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Preface

This dissertation explores the building blocks needed to efficiently formulate
and solve optimal control problems. The premise of the thesis is that
existing general-purpose solvers for optimal control are not powerful enough
to treat large classes of industrially-relevant problems. At the same time,
the implementation of efficient special-purpose solvers typically requires a
prohibitively large programming effort.

To address this, we present a set of high-level building blocks, implemented
in freely available software, which can be used to solve optimal control
problems using a wide range of state-of-the-art optimal control methods with
a comparably modest effort. The ultimate goal of the thesis is to make these
methods more accessible users in academia and industry by drastically lowering
the effort it takes to implement them.
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Abstract

Methods and software for derivative-based numerical optimization in general
and simulation-based optimization in particular have seen a large rise in
popularity over the past 30 years. Still, due to practical difficulties in
implementing many of the methods in a fast and reliable manner, it remains
an underused technology both in academia and in industry. To address this,
we present a set of methods and tools with the aim of making techniques for
dynamic optimization more accessible. In particular, we present CasADi, an
open-source software framework for numerical optimization and algorithmic
differentiation (AD) that offers a level of abstraction which is lower than
algebraic modeling languages, but higher than conventional AD tools. We
also discuss several of the many application problems which have already been
addressed with CasADi by researchers from diverse fields.
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Beknopte samenvatting

Tijdens de voorbije 30 jaar nam de populariteit van methodes en software
voor gradiënt-gebaseerde optimalisatie, en meer bepaald simulatie-gebaseerde
optimalisatie een hoge vlucht. Praktische moeilijkheden om deze methodes
snel en betrouwbaar te implementeren, maken echter dat deze technologie
onderbenut blijft in de academische alsook industriële praktijk. Om dit
probleem aan te pakken, introduceren we hier een set van tools en methodes
met als doel de technieken voor dynamische optimalisatie toegankelijker te
maken. In het bijzonder introduceren we CasADi, een open-source software-
pakket voor numerieke optimalisatie en algoritmische differentiatie (AD) met
een abstractie-niveau lager dan dat van algebraïsche modelleertalen, maar hoger
dan dat van conventionele AD tools. We bespreken aansluitend een greep uit
de toepassingen die reeds behandeld werden met CasADi door onderzoekers uit
diverse onderzoeksdomeinen.
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Abbreviations

AD Algorithmic differentiation

BDF Backward differentiation formulas

CCS Compressed column storage
CPU Central processing unit
CRS Compressed row storage

DAE Differential-algebraic equation

END External numerical differentiation

GN Gauss-Newton
GPU Graphics processing unit

IND Internal numerical differentiation
IP Interior point
IRK Implicit Runge-Kutta
IVP Initial value problem

KKT Karush-Kuhn-Tucker

LICQ Linear independence constraint qualification
LP Linear program or linear programming

MPC Model predictive control

NLP Nonlinear program or nonlinear programming
NMPC Nonlinear model predictive control
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OCP Optimal control problem
ODE Ordinary differential equation
OO Operator overloading (for AD)

PDE Partial differential equation
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RK Runge-Kutta

SCP Sequential convex programming
SCT Source code transformation (for AD)
SQP Sequential quadratic programming
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Chapter 1

Introduction

In dynamic optimization or optimal control, solutions are sought for decision-
making problems constrained by dynamic equations in the form of ordinary
differential equations (ODEs), differential-algebraic equations (DAEs) or
partial differential equations (PDEs). Optimal control problems can cover
many industrially relevant features, such as multi-stage problem formulations,
problems with integer-valued decision variables, problems with multi-point
constraints and problems with uncertainty. Because the problem formulation
can become very general, along with a large set of different solution algorithms,
it is difficult to implement software tools that treat optimal control problems
with great generality. While tools do exist that deal with a broad range of
problems, as discussed below, the usage of these tools is typically limited to
comparably restricted problem formulations.

Optimal control problems

A basic formulation of an optimal control problem (OCP) is:

minimize
x, u, p

∫ T

0

J(x(t), u(t), p) dt+ E(x(T ), p)

subject to
ẋ(t) = f(x(t), u(t), p),
u(t) ∈ U , x(t) ∈ X ,

}

t ∈ [0, T ]

x(0) ∈ X0, x(T ) ∈ XT , p ∈ P

(OCP)

where x(·) ∈ RNx is the vector of (differential) states, u(·) ∈ RNu is the vector
of free control signals and p ∈ RNp is a vector of free parameters in the model.

1



2 INTRODUCTION

The OCP here consists of an objective function with a running cost or Lagrange
term (J), an end-cost or Mayer term (E) as well as a dynamic constraint (f) in
the form of an ODE with initial and terminal conditions (X0 and Xf). Finally,
there are admissible sets for the states (X ), control (U) and parameters (P).

Methods for optimal control

Numerical methods for solving (OCP) and more general variants emerged
with the birth of the electronic computer in the 1950’s and were in the
beginning typically based on a characterization on either the global optimum
or the local optimum of the (infinite dimensional) optimal control problem.
The characterization of the global optimum, the Hamilton-Jacobi-Bellman
equations [130, 167], leads to such methods as dynamic programming [34, 38],
whereas the characterization of the local optimum, the Pontryagin’s maximum
principle [155], leads to so-called indirect methods for optimal control. However,
dynamic programming is normally unable to handle problems of large state-
dimension due to Bellman’s so-called curse of dimensionality [34] and for
indirect methods, treating inequality constraints can be prohibitively difficult.
Inequality constraints enter in (OCP) as bounds on the state and control
trajectories. This fact, combined with the advancement of algorithms for
nonlinear programming, in particular the emergence of sequential quadratic
programming (SQP) [110,156,190], shifted the focus in the early 1980’s to direct
methods, where the control trajectory is parameterized forming a nonlinear
program (NLP).

Two families of direct optimal control methods could be distinguished early on.
In the sequential approach, represented by the direct single shooting method,
existing methods and software for simulating differential equations were used to
eliminate the state trajectory from the problem formulation, leaving the control
trajectory and possibly a set of free parameters to be determined by the NLP
solver. In the second approach, the simultaneous approach, the state trajectory
was approximated by polynomials whose coefficients are determined together
with the control trajectory in the NLP solver. The simultaneous approach, and
in particular the direct collocation approach based on the collocation approach
for simulating differential equations, was proposed as early as 1970 [142, 143],
but only reached widespread popularity in the 1980s through the work of Biegler
and Cuthrell [40,67]. An early overview of these approaches can be found in [42].
A key advantage of the simultaneous approach is that it allows handling of
unstable systems – where simulating the system might be impossible for the
current guess of the control trajectory.

A hybrid approach is the direct multiple shooting method, proposed in 1984 by
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Bock and Plitt [50,51], in which the state trajectory is only partially eliminated
from the NLP. The direct multiple shooting method has some important
properties of the simultaneous approach, in particular the handling of unstable
systems and the suitability for parallel computations. At the same time, it
avoids the need to store the whole state trajectory, which can be prohibitively
expensive for large-scale systems arising in e.g. PDE constrained optimization.

Nonlinear programming

As mentioned above, direct methods for optimal control result in nonlinear
programs (NLPs). The NLPs considered in this thesis are of the general form:

minimize
x

f(x)

subject to g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h,
(NLP)

where f : Rnx → R is the objective function, g : Rnx → Rng is the equality
constraint function and h : Rnx → Rnh is the inequality constraint function. In
(NLP), the decision variable x ∈ Rnx is constrained by the simple bounds [x, x]
and h(x) is constrained by the nonlinear bounds [h, h]. We consider NLPs for
which all involved functions are twice continuously differentiable, and if not
stated otherwise, we allow the bounds (x, x, h and h) to take infinite values.

Software for optimal control

The emergence of direct methods greatly facilitated the development of
general-purpose software for optimal control. An early general-purpose OCP
solver was MUSCOD by Bock in 1984 [51]. This code, which implements
the direct multiple shooting method, was later extended and rewritten by
Leineweber [131] forming MUSCOD-II in 1999. The MuShROOM code by
Kirches [122] as well as the open-source ACADO Toolkit by Houska and
Ferreau [115, 116] also implement direct multiple shooting and are specially
designed to be used in real-time optimization. The ACADO Toolkit contains
the ACADO Code Generation tool, which generates direct multiple shooting
based controllers for embedded systems [117]. Tools implementing direct single
shooting include DyOS [161] and dsoa [73].

General-purpose OCP tools implementing direct collocation include DIRCOL
[177], PROPT [13] and SOCS [15]. The programming effort needed to
efficiently implement direct collocation is however typically much lower than
for shooting-based methods, largely thanks to algebraic modeling languages
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such as AMPL [84], to be discussed in Section 3.5 as well as suitable solvers
for the arising large and sparse NLPs such as IPOPT [179], to be discussed
in Chapter 4. Direct collocation is therefore often implemented in application-
specific codes.

Finally, an important development has been the emergence of derivative-
based optimization capabilities within advanced simulation environments. This
includes support for dynamic optimization in ASCEND [4], APMonitor [3],
gPROMS [157], DYMOLA [6] and JModelica.org [20] as well as several domain-
specific tools.

Goal of the thesis

As mentioned above, a popular way to solve optimal control problems using
direct collocation is to use an algebraic modeling language. This automates two
of the critical steps of the implementation, namely the calculation of derivative
information and interfacing with third-party solvers.

The overall goal of the thesis is to allow this approach to be implemented
with greater flexibility and extend it to direct and indirect multiple shooting
approaches.

1.1 Overview of the thesis and contributions

The remainder of the thesis is structured as follows.

In Chapter 2, we go through the main solution steps of some of the most popular
methods for large-scale optimal control. This discussion is not intended to be
a self-contained introduction to optimal control, but does provide background
and introduces concepts that will be used later in the text.

In Chapter 3, we give a brief but mostly self-contained introduction to
algorithmic differentiation (AD). While the first part of this chapter is mainly
intended as a service to readers not yet familiar with AD, the second part
should be seen as a prelude to Chapter 7.

In Chapter 4, we give an overview of methods and software for derivative-based
nonlinear programming. The main contribution of this chapter is an alternative
derivation of the lifted Newton method for sequential quadratic programming
in Section 4.5. This derivation is notably shorter and hopefully more accessible
to readers than the derivation provided in the original paper by Albersmeyer
and Diehl [23].
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In Chapter 5, we present an novel algorithm for QP condensing, i.e. how to
project structured QPs down to smaller but equivalent QPs. We show that
the new algorithm in equivalent to the established QP condensing algorithm,
widely used in optimization-based control and estimation, but with quadratic
rather than cubic complexity in the prediction horizon. Numerical tests confirm
that the algorithm is also faster in practice.

In Chapter 6, we present the open-source optimization framework CasADi,
which is the main practical contribution of this thesis. CasADi was developed
together with Joris Gillis in cooperation with several research groups. CasADi
offers a new level of abstraction for solving numerical optimization problems,
one that is lower than algebraic modeling languages such as AMPL or GAMS,
but higher than conventional AD tools. The tool also shows that there is no
inherent contradiction between working in a high-level programming language
such as Python, but still getting the speed of optimized C-code. We show that
the tool compares favorably with the AMPL for a subset of the CUTEr test
suite.

In Chapter 7, we propose a way to efficiently embed solvers of initial-
value problems in ordinary or differential-algebraic equations into symbolic
expressions. We show that this enables fully automatic forward and adjoint
sensitivity analysis to arbitrary order and greatly facilitates the implementation
of shooting-based methods for optimal control.

In Chapter 8, we present work towards a general-purpose, structure-exploiting
nonlinear programming solver based on the lifted Newton method. The goal
is a tool that can efficiently solve the type of nonlinear programming problems
arising in optimal control. As shown in the section, fast execution times and
easy use in embedded applications are achieved by generating C-code for the
computationally expensive parts of the method.

Finally, in Chapter 9, we list some of the applications where CasADi has been
successfully applied to date. This includes the implementation of novel methods
for optimal control and applications from a wide range of different engineering
fields and from multiple research groups.

1.2 Notation

Apart from standard mathematical and engineering notation, we use the
following conventions:

Vectors and matrices Vectors x ∈ Rn are interchangedly treated as column
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vectors or n− by − 1 matrices. To declare a vector, the notation (a, b, c)
is synonymous with [a, b, c]⊺. Scalars are also referred to as 1 − by − 1
matrices.

Arithmetics If x and y are matrices, we shall use x y to denote a matrix
multiplication, and x ∗ y to denote the elementwise multiplication. If
either x or y is a scalar, the notations are equivalent.

Calculus We use ∂f
∂x
∈ Rm×n to denote the Jacobian of a function f :

Rn → Rm with respect to x. The gradient, ∇f , is only used for scalar
valued functions and always belongs to the same space as x, which can be
either vector- or matrix-valued. Time derivatives of a physical quantity
x are denoted ẋ or ∂x

∂t
.

Algorithmic differentiation When considering the directional derivatives of
a function y = f(x), we use quantities with hats (e.g. x̂) to denote
forward directional derivatives, ŷ = ∂f

∂x
x̂, and quantities with bars (e.g.

x̄) to denote adjoint directional derivatives, x̄ =
(
∂f
∂x

)⊺

ȳ, with natural

extension to the case when x or y are matrix-valued.

Sets We use calligraphic fonts (e.g. A) to denote sets with | · | denoting the
number of elements in the set.

Inequalities An expression such as a < b < c means a < b and b < c.
Inequalities are elementwise if not stated otherwise.



Chapter 2

The building blocks for

dynamic optimization

Let us return to the simple optimal control problem (OCP) as stated in
Chapter 1:

minimize
x, u, p

∫ T

0

J(x(t), u(t), p) dt+ E(x(T ), p)

subject to
ẋ(t) = f(x(t), u(t), p),
u(t) ∈ U , x(t) ∈ X ,

}

t ∈ [0, T ]

x(0) ∈ X0, x(T ) ∈ XT , p ∈ P

(OCP)

In this chapter, we provide details on some of the aforementioned methods
to solve this problem. We will discuss two indirect methods: indirect single
shooting and indirect multiple shooting, as well as three direct methods: direct
single shooting, direct multiple shooting and direct collocation. We illustrate
the relation between the methods in Figure 2.1. The purpose of this discussion
is to expose the building blocks needed for solving real-world optimal control
problems. These building blocks will then be discussed in more detail in the
subsequent chapters.

To illustrate the methods we begin by introducing a small, yet industrially
relevant OCP.

7
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Optimal control methods

Indirect methods Direct methods

Indirect 
 single shooting

Indirect 
 multiple shooting

Direct 
 single shooting

Direct 
 multiple shooting

Direct 
 collocation

Figure 2.1: Numerical methods for dynamic optimization considered in the
chapter

2.1 A guiding example: Minimal-fuel orbit transfer

The motion of a spacecraft in an orbital plane around Earth can be described
by the following ODE taken from Cerf et al. [60]1:







ṙ(t) = v(t) sin γ(t)

φ̇(t) =
v(t)
r(t)

cos γ(t)

v̇(t) = −
µ

r(t)2
sin γ(t) +

u1(t)
m(t)

γ̇(t) =
(
v(t)
r(t)
−

µ

v(t) r(t)2

)

cos γ(t) +
u2(t)

m(t) v(t)

ṁ(t) = −
1

g0 Isp

√

u1(t)2 + u2(t)2 + ǫ

t ∈ [0, T ] (2.1)

where (r(t), φ(t)) is the position of the spacecraft in polar coordinates, v(t) is
the speed, γ(t) is the angle to the circle (the inclination) and m(t) the mass of
the spacecraft. This is illustrated in Figure 2.2. Furthermore, Isp is the specific
impulse of the spacecraft, g0 is standard gravity and µ is Earth’s standard
gravitational parameter (the gravitational constant multiplied by Earth’s mass).
The ODE is controlled by the thrust vector (u1(t), u2(t)), which is constrained
by:

u1(t)2 + u2(t)2 ≤ u2
max, t ∈ [0, T ] (2.2)

1The ǫ, taken to be 10−10 in our implementations was not part of the original problem
formulation. It is included to keep ∂ṁ/∂u bounded for u = 0.
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Figure 2.2: Geometry of the orbit transfer problem

As in the Cerf et al. paper [60], we consider the problem of finding a minimal-
fuel trajectory for a spacecraft with 40 metric tons initial mass to go from an
unstable sun-synchronous orbit to a circular final orbit:







r(0) = 200 km +R
φ(0) = 0
v(0) = 5.5 km/s
γ(0) = 2π/180
m(0) = 40000 kg







r(T ) = 800 km +R

v(T ) = 7.5 km/s
γ(T ) = 0

(2.3)

where R is Earth’s radius.

Defining the state vector x(t) = (r(t), φ(t), v(t), γ(t),m(t)) and control vector
u(t) = (u1(t), u2(t)) allows us to formulate the minimal-fuel orbit transfer as:

minimize
x, u

E(x(T )) := −m(T )

subject to Equation (2.1)
Equation (2.2)
Equation (2.3)

(2.4)

2.2 Indirect shooting methods for the orbit transfer

problem

In the following, we shall go through the steps of using an indirect approach to
solve problem (2.4). For more details and motivation for each step, we refer to
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Bryson and Ho [53].

A necessary condition for optimality is given by Pontryagin’s maximum
principle [155], which for problem (2.4) has the form:

u(t) = arg max
‖w‖≤umax

H(x(t), λ(t), w), (2.5)

where H(x(t), λ(t), w) is the Hamiltonian of the system, which lacking an
integral term in the objective is given by:

H(x(t), λ(t), w) = λ(t)⊺ f(x(t), w). (2.6)

We have also introduced the costate λ(t) = (λr(t), λφ(t), λv(t), λγ(t), λm(t)),
which is defined by the differential equation:

λ̇(t) = −∇xH(x(t), λ(t), u(t)). (2.7)

The costate ODE is coupled to the original ODE via x(t) and has free initial
conditions and terminal conditions fixed whenever the corresponding state is
free as explained in e.g. [53]. Here, this means:

λφ(T ) = −
∂E

∂φ

∣
∣
∣
∣
t=T

= 0, λm(T ) = −
∂E

∂m

∣
∣
∣
∣
t=T

= 1. (2.8)

For problem (2.4), the maximization condition (2.5) can be solved explicitly [60]:

u(t) =







umax (v(t)λv(t), λγ(t))
√

v(t)2 λv(t)2 + λγ(t)2
if

√

λv(t)2 +
λγ(t)2

v(t)2
>
m(t)λm(t)
g0 Isp

(0, 0) otherwise

.

(2.9)

Substituting the expression of the control (2.9) into the ODE (2.1) and costate
ODE (2.7) gives a two-point boundary value problem (TPBVP). In the indirect
single shooting method, an initial-value problem (IVP) for the augmented ODE
consisting of the original ODE and the costate ODE is solved, defining the
following shooting function for the time interval [t1, t2]:

Ft1,t2 : R5 × R
5 → R

5 × R
5, (x(t1), λ(t1)) 7→ (x(t2), λ(t2)). (2.10)
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Using this function to eliminate the state and costate trajectories, the boundary
conditions in Equation (2.3) and (2.8), give the system of equations:









rT − (800 km +R)
λφ,T
vT − (7.5 km/s)
γT
λm,T − 1









= 0 (2.11)

where (xT , λT ) are given by evaluating F0,T (x0, λ0). This is a root-finding
problem (RFP) with five equations and as many unknowns.

In practice, the shooting function F0,T is typically a computationally expensive,
highly nonlinear function. By partitioning the time horizon into K intervals
according to:

0 = t0 < t1 < . . . < tK = T (2.12)

and introducing extra degrees of freedom in problem (2.11) corresponding to
the state xk = x(tk) and costate λk = λ(tk) at each of these points, we get the
equivalent problem:
















Ft0,t1(x0, λ0)− (x1, λ1)
...
FtK−1,tK (xK−1, λK−1)− (xK , λK)

rK − (800 km +R)
λφ,K
vK − (7.5 km/s)
γK
λm,K − 1
















= 0, (2.13)

which has 5 + 10K equations and unknowns.

This is the indirect multiple shooting approach which was proposed as a solution
method for two-point boundary value problems by Morrison [148] and used
to solve optimal control problems by e.g. Bulirsch [54]. The formulation in
problem (2.13) allows the shooting functions to be evaluated in parallel and
can make use of an initial guess for the state and costate trajectory. It is
also known to often exhibit faster local convergence than the smaller, more
nonlinear problem (2.11) as discussed in e.g. [23,48].

In terms of implementation, we can conclude that the indirect shooting
approach will include at least the following steps:
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• Formulation of the costate equations, a process that can be done
efficiently and automatically with the reverse mode of algorithmic
differentiation, see Chapter 3.

• Integration of the augmented ODE, while taking care to detect discontinu-
ities by using e.g. an ODE integrator with root-finding functionality such
as DASSL/DASRT [154] or SUNDIALS [113]. We propose an integrator
formulation that allows embedding into gradient-based optimization
methods in Chapter 7.

• Solution of the maximization condition either analytically or by embed-
ding an optimizer into the ODE formulation.

• Solution of the root-finding problem (2.11) or (2.13), typically using
a gradient-based approach. The structure of problem (2.13) makes it
amenable to a Lifted Newton approach, presented for the more general
NLP case in Chapter 4 and then explored in software in Chapter 8.

2.3 Direct control parameterization

The indirect approach is also referred to as an optimize-then-discretize
approach, in that the optimality conditions of (OCP) are considered before
a parameterization of the control trajectory is chosen. The converse approach,
which starts with the parameterization of the control trajectory is referred to
as a direct, or discretize-then-optimize, approach.

Assuming that the end time is known and fixed (cf. Section 2.7), we partition
the time horizon according to Equation (2.12) and parameterize the control
with a low order polynomial on each interval. For simplicity, we shall assume
a piecewise constant control:

u(t) := uk for t ∈ [tk, tk+1), k = 0, . . . ,K − 1. (2.14)

The state trajectory can now be eliminated from the optimization problem by
integrating the differential equation forward in time. For problem (OCP), this
defines the discrete-time dynamics:







Fk : Rnx × Rnu × Rnp → Rnx × R,

(xk, uk, p) 7→ (xk+1,

∫ tk+1

tk

J(x(t), uk, p, t) dt),
k = 0, . . . ,K−1, (2.15)

where the integral in the objective function is calculated together with the
initial value problem solution. This can be done by augmenting the differential
equation with one extra state or by using a quadrature formula as in e.g. [113].
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This transforms (OCP) into the following discrete-time optimal control
problem:

minimize
x, u, p

K∑

k=1

qk + E(xK , p)

subject to (xk+1, qk+1) = Fk(xk, uk, p), k ∈ {0, . . . ,K − 1}
xk ∈ X , k ∈ {1, . . . ,K − 1}
uk ∈ U , k ∈ {0, . . . ,K − 1}
x0 ∈ X0, xK ∈ XT , p ∈ P,

(2.16)

where the state constraints have been relaxed to only be enforced at the grid
points.

