-ordering heuristics (p — value < 107%).

Table 3.3: Results of the multi-order best-fit heuristic with different orderings
for a single large chamber lock. Results are averaged over 10 instances for each
problem size. Best results are presented in bold. BF denotes best-fit, preceded
by the applied ordering. ‘#,” denotes the average number of lockages required
over 10 instances of the given size.

Width BF Length BF Surface BF  Multi-order BF

#Ships  #, time (s) # time (s) #, time (s) #, time (s)
10 2.1 0.001 2.1 0.001 2.1 0.002 2.1 0.001
20 3.9 0.001 4 0.001 3.9 0.001 3.9 0.001
50 9.4 0.001 94 0.002 9.3 0.001 9.3 0.002
100 18.5 0.002 18.5 0.003 18.2 0.002 18.1 0.003
200 36.9 0.005 37 0.005 36.8 0.005 36.3 0.006
500 91.2 0.010 91.7 0.010 90.6 0.009 89.6 0.014
1000 179.3 0.020 180 0.020 178.8 0.021 176.6 0.029
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3.7.4 Inland traffic
This series of experiments compares two approaches to the inland setting:

o Decomposed MILP approach (Section 3.5),

o Multi-order best-fit heuristic (Section 3.6).

We performed the experiments on all inland test instances and the results are
presented in Table 3.4.

The multi-order best-fit heuristic reaches optimality with respect to the required
number of lockages for 35 out of 70 instances, while requiring just a fraction
of the time needed by the MILP approach. The computation times for the
individual instances reveal that, on average, the best-fit heuristic consumes 0.6%
of the time required by the MILP approach, with a minimum of 0.001% and
a maximum of 22.5% on an instance containing 100 and 10 ships respectively.
For the smaller instances (< 200 ships), the difference in number of lockages
between the optimal solution and the best-fit heuristic was at most 1 on a
total of 4. For the larger (> 200 ships) instances this difference was at most 7
lockages out of 173 or 4%, while the average optimality gap was 3.24%.

The number of lockages needed by the MILP approach and the multi-order
best-fit heuristic were equal for all instances when using the small chamber.
Due to these small differences, the results for this test setting were omitted.

Table 3.4: Results of the different ship placement algorithms, computed for a
single large chamber lock. ‘#,” denotes the average number of lockages required
over 10 instances of the given size, while ‘#,,;’ denotes the number of optimal
solutions found by the multi-order best-fit heuristic. ‘%Gap’ denotes the average
optimality gap. All results are averaged over 10 instances for each problem size.

MILP Multi-order best-fit

#Ships #, Time (s) | #, #opt %Gap Time (s)
10 2.1 0.449 2.1 10 0.00% 0.001
20 3.8 1.553 3.9 9 3.33% 0.001
50 9.2 6.950 9.3 9 1.11% 0.002
100 17.6 53.368 18.1 5 2.85% 0.003
200 35.0 24.328 | 36.3 2 3.68% 0.006
500 87.0 49.300 89.6 0 3.00% 0.014
1000 171.4 114.335 | 176.6 0 3.04% 0.029
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3.7.5 Mixed traffic

The first mixed-traffic experiment compares the single-order and multi-order
best-fit heuristics with the MILP approach on a number of queue instances.
These instances were selected from the first port data set where a queue of
ships was waiting to be transferred by the lock, and where the optimal solution
contained at least one ship more than the arrival-order best-fit solution. This
increasing arrival ordering may be preferred in port environments, as it places
the first arriving ships at the front most positions in the chamber, making them
the first to leave the chamber after the lockage operation is completed. Such
single ordering heuristic may, however, lead to significantly worse results than a
combination of orderings. Four orderings are applied for the multi-order best-fit
heuristic: increasing arrival time, and decreasing width, length and surface.
The decomposed MILP approach was applied with a time limit of 1 hour per
iteration. The objective is to place as many ships as possible in the chamber
under a first-come-first-served restriction.

The results from Table 3.5 show that ignoring the arrival order of the ships when
selecting their position leads to a significantly higher occupation of the locks.
The exact approach is frequently able to find better solutions than the heuristics,
but requires significantly more computation time. Setting a lower time limit
for the exact approach may bring the computation times closer together, but
also increases the risk of missing the optimal solution. Figure 3.9 shows an
example of how the usage of the multi-order best-fit heuristic outperforms the
stand-alone increasing arrival ordering.

Table 3.5: Comparison of the average performance of the increasing arrival time
order best-fit heuristic (Arrival BF), multi-order best-fit heuristic (Multi-order
BF) and decomposed MILP approach (Exact) when ships are queued at the lock.
The solution properties are average number of ships per lockage (‘#,’), average
computation time (‘Time’) and the number of improved instances (‘Impr’) with
the total number of instances for each lock between parentheses. *The time

limit of 1 hour was reached for one instance.

Arrival BF Multi-order BF Exact
Lock | #, Time | #, Impr Time #. Impr Time

BO | 10 05ms| 118 5(6) 10ms| 127 4(6) 1070.4* s
VC |86 26ms| 95 6(8) 46ms| 101 4(8)  1654s
RO |61 03ms| 67 39 05ms| 73 6(9) 10.5 s
KL |76 07ms| 85 5(11) 1.6ms| 9.5 9(11) 38s
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Figure 3.9: Example of an instance for which the multi-order best-fit (lower
solution) strongly outperforms a single increasing arrival ordering best-fit (upper
solution).

The second mixed-traffic experiment compares the algorithmic results with the
manual solutions generated by the lock masters. The available data contained
sets of ships that were processed together in manually obtained lockages from
both mixed-traffic data sets. If a solution approach cannot place all ships from
such a set in a single lockage, we consider it an algorithmic failure. Table
3.6 shows the number of manual lockages that could be reconstructed by
each solution method, and the average computation time needed. The results
show that the multi-order best-fit heuristic is able to reconstruct 99.36% of
the solutions, while the exact approach reconstructs all lockages. The exact
solutions do however come at a computational cost: while the heuristic solves
each instance in less than 20 milliseconds, the exact approach requires up to 14
seconds for a single instance. The single-order best-fit heuristic performs only
slightly worse than the other approaches, managing to reconstruct 98.53% of
the instances in 0.1 milliseconds on average.
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Table 3.6: Comparison of the increasing arrival time order best-fit heuristic
(Arrival BF), multi-order best-fit heuristic (Multi-order BF) and decomposed
MILP approach (Exact) when reproducing real-life lockages. ‘#;” denotes the
number of lockages that could be reproduced, with the total number of lockages
between parentheses, and Time shows the average computation time.

Arrival BF Multi-order BF Exact
Lock #; Time #1 Time #1 Time

BE | 357(362) 0.22 ms | 360(362) 0.29 ms | 362(362) 11.07 ms
ZV | 390(390) 0.08 ms | 390(390) 0.08 ms | 390(390)  5.89 ms
BO | 397(405) 0.07 ms | 401(405) 0.07 ms | 405(405) 55.68 ms
VC | 343(354) 0.08 ms | 344(354) 0.07 ms | 354(354)  7.54 ms
KL | 545(546) 0.06 ms | 546(546) 0.06 ms | 546(546)  3.24 ms
(614) (614) (614)
(651) (651) (651)
(964) (964) (964)
( ( (

RO 608(614) 0.05 ms | 611(614) 0.04 ms | 614(614 2.93 ms

W 648(651) 0.18 ms | 650(651) 0.18 ms | 651(651 2.67 ms
O 933(964) 0.14 ms | 954(964) 0.15 ms | 964(964 3.42 ms
M 549(555) 0.10 ms | 554(555) 0.10 ms | 555(555) 1.41 ms

Total | 98.53% 0.10ms | 99.36% 0.11 ms | 100.00% 14.39 ms

3.8 Conclusion

In this chapter the ship placement problem, which is an important part of the
lock scheduling problem, was presented. It has been identified as a variant
of the 2D rectangular single bin size bin packing problem (2D rectangular
SBSBPP) with additional constraints, and was proven to be different from
2D rectangular SBSBPP. A fast exact decomposition algorithm to the ship
placement problem was developed by exploiting the precedence constraints of
the ship placement problem. This algorithm enables solving problem instances
with up to 1000 ships to optimality in less than 500 seconds by the general
purpose solver Gurobi 5.1. These relatively long computation times, which
sometimes differ strongly among similar instances, are a drawback for real-life
applications. The ship placement problem may need to be solved many times
while searching for a good solution for the entire lock scheduling problem and
therefore short and stable calculation times are required. The multi-order best-
fit heuristic addresses this issue. It constructs several possible SPP solutions
based on different ship orderings and placement policies. When some ordering
fails to produce a good solution, the multi-order best-fit heuristic applies an
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alternative ordering in search for a feasible solution. A significant performance
increase over each individual ordering is thus gained, while very little additional
calculation time is required. The multi-order best-fit heuristic was compared
to the exact decomposition approach on a large test set, showing that the
heuristic is significantly faster than the exact approach, generating solutions for
large instances with up to 1000 ships in less than 0.1 seconds with an average
optimality gap of 3.24%. Both approaches were applied to real-life mixed-traffic
instances from a port, on which they performed excellently. The multi-order
best-fit heuristic was able to reconstruct 99.36% of the lockages performed by
the lock masters, while never requiring more than 6 milliseconds of calculation
time. The exact approach reconstructed all lockages, but did require up to 89
seconds to do so. When ships were queueing at the lock, the exact approach
reached the time limit of 1 hour on one instance and calculated for more than
10 minutes in three cases, while several other instances were solved in less than
0.1 seconds. These unpredictable and sometimes long computation times are an
obvious downside of this exact approach, especially for real-life applicability (e.g.
as part of a decision support tool). The combination of high solution quality
and low calculation times of the multi-order best-fit heuristic, on the other
hand, make it a promising approach to the ship placement problem. These
properties should be especially beneficial in a decomposition scheme for the
lock scheduling problem where the ship placement problem constitutes the sub
problem (Chapter 5). An additional characteristic of the multi-order best-fit
heuristic is that it tends to group ships of similar size. This is perceived as a
benefit because of the similarity with results obtained by human experts who
currently solve the ship placement problem in real-life situations. Consequently,
the solutions generated by the multi-order best-fit heuristic are easier for the
human experts to analyse, thus increasing acceptance of the presented solution.



Chapter 4

Decision support for lock
masters: a case study

Currently lock masters schedule lock operations with little or no support from
optimization software. Their tasks are, however, far from trivial. Positioning
ships in a chamber, for example, is already NP-hard (Section 3.1). Although the
number of ships that can be transferred together in a single lockage operation
is limited, the ship placement instances lock masters are faced with on a daily
basis can be quite challenging.

The potential benefits of adding decision support software to the lock master’s
tool suite are identified and evaluated by means of live-tests at mixed-traffic
locks. The live-tests focus solely on the ship placement problem because it
constitutes a difficult task for lock masters, especially during peak traffic hours
when increasing numbers of ships want to be transferred together while the
time available for constructing a good solution decreases. Last-minute changes
due to ships cancelling or delaying their arrival and vessels showing up at the
lock without advance notice can disrupt a meticulously planned lockage. Live-
tests have a double advantage: they enable a thorough test of a tool’s real-life
applicability, and the interaction with the end-users creates a perfect setting
for identifying possible improvements and resolving some previously unknown
issues. Furthermore, these tests constitute an additional evaluation of the
real-life applicability of the solution approaches for the ship placement problem
from Chapter 3. Although the experiments from Chapter 3 were performed on
a large set of historical mixed-traffic data, they ignored the stochastic aspects
that are typical for real-life operations.

61
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For the purpose of these live-tests a decision support tool for lock masters was
developed: MOGLi!. In this tool incorporates the solution approaches from
Chapter 3 in an intuitive graphical user interface, enabling lock masters to
easily generate and compare several ship placement solutions based on a list
of arriving ships. Furthermore, all relevant data such as ship arrivals, lock
configurations and parameters such as safety distances and computation times
can easily be manipulated. Ships that can be transferred in the same lockage
are automatically selected and positioned in a feasible and easy to understand
way. The tool is highly configurable, allowing lock masters to quickly evaluate
the effect of an alternative chamber for transferring some of the arriving ships,
changing the lock configuration or altering the order in which the ships are
processed. MOGLi’s user interface and configuration options are discussed in
Appendix B.

The chapter starts with an informal and high-level description of some lock
master’s tasks at a (parallel chamber) lock. The second part of the chapter
reports on live tests of MOGLi at the Boudewijn-Van Cauwelaert lock complex
in the Port of Antwerp and at the lock complex of Terneuzen (The Netherlands).

4.1 Decision support for lock masters

A lock master is responsible for all operations of a designated lock. He decides
which chamber a ship will be transferred in, at which position the ship will
be moored in the chamber, and at what time the lockage operation will take
place. The lock master also handles all transfer requests of barges, taking into
account predetermined lockage times for some high priority ships (e.g. seagoing
vessels) that are pre-assigned to the lock chambers by the port-wide control
centre. During periods of low density traffic, the lock master is confronted with
a relatively easy problem: positioning a few ships inside a chamber is easy and
oftentimes at least one chamber will be available for transferring ships almost
as soon as they arrive. In addition the lock master has the time to construct a
good solution as he receives a limited number of transfer requests from arriving
ships. Under normal operations, both the time at which a lockage will take
place and the chamber in which a lockage will be scheduled are often a result
of the previous lock operations, leaving the positioning of the arriving ships
as the most difficult part. The lock master’s tasks are especially challenging
under peak traffic. Not only is a good ship placement solution significantly more
difficult to produce when the number of ships increases, the time available for
constructing such a solution decreases because the lock master’s line of thought

1Multilevel Optimization and Generic models for Lock operations
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is frequently interrupted by requests from arriving ships and actions required
for handling the current lockage operations.

A decision support system automatically suggesting feasible ship placement
solutions would be a most welcome addition to the lock master’s tools, especially
during peak and normal traffic periods.

4.2 Live-tests

In light of a practical validation of this doctoral research, the opportunity arose
to perform live-tests of the ship placement algorithms at the Boudewijn-Van
Cauwelaert lock complex in the Port of Antwerp (Belgium) and at the lock
complex in Terneuzen (The Netherlands). During these tests MOGLi ran
in parallel with the lock master, proposing lockages for the arriving traffic
based on the arrival-order best-fit heuristic, multi-order best-fit heuristic and
exact solution method. The solutions generated by these three algorithms were
displayed together, enabling a quick and easy comparison of each solution by
the lock master. We will first give an overall evaluation of the three solution
methods, followed by an analysis of the tool’s behaviour during low density,
normal and peak traffic.

