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Pattern detection is the bedrock of modern vision science. Nearly half a century ago, psychophysi-
cists advocated a quantitative theoretical framework that connected visual pattern detection with its
neurophysiological underpinnings. In this theory, neurons in primary visual cortex constitute linear
and independent visual channels whose output is linked to choice behavior in detection tasks via
simple read-out mechanisms. This model has proven remarkably successful in accounting for
threshold vision. It is fundamentally at odds, however, with current knowledge about the neuro-
physiological underpinnings of pattern vision. In addition, the principles put forward in the model
fail to generalize to suprathreshold vision or perceptual tasks other than detection. We propose an
alternative theory of detection in which perceptual decisions develop from maximum-likelihood
decoding of a neurophysiologically inspired model of population activity in primary visual cortex.
We demonstrate that this theory explains a broad range of classic detection results. With a single set
of parameters, our model can account for several summation, adaptation, and uncertainty effects,
thereby offering a new theoretical interpretation for the vast psychophysical literature on pattern
detection.
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Visual pattern detection experiments measure the minimal
contrast required to reliably discriminate a stimulus from a
blank. In the late 1960s and early 1970s, psychophysicists
studying pattern detection pioneered a theory of visual process-
ing that revolutionized our understanding of the computations
performed by the early stages of the visual system. Within the
framework of linear systems analysis, John Robson, Fergus
Campbell, Jacob Nachmias, Norma Graham, and many others
sought to connect psychophysical measurements of visual be-

havior with the sensory coding performed by single cells in
visual cortex. The success of this endeavor inspired countless
psychophysicists, physiologists, and computer vision scientists
and is arguably the bedrock of modern vision science. But as the
field moved forward, several weak spots of the early theoretical
framework have come to light. The connection with the neural
underpinnings of pattern vision turned out to be looser than
anticipated, and the principles put forward in the theory to link
neural activity to perceptual judgments failed to generalize to
perceptual tasks other than detection.

Despite the early successes, visual pattern detection is currently
in an unenviable position. On the one hand, it is considered solved
and therefore not studied actively anymore. On the other hand,
detection is often assumed to be a unique behavioral paradigm
with limited relevance for suprathreshold vision or sensory infor-
mation processing in general. This article rejects both notions and
makes an effort to integrate the vast psychophysical literature on
pattern detection into contemporary neuroscience. To this end, we
examine how well a selection of classic detection phenomena (see
Table 1) can be explained in an observer model that is tightly
connected to current insights in visual neuroscience.1 Built on the
early theory, visual detection is described in an information pro-
cessing framework with an explicit encoding and decoding stage.
The nonlinear encoding stage gives rise to a fragmentary and noisy
stimulus representation that serves as input to a linear decoder that

1 Interested readers may contact the corresponding author to get the
Matlab code used to implement and fit the model.

Robbe L. T. Goris, Center for Neural Science, New York University, and
Laboratory of Experimental Psychology, KU Leuven, Leuven, Belgium.
Tom Putzeys and Johan Wagemans, Laboratory of Experimental Psychol-
ogy, KU Leuven. Felix A. Wichmann, Faculty of Science, University
of Tübingen; Bernstein Center for Computational Neuroscience Tübingen,
Tübingen, Germany; and Max Planck Institute for Intelligent Systems,
Tübingen, Germany.

Robbe L. T. Goris was supported by a postdoctoral fellowship from the
Fund for Scientific Research of Flanders and the Belgian American Edu-
cational Foundation; Tom Putzeys was supported by a PhD fellowship
from the Fund for Scientific Research of Flanders; Johan Wagemans was
funded by a Methusalem grant from the Flemish government (METH/08/
02); and Felix A. Wichmann, in part, was supported by the German Federal
Ministry of Education and Research through the Bernstein Computational
Neuroscience Program Tübingen (FKZ: 01GQ1002).

Correspondence concerning this article should be addressed to Robbe
L. T. Goris, Center for Neural Science, New York University, 4 Washing-
ton Place, Room 809, New York, NY 10003. E-mail: robbe.goris@nyu.edu

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

Psychological Review © 2013 American Psychological Association
2013, Vol. 120, No. 3, 472–496 0033-295X/13/$12.00 DOI: 10.1037/a0033136

472



aims to maximize task performance without having detailed
knowledge of the full sensory population response distribution. We
analyze predictions of this model for summation, adaptation, and
uncertainty effects in visual pattern detection and show that it
explains a broad range of behavioral results using a single set of
parameters.

Behavioral Pattern Detection: Data, Theory, and
Impact

Organisms and machines facing multiple visual tasks require an
initial processing stage that provides a generic image description
(Adelson & Bergen, 1991). Nearly half a century ago, psycho-
physicists studying pattern detection pioneered the hypothesis that
the human early visual system performs measurements of basic
image properties using parallel pathways tuned to particular visual
features such as the size and orientation of spatial variations in
luminance, thereby laying the foundation of our current under-
standing of pattern vision (see Figure 1).

In an elegant series of behavioral experiments, a group of
Cambridge researchers demonstrated that contrast detection
thresholds of gratings with sinusoidal luminance profiles are
hardly affected by either adding a second low-contrast grating
(Campbell & Robson, 1968; Graham & Nachmias, 1971) or adapt-
ing to a high-contrast grating (Blakemore & Campbell, 1969;
Pantle & Sekuler, 1968), provided that both sinusoids are suffi-
ciently different in spatial frequency (Sachs, Nachmias, & Robson,
1971). Furthermore, detection thresholds of spectrally complex
stimuli such as bars, square wave gratings, rectangular gratings,
and sawtooth gratings were shown to be predictable from the
detection thresholds of the constituting sinusoidal components
(Campbell, Carpenter, & Levinson, 1969; Campbell & Robson,
1968). From these findings, Robson and others inferred that the
visual system initially represents image information as if it per-
formed a spatially localized Fourier analysis. Inspired by the
demonstration of form-selective responses by neurons in primary
visual cortex (Hubel, 1959; Hubel & Wiesel, 1962, 1968), they
proposed a model for human pattern detection in which visual
choice behavior is directly linked to the underlying single cell
physiology. Specifically, neurons in visual cortex were suggested
to constitute functionally separate mechanisms (“channels”) that
act as an array of independent and linear filters with rectified

outputs. Perceptual choices in psychophysical tasks that involve
visual patterns at near-threshold contrasts were suggested to result
from evaluating the multichannel output in a simple way, for
instance, by comparing the output of the maximally responsive
channel (Graham, 1989; Pelli, 1985) or the Minkowski pooled
responses of all channels2 (Stromeyer & Klein, 1975) to a decision
criterion.

The successful application of linear systems analysis to behav-
ioral pattern detection provided a unifying mathematical frame-
work to describe visual information, neural computation, and
psychophysical sensitivity and prompted major research efforts in
vision science. Before long, electrophysiologists applied the power
of linear systems analysis techniques to quantitatively study the
computations performed by simple and complex cells in primary
visual cortex (Movshon, Thompson, & Tolhurst, 1978a, 1978b)
and motion direction selective neurons in the middle temporal
visual area (MT; Movshon, Adelson, Gizzi, & Newsome, 1985).
At the behavioral level, hundreds of near-threshold studies re-
ported results that were qualitatively and quantitatively well de-
scribed by linear channel models adhering to the basic architecture
sketched in Figure 1 (for an excellent review on this vast psycho-
physical literature, see Graham, 1989). Theoretical work further
demonstrated that a spatially localized Fourier analysis provides a
sparse code for natural images (Olshausen & Field, 1996; Rehn &
Sommer, 2007). In all of these fields, current models and system
identification techniques have added several layers of complexity
to the original linear channels proposal. Nevertheless, many con-
cepts at the heart of modern vision science have their roots in the
pattern detection literature.

Limitations of the Linear Channels Model

Despite its ability to describe a wide range of near-threshold
results, the characterization of encoding and decoding employed
by the linear channels model is fundamentally at odds with recent
insights and models in visual neuroscience. First, spatial-

2 A Minkowski metric has the form

R !!"i
"ri"##1 $ #,

where ri are individual channel responses and ! is the pooling exponent.

Table 1
Pattern Detection Results Modeled in This Article

Behavioral measurement Original source Included in fittinga

Psychometric function for detection Legge (1978)
Contrast sensitivity function Campbell & Robson (1968) ✓
Summation of far-apart frequencies Graham & Nachmias (1971) ✓
Summation of near and far frequencies Sachs et al. (1971)
Square wave sensitivity Campbell & Robson (1968) ✓
Detection of frequency-modulated gratings Stromeyer & Klein (1975)
Pattern adaptation: adapting time Blakemore & Campbell (1969) ✓
Pattern adaptation: adapting contrast Tolhurst (1972) ✓
Pattern adaptation: adapting frequency Blakemore & Campbell (1969) ✓
Pattern adaptation: spectral composition Blakemore & Campbell (1969), Tolhurst (1972)
Extrinsic uncertainty: spatial frequency Davis (1981), Davis & Graham (1981), Davis et al. (1983)
Contrast discrimination Nachmias & Sansbury (1974)
a Measurements were part of the data set used to optimize the model parameters.
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frequency-tuned neurons in primary visual cortex are neither linear
nor independent encoders due to squaring and gain control mech-
anisms (Carandini, Heeger, & Movshon, 1997; Heeger, 1992a,
1992b). Squaring produces nonlinearly increasing cell responses as
stimulus contrast increases from zero, whereas gain control—
achieved via nonspecific suppression—renders neural responses
dependent on the activity of neurons tuned to a broad range of
stimulus characteristics (see Figure 2). Second, the winner-takes-
all decoding strategy that is often employed in the linear channels
model is difficult to reconcile with a basic operating principle of
the brain: Information is represented in large numbers of neurons,
and likewise it seems as if large numbers are taken into account
when making perceptual decisions (Parker & Newsome, 1998;
Pouget, Dayan, & Zemel, 2003). Moreover, ample evidence em-
phasizes that even in simple perceptual discrimination tasks, re-
sponses of multiple sensory neurons may be pooled according to
their reliability and relevance to the task at hand (Fetsch, Pouget,
DeAngelis, & Angelaki, 2012; Law & Gold, 2008; Parker, Krug,
& Cumming, 2002; Purushothaman & Bradley, 2005). This sug-
gests that behavioral performance is principally limited by noise
correlations between neurons (Averbeck, Latham, & Pouget, 2006;
Shadlen, Britten, Newsome, & Movshon, 1996; Zohary, Shadlen,
& Newsome, 1994), and pooling inefficiencies (Beck, Ma, Pitkow,

Latham, & Pouget, 2012; Cohen & Newsome, 2009; Palmer,
Chen, & Seidemann, 2007; Putzeys, Bethge, Wichmann, Wage-
mans, & Goris, 2012), but not by the most sensitive neuron
available (Barlow, 1972) or a task-blind decoding rule as assumed
in the linear channels model.

Over the last three decades, many psychophysical studies have
pointed out that the encoding and decoding principles put forward
in the linear channels model fail to generalize to suprathreshold
vision and perceptual tasks other than detection. Detection perfor-
mance, for instance, increases nonlinearly with stimulus contrast
(Legge, 1978; Nachmias & Sansbury, 1974). Moreover, pattern
masking studies have convincingly demonstrated the existence of
psychophysical parallels of V1 nonlinear response mechanisms,
that is, response expansion (Goris, Wagemans, & Wichmann,
2008; Legge & Foley, 1980) and broadly tuned response suppres-
sion (Foley, 1994). In a rather different research domain, behav-
ioral experiments addressing the question how the brain solves
inference problems typically find that perceptual decision making
often follows the normative Bayesian framework. In a wide variety
of tasks, human observers take the reliability of sensory informa-
tion and prior statistical knowledge about the task to be performed
into account when making perceptual judgments (Ernst & Banks,
2002; Girshick, Landy, & Simoncelli, 2011; Mamassian & Landy,
2001; Najemnik & Geisler, 2005; Weiss, Simoncelli, & Adelson,
2002).

The relevance of the linear channels model is thus limited to the
threshold situation. For this reason, it has often been (tacitly)
assumed that the visual system may operate in a special regime in
detection tasks (Graham, 1989, pp. 11–12, 1992, 2011; Wandell,
1995, pp. 195–196). Specifically, near-threshold stimuli may be
too weak to drive the early visual system’s nonlinearities and
activate only a very limited number of V1 neurons. In this sce-
nario, maximum-output decoding of linear and independent chan-
nels could be an adequate description of the brain’s operation in
detection tasks. Although this reasoning provides a justification for
the use of linear channels models, it severely limits the potential of
near-threshold pattern detection tasks as a model system for ev-
eryday vision and sensory information processing in general. Al-
ternatively, the shortcomings outlined in this section may be taken
to imply that detection calls for a different explanation than the one
provided by the linear channels model. That is the assessment we
make here, and it provides the direct motivation for this article.
Building on the strengths of the early theoretical framework, we
seek to identify a computational theory for pattern detection that
overcomes its weaknesses.