2.4 Direct single shooting

With the initial conditions known, we can use recursion to eliminate the state
trajectory, giving the following NLP with np + nx +K nu degrees of freedom:

minimize
p, x0,

u0, . . . , uK−1

K∑

k=1

qk(p, x0, u0, . . . , uk−1) + E(xK(p, x0, u0, . . . , uK−1))

subject to










p
x0

u
...
u










≤










p
x0

u0

...
uK−1










≤










p
x0

u
...
u










,








x
...
x
xT







≤








x1(p, x0, u0)
x2(p, x0, u0, u1)

...
xK(p, x0, u0, . . . , uK−1)







≤








x
...
x
xT







,

(2.17)

with simplifications when x0 is given an/or state bounds are absent such as in
problem (2.4).

This is a direct single shooting parameterization. Instead of solving a root-
finding problem with embedded ODE integrators as in indirect single and
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multiple shooting, requiring only first order derivatives, we now need to solve
an NLP, requiring first and (possibly) second order derivative information.

2.5 Direct multiple shooting

While the direct single shooting method results in an NLP that has relatively
few degrees of freedom, it has several important drawbacks:

• The objective and constraint functions have a highly nonlinear depen-
dence on the variable u, slowing down the convergence of the NLP
solution.

• If an initial guess for x1, . . . , xK is available, it cannot be used to initialize
the NLP solver.

• The recursive elimination requires the corresponding functions, Fk in
(2.15), to be evaluated sequentially as opposed to in parallel.

These issues can be addressed by including the state trajectory in the NLP,
which then has np + nx +K nu +K nx degrees of freedom:

minimize
p, x0, . . . , xK ,
u0, . . . , uK−1

K∑

k=1

qk + E(xK , p)

subject to














p
x0

u
...
x
u
xT














≤














p
x0

u0

...
xK−1

uK−1

xK














≤














p
x0

u
...
x
u
xT














,






F0(x0, u0, p)− (x1, q1)
...

FK−1(xK−1, uK−1, p)− (xK , qK)




 = 0.

(2.18)

This state and control parameterization gives the basis of Bock’s direct multiple
shooting method [51]. It is important to note the special structure of the
nonlinear constraint. Even if we do not eliminate the state trajectory as in
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the single shooting method, we can still use this special structure in the NLP
solver. This will be discussed in Chapter 4 and in Chapter 8 we will present
work towards a software implementation addressing this problem class.

2.6 Direct collocation

When we went from direct single shooting to direct multiple shooting we
essentially traded nonlinearity for problem size. The NLP in single shooting
is small, but often highly nonlinear, whereas the NLP for multiple shooting is
larger, but sparser and typically less nonlinear. The direct collocation method
goes a step further in the same direction, resulting in an even larger, but even
sparser and possibly less nonlinear NLP.

To illustrate the method, we return to the initial value problem (2.15). We
begin by dividing each control intervals k into N(k) finite elements, [tk,i, tk,i+1],
i ∈ {0 . . . N − 1}. This is illustrated in Figure 2.3. For simplicity we assume
the intervals to be equidistant and same for all k:

tk,i = tk + i hk, for k ∈ {0 . . . K − 1}, i ∈ {0 . . . N} (2.19)

with hk := (tk+1 − tk)/N .

Figure 2.3: Time discretization in direct collocation
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On each finite element, we parameterize the state trajectory with a low-order
polynomial:

x(t) :=
d∑

j=0

Lj

(
t− tk,i
hk

)

xk,i,j for t ∈ [tk,i, tk,i+1], (2.20)

where Lj(τ) is a Lagrangian polynomial basis of order d:

Lj(τ) =
d∏

r=0, r 6=j

τ − τr
τj − τr

, (2.21)

In (2.20), xk,i,j are polynomial coefficients, assuming xk,N,0 := xk+1,0,0.
Furthermore, τ0 = 0 and τ1, . . . , τd in (2.21) are the collocation points. One
popular choice for these are the Legendre points of order d = 3:

τ1 := 0.112702, τ2 := 0.500000, τ3 := 0.887298, (2.22)

defining the time points:

tk,i,j = tk,i + τj hk for k ∈ {0 . . . K − 1},
i ∈ {0 . . . N − 1}, j ∈ {0 . . . d}.

(2.23)

For discussion on how to select the collocation points, and how this choice
impacts the approximation accuracy and numerical stability of the integrator
scheme, we refer to Biegler [43].

Since xk,i,j = x(tk,i,j) because of the Lagrangian basis, we can differentiate
Equation (2.20) to get an approximation of the state derivative at each
collocation point, giving the collocation equations:

f(xk,i,j , uk, p)−
1
hk

d∑

r=0

Cr,j xk,i,r = 0,

for k ∈ {0 . . . K − 1}, i ∈ {0 . . . N − 1}, j ∈ {1 . . . d}. (2.24)

where Cr,j := ∂Lr

∂τ
(τj) has been precomputed.

Furthermore, evaluating (2.20) at the end of each finite element gives us the
continuity equations:

d∑

r=0

Dr xk,i,r−x
+
k,i = 0, for k ∈ {0 . . . K−1}, i ∈ {0 . . . N −1}, (2.25)
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where Dr := Lr(1) has been precomputed and x+
k,i is defined to be:

x+
k,i =

{
xk+1,0 if i = N − 1
xk,i+1 if i < N − 1

. (2.26)

Finally, by integrating (2.20) from tk,i to tk,i+1, we get an approximation of
the Lagrange term in the objective function

∫ T

0

J(x(t), u(t), p) dt ≈
K−1∑

k=0

N−1∑

i=0

hk

d∑

r=0

Br J(xk,i,r, uk, p), (2.27)

where Br :=
∫ 1

0

Lr(τ) dτ has been precomputed.

In the direct collocation method, the collocated state is added as additional
degrees of freedom to (2.18) and Equations (2.24) and (2.25) become additional
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constraints. This results in the NLP:

minimize
p, u0, . . . , uK−1,
x0,0,0, . . . ,

xK−1,N−1,d, xK,0,0

K−1∑

k=0

N−1∑

i=0

hk

d∑

r=0

Br J(xk,i,r, uk, p) + E(xK,0,0, p)

subject to


























p
x0

x
...
x
u
...
x
...
x
u
xT


























≤


























p
x0,0,0

x0,0,1

...
x0,N−1,d

u0

...
xK−1,0,0

...
xK−1,N−1,d

uK−1

xK,0,0


























≤


























p
x0

x
...
x
u
...
x
...
x
u
xT


























,









f(xk,i,1, u0, tk,i,1)− 1
hk

∑d
r=0 Cr,1 xk,i,r

...
f(xk,i,d, u0, tk,i,d)− 1

hk

∑d
r=0 Cr,d xk,i,r

∑d
r=0 Dr xk,i,r − x

+
k,i









= 0,

for k ∈ {0 . . . K − 1}, i ∈ {0 . . . N − 1}

(2.28)

where there are now np + nx +K nu +KN (d+ 1)nx optimization variables.

Note that the nonlinear constraint in (2.28) can in principle be used to
sequentially eliminate the state trajectory. This would result transform the
method into either the direct multiple shooting method of Section 2.5 or the
direct single shooting method of Section 2.4 using a fixed-step collocation
integrator scheme, cf. Section 3.11.

The direct collocation method therefore requires the following:
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• A solver for very large and sparse2 NLPs. These solvers, whether interior
point (IP) methods or sequential quadratic programming (SQP) methods
as discussed in Chapter 4, typically rely on efficient linear solvers for large
and sparse, symmetric, but indefinite problems. An alternative approach,
which is a variant of the structure exploiting NLP solution commonly used
for the direct multiple shooting method will be discussed in Chapters 4
and 8.

• An efficient way to provide the first and second order derivative
information, including sparsity structure, to the NLP solver. This is
addressed in Chapter 3.

A comprehensive introduction to direct collocation can be found in the recent
books by Biegler [43] and Betts [39].

2.7 Generalizations

The purpose of the presentation so far has been to expose some characteristics
about and show the relation between some important methods for large-scale
optimal control. Several important details have been left out to simplify
the presentation. In the remainder of this chapter, we shall discuss some of
those omissions, which can all be implemented with essentially the same set of
building blocks.

Free end time

Until know, we have assumed that the end time be fixed. If this is not the case,
the end time T can be handled as an additional entry in the parameter vector
p and a time transformation can be applied to transform the time horizon to
[0, 1]:

t = T t̃ ⇒
∂x

∂t̃

(
t̃
)

= f
(
x(T t̃), u(T t̃), p

)
/T, t̃ ∈ [0, 1]. (2.29)

A free initial time can be handled in the same way, see e.g. [131]. We refer to
Bryson and Ho [53] for the treatment of free end time in the context of indirect
methods.

2That is, the Jacobian of the constraint function and the Hessian of the Lagrangian are
sparse, cf. Chapter 4.
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Explicit time dependence

The direct collocation method can be trivially extended to handle explicit
dependence on time t in the ODE function, as opposed to indirect dependence
via the state or control vectors. For the shooting methods, this can be handled
by augmenting the state vector with a new component defined by:

ẋnew(t) = 1, t ∈ [0, T ], xnew(0) = 0. (2.30)

More efficiently, it is also possible to handle the explicit time dependence
internally in the IVP solver. For details on this in the context of sensitivity
analysis, we refer to e.g. [57].

Multistage problems

Many industrial optimization problems are characterized by different differen-
tial equations, or even different number of variables in the different regions
of the time domain. Examples of such multistage OCPs (also referred to as
multiphase in the literature) include trajectory optimization for multistage
rockets and batch processes in chemical engineering [43]. The direct methods
can be handled by scaling each stage to unit length and using different discrete
time dynamics in the different regions. If state vector dimensions for the
different stages differ, this can be handled by inserting transition stages [131].
For indirect methods, we again refer to Bryson and Ho [53].

Differential-algebraic equations

In many practical applications, the system dynamics are not given as ordinary
differential equations (ODE) but as differential-algebraic equations (DAE):

{
ẋ(t) = fD(x(t), z(t), u(t), p),

0 = fA(x(t), z(t), u(t), p),
t ∈ [0, T ] (DAE)

which we assume to be of semi-explicit form and of index-1 (see e.g. [107]). In
this context, it means that the algebraic variable z is defined by an algebraic
equation 0 = fA(x, z, p, t) at all times by means of the implicit function theorem,
implying in particular that ∂fA/∂z must be invertible.
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The direct collocation method can be readily extended to handle semi-explicit
DAEs, by modifying the collocation equations (2.24) according to:







fD(xk,i,j , zk,i,j , uk, p)−
1
hk

d∑

r=0

Cr,j xk,i,r = 0,

fA(xk,i,j , zk,i,j , uk, p) = 0,

for k ∈ {0 . . . K − 1}, i ∈ {0 . . . N − 1}, j ∈ {1 . . . d}. (2.31)

Here, the collocated algebraic variables, zk,i,j , k = 0, . . . ,K, i = 0, . . . , N and
j = 1, . . . , d, have been introduced as additional variables in the NLP. We leave
the algebraic variable undefined in the beginning of each finite element (j = 0).

For the direct or indirect shooting methods, the discrete time dynamics (2.15)
and the shooting function (2.10), respectively, amounts to solving initial value-
problems of the form:

Ft1,t2 : Rnx × Rnp → Rnx × Rnq , (x1, p1) 7→ (x2, q2)






ẋ(t) = fD(x(t), z(t), p1),
0 = fA(x(t), z(t), p1),
q̇(t) = fQ(x(t), z(t), p1),

t ∈ [t1, t2],
x(t1) = x1, q(t1) = 0,
x2 = x(t2), q2 = q(t2).

(2.32)

We will return on how to solve problem (2.32) in Chapter 7, and in particular
how a problem of this form can be efficiently embedded into a symbolic
framework. The solution of (2.32) requires the IVP solver to find a solution to
the algebraic equation before the start of the integration, which can be difficult
and may fail if the function is nonlinear and no good solution guess for the
algebraic variable exists. An alternative approach, used by e.g. Leineweber
[131], is the DAE relaxation strategy. Here, the algebraic variables are included
in the NLP formulation and (2.32) is modified according to:

Ft1,t2 : Rnx × Rnp × Rnz → Rnx × Rnq , (x1, p, z1) 7→ (x2, q2)






ẋ(t) = fD(x(t), z(t), p),

0 = fA(x(t), z(t), p)− δ
(
t−t1
t2−t1

)

fA(x(t), z1, p),

q̇(t) = fQ(x(t), z(t), p),

t ∈ [t1, t2]

x(t1) = x1, q(t1) = 0, x2 = x(t2), q2 = q(t2),

(2.33)

where δ(τ) is a monotonically decreasing function with δ(0) = 1 and δ(1) = 0.
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This modified IVP has the same structure as (2.32) but with np+nz parameters
instead of np. Importantly, it has the known initial conditions (x1, z1), thus
alleviating the IVP solver from the problem of solving for the algebraic variables
at the initial time. Furthermore, at feasible points for the NLP, it will coincide
with the original IVP. For more details, e.g. on how to choose the function
δ(τ), we refer to Leineweber’s dissertation [131].

Control discretization

Instead of piecewise constant control discretization in the direct methods, a
piecewise polynomial can be used. The control discretization may also be as
fine as the state discretization. This is important for collocation in general,
where the finer control discretization comes at little additional cost, and
pseudospectral collocation methods [35] that employ high order polynomials,
in particular.

2.8 Conclusion

As shown in this chapter, the solution of optimal control problems using
either the direct or indirect approach can be divided into a number of well-
defined tasks. In the subsequent chapters, we will show how these tasks can
be performed efficiently and to a large extent automatically from high-level
programming languages such as Python or Octave. In particular, this allows
any of the methods presented in this chapter, including their generalizations in
Section 2.7, to be implemented efficiently with a modest programming effort.



Chapter 3

Algorithmic differentiation

and sensitivity analysis

Algorithmic differentiation (AD) is a technique for evaluating derivatives
of computer represented functions which has proven useful in nonlinear
optimization.

The technique delivers directional derivatives, up to machine precision, of
arbitrary differentiable functions for a computational cost of the same order
of magnitude as the cost of evaluating the original function. These directional
derivatives can be either Jacobian-times-vector products, in the forward mode,
or (row)vector-times-Jacobian product, in the reverse mode.

In this chapter, we will give a general introduction to AD in Sections 3.1 to
3.8. This includes using linear algebra to deduce algorithms for the forward
and reverse modes in Sections 3.2 and 3.3 as well as discussing how complete
Jacobians and Hessians can be calculated in Section 3.7. For a more complete
introduction, we refer to Griewank and Walther [104]. In Section 3.9, we discuss
differentiation of algorithms involving implicitly defined functions. Finally,
in Sections 3.10 and 3.11 we discuss how discrete-time and continuous-time
integrators can be embedded into AD algorithms.

23
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3.1 Introduction to AD

Let us consider a sufficiently smooth nonlinear function F : Rn0 → RnK :

y = F (x) (3.1)

We assume that F is given in the form of an algorithm, typically a computer
program, with a number of intermediate variables zk ∈ Rnk , k = 1, . . . ,K, each
depending on a subset Ik of the previous variables:

Algorithm 3.1 Calculation of y := F (x) in (3.1)
z0 ← x
for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik
)

end for

y ← zK
return y

By taking the total derivative of every line of the algorithm, we get a new
algorithm for calculating both F (x) and its Jacobian dF

dx
(x):

Algorithm 3.2 Calculation of y := F (x) and J := dF
dx

(x)
z0 ← x
dz0

dx
← I

for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik
)

dzk
dx
←

∑

i∈Ik

∂fk
∂zi

({zi}i∈Ik
)
dzi
dx

end for

y ← zK

J ←
dzK
dx

return y, J

We can write Algorithm 3.2 as the system of linear equations

dz

dx
= B + L

dz

dx
, J = A⊺

dz

dx
, (3.2)
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where we have defined:

z =








z0

z1

...
zK







, A =








0
...
0
I








and B =








I
0
...
0







, (3.3)

with I and 0 of appropriate dimensions, as well as the extended Jacobian,

L =









0 . . . . . . 0
∂f1

∂z0

. . .
...

...
. . .

. . .
...

∂fK

∂z0
. . . ∂fK

∂zK−1
0









, (3.4)

whose coefficients depend on the intermediate variables defined in Algo-
rithm 3.1.

Since L is strictly lower triangular, (I − L) is invertible, and we can eliminate
dz
dx

from Equation (3.2), giving an explicit expression for the Jacobian:

J = A⊺ (I − L)−1 B (3.5)

3.2 The forward mode

In the forward mode, we conceptually multiply the Jacobian with a forward
seed matrix X̂ ∈ Rn0×m from the right. From Equation (3.5):

Ŷ := J X̂ = A⊺ (I − L)−1 B X̂ (3.6)

The multiplication with (I − L)−1 from the right can be performed with
a blockwise forward substitution. Also including the calculation of the
intermediate variables, this results in the algorithm:
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Algorithm 3.3 The forward mode of algorithmic differentiation
z0 ← x

Ẑ0 ← X̂

for k = 1, . . . ,K do

zk ← fk ({zi}i∈Ik
)

Ẑk ←
∑

j∈Ik

∂fk
∂zj

({zi}i∈Ik
) Ẑj

end for

y ← zK

Ŷ ← ẐK

return y, Ŷ

In each iteration of the for-loop, in addition to evaluating the non-differentiated
function, we evaluate the following forward derivative propagation function:

f̂k

(

zk, {zi, Ẑi}i∈Ik

)

:=
∑

j∈Ik

∂fk
∂zj

(

zk, {zi, Ẑi}i∈Ik

)

Ẑj , (3.7)

which is assumed cheap either since fk is an elementary operation with cheap,
closed-form expressions for its partial derivatives, or because it can, in turn, be
calculated by applying Algorithm 3.3 to the calculation of fk. Note that we
allow f̂k to depend on zk, for reasons that will become clear in Section 3.4
and 3.9. Also note that since the forward substitution can be performed
simultaneously with the calculation of F , the potentially huge matrix L does
not need to be precalculated.

If F is decomposed into a suitable set of atomic operations – see Section 3.4
below – we are able to get upper complexity bounds for some measure of the
computational time, which can be formalized as a combination of memory
movements and floating point operations, TIME{operation}, as well as memory
requirements, MEMORY{operation}.

• TIME
{

J(x) X̂
}

≤ η1 ·m · TIME{F (x)}

• MEMORY
{

J(x) X̂
}

≤ η2 ·m ·MEMORY{F (x)}

where η1 and η2 are small constants. For details, we refer to [104, Chapter 4].
In order to limit memory usage, which has a component proportional to the
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number of columns p of the seed matrix, the calculation can be performed
blockwise with at most mmax columns at a time3, giving:

• MEMORY
{

J(x) X̂
}

≤ η2 ·min(m,mmax) ·MEMORY{F (x)}

3.3 The reverse mode

In the reverse mode, we conceptually multiply the transpose of the Jacobian
with an adjoint seed matrix Ȳ ∈ RnK ×m from the right:

X̄ := J⊺ Ȳ = B⊺ (I − L)−⊺A Ȳ (3.8)

This can be calculated by a blockwise backward substitution for (I − L)⊺,
defining the following algorithm:

Algorithm 3.4 The reverse mode of algorithmic differentiation
z0 ← x
for k = 1, . . . ,K do ⊲ ”Taping”

zk ← fk ({zi}i∈Ik
)

end for

y ← zK
for k = 0, . . . ,K − 1 do ⊲ ”Reset Z̄”

Z̄k ← 0
end for

Z̄K ← Ȳ
for k = K, . . . , 1 do ⊲ ”Backward sweep”

for j ∈ Ik do

Z̄j ← Z̄j +
(
∂fk
∂zj

({zi}i∈Ik
)
)⊺

Z̄k ⊲ Note : Z̄j overwritten

end for

end for

X̄ ← Z̄0

return y, X̄

Here, the evaluation depends on the following adjoint derivative propagation
function:

f̄k
(
zk, Z̄k, {zi}i∈Ik

)
:=

{(
∂fk
∂zj

({zi}i∈Ik
)
)⊺

Z̄k

}

j∈Ik

(3.9)

3In the implementation in Chapter 6, we use mmax = 64 by default, cf. Section 3.7
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which is cheap if the partial derivatives of fk are readily available or if (3.9)
can, in turn, be calculated using Algorithm 3.4.

The backward substitution requires us to access the columns of L in reverse
order, i.e. opposite to the order of calculation. This means that either zk,
as assumed in Algorithm 3.4, or L needs to be stored (or recalculated) when
calculating F , a process that is known in the AD literature as taping. These
values are then accessed during the backward substitution, or the backward
sweep.

As in the forward mode, we are able to get upper complexity bounds for
computational cost and memory requirements:

• TIME
{
J⊺Ȳ

}
≤ ω1 ·m · TIME(F (x))

• MEMORY
{
J⊺Ȳ

}
≤ ω2 ·min(m,mmax) ·MEMORY{F (x)}+ω3

∑K
k=0 nk

where ω1, ω2 and ω3 are small constants, cf. [104, Chapter 4]. To conserve
memory, the calculation is assumed performed with at most mmax columns at
a time as above.

3.4 Scalar- and matrix-valued atomic operations

When deriving Algorithms 3.3 and 3.4, the intermediate variables z were
allowed to be vector-valued. In most implementations, however, the decom-
position of function F in (3.1) is made so that the intermediate variables are
scalar-valued functions with closed form expressions for its partial derivatives,
e.g.

u v, u+ v, −u, 1/u, sin(u), log(u), eu, etc.

