
 

 

 

 

Pricing index options         
in a multivariate            
Black & Scholes model 
Daniël Linders 

 

      

      
 

AFI_1383 
 

      

 

      



Pricing index options in a multivariate Black &
Scholes model

Daniël Linders�

Version: October 2, 2013

1 Introduction

In this paper, we consider the problem of pricing equity index options (or basket options)
in a multivariate Black & Scholes setting. Although this model su¤ers from some major
drawbacks, it pays to consider the pricing of derivatives in the multivariate Black &
Scholes model, because it is the most straightforward multivariate extension of the one
dimensional Black & Scholes model. Therefore, the multivariate Black & Scholes index
option pricing formula can be considered as a benchmark pricing formula, similar to
the one-dimensional Black & Scholes formula. A particular application where such a
benchmark model plays a crucial role is the study of implied correlation; see e.g. Dhaene,
Linders and Schoutens (2013) and Tavin (2013).

In this paper, we derive approximations for the price of an index option using the
theory of comonotonicity. Comonotonic random variables are maximal dependent: an
increase in one component implies that all components must increase. In the multivari-
ate Black & Scholes model, the index is a weighted sum of dependent lognormal random
variables. The distribution of this index is not given in closed form which makes the
pricing of index options highly unattractable. We transform the original pricing problem
to the pricing of an index option written on a modi�ed index which is a weighted sum
of comonotonic lognormal random variables. By choosing this modi�ed index in an ap-
propriate way, one can derive upper and lower bounds for the index option price. It was
proven in Chen et al. (2008) that the index option price of a comonotonic index can be
decomposed in a linear combination of vanilla option prices for appropriate choosen strike
prices. The latter can be determined in closed form using the Black & Scholes formula,
which results in an easy and fast algorithm to compute the upper and lower bounds.

In a last step, we combine the upper and lower bound in an approximate value. We
prove that the approximate index option curve we obtain, can be interpreted as an index
option curve under a synthetic stock market index, where the �rst two moments of this
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modi�ed index coincide with the �rst two moments of the real index. Furthermore, we also
derive the distribution function of this synthetic index. The idea of valuing an option by
replacing the real underlying distribution with a more tractable distribution was already
proposed in Jarrow and Rudd (1982).

The pricing of an index option in a Black & Scholes context using the theory of
comonotonicity was also considered in Deelstra et al. (2004). Here, the price of an index
option is divided in an exact part and a part for which accurate upper and lower bounds
can be determined by replacing the original random variable by a convex ordered approx-
imation. In Carmona and Durrleman (2006), the authors derive upper and lower bounds
for index options by expressing the index option price as an optimization problem. Both
papers provide numerical examples to illustrate the accuracy of the approximations. In
this paper, we use the same numerical examples to show that the accuracy of our new
approximation is comparable with the existing methods.

There is a vaste literature on approximating the price of a basket or index option. For
example, Milevsky and Posner (1998) propose to use the reciprocal gamma distribution to
approximate the price of an index option, whereas Hull and White (1993) and Rubinstein
(1994) use a binomial tree model. The pricing of basket options using Quasi-Monte Carlo
simulation is discussed in Joy et al. (1993). In order to price index options in a more
realistic model, Xu and Zheng (2010) derive approximations for the index option price
within a jump di¤usion model and McWilliams (2011) derives approximations for the
index option price in a stochastic delay model.

The paper is organised as follows. In Section 2, we introduce the �nancial market
and the multivariate Black & Scholes model. Furthermore, we recapitulate the notions
of convex order and comonotonicity. An analytical formula for the approximated price
of an index option is derived in Section 3. Numerical illstrations are given in Section 4.
Finally, Section concludes 5 the paper.

2 Options, convex order and comonotonicity

2.1 The �nancial market

We assume a �nancial market where n di¤erent (dividend or non-dividend paying) stocks,
labeled from 1 to n, are traded. Current time is 0, while the time span under consideration
is T years. For each stock i, its random price at time t, 0 � t � T , is denoted by Xi (t).
We denote the stochastic price process of stock i by fXi (t) j 0 � t � Tg. Hereafter, we
will always silently assume that each Xi (t) � 0 and also that E [X2

i (t)] <1:
The market index is composed of a linear combination of the n underlying stocks.

Denoting the price of the index at time t by S (t), 0 � t � T , we have that

S (t) = w1X1 (t) + w2X2 (t) + : : :+ wnXn (t) ; (1)

where wi; i = 1; 2; : : : ; n; are positive weights that are �xed up front.
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A European call option gives the buyer the right to purchase a stock or an index at a
prede�ned price at a prede�ned time. For example, a call option written on the index S
with maturity T and strike price K has a pay-o¤ at time T of (S (T )�K)+ : Its price is
denoted by C [K;T ] : A similar de�nition exists for a put option, whose price is given by
P [K;T ] :

2.2 The multivariate Black & Scholes model

Assume that the stock prices Xi (t) ; i = 1; 2; : : : ; n; can be described by the following set
of SDE�s:

dXi (t)

Xi (t)
= �idt+ �idBi (t) ; for i = 1; 2; : : : ; n; (2)

where B (t) = (B1 (t) ; B2 (t) ; : : : ; Bn (t)) and fB (t) j t � 0g is a standard n-dimensional
Brownian motion de�ned on the �ltered probability space (
;F ;P). This probability
space is equiped with the �ltration (Ft)0�t�T of F which records the �the past behavior�
of the multivariate Brownian motion. The �ltered probability space satis�es the usual
technical conditions. The vector � = (�1; �2; : : : ; �n) contains the drift parameters of each
stock. The Variance-Covariance matrix � is de�ned as

� =

0BBB@
�21 �1;2 � � � �1;n
�2;1 �22 � � � �2;n
...