4.2.1 Solution approaches

During the tests it became clear that the exact solution method produces
solutions that are hard to grasp. Ships sometimes appeared to be placed at
curious, though feasible, positions in the chamber. Even though this way
of placing the ships may enable placement of additional ships, the resulting
solution would never be accepted by the lock master for two reasons: the
lock master would have a hard time certifying that the solution is feasible,
not in the least because he has limited time to analyse the proposed solution,
and the captains/barge operators would likely refuse to position themselves
at unconventional locations in the chamber. Furthermore, the unpredictable
computation times of this approach are not favourable in a time constrained
environment. The solutions generated by the multi-order best-fit heuristic, on
the other hand, were deemed sound as the reason why a ship is positioned in a
certain way is easy to understand, enabling a quick and easy attestation of the
solution’s quality and feasibility. The short and stable computation times of
this heuristic was also considered beneficiary.
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One downside of the current solution approaches is their lack of support for
convoys. Convoys consisting of an odd number of units are often L-shaped
instead of rectangular shaped, leaving a space for placing a ship as shown in
Figure 4.1. Currently the real shape of convoys is not exploited by the ship
placement algorithms because the information required to incorporate convoy
configurations in the solution approaches is not available. In the current tool
suite, convoys are are also rectangular shaped, and a ship positioned in the
convoy’s gap will thus be overlapping with the convoy in the registration. It
would therefore be interesting to add a convoy’s shape or configuration to the
current lock master’s software, allowing the incorporation of convoys to our
solution approaches.

Barge

Figure 4.1: Example of the real shape of a convoy with an odd number of units,
and the additional space that is freed when convoy shapes can be exploited.

4.2.2 Low density traffic

During periods of low density traffic the decision support software did not yield
improvements. All proposed solutions (both by the lock master and MOGLi)
were trivial, with the few ships transferred in each lockage occupying only
a small portion of the chamber. These periods did allow the lock masters
to become acquainted with MOGLI, test several of its features and provide
valuable input for improvements to the software’s user interface. One suggested
improvement was the addition of a snap function with real-time indication of
the ship’s destination position when manually moving a ship inside a chamber.

4.2.3 Normal traffic

The periods of normal traffic enabled the decision support software to display its
potential value. The computed solutions showed great similarity with or were
even identical to the ones constructed by the lock master. The main difference
between the manually constructed solutions and the ones generated by the
multi-order best-fit heuristic was the computation time: where the lock master
needed up to several minutes to construct a solution, the software tool produced
its results in a few milliseconds. Figures 4.2 and 4.3 show instances where the
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generated solution was identical to the one constructed by the lock master. The
successful one-on-one comparison of both solutions strongly increased the lock
master’s trust in the decision support software, and before long the lock master
started validating generated solutions instead of manually constructing them
himself and afterwards comparing to the generated solutions.

Given the ease with which lockages are generated under normal traffic, the
planning horizon of the lock could increase significantly. Since ships registering
at the lock can effortlessly be added to a future lockage, all arriving ships could
receive a rough estimate of their time of transfer upon enrolment based on the
current registrations and the remaining free space in the lockage. If accurate
enough, barge operators could change their sailing speed based on this estimated
transfer time by either speeding up to catch an early lockage (and thus reduce
their waiting time) or slowing down to arrive just in time for their lockage (and
thus reducing their fuel cost and pollution).

- MOGLi v0.8.2 =
File Settings Help @

["Proposed Solutions | Lockage | Settings |

Lock: VC 1 (270.0m x 35.0m) snap Direction: Scheldt > Docks

Solution #1: 7 ships using Multi-Order BestFit (Heuristic with free order)

Barge 1 11:00
Barge 2 @ 11:05 Barge 3 @11:10 PEE ‘
Barge 4 @ 11:15 | Barge 5 @ 11:20 ‘

Computation time: 3 millizeconds

Figure 4.2: Screenshot of a solution generated by MOGLI, identical to the one
constructed by the lock master.

- MOGLi v0.8.2 =
File Settings Help @

[Proposed Solutions | Lockage | Settings |

Lock: Westsluis 1 (290.0m x 38.0m| snap Direction: Dacks -> Scheldt

Solution #1: & ships using Multi-Order BestFit (Heuristic with free order)
Barge 3 @ 12:18 Haargeci@lz:lg

Barge 6 @ 12:30 |

Barge 2 @ 12:17
Barge 5 @ 12:20

Barge 1 @ 1211 ‘

Computation time: 10 milliseconds

Figure 4.3: Screenshot of a solution generated by MOGLI, identical to the one
constructed by the lock master.
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4.2.4 Peak traffic

During peak traffic, the decision support software applying the multi-order
best-fit heuristic was able to show its full potential. MOGLi successfully
supported the lock master by generating high quality solutions in a rapidly
changing environment. The impact of the decision support software under such
circumstances is illustrated in the following paragraph.

Peak traffic occurred in the Port of Antwerp when thirteen barges requested to
be transferred to the docks at approximately the same time. With the large
Boudewijn chamber reserved for an incoming seagoing vessel and the smaller
Van Cauwelaert planned in the opposite direction, the circumstances were less
than ideal: Transferring as many ships as possible in the Boudewijn chamber,
together with the incoming seagoing vessel, would induce a considerable waiting
time of 30 to 45 minutes per barge. Changing the schedule of the Van Cauwelaert
chamber would significantly reduce waiting time, but was only worthwhile if
most of the barges could be transferred together in this smaller chamber. In
both scenarios any barge that could not be transferred would have to wait at
the lock for at least an additional half hour. At this point, the best approach
would be to compare solutions for both scenarios. Manually constructing these
solutions, however, is a time consuming process due to the large number of
ships involved, and the Van Cauwelaert chamber had to be turned soon if the
second scenario was to be executed. MOGLi, on the other hand, was able
to produce solutions in a matter of milliseconds. For the Boudewijn-scenario,
the decision support software suggested a solution transferring the seagoing
vessel and all enrolled barges in a single lockage operation (Figure 4.4). Next, a
solution for the Van Cauwelaert scenario was generated containing all but the
latest registered ship Barge 18 (Figure 4.5). After confirming the solution’s
feasibility, the lock master decided to transfer the barges in the Van Cauwelaert
lock, thereby reducing the waiting time of all but the last arriving barge to a
minimum. While copying the ship’s positions to the lock registration software,
however, the lock master got a message cancelling Barge 12’s arrival. Given
that Barge 13 is significantly larger than Barge 12, both ships could not simply
be interchanged. Fortunately, removing the cancelled barge from the ship
list allowed the decision support software to generate a, completely different,
solution transferring Barge 13 along with the eleven other registered barges
in a matter of milliseconds. The execution of this lockage, which is added in
Figure 4.6, resulted in a minimal waiting time for all registered barges despite
the traffic peak and last-minute changes that occurred.
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- MOGLi v0.8.2 - + x
File Settings Help @

Proposed Solutions | Lockage | Settings |

Lock: BO 1 (337.0m x 45.0m) Snap Direction: Scheldt -> Docks

Solution #1: 14 ships using Multi-Order BestFit {(Heuristic with free order}

Cornputation time: 11 milliseconds

Figure 4.4: Solution generated by MOGLI for the Boudewijn scenario.

- MOGLi v0.8.2 - + x
File Settings Help @

Proposed Solutions | Lockage | Settings |
Lock: W€ 1 (270.0m x 35.0m]) Snap Direction:  Scheldt -> Docks

Solution #1: 12 ships using Arrival-Order BestFit (Heuristic with arrival order)

Computation time: @ miliseconds

Figure 4.5: Solution generated by MOGLI for the Van Cauwelaert scenario.

- MOGLi v0.8.2 — + x
File Settings Help @

Proposed Solutions | Lockage | Settings |
Lock: VC 1 (270.0m x 35.0m) Snap Direction: Scheldt = Docks

Solution #1: 12 ships using Multi-Order BestFit (Heuristic with free order]

Cornputation time: 14 milliseconds

Figure 4.6: Solution generated by MOGL] for the Van Cauwelaert scenario after
the last-minute cancellation of Barge 12.
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4.3 Conclusion

Solving the ship placement problem is one of the daily task of lock masters.
Altering an existing solution to incorporate last-minute changes and constructing
solutions during periods of peak traffic can be a challenging task, especially
given the tight time constraints. We investigated whether lock masters could
benefit from the support of optimization software and if the solution approaches
from Chapter 3 would also perform well in real-life, stochastic environments.
Live-tests performed at two mixed-traffic locks showed that decision support
software generating high quality ship placement solutions would indeed be a
valuable addition to the lock master’s current tools. It is of utmost importance
that the applied algorithm generates solutions that are easy to grasp. The
lock master must be able to quickly understand why each ship is placed at
its position because he has limited time to analyse a suggested solution and
deduce its feasibility. Failing to do so will result in the rejection of the proposed
solution, significantly reducing the benefit of the decision support software
and the lock master’s trust in the proposed solutions. Short and predictable
calculation times are also imperative given the time constrained nature of the
problem. Furthermore, a faster solution generation leaves more time for the
lock master for feasibility analysis and alterations to the configuration. While
the software’s assistance is especially valuable during peak traffic hours and in
case of last-minute changes to ship arrivals, the time saved under normal traffic
conditions could enable the lock master to focus on other important tasks and
increase the planning horizon, improving the overall quality of service for the
arriving ships.

It would be very interesting to include the scheduling and chamber assignment
parts of LSP into future versions the decision support software for further
live-testing. This could provide invaluable information about overall solution
quality of current and future algorithms for the lock scheduling problem in real
and stochastic environments, and their impact on lock efficiency, especially at
multi chamber locks.



Chapter 5

A Combinatorial Benders’
decomposition for the lock
scheduling problem

The lock scheduling problem can be decomposed into a master and a sub problem.
The master problem (MP) assigns the ships to lock chambers, after which it
attempts to schedule the resulting lockage operations. The sub problem (SP)
considers positioning the ships inside the corresponding lockages. Whenever the
sub problem identifies an infeasible lockage, i.e. a set of ships that cannot be
transferred simultaneously due to the chamber’s capacity or safety constraints,
combinatorial inequalities (cuts) are generated and added to the master problem.
The master problem and sub problem are solved iteratively, until a provable
optimal (and feasible) schedule is obtained.

This chapter mainly focuses on the decomposition approach and its application to
the LSP, thereby omitting detailed discussions on the exact sub problems. First,
Section 5.1 provides a literature review on an established exact decomposition
approach. Section 5.2 presents a Benders’ decomposition approach for LSP,
thereby defining the master and sub problem in more detail, as well as their
interaction. Particular attention goes to the generation of feasibility cuts for
the master problem, as they largely determine the efficiency of the algorithm.
Experiments are conducted on a large number of real-world instances based on
data collected at several locks in Belgium. The results are presented in Section
5.3. Finally, Section 5.4 offers the conclusions.

69
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5.1 Literature review

Benders’ decomposition is a mathematical approach that exploits the fact that
fixing a number of difficult variables in a mathematical model may simplify
the problem considerably. The decomposition approach divides a problem into
a master problem (MP) and a sub problem (SP) which are solved iteratively.
First, the MP is solved for a subset of the variables. Next, the sub problem is
solved for the remaining variables, while temporarily fixing the variable values
of the MP. Finally, based on the outcome of the SP, one or more cuts are
generated and added to the MP, thereby effectively preventing the MP from
revisiting similar areas of the search space.

In traditional (classical) Benders’ decomposition [Benders, 1962], the SP is a
linear programming problem; cuts are derived from its dual solution. In more
recent works, e.g. Geoffrion [1972] and Hooker and Ottoson [2003], the Benders’
decomposition approach has been generalized to a broader class of problems,
no longer requiring the sub problem to be linear. In Hooker and Ottoson
[2003], the concept of Logic Based Benders’ decomposition is introduced. In
contrast to Benders [1962], cuts are not necessarily obtained from the dual
formulation of a linear sub problem, but through the so-called inference dual.
Whenever the sub problem is a feasibility problem, the inference dual is a
condition which, when satisfied, implies that the master problem is infeasible
[Rasmussen and Trick, 2007]. This condition can then be used to obtain Benders
cuts to cut off infeasible solutions. A particular case of Logic Based Benders’
decomposition, frequently referred to as Combinatorial Benders’ decomposition,
is discussed in Codato and Fischetti [2006] where it is applied to mixed-integer
programming (MIP) problems involving large numbers of logical implications
(Big_M constraints). Whenever a particular assignment of variable values in the
MP renders the SP infeasible, a Combinatorial Benders’ cut is generated and
added to the master problem. This cut, stating that at least one of the variables
in the master problem must change its value, distils a logical implication from
the original model and adds it to the master problem. Note that this approach is
ineffective for continues variables. Stronger Combinatorial cuts may be obtained
by identifying small subsets of variables responsible for the infeasibility of the
sub problem, and expressing cuts in terms of these variables. The smallest of
these subsets are referred to as Minimum Infeasible Subsets (MIS). The latter
approach will be applied in this work, as will be elaborated on in Section 5.2.

b

A number of successful applications of Combinatorial Benders’ decompositions
to related packing, scheduling and assignment problems have been reported in
literature. Bai and Rubin [2009] investigate a problem involving the allocation
of tollbooths to roads, thereby minimizing the number of tollbooths required to
cover the entire road network. Similar to our problem, their problem suffers
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from a large number of conditional (Big_M) constraints. By decomposing
the problem, many of these conditional constraints can be omitted. A master
problem assigns the tollbooths to roads. Subsequently, the sub problem verifies
whether the proposed assignment is feasible. Whenever an infeasible solution is
encountered, cover cuts are generated, stating that at least one tollbooth must
be placed on a specific subset of roads.

Coté et al. [2013] use Combinatorial Benders’ decomposition to solve the Strip
Packing Problem (SPP). First a relaxed version of SPP is solved, thereby
treating SPP as a Parallel Processor Scheduling Problem. Next, the sub
problem attempts to reconstruct a feasible solution to SPP based upon the
relaxed solution. Whenever this is not possible, a combinatorial cut is added
to the master problem, requiring that at least one rectangle must change its
position. Strong cuts are obtained by identifying small subsets of rectangles
responsible for the infeasibility of the sub problem.

A Parallel Machine Scheduling Problem (PMSP) with machine and sequence
dependent setup times is solved in Tran and Beck [2012] through Logic Based
Benders’ decomposition. In this approach, the master problem assigns jobs to
machines, while the sub problem minimizes the makespan for each individual
machine by determining the job sequence. This is efficiently realized by a
dedicated TSP solver. Note that, due to the fact that the machines are
independent, these sequencing sub problems may be solved in parallel. To
strengthen the master problem, a relaxed version of each sub problem is added.
Based on a comparative study, Tran and Beck [2012] claim that their Benders’
decomposition for the PMSP is 6 orders of magnitude faster than a traditional
Branch-and-Bound approach.