The derivative propagation rules for these operations are shown in Table 3.1:
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Table 3.1: Essential scalar atomic operations

Unary operation Forward propagation Adjoint propagation
f(u) f̂(w, u, û) f̄(w, w̄, u)
w = −u −û {−w̄}
w = 1/u −w2 û {−w2 w̄}
w = sin(u) cos(u) û {cos(u) w̄}
w = log(u) û/u {w̄/u}
w = eu w û {w w̄}

Binary operation Forward propagation Adjoint propagation
f(u, v) f̂(w, u, û, v, v̂) f̄(w, w̄, u, v)
w = u v û v + u v̂ {v w̄, u w̄}
w = u+ v û+ v̂ {w̄, w̄}

We refer to [104, Chapter 2] for a discussion on how to select a suitable set of
scalar atomic operations that ensures that the complexity bounds for AD hold.

There are however, good reasons to allow for vector- or (by generalizing
Algorithms 3.3 and 3.4) matrix-valued atomic operations in the AD algorithm.
This often has advantages both in terms of memory usage and speed, which can
be seen by considering reverse mode AD of a function performing matrix-matrix
multiplication:

W = f(U, V ) = U V (3.10)

which as shown in e.g. [89] has the particularly simple adjoint propagation rule

f̄(W, W̄ , U, V ) =
{
W̄ V ⊺, U⊺ W̄

}
(3.11)

where the matrix multiplication is performed over the first two dimensions of
the now third-order tensor W̄ .

While this expression can be calculated very efficiently using libraries such
as LAPACK [25], a breakdown into scalar-valued operations would cause the
number of stored elements to grow rapidly with the matrix dimensions and
have much worse cache utilization.

Other matrix-valued operations that have analytic forms for forward as well as
adjoint derivative propagations include matrix inverses, determinants, solutions
of linear systems of equations, singular value decompositions (SVD), Cholesky
factorizations and matrix norms as shown in e.g. [89, 90, 174]. We list the
propagation rules for the most essential matrix operations in Table 3.2.
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Table 3.2: Essential matrix atomic operations (cf. [89])

Unary operationa Forward propagation Adjoint propagation
f(U) f̂(W,U, Û) f̄(W, W̄ , U)
W = U⊺ Û⊺ W̄ ⊺

W = U−1 −W Û W −W ⊺ W̄ W ⊺

w = det(U) w tr(U−1 Û) (w̄ w)U−⊺

w = ‖U‖F (1/w) tr(U⊺ Û) (w̄/w)U

Binary operation Forward propagation Adjoint propagation
f(U, V ) f̂(W,U, Û , V, V̂ ) f̄(W, W̄ , U, V )
W = U V Û V + U V̂ {W̄ V ⊺, U⊺ W̄}

w = tr(U⊺ V ) tr(Û⊺ V ) + tr(U⊺ V̂ ) {w̄ V, w̄ U}

W = U−1 V U−1 (V̂ − Û W ) {−(U−⊺ W̄ )W ⊺, U−⊺ W̄}
a Lower-case used for scalar-valued variables

Again, the operations are performed over the first two dimensions of the third-
order tensors Û , V̂ and W̄ .

3.5 Implementation of AD

There are two classical ways to implement AD:

• In the operator overloading (OO) approach, Algorithms 3.3 or 3.4
are evaluated during or after the numerical evaluation of the original
(non-differentiated) function. The typical way to implement it is
through operator overloading in languages such as C++, which allows
mathematical operations to also include the forward seed propagation
in (Algorithm 3.3) or the recording of the intermediate variables
(Algorithm 3.4, first part). The OO approach can be thought of as an
evaluate-then-differentiate approach.

• In source code transformation (SCT) approach, Algorithms 3.3 or 3.4 are
performed on the expression graphs defining a function. The expression
graphs are typically given as the parsed source code inside a compiler.
This will result in new expression graphs that can be used to produce
new source code for the differentiated expressions. The SCT approach
can be thought of as a differentiate-then-evaluate approach.

For a discussion about OO and SCT and their pros and cons, we refer to [46].
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Virtual machines for operator overloading AD

Operator overloading tools are typically able to record a so-called operation
trace, which is a sorted sequence of all encountered operations. It contains
all the information needed to numerically evaluate the function as long as the
control flow path does not change. The trace can be traversed either in the
order of calculation, for forward mode AD, or in the reverse order, for reverse
mode AD. This evaluation by traversing the operation trace can be described
as an evaluation in a virtual machine (VM). The VM can be either registry-
based or stack-based. In a registry-based VM, the values of the intermediate
operations are stored in a random access data structure we shall call the work
vector. The instructions of the virtual machine then refer to operations acting
on the work vector. To limit the size of the work vector, and hence the overall
memory use, it is important to reuse the elements when possible. This can be
done by analyzing when elements go out of scope, the live variable ranges of
the work vector elements. In a stack-based VM, in contrast, the values of the
intermediate operations are stored on a stack, i.e. a last in, first out type data
structure.

Software tools

Conventional AD tools that use the OO approach include ADOL-C [102],
CppAD [5], Sacado [19] and FADBAD++ [8] for C/C++ and MAD [79] for
MATLAB. Tools that use the SCT approach include ADIC [1] for C/C++,
ADIFOR [45] for Fortran, ADiMat [2] for MATLAB as well as OpenAD [12]
and TAPENADE [16] for both C/C++ and Fortran.

The first popularized implementation of AD with matrix-valued operations was
done in MATLAB by Verma and Coleman through their ADMAT/ADMIT
packages [63, 174]. More recent implementations, also in MATLAB, include
the ADiMat package [47], MAD [79] and MSAD [120]. Implementations in
other programming languages include the Python-based Theano package [36].

3.6 Higher order derivatives

Until now we have only considered first order directional derivatives. Higher
order derivatives can be calculated by repeatedly applying the source-code
transformation approach to the algorithm of a function. This assumes that
the atomic operations in Section 3.4 forms a set which is closed under forward
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Figure 3.1: Jacobian compression via Curtis-Powell-Reid seeding

and reverse mode differentiation, i.e. differentiating the algorithm will only
give rise to operations from the same set.

Higher-order derivatives can also be calculated in the context of operator
overloading, although implementations beyond second order are rare. For
further discussion on this, we refer to Griewank and Walther [104].

3.7 Calculating complete Jacobians

To calculate complete Jacobians, Algorithm 3.3 can be executed with X̂ being
the identity matrix or, alternatively, Algorithm 3.4 can be executed with Ȳ
being the identity matrix. The cost for evaluating the Jacobian this way is
proportional to the number of independent variables, in the forward mode, or
the dimension of the function, in the reverse mode.

When the Jacobian is sparse and has a sparsity pattern as illustrated by the
matrix J in Figure 3.1, Algorithm 3.3 can be made cheaper by compressing
the seed matrix X̂ after identifying subsets of structurally orthogonal columns
of the Jacobian. Similarly, Algorithm 3.4 can be made cheaper by identifying
subsets of structurally orthogonal rows of the Jacobian. This was first shown
by Curtis, Powell, and Reid in 1974 [66], who also presented a greedy algorithm
that today can be classified as a direct, unidirectional graph coloring algorithm
for bipartite graphs. Direct in this context means that the nonzeros of J are
given directly in the right hand side in Figure 3.1, in contrast to an indirect
compression method which requires a solve after the compressed Jacobian has
been calculated. Unidirectional means that either the rows or the columns
are compressed as opposed to a bidirectional compression, which relies on a
combination of forward and adjoint directional derivatives. The latter can be
beneficial e.g. when the Jacobian contains both dense rows and dense columns.
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The Hessian of a scalar-valued function can be obtained with a forward-over-
reverse approach. Here the reverse mode is used to derive an algorithm for
calculating the gradient and then the forward mode is applied to the gradient
algorithm giving a Hessian-times-vector product for a computational cost
proportional to calculating the original function. When calculating a complete
Hessian, i.e. the Jacobian of the gradient, symmetry can be exploited in the
Jacobian calculation. One popular such algorithm, used in this work, is the
star-coloring algorithm by Fertin, Raspaud, and Reid [76].

Since the problem of finding the Jacobian compression requiring the least
amount of directional derivatives is known to be NP-hard [134], practical
algorithms are typically greedy heuristics, processing the rows and/or columns
in a certain order. The quality of the resulting compression depends on this
order and can often be improved by first permutating the Jacobian in a so-
called preordering step. For more discussion on this and other topics related to
graph coloring for Jacobian compression, we refer to Gebremedhin et al. [86]
and the references therein.

The graph coloring requires prior knowledge of the sparsity pattern of the
Jacobian. Automatically detecting the sparsity pattern is a nontrivial problem
and for sparse problems often the most expensive step in the Jacobian
calculation as reported in e.g. [150].

The major approaches for this are the sparse-vector approach [150] and the
related index domain approach [101], where sets of indices are propagated
through the algorithm, as well as the bitvector approach, where the AD
algorithms – forward or reverse – are evaluated using a boolean data type.
The latter approach is described in e.g. [88] and is also adopted in this thesis.

3.8 AD in domain-specific languages

All the AD tools mentioned in Section 3.5 have been designed to be able to
handle existing user source code with minimal modifications. But AD can
also be implemented inside domain-specific languages for computer algebra,
mathematical programming and physical modeling. This is not to be confused
with symbolic differentiation, which is a simpler, recursive algorithm to obtain
symbolic expressions for the derivatives.

The implementation of true AD requires that the expression graphs can contain
shared subexpressions, i.e. multiple references to the same expression must be
allowed to be formed without this resulting in a copy of the expression. We
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Figure 3.2: The expression graph for f(x, y) = x y + sin(x y) with (left) and
without (right) treating (x y) as a shared subexpression

illustrate this in Figure 3.2 where we show an expression defining the function
f(x, y) = x y + sin(x y) with and without x y as a shared subexpression.

Symbolic expressions in conventional computer algebra systems, including
Maple, SymPy and MATLAB’s Symbolic Math Toolbox do not allow shared
subexpressions. We illustrate this with the following code segment for
MATLAB’s Symbolic Math Toolbox:

x = sym(’x’);

for i =1:100

x = x*sin(x);

end

Since each iteration of the for-loop will cause a copy of the expression for x to
be made, the final expression graph, if successfully formed, would contain some
2100 ≈ 1030 nodes.

As a consequence, AD in e.g. Maple (see [147, 175]), is only supported for
algorithms defined in the form of functions.
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Algebraic modeling languages

One particular type of symbolic tools that implements AD is algebraic
modeling languages. Algebraic modeling languages allow users to formulate
mathematical programming problems in a representation that closely resembles
standard mathematical notation. For example, an optimization problem such
as

minimize
x, y

x y

subject to x ≥ 0, y ≥ 0, x2 + y2 ≤ 1,
(3.12)

may be formulated in the algebraic modeling language AMPL [84] as:

var x >= 0;

var y >= 0;

maximize Cost: x*y;

subject to UnitCircle : x*x + y*y <= 1;

This problem is then parsed and reformulated to a canonical form such as
(NLP) from Chapter 4. Using the symbolic representation of this canonical
form, tools such as AMPL [84] and GAMS [10] then use AD to calculate exact
first and second order derivative information and pass this information on to
interfaced solvers.

3.9 Embedded implicit functions

It is possible to allow the atomic operations in AD to be the solution to a
system of equations, as noted by e.g. [30, 33, 62]. In particular, let us assume
that w = f(u) is defined as the solution to a parametric root-finding problem
of the form:

g(w)−Au = 0⇔ w := f(u), (3.13)

where A is a known and constant matrix. Without loss of generality, we have
assumed that u enters linearly in the equations, possibly by extending w with
a dummy variable defined by w̃ = u. An expression for the Jacobian can be
obtained from the implicit function theorem (assuming regularity conditions
are met):

∂f

∂u
(u) =

(
∂g

∂w
(w(u))

)−1

A. (3.14)
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Conceptually multiplying this expression from the right with Û , allows us to
define a forward derivative propagation rule:

f̂(w, u, Û) =
(
∂g

∂w
(w)

)−1

A Û, (3.15)

which can be calculated by a matrix-vector product followed by a linear solve
for the Jacobian ∂g

∂w
. Note that if Newton’s method is used to solve the original

root-finding problem (3.13), then a method for calculating and factorizing this
Jacobian is readily available. Equation (3.15) naturally extends to implicit
functions with multiple inputs.

Similarly, we can derive an adjoint derivative propagation rule by conceptually
multiplying the transpose of (3.14) with W̄ :

f̄(w, W̄ , u) =

{

A⊺

(
∂g

∂w
(w)

)−⊺

W̄

}

, (3.16)

which can be calculated as a linear solve for the transpose of the Jacobian ∂g
∂w

,
followed by a matrix-vector product. We note that common factorizations of
the Jacobians such as LU or QR also allow solving for the transposed system.
As in the forward case, Equation (3.16) naturally extends to implicit functions
with multiple inputs.

Implicit functions with inexact Jacobians

The above formulas assume that an exact and up-to-date factorization of ∂g
∂w

is
available. When this is not the case, or when it is too expensive to update
the factorization every time (3.19) or (3.20) is invoked, we can forgo this
requirement as described in the following.

We begin by extending the problem formulation (3.13), to allow the function
output to be a linear combination of the solution to the root-finding problem:

{
0 = g(z)−Au
w = B⊺ z

⇔ w = f(u), (3.17)

where A and B are given matrices.

We get the following expression for the Jacobian of this modified f :

∂f

∂u
(u) = B⊺

(
∂g

∂z
(z(u))

)−1

A, (3.18)
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and hence the following forward and adjoint derivative propagation rules:

f̂(w, u, Û) = B⊺

(
∂g

∂z
(z(u))

)−1

A Û, (3.19)

f̄(w, W̄ , u) =

{

A⊺

(
∂g

∂z
(z(u))

)−⊺

B W̄

}

. (3.20)

We can interpret (3.17) jointly with (3.19) as a new implicit function of the
form (3.17):

0 =








g(z)
∂g
∂z

(z) ẑ1

...
∂g
∂z

(z) ẑm







−








A
A

. . .
A















u
û1

...
ûm















w
ŵ1

...
ŵm








=








B
B

. . .
B








⊺ 






z
ẑ1

...
ẑm







,

(3.21)

where û1, . . . , ûm are the columns of Û and ŵ1, . . . , ŵm are the columns of Ŵ .

Similarly, we can interpret (3.17) jointly with (3.20) as the implicit function:

0 =








g(z)
∂g
∂z

(z)
⊺

z̄1

...
∂g
∂z

(z)
⊺

z̄m







−








A
B

. . .
B















u
w̄1

...
w̄m















w
ū1

...
ūm








=








B
A

. . .
A








⊺ 






z
z̄1

...
z̄m







,

(3.22)

where ū1, . . . , ūm are the columns of Ū and w̄1, . . . , w̄m are the columns of W̄ .

We can then use an inexact Newton-type method to solve the augmented
implicit functions (3.21) or (3.22). We refer to [113] and references therein
for a discussion on how to solve root-finding problems of this form.
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3.10 Embedded discrete-time integrators

As explored in Chapter 2, solving OCPs with shooting-based methods requires
solvers for initial value problems (IVP) in differential equations to be embedded
into either a root-finding problem or into an NLP. Before moving on to the
continuous-time case in Section 3.11, we first treat the discrete-time case in the
following.

Explicit one-step integration methods

Consider the function F : Rnx × Rnu → Rnx × Rnq which is defined by
Algorithm 3.5. It corresponds to a discrete-time one-step integrator with
dynamics given by the functions Φ(x, u) and Ψ(x, u).

Algorithm 3.5 Definition of F : Rnx × Rnu → Rnx × Rnq

input (x0, u)
q0 = 0
for k = 0, . . . , N − 1 do

xk+1 = Φ(xk, u)
qk+1 = Ψ(xk, u) + qk

end for

return (xN , qN )

We will refer to xk ∈ Rnx as the state, u ∈ Rnu as the parameter and qk ∈ Rnq

as the summation state.

Problems in this form appear e.g. as the result of (explicit) Runge-Kutta
schemes for ODEs as noted in Section 3.11 below. We have also seen one
example in Section 2.2.

The function F defined by Algorithm 3.5 has two vector-valued inputs and two
vector-valued outputs. We can can write it more compactly as:

{xN , qN} = F (x0, u) (3.23)

In the following, we make a brief discussion how to obtain its forward and
adjoint derivative propagation functions. That is, we seek ways of calculating

[

X̂N

Q̂N

]

:=

[
∂xN

∂x0
(x0, u) ∂xN

∂u
(x0, u)

∂qN

∂x0
(x0, u) ∂qN

∂u
(x0, u)

] [

X̂0

Û

]

(3.24)
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and
[

X̄0

Ū

]

:=

[
∂xN

∂x0
(x0, u) ∂xN

∂u
(x0, u)

∂qN

∂x0
(x0, u) ∂qN

∂u
(x0, u)

]⊺ [

X̄N

Q̄N

]

(3.25)

respectively.

We get a forward derivative propagation rule for F by applying the forward
mode of AD to (3.5). This results in function F̂ defined by Algorithm 3.6.

Algorithm 3.6 Definition of
F̂ : Rnx × Rnu × Rnx×m × Rnu×m → Rnx × Rnq × Rnx×m × Rnq×m

input (x0, u, X̂0, Û)

q0 = 0

Q̂0 = 0

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk, u)

qk+1 = Ψ(xk, u) + qk

X̂k+1 = ∂Φ
∂x

(xk, u) X̂k + ∂Φ
∂u

(xk, u) Û

Q̂k+1 = ∂Ψ
∂x

(xk, u) X̂k + ∂Ψ
∂u

(xk, u) Û + Q̂k
end for

return (xN , qN , X̂N , Q̂N )

We note that Algorithm 3.6 has the same structure as Algorithm 3.5 if we
form the augmented variables x̃ := (x, vec(X̂)), q̃ := (q, vec(Q̂)) and ũ :=
(u, vec(Û)).

Similarly, we get an adjoint derivative propagation rule by applying the reverse
mode of AD to Algorithm 3.5, resulting in Algorithm 3.7.
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Algorithm 3.7 Definition of
F̄ : Rnx × Rnu × Rnx×m × Rnq×m → Rnx × Rnq × Rnx×m × Rnu×m

input (x0, u, X̄N , Q̄)

q0 = 0

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk, u)

qk+1 = Ψ(xk, u) + qk
end for

ŪN = 0

for k = N − 1, . . . , 0 do

X̄k =
[
∂Φ
∂x

(xk, u)
]⊺
X̄k+1 +

[
∂Ψ
∂x

(xk, u)
]⊺
Q̄

Ūk =
[
∂Φ
∂u

(xk, u)
]⊺
X̄k+1 +

[
∂Ψ
∂u

(xk, u)
]⊺
Q̄+ Ūk+1

end for

return (xN , qN , X̄0, Ū0)

In contrast to the forward mode case, Algorithm 3.7 does not have the same
structure as Algorithm 3.5, due to the inclusion of the backward sweep.

Implicit one-step integration methods

We can extend Algorithm 3.5 to include an algebraic variable zk ∈ Rnz for each
discrete time point k = 0, . . . , N − 1. We let it be implicitly defined by the
equation 0 = Θ(xk, zk, u) as shown in Algorithm 3.8.

Algorithm 3.8 Definition (implicit case) of F : Rnx × Rnu → Rnx × Rnq

input (x0, u)
q0 = 0
for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
xk+1 = Φ(xk, zk, u)
qk+1 = Ψ(xk, zk, u) + qk

end for

return (xN , qN )

Problems in this form appear e.g. as the result of implicit Runge-Kutta schemes
for ODEs or DAEs as noted in Section 3.11 below.



EMBEDDED DISCRETE-TIME INTEGRATORS 41

By using the derivative propagation rules for the implicit functions as described
in Section 3.9, the forward propagation rule defined in Algorithm 3.6 extends
to:

Algorithm 3.9 Definition (implicit case) of
F̂ : Rnx × Rnu × Rnx×m × Rnu×m → Rnx × Rnq × Rnx×m × Rnq×m

input (x0, u, X̂0, Û)

q0 = 0

Q̂0 = 0

for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
0 = ∂Θ

∂x
(xk, zk, u) X̂k + ∂Θ

∂z
(xk, zk, u) Ẑk + ∂Θ

∂u
(xk, zk, u) Û

⊲ Solve for Ẑk
xk+1 = Φ(xk, zk, u)

X̂k+1 = ∂Φ
∂x

(xk, zk, u) X̂k + ∂Φ
∂z

(xk, zk, u) Ẑk + ∂Φ
∂u

(xk, zk, u) Û

qk+1 = Ψ(xk, zk, u) + qk

Q̂k+1 = ∂Ψ
∂x

(xk, zk, u) X̂k + ∂Ψ
∂z

(xk, zk, u) Ẑk + ∂Ψ
∂u

(xk, zk, u) Û + Q̂k
end for

return (xN , qN , X̂N , Q̂N )

We note that the introduced help variables Ẑ0, . . . , ẐN−1 are uniquely defined
if the implicit function is well-posed, which in particular implies that ∂Θ

∂z
is

nonsingular.

The corresponding adjoint derivative propagation rule becomes:
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Algorithm 3.10 Definition (implicit case) of
F̄ : Rnx × Rnu × Rnx×m × Rnq×m → Rnx × Rnq × Rnx×m × Rnu×m

input (x0, u, X̄N , Q̄)

q0 = 0

for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
xk+1 = Φ(xk, zk, u)

qk+1 = Ψ(xk, zk, u) + qk
end for

ŪN = 0

for k = N − 1, . . . , 0 do

0 =
[
∂Φ
∂z

(xk, zk, u)
]⊺
X̄k+1 +

[
∂Θ
∂z

(xk, zk, u)
]⊺
Z̄k +

[
∂Ψ
∂z

(xk, zk, u)
]⊺
Q̄

⊲ Solve for Z̄k
X̄k =

[
∂Φ
∂x

(xk, zk, u)
]⊺
X̄k+1 +

[
∂Θ
∂x

(xk, zk, u)
]⊺
Z̄k +

[
∂Ψ
∂x

(xk, zk, u)
]⊺
Q̄

Ūk =
[
∂Φ
∂u

(xk, zk, u)
]⊺
X̄k+1 +

[
∂Θ
∂u

(xk, zk, u)
]⊺
Z̄k +

[
∂Ψ
∂u

(xk, zk, u)
]⊺
Q̄

+Ūk+1

end for

return (xN , qN , X̄0, Ū0)

As in the explicit case, we see that the implicit one-step integrator retains its
structure under forward mode, but not in reverse mode differentiation.