Current Observer Models for Pattern Detection

Current observer models for pattern vision have overcome some
of the limitations of the linear channels model. This article is
concerned with behavioral detection experiments. Because pattern
detection is a special case of masking (i.e., it can be considered a
masking experiment whereby the mask contrast equals zero), we
focus exclusively on models developed in the domain of pattern
masking in this section (for a more exhaustive review of current
pattern vision models, see Graham, 2011). Masking experiments
investigate the visual mechanisms that mediate discrimination of a
pattern from a mask whereby both stimuli are typically coincident
in space and simultaneous in time. The pattern stimulus usually

l(x,y,t) Encoding Decoding

Figure 1. Cartoon illustration of the linear channels model for threshold
pattern vision. In the late 1960s and early 1970s, psychophysicists popu-
larized a quantitative information processing approach to study pattern
vision. This framework assumes that the visual system initially analyses the
retinal input using parallel pathways tuned to a variety of visual dimen-
sions, left unspecified in this cartoon (for in-depth discussion of these
dimensions, see Adelson & Bergen, 1991; Graham, 1989). Visual encoding
is carried out by psychophysical channels, assumed to operate linearly and
independent of each other and originating in the neural computations
performed in visual cortex. In behavioral experiments involving near-
threshold stimuli, the decoding stage that connects channel activity to
perceptual judgments is typically formalized by a simple task-blind read-
out rule such as a maximum-output operator or Minkowski pooling.
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consists of a sine wave grating and is commonly referred to as the
signal. The mask can vary in a number of ways. Depending on the
research question addressed, it may be identical to the signal
except for its contrast (e.g., Bird, Henning, & Wichmann, 2002;
Nachmias & Sansbury, 1974), differ in multiple aspects (Foley,
1994; Legge & Foley, 1980), or be spectrally complex and sto-
chastic (Baker & Meese, 2012; Henning & Wichmann, 2007; Lu &
Dosher, 2008; Nagaraja, 1964; Putzeys et al., 2012). The latter
case is sometimes called detection-in-noise. The effect of one
stimulus on the detectability of another is often disruptive, al-
though low contrast maskers can increase stimulus detectability
(Blackwell, 1998; Goris, Zaenen, & Wagemans, 2008; Nachmias
& Sansbury, 1974).

Most observer models are concerned with both masking effects.
Following a long tradition, they commonly include a perceptual
template (i.e., a linear filter selective for the signal stimulus), a

nonlinear transducer, a gain control process, internal noise, and a
decision mechanism (Dosher & Lu, 1998; Foley, 1994; Goris,
Zaenen, & Wagemans, 2008; Legge & Foley, 1980). For our
purposes, it suffices to consider one example model in more detail.
We opt for the perceptual template model (PTM), introduced by
Dosher and Lu (1998). It is an extension of many other models and
can be applied to both stochastic and nonstochastic masks (Dao,
Lu, & Dosher, 2006; Klein & Levi, 2009). For a recent review of
the PTM and related models, see Lu and Dosher (2008).

In the PTM, stimuli are processed in two pathways (see Figure
3). The signal pathway has a perceptual template that responds to
a signal stimulus but not to stimuli that are very different from the
signal. The exact characteristics of the template are usually left
unspecified, but it is assumed that these may be highly complex
and, for instance, match an object or a face (Macke & Wichmann,
2010). The template output is further processed by a nonlinear
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Figure 2. (A) The standard functional model of V1 neurons consists of a linear filtering stage followed by
broadband divisive inhibition and response expansion. The variability in neural responses is attributed to a
stochastic spike generation process in this model, although this does not accurately reflect the underlying
biophysics (action potential generation is a highly reliable event; the noise is in the synaptic inputs). The linear
filter shown is a log-Gabor receptive field. (B) V1 neurons have several nonlinear response properties that are
well described by this model. The left figure illustrates spatial frequency tuning of the linear filters that excite
(black) and suppress (gray) an idealized V1 neuron. Stimulus S1 drives the neuron vigorously, and S2 fails to
elicit a response. The plot on the right illustrates responses to a family of stimuli composed by weighted
summation of S1 and S2. The neuron’s response to S1 is modified by the presence of S2 in a contrast-dependent
manner. c/deg " cycles/degree.
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transducer function. Stimulus gain is modified through the gain
control pathway, which also has a template and a nonlinearity that
may or may not differ from the signal pathway template and
nonlinearity. Together, these pathways give rise to a one-
dimensional internal stimulus representation that is passed to the
decision stage. Observer sensitivity is limited by internal noise that
is produced by an additive and a multiplicative noise source,
whereby the latter’s magnitude is determined by the total amount
of contrast energy in the input stimulus and hence provides the
contrast gain control signal. Overall, the PTM can fully character-
ize an observer using as little as five free parameters (Lu &
Dosher, 2008), although there are several ways to extend the
model.

The nonlinear response transduction and contrast gain control
signal of the PTM connect the model to the functional mechanisms
that underlie nonlinear response properties of cortical cells. More-
over, these nonlinearities enable the PTM to parsimoniously ac-
count for several detection and masking phenomena. Specifically,
the model can simultaneously explain why detection performance
increases nonlinearly with stimulus contrast, why stimulus detect-
ability can benefit from the presence of a low-contrast mask,3 why
discrimination thresholds in many visual tasks follow Weber’s
law, and why response consistency in double-pass experiments
increases with task performance (Klein & Levi, 2009; Lu &
Dosher, 2008).

Limitations of the PTM

The original intent of the PTM was to provide a simple approx-
imation for stochastic multichannel models that allows to both
quantify general perceptual limitations and characterize the non-
linear properties of an observer’s internal stimulus representation
(Lu & Dosher, 2008). The model therefore provides a rather
abstract description of visual processing whereby encoding and

decoding are intertwined.4 However, leaving the information pro-
cessing framework of mechanistic models comes at a cost. First, it
implies that the PTM response to a visual stimulus cannot in any
simple way be related to the pooled responses of a population of
visual neurons. The reason is that the PTM nonlinearities are
applied to the output of a single linear template. Following Mor-
genstern and Elder (2012), we consider this argument in detail for
the spatial dimension, but it holds for all tuning dimensions that
precede the response nonlinearity. Neurons have highly localized
and overlapping receptive fields. Even a small Gabor stimulus
drives thousands of V1 neurons (Chen, Geisler, & Seidemann,
2006). Outputs of many neurons thus need to be pooled to con-
struct a template. If these outputs were linear, their sum would be
indistinguishable from the template response, provided that recep-

3 The performance-enhancing effect of low-contrast masks has been
studied extensively for nonstochastic masks (Foley, 1994; Henning &
Wichmann, 2007; Legge & Foley, 1980; Nachmias & Sansbury, 1974), but
has received less attention for detection-in-noise (but see Blackwell, 1998;
Goris, Zaenen, & Wagemans, 2008). Most threshold-versus-contrast (TvC)
plots of the PTM do not show this effect. However, Goris, Zaenen, and
Wagemans (2008) demonstrated that an extended PTM successfully fits the
effects of weak and strong noise, and Klein and Levi (2009) showed that
the stochastic version of the PTM predicts beneficial effects of subthresh-
old noise in detection. In most PTM applications, TvC plots are generated
from the simplified analytic version of the PTM, and in this version of the
model this effect does not occur.

4 The PTM should probably be considered a statistical rather than a
mechanistic model, which means that it is well defined, has appealing
computational properties, and provides principled ways to extract patterns
from behavioral choice data. However, it does not attempt to capture in
detail how a psychophysical template arises from neuronal responses. The
linear channels model, on the other hand, leans more toward being a
mechanistic model, meaning that it assumes a specific mechanism, in-
tended to resemble the underlying physiology, that generates the outcome
in the decision process.

∑

⊕⊕

NaNm

Figure 3. The perceptual template model of a human observer. This schematic model representation is a replica
of Figure 15 in Lu & Dosher (2008). The lower pathway is the signal pathway. Visual input is processed by a
linear template, the output of which is nonlinearly transduced and subject to the disruptive influence of the gain
control pathway. This process can be formalized as a multiplicative noise injection or as a divisive contrast gain
control operation. It is followed by an additive internal noise source and a standard one-dimensional signal-
detection-theory decision stage (Tanner & Swets, 1954). From “Characterizing Observers Using External Noise
and Observer Models: Assessing Internal Representations With External Noise,” by Z.-L. Lu and B. A. Dosher,
2008, Psychological Review, 115, p. 60. Copyright 2008 by the American Psychological Association.
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tive fields were to tile visual space perfectly. Formally, let si be the
spatial profile of the linear receptive field of neuron i, stemplate the
spatial profile of a global linear template, x and y two spatial
dimensions, and l the stimulus luminance profile:

Rpooled ! "
i!1

n

$$ si%x, y&l%x, y&dxdy (1)

cannot be distinguished from

Rtemplate ! $$ stemplate%x, y&l%x, y&dxdy. (2)

However, when we introduce the previously discussed nonlinear
response transformations, this equality no longer holds. Consider
the example of a response exponent. It is clear that for all p # 1,

Rpooled ! "
i!1

n

%$$ si%x, y&l%x, y&dxdy&p
(3)

will differ from

f%Rtemplate& ! %$$ stemplate%x, y&l%x, y&dxdy&p
. (4)

Models that are characterized by a global linear template matching
stage can therefore not directly be related to models that linearly

combine outputs of nonlinear subunits and hence not to neural pop-
ulation activity. For which aspects of detection does the simplified
observer model provide a good approximation to a full model? Mor-
genstern and Elder (2012) recently asked whether assuming a global
linear template compromises the ability of observer models to char-
acterize human choice behavior in a detection-in-noise task when the
signal is spatially extended. They compared a global linear template
model with a local nonlinear subunit model. The latter one turned out
to be a much better predictor of human choice behavior on a trial-
by-trial basis (see Figure 4).

A second limitation that originates in the statistical nature of
the PTM is that the model is agnostic about the mechanisms that
shape the perceptual template or the different factors that con-
tribute to internal noise. It is therefore not clear what to expect
when we combine two signals or introduce stimulus uncer-
tainty. Specifically, let ! be the vector that contains the param-
eter estimates of the PTM that account for detection of S1 and
!= the parameter vector for detection of S2. Although the
observer’s visual processing of S1 and S2 is fully characterized,
we cannot in a principled way derive a prediction from ! and !=
for a summation experiment, that is, detection of S3 " S1 $ S2,
or for an uncertainty experiment, that is, detection of S1 and S2,
when P(S1) " q and P(S2) " 1 % q. It is exactly this type of
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Figure 4. Template matching models fundamentally differ from subunit models when visual encoding is
nonlinear. Morgenstern and Elder (2012) examined how well both types of models predict human choice
behavior in a detection-in-noise task that involved spatially extended stimuli. The signal-absent trials are of
particular interest, as they unambiguously reflect which image characteristics lead human observers to “see” the
signal in the noise. (A) Template matching models by nature assume that spatial integration can be described as
a process that precedes nonlinear response transformations. However, responses of a matched linear filter are a
very poor predictor of human choice behavior (only signal-absent trials are shown). This was also true for a
global mechanism built from templates with different phase tuning (not shown). (B) A subunit model in which
the outputs of local energy mechanisms are summed turns out to give a much better characterization of
perceptual judgments.
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connection between experiments we seek to establish in this
article. This calls for a multichannel approach, whereby the
encoding and decoding stage are separated and made explicit
(for simulations and analysis of a multichannel variant of the
PTM in the context of perceptual learning, see Dosher & Lu,
1998; Petrov, Dosher, & Lu, 2005).

Desiderata for a Theory of Pattern Detection

Here we seek to formulate a computational theory of pattern
detection that combines the strengths of the linear channels model
and the PTM and overcomes their weaknesses. On the basis of the
arguments presented above, we identify the following desired
characteristics of this theory. First, in keeping with the main
strength of the linear channels model, the theory should be explic-
itly connected to the physiological underpinnings of pattern vision.
Second, following the PTM, it should be founded upon computa-
tional principles that link detection with suprathreshold pattern
vision. Third, because pattern detection is simply one of many
sensory information processing tasks, the decoding mechanism
ought to generalize to perceptual decision making in general. And
fourth, in line with the aspirations of the linear channels model and
the PTM, it should explain a broad range of behavioral results
using a single set of parameters.