5.2 A Combinatorial Benders’ decomposition

In contrast to Chapter 2 where we attempted to solve the LSP via a single,
large, mixed integer linear programming problem, we now propose to solve LSP
by using a decomposition approach. The decomposition results in a master
problem and a sub problem, each of which have to be solved iteratively. The
advantage of this decomposition is that part of the complexity of the problem is
shifted to a separate sub problem, thereby obtaining two simpler problems. In
addition, efficient dedicated algorithms can be employed to solve these problems,
whereas there may not exist an algorithm capable of tackling the entire problem
at once. Finally, a number of logical implications which are modelled in Chapter
2 through Big M constraints are no longer required, as these implications will
be enforced through the addition of cuts to the master problem. The presented
method is very similar to Codato and Fischetti [2006]. The main differences are



72 A COMBINATORIAL BENDERS' DECOMPOSITION FOR THE LOCK SCHEDULING PROBLEM

that we work with an integer programming sub problem instead of a linear one,
and that we apply a constructive algorithm for determining minimal infeasible
subsets (MIS), where Codato and Fischetti [2006] determined MIS through an
LP.

The decomposition method provides the master problem with a list of ships
that need to traverse the lock, the sailing direction of the ships, and their
arrival times at the lock. The master problem first partitions the ships in an
arbitrary number of non-overlapping subsets. Each set represents a group of
ships that will be transferred in a single lockage operation. Obviously, each
subset contains only ships that traverse the lock in the same direction. Next,
for the generated subsets, the master problem proposes a schedule, thereby
determining the exact starting times of the lockage operations. Subsequently,
the sub problem verifies for each subset whether the ships in that set can be
transferred simultaneously, i.e. whether they fit together inside the lock chamber.
The latter corresponds to the ship placement problem from Chapter 3. LSP is
solved whenever an optimal MP schedule is determined in which each subset
satisfies the packing constraints of the sub problem. Whenever the sub problem
identifies an infeasible combination of ships, a feasibility cut is generated and
added to the master problem, thereby preventing the master problem from
assigning these ships to the same lockage operation. Figure 5.1 shows where the
master problem (grey-italic) and the sub problem (white-bold) are located in
the representation of the mathematical model for the lock scheduling problem.

/ Lock Scheduling \
(5.3 .
Chamber Assignment

A

J

LDCkag,e Combinatorial
Scheduling | genders' \

cuts
<—>[Single Lockage Ship Placement]

Figure 5.1: Position of the MP (grey-italic) and SP (white-bold) in the
representation of the mathematical model for the lock scheduling problem.

The following two subsections discuss the master problem and sub problem in
detail. An overview of the entire algorithm is given in Algorithm 3.
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5.2.1 Master problem

The following MILP defines the master problem. To keep the model concise,
some problem specific constraints were omitted, e.g. constraints managing tidal
windows, ship dependent pre and post-processing times, ship draught, etc.
Similarly, some redundant constraints to speed up the model are not included in
the problem description below. The complete model was presented in Chapter
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The master problem uses four sets of variables: binary variables zp, k € M,
denoting whether lockage k € M is used, binary variables fix,i € N,k € M
denoting whether ship ¢ € N is assigned to lockage k € M, integer variables
Py, k € M denoting the processing time of lockage k € M and finally integer
variables Cf, k € M denoting the completion time of lockage k € M.

The objective, Equation (5.1), minimizes (a) the number of lockages, (b) the
time when a ship leaves the lock and (c¢) the maximum waiting time of a
ship at the lock, where A1, A2, A3 are independent weight factors. Constraints
(5.2)-(5.4) assign ships to lockage operations. Constraints (5.2) ensure that
each ship is assigned to a lockage operation. Obviously, downstream ships
cannot be assigned to upstream lockages and vice versa. Constraints (5.3) are
linking constraints; a lockage k € M is executed, i.e. z = 1, if at least one
ship is assigned to it. Note that the lockage operations are ordered (Constraint
(5.4)): a lockage zp41 cannot be executed if z; is not used, k € My, ¢t € T. The
remaining constraints take care of the scheduling part of the problem. A ship
cannot leave the lock before its lockage operation is completed (Constraints
(5.5)). The duration of a single lockage operation depends on a fixed value plus
an additional amount per ship (Constraints (5.6)). Each lockage operation must
be mapped to a physical lock chamber (Constraints (5.7)). When two lockage
operations are scheduled on the same physical chamber, one must precede the
other (Constraints (5.8)). Constraints (5.9), (5.10) perform the actual lockage
scheduling per chamber (explained in Chapter 2). A lockage cannot commence
before all ships have arrived at the lock (Constraints (5.11)). Finally, Constraint
(5.12) records the maximum waiting time of a ship at the lock.

5.2.2 Sub problem

Once the master problem has assigned the ships to a number of lockages, the
feasibility of each lockage needs to be verified. For each lockage, i.e for all
ke M,:z,=1,t €T, asmall sub problem is solved to test whether the given
configuration of ships fits inside a chamber of type . Whenever a configuration
is considered infeasible, a combinatorial Benders’ cut will be generated and
added to the master problem. The latter will be elaborated in Sections 5.2.3
and 5.2.4.

Let N, = {i € N : f;, = 1} be the set of ships assigned to lockage k € M. For
a given lockage k € M, we obtain the following single-lockage ship placement
problem:
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x; +w; < Wy Vi € Ny, (5.13)
yi +1i < Ly Vi € Ny, (5.14)
left;; +leftj; + bij +bj; > 1 Vi< j, i, €Ny (5.15)
x; +w; < x;+ Wi(l—lefti;) Vi # 5, i, € Ny, (5.16)
yi +1; <yj+ Li(1 — bsj) Vi #j, i,j € Ni (5.17)
safety constraints Vi #j, 4,5 € Ny (5.18)
mooring constraints Vi # 4, i, € Ng (5.19)

In the above feasibility model, variables x;,y; model the x and y coordinates
of a ship i € Ny inside the chamber. Constraints (5.13) and (5.14) ensure that
the = and y coordinates of a ship i € N, are located within the chamber’s
dimensions. The remaining constraints ensure that the ships do not overlap.
Several problem specific constraints have been omitted here to avoid repetition.

The full sub problem is presented in Section 3.5.

Algorithm 3 Combinatorial Benders’ Decomposition of LSP

Input: Set of ships IV, arrival times and ship properties, lock parameters
1: add initial cut(s) to MP
2: repeat < true
3: while repeat do

4
5
6:
7
8
9

Solve MP

get solution (zk, fir,Ck), Vi € Nk € M

repeat < false
for ke M :z,=1do

Solve SP for Ny = {i € N : 25, = 1}

if SP is infeasible then
repeat < true
add feasibility cut(s) to MP
else
get solution (x4,y;), Vi € Ny
end if
end for

16: end while
17: return Optimal schedule (fig, Ck,x;i,Y;), Vi € Nk € M
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5.2.3 Combinatorial Benders’ cuts

When an infeasible sub problem is encountered, one or more combinatorial
Benders’ cuts are generated and added to the master problem, effectively
preventing the master problem from assigning specific ships to the same lockage.

The general form of cuts considered is:

> fue<|SI-1 Vke K'C M (5.20)
iESCN

Stated informally, this cut prevents the ships in § C NV from being assigned to
the same lockage k.

A straightforward ‘no-good’ cut arises from an infeasible sub problem, i.e. an
infeasible lockage of type t € T' with N}, ships, by setting S = Nj, and K’ = M,.
These no-good cuts can be very weak, especially if |S| is large. Stronger cuts
may be obtained when smaller infeasible subsets of ships are considered. The
strongest cuts are based on minimum infeasible subsets. In this context, a MIS
is a subset of ships that cannot be transferred in a single lockage of type t € T;
removing any of the ships from the set would however result in a feasible lockage.
Computing all MIS for a given set of ships N’ C N is unfortunately notoriously
difficult; in fact, it would require solving the sub problem from Section 5.2.2
for every possible subset of N’. Section 5.2.4 discusses several approaches to
compute strong cuts, requiring far less computational effort.

Combinatorial Benders’ cuts can be generated at different times in the solution
process: Initial cuts are added to strengthen the master problem before the
MP solution process is started. Applying initial cuts reduces the number of
infeasible MP lockages generated. Feasibility cuts are generated on-the-fly every
time the master problem generates a solution. These cuts are applied to cut
away infeasible parts of the search space and guide the MP towards a feasible
lock scheduling solution.
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5.2.4 Cut separation

The different cut separation methods are clarified using the example from
Figure 5.2, where the MP proposes a solution in which ships 1 through 7 are
transferred in a single lockage. The feasible lockages for this example (under a
first-come-first-served policy) are displayed on the right side of this figure.

Lockage 1 2 4 6 7
Ship1 : .
Ship 2 |:>
ship7 |
5

Figure 5.2: An example where the MP proposes a solution where ships 1 through
7 are transferred in a single lockage, and the feasible first-come-first-served
based lockages.

No-good cuts can easily be computed by solving one single-lockage ship
placement problem for each MP lockage. For the example from Figure 5.2, the
following weak cut is generated:

7
> fin<6, Vk (5.21)
1=1

Minimal infeasible subsets can be found by applying the following constructive
procedure. For a given set of ships, all subsets of size n are calculated, where n
is initially set to 2. The sub problem (Section 5.2.2) is solved for each of these
subsets, and a feasibility cut is generated when necessary. Next, all subsets of
size n + 1 are generated and compared against the infeasible subsets generated
in the previous iterations. Every subset of size n+ 1 which is a superset of a MIS
generated in a previous iteration is discarded. For the remaining sets N’ of size
n + 1, the sub problem is solved and cuts are generated where applicable. The
constructive procedure terminates whenever no new cuts can be identified (i.e.
all generated subsets of size n are infeasible). Note that the larger the number
of ships that can be transferred in a single lockage, the more computationally
expensive this procedure becomes. Cuts produced by this procedure will be
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referred to as ‘subset cuts’ For the example in Figure 5.2, thirteen subset cuts
are generated.

An alternative means to generate minimal infeasible subsets of ships utilizes a
strict ordering on the ships. Let N = {1,2,...,n’} be an ordered set of ships,
based on their arrival time. Start by setting S = {1}. Iteratively add ships
from the head of N’ to S until S becomes an infeasible subset of ships. This is
an ‘order cut’ When generating feasibility cuts, all ships in S are removed from
N’ except the last ship added to S, and the procedure is repeated until N’ is
exhausted. When generating initial cuts, only the first ship in S is removed
from N’ before the procedure is repeated. Note that these cuts are particularly
effective under a FCFS lockage policy. When considering the example from
Figure 5.2, two feasibility order cuts can be generated:

3
> fn<2, Vk (5.22)
=1

7
> fin<4, (5.23)
1=3

An efficient approach for identifying small infeasible subsets of ships is based on
surface calculations: any set of ships having a combined surface that exceeds the
total surface of the lock chamber is infeasible. Whenever surface calculations
are used to identify infeasible subsets, it will be denoted as follows: ‘subsurf’
(subset based) and ‘surf’ (order based). As simple surface calculations provide
a non-tight upper bound on the number of ships that can be placed, they can
be applied as initial cuts only. Indeed, applying them as feasibility cuts does
not guarantee that the MP will converge towards a feasible solution, as surface
based cuts may be unable to cut away some infeasible parts of the search space.

5.3 Experiments

The performance of the decomposition method and the ‘monolithic’ MILP
approach from Chapter 2 are compared. The test set consists of inland traffic
data and different lock settings based on the locks on the Albertkanaal. All
instances are available online [Verstichel, 2012] together with the lock parameters.
The test set contains the random-arrival (R) instances, and their properties are
added to Table 5.1. The independent weight factors are: \; = 0.1, Ao = 1.0
and )\3 =1.0.

All experiments were performed on a Dell Optiplex 790 with an Intel® Core™ i7-
2600 (3.40GHz) and 8GB of memory running a 64-bit Linux Mint. The
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monolithic approach, MP and SP were solved using Gurobi 5.1 under an
academic license, with a total time limit of 12 hours.

Table 5.1: Properties of the test instances.

Inter arrival time distribution Uniform (R)

Mean inter arrival time (minutes) | 1,2,3,4,5,10,15,30

Number of ships 10, 20, 30, 40, 50, 60, 70, 80, 90
Upstream/Downstream fraction 50/50, 30/70

Small Chamber 16m x 136m

Large Chamber 24m x 200m

5.3.1 First-come-first-served single chamber lock

The first series of experiments is performed on a single chamber lock with a
first-come-first served policy for the ships; both a single small chamber (SSC)
and a single large chamber (SLC) are considered. The experiments assess the
performance of the feasibility cuts and the effects of adding some initial cuts
to the MP. The results are depicted in Figure 5.3 and 5.4. The x-axis of each
figure displays the different instances which are ordered, from left to right,
based on (1) increasing number of ships (2) increasing inter arrival time and (3)
traffic ratio (first 70/30, then 50/50). The numbers underneath the axis are
formatted as I_ S, with I denoting the inter arrival time, and S the number
of ships. Computation times in seconds are shown on the y-axis of each figure
(logarithmic scale). Note that these computation times include the generation
of both the feasibility and initial cuts.

The most basic version of the Benders procedure relies on no-good cuts only
and is referred to as ‘no-good’ in the graphs. A stronger version is obtained
by replacing the no-good cuts by order cuts (Figure 5.3 (a)). Especially for
the larger instances, a significant decrease in computation time is observed.
Another approach is to generate a number of initial cuts and add them to the
initial MP. Figure 5.3 (b) reveals a drastic reduction of computation times with
such initial cuts. Here, applying no-good feasibility cuts without initial cuts (no
init) is compared with combining no-good cuts with initial surface cuts (surf
init) or order cuts (order init). When considering the SLC setting (Figures 5.4
(a) and (b)), the difference between the cuts becomes much smaller. Contrary
to the SSC results, the average inter arrival time also seems to influence the
computation time: for the small instances (< 30 ships) the computation time
decreases when the average inter arrival time increases, while the opposite trend
shows for the large instances (> 40 ships).
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In Figure 5.3 (c), the results obtained using the Benders’ approach in
combination with initial order cuts are plotted against the monolithic approach
for a large number of instances. Clearly, the former method outperforms the
latter. Especially for several of the larger instances, where computation times
are reduced by 95%. The other approaches shown in Figures 5.3 (a,b) could not
outperform the monolithic model and were therefore omitted from the graph.