...
. . .

...
�n;1 �n;2 � � � �2n

1CCCA ;
where

�i;jt = Cov [�iBi (t) ; �jBj (t+ s)] : (3)

The correlation �i;j between the stocks i and j is given by

�i;j = Corr [�iBi (t) ; �jBj (t+ s)] (4)

and we can write �i;j = �i;j�i�j: We have that � 2 Rn and � 2 Rn�n: The stock price
model described above is called the multivariate Black & Scholes model.

We assume that the matrix � has full rank. It can be proven that in this case the
market is complete and free of arbitrage. Furthermore, there always exists a unique
equivalent martingale measure Q: If we replace each �i by r in (2) we obtain the set of
SDE�s describing the stock price dynamics under the risk-neutral probability measure Q.
Here, r is the risk-free rate, which is assumed to be known at time t = 0 and constant over
time. Under this risk-neutral pricing measure, the stock prices at time T are following a
lognormal distribution:

ln
Xi (T )

Xi (0)

Q
= N

��
r � 1

2
�2i

�
T; �2i T

�
; for i = 1; 2; : : : ; n; (5)

where �
Q
= �denotes an �equality in distribution under the Q-measure�. For a detailed

discussion about conditions for completeness and no-arbitrage in the multivariate Black
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& Scholes model, we refer to Dhaene, Kukush and Linders (2013), Björk (1998) and the
references therein.

The current price of any pay-o¤ at time T can be represented as the discounted
expectation of this pay-o¤. In this price-recipe, discounting is performed using r, whereas
expectations are taken with respect to Q. The price of a call option written on stock i;
with strike K and maturity T is denoted by Ci [K;T ] : The price of a put option with the
same specifations is denoted by Pi [K;T ] : Call and put options written on stock i can be
expressed as discounted expectations:

Ci [K;T ] = e�rTE
�
(Xi (T )�K)+

�
; (6)

Pi [K;T ] = e�rTE
�
(K �Xi (T ))+

�
: (7)

If the risk-neutral dynamics of the stock price Xi (T ) can be described by the lognormal
distribution (5), the option prices Ci [K;T ] and Pi [K;T ] can be expressed as

Ci [K;T ] = Xi (0)� (di;1)�Ke�rT� (di;2) ; (8)

Pi [K;T ] = Ke�rT� (�di;2)�Xi (0)� (�di;1) ; (9)

with

di;1 =

�
r + 1

2
�2i
�
T � ln K

Xi(0)

�i
p
T

;

di;2 = di;1 � �i
p
T :

Expressions (8) and (9) are the well-known Black & Scholes option pricing formulae; see
e.g. Black and Scholes (1973).

In the remainder of this text, expectations (distributions) of functions of the random
vector (X1 (T ) ; : : : ; Xn (T )) have to be understood as expectations (distributions) under
the Q-measure. We will often call them risk-neutral expectations (distributions). Further-
more, the notations FXi(T ) and FS(T ) will be used for the time-0 cumulative distribution
functions (cdf�s) of Xi (T ) and S (T ) under Q.

In order to avoid unnecessary overloading of the notations, hereafter we will omit the
�xed time index T when no confusion is possible. For example, we will write Xi; Ci [K]
and FXi (x) for Xi (T ) ; Ci [K;T ] and FXi(T ) (x), respectively.

2.3 Convex order and comonotonicity

In this section we summarize some de�nitions and results concerning convex order, inverse
distributions and comonotonicity needed afterwards.

A r.v. X is said to precede a r.v. Y in convex order sense, notation X �cx Y , if(
E
�
(X �K)+

�
� E

�
(Y �K)+

�
E
�
(K �X)+

�
� E

�
(K � Y )+

� ; for all K 2 R: (10)
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If X and Y are two r.v.�s such that X �cx Y; then E [X] = E [Y ] ; but Y has heavier
(upper and lower) tails than X:

The usual inverse F�1X of the cdf FX of a r.v. X is de�ned by

F�1Xi (p) = inf fx 2 R j FXi(x) � pg ; p 2 [0; 1] ; (11)

with inf ; = +1, by convention.
The weighted sum S is de�ned by

S =
nX
i=1

wiXi; (12)

where wi > 0: Assume that the marginal stop-loss premiums E
�
(Xi �K)+

�
can be de-

termined for any K. Even if we have full information about the marginal distributions,
calculating the stop-loss premium E

�
(S �K)+

�
is not straightforward as it requires infor-

mation about the dependence among the marginals. Specifying this dependence structure
can be done by choosing an appropriate copula, but the corresponding distribution of S
is in most situations unknown or will be too cumbersome to work with.