With these goals in mind, we have selected a set of classical
pattern detection experiments (see Table 1) that seek to answer
three fundamental questions: How is detectability of a compound
stimulus related to detectability of its components? How is stim-
ulus detectability modified by recent sensory experience? And
how does detectability depend on stimulus probability? These
questions have been addressed in summation, adaptation, and
uncertainty experiments, respectively, and will form the test bed
for the model that we outline in the following section and examine
in the rest of this article.

A Neural Population Model for Pattern Detection

In the preceding sections, we motivated the need for a unified
theory of pattern detection and argued that several current observer
models of pattern masking do not possess the full set of charac-
teristics needed to be considered viable candidates. In the remain-
der of this article, we describe and evaluate a theory that we refer
to as the neural population model (NPM). In this model, visual
pattern detection is formalized as an information processing prob-
lem; that is, the multidimensional stimulus encoding and
dimensionality-reducing decoding stage are separated and made
explicit. Visual processing is performed by units whose basic
stimulus selectivity is determined by a linear filtering operation.
The filter responses are subject to nonlinear transduction (squar-
ing) and divisive inhibition and are corrupted by noise modeled to
reflect neural noise. The sensory population response is read out by
a linear decoder that aims to maximize task performance without
having detailed knowledge about the structure of the full response
distribution. A schematic of the model is shown in Figure 5.

Models that bear similarity to ours have been applied before in
the domains of pattern masking (Chirimuuta & Tolhurst, 2005;
Geisler & Albrecht, 1997; Goris, Wichmann, & Henning, 2009;
Itti, Koch, & Braun, 2000; Sanborn & Dayan, 2011), perceptual
learning (Petrov et al., 2005), and visual attention (Lee, Itti, Koch,

& Braun, 1999). In all these models, visual information is initially
processed by a population of linear–nonlinear cascades tuned to
the stimulus dimensions of interest. However, the models do differ
in the details of the encoding stage, in the assumed characteristics
of internal noise, and in the postulated mechanisms for decision
making. Nevertheless, the similarity of approach does suggest that
it may be possible to formulate a single multichannel model
capable of simultaneously explaining important aspects of visual
attention, perceptual learning, masking, and, as we shall see,
pattern detection.

Mathematical Properties of the
Neural Population Model

Stimulus Encoding

In the NPM, visual input is encoded by a population of spatial-
frequency-tuned units. To approximate the cortical input signal
provided by thalamic neurons in the lateral geniculate nucleus
(LGN), the first processing stage in the model consists of applying
a linear bandpass filter M to the input. M encompasses the effects
of the eye’s modulation transfer function as well as the spectral
filtering that takes place in retinal ganglion cells and lateral genic-
ulate nucleus cells. Let & be spatial frequency, then contrast
attenuation is given by

M%%& ! %&e#'%. (5)

Parameters ' and ! control the shape of the bandpass filter and were
determined through fitting a large set of behavioral data (see Table 2). For
convenience, the output of M is scaled between 0 and 1.

Figure 5. The neural population model of pattern detection. Visual in-
formation is analyzed by a population of spatial frequency tuned units. As
in the standard functional model of V1 neurons, linear filtering is followed
by divisive inhibition and response squaring (not shown). Unit responses
are corrupted by weakly correlated multiplicative noise (not shown) and
read out by a linear maximum-likelihood decoder that makes some sim-
plifying assumptions about the structure of the full population response
distribution.
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The second processing stage in the model is designed to mimic
the neural computation taking place in V1. As has become stan-
dard, this step is characterized by a linear–nonlinear cascade
model. The units’ basic selectivity is thus determined by a linear
receptive field, chosen to exhibit a log-Gaussian-shaped spatial-
frequency-tuning function f:

f%%& ! e'
%ln% ' ln%c&2

( , (6)

where & is spatial frequency, &c the unit’s preferred spatial fre-
quency, and ( the parameter that controls tuning width. The
response of f is scaled between 0 and 1. The units’ preferred spatial
frequencies !c " {&c1, . . . , &cn} are evenly distributed on a
logarithmic scale over the range [0.1, 66] cycles degree%1. Param-
eter ( was determined through fitting (see Table 2).

Let Li refer to the response of the ith unit’s linear receptive field.
The mean unit response rate Ri is a nonlinear transformation of Li

reflecting the effects of nonlinear transduction and broadly tuned
divisive inhibition:

Ri ! r0 ) rmax(
Li

)*2 ) "
j!1

m

zjLj
2*

n

. (7)

Here r0 is the ith neuron’s mean spontaneous discharge rate, rmax

its maximal firing rate, n its response exponent, and ) its semi-
saturation contrast. The normalization signal is computed by tak-
ing the weighted sum of all squared filter responses, whereby the
weights z " {z1, . . . , zn} follow a log-Gaussian profile centered
at &c. We set r0 to 5 impulses per second, assumed perfect squaring
for the nonlinearity (i.e., n " 2), and used a 4-octave-wide profile
for the weights z. The normalization weights were scaled such that
a preferred stimulus produces a normalization response of 1.
Parameters ) and rmax were determined trough fitting (see Table
2). Response rates are converted to spike counts by multiplying Ri

with stimulus duration t.

The encoding stage in our model does not include a description
of the units’ orientation selectivity, temporal selectivity, or spatial
receptive field envelope. The motivation for this simplification is
twofold. First, all experiments discussed in this article solely
involve manipulations of spatial frequency. Second, detection per-
formance in our model is primarily driven by appropriately tuned
units and not affected by inclusion of uninformative units.

Sensory Noise

Visual neurons produce highly fluctuating responses to repeated
presentations of the same stimulus (Churchland et al., 2010; Tol-
hurst, Movshon, & Dean, 1983). For all stimuli, response variance
is assumed to be Gaussian and level dependent, that is,

VAR%tR& ! ktR, (8)

where k is a proportionality constant (the Fano factor) set to 1.5.
We further assume neurons to have weakly correlated trial-to-trial
variability in their spike counts, in line with numerous electro-
physiological observations (e.g., Kohn & Smith, 2005; see Cohen
& Kohn, 2011, for a recent review), although these findings have
recently been contested (Ecker et al., 2010). Such correlated re-
sponse fluctuations are thought to reflect the functional connec-
tivity of neural circuits. For this reason, the strength of the pairwise
correlations in our model is maximal for neurons preferring the
same spatial frequency and decreases monotonically as the pre-
ferred frequencies become more different (see Figure 6). We based
the values of the noise correlations on reported estimates in the
literature (see Table 2; Cohen & Kohn, 2011).

Stimulus Decoding

In detection tasks, the visual system needs to disentangle
subtle stimulus-driven activity of sensory neurons from spon-
taneous neural firing. This is a difficult problem because neu-

Table 2
Parameters Used in the Neural Population Model

Symbol Value Comments

' 1.91 Controls the shape of the modulation transfer function M
! "2.27 Controls the shape of the modulation transfer function M
( 1.01 Full bandwidth at half height for the units’ linear receptive field,

expressed in octaves
rmax 194.9 Maximal firing rate, expressed in impulses per second
) 0.015 Stimulus-independent response suppression
* 8.14 Controls the strength of neural adaptation for adequately

stimulated neurons
+ 3.22 Controls the strength of neural adaptation for weakly stimulated

neurons
ε 59.9 Maximal duration of response integration during adaptation,

expressed in seconds
r0 5.0 Spontaneous firing rate, expressed in impulses per second
n 2.0 Response exponent, chosen to produce energy mechanisms
k 1.5 Fano factor
&c [0.1, 66] Minimal and maximal preferred spatial frequency, expressed in

cycles per degree
,ij [0.05, 0.15] Minimal and maximal noise correlation between sensory units

Note. Values of the free parameters, obtained through fitting the behavioral data, are shown in bold.
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rons vary in their level of maintained discharge, produce highly
fluctuating responses to repeated presentations of the same
stimulus, and share some of their noise. Typically, only a small
fraction of cells is selective for the stimulus. All these charac-
teristics are present in our model. The optimal inference strat-
egy to maximize performance in a two-alternative forced-
choice (2AFC) detection task consists of choosing the interval
most likely to contain the signal given both population re-
sponses (i.e., maximum likelihood decoding). Computationally,
this can be achieved by linearly combining the spike counts
using a set of weights w " {w0, . . . , wn} determined by the
product of each unit’s mean increase in responsiveness when
the signal is present and the reliability of this increase (Green &
Swets, 1966). Let r(s) and r(b) refer to the ith neuron’s response
to the stimulus and a blank, then the optimal linear weight is

wi !
E!r%s& ' r%b&#

VAR%r%s& ' r%b&& . (9)

Choosing the stimulus alternative that elicited the larger weighted
sum

D ! " witRi (10)

maximizes detection performance, provided that responses are
normally distributed and statistically independent. This latter as-
sumption is of course violated in our model. Importantly, even
very weak correlations between individual neurons yield highly
correlated population activity.

Because our decoder does not take the structure of the re-
sponse covariance matrix into account, correlated neural noise
effectively provides an upper limit to signal detectability in the

NPM (see Figure 6). Although clearly suboptimal in a statistical
sense, this may be regarded as a realistic model assumption:
Estimating the covariance matrix for large populations of neu-
rons simply is not feasible. An argument in support of this
notion is provided by the fact that the relation between neuro-
metric and psychometric functions in the NPM closely resem-
bles measurements in macaque monkeys performing a detection
task. The psychometric function is characterized by a threshold
that is slightly lower and a slope that is slightly higher than the
corresponding values of the neurometric function (Palmer et al.,
2007).

In sum, the assumed decoder is suboptimal because it does
not attempt to extract information from the correlated sensory
noise (Chen et al., 2006; Graf, Kohn, Jazayeri, & Movshon,
2011). However, this omission has the benefit of computational
simplicity and successfully captures the empirically estimated
relation between sensory unit sensitivity and behavioral perfor-
mance in contrast detection tasks (see Figure 6).

Detection Performance

Model performance in a 2AFC detection task depends on the
decision statistic D, that is, a weighted sum of spike counts. We
assumed no temporal uncertainty and a maximal integration
window of 100 ms (Gorea & Tyler, 1986). Neither of these
assumptions is critical for the model behavior: Including tem-
poral uncertainty or decreasing the temporal integration win-
dow would simply increase the contribution of the spontaneous
activity to the decision statistic and hence increase detection
thresholds. For any given stimulus, D will be distributed nor-
mally if responses are combined linearly. Given that this con-
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Figure 6. The performance limiting effect of correlated sensory noise on detection. The left panel illustrates
the interneuronal correlation coefficient matrix implemented in the neural population model. Correlation
strengths vary between 0.05 and 0.15, are maximal for units with the same preferred spatial frequency, and
decrease with a 1-octave-wide log-Gaussian profile for pairs of neurons with different preferred frequencies. The
middle panel shows how sensitivity (i.e., the inverse of the 75% correct detection threshold) evolves as a function
of pool size with and without correlated noise included. All neurons in the pool were tuned to the signal in this
simulation. When their responses are correlated, detection performance saturates at a pool size of approximately
50 units. This saturation reflects the fact that pooling neural responses averages out the independent noise within
the pool but leaves the correlated component unaffected. Detection thresholds of the saturated pool correspond
to the performance level that is reached by optimally combining seven independent units, in line with the
measurements in awake behaving monkey of Palmer et al. (2007). The right panel shows a neurometric function
for a single unit and the psychometric function of the saturated population, consisting of 200 units. The
psychometric function has a slope that is steeper than the neurometric function, consistent with the observations
of Palmer et al. c/deg " cycles/degree.
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dition is satisfied in the NPM, stimulus detectability is fully
determined by the mean and variance of D. Let D(s) refer to the
signal present interval. With Equation 9 to infer the weight
attributed to each unit,

E!D%s&# ! "
i!1

N

wiri%s& (11)

and

VAR%D%s&& ! "
i!1

N

wi
2VAR%ri%s&&

) "
i!1

N

"
j+i

N

,ij'wi
2VAR%ri%s&&wj

2VAR%rj%s&&, (12)

where N is the number of units in the pool and ,ij the correlation
coefficient between the ith and the jth unit. Mean and variance of
D for the signal absent interval (the “blank”), D(b), are derived by
replacing r(s) with r(b) in Equations 11 and 12. Detection perfor-
mance, expressed as d=—i.e., the signal-to-noise ratio of an ideal
observer—can be computed directly from these statistics:

d ' !
E!D%s&# ' E!D%b&#

)VAR%D%s&& ) VAR%D%b&&
2

. (13)

Model Fitting

The NPM was fitted to several data sets from different
experiments simultaneously with a single set of parameters (see
Tables 1 and 2). To ensure that the model was operating in the
saturated sensitivity regime, we included 200 sensory units with
varying stimulus selectivities. The model makes use of eight
free parameters in total. Two of these (' and !) control the
global spatial frequency filtering that takes place in the first
processing stage; one (() the bandwidth of the units’ linear
receptive field; one ()) the stimulus-independent suppression;
one (rmax) the maximal unit response rate; and three (*, +, and
ε) adaptation-induced response reduction.