3.11 Embedded continuous-time integrators

We now proceed with the continuous-time case. In the following, we consider
parametric IVP in ordinary differential equations (ODE),

f : Rnx × Rnu → Rnx × Rnq , (x0, u) 7→ (x1, q1)
{
ẋ(t) = φ(x(t), u)
q̇(t) = ψ(x(t), u)

t ∈ [0, 1],

x(0) = x0, q(0) = 0, x1 = x(1), q1 = q(1),

(3.26)
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or, more generally, in (semi-explicit) differential-algebraic equations (DAE),

f : Rnx × Rnu → Rnx × Rnq , (x0, u) 7→ (x1, q1)






ẋ(t) = φ(x(t), z(t), u)
0 = θ(x(t), z(t), u)

q̇(t) = ψ(x(t), z(t), u)
t ∈ [0, 1],

x(0) = x0, q(0) = 0, x1 = x(1), q1 = q(1),

(3.27)

where x(·) ∈ Rnx is the (differential) state, z(·) ∈ Rnz is the algebraic variable,
u ∈ Rnu is the parameter and q(·) ∈ Rnq is what we shall call the quadrature
state, i.e. a differential state that does not enter in the ODE/DAE right
hand side. A solver for (3.26) or (3.27) will be referred to as an integrator.
The process of calculating derivatives of an integrator will be referred to as
sensitivity analysis.

We shall assume that the functions φ, θ and ψ are sufficiently smooth and that
∂θ
∂z

is invertible, which in particular means the algebraic variable z is implicitly
defined by the algebraic equation 0 = θ(x(t), z(t), u). We also assume that the
integration take place over the unit interval [0, 1]. A time transformation can
be performed if this is not the case.

Numerical solution

The numerical solution to problems of the form (3.26) and (3.27) has been
studied since the advent of the electronic computer. For a comprehensive
overview of methods, we refer to Hairer, Nørsett and Wanner [107,108]. Popular
solution methods, in the context of optimal control, include (explicit) Runge-
Kutta (RK) methods and implicit methods such as backward differentiation
formulas (BDF) and implicit Runge-Kutta (IRK). Popular software tools
include ode45, ode15s, ode15i (and related solvers) in MATLAB, the
integrators in the GNU Scientific Library (GSL) [83], the DASSL code
by Petzold [154] as well as the CVODES and IDAS integrators from the
SUNDIALS suite [113].

The AD approach to sensitivity analysis

In Section 2.6, we used a collocation scheme to eliminate the integrators from
the multiple shooting NLP formulation, and delegated the solution of this
integration problem to the NLP solver. But, as noted in that section, the
collocation equations can also be used to eliminate the state trajectory from
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the NLP optimization variables. That defines a fixed-step implicit Runge-
Kutta integrator, which takes the shape of the implicit discrete-time integrator
in Algorithm 3.8. The function Θ in Algorithm 3.8 will then contain the
collocation equations (2.24) for ODEs or (2.31) for DAEs. The now affine
functions Φ and Ψ in Algorithm 3.8 will contain the continuity equations (2.25)
and the quadratures (2.27), respectively.

The same discretization approach can also be performed with other one-step
integrator schemes resulting in discrete-time problems either of the form of
Algorithm 3.5, for explicit integrator schemes, or of Algorithm 3.8 for implicit
integrator schemes. Sensitivity analysis can then be performed as described in
Section 3.10.

We shall refer to this way of calculating derivatives of an ODE or DAE
integrator as the AD approach to sensitivity analysis. The approach is also
known as internal numerical differentiation (IND) [21,31,49] and the traditional
way to implement it is to use a black box AD tool to differentiate an existing
code for the IVP solution, but more sophisticated approaches also exist [22].
The term IND is in particular often used when derivatives of the underlying
DAE right hand side are approximated using finite differences. A simpler
approach, where finite differences is applied two the whole IVP solver, including
step size selection and Newton algorithm for implicit schemes, is known as
external numerical differentiation (END) [21]. Since the AD approach attempts
to calculate the exact derivative of an approximate solution to the IVP, it can
be thought of as an “integrate-then-differentiate“ approach.

The variational approach to sensitivity analysis

The converse approach, i.e. “differentiate-then-integrate“, is the variational
approach to sensitivity analysis. It starts by differentiating the differential
equations and uses calculus of variations to form a new IVP (in the forward case)
or a two-point boundary value-problem (in the adjoint case), whose solution
gives the derivatives. In the following, we shall informally derive these equations
from the discrete-time case in Section 3.10. For a more formal treatment, we
refer to Maly and Petzold [145] and Cao el al. [57].

The forward sensitivity equations

By defining Φ(x, u) := x+ 1
N
φ(x, u) and Ψ(x, u) := 1

N
ψ(x, u), we can interpret

Algorithm 3.5 as an explicit Euler method for solving (3.26). Similarly, we can
interpret Algorithm 3.5 as an explicit Euler method for solving the following
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augmented IVP with (1 +m) times as many states as the original problem:

f̂ : Rnx × Rnu × Rnx×m × Rnu×m → Rnx × Rnq × Rnx×m × Rnq×m,

(x0, u, X̂0, Û) 7→ (x1, q1, X̂1, Q̂1)






ẋ(t) = φ(x(t), u)

q̇(t) = ψ(x(t), u)
˙̂
X(t) = ∂φ

∂x
(x(t), u) X̂(t) + ∂φ

∂u
(x(t), u) Û

˙̂
Q(t) = ∂ψ

∂x
(x(t), u) X̂(t) + ∂ψ

∂u
(x(t), u) Û

t ∈ [0, 1],

x(0) = x0, q(0) = 0, x1 = x(1), q1 = q(1),

X̂(0) = x̂0, Q̂(0) = 0, X̂1 = X̂(1), Q̂1 = Q̂(1),

(3.28)

Since the approximations will be exact as N tends to infinity, we can use a
solver for (3.28) for calculating the forward sensitivities for (3.26).

The approach naturally extends to DAEs in semi-explicit form, by defining
Φ(x, z, u) := x + 1

N
φ(x, z, u), Θ(x, z, u) := θ(x, z, u) and Ψ(x, z, u) :=

1
N
ψ(x, z, u) in Algorithms 3.8 and 3.9. For a more formal treatment as well

as an overview of methods to efficiently solve (3.28), we refer to Hindmarsh et
al. [113] and references therein.

The adjoint sensitivity equations

Equivalently, using Algorithm 3.7 and with the same definitions of Φ and Ψ, we
obtain the following problem, whose solution gives the reverse mode derivative
propagation rule:

f̄ : Rnx × Rnu × Rnx×m × Rnq×m → Rnx × Rnq × Rnx×m × Rnu×m,
(x0, u, X̄1, Q̄) 7→ (x1, q1, X̄0, Ū0)







ẋ(t) = φ(x(t), u)

q̇(t) = ψ(x(t), u)

− ˙̄X(t) =
[
∂φ

∂x
(x(t), u)

]⊺

X̄(t) +
[
∂ψ

∂x
(x(t), u)

]⊺

Q̄

− ˙̄U(t) =
[
∂φ

∂u
(x(t), u)

]⊺

X̄(t) +
[
∂ψ

∂u
(x(t), u)

]⊺

Q̄

t ∈ [0, 1],

x(0) = x0, q(0) = 0, x1 = x(1), q1 = q(1),

X̄1(1) = X̄1, Ū(1) = 0, X̄0 = X̄(0), Ū0 = Ū(0),

(3.29)
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This is a two-point boundary-value problem with initial conditions on x and
q as well as terminal constraints on X̄ and Ū . It can be solved by a forward
integration storing the trajectory of x, followed by an integration backwards
in time. Again, the approach naturally extends to DAEs in semi-explicit form.
For a more formal treatment and in particular a discussion on how to limit the
memory associated with storing the trajectory of x, we again refer to Hindmarsh
et al. [113] and references therein.

3.12 Conclusion

Efficiently and accurately calculating derivative information is of paramount
importance in numerical optimization and algorithmic differentiation (AD) is
the method of choice for this.

We showed that AD, most commonly implemented for algorithms made up by
scalar-valued operations, extends readily to algorithms where the operations are
matrix-valued. We also showed how to handle constructs relevant for optimal
such as implicitly defined functions and ODE/DAE integrators in the context
of AD.



Chapter 4

Structure exploiting nonlinear

programming

We have seen in the previous chapter how optimal control problems can be
reformulated to either root-finding problems of the form:

g(x) = 0, (RFP)

or nonlinear programs (NLPs) of the form:

minimize
x

f(x)

subject to g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h.
(NLP)

If not stated otherwise, we shall assume f : Rnx → R, g : Rnx → Rng and
h : Rnx → Rnh to be twice continuously differentiable in x and allow the
bounds (x, x, h and h) to take infinite values.

In this chapter, we provide some essential definitions and review the necessary
conditions for optimality of (NLP) in Section 4.1. We also give a brief
introduction into the two most widespread numerical methods for solving it;
sequential quadratic programming in Section 4.2 and interior point methods in
Section 4.3. A more thorough introduction to nonlinear programming can be
found e.g. in the recent textbooks by Nocedal and Wright [151], Biegler [43]
and Bertsekas [37].

We also present the lifted Newton method, a structure-exploiting variant of the
classical Newton’s method for solving (RFP) and (NLP) in Section 4.5. We

47
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end the chapter with a brief overview of existing numerical tools for NLP in
Section 4.6.

4.1 Essentials

We shall use the formulation (NLP) to denote an NLP throughout this text,
which corresponds well to the form expected by numerical tools. We point out
that other formulations, in particular without the lower bounds on h, are more
suitable to discuss important properties such as convexity (see e.g. [52]).

The following is a set of definitions for (NLP):

Definition 4.1 (Feasibility). A point x ∈ Rnx is called a feasible point for
(NLP) if it satisfies:

g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h,

The set of all feasible points is the feasible set:

F := {x ∈ R
nx : x feasible}

Definition 4.2 (Optimality). A point x∗ ∈ Rnx is called globally optimal for
(NLP) if it is feasible and satisfies:

f(x∗) ≤ f(x) ∀x ∈ F

A point x∗ is called locally optimal if there exists an open neighborhood N
around x∗ in which the point is globally optimal:

f(x∗) ≤ f(x) ∀x ∈ F ∩N

If not stated otherwise, the term optimal will be used in the sense locally
optimal.

Definition 4.3 (Lagrangian function, Lagrange multipliers). The Lagrangian
function is defined by:

L(x, λg, λx, λh) := f(x) + λTg g(x) + λTx x+ λTh h(x), (4.1)

where λg, λx and λh are the Lagrange multipliers corresponding to the
constraints g(x) = 0, x ≤ x ≤ x and h ≤ h(x) ≤ h respectively.

Definition 4.4 (Active constraint). A bound constraint will be called inactive
if both the upper and lower bound hold with strict inequality. Otherwise it is
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called active. An active constraint is called weakly active if the corresponding
Lagrange multiplier is zero. We denote by Ax and Ah the index sets
corresponding to active constraints and use xA and hA to denote vectors with
the corresponding elements of x and h.

Definition 4.5 (Regularity). A point is called regular if it is feasible and the
matrix:








∂g

∂x

∂hA

∂x








has full row rank. We say that the linear independence constraint qualification
(LICQ) holds.

The Karush-Kuhn-Tucker conditions

The following theorem, due to Karush, Kuhn and Tucker [119, 127], is
paramount in numerical optimization and states the necessary conditions for
optimality of (NLP):

Theorem 4.1 (The KKT conditions). If x∗ is regular and a locally optimal
point of (NLP), then a solution (λ∗

g, λ
∗
x, λ∗

h) exists to the set of equations:

∇xL(x∗, λg, λx, λh) = 0, (4.2a)

g(x∗) = 0, x ≤ x∗ ≤ x, h ≤ h(x∗) ≤ h, (4.2b)

(λ∗
x)i
≤ 0 if the i-th lower bound of x is active
≥ 0 if the i-th upper bound of x is active
= 0 otherwise

(4.2c)

(λ∗
h)i
≤ 0 if the i-th lower bound of h(x) is active
≥ 0 if the i-th upper bound of h(x) is active
= 0 otherwise

(4.2d)

If there are no weakly active constraints at the solution, we say that strict
complementarity holds and the solution is unique.

Proof. By adapting the proof found in e.g. [151] to problems of the form (NLP).
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We say that x∗ is the primal solution and that (λ∗
g, λ

∗
x, λ∗

h) is the dual solution
to (NLP).

Parametric NLPs

Definition 4.6 (Parametric NLP, parametric sensitivity). An NLP, where a
subset of the variables are equality constrained, i.e., can be written (x, p) ≤
(x, p) ≤ (x, p), is called a parametric NLP, and we shall write it in the form:

minimize
x, p

f(x, p)

subject to g(x, p) = 0, p = p, x ≤ x ≤ x, h ≤ h(x, p) ≤ h,
(4.3)

The Lagrange multiplier λ∗
p corresponding to p = p at the optimal solution is

the parametric sensitivity of (4.3).

Corollary 4.1 (Calculation of parametric sensitivity). If (x∗, λ∗
g, λ

∗
h) belong to

a primal-dual solution to (4.3), then

−λ∗
p = ∇pf +

(
∂g

∂p

)⊺

λ∗
g +

(
∂h

∂p

)⊺

λ∗
h (4.4)

Proof. Follows directly from the KKT conditions and the definition of the
Lagrangian.

4.2 Sequential quadratic programming

In sequential quadratic programming (SQP) methods, the KKT-conditions are
linearized at a current primal (x) and dual (λg, λh) solution guess. This
gives rise to a quadratic program (QP), which is typically required to be
convex. The solution of this QP gives a new iterate or a search direction
for a new iterate. SQP was originally proposed by Wilson [190] but reached
widespread popularity mainly through the work of Han [109, 110] and Powell
[156]. For a comprehensive introduction into SQP, we refer to the standard
textbooks for nonlinear programming. For solving the large and sparse NLPs
arising in optimal control, two major approaches exist to solve the arising QP
subproblems:

General-purpose, sparsity-exploiting QP solvers This includes solvers
such as CPLEX [118] or the open-source OOQP [87]. These solvers are
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usually interior-point methods (cf. [151]) that rely on direct methods for
sparse linear systems (cf. [68]). This has proven successful in the context
of direct collocation methods (Section 2.6).

Special-purpose, structure-exploiting QP solvers These solvers can be
either interior-point or active-set methods (cf. [151]). This has proven
successful in the context of direct multiple shooting methods (Section 2.5).
A comprehensive treatment of this topic can be be found in the
dissertations of Leineweber [131] and Kirches [122]. QP solvers written to
exploit the block structure arising from multiple shooting discretization
include qpOASES [75] (in combination with condensing, cf. [131]),
FORCES [72] and qpDUNES [81].

Constrained Gauss-Newton method

A common class of NLPs is constrained least squares problems, i.e., problems
with a least squares objective function:

minimize
x

1
2 ‖F (x)‖2

2

subject to g(x) = 0, x ≤ x ≤ x, h ≤ h(x) ≤ h.
(4.5)

For many such problems, the Hessian of the Lagrangian function (5.7) is well
approximated by the Gauss-Newton (GN) Hessian, i.e.

∇2L(x, λg, λh, λx) ≈
(
∂F

∂x

)⊺ (
∂F

∂x

)

. (4.6)

If this approximation is used in a SQP method, the quadratic nature (4.6)
will ensure that the resulting QP is convex, as required by most QP-solvers.
Furthermore, since the right hand side of (4.6) does not depend on the Lagrange
multipliers, they can be left out of the SQP method (although they can still be
useful to assess optimality and as a stopping criterion). This gives the basis of
the constrained Gauss-Newton method [151].

Sequential convex programming

A generalization of SQP is to allow the subproblem to be a more generic convex
program such as a quadratically constrained quadratic program (QCQP), second-
order cone program (SOC) or a semidefinite program (SDP) (see [52]). This
results in a sequential convex programming (SCP) method.
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As an example, in the orbital transfer example from Section 2.1, an SQP
method would need to linearize the constraint on the control:

u1(t)2 + u2(t)2 ≤ T 2
max, t ∈ [0, T ], (2.2)

which may result in a degenerate QP if e.g. u1(t) = u2(t) = 0 in some region.
If (2.2) is left untouched and only the dynamic equation (2.1) linearized, the
subproblem becomes a (convex) QCQP.

For an overview of SCP method, especially in the context of optimal control,
we refer to the dissertation of Tran-Dinh [169] and references therein.

4.3 Interior point methods for NLP

In interior point (IP) methods for NLP, which have evolved out of IP methods
for linear (LP) and quadratic programming (QP), the inequality constrained
(NLP) is replaced with a sequence of equality constrained problems. In their
implementation, interior point methods typically eliminate constraints of the
form h ≤ h(x) ≤ h by introducing slack variables and additional equality
constraints. After locating an interior point, i.e., a point where x < x < x
holds with strict inequality, which may require reformulating some decision
variables as parameters, they formulate a barrier problem of the form:

minimize
x

f(x)− µ
nx∑

i=1

(log(xi − xi) + log(xi − xi))

subject to g(x) = 0.

(4.7)

Sequences of barrier problems for increasing values of the barrier parameter µ
are then solved with Newton-type methods. Using sparsity exploiting linear
algebra (similar to the IP methods for LP or QP), the IP method for NLP has
proven very successful in the context of direct collocation methods (Section 2.6),
much thanks to the open-source implementation IPOPT [179]. For more
details on the implementation of IP methods for nonlinear programming we
refer to recent NLP textbooks as well as Wächter and Biegler’s paper on the
implementation of IPOPT [179].

4.4 Globalization techniques

Neither SQP nor IP methods are guaranteed to converge to a local minimum
from an arbitrary starting point. To get global convergence, they need to be



THE LIFTED NEWTON METHOD 53

combined with a globalization strategy such as line-search or trust-region. For
details on this we refer to [64,151].

More recently, Fletcher and Leyffer [78], proposed filter methods, as a less
conservative version of the original trust-region method. Wächter and Biegler
[180, 181] then adopted this approach to a filter line-search method which did
not suffer from the problem of selecting a penalty parameter in the merit
function.

4.5 The lifted Newton method

While general-purpose sparsity-exploiting linear algebra has proven very
successful for collocation methods, both in SQP and IP settings, state-of-the-
art implementations of direct multiple shooting have relied on customized,
structure-exploiting linear algebra such as the QP condensing technique by
Bock and Plitt [51,131]. Using this technique, the size of the QP can be reduced
to the size of a QP arising from direct single shooting (Section 2.4). We shall
return to this approach in Chapter 5, where we propose a novel implementation
of QP condensing.

Albersmeyer and Diehl [23] later generalized what is known as Schlöder’s trick
[164] in condensing to a general-purpose, structure-exploiting technique called
the lifted Newton method.

In its most basic form, the lifted Newton method can be viewed as a way
to efficiently lift a root-finding problem formulation that contains a series
of intermediate expressions, to a less nonlinear problem of higher dimension.
Under certain conditions, this is known to have advantages both in terms of
local and global convergence as explored in the original paper [23] and references
therein. An equivalent viewpoint, which is closer to the QP condensing
approach and which we shall employ here, is to view it as a structure-exploiting
solution method for root-finding problems with the structure:

g(x) =










φ1(x0) − x1

φ2(x0, x1) − x2

...
φN−1(x0, x1, . . . , xN−2) − xN−1

φN (x0, x1, . . . , xN−1)










= 0, (4.8)

where x is partitioned into xi ∈ Rni , i = 0, . . . , N − 1.

Note that this structure includes the root-finding problem arising in indirect
multiple shooting (2.13). Furthermore, this structure is common in the DAE
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simulation community and arises when so-called tearing strategies are applied
to break up large and sparse nonlinear systems of equations into a sequence of
smaller linear or nonlinear systems of equations. For more details on this and
their implementation in Modelica-based tools, we refer to Cellier and Kofman
[59] or Fritzson [82].

In the following section, we shall derive the method in the context of sequential
quadratic programming. We refer to the original paper [23] for a description
of the method for solving root-finding problems of the form (4.8).

Lifted sequential quadratic programming

We consider structured NLPs of the form:

minimize
x

f(x)

subject to φ1(x0)− x1 = 0,
φ2(x0, x1)− x2 = 0,

...
φN (x0, . . . , xN−1)− xN = 0,

g(x) = 0,
x ≤ x ≤ x,
h ≤ h(x) ≤ h,

(4.9)

where x has been decomposed into (x0, . . . , xN ). This structure arises in direct
multiple shooting (2.18) and, with φi(·) defined implicitly, in direct collocation
(2.28).

To simplify the presentation, we shall assume that the objective is linear and
that g(x) and h(x) are absent. We also introduce a dummy variable defined by
u := x0:

minimize
u, x

c⊺ x

subject to u− x0 = 0,
φ1(x0)− x1 = 0,
φ2(x0, x1)− x2 = 0,

...
φN (x0, . . . , xN−1)− xN = 0,

x ≤ x ≤ x,

(4.10)
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It is always possible to reformulate (4.9) into (4.10) by introducing slack
variables and allowing the lower bounds x and upper bounds x to be equal
for a subset of the variables x.

We define the Lagrangian of (4.10) to be:

L(u, x, λx, ν) = c⊺ x+λ⊺x x+ν0 (u−x0)+
N∑

j=1

ν⊺j (φj(x0, . . . , xj−1)− xj), (4.11)

where we have introduced the multipliers λx corresponding to the bound
constraint x ≤ x ≤ x and ν = (ν0, . . . , νN ) corresponding to the equality
constraints u− x0 = 0 and φj(x0, . . . , xj−1)− xj = 0 for j = 1, . . . , N .

In each iteration of an (exact Hessian, full step) SQP method to solve (4.10),
with (u(k), x(k), λ

(k)
x , ν(k)) being the current primal-dual solution guess, the

solution guess for the next iteration (u(k+1), x(k+1), λ
(k+1)
x , ν(k+1)) is given from

solving the QP:

minimize
∆u,∆x

1
2

∆x⊺H ∆x+ h⊺ ∆x

subject to G∆u− L∆x = −g,
x− x(k) ≤ ∆x ≤ x− x(k),

(4.12)

where we have defined ∆u := u(k+1) − u(k), ∆x := x(k+1) − x(k), H :=
∇2
xL(u(k), x(k), ν(k)), g := (φ1(x(k))− x(k)

1 , . . . , φN (x(k))− x(k)
N ) as well as:

L :=










I

−∂φ1

∂x0
I

...
. . .