The differences between the monolithic model and the Benders’ decomposition
approach become more profound in the SLC setting (Figure 5.4 (c)). The largest
difference in computation time is observed for the instance with 20 ships, o = 2
and symmetric traffic: the monolithic model timed out after 12 hours, whereas
the Benders procedure applying initial order cuts attested optimality in only
1.3 seconds. The maximum computation time for the Benders approach for
instances with up to 40 ships is 12 minutes, while the monolithic model fails to
solve 16 out of 64 instances within 12 hours. For the instances with 50 and 60
ships, the monolithic model could only solve a single instance to optimality and
failed to produce a feasible solution for 7 out of 32 instances. The decomposition
approach on the other hand finds feasible solutions for all instances, and attests
optimality in 24 cases. Finally, for the instances consisting of 70 to 90 ships,
the decomposition method solves 21 out of the 48 instances to optimality while
feasible solutions were found for the remaining instances.

Feasibility Cut comparison (SSC) Initial Cut comparison (SSC) noinit
— o~ — surf il
FCFS, 12h time limit nogood no-good cuts, FCFS, 12h time limit it

10000 10000

Computation time (s)
Computation time (s)

2.10 5 K 30 2. ) X 5
1107 410 1510 220 520 3020 330 1030 140 440 1540 1107 410 1510 220 520 3020 330 1030 140 440
Instance Instance
(@)

001
510 30110 320 1020 130 430 1530 240 540 3040 210 510 3010 320 1020 130 430 1530 240 540 3040
15_40

Computation time comparison (SSC)
—— monolithic

FCFS, 12h time limit = order init

100000
10000

-~ 3 8
3 8 8

Computation time (s)

°

001
210 510 3010 320 1020 130 430 1530 240 540 3040 350 1050 160 460 1560 270 570 3070 380 108 190 490 1590
110 410 1510 220 520 3020 330 1030 140 440 1540 250 550 3050 360 1060 170 470 1570 280 580 3080 390 1090
Instance

©

Figure 5.3: Comparison of the computation time of the different cut generation
methods for a single small chamber lock, under a FCFS policy.
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Figure 5.4: Comparison of the computation time of the different cut generation
methods for a single large chamber lock, under a FCFS policy.

5.3.2 No first-come-first-served single chamber lock

The second series of experiments is conducted with the same traffic and lock
data, but without the first-come-first-served policy. The results for instances
with 10 and 30 or more ships were omitted: all 10 ship instances were solved
in less than 2 seconds and only a few of the large instances were solved in less
than 12 hours.

Dropping the FCFS policy has several implications for the decomposition
method. In the MP, a number of constraints are dropped as they no longer
apply in the absence of the FCFS policy. Consequently, the MP becomes
substantially harder to solve. Furthermore, the absence of an explicit ordering
of the ships permits a significantly larger number of ship to lockage assignments
in the MP, rendering the no-good and order cuts ineffective. The resulting
performance decrease is reflected by the number of MP-SP iterations: the
instances from Section 5.3.1 are solved within a few iterations, whereas the
same instances in the absence of the FCFS rule require up to 3200 iterations
when applying no-good or order cuts. In the subsequent experiment, these cuts
have been replaced by the computationally more expensive subset cuts. Figures
5.5 (a) and (b) compare the performance of various methods. For the small
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chamber lock, using initial subset cuts appears to be the best approach, while
for the larger chamber, a combination of initial order cuts and feasibility subset
cuts works best. In either case, the decomposition approaches outperform the
monolithic model by a large extent.

From the above results, it is apparent that the absence of the FCFS rule has
a significant impact on the computation times. We therefore adopt the FCFS
policy for the remaining experiments.

Cut comparison (SSC) —— monolithic Cut comparison (SLC)

monolithic
o —— subship+order init o —— subship+order init
100000 No FCFS, 12h time limit subship init No FCFS, 12h time limit subship init

§ i

10000

{

Computation time (5)
Computation time (s)
3
8

3
8

10 1
1.20 2.20 3.20 520 1020 1520 3020 120 220 320 420 5.20 10_20 1520 30_20

4.20 .4
Instance Instance

@) (b)

Figure 5.5: Comparison of the computation time of different approaches for
single chamber locks without FCFS.

5.3.3 First-come-first-served parallel chamber lock

For the identical parallel chamber instances, the results for instances with 10
and > 30 ships were omitted. For a lock with two small parallel chambers, the
difference between the initial cuts is limited (Figure 5.6 (a)). Applying either
no initial cuts or subset initial cuts results in the best overall performance.
Figure 5.6 (b) shows that the feasibility subset and initial subset cut generation
methods are slower than the monolithic approach when inter arrival times are
large. The decomposition method is almost always faster for the other instances,
with a total computation time of 6.5, 2 and 1.5 hours for the monolithic,
feasibility subset and initial subset approaches respectively. For a large parallel
chamber lock, the initial surface cuts and initial order cuts show the best overall
performance, closely followed by the initial subsurface cuts (Figure 5.7 (a)). All
other initial cuts are significantly slower than the aforementioned initial cuts.
When comparing with the monolithic approach (Figure 5.7 (b)), the results
show that the feasibility and initial subset cut generation methods are much
faster when the ship inter arrival time is short. For instances with medium inter
arrival time (~ 10 minutes) no clear winner can be found, while the monolithic
approach is the best choice when facing large inter arrival times. Furthermore,
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both cut generation methods attested optimality on one instance more than
the monolithic approach.
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Figure 5.6: Comparison of the computation time of different cut generation
methods for a small parallel chamber lock under a FCFS policy.
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Figure 5.7: Comparison of the computation time of different cut generation
methods for a large parallel chamber lock under a FCFS policy.

5.3.4 First-come-first-served multi chamber type lock

The results for the multi chamber type lock are summarized in Figure 5.8.
Here only the > 30 ship instances were omitted. Similar to the SSC results it
appears that, aside from the number of ships, the ship inter arrival time has
the largest influence on the required computation time. Applying initial subset
cuts appears to be the best way of tackling LSP for this multi chamber type
setting. It is the fastest approach on all but a few instances and is able to attest
optimality for 31 out of 32 instances, while the monolithic approach fails to do
so for 10 instances.
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Figure 5.8: Comparison of the computation time of different cut separation
methods for the multi-chamber type lock under a FCFS policy.

5.3.5 Heuristic sub problem solution method

The last experiment considers the effects of applying the multi-order best-fit
heuristic to the SP while reducing the total calculation time to ten minutes. The
results of this heuristic approach are summarized in Table 5.2, with the results
of the monolithic approach under a time limit of 10 minutes added between
parentheses. When applying initial order cuts on the single small chamber lock,
all instances with less than 70 ships were solved to optimality in less than 5
minutes, whereas the monolithic approach failed to produce a feasible solution
in two cases. For the larger instances the heuristic approach matched the exact
results on 26 out of 48 instances, while in 4 cases no initial solution could
be produced within the time limit. The monolithic approach was not able to
produce more than 16 feasible and 8 exact results in the same amount of time.
For the single large chamber lock, the average optimality gap on the instances
with less than 70 ships was 0.21% for the heuristic approach. There are two
classes of instances for which optimality was not reached. A first class was solved
in less than 10 minutes and therefore optimality was unattainable on these 23
instances due to the application of the multi-order best-fit heuristic which was
unable to produce the optimal ship placement solutions. For the second class
of instances the time limit was reached, leaving two possible origins for the
remaining optimality gap: either the multi-order best-fit heuristic was unable
to produce optimal ship placement solutions, or the master problem had not
converged after 10 minutes and a further improvement of the objective would
be obtained when increasing the time limit. When applying the monolithic
model, 31 instances could not be solved and the exact results were matched
on 51% of the instances. The heuristic approach obtained better results than
the exact decomposition approach for two instances with 70 ships. For the first



EXPERIMENTS 85

instance, the maximum waiting time was reduced by 31 minutes, while the total
waiting time and the number of lockages remained the same. A reduction of the
total waiting time by 33 minutes was witnessed for the second instance, at the
expense of one additional lockage and an increase of the maximum waiting time
by 10 minutes. Both approaches reached the time limit of 12 hours (exact) and
10 minutes (heuristic) on these instances. Applying the exact decomposition
method to both instances with an increased time limit enabled the reproduction
and improvement of the heuristic solutions.

All PSC instances were solved to optimality by the heuristic decomposition
method when applying initial subset cuts, and the monolithic approach matched
the heuristic’s results on all but a few instances. For the PLC setting the multi-
order best-fit heuristic prevented the decomposition method from constructing
the optimal solution for two instances, resulting in a small optimality gap of
0.04% and 0.12%. Similar results are obtained for the multi chamber type
lock, where optimality could not be obtained for four instances, leading to a
maximum gap of 0.45%.

These results show that applying a high-performance heuristic for solving the
sub problem has very little impact on solution quality. The large differences
in solution quality between the exact and heuristic approaches for the very
large instances can be fully attributed to the MP which is unable to find a
good overall solution in 10 minutes. Furthermore, the heuristic decomposition
approach produced significantly better results than the monolithic model when
computation time is limited.
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Table 5.2: Summary of the heuristic experiments. Results for the monolithic
approach with a time limit of 10 minutes are added between parentheses as a
reference. ‘# ships’ denotes the range in instance size for the row and ‘Total’
the total number of instances in this range. The number of feasible solutions
found by the heuristic decomposition approach is added under ‘Feasible’. ‘Exact’
shows the number of instances for which the exact solution was matched by
the heuristic approach while ‘Gap’ shows the average gap between the exact
and heuristic solutions. *The heuristic decomposition outperformed the exact
solution approach for two instances.

Lock  # ships Total Feasible Exact Gap
S50 10-60 96 96 (94) 96 (93)  0.00%

70-90 48 44 (16) 26 (8)  17.60%
SLC 10-60 96 96 (65) 60 (49) 0.21%

70-90 48 48 (0) 3*(0) 76.10%
PSC 10-20 32 32 (32) 32 (31) 0.0%
PLC 10-20 32 32(32) 30(31) 0.01%
MCT  10-20 32 32 (32) 28 (27) 0.03%

5.4 Conclusion

An exact decomposition method for the lock scheduling problem has been
introduced. By solving the scheduling and assignment parts of LSP in the master
problem and dealing with the ship placement aspect of LSP in the sub problem,
an efficient solution method for the lock scheduling was constructed. Not only
are most Big M constraints removed from the model, thereby enabling a much
tighter linear relaxation of the master problem, the resulting sub problem is also
one for which some very effective (exact) solution methods exist. Through the
application of efficient cut separation methods for several types of combinatorial
Bender’s cuts in a branch-and-bound scheme, numerous new optimal results are
obtained for instances with up to 90 ships. The decomposition approach is most
effective when several ships can be transferred in a single lockage operation,
i.e. when the solution to the packing part of LSP is non-trivial. Reducing the
computation time from twelve hours to ten minutes and applying a heuristic to
the sub problem results in high quality solutions for all but the largest instances,
proving the potential of the proposed solution method in a heuristic approach.
These results also pinpoint the MP procedure as the main bottleneck in the
presented decomposition approach. Future work will therefore be aimed at
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improving the MP procedure. For example by improving the convergence rate
of the MP by adding a number of valid inequalities, or by applying a heuristic
method for the MP.






Chapter 6

Conclusion

The lock scheduling problem is a complex combinatorial optimization problem:
ships need to be assigned to lock chambers, their exact position inside the
chambers has to be defined and the resulting lockages require scheduling.
Given that locks are a key component of tide independent ports and numerous
inland waterways, optimization of lock operations could positively influence the
efficiency and economical attractiveness of water-bound transportation.

The lock scheduling problem for locks with a single or multiple parallel chambers
was studied in this thesis. The primary goal of this thesis was reached through
accurate modelling of the lock scheduling problem and its sub problems, which
enabled the formulation of real-life applicable exact and heuristic solution
methods. The development of a Combinatorial Benders’ decomposition method
capable of solving the lock scheduling problem by means of exact and heuristic
solution methods fulfilled this thesis’ secondary objective. Furthermore, we
showed that this complex combinatorial problem can be solved efficiently in
real-life situations, and that decision support software based on the developed
solution approaches could be a valuable addition to a lock master’s tool suite.

6.1 Contributions

The generalized lock scheduling problem for single-traffic and mixed-traffic locks
was introduced and modelled as a mixed integer linear programming problem
incorporating a wide range of properties and constraints from practice. As a
result, real-life feasible and, under the given objective, optimal solutions could
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be generated for small instances.

The ship placement sub problem of the LSP was studied extensively and
a decomposition method was presented enabling the generation of optimal
solutions to instances of any size in reasonable albeit somewhat unpredictable
time. A constructive heuristic for the ship placement problem generating
near-optimal results in a matter of milliseconds was developed and tested
extensively. The heuristic’s short and stable computation time and its high
solution quality render it ideal for application in decomposition methods where
the ship placement problem constitutes the sub problem or in decision support
software.

The ship placement solution approaches were incorporated in a decision support
tool for lock masters that was evaluated during live-tests at a major port and
on important mixed-traffic locks. The assistance from decision support software
was proven to be especially effective under peak traffic and in case of last-minute
changes to the ship arrivals.

An accessible application of Combinatorial Benders’ decomposition to the lock
scheduling problem was presented, along with several efficient cut generation
methods. By solving the assignment and scheduling parts of the LSP in the
master problem and checking the resulting lockage’s feasibility through the
application of a ship placement solution method, even very large problem
instances could be solved to optimality in less than twelve hours. Applying
the multi-order heuristic to the ship placement sub problem enabled solving
nearly all large instances to optimality in less than ten minutes, proving once
more the heuristic’s excellent solution quality. For the very large instances, the
slow convergence of the master problem prevented the algorithm from reaching
satisfying results.

6.2 Future research directions

The lock scheduling problem offers many opportunities for future research.
While some research directions concern new and faster solution methods, the
problem can also be extended to incorporate other lock configurations and some
strongly connected problems that were not addressed in this thesis.

Currently, the practical applicability of the presented decomposition approach
for the lock scheduling problem is limited by the slow convergence of the exact
solution approach for the master problem. The development of a faster, possibly
heuristic, solution method for this scheduling problem would facilitate solving
large and very large instances in acceptable computation time.
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Several combinations of exact and heuristic MP-SP solution approaches can
be applied in the presented Combinatorial Benders’ decomposition scheme.
While the application of exact solution approaches to both the master and
the sub problem was tested extensively and some experiments were performed
with heuristic solution methods for the packing sub problem, it would be most
interesting to compare these approaches while applying a heuristic solution
method to the master problem.

Where this thesis focussed on a single lock with multiple chambers, the situation
may arise where a ship can choose between several locks at different geographical
locations serving the same body of water. One example is the port of Antwerp
where three locks transfer ships from the river Scheldt to the port and back: the
Berendrecht-Zandvliet lock, the Boudewijn-Vancauwelaert lock and the Royers
lock. Taking into account travel times from a ship’s current position to each
lock and from these locks to the ship’s destination would enable co-scheduling
the locks and possibly further increase overall efficiency.