The random vector (X1; : : : ; Xn) is said to be comonotonic if

(X1; : : : ; Xn)
d
=
�
F�1X1 (U) ; : : : ; F

�1
Xn
(U)
�
; (13)

where U is a uniform (0; 1) r.v. and � d= �denotes �equality in distribution�. If S is a sum of
comonotonic random variables, the stop-loss premium E

�
(S �K)+

�
can be decomposed

in stop-loss premiums of the marginals with appropriate chosen retentions. We state this
result in Theorem 1. For a proof of this theorem, we refer to Kaas et al. (2000). Theorem
1 plays a crucial role in Section 3, where we search for an accurate pricing formula for the
index option prices C [K;T ] and P [K;T ] in a multivariate Black & Scholes model.

Theorem 1 (Decomposition formula) Consider a comonotonic random vector
(X1; X2; : : : ; Xn) and denote the weighted sum by S. Assume that FS is continuous and
strictly increasing. For K 2

�
F�1+S (0); F�1S (1)

�
, the stop-loss premium E

�
(S �K)+

�
can

be decomposed into a linear combination of stop-loss premiums of the marginals involved:

E
�
(S �K)+

�
=

nX
i=1

wiE
�
(Xi �K�

i )+
�
; (14)

where
K�
i = F

�1
Xi
(FS (K)) ; i = 1; : : : ; n; (15)

and FS (K) satis�es the following relation:X
wiK

�
i = K: (16)
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In case the cdf FS is not continuous and strictly increasing, a similar decomposition
formula (14) can be proven for the stop-loss premium E

�
(S �K)+

�
of a comonotonic sum

S, but now the expression for the strike price K�
i will be slightly di¤erent. A su¢ cient

condition for FS to be strictly increasing and continuous is that the marginal cdfs FXi
are strictly increasing and continuous. This condition is especially met when dealing with
lognormal r.v.�s. Furthermore, for appropriate choosen K�

i ; the decompisition formula
(14) remains to hold when K =2

�
F�1+S (0); F�1S (1)

�
; see .e.g Dhaene et al. (2002a) and

Chen et al. (2013).

For an extensive overview of the theory of comonotonicity, including proofs of the
results mentioned in this subsection, we refer to Dhaene et al. (2002a). Financial and
actuarial applications of the concept of comonotonicity are described in Dhaene et al.
(2002b). An updated overview of applications of comonotonicity can be found in Deelstra
et al. (2011).

3 Convex approximations for index options

In this section we derive the approximate index option prices C [K] and P [K] for C [K]
and P [K] ; respectively. Furthermore, we show that the curves C and P can be consid-
ered as index option curves written on a synthetic market index S; which serves as an
approximate index for the real index S; see Theorem 11. The approximate index option
price C [K] is a linear combination of the upper bound Cc [K] and the lower bound C l [K] ;
where the interpolation weight is chosen such that Var[S] = Var

�
S
�
: Similarly, P [K] is

a linear combination of the upper bound P c [K] and the lower bound P l [K] ; where we
use the same interpolation weights. Note that using only the upper or lower bound is not
desirable as this will lead to a consistent over or under estimation of the real index option
price.

3.1 Upper bound

In this subsection, we replace the real sum S by the random sum Sc; which is de�ned as

Sc = w1F
�1
X1
(U) + : : :+ wnF

�1
Xn
(U) : (17)

The index Sc is called the comonotonic stock market index and it is, like the index S; a
weighted average of the marginalsX1; X2; : : : Xn; but the dependence structure is assumed
to be comonotonic. In Kaas et al. (2000) it is proven that the comonotonic sum Sc is a
convex upper bound for the sum S :

S �cx Sc: (18)

Consider the pay-o¤s (Sc �K)+ and (K � Sc)+ at time T: These pay-o¤s can be
interpreted as pay-o¤s of an index call and put option written on a stock market index
that can be described by Sc: Note, however, that these options are not traded actively
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and its prices cannot be observed in the market, because the stock market index S is in
general not equal to the comonotonic stock market index Sc. If we denote the theoretical
prices of these synthetic index options by Cc [K] and P c [K] ; we can determine them as:

Cc [K] = e�rTE
�
(Sc �K)+

�
; (19)

P c [K] = e�rTE
�
(K � Sc)+

�
:

For the comonotonic index option prices, we can prove the put-call parity

Cc [K] = P c [K]� e�rTK + e�rTE [S] : (20)

From expression (17) we �nd that the components of Sc are all non-decreasing functions
of the same r.v. U: Therefore, we can interprete the index Sc as a �worst case�scenario.
All stocks composing the index will go simultaneously up or simultaneously down. As a
result, the price of an index option written on Sc is an upper bound for the real index
option price.

Theorem 2 The index call and put option prices C [K] and P [K] are constrained from
above by Cc [K] and P c [K] ; respectively:

C [K] � Cc [K] ; for all K � 0;
P [K] � P c [K] ; for all K � 0:

Proof. This is a direct consequence of the convex order relation (18) and the characteri-
zation of convex order; see (10).