We minimized root-mean-square error of the logarithmically
transformed data and model predictions, RMSEln, as given by

RMSEln !) 1

N"
j!1

J

"
i!1

nj +ln
-̂ji

-ji
,2

, (14)

where j is the experiment index, nj the number of data points in
experiment j, N " -nj, -ji the behavioral detectability estimate,
and -̂ji the corresponding model prediction. We express fit error on
a logarithmic scale because detection thresholds vary over several
log units. The reported RMSE values are computed by taking the
exponential of RMSEln and express the distance between model
prediction and data as a fraction of the threshold contrast. Finally,
detectability - is expressed as threshold contrast for sine wave
detection and as threshold ratio for all other experiments. Both
statistics reflect the same currency, that is, relative pattern visibil-
ity.

Empirical Test of the Neural Population Model
for Pattern Detection

In this section, we evaluate the theoretical predictions of the
NPM against empirical data. All model behavior described
originates from a single set of parameters (see Table 2). The
free parameters were estimated by fitting the model to a subset
of the empirical data (see Table 1) and kept constant for all
simulations described in this article. We consider several sum-
mation, adaptation, and uncertainty experiments that have in-
vestigated manipulations of the spatial frequency dimension.
The empirical phenomena we discuss are all well known,
though some findings are disputed. For a more extensive review
of these empirical findings and their interpretation in the frame-
work of linear channels models, see Graham (1989).

First, consider detection of sinusoidal patterns, which is
treated as baseline. Detection thresholds vary a great deal with
stimulus spatial frequency. Some part of this variation is caused
by the optics of the human eye, although the exact shape of the
contrast sensitivity function depends on many more factors that
are not of direct interest here such as mean luminance (Camp-
bell & Robson, 1968), temporal stimulus profile (Henning,
1988), stimulus size (Luntinen, Rovamo, & Naesaenen, 1995),
and the statistics of the visual environment (Bex, Solomon &
Dakin, 2009). To calibrate the NPM’s absolute contrast sensi-
tivity, we included one well-known example of contrast sensi-
tivity measurements in our fit data set (Campbell & Robson,
1968). As can be seen in Figure 7, the contrast sensitivity
function of the NPM—that is, the inverse of the detection
threshold versus spatial frequency—is in good agreement with
these data (RMSE " 14% of the threshold contrast). Through-
out the rest of this article, experimental measurements and
model predictions will often be expressed relative to baseline
sensitivity.

Summation Experiments 1: Pattern Detectability
and Homogeneity

Summation experiments investigate how detectability of a
compound stimulus is related to the detectability of its compo-
nents. There are several variants that have a somewhat different
theoretical motivation. The interest in summation properties of
the human visual system originates in linear systems analysis.
Linear systems have the appealing characteristic that responses
to any input stimulus can be straightforwardly predicted from a
limited number of measurements. The basic tests of linearity are
homogeneity and additivity, which together constitute superpo-
sition.

A system is homogeneous if its output scales accordingly
with the input. In case of the visual mechanisms mediating
pattern detection, homogeneity would hold if pattern detectabil-
ity (expressed in d=) would double if we were to double the
signal contrast. This is arguably the simplest type of summation
experiment. Empirical tests of this nature have revealed two
fundamental characteristics of pattern detection: First, if we
make abstraction of absolute stimulus sensitivity and normalize
the signal contrast by the stimulus-specific detection threshold,
d= versus c= functions are remarkably invariant for sine wave
gratings (here c= is normalized contrast). When plotted on

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

481VISUAL PATTERN DETECTION



semilogarithmic coordinates, the slope of the psychometric
function for detection is thus fairly independent of factors such
as spatial frequency (Wichmann, 1999, Figures 4–1, 4–4). Sec-
ond, near threshold, detectability rises faster than linear. Both
observations are well captured by the NPM (see Figure 7).

In the NPM, homogeneity for pattern detection does not hold
because stimulus contrast is encoded nonlinearly, as is the case in
observer models like the PTM (Dosher & Lu, 1998). Note that this
is not the only possible interpretation for this failure of linearity.
An alternative option that has been studied in detail by Pelli (1985)
and Eckstein, Ahumada, and Watson (1997) is the combination of
noisy linear encoding mechanisms and a maximum-output de-
coder. This observer model, known as the uncertainty model,
produces similar behavior when the encoding pool is dominated by
task-irrelevant units.

Summation Experiments 2: Pattern Detectability and
Additivity

A system is additive if its response to the sum of two input
stimuli is equal to the sum of each of its responses to these stimuli
presented separately. Graham and Nachmias (1971) tested addi-
tivity of pattern detection for a large number of stimuli composed
of two disparate spatial frequencies, f and 3f cycles/degree. Figure
8 illustrates how a high-contrast version of their compound stim-
ulus is encoded in the NPM. Because the fitted bandwidth of the
sensory units is 1 octave at half height, the compound activates two
subpopulations of units, each tuned to one component frequency.
The broadly tuned gain control mechanism suppresses the sensory
responses relative to the conditions in which the components are
presented separately. The overall population response elicited by
the compound thus deviates from the linear expectation; that is,
divisive inhibition renders population activity subadditive. Note
that this effect is contrast dependent: At low contrasts, the sup-
pression is smaller than at high contrasts (in this case, the denom-

inator in Equation 7 is dominated by the stimulus-independent
term ); also see Figure 2B).

At the behavioral level, the NPM predicts that stimulus detect-
ability is hardly affected by the presence of the second low-
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Figure 8. Encoding of stimuli composed of two disparate spatial frequen-
cies in the neural population model (NPM). The upper row illustrates
example component stimuli and the resulting compound grating introduced
by Graham and Nachmias (1971). To ease illustration, all stimuli are
shown at high contrasts. Spatial frequency tuning of the linear filter of the
NPM units is shown in the middle panel. The average population response
to each of these high-contrast stimuli is plotted in the bottom panel.
c/deg " cycles/degree.
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contrast grating, which describes the behavioral findings satisfy-
ingly (see Figure 9A; RMSE " 7% of the relative threshold
contrast). Detection performance is not hindered by the relative
weakening of response strengths because the maximum-likelihood
decoder integrates all available information and thus uses the re-
sponses to both components to detect the compound signal. As is
evident from Equation 9, altering the statistics of the visual input
changes the read-out weights employed by the decoder. Crucially, this
task-specific decoding originates in a deterministic mechanism that is
based on statistical considerations, not on fitting human behavior.

Graham and Nachmias (1971) attributed the behavioral sub-
additivity to independently operating encoding mechanisms

whose output is related to behavioral thresholds via maximum
operators. To test over which range of frequencies both com-
ponents of a complex grating are detected independently, Sachs
et al. (1971) measured psychometric functions for a large num-
ber of complex gratings with varying spectral separation be-
tween the components. Some example predictions for their
experiment generated by the NPM are shown in Figure 9C.
Sachs et al. found that the independence hypothesis could only
be consistently rejected when the spectral separation was
smaller than 0.33 octaves. For separations exceeding 0.75 oc-
taves, the improvements in detection performance brought
about by addition of the second component were too small to
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Figure 9. Detection of stimuli composed of two frequencies. (A) The detection threshold of several
compound gratings is plotted relative to the threshold for each component measured in isolation. Black
symbols are used for observer AG, white for observer RG. The thick black line shows the fit of the neural
population model (NPM). The dotted black line illustrates perfect summation. We replicated the experiment
performed by Graham and Nachmias (1971) using a slightly different methodology that allowed us to
estimate the 68% confidence intervals on the threshold ratios (see Appendix). (B) Threshold ratio of a
complex grating and one of its components is plotted as a function of spectral separation of the component
gratings for the NPM. Note that the entire region between “no interaction” and “full summation” indicates
subadditivity (data outside this region indicate superadditivity and masking, respectively). (C) The design
of the experiment performed by Sachs et al. (1971). Simple and complex psychometric functions generated
by the NPM are shown in black and gray. The complex psychometric functions illustrate how detection of
a compound stimulus improves with the contrast of component f when f= is at its own, independently
determined contrast detection threshold. The complex function depends on the spectral separation of the
component gratings, .ff=, expressed in octaves.
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reject the independence hypothesis.5 The full set of predictions
generated by the NPM is summarized in Figure 9B. Threshold
ratio is plotted as a function of spectral separation. A ratio of
0.5 corresponds to perfect summation, a ratio of 1 to unaffected
detection performance. Consistent with the findings of Sachs et
al., maximal summation only occurs at very small spectral
separations. The performance improvement falls off rapidly as
both components get more separated in the frequency domain
and saturates at a level previously attributed to probability
summation. Qualitatively, the NPM is thus in good agreement
with the data of Sachs et al.

Summation Experiments 3: Pattern Detectability and
Superposition

Homogeneity and additivity together constitute the principle of
superposition. For a linear system, responses in a superposition
experiment can be predicted from the responses to a set of basis
functions. As we have concluded in the preceding sections, neither
additivity nor homogeneity holds for the human visual system or
the NPM. However, because the nonlinearities of the NPM are
fully characterized, we can predict the outcome of a superposition
experiment. An illustrious historical example is given by Campbell
and Robson’s (1968) square wave detectability measurements. A
square wave grating of fundamental spatial frequency & and spatial
contrast c can be considered as the sum of an infinite series of sine
wave components with frequencies equal to the odd harmonics of
&. The contrast of the fundamental component equals 4// 0 c and
decreases gradually for the higher components, that is, ch " 4c//h,
where h indicates the odd harmonic.

Figure 10 illustrates encoding of a square wave stimulus in the
NPM. Because of the bandpass shape of the contrast sensitivity
function in Campbell and Robson’s (1968) experiments (see Fig-
ure 7), a natural distinction exists between square wave gratings of
low and high fundamental frequency. For the latter case, only the

fundamental harmonic is relevant. The NPM’s detection thresholds
for these square wave gratings are 4// times lower than detection
thresholds for their sine wave counterparts, which simply reflects
the increased power of the first harmonic in the Fourier series.
Low-frequency square waves, on the other hand, are effectively
broadband and activate many units. This global increase in popu-
lation activity is exploited by the maximum-likelihood decoder,
leading to a dramatic improvement in detectability relative to a
narrow-band sine wave grating. As can be seen in Figure 10,
square wave sensitivity is correctly predicted by the NPM across
the entire range of spatial frequencies (RMSE " 11% of the
relative threshold contrast).

Stromeyer and Klein (1975) performed a superposition experi-
ment in which they compared detectability of amplitude-
modulated (AM) and frequency-modulated (FM) sinusoidal grat-
ings near the peak of the contrast sensitivity function. Examples of
these stimuli and their spectra are shown in Figure 11. The Fourier
spectrum of the FM grating consists of a central component at
frequency f plus components placed symmetrically either side of f.
As is the case for the square wave grating, there is a disconnect
between the spatial contrast of the FM grating and the amplitude of

5 The independence hypothesis tested by Sachs et al. (1971) was derived
from a high-threshold theory model of detection that can be summarized as
follows: (1) visual encoding is performed by spatial-frequency tuned
channels; (2) the outputs of these channels are statistically independent; (3)
the output of each channel is passed through a separate threshold mecha-
nism; (4) an observer detects a stimulus when the critical level of at least
one of the threshold mechanisms is exceeded or when a detect-response is
generated by an independent guessing mechanism. According to this
model, the probability of detecting a complex stimulus equals one minus
the product of the probability of not detecting the first component and the
probability of not detecting the second component. The model therefore
predicts a small performance improvement when both components drive
two independent mechanisms, an effect known as “probability summa-
tion.”
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Figure 10. Detection of square wave gratings. The lower left panel illustrates the average population response
to threshold contrast sine and square wave gratings of low and high frequency, respectively. The high-frequency
stimuli drive the same units, but the different power of their fundamental harmonic leads the square wave to be
a more effective stimulus. The low-frequency square wave, on the other hand, drives many more units than its
sinusoidal counterpart. The broadband nature of this response is exploited by the maximum-likelihood decoder
and results in superior square wave detectability, shown in the right panel. Square wave sensitivity is plotted
against spatial frequency for observers FWC (black) and JGR (white). The thick black line shows the fit of the
neural population model (NPM). The dotted line plots the NPM’s sinusoidal contrast sensitivity function from
Figure 7 and serves as reference. c/deg " cycles/degree.
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its frequency components. Specifically, a full-contrast FM grating
has a maximal amplitude of 0.55, whereas a full-contrast AM
grating has a maximal amplitude of 1. Detectability of a square
wave grating near the peak of the contrast sensitivity function is
well predicted by the power of its fundamental harmonic (see
Figure 10). This is not the case for the FM gratings used by
Stromeyer and Klein: Despite the considerable amplitude differ-
ence, AM gratings and FM gratings are about equally detectable.
This result is not inconsistent with predictions of the NPM, shown
in Figure 11. In the model, both gratings are encoded differently:
The population responses differ (mildly) in width and amplitude.
Consequently, the pooling rules employed by the maximum-
likelihood decoder will differ somewhat as well (see Equation 9).
Detectability, however, does not differ very much: The FM grating
yields a detection threshold that is only 19 % smaller than its AM
counterpart.