While the solution methods in this thesis enable optimizing the operations at an
individual lock, inland waterways often consist of a series of locks. Scheduling
these sequential locks together while taking into account travel times between
reaches (the parts of the inland waterway between two locks) and ships entering
or leaving the traffic flow between two locks would be an interesting approach
and could enable the introduction of a ‘green wave’ for barges, allowing them
to transfer a series of locks without any delays.

Tugboat planning would also be a most interesting addition to the lock scheduling
problem. The effects of an optimal lock scheduling could be reduced when too
few tugboats are available to move all transferred ships to their destination.
Coupling lock scheduling and tugboat planning would be especially interesting
when tugboats can be interchanged between locks, or when a ship’s travel time
depends upon the number of tugboats assisting it.

The applicability of the developed Combinatorial Benders’ decomposition
method is not limited to the lock scheduling problem. The method has potential
to improve existing approaches to other problems combining scheduling/planning
and packing (the patient admission scheduling problem with room assignment
constraints), assignment and packing (the shelf space optimization problem), ...






Appendix A

The three-way best-fit
heuristic

The contribution of this appendix, which is based on [Verstichel et al., 2013¢],
is an improved best-fit heuristic, called the three-way best-fit heuristic. This
heuristic is transformed for application to the ship placement problem in Chapter
3 of this thesis. Due to the differences between the orthogonal strip packing
problem and the ship placement problem (e.g. no rotation, limited number of
ships per lockage, ...) important parts of the paper could not be discussed in
Chapter 3.

The three-way best-fit heuristic applies a combination of the ideas from the
original best-fit heuristic [Burke et al., 2004] in conjunction with an efficient
input sequence disruption. In Section A.1, the three-way best-fit heuristic is
introduced and the ambiguities concerning the placement of rectangles are
clarified. Following this, the time complexity of the heuristic is improved by
implementing the data structures from Imahori and Yagiura [2010] in Section
A.2. Section A.3 discusses the results of the heuristics, in respect to both
solution quality and computation time. Finally, in Section A.4 the conclusions
are presented.

A.1 A three-way best-fit heuristic

Throughout the section which follows hereunder, a small example will be used
to clarify the different item orderings and selection procedures. The example
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contains three rectangles with the following widths w; and heights h;: 40x16,
25x24 and 16x13.

A.1.1 Original best-fit heuristic

This section presents the best-fit heuristic developed by Burke et al. [2004].
It introduces its essential components which will be extended and refined
throughout the appendix. The pseudo code of the heuristic is presented in
Algorithm 4, while the important concepts of the heuristic are depicted in
Figure A.1. Figure A.1 (b) shows the skyline, while Figure A.1 (d) shows the
location of the gaps and the lowest gap.

Given an initial list of n rectangles, the heuristic first generates a list of size 2n,
containing all rectangles in both their default and rotated configuration. The 2n
rectangles are then ordered by decreasing horizontal dimension. For the small
example, this results in the following item order: 40x16, 25x24, 24x25, 16x40,
16x13 and 13x16. Upon the conclusion of this step, the solution construction
begins by initialising the sheet skyline. This is essentially an integer list with a
length equal to the sheet width. Each element of this list contains the present
total height of the packing (initially 0) at its  coordinate. Once the skyline is
initialised, the lowest gap is located, i.e. the lowest sequence of x coordinates
with an identical height. The heuristic then determines the best-fitting rectangle
for this gap by iterating over the ordered rectangles. This best-fitting rectangle
is the first rectangle in the list fitting the width of the gap. When the rectangle
does not fit the gap exactly, it will be placed at either the left or the right
side of the gap, based on the decision of the placement policy used. Once the
best-fitting rectangle is placed, the skyline is adjusted to reflect this addition,
and the rectangle’s two configurations are removed from the list. In the case
that no best-fitting rectangle can be found for the current gap (i.e. its width is
smaller than the smallest rectangle dimension), the skyline at the gap is lifted
so that it levels with the lowest of the rectangles neighbouring the gap. The
process described above is repeated until all the rectangles are placed.

After the construction phase, the post processing part of the heuristic attempts
to further improve the solution’s quality by removing towers. This is achieved by
first checking whether the topmost rectangle is placed in its rotated configuration,
in which case the rectangle is rotated by 90 degrees and placed at the lowest
possible position on the sheet. If this renders an improvement, the process
is repeated for the new topmost rectangle. When this procedure does not
constitute an improvement, or when the topmost rectangle has already been
placed in its default configuration, the post processing step terminates.
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Algorithm 4 Pseudo code of the best-fit heuristic as introduced in Burke et al.
[2004].

Input: Stock sheet dimensions
Input: List of n rectangles to pack
1: Rotate each rectangle so that width > length
2: Sort rectangle list by decreasing rectangle width
3: for Each placement policy do
4 Initialize skyline
5 while not all Rectangles packed do
6: Find Lowest Gap
7
8
9

if Best-Fitting rectangle available then
Place rectangle using Placement Policy
Update skyline

10: else
11: Raise Gap to Lowest Neighbour
12: end if

13: end while
14: while TowerReduction not finished do

15: Find topmost rectangle

16: if Rectangle width > length then

17: Optimization finished

18: else

19: Remove topmost rectangle

20: Rotate rectangle

21: Update skyline

22: while Rectangle doesn’t fit Lowest Gap do
23: Raise Gap to Lowest Neighbour

24: end while

25: Place rectangle using Placement Policy
26: Update skyline

27: if Packing not improved then

28: Optimization finished

29: end if

30: end if

31: end while
32: end for
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A.1.2 Original placement policies

The best-fit heuristic uses three different placement policies:

o Leftmost: place the fitting rectangle at the left-hand side of the gap

o Tallest: place the fitting rectangle adjacent to the tallest gap-defining
rectangle, with preference for the sheet side

e Shortest: place the fitting rectangle next to the shortest gap-defining
rectangle

Burke et al. [2004] assume that the shortest neighbour policy is the inverse
of the tallest neighbour policy. Careful examination of their results, however,
reveals that whenever confronted with two neighbours that end at the same
level, both placement policies add the rectangle at the left-hand side of the
gap. Only when the lowest gap is defined by the sheet sides will the shortest
neighbour policy place the rectangle at the right-hand side, which is indeed the
inverse of the position the tallest neighbour policy would adopt.

Before starting the introduction of the new placement policies, we first present
a more precise definition of the tallest and shortest neighbour policies used in
Burke et al. [2004], in order to avoid any possible ambiguity. This definition is
based on careful analysis of the reported results, policy descriptions and figures
from the original paper.

The tallest neighbour policy places the new rectangle next to the gap-defining
rectangle that ends at the highest level, disregarding the actual height of this
rectangle. From the point of view of the new rectangle, this is its tallest
neighbour. The sheet side is always the tallest neighbour, as the sheet is
considered to be infinitely long. In case of a tie, the tallest neighbour policy
always places the rectangle at the left-hand side of the gap. This placement
policy is visualised in Figure A.1, where the new rectangle is always shown
in grey. Figure A.1 (a) shows a tie, as the gap is flanked by both sheet sides.
Therefore, the rectangle is placed at the left-hand side. The rectangle added
in Figure A.1 (b) fits exactly, so no placement decision has to be made. In
A.1 (c), the sheet side is the tallest neighbour, so the rectangle is placed at the
left-hand side of the gap. In A.1 (d) the rectangle fits exactly, while in A.1 (e)
the left sheet side is the tallest neighbour. Figure A.1 (f) represents a tie as
both gap-defining rectangles end at the same height, thus the rectangle is added
at the left-hand side of the gap.

The shortest neighbour policy places a new rectangle next to the gap-defining
rectangle that ends at the lowest level, disregarding the actual height of this
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rectangle. As the sheet side is infinitely long, it will never be considered the
shortest neighbour. In case of a tie, this placement policy positions the rectangle
at the left-hand side of the gap in all cases but one: if the gap is defined by both
sheet sides, the rectangle is placed at the right-hand side of the gap. Although
this definition of the shortest neighbour policy may appear somewhat complex,
experiments show that it performs more efficiently than the inverse of the tallest
neighbour policy. This is probably due to a stronger symmetry disruption
compared to the other policies. Figure A.2 visualises the shortest neighbour
policy. The gap in A.2 (a) is defined by both sheet sides, so the rectangle is
placed at the right-hand side of the sheet. In A.2 (b), the rectangle fits exactly
and completely fills the gap. In A.2 (¢), the gap is defined by a rectangle on
the left and the sheet side on the right, so the new rectangle is placed at the
left-hand side. In A.2 (d) the rectangle fits exactly after rotation. In A.2 (e),
the shortest neighbour is on the left-hand side of the gap, so that is where the
new rectangle will be placed. Due to the tie in Figure A.2 (f), the rectangle is
placed at the left-hand side of the gap.

Tallest neighbour policy

e

Figure A.1: Visual examples of the tallest neighbour policy.

Shortest neighbour policy

(@) (b) (© (d) (e) ®

Figure A.2: Visual examples of the shortest neighbour policy.

A.1.3 New placement policies
Complementing the above placement policies we propose three new ones:

¢ Rightmost: place the fitting rectangle at the right-hand side of the gap

o MaxDiff: place the fitting rectangle so that the difference in top level with
its neighbour is maximal



98 THE THREE-WAY BEST-FIT HEURISTIC

o MinDiff: place the fitting rectangle so that the difference in top level with
its neighbour is minimal

The rightmost neighbour policy is the inverse of the leftmost neighbour policy.
Burke et al. [2004] claim that using a rightmost neighbour policy would result in
a mirror image of the leftmost neighbour policy, however this claim only holds
for a few particular cases. While placing a rectangle at the right-hand side of
the gap does indeed represent the inverse of placing it at the left-hand side, it
constitutes mirroring only when no intermediate solution contains more than a
single gap of equal level. Unless the gap location procedure for the rightmost
neighbour policy is the inverse of the gap location procedure of the leftmost
neighbour policy, the resulting solutions will not constitute mirroring. Thus,
including the rightmost neighbour policy when utilising the best-fit heuristic
is worthwhile, as it may strengthen the solution quality by breaking some of
the symmetry. Section A.3 demonstrates that adding this placement policy
effectively improves the results of the best-fit heuristic.

The MaxDiff neighbour policy is similar to the tallest neighbour policy, but
places the rectangle next to the neighbour with which the difference in top level
is maximal. In the case of ties, this placement policy behaves like the tallest
neighbour policy, i.e. it will always place the rectangle at the left-hand side of
the gap. Figure A.3 visualises this placement policy. In Figure A.3 (a), the new
rectangle is placed at the right-hand side of the gap as the right-hand side gap
defining rectangle ends at a lower level, while the left-hand side gap defining
rectangle ends at the same level as the new rectangle. The same situation occurs
in (b), but the right-hand side gap defining rectangle ends higher than the new
rectangle. In Figure A.3 (c¢) both top levels are the same, and in Figure A.3
(d) the absolute difference in top level with the new rectangle is equal at both
sides. With a tie presenting itself in both cases, the rectangle is placed at the
left-hand side of the gap.

The MinDiff neighbour policy works similarly to the shortest neighbour policy,
but places the rectangle next to the neighbour whose top level difference is
minimal. In case of ties, this placement policy behaves exactly like the shortest
neighbour policy. Figure A.4 visualises this placement policy. In Figures A.4 (a)
and (b), the new rectangle is placed at the right-hand side of the gap, because
the rectangle to the right has the same top level as the new rectangle, while the
rectangle to the left has a lower/higher top level. Figure A.4 (¢) demonstrates
a tie as both neighbours have the same top level, so the rectangle is placed at
the left-hand side. Figure A.4 (d) also shows a tie. Since the absolute height
difference is equal for both gap defining rectangles, this situation also leads to a
left-hand side placement of the rectangle.
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A.1.4 New orderings

The original best-fit heuristic uses a decreasing width ordering. We suggest the
addition of two more orderings to the solution process: decreasing height order
and decreasing surface order. Including both orderings ensures a significant
disruption in the sequence of the rectangles when compared to the width ordering
alone.

Given a list of n ships in the default configuration, the decreasing height order
sorts the items by decreasing height. Next, each item’s rotated configuration is
added to the list, directly after its default configuration. As far as the small
example is concerned, the rectangle ordering becomes 25x24, 40x16 and 16x13,
while the resulting list for the best-fit heuristic is 25x24, 24x25, 40x16, 16x40,
16x13 and 13x16. The new ordering leads to better results when, for example,
some rectangles have a dimension larger than the sheet width. These items
cannot be rotated and the best-fit heuristic often adds them towards the end of
the procedure, leading to the formation of irremovable towers that detrimentally
affect solution quality. By using the decreasing height order, those rectangles
are added at the beginning of the search process, reducing the risk of generating
towers. It should be noted that if the height ordering would be applied using the
rotated configuration, all items would be placed in their rotated configuration
(i.e. portrait), which is undesirable when trying to solve this type of problem.

MaxDiff neighbour policy

5 el W | ==
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Figure A.3: A visual representation of the MaxDiff neighbour policy.

MinDiff neighbour policy
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Figure A.4: A visual representation of the MinDiff neighbour policy.
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Sorting by decreasing surface order results in a procedure where large rectangles
are assigned the highest priority. The procedure for ordering the items is the
same as that of the decreasing height ordering, resulting in the following item
list: 40x16, 16x40, 25x24, 24x25, 16x13 and 13x16. The inclusion of these two
additional orderings triples the computation time of the heuristic because the
heuristic is run three times in stead of only once. Nevertheless the computation
times remain short, even for large instances.

A.1.5 Three-way best-fit heuristic

By applying both the old and new placement policies and combining them with
the decreasing width, height and surface orders, we create a high-performing
extension to the best-fit heuristic. We call this new heuristic the three-way
best-fit heuristic, as the rectangles are ordered in three different ways during
the search for a good solution. In fact, this heuristic solves the same problem
repeatedly, using a different ordering and placement policy combination each
time. These orderings and placement strategies can easily be added or removed
when necessary. For example, when all shapes under consideration are square,
one of the proposed orders suffices because all the others will result in the same
initial sequence. The pseudocode of the three-way best-fit heuristic is presented
in Algorithm 5.