. . .

−∂φN

∂x0
. . . − ∂φN

∂xN−1
I










, G :=









I

0
...

0









. (4.13)

Since L is invertible, we can write ∆x in terms of ∆u:

∆x = L−1 (G∆u+ g) := A∆u+ a. (4.14)

This allows us to eliminate ∆x from (4.12) giving a QP in only ∆u:

minimize
∆u

1
2

∆u⊺B∆u+ b⊺ ∆u

subject to x− x(k) − a ≤ A∆u ≤ x− x(k) − a,

(4.15)
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where

A = L−1 G, B = G⊺ L−⊺H A,
a = L−1 g, b = G⊺ L−⊺ (H a+ c),

(4.16)

We can calculate a in (4.16) using a forward substitution for the lower triangular
matrix L defining Algorithm 4.1:

Algorithm 4.1 Calculation of a in (4.16)
a0 ← g0

for i = 1, . . . , N do

ai ← gi +
k−1∑

j=0

(
∂φi
∂xj

(x(k))
)

aj

end for

Algorithm 4.1 can be interpreted as a forward directional derivative:

a =
(
∂z

∂d
(u(k), g)

)

g, (4.17)

where the function z(u, d) is defined by Algorithm 4.2:

Algorithm 4.2 Modified function z(u, d)

z0 ← u− d0

z1 ← φ1(z0)− d1

...
zN ← φN (z0, . . . , zN−1)− dN

With a in (4.16) given, H a in (4.16) can be calculated efficiently as a forward-
over-adjoint directional derivative:

w := H a = (∇2
xL(u, x, λx, ν)) a = (∇2

xr(x)) a, (4.18)

where the scalar function r(x) consists of the non-vanishing terms in the
Lagrangian:

r(x) =
N∑

j=1

ν⊺j φj(x0, . . . , xj−1). (4.19)

This allows us to calculate b in in (4.16) using a backward substitution for L⊺

as shown in Algorithm 4.3:
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Algorithm 4.3 Calculation of b in (4.16)

b̃N ← wN + cN
for i = N, . . . , 0 do

b̃i ← wi + ci +
i−1∑

j=0

(
∂φj
∂xi

(x(k))
)⊺

b̃j

end for

b← b̃0

We can identify this algorithm as the calculation of an adjoint directional
derivative of z(u, d), giving the following expression for b:

b =
(
∂z

∂u
(u(k), g)

)⊺

(w + c). (4.20)

The same approach used to calculate a and b above can also be used to calculate
the product of A and B with an arbitrary matrix V , i.e. in turn calculate:

A′ := AV =
(
∂z

∂d
(u(k), g)

)

(GV ), (4.21a)

W ′ := H A′ = (∇2
xr(x))A′, (4.21b)

B′ := B V =
(
∂z

∂u
(u(k), g)

)⊺

W ′. (4.21c)

This can in particular be used to retrieve the complete matrices A and B by
setting V := I.

With B, b, A and a now given, the reduced space QP (4.15) can be formulated
and solved using either a dense QP solver or a matrix-free QP solver, in the
latter case relying on (4.21). This gives the step in the reduced variables,
∆u(k+1) as well as the new multipliers of the inequality constraints λ(k+1)

x .

We can retrieve the step in the eliminated variables from (4.14):

∆x = A∆u+ a =
(
∂z

∂d
(u(k), g)

)

(G∆u) + a, (4.22)

either by performing the matrix-vector multiplication or by calculating the
directional derivative.
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The new multipliers for the assignment conditions, ν(k+1), can be re-
trieved from noting that at an optimal solution of (4.12), we have 0 =
∇xL(u(k+1), x(k+1), λ

(k+1)
x , ν(k+1)) from the KKT conditions. From (4.11):

∇xL(u(k+1), x(k+1), λ(k+1)
x , ν(k+1)) = c+ λ(k+1)

x − L⊺ ν(k+1) = 0

⇔ ν(k+1) = L−⊺ (c+ λ(k+1)
x ) =

(
∂z

∂d
(u(k), g)

)⊺

(c+ λ(k+1)
x ). (4.23)

For an alternative derivation, we refer to [23].

4.6 Numerical tools

A large number of codes for NLP has been written over the years. A
comprehensive survey of SQP-type methods before the year 2000 can be
found in Conn, Gould and Toint [64]. Early SQP codes include the original
LANCELOT code [65], SNOPT [91, 92] and NPSOL [93]. Early, but still
relevant, IP codes are LOQO [173] and KNITRO (both IP and SQP) [56].
filterSQP implements the original filter trust region method [78]. The open-
source IPOPT [179], originally in Fortran by Wächter and later reimplemented
in C++ by Laird, implements Wächter and Biegler’s filter line-search method.
LANCELOT-B, which is free for academic use, is a reimplementation of
LANCELOT, and implements a trust region SQP method with exploitation
of partial separability [97]. WORHP [55], also free for academic use, is a
large-scale line-search SQP code. The open-source ALGENCAN solver [29] is
a matrix-free augmented Lagrangian type method. An implementation of the
lifted Newton method can be found in LiftOpt [23].

4.7 Conclusion

Direct methods for optimal control require the solution of structured nonlinear
programs (NLPs). In this chapter, we reviewed the two major approaches for
solving NLPs, namely sequential quadratic programming (SQP) and interior
point (IP) methods. We also presented the lifted Newton method in the context
of SQP.

The lifted Newton method is able to efficiently address large and block sparse
NLPs arrising from direct multiple shooting discretization. These NLPs are
often not sparse enough to be handled efficiently by general-purpose sparsity-
exploiting NLP solvers. We presented a novel way of deriving the method.



Chapter 5

A Condensing Algorithm for

Nonlinear MPC with a

Quadratic Runtime in Horizon

Length

The following chapter presents a novel algorithm for QP condensing. The text
was prepared together with Janick Frasch, Milan Vukov and Moritz Diehl and
has been submitted to the Automatica journal. It is presented in the following
in mostly unaltered form.

A large number of practical algorithms for optimal control problems (OCP)
relies on a so-called condensing procedure to exploit the given structure in the
quadratic programming (QP) subproblems. While the established structure-
exploiting condensing algorithm is of cubic complexity in the horizon length,
in this technical note we propose a novel algorithm that is only of quadratic
complexity in horizon length. We present numerical results confirming that
the proposed algorithm is faster in practice and discuss implications for related
QP solution algorithms that rely on the elimination of the state sequence. In
particular, we show that it is possible to decrease the runtime complexity from
quadratic to linear in the length of time horizon for a class of fast-gradient
based algorithms widely used in practice.

59



60 A CONDENSING ALGORITHM FOR NONLINEAR MPC WITH A QUADRATIC RUNTIME IN

HORIZON LENGTH

5.1 Introduction

In this chapter we consider the solution of the following linear time-varying
optimal control problem (LTV-OCP) with quadratic objective, in nx states
and nu controls on a time horizon of length N :

minimize
u0,...,uN−1
x1,...,xN

N−1∑

k=0

(
1
2
u⊺k Rk uk + x⊺k Sk uk + u⊺k rk

)

+
N∑

k=1

(
1
2
x⊺k Qk xk + x⊺k qk

)

(5.1a)

subject to xk+1 = Ak xk +Bk uk + ck, k = 0, . . . , N − 1, (5.1b)

uk ≤ uk ≤ uk, k = 0, . . . , N − 1, (5.1c)

xk ≤ xk ≤ xk, k = 1, . . . , N. (5.1d)

For the ease of presentation, we assume a fixed initial value x0 and only bound
constraints, while the algorithms presented in this chapter can be extended
in a straightforward way to more general LTV-OCPs. Such LTV-OCP with
quadratic objective are a structured form of quadratic programs (QP) and
originate from a wide class of problem formulations in optimal control, notably
in solution algorithms for linear-quadratic model predictive control (MPC)
problems [159], linear moving horizon estimation (MHE) problems [158], as well
as their nonlinear counterparts and general nonlinear optimal control problems
(OCPs) and dynamic parameter estimation problems solved by sequential
quadratic programming (SQP) based algorithms [41,49,71,126].

Interior-point (IP) algorithms can exploit the block-banded structure of LTV
QPs well internally [159], but have well-known difficulties in exploiting the
similarity between subsequently solved QPs in an SQP or online solution
context. Active-set (AS) methods on the other hand can exploit the similarity
between subsequently solved QPs very well, but typically do not benefit from
the known problem structure to the same extent as IP methods. One way
to exploit structure in AS methods is to make use of a so-called condensing
preprocessing step [49, 51] to eliminate the over-parameterized state sequence
from the QP optimization variables. This can lead to drastically reduced
problem sizes if the number of states is relatively large compared to the
number of controls, which is the case for large classes of control and estimation
problems.
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Recent comparisons indicate that efficient condensing-based AS methods
outperform efficient IP methods on time horizons of short and medium length,
but are being outperformed on longer time horizons [178]. This is largely due to
the expensive condensing step, which needs to be performed in every iteration
for LTV systems originating from the linearization of nonlinear MPC problems.
Up to now, the condensing step was believed to be of cubic complexity in the
horizon length of the optimization problem [44,61,80,123,131,132], as described
in Section 5.2.

The contribution of this chapter is a novel algorithm that is equivalent to
the established condensing algorithm but with quadratic rather than cubic
complexity in the horizon length.

5.2 QP condensing

The constraints (5.1b) can be written in matrix form:

Ax = B u+ c⇔








I
−A1 I

. . .
. . .

−AN−1 I















x1

x2

...
xN








=








B0

B1

. . .
BN−1















u1

u2

...
uN−1








+








A0 x0 + c0

c1

...
cN−1







, (5.2)

giving the following equivalent form of (5.1):

minimize
x,u

1
2
u⊺Ru+ x⊺S u+ u⊺r +

1
2
x⊺Qx+ x⊺q

subject to Ax = B u+ c

u ≤ u ≤ u (5.3)

x ≤ x ≤ x,

where, in addition to the quantities in (5.2), we define the vectors r :=
(r⊺0 , . . . , r

⊺

N−1)⊺, q := (q⊺1 , . . . , q
⊺

N )⊺, x := (x⊺1 , . . . , x
⊺

N )⊺, x := (x⊺1 , . . . , x
⊺

N )⊺

as well as the matrices R := diag(R0, . . . , RN−1), S := diag(S0, . . . , SN−1) and
Q := diag(Q0, . . . , QN ).
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Rather than solving the full space QP (5.1) directly, we seek to solve a so-called
condensed QP:

minimize
u

1
2
u⊺H u+ u⊺ h

subject to u ≤ u ≤ u (5.4)

x− g ≤ Gu ≤ x− g,

which is equivalent, but with nuN instead of (nu+nx)N optimization variables.

Since A is nonsingular, we can use (5.2) to explicitly eliminate x from (5.3),
giving the following expressions for g, G, h and H in (5.4):

g := A−1 c, (5.5a)

G := A−1 B, (5.5b)

h := r +G⊺ (q +Qg) + S⊺ g, (5.5c)

H := R+G⊺QG+ S⊺G+G⊺ S, (5.5d)

where g := (g⊺1 , . . . , g
⊺

N )⊺, h := (h⊺0 , . . . , h
⊺

N−1)⊺ and

G :=






G1,0

...
. . .

GN,0 · · · GN,N−1




 ,

H :=






H0,0 · · · H0,N−1

...
. . .

...
HN−1,0 · · · HN−1,N−1




 .

(5.6)

For future reference, we define the Lagrangian of (5.1),

L(u, x, µ, λ, ν) :=
N−1∑

k=0

(
1
2
u⊺k Rk uk + x⊺k Sk uk + u⊺k rk

)

+
N∑

k=1

(
1
2
x⊺k Qk xk + x⊺k qk

)

+
N−1∑

k=0

µ⊺

kuk +
N∑

k=1

λ⊺kxk

+
N−1∑

k=0

ν⊺k+1 (Ak xk +Bk uk + ck − xk+1), (5.7)

where we have introduced the multipliers ν, µ, and λ for the constraints (5.1b),
(5.1c) and (5.1d) respectively.
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5.3 The classical condensing algorithm

The classical algorithm for a structure-exploiting computation of (5.5) can be
derived as follows, cf. [44, 61,80,123,131,132].

Since A in (5.2) lower triangular, g can be calculated from (5.5a) using a
blockwise forward substitution:

Algorithm 5.1 Calculating g from (5.5a)
g0 ← x0

for k = 0, . . . , N − 1 do

gk+1 ← Ak gk + ck
end for

Analogously, G from (5.5b) is computed using blockwise forward substitutions
exploiting the sparsity structure of the right-hand-side B:

Algorithm 5.2 Calculating G from (5.5b)

for i = 0, . . . , N − 1 do

Gi+1,i ← Bi
for k = i+ 1, . . . , N − 1 do

Gk+1,i ← AkGk,i
end for

end for

Subsequently, h is obtained by performing the matrix-vector multiplications
given in (5.5c):

Algorithm 5.3 Calculating h from (5.5c), O(N2) complexity

for i = 0, . . . , N − 1 do

hi ← ri + S⊺

i gi+1

for k = i+ 1, . . . , N do

hi ← hi +G⊺

k,i (qk +Qk gk)
end for

end for

Analogously, H is calculated by carrying out the blockwise matrix operations in
(5.5d), exploiting the special structure of R, Q, S and G. Due to symmetry of
H, only the upper triangular part needs to be calculated. To limit the floating
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point operations, we precalculate W := QG, a step that can be avoided if e.g.
Q is diagonal.

Algorithm 5.4 Calculating H from (5.5d), O(N3) complexity

for i = 0, . . . , N − 1 do

for k = 1, . . . , N do

Wi,k ← QkGk,j
end for

for j = 0, . . . , i− 1 do

Hi,j ← S⊺

i Gi+1,j

for k = i+ 1, . . . , N do

Hi,j ← Hi,j +G⊺

k,iWk,j

end for

end for

Hi,i ← Ri
for k = i+ 1, . . . , N do

Hi,i ← Hi,i +G⊺

k,iWk,i

end for

end for

The Algorithms 5.1, 5.2, 5.3 and 5.4 together allow to formulate the condensed
QP (5.4), which can be solved using a dense QP solver yielding the primal
solution u and multipliers for the inequality constraints λ.

To recover x and ν, Constraints (5.1b) can be used in combination with∇xk
L =

0, k = N, . . . , 1, which are necessary conditions of optimality:

Algorithm 5.5 Recovering x and ν in (5.1)

for k = 0, . . . , N − 1 do

xk+1 ← Ak xk +Bk uk + ck
end for

νN ← λN +QN xN
for k = N − 1, . . . , 1 do

νk ← λk +Qk xk +A⊺

k νk+1 + Sk uk + qk
end for
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Table 5.1: Complexity analysis, O(N3) condensing

Step Cost [FLOPs], leading term(s)

G (Algorithm 5.2) 1
2 N

2 n2
x nu

H (Algorithm 5.4) 1
6 N

3 nx n
2
u +N2 n2

x nu

g (Algorithm 5.1) N n2
x

h (Algorithm 5.3) 1
2 N

2 n2
x nu + 1

2 N
2 nx n

2
u

u, λ (Solving QP) 1
3 N

3 n3
u

s,ν (Algorithm 5.5) 3N n2
x + 2N nx nu

Complexity analysis

The computational complexity of the established condensing algorithm can
be assessed by counting the number of floating point operations (FLOPs)4 in
the corresponding algorithms. A summary of the complexity can be found in
Table 5.1. The entries of the table are consistent with the complexity observed,
e.g., by Kirches et al. [122]. When special structures occur, like Q diagonal or
S zero, the coefficients of the table may become lower.

5.4 A condensing algorithm with N
2 complexity

An alternative algorithm for h can be derived by exploiting the special structure
of G. From (5.5):

h = r +G⊺ (q +Qg) + S⊺ g = r +B⊺ A−⊺ (q +Qg)
︸ ︷︷ ︸

:=w

+S⊺ g, (5.8)

which can be calculated cheaply using matrix-vector multiplications as well as
a blockwise backward substitution for the block upper triangular matrix A⊺,
we get the following algorithm:

4Multiply-accumulate (MAC) is assumed to be a single cycle operation. This holds for
modern processors.



66 A CONDENSING ALGORITHM FOR NONLINEAR MPC WITH A QUADRATIC RUNTIME IN

HORIZON LENGTH

Algorithm 5.6 Calculating h from (5.5c), O(N) complexity

wN ← qN +QN gN
for k = N − 1, . . . , 1 do

hk ← rk + S⊺

k gk +B⊺

k wk+1

wk ← qk +Qk gk +A⊺

k wk+1

end for

h0 ← r0 + S⊺

0 x0 +B⊺

0 w1

From (5.5d), we also get an alternative way of calculating H:

H = R+G⊺QG+ S⊺G+G⊺ S

= R+B⊺ A−⊺ (QG)
︸ ︷︷ ︸

:=W

+S⊺G+ (S⊺G)⊺. (5.9)

Using blockwise backward substitution to calculate W and exploiting the
sparsity structure of the matrices, we get an algorithm to calculate the lower
triangular part of H:

Algorithm 5.7 Calculating H from (5.5d), O(N2) complexity

for i = 0, . . . , N − 1 do

WN,i ← QN GN,i
for k = N − 1, . . . , i+ 1 do

Hk,i ← S⊺

k Gk,i +B⊺

k Wk+1,i

Wk,i ← QkGk,i +A⊺

kWk+1,i

end for

Hi,i ← Ri +B⊺

i Wi+1,i

end for

The equivalence between Algorithms 5.3 and 5.6 and the equivalence between
Algorithms 5.4 and 5.7 are given from the manner in which the algorithms were
derived.

Complexity analysis

For the proposed algorithm, the complexity in terms of floating point
operations, again to the highest order term, is shown in Table 5.2. We see
that the complexity decreases from cubic to quadratic in the calculation of H
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Table 5.2: Complexity analysis, O(N2) condensing

Step Cost [FLOPs], leading terms

H (Algorithm 5.7) N2 n2
x nu +N2 nx n

2
u

h (Algorithm 5.6) 2N n2
x + 2N nx nu

and from quadratic to linear in the calculation of h. The complexities in nx
and nu are unchanged.

5.5 Implications for gradient-based optimization

From (5.5b) and (5.5d), we can also use the above technique to derive an
algorithm for multiplying H by an arbitrary vector v = (v⊺0 , . . . , v

⊺

N−1)⊺.
Solving

g′ := Gv = A−1 B v,

h′ := H v = Rv +B⊺ A−⊺ (Qg′ + S v)
︸ ︷︷ ︸

:=w

+S⊺ g′,

by a blockwise backward substitution, we get:

Algorithm 5.8 Multiplying G from (5.5b) and H from (5.5d) with a vector v

g′
0 ← 0

for k = 0, . . . , N − 1 do

g′
k+1 ← Ak g

′
k +Bk vk ⊲ g′ = Gv

end for

wN ← QN g
′
N

for k = N − 1, . . . , 1 do

h′
k ← Rk vk + S⊺

k g
′
k +B⊺

k wk+1 ⊲ h′ = Hv
wk ← Sk vk +Qk g

′
k +A⊺

k wk+1

end for

h′
0 ← R0 v0 +B⊺

0 w1

Algorithm 5.8 can be used in QP solvers that require reduced Hessians-times-
vector products to be calculated, particularly in the tailored adaptation of
Nesterov’s fast gradient method presented by Richter et al. [160]. Using
Algorithm 5.8, the central Hessian-vector product now can be performed at the



68 A CONDENSING ALGORITHM FOR NONLINEAR MPC WITH A QUADRATIC RUNTIME IN

HORIZON LENGTH

cost of N (3n2
x+4nx nu+n2

u)−2nx nu−n2
x FLOPs instead of O(N2 n2

u) FLOPs
as stated in [160], since the main computational cost is the Hessian-vector
product. For problems with long control horizons this may be a significant
improvement. All other features of the algorithm remain unchanged. It should
be noted that the result of computing products of a reduced Hessian times a
vector at a complexity of O(N) FLOPs has been used implicitly before, see,
e.g., Kögel and Findeisen [124].

5.6 Numerical results

To assess the proposed condensing algorithm, we consider the benchmark from
nonlinear MPC presented in [191]. A chain of masses connected by springs with
one end fixed are steered to an equilibrium position with a wall constituting
a hard constraint on the state trajectory. With 9 masses, we obtain a system
with nx = 57 states and nu = 3 controls. We present the execution time of
Algorithms 5.1, 5.2, 5.5, 5.6 and 5.7 for control horizons up to 100 in Figure 5.1.
The timings are compared against the standard O(N3) condensing algorithm,
i.e. Algorithm 5.1, 5.2, 5.3, 5.4 and 5.5. We have also included the runtime ratio
between the old and new algorithms. Both algorithms have been implemented
in ANSI-C as part of the ACADO Code Generation tool [117]. The results,
which have been produced on a 3GHz Intel Q9650 based desktop computer
running Linux, confirm significant savings of 60 % or more (i.e. a speedup of
2.5 or greater) for all considered horizon lengths.

5.7 Conclusions and outlook

For the benchmark considered, the new condensing algorithm proposed in
this chapter outperformed the classical one for all considered control horizons
with a factor of at least 2.5. This suggests that the proposed condensing
algorithm is not only superior for long control horizons, but for short to medium
ones as well. We see that the curve for the speed-up factor in Figure 5.1
becomes asymptotically linear for growing horizons, confirming the one order
of magnitude improvement.

When regarding the complete algorithm to solve the full space QP, there is
one remaining step that is of cubic complexity: the solution of the condensed
QP. This cost arises from the Cholesky factorization of the Hessian before
the first active set change, while all active set changes have a cost of O(N2 n2

u).
Though this cost is independent of the state dimension nx and in most practical
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Figure 5.1: Execution times vs. horizon length for benchmark [191]

instances still lower than the new condensing algorithm of quadratic complexity,
it would be desirable to find an active set algorithm for the condensed QP with
quadratic complexity, which is an interesting topic for future research.