In this section, we have demonstrated that the NPM successfully
predicts the outcome of summation experiments designed to test
homogeneity, additivity, and superposition of threshold vision. We
now turn our attention to adaptation experiments.

Adaptation Experiments 1: A Simple Model for
Cortical Adaptation

Both psychophysical and physiological studies have investigated
how pattern vision mechanisms adapt to recent sensory history by
measuring responses before and after prolonged exposure to a high-
contrast visual stimulus. As was clear from the earliest experiments of
this kind, adaptation elevates pattern detection thresholds in a selec-
tive manner (Blakemore & Campbell, 1969; Pantle & Sekuler, 1968).
Effects of similar nature are observed in primary visual cortex
(Movshon & Lennie, 1979), but not at earlier stages of visual pro-
cessing, although this view has recently been challenged (Kohn, 2007;
Solomon, Peirce, Dhruv, & Lennie, 2004). In general, adaptation
studies strongly suggest that the neural mechanisms that mediate
near-threshold pattern vision reside in V1. Because the cellular mech-
anisms underlying adaptation of V1 neurons are fairly well under-
stood, we can implement neural adaptation effects in the NPM and
evaluate the behavioral consequences.

In striate cortex, prolonged stimulation with an adequate
stimulus affects neural encoding of visual information primarily
through hyperpolarization of the cell membrane, which tempo-
rarily reduces neural responsiveness (Carandini & Ferster,
1997; Carandini, Movshon, & Ferster, 1998; Sanchez-Vives,
Nowak, & McCormick, 2000). A cell will fire a spike when
fluctuations in its membrane potential that result from sum-
mated synaptic input cross a precisely determined threshold
value. Pattern adaptation induces a downward shift of the
membrane potential; that is, it produces a tonic hyperpolariza-
tion. When adapted, fewer fluctuations will cross the spike
threshold and neural responsiveness is reduced. In terms of
functional models of cortical computation, hyperpolarization
can be thought of as a reduction in the gain of the linear filtering
stage. As can be seen in Figure 12, a reduction in linear filter
gain is sufficient to capture the most prominent functional
characteristics of pattern adaptation at the neural level; that is,
the resulting shift of the contrast response function of single
sensory units is well in line with physiological observations.

Adaptation to a stimulus that fails to drive a V1 cell usually has
little effect on its functional response properties (Kohn, 2007;
Movshon & Lennie, 1979). In other words, the strength of neuronal
adaptation depends on the effectiveness of the adapter to drive the
neuron. To capture this stimulus-selective nature of adaptation effects
in the NPM, we assume that the change in filter gain is entirely
determined by the responsiveness of a cell during the initial long
adaptation phase of adaptation experiments. We fitted the relation
between response history (i.e., accumulated spikes during the adap-
tation phase) and postadaptation filter gain using a decay function
characterized by an inverse cumulative log-Gaussian function (see
Figure 12B). Two free parameters (* and +) characterize the mean and
variance of the cumulative log-Gaussian.

The progressive decrease in neural response strength caused by
prolonged stimulation with a high-contrast stimulus typically de-
velops over many seconds until it eventually saturates (e.g.,
Sanchez-Vives et al., 2000). There is thus an upper limit to the
amount of adaptation that can be achieved. To capture this notion
in our model, we define response history as the number of fired
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panel shows the amplitude spectra of the AM and FM gratings used by Stromeyer and Klein (1975). The average
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spikes during a certain temporal interval. Free parameter ε, ex-
pressed in seconds, controls the size of the spike integration
window. The temporal dynamics of adaptation in the NPM are
illustrated for an example sensory unit in Figure 12C.

In sum, adaptation selectively reduces filter gain in the NPM.
The strength, spread, and temporal dynamics of this effect are
controlled by three free parameters (see Table 2). This implemen-
tation of adaptation effects is simple and ignores many details of
the biology, but it captures the main physiological findings.

Adaptation Experiments 2: Effects of Adapting Time,
Contrast, and Spatial Frequency

At the behavioral level, the main effect of pattern adaptation is a
selective reduction of stimulus detectability: Upon adaptation, an
observer’s sensitivity for stimuli that are similar to the adapting

stimulus is diminished (Blakemore & Campbell, 1969). Not surpris-
ingly, this general result is in line with the NPM. Adaptation selec-
tively reduces filter gain in the model, and it follows that stimulus
detectability will be compromised. But the NPM can account for
various, more subtle aspects of adaptation effects as well.

The number of fired spikes during the adaptation phase determines
postadaptation filter gain in the model. Consequently, the predicted
reduction in stimulus visibility will depend on adapting time and
contrast (more time and higher contrasts both yield more spikes). As
can be seen in the upper left panel of Figure 13, the NPM prediction
is in reasonable agreement with the behavioral measurements of
Blakemore and Campbell (1969; RMSE " 9.6% of the relative
threshold contrast). Detection thresholds initially rise fast with adapt-
ing time but saturate after about a minute. The saturation level
depends on the adapting contrast. This latter effect is shown in more
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Figure 12. A simple model of cortical adaptation. (A) In the neural population model (NPM), the mechanism
underlying adaptation effects is a response-history-dependent reduction in the gain of the sensory units’ linear filter
stage. The more spikes fired during the adaptation phase, the stronger the reduction in filter gain. This is illustrated
in detail for a single sensory unit. After adaptation to the preferred stimulus, the gain of both the excitatory and
inhibitory filters is (selectively) reduced. (B) The fitted relation between postadaptation filter gain and recent response
history (i.e., the number of spikes fired during the adaptation phase). (C) The left panel shows the contrast response
function for a sensory unit in the NPM before and after prolonged stimulation with the preferred stimulus (a
high-contrast sinusoidal grating with a spatial frequency of 2.5 cycles/degree [c/deg]). After adaptation, the contrast
response function is shifted to higher contrasts and lower response rates. The middle panel illustrates the full
population response to a 2.5 c/deg grating at a contrast of 3% (the arrow indicates the spatial frequency of the adapter).
Prolonged presentation of a stimulus reduces its effectiveness to drive the population. The right panel shows the
temporal dynamics of adaptation for the sensory unit shown in the left panel.
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detail in the upper right panel of Figure 13. Over almost 2 log units of
adapting contrast, the model’s predictions closely follow Tolhurst’s
(1972) data (RMSE " 5.6% of the relative threshold contrast).

Finally, consider the effects of spatial frequency The lower panels
of Figure 13 illustrate how the adaptation-induced decrease in detect-
ability depends on stimulus frequency for human observers
(Blakemore & Campbell, 1969) and the NPM. Again, the model does
a reasonable job in accounting for the behavioral data; that is, it
produces threshold curves that are geometrically centered at the adapt-
ing frequency and have a bandwidth of approximately 1 octave at half
height (RMSE " 17.5% of the relative threshold contrast).

In sum, the temporal dynamics, contrast dependency, and spectral
selectivity of behavioral pattern adaptation are well explained by a
model of detection in which adaptation hinders stimulus encoding
through a response-history-dependent reduction of filter gain.

Adaptation Experiments 3: Of Sine Waves
and Square Waves

The threshold curves shown in the lower row of Figure 13
seemingly provide strong support for the notion that adaption
effects are frequency specific. However, this is not the only
possible interpretation. Adaptation effects could also be period
specific. One way to disentangle the effects of the period of a
pattern and its frequency is to perform adaptation experiments
with stimuli of more complex spectral composition, such as
square wave gratings. Two variants exist: adaptation to a sine
wave followed by detection of a square wave (Tolhurst, 1972)
and adaptation to a square wave followed by detection of a sine
wave (Blakemore & Campbell, 1969; Nachmias, Sansbury,
Vassilev, & Weber, 1973; Tolhurst, 1972). In previous sections,

T
hr

es
ho

ld
 r

at
io

4

1

2

0 30 60 90 120

Adapting time (sec)

1 10 100

Adapting contrast (normalized)

T
hr

es
ho

ld
 r

at
io

4

1

2

0.1 1 10 100

Spatial frequency (c/deg)

0.1 1 10 100

Spatial frequency (c/deg)

NPM, high adapting contrast
NPM, low adapting contrast

NPM

NPM NPM

Figure 13. Threshold visibility depends on adapting time, contrast, and spatial frequency. The upper left panel
illustrates how detectability of a sine wave grating selectively depends on both adapting contrast and time. White
symbols refer to a low adapting contrast (0.75 log units above detection threshold), black symbols to a high
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we have shown that the NPM accounts well for square wave
detectability and sine wave adaptation. For this reason, we
opted not to include the square wave adaptation experiments in
the data set to which the model was fitted. The predictions of
the NPM discussed here are thus blind predictions.

We first consider detection of a square wave after adaptation to
a sine wave whose frequency corresponds to the square wave’s
fundamental. As demonstrated by Tolhurst (1972), square wave
thresholds increase with adapting contrast much like sine wave
thresholds do. The upper left panel of Figure 14 illustrates the
prediction of the NPM, which follows the human data quite well
(RMSE " 5.0% of the relative threshold contrast). The model thus
provides a reasonable account for square wave detection following
sine wave adaptation.

The more interesting case, however, is provided by sine wave
detection after prolonged viewing of a square wave. If adaptation

effects are truly mediated by frequency-tuned, independent mech-
anisms, one could expect to see a threshold curve that is signifi-
cantly elevated at the square wave’s third and fifth harmonics. This
is exactly what Blakemore and Campbell (1969) found. Their data
are shown in the lower panels of Figure 14. The NPM predicts the
threshold elevation at the fundamental harmonic quite well (at
least on average), but underestimates the elevation at the higher
harmonics. This can be seen even clearer in the upper right panel
of Figure 14, which plots detectability of a 9 cycles/degree sine
wave after adaptation to a 3 cycles/degree square wave for a range
of adapting contrasts (data replotted from Tolhurst, 1972). Again,
the threshold elevation predicted by the model is considerably
smaller than the human data.

In the NPM, the mild decrease of detectability around the higher
harmonics is due to the inhibition provided by the units tuned to
the first harmonic. During the adaptation phase, this inhibition
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Figure 14. Adaptation experiments involving square wave gratings. The upper left panel shows how detect-
ability of a 4.5 cycles/degree (c/deg) square wave grating decreases after adaptation to a 4.5 c/deg sine wave
grating for observer DJT (black symbols) and the neural population model (NPM; thick black line). The upper
right panel plots detectability of a 9 c/deg sine wave after adaptation to a 3 c/deg square wave for the same
observer. The contrast of the adapting square wave is normalized with respect to the detection threshold of the
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(1972). The adapting phase in these experiment lasted for 3 min. The lower panels illustrate how adaptation to
a high-contrast square wave grating (1.5 log units above detection threshold) presented for 1 min affects sine
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limits the number of spikes fired by the units tuned to the higher
harmonics. Consequently, the postadaptation filter gain remains
fairly high (see Figure 11B), and stimulus detectability is not
hindered very much, in contrast with the behavioral data (see
Figure 14). This miss may well be a failure of the model. However,
caution is warranted in interpreting this result. Several studies have
tried to replicate the psychophysical result but failed to do so.
Nachmias et al. (1973) and Klein and Stromeyer (1980) used a
2AFC procedure instead of the method of adjustment that was
employed in the earlier studies. Both studies convincingly repli-
cated the loss of detectability around the first harmonic but could
not find a significant threshold rise around the third harmonic,
much like predicted by the NPM.

In this section, we have demonstrated that the NPM economi-
cally accounts for several behavioral adaptation results involving
sine wave gratings. When the adapter is a square wave grating, the
model predicts only a small threshold increase around the higher
harmonics. This result is consistent with some, but not all, psy-
chophysical reports.