A.1.6 Special cases

When solving strip packing problems with the best-fit heuristic, particular
problems may arise when dealing with problem instances that contain rectangles
for which the largest dimension (called the rectangle’s width, without loss of
generality) is larger than the sheet width. The best-fit heuristic does not
prioritise the placement of these items. Even worse, this kind of ‘oversized’
rectangle has a high probability of being among the last items that are placed.
Since these rectangles cannot be placed on the stock sheet in landscape, they
must be placed as a rotation candidate. Therefore, they will now be placed only
if no other remaining item better fits the gap (Section A.1.1). To rephrase, the
oversized rectangle will only be placed in the gap when none of the remaining
items have one of their dimensions larger than the oversized rectangle’s height
and smaller than the gap. If the problem contains one rectangle of dimension
10x2 and six squares of dimension 3x3 on a sheet with width 9, the first (and
largest) rectangle will be placed last. This will result in a very poor quality
solution with total height of 16 (Figure A.5 (a)). A much better procedure
is to place the oversized rectangle earlier on in the solution process, like in
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Algorithm 5 Pseudo code of the three-way best-fit heuristic.

Input: sheetlnfo S

Input: list L of rectangles

1: bestS < empty Sheet

2: for Each ordering policy OrderPol do

3: OrderedSeq <« all rectangles in L

4 order OrderedSeq using OrderPol

5 for Each placement policy do

6: newS < new Sheet with dimension from S
7 RectangleSeq < OrderedSeq

8 while not all Rectangles added to newS do

9: CurrGap < Lowest Gap

10: Get Best-Fitting Rectangle R

11: if Best-Fitting Rectangle found then

12: newS < R at position in CurrGap determined by placement policy
13: Remove R from RectangleSeq

14: Update Skyline to reflect addition of R
15: else

16: Raise Gap to Lowest Neighbour

17: end if

18: end while

19: Reduce towers (post-processing)

20: if newS is better than bestS then

21: bestS <+ newS

22: end if

23: end for

24: end for

25: return bestS

Figure A.5 (b), where the total height is only 10. The impact of this special
case characteristic can also be observed when applying the best-fit heuristic to
the N9 instance [Burke et al., 2004] using the best-fit heuristic. This instance
has two rectangles with a dimension larger than the sheet width. While one is
placed on the sheet early in the solution process, the other is placed towards
the end. This results in a solution containing a large tower that cannot be
eliminated by rotation (Figure A.6). Therefore, one more rule is added to
the three-way best-fit heuristic, namely not to use the default configuration of
rectangles with a width larger than the sheet width. There are two ways to ‘not
use’ the default configuration. A first approach is to create the ordered item list,
and then remove the default configuration of all oversized rectangles. This does
not change the rectangle placement nor the solution quality. A second approach
is to create the ordered item list, and then replace the default configuration of
the oversized rectangles by their rotated configuration. The experiments have
shown that the second approach does indeed lead to better results when the
instance contains oversized rectangles.

e Decreasing width: 10x2, 3x3, 3x3, ..., 3x3, 2x10
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o First approach: 3x3, 3x3, ..., 3x3, 2x10
e Second approach: 2x10, 3x3, 3x3, ..., 3x3, 2x10

@) (b)

Figure A.5: A visual representation of the solution for the best-fit heuristic
without the rotation rule (a) and with the rotation rule (b) for a test instance
with one rectangle that has a dimension that is larger than the sheet width.

Figure A.6: A visual representation of the solution of the best-fit heuristic for
the N9 instance from [Burke et al., 2004]. The rectangles for which the largest
dimension is larger than the sheet width are coloured dark grey.

A.2 An optimal time three-way best-fit heuristic

Imahori and Yagiura [2010] analyse the time and space complexity of the
original best-fit heuristic and introduce an optimal time best-fit heuristic. In
this section, we present the optimal time data structures mentioned and discuss
their applicability to the three-way best-fit heuristic.
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A.2.1 Alternative data structures for the best-fit heuristic

Imahori and Yagiura [2010] store the sheet skyline using both a heap and a
doubly linked list, allowing for a significant improvement in computation time
when compared with the original data structures from Burke et al. [2004]. Each
gap is now represented by an object with a start position, an end position and
a height. The location and size of the lowest available gap is determinable
in constant time, while the complexity of updating the skyline is reduced to
O(logn). The original data structure requires O(n) for locating the lowest
available gap and constant time for updating the skyline.

The items are stored in a balanced binary tree, based on their width. Both
the default and rotated configuration of each item are placed into this tree,
thus enabling O(logn) complexity for locating the best-fitting rectangle for
the current gap. This balanced binary tree structure contributes to another
complexity reduction compared to the O(n) of the original data structure.

A.2.2 Applicability of the data structures

There is no difference between the gap location and gap updating in the original
best-fit heuristic and the three-way best-fit heuristic. Therefore, the optimal
time gap location data structure can be used as is in the three-way best-fit
heuristic.

The rectangle selection procedure, however, is not directly applicable due to
the new item orderings. There is a mismatch between the alternative orderings
of the items, which are based on the height/size of the rectangles, and the
rectangle selection procedure, which is always based on the width of the gap.
The height and surface orderings of the items fail to maintain consistency
with respect to the width of items. It is therefore impossible to obtain the
same rectangle placement sequence in O(logn) time as after an O(n) linear
search. We can, however, use the height/surface ordering while searching in
a width-ordered balanced binary tree for the rectangle selection. This works
as follows. The item’s normal and rotated configurations are first stored in
lists containing only other items with the same width (say w), while respecting
their original height /size ordering. Each list is then linked to a ‘dummy’ item
with that same width w, which is added to a decreasing width ordered binary
tree. The balanced binary tree can be used in the same way as before, but
instead of selecting the resulting dummy item, the first item in the associated
list is selected for placement. This data structure yields a fitting rectangle in
O(logn) time, as removing the first item from a list requires only constant time.
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Nevertheless, the probability is high that a different rectangle will be selected
than when using the original linear search.

We use the small example to elucidate the differences between the original
linear search and the linked binary tree (Figure A.7). Applying the original
rectangle selection procedure to a decreasing height ordered list, results in the
following priority for placing the items: 25x24, 24x25, 40x16, 16x40, 16x13 and
13x16. The resulting linked binary tree is visualised in Figure A.7 (a). The
white rectangles represent the dummy items stored in a balanced binary tree,
while the coloured rectangles represent the actual items (‘R’ for the rotated
configuration). Using the linear search, the resulting solution for a sheet width
of 41 is presented in Figure A.7 (b). Applying the linked binary tree for the
rectangle selection and the same height ordering, we obtain the result in Figure
A.7 (c), which is clearly not equivalent to the result generated by the original
procedure. Figure A.7 (c) also shows that the items with the largest height are
not necessarily placed with the highest priority.

25x24

IW 13 [w:24 | 40x16
13x16
(R) ™1 24x25(R)

16x40

®) 16x13

@ (b) (©

Figure A.7: Visualisation of the linked binary tree on the small example using
a height ordering (a), and the resulting solution for the same problem using (b)
the linear search, (c) the linked binary tree.

The main advantage of the height and surface based orderings is the disruption of
the generated priority sequence in comparison to the decreasing width ordering.
Applying the linked binary tree to these orderings, also results in a strong
disruption of the priority sequence compared to the decreasing width ordering.
Although the resulting sequence is different from the result of the linear search,
the linked binary tree’s complexity is advantageous. Compared to the O(n?)
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complexity of the original implementation, the computation time is much
smaller for large problem instances. Even if the priority disruption between
the different orderings is less effective than for the linear search, the possible
decrease in solution quality will most likely be irrelevant given the strongly
reduced computation times. It is therefore worthwhile to further investigate
the heuristic’s performance with the linked binary tree, especially for very large
problem instances. We call this heuristic the three-way heuristic. The best-fit
part has been removed from the name, given the fact that the rectangle obtained
when using the height/area orderings is a fitting one, but not necessarily the
best-fitting rectangle that would have been selected when using a linear search.

To conclude this section, we succinctly summarize the properties of the new
heuristics. The three-way best-fit heuristic is based on the original rectangle
selection with all three orderings, all six placement strategies and the optimal
time gap location procedure. The optimal time three-way heuristic uses the
same orderings and placement strategies, but implements both the optimal time
gap location and the optimal time linked binary tree-based rectangle selection
procedure. A final heuristic presented is the combined three-way heuristic,
which solves each instance with both aforementioned heuristics and returns the
best solution found.

A.3 Experiments

We discuss the performance of the three-way best-fit heuristic and its optimal
time variant on a set of benchmark instances from the literature for which the
optimal solution is known (Table A.1). Due to the very large computation times
required to solve the 19 and 20 instances from Imahori and Yagiura [2010]
with the original and three-way best-fit heuristic, these instances have only been
addressed in terms of scalability (Section A.3.5). For all the other experiments,
these very large instances were removed from the test set. First, we report on
the improvements that can be made by adding the placement policies from
Section A.1.3. After that, the effect of adding additional orderings is discussed,
and we show the performance gain that can be obtained by combining both
extensions into a three-way best-fit heuristic. Next, a comparison is made
between several other best-fit improvements and a top performing metaheuristic
for the strip packing problem. Finally, we report on the experiments concerning
the scalability of the original best-fit heuristic [Burke et al., 2004], the optimal
time best-fit heuristic [Imahori and Yagiura, 2010] and the three-way heuristics.
All experiments were performed on a Dell Optiplex 755 with an Intel(R)
Core(TM)2 Duo CPU E8600 (3.33GHz) and 8GB of memory running a 64-bit
Scientific Linux. When referring to the optimality gap of a heuristic, the gap is
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computed as follows: 100(H euristic — Optimal)/Optimal(%) in percent. The
difference in solution quality between two heuristics is calculated using the
following formula: 100(Heuristicl — Heuristic2)/Heuristicl(%).

Table A.1: Used benchmarks from the literature.

Data source Problem category  #Problems  #Rectangles
Hopper [2000] T1-T7, N1-N7 70 17 to 199
Hopper and Turton [2001] C1-C7 21 16 to 197
Burke et al. [2004] N1-N13 13 10 to 3152
Imahori and Yagiura [2010] i4-i20 170 24 to 220

The results generated by the best-fit heuristic for the same data instances
sometimes differ slightly between [Burke et al., 2004] and [Burke et al., 2009].
Solutions obtained by our best-fit implementation matched the results of either
one of the two mentioned papers in all but four cases. Private communication
enabled the clarification of this issue. Newly generated visual representations of
the best-fit heuristic results provided by the authors of both papers matched our
solutions exactly. After so many years, this mismatch can no longer be traced
back to the original software. While the differences are negligible in most cases,
for the N3 and N9 instances significant deviations exist between our solutions
and those reported. Thus we decided to base the experimental comparison on
our own implementation of the best-fit heuristic. The solution opted for, as
such, also allows for a fair comparison between the best-fit heuristic and our
improvements, since all results are based on the same best-fit implementation.

A.3.1 Placement policies

A summary of the effect of the three new placement policies on the solution
quality is shown in Table A.2, presenting the increase in solution quality obtained
when all placement policies are used compared to using the original best-fit
heuristic. The experiments were performed using the decreasing width ordering.
A table illustrating detailed results for all 267 instances and each individual
placement strategy is available online [Verstichel, 2011]. The detailed results
show that the performance of the placement policies is instance dependent, with
certain policies performing better than average on some instances and poorer
than average on others. Therefore, all placement policies should be combined
for the best results. This combination performs statistically better than the
original best-fit with more than 99.999% certainty. The average difference in
solution quality is 0.27%. Whilst perhaps appearing to be a small increase in
solution quality, it should be noted that the optimality gap is reduced by 5.14%
on average, with a maximum of 50%.
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The combination of all six placement policies increases the computation time,
but instances with up to 16384 items remain solvable in less than one second
when applying the optimal time heuristic. Instances with up to 4096 items
can be solved in an equal amount of time when using the optimal gap location
procedure, whereas the original implementation is limited to instances with just
512 items. The results also show that the rightmost policy indeed produces
differing results compared with the leftmost policy in several instances. An
analysis of these instances showed that they had at least one state in the
solution process that contained multiple gaps at the same level. From here on,
the solution construction was no longer symmetrical to that of the leftmost
policy, proving true the statement made in Section A.1.3.

A.3.2 Orderings

In addition to the width ordering of the original best-fit heuristic, we proposed
two more orderings: decreasing height ordering and decreasing surface ordering.
A summary illustrating the effects on the solution quality of introducing these
orderings is presented in Table A.2. The experiments were performed using
the three placement strategies of the original best-fit heuristic. The detailed
results [Verstichel, 2011] show that each ordering performs best on a number
of instances, and worst on others. The results obtained combining all three
orderings are significantly better than those obtained with the original best-fit
heuristic with a certainty of 99.998%, while the average improvement is 0.14%.
Furthermore, the optimality gap was reduced by up to 75%. However, applying
the two additional orderings increases the computation time. Nevertheless, test
instances with 16384 items are still solvable in less than one second using the
optimal time heuristic. Using only the optimal gap location procedure enables
solving instances with up to 2048 items in the same amount of time, whereas
the original implementation is limited to 512 items.

A.3.3 Three-way best-fit

There exists further potential to improve the solution quality by integrating all
ordering strategies and placement policies into a three-way best-fit heuristic.
This three-way heuristic employs three different orderings (width, height and
surface) and six different placement strategies (left, right, tallest, shortest,
minDiff and maxDiff). Each instance is solved for all 18 ordering-placement
combinations. Additionally we employ the rotation rule (Section A.1.6) to
the heuristic to obtain the best results. The optimal time three-way heuristic,
however, ignores this rule due to its different rectangle selection procedure. Table
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A .2 shows a summary of the results for the three-way best-fit heuristic and
optimal time three-way heuristic. The computation time increases compared to
adding only the new placement policies or only the new orderings. Nevertheless,
instances with over 1024 rectangles are still solvable in under one second. Using
the three-way best-fit heuristic produces significantly better results compared to
the previous two approaches. A T-test was applied for statistical analysis. The
three-way best-fit heuristic performs better than the original best-fit heuristic
with a confidence interval of more than 99.9999%. Furthermore, the average
improvement of the three-way best-fit heuristic over the original is 0.47%, while
the optimality gap is reduced by an average of 7.88%.

The optimal time three-way heuristic produces slightly worse results when
compared to the three-way best-fit heuristic. For the largest instances however,
(114-i18) the optimal time three-way heuristic obtains better results than the
three-way best-fit heuristic in several cases. A statistical analysis shows that the
results of the two three-way heuristics are not significantly different (p —value =
0.158). When compared with the three-way best-fit heuristic, the merger of
both heuristics performs better (Table A.2), alongside a negligible increase in
computation time. When considering the largest instances with 28 rectangles,
we find that the optimality gap is reduced by 8.13% on average by combining
both heuristics, compared to 3.21% when using the three-way best-fit heuristic.
Simultaneously, the required computation time is increased by, at most, 0.6%.