Theorem 2 holds regardless the assumption about the marginal distributions FXi : In
Chen et al. (2008) and Hobson et al. (2005), model-free upper bounds for index options are
derived using Theorem 2 together with Theorem 1. Furthermore, it is shown that there
exists an optimal static super-replicating strategy for an index option, which consists in
buying a linear combination of vanilla options. Additional details and computational
issues are given in Chen et al. (2013) and Linders et al. (2012).

In this section, we speci�ed the marginal distributions to be lognormally distributed.
In this special case, we can determine Sc explicitly in terms of the marginal volatilities
�i, the risk-free rate r and the cdf � of a standard normal distribution.

Theorem 3 (A closed form expression for Sc:) Consider a market where the assets
follow the multivariate Black & Scholes model (2). The comonotonic market index Sc is
given by the following expression:

Sc
Q
=

nX
i=1

wiXi (0) exp

��
r � �

2
i

2

�
T + �i

p
T��1 (U)

�
; (21)

where � denotes the cdf of a standard normal random variable and U denotes a r.v. which
is uniformly distributed on the unit interval. Its variance is given by

Var [Sc] =
nX
i=1

nX
j=1

wiwjXi (0)Xj (0) e2rT
�
e�i�jT � 1

�
: (22)
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Proof. The marginal risk-neutral distributions are given by (5). If we combine this
expression with Theorem 1 in Dhaene et al. (2002a), the inverse cdf F�1Xi is given by

F�1Xi (p) = Xi (0) exp

��
r � �

2
i

2

�
T + �i

p
T��1 (p)

�
: (23)

Taking into account the de�nition of Sc in (17) proves (21).

We write the variance Var[Sc] as

Var [Sc] =
nX
i=1

nX
j=1

wiwjCov
h
F�1Xi (U) ; F

�1
Xj
(U)
i
:

We have that

Cov
h
F�1Xi (U) ; F

�1
Xj
(U)
i
= Xi (0)Xj (0) e

2rT� 1
2(�2i+�2j )T

� Cov
h
e�i

p
T��1(U); e�j

p
T��1(U)

i
:

Note that if � 2 R; then E
h
e��

�1(U)
i
= e

�2

2 and

Cov
h
e�i

p
T��1(U); e�j

p
T��1(U)

i
= e

1
2(�2i+�2j )T

�
e�i�jT � 1

�
;

for each pair i; j = 1; 2; : : : n; which proves (22).

In the following theorem, we prove that the upper bound Cc [K] for the index call
option and the upper bound P c [K] for the index put option can be expressed in terms of
vanilla call and put option prices on the components of S:

Theorem 4 The prices Cc [K] and P c [K] of the index options with pay-o¤ at time T
given by (Sc �K)+ and (K � Sc)+, respectively, can be expressed as follows:

Cc [K] =

nX
i=1

wiCi [K
�
i ] ; (24)

P c [K] =
nX
i=1

wiPi [K
�
i ] ; (25)

where

K�
i = Xi (0) exp

��
r � �

2
i

2

�
T + �i

p
T��1 (FSc (K))

�
; (26)

and FSc (K) is determined using the relation

nX
i=1

wiK
�
i = K: (27)
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Proof. The sum Sc is a sum of comonotonic r.v.�s. Furthermore, the marginal cdf�s FXi
are strictly increasing and continuous for all i = 1; 2; : : : ; n: It can be proven that FSc
is also continuous and strictly increasing; see e.g. Dhaene et al. (2002a). From (21), it
follows that

�
F�1+Sc (0) ; F�1Sc (1)

�
= (�1;+1) : Combining (19) and (6) with Theorem 1

results in (24). The put-call parity (20) proves expression (25). The choice (26) for K�
i

follows from (23) and (15).

The right hand side of (24) is a linear combination of vanilla call options and the
right hand side of (25) is a linear combination of vanilla put options. Using the Black &
Scholes option pricing formula we can �nd an analytical expression for the prices Cc [K]
and P c [K] :

Theorem 5 The prices Cc [K] and P c [K] of the index options with pay-o¤ at time T
given by (Sc �K)+ and (K � Sc)+, respectively, can be expressed as follows:

Cc [K] =
nX
i=1

wi
�
Xi (0)� (di;1)�K�

i e
�rT� (di;2)

�
; (28)

P c [K] =
nX
i=1

wi
�
K�
i e
�rT� (�di;2)�Xi (0)� (�di;1)

�
(29)

where K�
i is de�ned in (26) of Theorem 4 and

di;1 =
ln Xi(0)

K�
i
+
�
r +

�2i
2

�
T

�i
p
T

;

di;2 = di;1 � �i
p
T :

Proof. Using expressions (8) and (9) in Theorem 4 proves the result.