Chapter 6

CasADi – A framework for

algorithmic differentiation

and numerical optimization

In this chapter, the open-source software package CasADi is presented. We will
give a general overview of the tool and provide details on the implementation
of CasADi, including algorithmic novelties that we believe are of interest to
the AD community. After stating the scope of the project in Section 6.1, we
introduce the syntax and usage of the tool in Section 6.2. For a more in-
depth discussion, we refer to CasADi’s user guide [28]. In Section 6.3, we
discuss the software architecture of CasADi’s symbolic core, which includes
how expressions are represented and evaluated numerically or symbolically in
virtual machines (VM). We then discuss the AD approach in Section 6.4, which
includes both the operator overloading (OO) and source code transformation
(SCT) approach (cf. Section 3.5) and a graph coloring approach for calculation
of complete Jacobians and Hessians. In Section 6.5, we discuss a novel
approach to calculate the sparsity structure by using graph coloring for large,
but structured Jacobians. In Section 6.6, we discuss how the numerical
evaluation or sparsity pattern calculation can be accelerated through the use
of code generation. In Section 6.7, we assess the performance of the tool by
comparing different ways of evaluating symbolic expression and compare the
result the virtual machine of AMPL, representing the state-of-the-art for high-
level optimization modeling. We end with an outlook on future developments
in Section 6.8.

71
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6.1 Scope of the project

The aim of CasADi is to make state-of-the-art methods for optimal control,
nonlinear programming and algorithmic differentiation, as presented in the
previous chapters, more accessible to the users and developers of such methods.
The tool has been implemented jointly with fellow PhD student Joris Gillis and
in close contact with users from industry and other research groups.

The project addresses the solution of optimal control problems using a different
approach than the existing packages presented in Chapter 1. Rather than
providing the end user with a ”black box” OCP solver, i.e. a convenient way
of entering an OCP and have it solved automatically, the focus is to offer a
generic set of building blocks for OCP solution. This allows advanced users
to easily implement a wide range of methods without compromising efficiency.
While the tool has found uses that were not originally intended, the main target
groups of the tool are:

Advanced users of optimal control, who wish to tailor an OCP solver to a
problem with special structure or a nonstandard problem formulation

Method researchers who wish to be able to rapidly prototype novel
algorithms for nonlinear programming or optimal control

Software developers of general purpose or specific purpose optimal control
problem solvers that need base functionalities appearing in any derivative-
based optimal control code

CasADi is written in self-contained C++, relying on nothing but the C++
Standard Library. It can be used either from C++ directly, or via full-
featured front-ends to Python and Octave, generated automatically using the
Simplified Wrapper and Interface Generator (SWIG) [32] framework. CasADi
is distributed open-source under the permissive GNU Lesser General Public
License (LGPL) via its website [18].

6.2 Syntax and usage

CasADi is designed to have the look-and-feel of a computer algebra system
(CAS), with rudimentary support for manipulating expressions in symbolic
form. In contrast to conventional CAS-tools however, it uses an expression
graph representation with support for shared subexpressions as discussed in
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Section 3.5. To illustrate this, consider the following code segment for CasADi’s
Octave front-end:

x = ssym(’x’);

for i =1:100

x = x*sin(x);

end

The meaning is the same as the corresponding code for MATLAB’s Symbolic
Math Toolbox in Section 3.5, but instead of 2100 nodes, this code will result in
200 nodes, corresponding to 100 multiplications and 100 sine operations.

Expression graphs with scalar-valued operations

The symbolic framework allows the user to construct symbolic expressions using
two different graph representations. In the first, scalar graph representation,
the atomic operations of the expression graphs are scalar-valued expressions,
similar to the representation being used in most AD tools. They are exposed to
the user via a MATLAB inspired everything-is-a-matrix data type, i.e. vectors
are treated as n-by-1 matrices and scalars as 1-by-1 matrices. All matrices are
sparse and the elements consisting of scalar symbolic expressions are stored
in a general sparse format, namely compressed row storage (CRS)5 [25]. To
illustrate the usage, the following code calculates an expression for the gradient
of the determinant function, f(x) = det(x), x ∈ R3×3, using CasADi’s Python
front-end:

Listing 6.1: Gradient of the determinant, scalar atomic operations

from casadi import *

x = ssym("x" ,3,3)

f = det(x)

print gradient (f,x)

which outputs (formatted for clarity):




x4 x8 − x7 x5 x5 x6 + x8 (−x3) x4 (−x6) + x7 x3

−(x1 x8 − x7 x2) x2 (−x6) + x8 x0 x1 x6 + x7 (−x0)
x1 x5 − x4 x2 x2 x3 + x5 (−x0) x1 (−x3) + x4 x0)



 .

In the code above, x = ssym("x",3,3) declares a 3-by-3 matrix with scalar
symbolic primitives, x0, . . . , x8 and f = det(x) forms a symbolic expression for

5Future versions of CasADi may switch to the related, but more conventional compressed

column storage (CCS) [25].
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the determinant using minor expansion. Finally, the function gradient(f,x)

calculates the gradient of the scalar (i.e. 1-by-1) expression f with respect
to entries of the matrix x and returns the result as a matrix with the same
dimension as x. Internally, the reverse mode of AD using SCT, cf. Section 3.5,
is used for the calculation.

Expression graphs with matrix-valued operations

In the second, matrix graph representation, the atomic operations of the
expression graph are multiple-input, multiple-output where all inputs and
outputs are sparse matrix-valued. The syntax is designed to mirror the scalar
graph representation as much as possible. For the example above, we get:

Listing 6.2: Gradient of the determinant, matrix atomic operations

from casadi import *

x = msym("x" ,3,3)

f = det(x)

print gradient (f,x)

where ssym has been replaced by msym, and the output is now instead (again
formatted for clarity):

det(x)x−⊺

as can be expected from the derivative results for the determinant (cf. [89]).

The rationale behind having two different expression graph formulations in
parallel is to allow the low level operations such as the evaluation of a DAE
right hand side in a small-to-medium size problem to be evaluated with minimal
overhead and maximal symbolic simplifications, but then use the more general
graph to represent high level operations for algorithms that are naturally
vector- or matrix-valued. The matrix graph representation also acts as a
”glue” allowing high level operations such as implicit functions (Section 3.9)
and ODE/DAE integrators (Chapter 7) into the expression graphs.

Both expression graphs can be used to formulate function objects, also known as
functors [24], corresponding to multiple-input, multiple-output functions with
inputs and outputs being sparse matrices. Calls to these functors can then be
embedded into the matrix expression graph above, providing an intuitive way
for the user to do checkpointing, cf. [104, Chapter 12].

Function objects, which can be embedded into symbolic expressions, need
not be defined by an expression graph. They can also be an external C,
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C++ or Python function or an ODE/DAE integrator, or a solver of linear,
quadratic, semidefinite or nonlinear programs. Note that embedding such
generic functions may result in expressions that are only piecewise differentiable
or non-differentiable.

External solver interfaces

For the development of optimization code, several solver packages have
been written or interfaced. These solvers all take the form of function
objects, allowing them to be embedded into expression graphs, and providing
them with a uniform way for interacting with the user. Interfaced tools
include ODE/DAE integrators, in particular the SUNDIALS suite [113],
where directional derivatives are calculated through automatic formulation
and solution of the forward and adjoint sensitivity equations (see Chapter 7).
Other interfaced solvers are QP solvers such as qpOASES [75], OOQP [87]
and CPLEX (as a QP solver) [118] and NLP solvers such as IPOPT [179],
KNITRO [56] and WORHP [55]. Similar to algebraic modeling languages
(Section 3.5), derivative information in the form requested by the solver in
question is automatically generated and passed on to the solver.

Model import

In addition to formulating problems in CasADi directly, it is also possible to
import NLPs formulated in the algebraic modeling language AMPL [84], which
we mentioned in Section 3.5. AMPL consists of two parts, a closed-source
parser and an open-source runtime known as the AMPL Solver Library (ASL).
To pass model data from the parser to the runtime, AMPL uses the so-called
.nl file format [85]. CasADi supports import of NLPs formulated in .nl files,
and the symbolic nature of the format allows CasADi to construct a symbolic
representation of the NLPs. The NLPs can then be manipulated and solved
with the NLP solvers contained in or interfaced with CasADi. Generation of
.nl files is also possible via the open-source modeling environment Pyomo [111].

Model import is also possible from the physical modeling language Model-
ica [17] via the open-source compiler JModelica.org [20, 26]. The import,
which uses an extension of the standard Functional Mock-up Interface (FMI)
standard [9], allows CasADi to build up a symbolic representation of the
OCPs. Different symbolic manipulations can be applied to an imported models,
including scaling, sorting of variables and equations and reformulation of DAEs
from fully-implicit to semi-explicit form.
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6.3 Implementation of the symbolic core

In the following we provide some detail on the implementation of CasADi.

An everything-is-a-sparse-matrix data type

As mentioned above, the symbolic data types exposed to the user are sparse
matrices. The rationale for this is that for symbolic calculations, the cost for
the linear algebra is hardly going to be a bottleneck. By treating all symbolic
scalars, vectors and dense matrices as sparse matrices, the number of data types
exposed to the user can be minimized. This flattens the learning curve and
facilitates the maintenance of the software. In addition, existing packages for
linear algebra, including uBLAS [11] and Eigen [7] in C++ and NumPy/SciPy
in Python, are typically not suitable for storing or manipulating matrices with
symbolic entries. For example, conventional linear algebra packages would
expect that the result of a comparison such as (x ≥ y) be either true or false.
If x and y are symbolic expressions, however, the result of (x ≥ y) is likely to
be an expression that evaluates to either true or false. Restrictions like these
means that the linear algebra algorithms must be modified accordingly. As an
example, this could mean finding alternatives to partial pivoting (see e.g. [69])
during the solution of linear systems of equations.

We note that it is in general cheap to detect if a sparse matrix has a certain
structure, e.g. having no structural zeros, being diagonal matrix etc. This can
then be exploited, e.g. in specialized algorithms for matrix multiplication.

Scalar graph representation and VM design

The elements of the above matrix class can be either floating point variables
(e.g. double) or scalar-valued symbolic expressions. The scalar expression type
has been implemented using operator overloading [187] in C++.

In contrast to corresponding data types in traditional operator overloading AD
tools as presented in Section 3.5, the purpose of the type is only to formulate
symbolic expressions. It is not designed to be a ”drop-in replacement” for
a floating point type as is the case for e.g. adouble in ADOL-C [102] or
AD<double> in CppAD [5].

In practice it means that code that contains control flow instructions such if -
statements, must always be manually reformulated. Consider e.g. the code
segment:
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double x,f;
x = ...
if(x >= 0){

f = x;
} else {

f = 5;
}

This code segment can be readily used in a traditional OO tool by only
replacing double for e.g. adouble in ADOL-C. When executing the code,
the condition x >= 0 will be determined by the current numerical value for x.
Typically, this means that the symbolic expression for f is only valid for certain
numerical values and if x >= 0 changes value, the symbolic expression needs
to be regenerated, or retraced, cf. [104]. In CasADi, the same segment would
read:

CasADi :: SX x,f;
x = ...
f = if_else (x >= 0, x, 5);

Note that similar constructs do exist in convensional AD tools, to avoid
retracing, but are not required as in CasADi.

Requirements like these makes CasADi fundamentally unsuitable to use “black-
box” on an existing C-code when compared to ADOL-C or CppAD. It also
disqualifies the use of linear algebra packages as explained in the previous
section. On the other hand, it also guarantees that a symbolic expression never
needs to be regenerated once formed and enables more aggressive simplifications
of the expressions to be made.

The scalar symbolic type CasADi::SX is not intended to be used directly by the
end user. Instead, as explained in Section 6.3 above, the user typically works
with matrices of CasADi::SX.

CasADi :: SXMatrix x,f;
x = ...
f = if_else (x >= 0, x, 5);

The primary purpose of constructing symbolic expressions in CasADi is to
define function objects that allow numerical and symbolical evaluation. The
first step in creating such a function object is a depth-first search topological
sort of the corresponding expressions. The sorted expression graph is then
used to form an array of instructions to be performed on a work array. Such
an instruction is stored in the following data structure that takes up 16 bytes
on typical architectures:

struct ScalarAtomic {
int op; // Operator index
int i0;
union {
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double d;
struct { int i1 ,i2; };

};
};

Each instruction – which can be either a function input or output storage
instruction, a double precision constant or a unary/binary instruction –
contains an identifier (”op” above) identifying the type of instruction as well as
either three integers or one integer and a double precision floating point value.

This array of instructions (implemented as std::vector<ScalarAtomic>) is
then evaluated in a register-based virtual machine, cf. Section 3.5. The core of
the VM is a switch-statement inside a for-loop of the form:

Listing 6.3: Layout of the scalar graph virtual machine
for( auto i= algorithm . begin (); i!= algorithm .end (); ++i){

switch (i->op ){
case OP_INPUT : work[i->i0] = input[i->i1 ][i->i2 ]; break ;
case OP_OUTPUT : output[i->i0 ][i->i2] = work[i->i1 ]; break ;
case OP_CONSTANT : work[i->i0] = i->d; break ;
case OP_ADD: work[i->i0] = work[i->i1] + work[i->i2 ]; break ;
case OP_SIN: work[i->i0] = sin(work[i->i1 ]); break ;
...

}
}

On typical architectures, this allows the switch-statement translates to an
efficient lookup table in the compiled code.

The locations in the work vector are determined by analyzing the live variable
ranges following the topological sorting of the expression graph, and work vector
elements are then reused on a last in, first out basis.

Matrix graph representation and VM design

While the scalar graph representation is designed for minimal overhead, the
design goal of the matrix graph representation is maximum generality. This
means that in addition to (now matrix-valued) constants and (now elementwise)
unary/binary operations, several additional atomic operations are needed. The
most important of these are shown in Table 6.1.
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Table 6.1: Atomic operations in the matrix graph representation with
interdependencies for forward and reverse mode AD by SCT

Operation Definition
Interdependencies

Forward Adjoint
1 Constant 0, I, [1.2, 4], etc.
2 Elementwise operation sin(X),X ∗ Y , etc. 3 a

3 Inner product tr(X⊺ Y ) b 2
4 Transpose X⊺

5 Matrix multiplication X + Y Z⊺ 4
6 Reshape (changes dimension)
7 Sparse assignment (changes sparsity)
8 Submatrix access X(elements) 9
9 Submatrix assignment X(elements) = Y c 8

10 Inverse X−1 4,5 4,5
11 Determinant det(X) 2,3,4,10 2,4,10
12 Function call (see text) (4,5) (4,5)
13 Linear solve X Y −1 or X Y −⊺ 4,5,16,17 4,5,16,17
14 Implicit functions (Section 3.9) 4,5,12,13 4,5,12,13
15 Frobenius norm ‖X‖F 2,3 2
16 Vertical concatenation [x1;x2; ..., xn] 17
17 Vertical split [z1; z2; ..., zn] = X 16
a Dependency appears for e.g. x ∗ Y , when x is a scalar and Y is a matrix
b Efficiently evaluated by the equivalent expression

∑

i,j Xi,j Yi,j
c More precisely, the two step evaluation F := X, F (elements) = Y

The set of atomic operations is selected to ensure that both forward and adjoint
derivative propagations can be expressed with the same set of operations.
For example, using the notation of Chapter 3, the matrix multiplication,
f(X,Y,Z) := X + Y Z⊺, will result in:

f̂(X, X̂, Y, Ŷ , Z, Ẑ) = X̂ + Ŷ Z⊺ + Y Ẑ⊺ = f(f(X̂, Ŷ , Z), Y, Ẑ) (6.1)

in the forward mode, and
{
X̄after, Ȳ after, Z̄after

}

=
{
X̄before, Ȳ before, Z̄before

}
+ f̄(X,Y,Z, F̄ )

=
{
X̄before, Ȳ before, Z̄before

}
+

{
F̄ , F̄ Z, F̄ ⊺ Y

}

=
{
X̄before + F̄ , f(Ȳ before, F̄ , Z⊺), f(Z̄before, F̄ ⊺, Y ⊺)

}
(6.2)
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in the reverse mode. Therefore, if an expression contains matrix multiplications,
the expression for its derivative will contain matrix multiplications and, for the
reverse mode, additions and matrix transposes. This dependency is indicated
in the last two columns of Table 6.1, which list the interdependencies between
the atomic operations. For details on how to derive this and other derivative
propagation rules, we refer to [89,90].

A central operation is the function call operation, which corresponds to a call
to an arbitrary multiple input, multiple output function, that may or may
not have been defined by a symbolic expression. The function call operation,
when differentiated, gives rise to a new function call operation to a different
function that calculates f as well as f̂ and/or f̄ for a number of derivative
directions simultaneously. The derivative calculation can be interrupted when
only a subset of these directions is needed using the partial evaluation discussed
in Section 6.3. To limit memory use, the functions for calculating directional
derivatives are cached allowing an expression graph to contain multiple calls to
the same derivative function.

The matrix graph representation may also contain calls to the solution of linear
systems of equations, using any of the linear solvers interfaced with CasADi.
Derivatives are then calculated using the propagation rules from Table 3.2. The
same linear solver instances and, when possible, factorizations are then reused
for the derivative calculation. Calls to nonlinear equation solvers are supported
as suggested in Section 3.9, first part.

As for the scalar expression graph, the matrix expression graph corresponding
to a function is topologically sorted using a depth-first search for evaluation in
a register-based virtual machine operating on a work vector consisting of a set
of sparse matrices. The work vector is kept small by again reusing work vector
elements on a last in, first out basis (now with one ”stack” per unique sparsity
pattern). This makes sure that an operation of the form:

Xafter = Xbefore + Y Z⊺, (6.3)

resulting from the the reverse mode propagation for matrix multiplication
shown in (6.2), will have Xafter and Xbefore point to the same location in
memory (provided that Xbefore is not needed later in the algorithm). This is
then exploited by the multiplication routine. Another way of expressing this is
that we allow the elements of the work vector in the matrix VM to be mutable
objects.

For some operations, this in-place calculation is critical as not to violate the
complexity bounds for the reverse mode of AD. For instance, the submatrix
access operation:
F ← X(elements)
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will give rise to a submatrix assignment operation illustrated with the
algorithm:
X̄after ← X̄before

X̄after(elements)← X̄after(elements) + F̄

If the dimension of X is much larger than F , the computational cost will be
dominated by the trivial assignment and not by the addition. This means that
the reverse mode applied to an algorithm involving submatrix accesses can
give an algorithm that is arbitarly more expensive than the original algorithm,
unless the assignment is avoided. The use in-place operations avoids trivial
assignments like these whenever possible.

6.4 AD implementation

CasADi supports AD by both the operator overloading approach and the source
code transformation approach for both expression graph representations. The
operator overloading approach is implemented by executing Algorithms 3.3 or
3.4 with a numerical data type calculating up to (by default) 64 forward or
adjoint directional derivatives at a time. For the reverse mode, we include
a forward sweep to either store the partial derivatives of f (for the scalar
expression graph) or the arguments of f (for the matrix expression graphs)6.
AD by source code transformation is implemented by executing Algorithms
3.3 or 3.4 with the corresponding symbolic data type giving new expressions
for the directional derivatives. To limit the creation of duplicate expression, it
reuses the nodes of the expression graph used to define the function as much
as possible.

Jacobians are calculated by first determining their sparsity structure using the
bitvector approach explained in Section 3.7. This is implemented by propagat-
ing sets of (on most architectures) 64 booleans, implemented by reusing data
structures for the double precision (i.e. 64 bit) numerical evaluation to hold
arrays of 64-bit integer types (via reinterpret_cast<unsigned long long*>

in C++). Hessians are calculated by using a symmetry-exploiting variant of the
same algorithm applied to the gradient, which in turn has been calculated with
reverse mode AD by source code transformation. To limit the number of passes
needed to determine the sparsity pattern, a novel seeding approach, described
in Section 6.5 below, is used. There exist also the possibility to just-in-time
compile the sparsity propagation algorithm on central or graphics processing
units (GPU/CPU) as described in Sections 6.6.

6To be more precise, the arguments that are overwritten (or spilled) from the work vector
are stored to a stack.
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With the sparsity pattern known, graph coloring is used to determine a set of
forward or adjoint directional derivatives needed to retrieve the Jacobian entries.
Two algorithms are implemented for non-symmetric and symmetric Jacobians
respectively; a (greedy, distance-2) unidirectional algorithm [86, Algorithm 3.1]
and a (greedy, distance-2) star coloring algorithm [86, Algorithm 4.1] with a
largest-first ordering [86, 183]7. For the unidirectional coloring, both coloring
of rows and columns are tested, starting with the one most likely to produce a
good coloring and interrupting the second coloring prematurely if worse than
the first. This will give an expression for the Hessian or Jacobian containing
(possibly inlined) calls to functions for calculating directional derivatives using
either an operator overloading or source code transformation approach.

6.5 Hierarchical sparsity pattern calculation

As noted in Section 3.7, determining the sparsity pattern of a Jacobian is
often the most expensive step in the Jacobian calculation. When using the
bitvector approach, even when calculating the nonzeros of 64 rows or columns
at a time, there is still a linear dependence on either the number of columns of
the Jacobian – when propagating dependencies forward through the algorithm
– or on the number of rows – when propagating dependencies backward. For a
large NLP with hundreds of thousands of rows and columns, the cost can be
prohibitive.

The sparsity pattern calculation can be sped up by using probabilistic methods
as shown by Griewank and Mitev [103], which in particular makes sense when
the nonzeros of the Jacobian are found at more or less random locations.
The sparsity patterns of Hessians and Jacobians arising when solving optimal
control problems, be they the Hessian of the Lagrangian and Jacobian of
the constraints of an NLP or the Jacobian of an ODE/DAE right-hand-side
function inside an integrator, seldom have nonzeros located at random locations.
The typical situation is that they possess some kind of block sparsity with vast
regions of only structural zeros and more or less sparse blocks. We show in
Figure 6.1 an example of such a sparsity pattern, corresponding to the Hessian
of the Lagrangian of an NLP arising from direct collocation.