A.3.4 Comparison to state of the art (meta)heuristics

Two other enhancements to the best-fit heuristic have been presented in the
literature: the bidirectional best-fit heuristic [Agsik and Ozcan, 2009] and the
simulated annealing enhancement of the best-fit heuristic [Burke et al., 2009].
We will compare the enhancements mentioned and the top performing GRASP
approach for the strip packing problem [Alvarez-Valdes et al., 2008] to the
three-way best-fit heuristic. In Table A.3, the results of the four heuristics
for the Hopper and Turton [2001] and Burke et al. [2004] instances are shown.
The results were taken from the papers cited and we refer the reader to those
papers for further information. When considering solution quality, the GRASP
approach is clearly superior. The three-way approach is able to compete with
the other two best-fit based heuristics on several instances, while not producing
the best results. With respect to the computation times, however, the three-way
heuristics are clearly superior, requiring only a fraction of the computation time
required by any of the other heuristics. When compared to the original best-fit
heuristic, both three-way approaches have similar or lower computation times,
while obtaining significantly better results.
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Table A.2: Average and maximal improvements of the total required height
(‘Solution quality’), average and maximal decreases of the optimality gap
(‘Optimality gap’), and number of improved instances (‘#’) compared to the
original best-fit heuristic, for each test setting.

All placement policies

Solution quality Optimality gap
Test set Y%average  %max  %average  Y%max #
Hopper 0.48% 4.96% 7.25% 44.44% 21/70
Hopper Turton 0.31% 4.55% 5.16% 50.00% 3/21
Burke 0.17% 0.95% 6.67% 33.33% 3/13
Imahori 0.17% 3.58% 4.02% 46.32% 50/150
All 0.27% 4.96% 5.14% 50.00% 77/254

All orderings

Solution quality Optimality gap
Test set %average  %max  %average  Y%max #
Hopper 0.06% 2.27% 0.80% 25.00% 3/70
Hopper Turton 0.78% 12.50% 6.75% 75.00% 3/21
Burke 0.60% 5.52% 6.86% 69.23% 2/13
Imahori 0.04% 1.23% 2.07% 27.70% 22/150
All 0.14% 12.50% 2.35% 75.00% 30/254

Three-way best-fit heuristic

Solution quality Optimality gap
Test set Y%average  %max  %average  Y%max #
Hopper 0.64% 5.38% 9.09% 52.17% 25/70
Hopper Turton 1.36% 12.50% 14.29% 75.00% 7/21
Burke 1.13% 5.52% 18.48% 69.23% 7/13
Imahori 0.21% 3.58% 5.49% 46.32% 61/150
All 0.47% 12.50% 7.88% 75.00%  100/254

Optimal time three-way heuristic

Solution quality Optimality gap
Test set Y%average  %max  %average  %max #
Hopper 0.48% 4.96% 7.25% 44.44% 21/70
Hopper Turton 0.31% 4.55% 5.16% 50.00% 3/21
Burke 0.17% 0.95% 6.67% 33.33% 3/13
Imahori 0.17% 3.58% 4.87% 46.32% 54/150
All 0.27% 4.96% 5.64% 50.00% 81/254

Combined three-way heuristics

Solution quality Optimality gap
Test set Y%average  %max  %average  %max #
Hopper 0.64% 5.38% 9.09% 52.17% 25/70
Hopper Turton 1.36% 12.50% 14.29% 75.00% 7/21
Burke 1.13% 5.52% 18.48% 69.23% 7/13
Imahori 0.21% 3.58% 6.13% 46.32% 64/150

All 0.47% 12.50% 8.25% 75.00%  103/254
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Table A.3: Comparison of the best-fit heuristic, two best-fit based (meta)heuristics [Astk and Ozcan, 2009; Burke et al.,
2009], a top performing GRASP approach [Alvarez-Valdes et al., 2008] and both three-way heuristics.

Best-Fit (BF) Bilinear BF SA Best-Fit GRASP Three-way BF  Optimal time three-way

Label Items Optimal Result Time (s) Result Time (s) Result Time (s) Result Time (s) Result Time (s) Result Time (s)
N1 10 40 45 < 0.01 40 0.03 40 ~60.00 40 ~60.00 44 < 0.01 45 < 0.01
N2 20 50 53 < 0.01 52 0.02 50 ~60.00 50 ~60.00 53 < 0.01 53 < 0.01
N3 30 50 54 < 0.01 52 0.05 51 ~60.00 51 ~60.00 52 < 0.01 54 < 0.01
N4 40 80 86 < 0.01 82 0.09 82 ~60.00 81 ~60.00 86 < 0.01 86 < 0.01
N5 50 100 105 < 0.01 104 0.14 103 ~60.00 102 ~60.00 104 < 0.01 104 < 0.01
N6 60 100 102 < 0.01 102 0.16 102 ~60.00 101 ~60.00 102 < 0.01 102 < 0.01
N7 70 100 107 < 0.01 106 0.22 104 ~60.00 101 ~60.00 106 < 0.01 107 < 0.01
N8 80 80 83 < 0.01 82 0.28 82 ~60.00 81 ~60.00 83 < 0.01 83 < 0.01
N9 100 150 163 < 0.01 152 0.33 152 ~60.00 151 ~60.00 154 < 0.01 163 < 0.01
N10 200 150 153 < 0.01 151 1.13 152 ~60.00 151 ~60.00 152 0.01 152 0.01
N11 300 150 153 < 0.01 151 2.14 153 ~60.00 151 ~60.00 152 0.009 152 0.017
N12 500 300 305 < 0.01 303 5.95 306 ~60.00 303.2 ~60.00 305 0.013 305 0.025
N13 3152 960 964 0.34 964 163.42 964 ~60.00 963 ~60.00 964 0.586 964 0.235
C1l-P1 16 20 21 < 0.01 20 0.02 20 ~60.00 20 ~60.00 21 < 0.01 21 < 0.01
C1-P2 17 20 22 < 0.01 21 0.02 20 ~60.00 20 ~60.00 21 < 0.01 21 < 0.01
C1-P3 16 20 24 < 0.01 21 0.02 20 ~60.00 20 ~60.00 21 < 0.01 24 < 0.01
C2-P1 25 15 16 < 0.01 16 0.05 16 ~60.00 15 ~60.00 16 < 0.01 16 < 0.01
C2-P2 25 15 16 < 0.01 16 0.03 16 ~60.00 15 ~60.00 16 < 0.01 16 < 0.01
C2-P3 25 15 16 < 0.01 15 0.03 16 ~60.00 15 ~60.00 16 < 0.01 16 < 0.01
C3-P1 28 30 32 < 0.01 30 0.05 31 ~60.00 30 ~60.00 32 < 0.01 32 < 0.01
C3-P2 29 30 34 < 0.01 33 0.05 31 ~60.00 31 ~60.00 32 < 0.01 34 < 0.01
C3-P3 28 30 33 < 0.01 31 0.05 31 ~60.00 30 ~60.00 32 < 0.01 33 < 0.01
C4-P1 49 60 63 < 0.01 62 0.11 61 ~60.00 61 ~60.00 63 < 0.01 63 < 0.01
C4-P2 49 60 62 < 0.01 62 0.11 61 ~60.00 61 ~60.00 62 < 0.01 62 < 0.01
C4-P3 49 60 62 < 0.01 61 0.11 61 ~60.00 61 ~60.00 62 < 0.01 62 < 0.01
C5-P1 72 90 93 < 0.01 91 0.19 91 ~60.00 91 ~60.00 92 < 0.01 92 < 0.01
C5-P2 73 90 92 < 0.01 92 0.19 91 ~60.00 91 ~60.00 92 < 0.01 92 < 0.01
C5-P3 72 90 93 < 0.01 91 0.19 92 ~60.00 91 ~60.00 93 < 0.01 93 < 0.01
C6-P1 97 120 123 < 0.01 122 0.33 122 ~60.00 121.9 ~60.00 123 < 0.01 123 < 0.01
Ce6-P2 97 120 122 < 0.01 121 0.31 121 ~60.00 121.9 ~60.00 122 < 0.01 122 < 0.01
C6-P3 97 120 124 < 0.01 122 0.38 122 ~60.00 121.9 ~60.00 123 < 0.01 123 < 0.01
C7-P1 196 240 246 0.01 243 1.2 244 ~60.00 244 ~60.00 244 < 0.01 246 < 0.01
C7-P2 197 240 244 < 0.01 244 1.05 244 ~60.00 242.9 ~60.00 244 < 0.01 244 < 0.01
C7-P3 196 240 245 < 0.01 244 1.14 245 ~60.00 243 ~60.00 245 < 0.01 245 < 0.01

Total 6065 4035 4156 0.403 4099 179.59 4097 ~2040 4073.8 ~2040 4129 0.67 4150 0.376
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A.3.5 Scalability

Imahori and Yagiura [2010] introduced a large test set for the orthogonal strip
packing problem. The test set contains instances with up to 220 rectangles,
and enables easy comparison of the different heuristics’ scalability. To make a
fair analysis, we first compare the run times of the three implementations
using decreasing width ordering and the left placement policy, i.e. each
heuristic constructs exactly one solution. Figure A.8 illustrates that the
original implementation [Burke et al., 2004] is slower for all instances. The
three-way best-fit heuristic clearly benefits from the optimal gap location
process, as the computation times are strongly reduced when compared to
the original implementation. However, this effect decreases as the instance
size increases. The optimal time best-fit heuristic [Imahori and Yagiura, 2010]
performs similarly to the optimized implementation for instances with less than
1024 pieces. For all the larger instances, the optimal time implementation is
significantly faster due to its efficient rectangle selection procedure.

When comparing the original best-fit heuristic to the three-way best-fit heuristic
and the optimal time three-way heuristic, the same trend becomes visible.
Despite the fact that the ‘three-way’ heuristics solve the same problem 18
times, which is six times more than the original best-fit heuristic, they maintain
comparable or smaller computation times. The original best-fit is slightly faster
only for the smallest of data instances, but the computation times still remain
under 0.01 seconds. Figure A.9 shows the computation times for the three
heuristics. The computation times are scaled logarithmically, and each instance
contains twice as many rectangles as the preceding one. Optimization of the
gap location process enables the three-way best-fit heuristic to solve all but
the largest instances in comparable time to the original best-fit heuristic. In
addition, the optimal time implementation [Imahori and Yagiura, 2010] makes
the heuristic significantly faster for all but the smallest test instances. For
instances with 2'® items, the optimal time three-way heuristic requires only
1.60% of the time needed by the original best-fit heuristic and 0.46% of the time
needed by the three-way best-fit heuristic. While both the best-fit heuristic and
three-way best-fit heuristic can solve instances with up to 1024 rectangles in
under a second, the optimal time three-way heuristic can solve instances with
up to 8192 rectangles in the same amount of time.
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Figure A.8: Average computation times of the original best-fit, three-way best-
fit, and optimal time three-way best-fit, when constructing only one solution
(width-ordering and leftmost policy) for the Imahori and Yagiura instances.
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Figure A.9: Average computation times of the original best-fit, three-way best-fit
and optimal time three-way heuristic, for the Imahori and Yagiura instances.
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A.4 Conclusion

We have presented an improved heuristic for the orthogonal strip packing
problem, based on the best-fit heuristic from Burke et al. [2004]. We extended
this best-fit heuristic with additional item orderings and the introduction of new
placement policies. The additional orderings allow for a larger diversification
of the search by disrupting the rectangle sequence, while the new placement
policies break the symmetry between different solutions by varying the placement
rules. This new heuristic performs significantly better than the original best-
fit heuristic on a large test set from the literature. The addition of the new
placement policies and orderings increased the computation time of the heuristic.
Thus we undertook development of a faster implementation of the heuristic. The
three-way best-fit heuristic stores and locates the gaps in a more efficient way
[Imahori and Yagiura, 2010] to reduce its computational complexity. Due to this
improvement, the three-way best-fit heuristic has smaller computation times
than the original best-fit heuristic for all but the largest problem instances.
In addition, we introduced an optimal time variant of the three-way best-
fit heuristic. This optimal time three-way heuristic is based on the optimal
time best-fit heuristic [Imahori and Yagiura, 2010]. The results achieved are
slightly different from those generated by the three-way best-fit heuristic, as
the rectangle selection procedure produces different rectangle sequences for
the new item orderings. There is no significant difference in solution quality
between both three-way heuristics. The optimal time three-way heuristic is,
however, significantly faster than the three-way best-fit heuristic on all but the
smallest instances. When the quality of the solutions is more important than the
computation times, combined usage of both three-way heuristics is advised for
all but the largest problems. When more than 2'6 items need to be placed, the
optimal time three-way heuristic is more than 100 times faster than the three-
way best-fit heuristic. When comparing the new three-way heuristics with other
improvements to the best-fit heuristic and a top performing metaheuristic, we
find that the new heuristics are significantly faster than those approaches. Even
for small instances, our approach requires only a fraction of the computation
time required by the other solution methods.






Appendix B

MOGLi: User interface

This appendix presents MOGLi’s design and configuration options. With the
solution approaches from Chapter 3 at its foundations this tool offers proven
solution quality and responsiveness while enabling the user to alter solutions
by means of an intuitive user interface. We first show the initial screen where
traffic can be reviewed and edited. Next the solution visualisation screen is
discussed, along with the available user interactions for editing a generated
solution. The appendix ends with a description of the settings screen where all
important parameters can be set in an intuitive way.

B.1 Traffic screen

Figure B.1 shows the traffic screen for a list of fourteen arriving ships. This
screen contains all ship information, such as the ship names, dimensions, tugboat
requirements, arrival times and types. Furthermore, the current chamber can
be selected here, along with the lockage’s index, planned execution time and
direction. When a chamber has different length configurations, the available
chamber length can also be selected here. New ships can be added to the list
manually or by copying the ship’s properties from another system, and ship
properties can be updated at any time. Closing a lockage before reaching full
chamber capacity is very straightforward, as is the manual addition of a ship to
a lockage (Figure B.2). The arrow buttons allow lock masters to make changes
in ship priority (Figure B.3), while cancelled ships can be removed from the list
using the waste bin button (Figure B.4).