3.2 Lower bound

In this subsection we replace the market index S by the conditional sum Sl; which is
de�ned as follows:

Sl = w1E [X1 j �] + : : :+ wnE [Xn j �] ;
where

� =

nX
i=1

�i ln
Xi

Xi (0)
; (30)

for �i > 0: In Kaas et al. (2000) it is proven that the sum Sl is a convex lower bound for
the sum S :

Sl �cx S: (31)
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Consider the pay-o¤s (Sl �K)+ and (K � Sl)+ which have to be paid at time T: These
pay-o¤s can be interpreted as the pay-o¤s of an index call and put option written on a
stock market index which can be described by Sl: The stock market index S will di¤er
from Sl; which makes it impossible to invest in the index Sl. We denote by C l [K] and
P l [K] the prices of the synthethic index call and put option written on Sl: The theoretical
price of these options are given by

C l [K] = e�rTE
h�
Sl �K

�
+

i
; (32)

P l [K] = e�rTE
h�
K � Sl

�
+

i
:

We can prove the put-call parity for these option prices:

C l [K] = P l [K]� e�rTK + e�rTE [S] : (33)

Theorem 6 The index call and put option prices C [K] and P [K] are constrained from
below by C l [K] and P l [K] ; respectively:

C l [K] � C [K] ; for all K � 0;
P l [K] � P [K] ; for all K � 0:

Proof. This is a direct consequence of the convex order relation (31).

If the marginals are lognormal distributed, an analytical expression for Sl in terms
of the r.v. �; the risk-free rate r, the maturity T and the marginal volatilities �i can be
derived.

Theorem 7 Consider a market where the assets follow the multivariate Black & Scholes
model (2). The convex lower bound Sl can be expressed as follows:

Sl
Q
=

nX
i=1

wiXi (0) exp

��
r � �

2
i

2
r2i

�
T + ri�i

p
T��1 (U)

�
: (34)

In this formula, ri = Corr
h
ln Xi

Xi(0)
;�
i
and

�
Q
=

nX
i=1

�i

��
r � �

2
i

2

�
T + �i

p
TBi (1)

�
: (35)

The variance is given by

Var
�
Sl
�
=

nX
i=1

nX
j=1

wiXi (0)wjXj (0) e2rT
�
erirj�i�jT � 1

�
: (36)
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Proof. Note that Bi (T )
d
=
p
TN (0; 1) ; for i = 1; 2; : : : ; n: From (5), we �nd that the

risk-neutral dynamics of the logreturns are given by

ln
Xi

Xi (0)

Q
=

�
r � 1

2
�2i

�
T + �iBi (T ) :

Combining this expression with (30), we �nd that (35) holds. Furthermore, � has a
normal distribution with mean ��T and variance �2�T: Remember that for a bivariate
normal distribution (X; Y ) with � = Corr[X; Y ] ; we have that X j Y has again a normal
distribution with mean:

E [X j Y ] = E [X] + �

s
Var [X]
Var [Y ]

(Y � E [Y ]) ; (37)

and variance Var[X] (1� �2) : Using expression (37), we �nd that ln Xi
Xi(0)

j � has a normal
distribution with mean

E
�
ln

Xi

Xi (0)
j �
�
=

�
r � �

2
i

2

�
T + ri�i

p
T

 
�� E [�]p
Var [�]

!
;

and variance

Var
�
ln

Xi

Xi (0)
j �
�
= �2i T

�
1� r2i

�
:

Finally, the equality
�

��E[�]p
Var[�]

�
d
= ��1 (U) proves (34).

The proof of (36) follows the same lines as the proof of (22).

Remark 8 (Calculation of ri) The variance of � and Xj are both involved in the cal-
culation of ri: The variance of � is denoted by �2�T . Using (4) and (35), we �nd that

�2� =
nX
i=1

�2i�
2
i + 2

nX
i=1
j<i

�i�j�i;j�i�j:

Plugging the variance �2� in the formula for the correlation ri results in

ri = Corr
�
ln

Xi

Xi (0)
;�

�
(38)

=
Cov

h
ln Xi

Xi(0)
;�
i

r
Var

h
ln Xi

Xi(0)

i
Var [�]

(39)

=
T
Pn

j=1 �jCov [�iBi (1) ; �jBj (1)]

T�i��

=

Pn
j=1 �j�i;j�j

��
: (40)

Given that �i;j � 0; all correlations ri are positive.
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O
The sum Sl is a comonotonic sum if all ri are non-negative. In Deelstra et al. (2004) it

is proven that there always exists �i; i = 1; 2; : : : ; n in (30) such that Sl is a comonotonic
sum. However, for sake of simplicity, we make the following assumption:

Assumption : �i;j > 0 for all i; j = 1; 2; : : : ; n: (41)

Under this assumption, the market index Sl can be expressed as a sum of n comonotonic
lognormal random variables Vi:

Sl
Q
=

nX
i=1

wiVi;

where Vi
Q
= Xi (0) exp

n�
r � �2i

2
r2i

�
T + ri�i

p
T��1 (U)

o
can be considered as an adjusted

stock price process for stock i: Each r.v. Vi is an increasing function of the same r.v. U:
Under the adjusted price process fVi (t) j t � 0g, the price of stock i at time T is again
lognormal distributed

ln
Vi
Vi (0)

Q
= N

��
r � �

2
i

2
r2i

�
T; r2i �

2
i T

�
: (42)