To exploit block sparsity, we propose first to determine a crude sparsity pattern.
In particular, by partitioning the function inputs of a function f : Rn → Rm

into 64 groups, the Jacobian can be written as a 64-by-m block matrix. We can
determine which of these blocks have any nonzeros with a single forward pass

7At the time of writing, a new star coloring algorithm with lower complexity proposed by
Gebremedhin et al. [86], was being implemented.
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Figure 6.1: The sparsity pattern of the Hessian of the Lagrangian of an NLP
arising from direct collocation

through the algorithm. Alternatively, we can partition the function outputs
into 64 groups resulting in a n-by-64 block respresentation of the Jacobian.
With a single reverse pass through the agorithm, we can determine which
of those blocks have any nonzeros. We thereafter apply the graph coloring
techniques explained in Section 6.5 to determine if any blocks can be calculated
in parallel. This information is then used when calculating a finer sparsity
pattern. The approach can be applied hierarchically with successively finer
sparsity patterns until the true sparsity pattern is given.

The above approach was implemented by Joris Gillis. A more detailed
description along with numerical results is planned for his dissertation.
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6.6 Just-in-time compilation

There are limits to how fast virtual machines can be made. Heavily optimized
operator overloading based AD tools like ADOL-C and CppAD and as well as
the virtual machines of AMPL and CasADi, are still an order of magnitude
slower than compiled C-code generated from a source-code transformation tool.
To bridge this performance gap, it is necessary to generate machine code in one
way or another.

Generating compiler intermediate representation

The most direct way, but also the most low-level is to directly build up
the compiler intermediate representation. The open-source LLVM compiler
framework [129] (formerly low-level virtual machine) provides a way to
accomplish this while still retaining platform independence. In Section 6.7, we
show that just-in-time compilation using the LLVM can give a speedup of factor
2-3 over the corresponding highly optimized virtual machine. By enabling code
optimization in LLVM, another factor 2-3 can be obtained, although this can
come at the cost of much longer compilation times.

C-code generation

Generating compiler intermediate representation tends to become complex
when the code to be generated involves basic features such as branches and
scopes. The situation is not helped by the fact that LLVM at the time of
writing does not maintain a stable application programming interface (API).
An alternative is to generate C-code, which offers a standardized higher-level
API, compile it and finally load it as a dynamically linked library (DLL). This
also represents a more indirect approach since it adds the steps of writing the
code on disk and then use the parser of the C-compiler to internally construct
the intermediate representation.

A practical difficulty with this approach includes the need to call a bitcode-
compatible C-compiler. This can be overcome by linking with a C-compiler as
opposed to calling it via the operating system. In particular, the Clang front-
end to LLVM offers a way to do this with a permissive open-source software
license. At the time of writing, CasADi supported C-code generation from a
subset of classes (in particular not including interfacing to third party codes)
and had a functionality to dynamically load the corresponding DLL on POSIX-
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based operating systems (e.g. Linux and Mac OS X) as well as on Microsoft
Windows.

Generating OpenCL kernels

The Open Computing Language (OpenCL) [121] is a C-based language for
writing functions, called kernels, that can run on multiple architectures
including central processing units (CPU) and graphics processing units (GPU).
It represents both an extension and a restriction to conventional C. Extension,
since compared to standard C99, it includes a set of new data types and a set
of new keywords for defining the physical memory region of data. Restriction,
since it omits many central C concepts such as function pointers and only
implements a subset of the standard C library.

For algorithmic differentiation, OpenCL is particularly interesting since it
allows certain data parallel tasks such as derivative calculation in multiple
directions [98] or sparsity-pattern propagation to be performed using general-
purpose computing on GPUs. OpenCL can also be used as an alternative to
conventional C-code generation for non-data parallel tasks since it is platform
independent and has a stable API. Since OpenCL is essentially C-code as far as
code generation is concerned, it is relatively easy to maintain both conventional
C-code generation and OpenCL-code generation, both supported in CasADi.

6.7 Benchmarking

Although the main goal of CasADi is to be more accessible, as opposed to
faster, than existing packages for algorithmic differentiation and numerical
optimization, raw numerical performance is also of importance. In the following,
we show how the different ways of evaluating numerical expressions compare
against each other and benchmark CasADi against AMPL Solver Library.

A speed benchmark problem

To assess the performance of the algorithmic differentiation in CasADi, we
consider the problem of calculating the determinant of an n-by-n matrix:

f(X) = det(X), X ∈ R
n×n. (6.4)

The simplest, but by no means the most efficient, way to calculate f is to use
minor expansion, an algorithm with a complexity that grows exponentially with
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the dimension of the matrix. In Python, minor expansion can be implemented
as follows:
def f(A):

# Get dimension , quick return if scalar
n = A. shape [0]
if n==1: return A

# Expand along the first column
R = 0; sign = 1
for i in range(n):

M = A[ range(i)+ range(i+1,n) ,1: ,] # Minor
R += sign*A[i ,0]*f(M); sign = -sign

return R

which is valid syntax for NumPy/SciPy (standard numerical packages for
Python) as well as for CasADi.

A well-known benchmark example from algorithmic differentiation is to
calculate the gradient of this function using reverse mode AD. Note that we
already know the beginning of the chapter that the gradient is given by the
explicit expression:

∇f(X) = det(X)X−⊺ (6.5)

Using the scalar graph representation

We begin by calculating ∇f using CasADi’s scalar representation and an OO
approach. Since f is scalar-valued, a single adjoint sweep is enough to calculate
the gradient. The code required is:
from casadi import * # Import CasADi
from numpy. random import rand # A random matrix generator
X = ssym("X",n,n) # Input expression
F = SXFunction ([X],[f(X)]) # Create a function object
F.init () # Initialize for evaluation
F. setInput (rand(n,n)) # Let X be a random matrix
F. setAdjSeed (1.0) # Set adjoint seed
F. evaluate (0 ,1) # Evaluate with 0 forward

# and 1 adjoint direction
print F. adjSens () # Print the gradient

In Figure 6.2 (line with squares, “�”), we see how the cost of the numerical
evaluation increases with the dimension. For n = 8 the number of nodes in the
expression graph is around 140 000 and the gradient calculation takes 4 ms.
For n = 11, which corresponds to more than 100 million nodes, CasADi runs
out of memory. All calculations have been performed on a Dell Latitude E6400
laptop equipped with a 2.4 GHz Intel Core duo processor (one core used) and
4 GB of RAM.
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Figure 6.2: Gradient of the function f(X) = det(X), X ∈ Rn×n, for
increasing n, calculated in different ways

Using the matrix graph representation

The same problem can be solved with CasADi’s matrix representation, simply
by replacing ssym with msym and SXFunction with MXFunction above. The
result is also shown in Figure 6.2 (line with diamonds, “⋄”). We note that the
approach is significantly slower. For n = 8, the solution time is 132 ms, close to
two orders of magnitudes slower than the scalar graph. This is not surprising,
since the matrix representation has not been optimized for small computational
overhead to the same extent as the scalar representation. Indeed, the main
purpose of the matrix representation is to ”glue” operations together that are
by themselves expensive to evaluate, like numerical linear algebra operations
or function evaluations.

To use the matrix graph formulation more wisely, we first define a function
object using the scalar representation that calculates the determinant of a
smaller problem, e.g. an 7-by-7 matrix. Let us call this function object F_small.
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We can then build up an expression with function calls to F_small by replacing
the line

if n==1: return A

with
if n==8:

[d] = F_small .call ([A]) # Create a function call to F_small
return d # Return the function call reference

Since this allows most of the computationally expensive work to take place
in the (fast) virtual machine for the scalar representation, the approach is
only slightly more expensive than the scalar graph approach, as seen in
Figure 6.2 (line with circles, “◦”). We essentially need one extra evaluation
of the determinant (without directional derivatives) since the intermediate
variables of F_small get overwritten between the calls. When memory runs
out using this approach, we can define a new function for determinants of say
12-by-12 matrices and repeat the approach. The combined scalar-matrix graph
approach, which in AD terminology can be considered a checkpointing scheme,
hence allows us to limit the memory use at the expense of extra floating point
operations.

Source code transformation approach

The gradient can also be calculated using a SCT approach. Indeed, simply
invoking ”gradient(f(X),X)”, will create a new symbolic expression for the
gradient using this approach. This expression can then be used to define a
function object, which can be numerically evaluated as above. The result of
this calculation is shown in Figure 6.2 (line with stars, “⋆”).

There are three situations when the SCT approach is particularly interesting:

• When higher order derivatives are requested, since the OO approach
only supports first order derivatives. The SCT approach can be applied
recursively to any order.

• When complete Jacobians or Hessians are calculated, since the sparsity
pattern then only needs to be considered when constructing the graphs,
not when numerically evaluating them. Simple but common operations
such as multiplications by zero or one are eliminated from the graph
altogether.

• When we want to generate code for the derivative calculation using C-
code generation or just-in-time compilation.
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The line with upright crosses (+) in Figure 6.2 shows the timings for a C-
code generation approach, followed by compilation to a shared library using
the gcc 4.6 compiler (-O3 optimization enabled), in turn loaded into CasADi
as a dynamically linked library (DLL). Finally, the line with diagonal crosses
(×) shows the results using the just-in-time compilation approach, using LLVM
version 3.0.

The main downside of using code generation in CasADi are long compilation
times when dealing with very large symbolic expressions. This is also true for
the just-in-time compilation approach, at least for the example considered here.
If we use Clang, a C-compiler built on top of the LLVM framework (and hence
optimized for fast compilation), the difference between just-in-time compilation
and C-code generation is small.

Nonlinear programming

To assess the performance of CasADi for nonlinear programming, we use Bob
Vanderbei’s AMPL version of the CUTEr test problems suite. We use AMPL
to parse the test problems and to generate .nl files that are imported into
CasADi as described in Section 6.2. We then use CasADi to calculate first and
second order derivative information, including sparsity and to solve the NLP
using CasADi’s interface to IPOPT [179] (Version 3.10 using MA27 as a linear
solver). We compare the results to IPOPT’s interface to the AMPL Solver
Library (ASL). From the 111 nonlinear problems successfully solved, out of a
total of 135, we select the problems where the iterates are identical for CasADi
and ASL – a different number in the iterates can often be explained by the finite
precision floating point arithmetics. In Table 6.2, we present the ten problems
where IPOPT reports more than 80 ms solution time for either CasADi or ASL.
All calculations have been performed on a Dell Latitude E6400 laptop with an
Intel Core Duo processor (only one core was used) of 2.4 GHz, with 4 GB of
RAM, 3072 KB of L2 Cache and 128 kB of L1 cache, running Ubuntu 10.4.

In the table, we show the total solution time as reported by IPOPT and the
part of this time actually spent for automatic differentiation in ASL or CasADi.
Most of the remaining time is spent in the linear solver. For eight of the
ten benchmarks, the time spent in CasADi is about half or less than that
of ASL. Note that there is no compiler in the loop for neither CasADi nor
ASL. Significantly faster function evaluations would indeed be possible through
dynamic compilation as described in Section 6.6, though, as seen in the table,
this does not necessarily result in significantly faster NLP solution as a large
part of the solution time is spent inside the linear solver.
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Table 6.2: Benchmarking against AMPL Solver Library (ASL). The total
solution time as well as the time spent by the AD framework (i.e. NLP callback
functions) are displayed.

Benchmark NLP dimensions Iterations Time ASL [s] Time CasADi [s] Change
Variables Constraints Total AD Total AD AD part

gpp 250 498 22 0.492 0.272 0.500 0.264 -3 %
reading1 10001 5000 22 0.712 0.408 0.306 0.104 -76 %
porous2 4900 4900 8 1.916 0.188 1.736 0.036 -81 %
orthrgds 10003 5000 16 0.949 0.568 0.512 0.164 -71 %
clnlbeam 1499 1000 205 0.776 0.184 0.784 0.184 0 %
svanberg 5000 5000 30 2.492 0.520 2.300 0.272 -48 %
orthregd 10003 5000 6 0.332 0.208 0.160 0.060 -71 %
trainh 20000 10002 69 3.932 1.984 2.804 0.896 -55 %
orthrgdm 10003 5000 6 0.328 0.208 0.156 0.068 -67 %
dtoc2 5994 3996 10 0.296 0.124 0.224 0.048 -61 %

6.8 Conclusion and outlook

As we have seen in this chapter, there is no inherent contradiction between
working in a high-level environment such as Python and evaluation at the speed
of optimized C-code. We also showed that using a combination of two virtual
machines, AD can be implemented in a manner that minimizes computational
and memory overhead while at the same time supporting high level operations.
We also discussed different ways of speeding up the numerical calculations via
code generation.

We end this chapter by listing some future plans for the tool:

• It is the intention to continue to evolve the symbolic core until it
essentially becomes a turing-complete functional programming language
[185, 189]. This includes adding high-level operations such as folds [184]
for flow control as well as monads [186] for user interaction and third-
party interfaces.

• The strict depth-first ordering of the expression graph means that the
corresponding functions, F (x1, . . . , xn) → y1, . . . , ym, can be partially
evaluated when only a subset, {y1, . . . , yi}, i < m, of the outputs are
needed. This feature is important to limit the memory use for AD by
source code transformation.

• CasADi contains some support for parallel evaluation of expressions on
shared memory architectures, e.g. integrators in a multiple shooting
context. This implementation uses OpenMP. Extensions include support
for distributed memory architectures using MPI and graphics processing
units using OpenCL [121].



Chapter 7

Automatic sensitivity analysis

for ODE and DAE

In the presentation of the forward and reverse mode differentiation of
algorithms containing implicit functions in Section 3.9, we saw that derivative
propagation rules could be formulated as augmented root-finding problems
with the same structure. This is important as it allows the calculation
of second and higher order derivatives of such algorithms in a source-code-
transformation context. The same did however not hold true for the discrete-
time or continuous-time integrators of Sections 3.10 and 3.11, since the reverse
mode resulted in a two-point boundary-value problem or its discrete-time
equivalent, as opposed to an initial-value problem.

In this chapter, we propose an extension of the discrete-time and continuous-
time integrator formulations that overcomes this limitation. Using this
extension, we can treat an ODE or DAE integrator as any other atomic
operation in a symbolic expression, and in particular efficiently calculate
derivative information to arbitrary order.

We present the extension in a discrete-time setting in Section 7.1 and thereafter
in continuous-time in Section 7.2. In Section 7.3, we discuss the implementation
of the approach in CasADi and in Section 7.4, we illustrate it with an example.
In Section 7.5, we discuss future extensions.
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7.1 An extended discrete-time integrator

Let us augment the discrete-time dynamics of Algorithm 3.5 with a second
dynamic equation that depends point-wise on the first but goes backward rather
than forward in time. The result is shown in Algorithm 7.1, where we for
simplicity of the presentation have left out the summation state q and the
parameter u.

Algorithm 7.1 Definition of extended F : Rnx × Rnr → Rnx × Rnr

input (x0, rN )

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk)
end for

for k = N − 1, . . . , 0 do

rk = Φ∗(xk, rk+1)
end for

return (xN , r0)

The appended “backward dynamics” described by Φ∗(x, r) can be, but need
not be, related to the adjoint directional derivatives of Φ(x). Applying forward
mode AD to Algorithm 7.1, as described in Section 3.2 results in Algorithm 7.2.

Algorithm 7.2 Definition of extended F̂ :
Rnx × Rnr × Rnx×m × Rnr×m → Rnx × Rnr × Rnx×m × Rnr×m

input (x0, rN , X̂0, R̂N )

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk)

X̂k+1 = ∂Φ
∂x

(xk) X̂k

end for

for k = N − 1, . . . , 0 do

rk = Φ∗(xk, rk+1)

R̂k+1 = ∂Φ∗

∂x
(xk, rk+1) X̂k + ∂Φ∗

∂r
(xk, rk+1) R̂k+1

end for

return (xN , r0, X̂N , R̂0)

This algorithm has the same structure as Algorithm 7.1, if we define the
augmented (forward) state x̃k := (xk, vec(X̂)k), k = 0, . . . , N − 1 and the
augmented backward state r̃k := (rk, vec(R̂)k), k = N − 1, . . . , 0. The
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augmented dynamic equations can be efficiently calculated by applying forward
mode AD to Φ(x) and Φ∗(x, r).

Similarly, applying reverse mode AD to Algorithm 7.1, as described in
Section 3.3, results in Algorithm 7.3.

Algorithm 7.3 Definition of extended F̄ :
Rnx × Rnr × Rnx×m × Rnr×m → Rnx × Rnr × Rnx×m × Rnr×m

input (x0, rN , X̄N , R̄0)

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk)
end for

for k = N − 1, . . . , 0 do

rk = Φ∗(xk, rk+1)
end for

for k = 0, . . . , N − 1 do

R̄k+1 =
[
∂Φ∗

∂r
(xk, rk+1)

]⊺

R̄k

end for

for k = N − 1, . . . , 0 do

X̄k =
[
∂Φ
∂x

(xk, rk+1)
]⊺
X̄k+1 +

[
∂Φ∗

∂x
(xk, rk+1)

]⊺

R̄k

end for

return (xN , r0, X̄0, R̄N )

We now restrict Φ∗(x, r) to be an affine function in r, though not necessarily
in x, i.e.:

∂Φ∗

∂r
(x, z) =

∂Φ∗

∂r
(x, 0) =

∂Φ∗

∂r
(x). (7.1)

We note that this requirement will in particular be fulfilled whenever Φ∗(x, r)
is the result of a reverse mode differentiation as in Section 3.10. This allows us
to rewrite Algorithm 7.3 as shown in Algorithm 7.4.
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Algorithm 7.4 Definition (after restriction) of extended F̄ :
Rnx × Rnr × Rnx×m × Rnr×m → Rnx × Rnr × Rnx×m × Rnr×m

input (x0, rN , X̄N , R̄0)

for k = 0, . . . , N − 1 do

xk+1 = Φ(xk)

R̄k+1 =
[
∂Φ∗

∂r
(xk)

]⊺

R̄k

end for

for k = N − 1, . . . , 0 do

rk = Φ∗(xk, rk+1)

X̄k =
[
∂Φ
∂x

(xk, rk+1)
]⊺
X̄k+1 +

[
∂Φ∗

∂x
(xk, rk+1)

]⊺

R̄k

end for

return (xN , r0, X̄0, R̄N )

After the simplification, the algorithm for reverse mode differentiation has
indeed the same structure as Algorithm 7.1, if we define the augmented forward
state x̃k := (xk, vec(R̄)k), k = 0, . . . , N − 1 and the augmented backward state
r̃k := (rk, vec(X̄)k), k = N − 1, . . . , 0. The augmented dynamic equations,
which clearly satisfy (7.1), can be efficiently calculated by applying reverse
mode AD to Φ(x) and Φ∗(x, r).

Generalization to parametric integrators with summation states

The above extended discrete-time integrator formulation naturally generalizes
to explicit and implicit parametric integrator formulations with summation
states. We show the implicit version in Algorithm 7.5, where we require that
Θ∗(x, z, u, r, s, v), Φ∗(x, z, u, r, s, v) and Ψ∗(x, z, u, r, s, v) are affine in r, s and
v, i.e.:

∂Φ∗

∂r
(x, z, u, r, s, v) =

∂Φ∗

∂r
(x, z, u, 0, 0, 0) =

∂Φ∗

∂r
(x, z, u),

∂Φ∗

∂s
(x, z, u, r, s, v) =

∂Φ∗

∂s
(x, z, u, 0, 0, 0) =

∂Φ∗

∂s
(x, z, u),

∂Φ∗

∂v
(x, z, u, r, s, v) =

∂Φ∗

∂v
(x, z, u, 0, 0, 0) =

∂Φ∗

∂v
(x, z, u),

(7.2)

and equivalently for Θ∗(x, z, u, r, s, v) and Ψ∗(x, z, u, r, s, v).
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Algorithm 7.5 Definition of proposed F :
Rnx × Rnu × Rnr × Rnv → Rnx × Rnq × Rnr × Rnp

input (x0, u, rN , v)

q0 = 0
for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
xk+1 = Φ(xk, zk, u)
qk+1 = Ψ(xk, zk, u) + qk

end for

pN = 0
for k = N − 1, . . . , 0 do

0 = Θ∗(xk, zk, u, rk+1, sk, v) ⊲ Solve for sk
rk = Φ∗(xk, zk, u, rk+1, sk, v)
pk = Ψ∗(xk, zk, u, rk+1, sk, v) + pk+1

end for

return (xN , qN , r0, p0)

We propose Algorithm 7.5 as a standard formulation that efficiently handles a
large class of problems originating from optimal control. Note in particular that
it can be used to efficiently implement the AD approach to (continuous-time)
sensitivity analysis presented in Section 3.11. The forward and reverse mode
derivative propagation rules for Algorithm 7.5 can be found in Appendix B.1.

7.2 An extended continuous-time integrator

The approach of the previous section extends to two-point boundary value
problems of the form:

f : Rnx × Rnr → Rnx × Rnr , (x0, r1) 7→ (x1, r0)
{

ẋ(t) = φ(x(t)),
−ṙ(t) = φ∗(x(t), r(t)),

t ∈ [0, 1],

x(0) = x0, r(1) = r1, x1 = x(1), r0 = r(0),

(7.3)

with the affinity restriction on the backward dynamics, cf. (7.1):

∂φ∗

∂r
(x, z) =

∂φ∗

∂r
(x, 0) =

∂φ∗

∂r
(x). (7.4)

By defining Φ(x) := x + 1
N
φ(x) and Φ∗(x, r) := r + 1

N
φ∗(x, r), we interpret

Algorithm 7.1 as the explicit Euler method for calculating (7.3). This gives (cf.
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Section 3.11) the following equation for the forward derivatives of (7.3):

f̂ : Rnx × Rnr × Rnx×m × Rnr×m → Rnx × Rnr × Rnx×m × Rnr×m,

(x0, r1, X̂0, R̂1) 7→ (x1, r0, X̂1, R̂0)






ẋ(t) = φ(x(t)),
˙̂
X(t) = ∂φ

∂x
(x(t)) X̂(t)

−ṙ(t) = φ∗(x(t), r(t)),

− ˙̂
R(t) = ∂φ∗

∂x
(x(t), r(t)) X̂(t) + ∂φ∗

∂r
(x(t)) R̂(t),

t ∈ [0, 1],

x(0) = x0, r(1) = r1, x1 = x(1), r0 = r(0),

X̂(0) = X̂0, R̂(1) = R̂1, X̂1 = X̂(1), R̂0 = R̂(0),

(7.5)

which can be efficiently and automatically formulated using forward mode AD.