Uncertainty Experiments 1: Detection of Signals With
Varying Prior Probability

The final series of experiments we discuss emphasize the role of
decoding in visual information processing. The ubiquity of sensory
noise throughout cortex poses a serious challenge for perceptual
decision making. If an organism is to perform well in sensory
tasks, it must tactfully ignore the huge number of sensory re-

sponses that occur at any point in time without conveying infor-
mation of direct interest. Indeed, sometimes it may even be ad-
vantageous for an observer to conclude that the available sensory
input is unreliable and instead largely base his or her judgment on
prior knowledge of the relevant statistics for the task at hand. It is
this type of perceptual computation that allows us to localize lost
pacifiers in baby cribs in the dark of the night. Bayesian statistics
provide a normative framework that describes how noisy measure-
ments and prior information ought to be combined to optimally
achieve a predefined goal. Recent years have seen an avalanche of
research dedicated to the mechanisms that govern perceptual de-
cision making. There is now a large body of evidence suggesting
that human sensory computations often resemble Bayes’s optimal
(Knill & Pouget, 2004) or at least are consistent with the notion
that behavioral performance approaches the optimum that can be
achieved in a noisy system subject to certain constraints (Geisler,
2008). The model we propose here resonates well with this
view. Sensory responses are read out by a linear decoder that
aims to maximize task performance without knowing the details
of the full population response distributions. Specifically, we
assume that each neuron’s contribution to the decision statistic
is determined by a simple model of its reliability to perform the
task at hand (Equation 9), without taking the interneuronal
noise correlations into account. In all experiments discussed
thus far, the diverse stimulus manipulations affected the noisy
sensory measurements but not the prior statistics of the task. We
now turn our attention to a paradigm that examines the effects
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Figure 15. Detection of multiple equally probable signals. The upper row illustrates stimulus probability in a
signal-known-exactly experiment (left) and three uncertainty experiments. In the neural population model (NPM),
these signal probabilities give rise to different read-out strategies employed by the decoder. Read-out weights are
plotted in the middle row. The predicted loss in performance, together with data obtained from human observers, is
shown in the lower row (observers TS [column 2], PK [column 3], and TS [column 4]; data replotted from Davis et
al., 1983). Error bars reflect the 68% confidence interval. Davis et al. (1983) plotted these data in percentage correct.
To estimate the corresponding d= values, we assumed that the observers in the two-alternative forced-choice
uncertainty experiment were unbiased in their decision making. To obtain confidence intervals on the d= estimates, we
assumed binomially distributed choice responses. c/deg " cycles/degree.
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of changing the prior but not the stimulus: uncertainty experi-
ments.

Uncertainty experiments provide an elegant means to investi-
gate to what degree human pattern detection reflects task-specific
decoding. In these studies, observers have to detect a pattern while
being either certain or uncertain about some aspect of the stimulus.
For instance, on any given trial, the signal frequency is either
known to the observer or can be one of multiple possible frequen-
cies. In Bayesian terms, uncertainty experiments compare condi-
tions with different prior distributions of the signal to be detected.
In the case of spatial frequency, this manipulation affects pattern
visibility: Broader priors (more uncertainty) reduce stimulus de-
tectability (Davis, 1981; Davis & Graham, 1981; Davis, Kramer,
& Graham, 1983).

In the NPM, uncertainty manipulations affect the read-out
weights employed by the decoder in a deterministic fashion. For
this reason, we did not include the uncertainty experiments in the
data set to which the model was fitted. Instead, we compare a blind
model prediction to the empirical findings of seven uncertainty
experiments performed by Davis (1981), Davis and Graham
(1981), and Davis et al. (1983).

It is straightforward to derive model predictions for an uncer-
tainty experiment in the NPM. A maximum-likelihood decoder
fully exploits its knowledge about task characteristics. It knows
which neurons contribute information and which can be safely
ignored. For this decoder, the optimal strategy when uncertain
about stimulus frequency consists of linearly combining the
weights optimized to the signals presented in isolation whereby the
combinatorial weights reflect stimulus probability. Let w1 and w2

be the set of weights optimized to detect S1 and S2, respectively. In
the intermixed condition of the uncertainty experiment, P(S1) " q
and P(S2) " 1 % q. The optimal weights wmix are given by

wmix ! qw1 ) %1 ' q&w2. (15)

Our decoder thus takes the full prior probability distribution into
account. On any given trial, the resulting weighting profile wmix

includes all potentially informative neurons as well as many non-
informative neurons that contribute noise to the decision statistic.
Consequently, detection performance drops relative to the signal-
known-exactly condition. This is illustrated in Figure 15 for three
experiments that measure detectability of multiple equally proba-
ble signals (Davis et al., 1983). Note that the predictions of the
NPM vary as a function of the size and range of the stimulus
ensemble: Uncertainty effects are maximal for large stimulus en-
sembles that span a wide range of frequencies. Although the
human data lack the reliability to assess whether they differ across
experiments, they are generally in good agreement with the blind
model predictions.

In a different series of experiments, Davis (1981) and Davis and
Graham (1981) sought to determine how detection performance is
affected by mixing multiple signals of varying probability. For
instance, one of their observers had to detect two far-apart fre-
quencies that occur with a probability of 47.5% and three in-
between frequencies that occur on only 1.67% of the trials. In the
NPM, such manipulations naturally give rise to a tuned uncertainty
effect: The loss in performance is most dramatic for signals of low
probability that are far removed from highly probable signals. As
can be seen in Figure 16, this prediction is again well in line with
the behavioral findings.

Finally, we note that the effectiveness of stimulus uncertainty
manipulations depends on the stimulus dimension considered.
Manipulations involving uncertainty about signal contrast, for
instance, hardly affect signal detectability for human observers
(Davis et al., 1983). Interestingly, this is to be expected from
the NPM as well. Contrast gain control renders neural tuning
functions largely contrast invariant (Finn, Priebe, & Ferster,
2007; Geisler & Albrecht, 1995). Consequently, the weighting
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Figure 16. Detection of multiple signals of varying probability. Plot conventions are the same as in Figure 15.
The data are from observers TS, ED, ED (replotted from Davis, 1981), and TS (replotted from Davis & Graham,
1981), respectively. c/deg " cycles/degree.
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profile employed by the maximum-likelihood decoder does not
depend much on stimulus contrast either. There is no apprecia-
ble uncertainty effect for stimulus contrast in the NPM.

Uncertainty Experiments 2: Uncertainty and the Slope
of the Psychometric Function

Uncertainty effects have often been considered in the context
of intrinsic uncertainty models. According to these models, the
fundamental limit in detection is provided by inefficient deci-
sion making; that is, observers base their decision on a single
sensory response but fail to distinguish informative from non-
informative sensory responses (Lu & Dosher, 2008; Pelli,
1985). The higher the stimulus contrast, the more likely that the
relevant channel provides the maximal response. Not surpris-
ingly, this strategy leads to an increase in thresholds with
growing uncertainty. In addition, uncertainty affects the slope
of the psychometric function (Pelli, 1985): The higher the
uncertainty, the steeper the slope of the psychometric function
on semilogarithmic coordinates (see Figure 17).

This is not the case in the NPM. Consider the weighting
profiles corresponding to low, medium, and high uncertainty in
Figure 17. On every single trial, the relevant sensory units will
make some contribution to the decision statistic. When uncer-
tainty grows, the relative weight of that contribution decreases.
In addition, the weight assigned to uninformative units in-
creases. Increasing uncertainty thus effectively leads to scaling
down the stimulus contrast and increasing the background
noise. However, because the weighting profiles are contrast
independent, the relative reduction in signal-to-noise ratio is
contrast independent too. In other words, in the NPM, the slope
of the psychometric function on logarithmic contrast coordi-
nates does not depend on uncertainty. This is illustrated in
Figure 17. To test this prediction, one could measure full
psychometric functions under conditions of low and high un-

certainty (the larger the threshold increase, the better). To the
best of our knowledge, such experimental data are not yet
available.

In this section, we have argued that human observers rely on
the stimulus probability distributions that define a detection
task in a manner that is well described by a reduced Bayesian
decoder directly operating on the raw sensory responses at the
level of V1. Davis et al. (1983) already demonstrated unambig-
uously that detection strategies vary with stimulus probability.
The NPM now offers a principled means to quantify this insight
in a parsimonious way—results from all seven uncertainty
experiments were predicted by our model, not fitted. In contrast
to earlier models, the NPM predicts that the slope of the
psychometric function does not depend on stimulus certainty.

Discussion
In the introduction of this article, we motivated the need for

a new computational theory of visual pattern detection and
identified the following set of desired characteristics, all related
to the general theme of unification: first, an explicit connection
with the neurophysiological underpinnings of pattern vision;
second, a direct link with the mechanisms involved in pattern
masking; third, a perceptual decision-making strategy that gen-
eralizes beyond detection; and fourth, applicability to a broad
range of behavioral results. We introduced and evaluated the
neural population model, designed to meet these goals. This
theory builds on several earlier models and findings in the
vision literature (e.g., Blakemore & Campbell, 1969; Campbell
& Robson, 1968; Davis et al., 1983; Dosher & Lu, 1998; Foley,
1994; Geisler & Albrecht, 1997; Graham & Nachmias, 1971;
Itti et al., 2000; Legge & Foley, 1980; Parker & Newsome,
1998; Pelli, 1985; Petrov et al., 2005). It is a mechanistic model
in which visual information is encoded by a neurophysiologi-
cally inspired front-end resembling V1 and decoded by a deci-
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Figure 17. Uncertainty and the slope of the psychometric function. The left panel illustrates the weighting
profiles for three extrinsic uncertainty conditions in the neural population model (NPM): low, medium, and high
uncertainty. Each profile is geometrically centered at 2.5 cycles/degree (c/deg). The middle panel shows the
corresponding psychometric functions for a sinusoidal grating of 2.5 c/deg. Increasing uncertainty reduces
stimulus detectability but does not alter the slope of the psychometric function on semilogarithmic coordinates
in the NPM. The beta parameter of the psychometric function is thus constant for the NPM. This result is in
contradiction with a well-known model for uncertainty effects, discussed in detail by Pelli (1985). In this model,
the slope of the psychometric function covaries with its threshold, such that more uncertainty produces steeper
psychometric functions (right panel).
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sion maker that takes into account the reliability of individual
neurons in performing the task at hand. Behavioral performance
in the model is limited by the presence of correlated sensory
noise. Using a single set of parameters, the model successfully
explains a large body of findings in the detection literature,
thereby offering a new interpretation for several classic results
in summation, adaptation, and uncertainty experiments.

As a case in point, we consider summation in more detail.
Summation studies have investigated to what degree threshold
vision obeys homogeneity, additivity, and superposition. In the
NPM, these experiments drive a complex combination of mecha-
nisms that involve selective filtering, response squaring, broadly
tuned response suppression, and task-specific response pooling.
Acting in concert, these mechanisms give a remarkably successful
account of summation results. For instance, Graham and Nachmias
(1971) made the well-known observation that adding a low-
contrast grating to a threshold sinusoid hardly affects its visibility
when both gratings reasonably differ in spatial frequency. In the
NPM, this manipulation reduces sensory response strengths
through gain control (see Figure 8). However, this response reduc-
tion is compensated by the maximum-likelihood decoder that at
the same time exploits the increase in the absolute number of
responsive units, producing the net null result (see Figure 9).

The main benefit of this alternative account of summation is that
it naturally extends to findings in pattern masking. For instance,
adding a second low-contrast grating to the signal and the back-
ground is known to improve stimulus detectability profoundly,
provided that both gratings are reasonably close in spatial fre-
quency and orientation (Legge & Foley, 1980; Nachmias & Sans-
bury, 1974). This nonlinear effect is largely driven by response
expansion and therefore occurs in the NPM as well (see Figure 18).
On the other hand, adding a high-contrast grating to the signal and
the background greatly reduces stimulus detectability, even when
signal and mask differ considerably (Foley, 1994; Legge & Foley,
1980). This masking effect is testament to the role of a broadly
tuned gain control mechanism and thus also consistent with the
NPM (see Figure 18). In sum, the NPM explains threshold sum-
mation using the very mechanisms identified in suprathreshold
studies and thus explicitly connects both fields.

The success of the various multichannel models that make use
of linear–nonlinear cascades and population decoding to account
for important aspects of detection, pattern masking (e.g., Itti et al.,
2000), visual attention (e.g., Lee et al., 1999), and perceptual
learning (e.g., Petrov et al., 2005) raises the question whether it is
possible to formulate a single model that achieves all of this at
once. Given that the proposed models differ in many of their
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Figure 18. Contrast discrimination. The upper left panel illustrates the model’s psychometric function for
detection and discrimination (whereby the pedestal contrast is equal to the detection threshold). At this pedestal
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details (e.g., the mechanisms underlying decision making), this is
not self-evident. Furthermore, taking the large number of empirical
phenomena that need consideration into account, it seems likely
that such project will turn out to be a major undertaking. Never-
theless, we believe that unifying different subfields in early vision
is a goal well worth pursuing.