The following theorem states that the prices C l [K] and P l [K] can be expressed as a
weighted sum of n vanilla option prices, written on the adjusted stock prices Vi:

Theorem 9 Consider a market where the assets follow the multivariate Black & Scholes
model (2), where �i;j � 0; for all i; j: The prices C l [K] and P l [K] of the index options
with pay-o¤ at time T given by

�
Sl �K

�
+
and

�
K � Sl

�
+
, respectively, can be expressed

as follows:

C l [K] =
nX
i=1

wie�rTE
�
(Vi �K�

i )+
�
; (43)

P l [K] =
nX
i=1

wie�rTE
�
(K�

i � Vi)+
�
; (44)

where

K�
i = Xi (0) exp

��
r � �

2
i

2
r2i

�
T + ri�i

p
T��1 (FSl (K))

�
;

and FSl (K) is determined using
nX
i=1

wiK
�
i = K:

Proof. The assumption (41) assures that Sl is a sum of the comonotonic r.v.�s V1; V2; : : : ;
Vn: Each Vi has a lognormal distribution and from Theorem 1 in Dhaene et al. (2002a),
we �nd that

F�1Vi (p) = Xi (0) exp

��
r � ri�

2
i

2

�
T + ri�i

p
T��1 (p)

�
: (45)
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The sum Sl is a sum of comonotonic r.v.�s. Furthermore, the marginals FVi are strictly
increasing and continuous for all i = 1; 2; : : : ; n: So the cdf FSl is also continuous and
strictly increasing. From (34), if follows that

�
F�1+
Sl

(0) ; F�1
Sl
(1)
�
= (�1;+1) : Finally,

combining (32) and (6) with Theorem 1 proves (43). Applying the put-call parity (33)
proves (44).

Theorem 10 Consider a market where the assets follow the multivariate Black & Scholes
model (2), where �i;j � 0; for all i; j: The prices C l [K] and P l [K] of the index options
with pay-o¤ at time T given by

�
Sl �K

�
+
and

�
K � Sl

�
+
, respectively, can be expressed

as follows:

C l [K] =
nX
i=1

wi
�
Xi (0)� (di;1)�K�

i e
�rT� (di;2)

�
; (46)

P l [K] =
nX
i=1

wi
�
K�
i e
�rT� (�di;2)�Xi (0)� (�di;1)

�
; (47)

where the K�
i is de�ned as in Theorem 9 and

di;1 =
ln Xi(0)

K�
i
+
�
r +

�2i
2
r2i

�
T

ri�i
p
T

;

di;2 = di;1 � ri�i
p
T :

Proof. The marginals Vi; i = 1; 2; : : : ; n have a lognormal distribution; see (42). Combin-
ing this observation with (8) and (9) results in a closed form expression for e�rTE

�
(Vi �K�

i )+
�

and e�rTE
�
(K�

i � Vi)+
�
for i = 1; 2; : : : ; n: Using these expressions in (43) and (44) proves

the result.

3.2.1 On the choice of �i

In Cheung et al. (2013) it is proven that for a su¢ ciently nice convex function1 u, we
have that E

�
u
�
Sl
��
� E [u (S)] : Moreover, if u is strictly convex E

�
u
�
Sl
��
= E [u (S)]

is equivalent with Sl d= S: Therefore, it is reasonable to take �i such that E
�
u
�
Sl
��
is as

close as possible to E [u (S)] ; for a particular strictly convex function u:

Here, we choose u to be equal to u (x) = (x� E [S])2 : Then E [u (S)] = Var[S] :
Following the ideas of Vandu¤el et al. (2005), we approximate the variance of Sl as
follows:

E
�
u
�
Sl
��
= Var

�
Sl
�
�

nX
i=1

nX
j=1

wiXi (0)wjXj (0) e2rT rirj�i�jT: (48)

1A function u is su¢ ciently nice if has an absolutely continuous derivative u0.
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Remember that ri = Corr
h
ln Xi

Xi(0)
;�
i
and Var[�] = �2�T: Then we can write

ri�i
p
T =

Cov
h
ln Xi

Xi(0)
;�
i

��
p
T

:

Using this relation, the right hand side of (48) becomes

nX
i=1

nX
j=1

wiXi (0)wjXj (0) e2rT
Cov

h
ln Xi

Xi(0)
;�
i
Cov

h
ln

Xj
Xj(0)

;�
i

�2�T
:

which can be written as �
Cov

hPn
i=1wiXi (0) erT ln Xi

Xi(0)
;�
i�2

�2�T
:

Finally, we can approximate the variance as follows:

E
�
u
�
Sl
��
= Var

�
Sl
�
�
 
Corr

"
nX
i=1

wiXi (0) erT ln
Xi

Xi (0)
;�

#!2
(49)

�Var
"

nX
i=1

wiXi (0) erT ln
Xi

Xi (0)

#
:

If E
�
u
�
Sl
��
reaches its maximal value, E

�
u
�
Sl
��
is as close as possible to E [u (S)] :