115
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B.2 Solution screen

Given the current ship list, a (set of) solution(s) is generated after pressing the
solve button (Figure B.5). The screen contains all necessary information about

File Settings Help @

MOGLi v0.8.2 +

Proposed Solutions | Lockage rSettings |

Lockage
Lock: |EO ‘v‘ Length: |ssm 0 |v| 7 Time: 'E . @ ] Incoming
Ships

Name L W D # Tugs| Hour Min Sea | Barge| Def
Sea ship 110.78[14.0 |0.0 0 1 5 ¥ O O
Barge 1 79.77 |8.2 0.0 0 1 1 L] [¥] L
Barge 2 100.94[11.4 |0.0 0 1 2 O vl O
Barge 3 86.0 105 0.0 0 1 3 Ll ¥] L]
Barge 4 25.85 |9.5 0.0 0 1 4 v
Barge 5 235 [8.22 |0.0 0 1 5 O v O
Barge & 29.45 |11.5 0.0 0 1 ] | [¥] O ¢
Barge 7 12285145 |0.0 0 1 7 L v L
Barge 8 134.87[11.5 |0.0 0 1 E] O vl O m
Barge 9 109.94|11.45 |0.0 0 1 a | [¥] L
Barge 10 62.97 |6.64 0.0 0 1 10 L [] L ¢
Barge 11 109.8 [11.4 0.0 0 1 11 v
Barge 12 50.11 |6.6 0.0 0 1 12 v
Barge 13 67.02 [8.2 0.0 0 1 13 | v] O

4
| Close lockage after selected ship || Manually add ship to lockage |

Figure B.1: The traffic screen of MOGLi containing the information of fourteen

arriving ships.

File Settings Help @

MOGLi v0.8.2 =k

Proposed Solutions | Lockage [ Settings |

Lockage
Lock: |EIO ‘v‘ Length: |3so.0 |v| 7 Time: @ : ,@ ¥ Incoming
Ships

Name L W D # Tugs| Hour Min Sea | Barge| Def
Sea ship 11078140 [00 |0 1 5 v O O
Barge 1 7077 |82 |00 |0 1 1 O ] O
Barge 2 100.94[11.4 (00 0 1 2 O [v] O
Barge 2 86.0 105 0.0 0 1 3 v
Barge 4 85.85 [95  [00 |0 1 4 O ] O
Barge 5 235 [8.22 (o0 |0 1 5 O [v] O 'r
Barge & 29.45 |11.5 0.0 0 1 ] v
Barge 7 133.85[145 [00 |0 1 7 O ¥l O
[Barge & 134870115 (00 [0 1 B BT m
Dummn Ll Ll [v]
Barge 9 100.94[11.45 [00 0 1 9 O [v] O ¢
Barge 10 62,97 |6.64 0.0 0 1 10 v
Barge 11 100.8 114 [00 |0 1 11 O ] O
Barge 12 5011 |66 (00 |0 1 12 O [v] O
Barge 13 67.02 |8.2 0.0 0 1 1z L v L

L v L
[ Eiose Iockage after selected ship | ‘ Manually add ship to lockage ‘
X3

Figure B.2: Force-closing a lockage in MOGLi.
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the current lockage such as the selected chamber and its dimensions, the travel
direction and lockage index. The position of the seagoing vessels (green) and
barges (grey) in the chamber is displayed for each suggested solution along with
the total number of ships transferred, the solution method and the required
computation time. The water colour in the lock depends on the travel direction,

- MOGLI v0.8.2 -+ x
File Settings Help @
Proposed Solutions | Lockage | Settings |
Lockage
Lock: |EIO ‘v‘ Length: |3su.u |v| 7 Time: |13 | : [05 | [#]Incoming
Ships
Name L W D # Tugs| Hour Min Sea | Barge| Def
Sea ship 110.78[14.0 |0.0 0 1 5 v O O
Barge 7 133.85[145 [0.0 0 1 7 m v] n
Barge 1 79.77 |8.2 0.0 0 1 1 v
Barge 2 109.84[11.4 |0.0 0 1 2 O 2 O
Barge 3 86.0 10.5 0.0 0 1 3 | ¥] O
Barge 4 25.85 |9.5 0.0 0 1 4 v
Barge 5 235 [8.22 |0.0 0 1 5 [ v] || 'l‘
Barge & ©9.45 |11.5 0.0 0 1 ] L] [¥] L
Barge & 124.87[11.5 |0.0 0 1 E] O v] O m
Barge 9 109.94[11.45 0.0 0 1 E] O vl O
Barge 10 62,97 |6.64 |0.0 0 1 10 v ¢
Barge 11 109.8 [11.4 |0.0 0 1 11 O ¥ O
Barge 12 50.11 |5.6 0.0 0 1 12 | [¥] L
Barge 13 67.02 |22 0.0 0 1 13 v
L [¥] L
‘ Close lockage after selected ship H Manually add ship to lockage ‘
Figure B.3: Changing a ship’s priority in MOGLA.
MOGLi v0.8.2 +
File Settings Help @
Proposed Solutions | Lockage I’Setting& |
Lockage
Lock: |EO ‘v‘ Length |ssu o |v| 7] mime:[13]: [o5 | incoming
Ships
Name ‘ L | W | D |# Tugs| Hour | Min Sea | Barge| Def
Sea ship [170.78]140 foo o 1 5 v O O
Earge 1 [7077 le2 Joo o 1 1 | v O
Barge 2 - Remove Ship * 1 2 [ [+ L
Barge 3 1 3 L ¥l L
Barge 4 E‘ 1 2 = B =
Barge Remove ship Barge 97 T 5 0 &l ] ¢
Barge & 1 6 Ll [¥] O
Barge 7 1 7 v
Barge 8 ¥ 1 8 Ll ¥ L m
Barge 9 100.94[11.45 [0.0 0 1 S L] [v] L]
Barge 10 62,97 |6.64 |0.0 0 1 10 v ¢
Barge 11 109.8 [11.4 |0.0 0 1 11 O vl O
Barge 12 50.11 |6.6 0.0 0 1 12 | [¥] L
Barge 13 57.02 [B.2 0.0 0 1 13 O vl O
= o =
| close lockage after selected ship || Manually add ship to lockage |

Figure B.4: Removing a ship from the traffic list in MOGLi.
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with light blue indicating an upstream (or inbound) lockage and dark blue a
downstream (or outbound) one. Hovering over a ship displays its properties,
including the ship’s name, tugboat requirements, arrival time, dimensions and
minimal safety distances (Figure B.6), while hovering over free space quantifies
the remaining lateral distance between the adjoining ships (Figure B.7). A ship
can be moved to a different position with the drag functionality that includes
a toggle-able snap function with real-time indication of the ship’s destination
position (Figure B.8). Figure B.9 shows how ships placed in violation with one
of the mooring or overlap constraints are coloured red.

> MOGLi v0.8.2
File Settings Help @
Proposed Solutions | Lockage | Settings |
Lock: BO 7 (360.0m x 45.0m) Snap Direction: Scheldt -= Docks

Solution #2: 12 ships using Multi-Order BestFit (Heuristic with free order)

[parge1 @onor ] ‘Barge & @ 0L:08 Ses ship @ 01105
‘Earge 4 @ 01:04 ‘Earga 2@ 01:02
|Elarge o @ 01:00
|Barge 3 @ 0103 [Barge 5 [@EAgs10 @ 0110 |
|Earge6@01:06 |E’arge 11 @ 0L:11 ‘ Barge 7 @ 01:07 L

Computation time: 8 milliseconds

Solution #3: 14 ships using Gurohi (Optiral with free order]

‘Saa ship @ 01:05 |Barga 8 ® 01:08 ‘ Barge 1 @ 01:01
e ooois | m?ﬁ%ﬁg @ 0109 ‘ — 6|(E;;g:0163 @ 01:13 L
‘Eargell@ol:ll [Barge 4 @ o104 [ learge12 @ q112] | g :
|Bﬁfgﬁ 2 @ 01:02 ‘Earga 3@ 01:03 ‘ Barge 7 & 01:07

Cornputation time: 13286 milliseconds

Figure B.5: The solution screen of MOGLi, showing two out of three suggested
solutions.

B.3 Settings screen

The settings screen allows the user to edit all important parameters influencing
the ship placement process. In the top part of the settings screen (Figure B.10)
the user can select which algorithms will be applied to the problem at hand.
Each selected solver will report a possible way of positioning the current ships
in the selected chamber. Some high level parameters of the solvers, such as the
used orderings (Figure B.11) or computation time limit (Figure B.12) are also
configurable.

The bottom part of the settings screen provides the user with ample opportunity
for personalizing the minimal safety distance requirements for each individual
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lock. This is an important feature: the safety distances depend on the chamber
and on the ship sizes and types. Moreover, the preferred margins may differ
between lock masters: some transfer three adjacent 11.4 meter wide ships in
a 35 meter wide chamber, leaving a total margin of 0.8 meters, while others
transfer at most two of these ships side by side under the same circumstances.

MOGLi v0.8.2
File Settings Help @
Proposed Solutions | Lockage | Settings
Lock: BO 7 (360.0m x 45.0m) v] Snap Direction: Scheldt -= Docks

Solution #2: 12 ships using Multi-Order BestFit {Heuristic with free crder)

Barge 1 @ 01:01 ‘Barge 8@ 01:08 Sea ship @ 01:03
; Barge 2 @ 01:02 LE?SEE ship (0tugs)
‘Earge 4@ @ ‘ F2e Arrival: 01:05
‘Earge 3@ 01:03 Barge 5 ﬁﬁmﬁ @ (10 Dirn: 110.78x14.0m

Safety: 15.0u4.87m
|Earge 5 @ 01:06 ‘ ’VBa’g fhcd

|Earge 11 @ 01:11

Computation time: 8 milliseconds

Solution #3: 14 ships using Gurchi (Optimal with free order)

‘Sea ship @ 01:05

|Barge 3@ 01:08

‘ Barge 1 @ 01:01

Barge 11 @ 01:11

‘ [parge 13 @ D113

Barge ¢ @ 01:09
[Barge 5 g oLDbs

[Barge 4 @ o1:04 |

|Barge 2@ 01:02

‘Ear’ge 3@ 01:03 ‘

12@00]
Barge 7 @ 01:07

|Barge 6@ 01:06

Computation time: 13286 miliseconds

Figure B.6: Hovering over a ship displays additional information.

MOGLi v0.8.2
File Settings Help @
Proposed Solutions | Lockage | Settings
Lock: BO 7 (360.0m x 45.0m) v] Snap Direction: Scheldt -= Docks

Solution #2: 12 ships using Multi-Order BestFit (Heuristic with free order}

Barge 1 @ 01:01

‘Bar’ge 5 @ 01:08

Sea ship @ 01:05

‘Earge 4 @ 01:04

‘Ear’ge 2@ 01:02

‘Earge 3@ 01:03

Barge 5 ﬁﬁmﬁ @ 0]

|Earge & @ 01:06

|Barge 11 @Free Space
2.43m

Cormputation time: 8 milliseconds

|Earge o @ 01:00

Barge 7 @ 01:07

Solution #3: 14 ships using Gurobi (Optimal with free order)

‘Sea ship @ 01:05

|Barge 8@ 0108

‘ Barge 1 @ 01:01

Barge 11 @ 01:11

Barge @ @ 01:09
[Barge 5 j@.0LD5

‘ [parge 17 @ D113

[Barge 4 @ 01:04 |

|Barge 2@ 0102

‘Ear’ge 3@ 01:03 ‘

Barge 6 @ 01:06
12@010 \| s e

Barge 7 @ 01:07

Cormputation time: 13286 miliseconds

Figure B.7: Hovering over free space quantifies the remaining lateral distance.
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Seagoing vessels are divided into classes based on their dimensions as shown in
Figure B.10. Different safety distance settings must be applied for each class.
Figure B.11 shows the options for barges, where a single set of safety distances

- MOGLi v0.8.2 - + %
File Settings Help @

Proposed Solutions | Lockage | Settings |

Lock: BO 7 (360.0m x 45.0m) Snap Direction: Scheldt -= Docks

Solution #1: 8 ships using Arrival-Order BestFit (Heuristic with arrival order)

Cormnputation time: 4 milliseconds

Solution #2: 12 ships using Multi-Order BestFit {(Heuristic with free order}

Computation time: 8 milliseconds

___Solution #3: 14 ships usina Gurobi (Optimal with free order) -

Figure B.8: Real-time indication of a dragged ship’s destination position with
the snap-function.

- MOGLi v0.8.2 - + %
File Settings Help @

Proposed Solutions | Lockage | Settings |

Lock: BO 7 (360.0m x 45.0m] Snap Direction: Scheldt -=> Docks

Solution #2: 12 ships using Multi-Order BestFit {(Heuristic with free order}

Computation time: 8 milliseconds

Solution #3: 14 ships using Gurchi (Optimal with free order)

Computation time: 13286 miliseconds

Figure B.9: Ships that violate the overlapping or mooring constraints are
coloured red.
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may be defined. The lateral safety distance for barges is a cumulative one.
Enforcing a cumulative margin ensures that the last ship entering a row doesn’t
get clamped between its neighbouring ship(s) and/or the quay. The corridor

constraint settings for tugboats are visualized in Figure B.12.

\ MOGLi v0.8.2
File Settings Help

Proposed Solutions rLockage Settings

Solvers
Arrival-Order BF | Multi-Order BF | Exact Solver | LRLB

Arrival-Order Best Fit Heuristic [] Use

Places the first arriving ships front-most in the chamber

Safety distances
Sea ships | Barges | Tugboats |

Ship size Safety distance to
Category  Length Doors  Other sea ships
Small <[_80m [5m [ 5m
Medium <[ 180/ m. [15/m. [15]m.
Large <[ 250/ m. | 20|m [20/m
Extra Large = 250 m. | 30| m. [30/m

Figure B.10: The settings screen of MOGLi displaying the Arrival-Order Best

Fit and Seagoing vessel safety distances tabs.
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MOGLI v0.8.2
File Settings Help

Proposed Solutions I’ankage Settings
Solvers

Arrival-Order BF | Multi-Order BF | Exact Solver | LRLB

Multi-Order Best Fit Heuristic [¥] Use

Arrival Order Width Order
Length Order Size Order
Uses the selected orderings to place the ships

Safety distances
Sea ships | Barges | Tugboats |

Minimal distance between barges:

Length: [_ 4.0 m. width: | 0.5] m. (cumulative)
Minimal distance between barges and sea ships
Length: [ 5.0 m. width: [ 1.5 m.

Minimal distance between barges and doors

Length: | 5.0/ m

Figure B.11: The settings screen of MOGLIi displaying the Multi-Order Best

Fit and Barge safety distances tabs.

MOGLi v0.8.2
File Settings Help

Proposed Solutions I’Luckage Settings
Solvers

Arrival-Order BF | Multi-Order BF | Exact Solver | LRLB

Exact Solver [ Use

Iteration limit: 00| seconds

Requires the presence of a general purpese MILP solver like Gurobi or Cplex.

Safety distances

Sea ships | Barges Tughuat5|

Minimal length required: | 12.0| m.
Minimal width required: | 12.0| m.

Figure B.12: The settings screen of MOGLi displaying the Exact approach and

Tugboats tabs.
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