We now draw attention to the decision-making strategy imple-
mented in our model. The encoding stage in the NPM solely makes
use of canonical neural computations: linear filtering, response
expansion, and normalization (Carandini & Heeger, 2012). At first
sight, the decoder requires more complex arithmetic, as it needs to
estimate response difference reliabilities (Equation 9). We wish to
emphasize that this impression is misleading. The decoder assumes
neural noise to be normally distributed and statistically indepen-
dent. Both assumptions are simplifications and wrong in their
details. However, they enable implementing a maximum-
likelihood inference strategy using nothing more than simple
weighted summation of the input activities. To see this, bear in
mind that cortical response variances are proportional to the mean
response and that rescaling all weights with the same factor does
not affect network behavior. Therefore,

wi !
E!r%s& ' r0#

VAR%r%s& ' r0&
(9)

can be rewritten as

wi !
E!r%s& ' r0#
E!r%s& ) r0#

. (16)

The fact that the model is invariant to rescaling all read-out
weights with a common scalar has the additional benefit that it
allows to circumvent the problem that neurons representing
summed activities may saturate. This can be done by incorporating
a shared normalization signal. Thus, the decoder employed in our
study can be realized in the same neural machinery used to encode
visual information in the model, that is, a linear–nonlinear cascade
in which weighted summation is followed by divisive inhibition.

Relation With the Linear Channels Model

The model for pattern detection that we advocated in this article
builds directly on the foundations provided by the early theoretical
framework. Although the NPM differs considerably in its charac-
terization of the putative visual mechanisms that mediate visual
encoding and decoding, it is in full agreement with the two most
innovative claims of the linear channels model. First, visual en-
coding in our model begins with a local Fourier analysis, per-
formed by the linear operator that defines the sensory units’
stimulus selectivity. This insight remains one of the most powerful
contributions ever made to the vision literature. Second, the en-
coded visual information is not further processed by higher visual
areas but directly linked to perceptual judgments. In our model, the
quality of these judgments is ultimately limited by correlated
neural noise. As we pointed out, this limitation enables the NPM
to accurately describe the relation between neural and behavioral
sensitivity (see Figure 6), a rare feat for models of psychophysical
tasks. An additional consequence is that the NPM predicts signif-
icant trial-to-trial correlations between neuronal activity in V1 and

choice behavior in a detection task (Britten, Newsome, Shadlen,
Celebrini, & Movshon, 1996; Nienborg & Cumming, 2010; Parker
& Newsome, 1998).6 A recent study involving macaque monkeys
performing pattern detection reported exactly this: significant
choice probabilities in V1 (Palmer et al., 2007). Thus, when a
monkey is engaged in a detection task and repeatedly is confronted
with the same difficult stimulus, fluctuations in single cell re-
sponses in V1 carry information about the behavioral outcome of
this choice process. As yet, this finding is the most direct physi-
ological evidence that pattern detection is mediated by the sensory
computations performed in primary visual cortex. Its discovery
and consistency with the PTM lends strong support to the bold
ambition that was first expressed in the linear channels model, that
we can directly connect visual behavior to its physiological sub-
strate using quantitative information processing theories as the
bridge.

6 This correlation is a statistic that is often used in awake animal
neurophysiology to study the neural correlates of perception. It is termed
“choice probability” and expresses to which extent the trial-to-trial vari-
ability in the neuronal activity of a sensory brain area is reflected in an
animal’s behavioral choices (Britten et al., 1996).

References

Adelson, E. H., & Bergen, J. R. (1991). The plenoptic function and the
elements of early vision. In M. Landy & J. A. Movshon (Eds.), Com-
putational models of visual processing (pp. 3–20). Cambridge, MA: MIT
Press.

Averbeck, B. B., Latham, P. E., & Pouget, A. (2006). Neural correlations,
population coding and computation. Nature Reviews Neuroscience, 7,
358–366. doi:10.1038/nrn1888

Baker, D. H., & Meese, T. S. (2012). Zero-dimensional noise: The best
mask you never saw. Journal of Vision, 12, 20. doi:10.1167/12.10.20

Barlow, H. B. (1972). Single units and sensation: A neuron doctrine for
perceptual psychology? Perception, 1, 371–394. doi:10.1068/p010371

Beck, J. M., Ma, W. J., Pitkow, X., Latham, P. E., & Pouget, A. (2012).
Not noisy, just wrong: The role of suboptimal inference in behavioral
variability. Neuron, 74, 30–39. doi:10.1016/j.neuron.2012.03.016

Bex, P. J., Solomon, S. G., & Dakin, S. C. (2009). Contrast sensitivity in
natural scenes depends on edge as well as spatial frequency structure.
Journal of Vision, 9, 1. doi:10.1167/9.10.1

Bird, C. M., Henning, G. B., & Wichmann, F. A. (2002). Contrast dis-
crimination with sinusoidal gratings of different spatial frequency. Jour-
nal of the Optical Society of America A: Optics, Image Science, and
Vision, 19, 1267–1273. doi:10.1364/JOSAA.19.001267

Blackwell, K. T. (1998). The effect of white and filtered noise on contrast
detection thresholds. Vision Research, 38, 267–280. doi:10.1016/S0042-
6989(97)00130-2

Blakemore, C., & Campbell, F. W. (1969). On the existence of neurones in
the human visual system selectively sensitive to the orientation and size
of retinal images. Journal of Physiology, 203, 237–260.

Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., &
Movshon, J. A. (1996). A relationship between behavioral choice and
the visual responses of neurons in macaque MT. Visual Neuroscience,
13, 87–100. doi:10.1017/S095252380000715X

Campbell, F. W., Carpenter, R. H. S., & Levinson, J. Z. (1969). Visibility
of aperiodic patterns compared with that of sinusoidal gratings. Journal
of Physiology, 204, 283–298.

Campbell, F. W., & Robson, J. G. (1968). Application of Fourier analysis
to the visibility of gratings. Journal of Physiology, 197, 551–566.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

493VISUAL PATTERN DETECTION



Carandini, M., & Ferster, D. (1997). A tonic hyperpolarization underlying
contrast adaptation in cat visual cortex. Science, 276, 949–952. doi:
10.1126/science.276.5314.949

Carandini, M., & Heeger, D. J. (2012). Normalization as canonical neural
computation. Nature Reviews Neuroscience, 13, 51–62. doi:10.1038/
nrn3136

Carandini, M., Heeger, D. J., & Movshon, J. A. (1997). Linearity and
normalization in simple cells of the macaque primary visual cortex.
Journal of Neuroscience, 17, 8621–8644.

Carandini, M., Movshon, J. A., & Ferster, D. (1998). Pattern adaptation
and cross-orientation interactions in the primary visual cortex. Neuro-
pharmacology, 37, 501–511. doi:10.1016/S0028-3908(98)00069-0

Chen, Y., Geisler, W. S., & Seidemann, E. (2006). Optimal decoding of
correlated neural population responses in the primate visual cortex.
Nature Neuroscience, 9, 1412–1420. doi:10.1038/nn1792

Chirimuuta, M., & Tolhurst, D. J. (2005). Does a Bayesian model of V1
contrast coding offer a neurophysiological account of human contrast
discrimination? Vision Research, 45, 2943–2959. doi:10.1016/j.visres
.2005.06.022

Churchland, M. M., Yu, B. M., Cunningham, J. P., Sugrue, L. P., Cohen,
M. R., Corrado, G. S., . . . Shenoy, K. V. (2010). Stimulus onset
quenches neural variability: A widespread cortical phenomenon. Nature
Neuroscience, 13, 369–378. doi:10.1038/nn.2501

Cohen, M. R., & Kohn, A. (2011). Measuring and interpreting neuronal
correlations. Nature Neuroscience, 14, 811–819. doi:10.1038/nn.2842

Cohen, M. R., & Newsome, W. T. (2009). Estimates of the contribution of
single neurons to perception depend on timescale and noise correlation.
Journal of Neuroscience, 29, 6635–6648. doi:10.1523/JNEUROSCI
.5179-08.2009

Dao, D. Y., Lu, Z.-L., & Dosher, B. A. (2006). Adaptation to sine-wave
gratings selectively reduces the contrast gain of the adapted stimuli.
Journal of Vision, 6, 6. doi:10.1167/6.7.6

Davis, E. T. (1981). Allocation of attention: Uncertainty effects when
monitoring one or two visual gratings of noncontiguous spatial frequen-
cies. Perception & Psychophysics, 29, 618 – 622. doi:10.3758/
BF03207381

Davis, E. T., & Graham, N. (1981). Spatial frequency uncertainty effects in
the detection of sinusoidal gratings. Vision Research, 21, 705–712.
doi:10.1016/0042-6989(81)90079-1

Davis, E. T., Kramer, P., & Graham, N. (1983). Uncertainty about spatial
frequency, spatial position or contrast of visual patterns. Perception &
Psychophysics, 33, 20–28. doi:10.3758/BF03205862

Dosher, B. A., & Lu, Z.-L. (1998). Perceptual learning reflects external
noise filtering and internal noise reduction through channel reweighting.
Proceedings of the National Academy of Sciences of the United States of
America, 95, 13988–13993. doi:10.1073/pnas.95.23.13988

Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., &
Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcir-
cuits. Science, 327, 584–587. doi:10.1126/science.1179867

Eckstein, M. P., Ahumada, A. J., & Watson, A. B. (1997). Visual signal
detection in structured backgrounds. II. Effects of contrast gain control,
background variations, and white noise. Journal of the Optical Society of
America A: Optics, Image Science, and Vision, 14, 2406–2419. doi:
10.1364/JOSAA.14.002406

Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic
information in a statistically optimal fashion. Nature, 415, 429–433.
doi:10.1038/415429a

Fetsch, C. R., Pouget, A., DeAngelis, A. G. C., & Angelaki, D. E. (2012).
Neural correlates of reliability-based cue weighting during multisensory
integration. Nature Neuroscience, 15, 146–154. doi:10.1038/nn.2983

Finn, I. M., Priebe, N. J., & Ferster, D. (2007). The emergence of contrast-
invariant orientation tuning in simple cells of cat visual cortex. Neuron,
54, 137–152. doi:10.1016/j.neuron.2007.02.029

Foley, J. M. (1994). Human luminance pattern-vision mechanisms: Mask-
ing experiments require a new model. Journal of the Optical Society of
America A: Optics, Image Science, and Vision, 11, 1710–1719. doi:
10.1364/JOSAA.11.001710

Geisler, W. S. (2008). Visual perception and the statistical properties of
natural scenes. Annual Review of Psychology, 59, 167–192. doi:10.1146/
annurev.psych.58.110405.085632

Geisler, W. S., & Albrecht, D. G. (1995). Bayesian analysis of identifica-
tion performance in monkey visual cortex: Nonlinear mechanisms and
stimulus certainty. Vision Research, 35, 2723–2730. doi:10.1016/0042-
6989(95)00029-Y

Geisler, W. S., & Albrecht, D. G. (1997). Visual cortex neurons in
monkeys and cats: Detection, discrimination and identification. Visual
Neuroscience, 14, 897–919. doi:10.1017/S0952523800011627

Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules:
Visual orientation perception reflects knowledge of environmental sta-
tistics. Nature Neuroscience, 14, 926–932. doi:10.1038/nn.2831

Gorea, A., & Tyler, C. W. (1986). New look at Bloch’s law for contrast.
Journal of the Optical Society of America A: Optics, Image Science, and
Vision, 3, 52–61. doi:10.1364/JOSAA.3.000052

Goris, R. L. T., Wagemans, J., & Wichmann, F. A. (2008). Modelling
contrast discrimination data suggest both the pedestal effect and sto-
chastic resonance to be caused by the same mechanism. Journal of
Vision, 8, 17. doi:10.1167/8.15.17

Goris, R. L. T., Wichmann, F. A., & Henning, G. B. (2009). A neuro-
physiologically plausible population code model for human contrast
discrimination. Journal of Vision, 9, 15. doi:10.1167/9.7.15

Goris, R. L. T., Zaenen, P., & Wagemans, J. (2008). Some observations on
contrast detection in noise. Journal of Vision, 8, 4. doi:10.1167/8.9.4

Graf, A. B. A., Kohn, A., Jazayeri, M., & Movshon, J. A. (2011). Decoding
the activity of neural populations in macaque primary visual cortex.
Nature Neuroscience, 14, 239–245. doi:10.1038/nn.2733

Graham, N. V. S. (1989). Visual pattern analyzers. New York, NY: Oxford
University Press. doi:10.1093/acprof:oso/9780195051544.001.0001

Graham, N. (1992). Breaking the visual stimulus into parts. Current
Directions in Psychological Science, 1, 55–61. doi:10.1111/1467-8721
.ep11509742

Graham, N. V. (2011). Beyond multiple pattern analyzers modeled as
linear filters (as classical V1 simple cells): Useful additions of the last 25
years. Vision Research, 51, 1397–1430. doi:10.1016/j.visres.2011.02
.007

Graham, N., & Nachmias, J. (1971). Detection of grating patterns contain-
ing two spatial frequencies: A comparison of single channel and multi-
channel models. Vision Research, 11, 251–259. doi:10.1016/0042-
6989(71)90189-1

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psycho-
physics. New York, NY: Wiley.