The right hand side of (49) is maximal if we take � such that

Corr

"
nX
i=1

wiXi (0) erT ln
Xi

Xi (0)
;�

#
= 1:

So we �nd that a globally optimal choice for � is

� =
nX
i=1

wiXi (0) erT ln
Xi

Xi (0)
;

hence
�i = wiXi (0) erT ; for i = 1; 2; : : : ; n: (50)

3.3 Moments based approximation

The upper and lower bounds derived in Theorems 5 and 10 can be combined in one
approximate value for the prices C [K] and P [K] ; which we will denote by C [K] and

14



P [K] ; respectively: This approximation will be a linear combination of the convex upper
and lower bound, using a factor z 2 [0; 1] :

C [K] = zC l [K] + (1� z)Cc [K] ; for all K � 0; (51)

P [K] = zP l [K] + (1� z)P c [K] ; for all K � 0: (52)

The non-increasing convex curve C and the non-decreasing convex curve P can be inter-
preted as option curves of a synthetic stock market index S: The index S is not traded
in the market, but the theoretical price of an index option on S is given by

C [K] = e�rTE
h�
S �K

�
+

i
; for all K � 0; (53)

P [K] = e�rTE
h�
K � S

�
+

i
; for all K � 0: (54)

The cdf FS can be expressed in terms of the cdf�s FSl and FSc :

Theorem 11 Consider a market where the assets follow the multivariate Black & Scholes
model (2), where �i;j � 0; for all i; j: Assume that the prices for call and put options
written on the index S are given by (51) and (52), respectively. Then we have that the
cdf FS of S is given by

FS (x) = zFSl (x) + (1� z)FSc (x) ; for all x 2 R:

Proof. The curve C is a call option curve written on S; so (53) must hold. Then the cdf
FS is fully determined by the option curve C via the relation

FS (x) = 1 + e
rTC

0
[x+] ;

where C
0
[x+] denotes the right derivative of C in x; see e.g. Breeden and Litzenberger

(1978). Applying this relation in (51) proves (53). Relation (54) follows from the put-call
parity.

Di¤erent values for z will lead to di¤erent option curves C and P and as a result
also to di¤erent distributions for S . The value for z in (51) is determined such that

E
�
u
�
S
��
= E [u (S)] : The latter equality cannot be used to conclude that S d

= S because
the r.v.�s S and S are not convex ordered.

Theorem 12 Consider a market where the assets follow the multivariate Black & Scholes
model (2), where �i;j � 0; for all i; j: If in (51) and (52), z is given by

z =
E [u (Sc)]� E [u (S)]
E [u (Sc)]� E [u (Sl)] ; (55)

then E
�
u
�
S
��
= E [u (S)] :

15



Proof. In Cheung et al. (2013), it is shown that E
�
u
�
S
��
�E [u (S)] can be expressed as

E
�
u
�
S
��
�E [u (S)] =

Z E[S]

0

u00 (K)
�
P [K]� P [K]

�
dK+

Z +1

E[S]
u00 (K)

�
C [K]� C [K]

�
dK:

Inserting (51) in this expression results in

E
�
u
�
S
��
� E [u (S)] =

Z E[S]

0

u00 (K)
�
zP l [K] + (1� z)P c [K]� P [K]

�
dK

+

Z +1

E[S]
u00 (K)

�
zC l [K] + (1� z)Cc [K]� C [K]

�
dK

= E [u (Sc)]� E [u (S)]� z
�
E [u (Sc)]� E

�
u
�
Sl
���

;

from which we �nd that E
�
u
�
S
��
� E [u (S)] = 0 if z is given by (55).

Throughout this paper, we will use the choice u (x) = (x� E [S])2. Theorem 12 states
that if we take

z =
Var [Sc]�Var [S]
Var [Sc]�Var [Sl] ; (56)

then the index option surface is approximated such that Var
�
S
�
= Var[S]. In the sequel

of the paper we will use C [K] and P [K] as approximations for the prices of index call
and put options:

C [K] � C [K] ; for all K � 0;
P [K] � P [K] ; for all K � 0:

Convex approximations for sums of dependent lognormal r.v.�s proved to be successful
in earlier literature; see e.g. Vandu¤el et al. (2005), Dhaene et al. (2005) and Van Weert
(2011). The idea of combining an upper and lower bound in an approximate option value
was proposed in Vyncke et al. (2004) for the pricing of an Asian option.

4 Numerical illustration

The e¢ ciency of the comonotonic approximations C [K] and P [K] for the option prices
C [K] and P [K] is discussed in this section with the help of numerical illustrations. We
�rst consider the bivariate case, so n = 2. The correlation between the stocks is denoted
by � and S (T ) = w1X1 (T ) + w2X2 (T ) : The interest rate r is set to 5%. An example
with equal weights and another example with unequal weights will be investigated. In
each situation, we compare the approximate option prices with the corresponding Monte
Carlo estimates, where 106 simulated values are used. We determine option prices for the
maturities T = 1 and T = 3: Note that strike prices are expressed in terms of forward
moneyness. A basket strike price K has forward moneyness equal to K

E[S] :We assume that
the current prices of the non-dividend paying stocks are given by X1 (0) = X2 (0) = 100
and the weights are equal, w1 = w2 = 0:5: The results are listed in Table 1.
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Table 2 gives the numerical values for the situation where the weights and the initial
stock prices are di¤erent. Here, we have that X1 (0) = 130 and X2 (0) = 70. Furthermore,
w1 = 0:3 and w2 = 0:7: Both tables show that the approximate values are very close to
the simulated values. The two situations considered in Table 1 and 2 are also handled in
Deelstra et al. (2004). In this paper, the authors discuss various approximations for the
price of an arithmetic basket option, which are also based on comonotonic approximations.

We also consider the pricing of an index option, where the index S is composed of
n = 50 stocks. For simplicity, we take r = 0%; T = 1 and Xi (0) = 100; wi = 1=50; for
i = 1; 2; : : : ; 50: This particular situation was also considered in Carmona and Durrleman
(2006). The performance of the approximations C [K] is compared with the Monte-
Carlo simulation Cmc [K] and listed in Table 3. Tables 1-3 show that the approximation
C [K] is close to the simulated option price Cmc [K] : Indeed, the error "K is de�ned as
" [K] = 1� C[K]

Cmc[K]
and is always less than 1%:
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Table 1: Approximations and simulations: r = 5%; w1 = w2 = 0:5; X1(0) = X2(0) = 100

K T � � Cmc[K] �C[K] �[K]

10%OTM
115.64 1 0.3 0.2 2.9 2.8987 0.04%

0.4 9.12 9.1119 0.09%
0.7 0.2 3.72 3.7189 0.03%

0.4 10.88 10.8794 0.01%
127.80 3 0.3 0.2 7.39 7.3835 0.09%

0.4 18.85 18.8329 0.09%
0.7 0.2 8.92 8.9149 0.06%

0.4 21.66 21.6648 -0.02%
ATM
105.13 1 0.3 0.2 6.44 6.4352 0.07%

0.4 12.9 12.8916 0.07%
0.7 0.2 7.35 7.3463 0.05%

0.4 14.64 14.6426 -0.02%
116.18 3 0.3 0.2 11.17 11.1614 0.08%

0.4 22.41 22.3928 0.08%
0.7 0.2 12.69 12.698 -0.06%

0.4 25.12 25.1277 -0.03%
10% ITM

94.61 1 0.3 0.2 12.37 12.3706 0.001%
0.4 17.88 17.8846 -0.03%

0.7 0.2 13.08 13.0876 -0.06%
0.4 19.47 19.4697 0.001%

104.57 3 0.3 0.2 16.34 16.333 0.04%
0.4 26.62 26.625 -0.02%

0.7 0.2 17.71 17.7028 0.04%
0.4 29.19 29.1794 0.04%
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Table 2: Approximations and simulations: r = 5%; w1 = 0:3; w2 = 0:7; X1(0) =
130; X2(0) = 70

K T � � Cmc[K] �C[K] �[K]

10%OTM
101.76 1 0.3 0.2 2.57 2.5694 0.02%

0.4 8.07 8.0573 0.16%
0.7 0.2 3.28 3.2802 -0.01%

0.4 9.61 9.5893 0.22%
112.47 3 0.3 0.2 6.53 6.5289 0.02%

0.4 16.65 16.6277 0.13%
0.7 0.2 7.84 7.856 -0.20%

0.4 19.07 19.0865 -0.09%
ATM
92.51 1 0.3 0.2 5.69 5.6841 0.10%

0.4 11.39 11.3822 0.07%
0.7 0.2 6.47 6.474 -0.06%

0.4 12.9 12.9013 -0.01%
102.24 3 0.3 0.2 9.89 9.8532 0.37%

0.4 19.76 19.7567 0.02%
0.7 0.2 11.18 11.1859 -0.05%

0.4 22.12 22.1337 -0.06%
10%ITM

83.26 1 0.3 0.2 10.9 10.8978 0.02%
0.4 15.78 15.767 0.08%

0.7 0.2 11.52 11.5208 -0.01%
0.4 17.13 17.1442 -0.08%

92.02 3 0.3 0.2 14.41 14.4003 0.07%
0.4 23.46 23.4755 -0.07%

0.7 0.2 15.58 15.59 -0.06%
0.4 25.69 25.6985 -0.03%
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5 Conclusion

This paper handles the problem of pricing index options. The index option price is
in�uenced by the distribution of the individual components and the dependence structure,
which makes it a hard task to derive closed form solutions. We assume that the risk-neutral
dynamics of the stocks can be described by a multivariate Black & Scholes model. In this
simple stock price model, the vanilla options can be priced using the celebrated Black
& Scholes option pricing formula, but the price C [K] of an index option is not given in
an analytical formula. We derive a closed form approximation, which is based on convex
approximations for a sum S of dependent lognormal random variables. Comparing our
new approximate option pricing formula with Monte Carlo simulations shows that the
approximate values are close to the simulated values. Furthermore, we also show that the
approximate index option curve C can be interpreted as the index option curve under the
approximate index S; where the cdf of S has a more attractive form than the cdf of the
original index S:
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