Heeger, D. J. (1992a). Half-squaring in responses of cat striate cells. Visual
Neuroscience, 9, 427–443. doi:10.1017/S095252380001124X

Heeger, D. J. (1992b). Normalization of cell responses in cat striate cortex.
Visual Neuroscience, 9, 181–197. doi:10.1017/S0952523800009640

Henning, G. B. (1988). Spatial-frequency tuning as a function of temporal
frequency and stimulus motion. Journal of the Optical Society of Amer-
ica A: Optics, Image Science, and Vision, 5, 1362–1373. doi:10.1364/
JOSAA.5.001362

Henning, G. B., & Wichmann, F. A. (2007). Some observations on the
pedestal effect. Journal of Vision, 7, 3. doi:10.1167/7.1.3

Hubel, D. H. (1959). Single unit activity in striate cortex of unrestrained
cats. Journal of Physiology, 147, 226–238.

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interac-
tion and functional architecture in the cat’s visual cortex. Journal of
Physiology, 160, 106–154.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

494 GORIS, PUTZEYS, WAGEMANS, AND WICHMANN



Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional
architecture of monkey striate cortex. Journal of Physiology, 195, 215–
243.

Itti, L., Koch, C., & Braun, J. (2000). Revisiting spatial vision: Towards a
unifying model. Journal of the Optical Society of America A: Optics,
Image Science, and Vision, 17, 1899–1917. doi:10.1364/JOSAA.17
.001899

Klein, S. A., & Levi, D. M. (2009). Stochastic model for detection of
signals in noise. Journal of the Optical Society of America A: Optics,
Image Science, and Vision, 26, B110–B126. doi:10.1364/JOSAA.26
.00B110

Klein, S., & Stromeyer, C. F., III. (1980). On inhibition between spatial
frequency channels: Adaptation to complex gratings. Vision Research,
20, 459–466. doi:10.1016/0042-6989(80)90037-1

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of
uncertainty in neural coding and computation for perception and action.
Trends in Neurosciences, 27, 712–719. doi:10.1016/j.tins.2004.10.007

Kohn, A. (2007). Visual adaptation: Physiology, mechanisms, and func-
tional benefits. Journal of Neurophysiology, 97, 3155–3164. doi:
10.1152/jn.00086.2007

Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal
correlation in primary visual cortex of the macaque. Journal of Neuro-
science, 25, 3661–3673. doi:10.1523/JNEUROSCI.5106-04.2005

Law, C.-T., & Gold, J. (2008). Neural correlates of perceptual learning in
a sensory-motor, but not a sensory, cortical area. Nature Neuroscience,
11, 505–513. doi:10.1038/nn2070

Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates
winner-take-all competition among visual filters. Nature Neuroscience,
2, 375–381. doi:10.1038/7286

Legge, G. E. (1978). Sustained and transient mechanisms in human vision:
Temporal and spatial properties. Vision Research, 18, 69–81. doi:
10.1016/0042-6989(78)90079-2

Legge, G. E., & Foley, J. M. (1980). Contrast masking in human vision.
Journal of the Optical Society of America, 70, 1458–1471. doi:10.1364/
JOSA.70.001458

Lu, Z.-L., & Dosher, B. A. (2008). Characterizing observers using external
noise and observer models: Assessing internal representations with
external noise. Psychological Review, 115, 44–82. doi:10.1037/0033-
295X.115.1.44

Luntinen, O., Rovamo, J., & Naesaenen, R. (1995). Modelling the increase
of contrast sensitivity with grating area and exposure time. Vision
Research, 35, 2339–2346. doi:10.1016/0042-6989(94)00309-A

Macke, J. H., & Wichmann, F. A. (2010). Estimating predictive stimulus
features from psychophysical data: The decision image technique ap-
plied to human faces. Journal of Vision, 10, 22. doi:10.1167/10.5.22

Mamassian, P., & Landy, M. S. (2001). Interaction of visual prior con-
straints. Vision Research, 41, 2653–2668. doi:10.1016/S0042-
6989(01)00147-X

Morgenstern, Y., & Elder, J. H. (2012). Local visual energy mechanisms
revealed by detection of global patterns. Journal of Neuroscience, 32,
3679–3696. doi:10.1523/JNEUROSCI.3881-11.2012

Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985).
The analysis of moving visual patterns. In C. Chagas, R. Gattass, & C.
Gross (Eds.), Pattern recognition mechanisms (pp. 117–151). Rome,
Italy: Vatican Press.

Movshon, J. A., & Lennie, P. (1979). Pattern selective adaptation in striate
cortical neurones. Nature, 278, 850–852. doi:10.1038/278850a0

Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978a). Receptive
field organization of complex cells in the cat’s striate cortex. Journal of
Physiology, 283, 79–99.

Movshon, J. A., Thompson, I. D., & Tolhurst, D. J. (1978b). Spatial
summation in the receptive fields of simple cells in the cat’s striate
cortex. Journal of Physiology, 283, 53–77.

Nachmias, J., & Sansbury, R. V. (1974). Grating contrast: Discrimination
may be better than detection. Vision Research, 14, 1039–1042. doi:
10.1016/0042-6989(74)90175-8

Nachmias, J., Sansbury, R. V., Vassilev, A., & Weber, A. (1973). Adap-
tation to square-wave gratings: In search of the elusive third harmonic.
Vision Research, 13, 1335–1342. doi:10.1016/0042-6989(73)90209-5

Nagaraja, N. S. (1964). Effects of luminance noise on contrast thresholds.
Journal of the Optical Society of America, 54, 950–955. doi:10.1364/
JOSA.54.000950

Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in
visual search. Nature, 434, 387–391. doi:10.1038/nature03390

Nienborg, H., & Cumming, B. (2010). Correlations between the activity of
sensory neurons and behavior: How much do they tell us about a
neuron’s causality? Current Opinion in Neurobiology, 20, 376–381.
doi:10.1016/j.conb.2010.05.002

Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell field
properties by learning a sparse code for natural images. Nature, 381,
607–609. doi:10.1038/381607a0

Palmer, C., Chen, Y., & Seidemann, E. (2007). Linking neuronal and
behavioral performance in a reaction-time visual detection task. Journal
of Neuroscience, 27, 8122–8137. doi:10.1523/JNEUROSCI.1940-07
.2007

Pantle, A., & Sekuler, R. W. (1968). Size-detecting mechanisms in human
vision. Science, 162, 1146–1148. doi:10.1126/science.162.3858.1146-a

Parker, A. J., Krug, K., & Cumming, B. G. (2002). Neuronal activity and
its link with the perception of multi-stable figures. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 357, 1053–1062.
doi:10.1098/rstb.2002.1112

Parker, A. J., & Newsome, W. T. (1998). Sense and the single neuron:
Probing the physiology of perception. Annual Review of Neuroscience,
21, 227–277. doi:10.1146/annurev.neuro.21.1.227

Pelli, D. G. (1985). Uncertainty explains many aspects of visual contrast
detection and discrimination. Journal of the Optical Society of America
A: Optics, Image Science, and Vision, 2, 1508–1532. doi:10.1364/
JOSAA.2.001508

Petrov, A. A., Dosher, B. A., & Lu, Z.-L. (2005). The dynamics of
perceptual learning: An incremental channel reweighting. Psychological
Review, 112, 715–743. doi:10.1037/0033-295X.112.4.715

Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and computation
with population codes. Annual Review of Neuroscience, 26, 381–410.
doi:10.1146/annurev.neuro.26.041002.131112

Purushothaman, G., & Bradley, D. C. (2005). Neural population code for
fine perceptual decisions in area MT. Nature Neuroscience, 8, 99–106.
doi:10.1038/nn1373

Putzeys, T., Bethge, M., Wichmann, F. A., Wagemans, J., & Goris, R. L. T.
(2012). A new perceptual bias reveals suboptimal population decoding
of sensory responses. PLoS Computational Biology, 8(4), e1002453.
doi:10.1371/journal.pcbi.1002453

Rehn, M., & Sommer, F. T. (2007). A network that uses few active
neurones to code visual input predicts the diverse shapes of cortical
receptive fields. Journal of Computational Neuroscience, 22, 135–146.
doi:10.1007/s10827-006-0003-9

Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial frequency
channels in human vision. Journal of the Optical Society of America, 61,
1176–1186. doi:10.1364/JOSA.61.001176

Sanborn, A. N., & Dayan, P. (2011). Optimal decisions for contrast
discrimination. Journal of Vision, 11, 9. doi:10.1167/11.14.9

Sanchez-Vives, M. V., Nowak, L. G., & McCormick, D. A. (2000).
Membrane mechanisms underlying contrast adaptation in cat area 17 in
vivo. Journal of Neuroscience, 20, 4267–4285.

Shadlen, M. N., Britten, K. H., Newsome, W. T., & Movshon, J. A. (1996).
A computational analysis of the relationship between neuronal and
behavioral responses to visual motion. Journal of Neuroscience, 16,
1486–1510.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

495VISUAL PATTERN DETECTION



Solomon, S. G., Peirce, J. W., Dhruv, N. T., & Lennie, P. (2004). Profound
contrast adaptation early in the visual pathway. Neuron, 42, 155–162.
doi:10.1016/S0896-6273(04)00178-3

Stromeyer, C. F., III, & Klein, S. (1975). Evidence against narrow-band
spatial frequency channels in human vision: The detectability of fre-
quency modulated gratings. Vision Research, 15, 899–910. doi:10.1016/
0042-6989(75)90229-1

Tanner, W. P., Jr., & Swets, J. A. (1954). A decision-making theory of visual
detection. Psychological Review, 61, 401–409. doi:10.1037/h0058700

Tolhurst, D. J. (1972). Adaptation to square-wave gratings: Inhibition
between spatial frequency channels in the human visual system. Journal
of Physiology, 226, 231–248.

Tolhurst, D. J., Movshon, J. A., & Dean, A. F. (1983). The statistical
reliability of signals in single neurons in cat and monkey visual
cortex. Vision Research, 23, 775–785. doi:10.1016/0042-
6989(83)90200-6

Wandell, B. A. (1995). Foundations of vision. Sunderland, MA: Sinauer.
Weiss, Y., Simoncelli, E. P., & Adelson, E. H. (2002). Motion illusions as

optimal percepts. Nature Neuroscience, 5, 598 – 604. doi:10.1038/
nn0602-858

Wichmann, F. A. (1999). Some aspects of modelling human spatial vision:
Contrast discrimination (Unpublished doctoral dissertation). University
of Oxford, Oxford, England.

Wichmann, F. A., & Hill, N. J. (2001a). The psychometric function: I.
Fitting, sampling, and goodness of fit. Perception & Psychophysics, 63,
1293–1313. doi:10.3758/BF03194544

Wichmann, F. A., & Hill, N. J. (2001b). The psychometric function: II.
Bootstrap-based confidence intervals and sampling. Perception & Psy-
chophysics, 63, 1314–1329. doi:10.3758/BF03194545

Zohary, E., Shadlen, M. N., & Newsome, W. T. (1994). Correlated neu-
ronal discharge rate and its implications for psychophysical perfor-
mance. Nature, 370, 140–143. doi:10.1038/370140a0

Appendix

Experimental Methods

Here we describe the experimental methods of the newly con-
ducted summation experiment in detail. Stimuli were presented
with 8-bit luminance precision on a calibrated monochrome Sie-
mens SMM 21106 LS monitor with a white phosphor (P-45) and
spatial resolution of 996 0 777 pixels at 130 Hz. Targets were
weighted sums of a 3 and 9 cycles degree%1 sine wave grating with
randomly selected phases, windowed by a Gaussian envelope () "
1.27° of visual angle). All stimuli were orientated horizontally.
Background luminance was 50 cd m%2.

On each trial observers first fixated a cross at the center of the
display for 250 ms. The cross disappeared 500 ms before the onset
of two auditory cued 50-ms intervals, separated by 500 ms. One
interval contained the target, presented at one of seven contrasts,
and the other contained a blank. Observers indicated which inter-

val they thought contained the target. Auditory feedback was
provided after each trial. Within a block of 50 trials, the target was
held constant while its contrast was randomized. Observers com-
pleted at least 4,900 trials (seven targets 0 seven contrasts 0 100
trials). The data for each target were fit with a Weibull function.
The 75% correct threshold was determined with maximum-
likelihood methods (Wichmann & Hill, 2001a), its confidence
interval with Monte Carlo parametric bootstrap procedures (Wich-
mann & Hill, 2001b).
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