We also get the following equation for the adjoint derivatives of (7.3):

f̄ : Rnx × Rnr × Rnx×m × Rnr×m → Rnx × Rnr × Rnx×m × Rnr×m,
(x0, r1, X̄1, R̄0) 7→ (x1, r0, X̄0, R̄1)







ẋ(t) = φ(x(t)),
˙̄R(t) =

[
∂φ∗

∂r
(x(t))

]⊺

R̄(t) t ∈ [0, 1],

−ṙ(t) = φ∗(x(t), r(t)),

− ˙̄X(t) =
[
∂φ
∂x

(x(t), r(t))
]⊺

X̄(t) +
[
∂φ∗

∂x
(x(t), r(t))

]⊺

R̄(t),

x(0) = x0, r(1) = r1, x1 = x(1), r0 = r(0),

R̄(0) = R̄0, X̄(1) = X̄1, R̄1 = R̄(1), X̄0 = X̄(0),

(7.6)

which can be efficiently and automatically formulated using reverse mode AD.
Both (7.5) and (7.6) have the same structure as (7.3), allowing them to be used
as an atomic operation in a source-code-transformation setting.

Generalization to parametric integrators with quadrature states

The above extended continuous-time integrator formulation also generalizes
and to explicit and implicit parametric integrator formulations with quadrature
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states. In the implicit case, we get:

f : Rnx × Rnu × Rnr × Rnv → Rnx × Rnq × Rnr × Rnp ,
(x0, u, r1, v) 7→ (x1, q1, r0, p0)







ẋ(t) = φ(x(t), z(t), u),
0 = θ(x(t), z(t), u),

q̇(t) = ψ(x(t), z(t), u),
−ṙ(t) = φ∗(x(t), z(t), u, r(t), s(t), v),

0 = θ∗(x(t), z(t), u, r(t), s(t), v),
−ṗ(t) = ψ∗(x(t), z(t), u, r(t), s(t), v),

t ∈ [0, 1],

x(0) = x0, r(1) = r1, q(0) = 0, p(1) = 0,

x1 = x(1), q1 = q(1), r0 = r(0), p0 = p(0),

(7.7)

where we require that θ∗(x, z, u, r, s, v), φ∗(x, z, u, r, s, v) and ψ∗(x, z, u, r, s, v)
are affine in r, s and v, cf. (7.2).

As its discrete-time counterpart in the previous section, we propose (7.7)
as a standard formulation that efficiently handles a large class of problems
originating from optimal control, but here using the variational approach to
sensitivity analysis presented in Section 3.11. The forward and reverse mode
derivative propagation rules for (7.7) can be found in Appendix B.2.

7.3 Implementation in CasADi

The approach presented in Section 7.2 has been implemented in CasADi, relying
on AD by source-code-transformation to automatically generate augmented
problems following the rules listed in Appendix B.2.

This enables fully automatic sensitivity analysis to arbitrary order, using any
combination of forward and adjoint differentiation. In particular, it can be used
to efficiently calculate first and second order derivative information for direct
or indirect shooting-based optimal control methods.

The implementation has been made in CasADi’s integrator base class, making
the functionality available to all integrators. In addition to integrators written
in CasADi, this includes the SUNDIALS solvers, both CVODES for explicit
ODEs and IDAS for DAEs [113]. CasADi’s interfaces to CVODES and IDAS
automatically generate all derivative information requested by the solvers,
which can then be used in the direct or iterative linear solvers inside CVODES



98 AUTOMATIC SENSITIVITY ANALYSIS FOR ODE AND DAE

and IDAS. In addition, linear solvers interfaced to CasADi, in particular sparse
direct solvers such as CSparse [68], can be used by SUNDIALS solvers, either
directly in the Newton solver, or as a preconditioner for the iterative linear
solvers. The SUNDIALS solvers have been written to handle large-scale ODEs
and DAEs.

7.4 Usage example

We illustrate the automatic sensitivity analysis by considering initial-value
problem in the matrix-valued ODE Ẋ(t) = X−1, with X(t) ∈ Rn×n and
t ∈ [0, 1]:

f : Rn×n → Rn×n × R X0 7→ (X1, q1)






Ẋ(t) = Z(t),
0 = Z(t)X(t)− I,

q̇(t) = ‖Z(t)‖F,
t ∈ [0, 1],

X(0) = X0, q(0) = 0, X1 = X(1), q1 = q(1).

(7.8)

Choosing n = 3, this problem can be coded in CasADi-Python as follows:

from casadi import *

n = 3

X = ssym("X",n,n)

Z = ssym("Z",n,n)

arg = [X, Z, None]

rhs = [Z, mul(X,Z)- DMatrix .eye(n), norm_F (Z)]

dae = SXFunction (arg ,rhs)

f = IdasIntegrator (dae)

f.init ()

This code starts by creating two matrix-valued symbolic variables for X and Z
and then uses these variables to define a function object with three inputs and
three outputs. The inputs correspond to state, algebraic variable and parameter
(here absent) and the outputs to the differential, algebraic and quadrature right-
hand-sides. Here we use CasADi’s matrix expression graph but by replacing
msym with ssym and MXFunction with SXFunction this would be valid syntax
for the scalar expression graph and operations would be expanded in scalar
operations.

This function object is then used to create a new function object using CasADi’s
interface to IDAS from the SUNDIALS suite [113]. The IDAS function object,
in turn, has the four inputs and four outputs as shown in Equation (7.7).
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Next, we create a function object corresponding to the gradient of the (scalar-
valued) quadrature state at the final time with respect to all inputs. This
function object is created using the adjoint mode by source code transformation
as follows:

grad_f = f. gradient ("x0","qf")

grad_f .init ()

Internally, this will invoke the reverse mode derivative propagation rule as
stated in Appendix B.2.

Finally we evaluate this gradient function numerically, while at the same
time calculating one forward mode directional derivative (i.e. m = 1 in
Section 3.2) using the operator overloading approach. Internally, the forward
mode derivative propagation rule as stated in Appendix B.2 is invoked. The
syntax for this is, cf. [28]:

X0 = DMatrix .eye(n) + 1

X0_hat = DMatrix .zeros (n,n)

X0_hat [0 ,0] = 1

grad_f . setInput (X0 ,"x0")

grad_f . setFwdSeed (X0_hat ,"x0")

grad_f . evaluate (1 ,0)

print grad_f . output ("grad")

print grad_f . fwdSens ("grad")

where we have used the following numerical values and directional derivative
seed:

X0 =





3 1 1
1 3 1
1 1 3



 , X̂0 =





1 0 0
0 0 0
0 0 0



 .

That is, we perturb the upper left element of X0 and see how this influences
∇X0

q1(X0). This corresponds to an forward-over-adjoint sensitivity analysis
[152] and returns:

∇x0
q1 =





−0.086406 0.037633 0.037633
0.037633 −0.086406 0.037633
0.037633 0.037633 −0.086406



 ,

∇̂x0
q1 =





0.069795 −0.022014 −0.022014
−0.022014 −0.003099 0.013247
−0.022014 0.013247 −0.003099



 .
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7.5 Conclusion and outlook

In this chapter, we have proposed to extend the standard ODE/DAE integrator
formulation to also include a coupled problem which depends on the first but
is integrator backward in time. Using this as a standard formulation, arbitrary
order sensitivity analysis can be calculated efficiently and automatically using
any combination of forward or adjoint sensitivity analysis.

We conclude with a discussion on some topics that have not yet been
implemented in code, but are relevant for efficiently solving large-scale optimal
control problems.

Discrete-time formulation

As discussed in Section 3.11, the AD approach to sensitivity analysis results
in the type of discrete-time initial-value problems treated in Sections 3.10 and
7.1. While this kind of problem can be readily expanded into its constituting
operations, possibly including implicit functions as in Section 3.9, it makes
sense to handle it by a dedicated atomic operation. In particular, it would
enable exploiting the similarity between subsequent (discrete) time points.

Sparsity pattern propagation

In our implementation, we have so far assumed that all states depend on all
other states. Certain dynamic systems, for example weakly coupled dynamic
systems such as river networks [163], will give to non-dense sparsity patterns,
which can be exploited. Such structure also arises from differentiating. Rules
for sparsity pattern propagation can be formulated by studying the bipartite
graph defined by the sparsity patterns of the Jacobians of φ, θ, ψ, φ∗, θ∗ and
ψ∗ in (7.7) with respect to x, z, u, r, s and v.

Fully implicit DAEs

In this presentation, and in code, we have so far assumed that the DAE be
in semi-explicit form and of index-1. This in particular means that DAEs
given in fully-implicit form, e.g. originating from physical modeling languages
such as Modelica (cf. Section 6.2), need to be reformulated before they can
be used by the integrators. This reformulation can be done by symbolically
or numerically solving for the differential state derivatives, by adding dummy
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algebraic variables or by using an index-reduction algorithm such as Pantelides
Algorithm [153]. For more detail on such reformulations, we refer to Cellier
and Kofman [59] or Fritzson [82].

An alternative to reformulation is to extend the automatic sensitivity analysis
presented here to fully implicit DAEs of index-1, see e.g. [57].

Structure exploitation

The augmented DAE that needs to be solved for both forward and adjoint
sensitivity analysis, has special structure that can be exploited by the linear
solver. In current implementation, structure exploitation is only partly
supported. This is particularly important when calculating complete Jacobians
and Hessians of expressions with embedded integrators.

Multi-point integrator outputs

In (3.27), we considered only two time points, the initial time t = 0 and the
end time t = 1. This means that if we are interested in the output at a set of
points, we need to call the integrator repeatedly. In many situations, e.g. in
parameter estimation or if we wish to enforce path constraints at a finer grid
than the control discretization in direct multiple shooting, it is beneficial to
have the integrator output the state at a set of points.





Chapter 8

Towards a

structure-exploiting nonlinear

programming solver

In this chapter we report progress towards a code-generating NLP solver that
goes under the name SCPgen. SCPgen currently implements the lifted Newton
method for SQP as explained in Section 4.5. In contrast to the only other
implementation of lifted Newton at the time of writing, the LiftOpt package [23]
which relies on the operator overloading AD tool ADOL-C, SCPgen uses AD
by source code transformation in CasADi to generate symbolic expressions for
the mapping to and from a reduced-space QP subproblem. These symbolic
expressions can then either be evaluated in CasADi’s virtual machines or be
code-generated as C-code.

The goal is to extend SCPgen to become a parametric sequential convex
programming (SCP) solver generator, cf. Section 4.2, which can generate
structure-exploiting SCP solvers as self-contained C-code.

In the following, we present the usage and implementation of the solver in
Sections 8.1 and 8.2. We then demonstrate the effectiveness of the approach
by solving a large-scale parameter estimation problem in Section 8.3. We end
the chapter with an outlook for the tool, which at the time of writing was still
under development, in Section 8.4.
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8.1 Syntax and usage

As explained in Chapters 6 and 7 and demonstrated in Appendix A.3, CasADi
provides a very compact way of transcribing an OCP using a direct single
shooting approach. To allow a user to adopt such a code to a multiple shooting
transcription, we extend the CasADi symbolic environment with an operator
lift:

lifted expression = lift(expression to lift, expression for the initial guess)

This operator allows the user to instruct a built-in or interfaced solver to treat
a particular node in the computational graph as an equality constraint rather
than an assignment. In addition to the node to be lifted, it also takes a
second argument corresponding to an expression for the initial guess of the
lifted variable. This expression can e.g. be a measurement value, a simulation
or a parameter in the NLP solver.

The detection and reformulation of expressions containing lift instructions has
been implemented in SCPgen. To the user, SCPgen has the same syntax
as a solver for solving the reduced space NLP, while internally solving the
full space NLP. In particular, this allows a single shooting transcription like
that presented in Appendix A.3, to be modified into a multiple shooting
transcription by adding a single line of code.

8.2 Implementation

SCPgen implements the lifted Newton method for SQP as explained in
Section 4.5, generalized to support parametric NLPs – cf. (4.3) – and to allow
nonlinear bound constraints and a nonlinear objective function. It supports
both exact second derivatives or a Gauss-Newton Hessian approximation. As
a globalization strategy, it currently implements a line-search algorithm based
on an ℓ1 merit function. If no expressions are marked using the lift operator
introduced above, it behaves like a standard, sparsity-exploiting parametric
SQP code.

SCPgen is distributed along with CasADi and requires no additional depen-
dencies. As we shall see in the following, it relies heavily on CasADi’s ability
to do AD by source code transformation and, for best performance, C-code
generation.
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Symbolic preprocessing

During the initialization of the NLP solver, the user-provided NLP is first
decomposed into its defining symbolic expressions. By traversing the NLP
expression graph and identifying all lift instructions, two functions are
generated symbolically:

• a lifted parametric NLP

• a function that calculates an initial guess for the lifted variables

The latter is a function with the structure fguess : Rnu ×Rnp → Rnx that takes
the reduced space variables u = x0 ∈ Rnu (cf. Section 4.5) and parameters
p ∈ Rnp and calculates the initial guess provided as the second argument to
the lift instruction.

The lifted parametric NLP is essentially a parametric version of (4.9):

minimize
x, p

f(x, p)

subject to φ1(x0, p)− x1 = 0,
φ2(x0, x1, p)− x2 = 0,

...
φN (x0, . . . , xN−1, p)− xN = 0,

p = p, x ≤ x ≤ x, h ≤ h(x, p) ≤ h.

(8.1)

The steps presented in Section 4.5 are then performed on (8.1), generalized to
the allow nonlinear bounds and a nonlinear objective function as well as the
parameter p, i.e.:

• Symbolically creating the function z(u, d, p), a generalization of z(u, d)
defined by Algorithm 4.2.

• Generating symbolic expressions for (the generalized) a and Av, for an
unknown vector v using the forward mode of AD by SCT as shown in
(4.17) and, with V = v, (4.21a).

• Using the reverse mode of AD by SCT to generate new expressions
corresponding to the gradient of the Lagrangian ∇xL(x, λx, λh, ν), cf.
(4.18). As a by product of this calculation, we also get expressions for
calculating the parametric sensitivities, cf. (4.4).
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• Generating expressions for w and W ′ using the forward mode of AD by
SCT as shown in (4.18) and (4.21b).

• Generating expressions for (the generalized) b and B v using the reverse
mode of AD by SCT as shown in (4.20) and (4.21c).

• Generating expressions for the potentially sparse matrices A and B using
the standard routines for Jacobian calculation by SCT. For B, symmetry
is exploited.

• Generating an expression for calculating the full space step ∆x given the
reduced space solution, cf. (4.22), using forward mode AD by SCT.

• Generating an expression for calculating the new multipliers ν(k+1) given
the reduced space solution, cf. (4.23), using reverse mode AD by SCT.

We refer to Albersmayer and Diehl [23] for a discussion on how to handle the
Gauss-Newton case.

The final result of the symbolic preprocessing is five function objects for
calculating

1. an initial guess for the lifted variables,

2. the matrices of the condensed QP,

3. the vectors of the condensed QP,

4. the primal-dual solution of the full space QP given the solution to the
condensed QP as well as

5. the parametric sensitivities as well as the residual in the KKT conditions.

Code-generation

The five functions resulting from the symbolic preprocessing represent, along
with the QP solution, the vast majority of the computational effort in the SQP
algorithm. This effort can be made up to an order of magnitude smaller by
generating C-code for the functions as explained in Section 6.6.

SQP main loop

The remainder of the code is basic SQP algorithm with a line-search algorithm
based on the ℓ1 merit function. This part of the code is currently not code
generated.
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8.3 Example: Parameter estimation for the shallow-

water equations

To assess the performance of the code, we consider the following two-
dimensional hyperbolic PDE describing the propagation of water waves in a
basin [23,188]:







∂u

∂t
(t, x, y) = g

∂h

∂x
(t, x, y)− p1 u(t, x, y),

∂v

∂t
(t, x, y) = g

∂h

∂y
(t, x, y)− p1 v(t, x, y),

∂h

∂t
(t, x, y) = −p2

(
∂h

∂x
(t, x, y) +

∂h

∂y
(t, x, y)

)

,

(8.2)

for t ∈ [0, T ] and (x, y) ∈ Ω. We see how velocity (u, v) and height h of
the water surface evolve in time t and space (x, y). In addition to standard
gravity g, the model has the parameters p1 corresponding to viscous drag and
p2 corresponding to mean height.

As a spatial domain, we choose a quadratic region with side length L = 0.02 m,
i.e. Ω = [0, L]× [0, L]. We assume that the walls are reflecting, i.e. u and v are
zero at the boundary of Ω.

As initial conditions we take:






u(0, x, y) = 0,

v(0, x, y) = 0,

h(0, x, y) =
{
hsp cos (3π d(x, y)/2 rsp) if d(x, y) ≤ rsp/3,
0 otherwise,

(8.3)

with d(x, y) =
√

(x− xsp)2 + (y − ysp)2. This models a water drop with radius
rsp and height hsp falling to an otherwise calm surface. It hits the surface
at the point (xsp, ysp) in the (x, y) plane. In our calculations, we shall use
rsp = 0.03 m, hsp = 0.01 m, xsp = ysp = 0.04 m.

In Figure 8.1, we illustrate the dynamic model (8.2) with initial conditions
given by (8.3).

To solve the problem, we use a uniform discretization in space with n-by-n grid
points. We use U(t) ∈ Rn+1×n, V (t) ∈ Rn×n+1 and H(t) ∈ Rn×n to denote
the corresponding “meshed” state variables. This allows us to calculate the
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Figure 8.1: The shallow water equations; Snapshot of the water basin at t =
370 ms. For the simulation, p1 = 4 s−1 and p2 = 0.01 m were used.

following discrete-time dynamics of an interval ∆t = 0.01 s:

F : Rn+1×n × Rn×n+1 × Rn×n × R2 → Rn+1×n × Rn×n+1 × Rn×n

(U1, V1,H1, p) 7→ (U2, V2,H2)






PDE (8.2),
p = (p1, p2),
U(t1) = U1, V (t1) = V1, H(t1) = H1,
U2 = U(t2), V2 = V (t2), H2 = H(t2).

(8.4)

As in Albersmayer and Diehl [23], we discretize time using a fixed-step leapfrog
integration scheme with 100 time steps of length 0.0001 s. This results in an
explicit discrete-time one-step integrator scheme as encountered in Sections 3.10
and 7.1. The integrator scheme can be efficiently implemented using only high
level matrix operations in CasADi, giving a symbolic representation of the NLP
with only matrix-valued operations.
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This NLP can be written compactly as:

minimize
U, V,H, p

100∑

k=1

1
2
‖Hk −Hk‖

2
F

subject to U0 = 0, V0 = 0, H0 = H0,
(Uk+1, Vk+1,Hk+1) = F (Uk, Vk,Hk, p), k = 0, . . . , 99
p ≤ p ≤ p,
Hk ≥ 0, k = 1, . . . 100,

(8.5)

where H0 is the discretized initial condition for H(t) given from Equation (8.3)
and Hk, k = 1, . . . , 100 are given measurement values for the H(t). We simulate
measurement values in advance by adding noise to a forward simulation with
p1 = 2 s−1 and p2 = 0.01 m.

We solve (8.5) using SCPgen in two ways. First, we solve it using single
shooting, i.e. by sequentially eliminating the state trajectory, leaving only
p are free parameters. Secondly we solve it using multiple shooting, by lifting
Uk, Vk and Hk at all 100 intervals. We note at this point at in Albersmeyer
and Diehl [23], only Hk is lifted. Another important difference compared to
Albersmeyer and Diehl is that we use dual feasibility as opposed to step size
as a stopping criterion in Gauss-Newton SQP.

The results for a 30-by-30 grid and using a Gauss-Newton Hessian approxi-
mation is shown in Table 8.1. We use a forward simulation to initialize the
lifted variables. Note that in the lifted case, this corresponds to an NLP with
274142 variables and 364140 constraints. The full-space Hessian, never formed
explicitly, has a block diagonal structure consisting of 100 dense blocks of 30200-
by-30200 variables. This means that there are around 1011 nonzeros in the
Hessian making it unsuitable to solve with general-purpose sparsity-exploiting
QP solvers.

The results in Table 8.1 largely agree with those reported in [23], but the time
per iteration is of the order four times shorter compared to LiftOpt. This can
to a large extent be attributed to the code generation. In Table 8.2, we see the
same table, but using an exact Hessian.

Using an exact Hessian, the solution times are around 5 times greater than for
Gauss-Newton and the memory overhead is larger.

A spatial discretization of 30-by-30 points is a very crude discretization for the
problem at hand. In Tables 8.3 and 8.4, we show the results for a finer grid
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Table 8.1: Parameter estimation for the 2D shallow water equations with Gauss-
Newton Hessian, 30-by-30 grid points

drag depth iter ss time ss iter ms time ms

0.5 0.01 5 24.56 4 33.92

5 0.01 5 23.82 4 34.01

15 0.01 7 32.31 6 47.74

30 0.01 10 45.51 7 55.15

2 0.005 17 73.74 6 47.87

2 0.02 17 74.98 6 49.44

2 0.1 23 98.31 20 147.6

0.2 0.001 18 79.41 9 69.44

1 0.005 14 62.38 6 47.83

4 0.02 14 62.3 6 47.98

1 0.02 16 70.32 6 48.09

20 0.001 16 70.51 6 48.46

Table 8.2: Parameter estimation for the 2D shallow water equations with exact
Hessian, 30-by-30 grid points

drag depth iter ss time ss iter ms time ms

0.5 0.01 6 85.89 5 147.2

5 0.01 6 85.91 5 141.4

15 0.01 9 124.2 6 166.2

30 0.01 16 225.2 7 192.5

2 0.005 22 301.8 6 171

2 0.02 24 318.8 6 170.1

2 0.1 21 291.3 45 1227

0.2 0.001 22 295.7 ∞ ∞

1 0.005 25 342 7 198.9

4 0.02 19 254.6 7 197.9

1 0.02 14 187.3 6 169.8

20 0.001 25 336.4 9 245.5

with 100-by-100 points. The multiple shooting NLP then has of the order 30
million variables.

It is interesting to note that due to the high level formulation of the problem,
using only matrix operations, the most expensive function corresponding to
the evaluation of the matrices in the condensed Hessian, can be represented as
a C-function with only 2369 lines of code. The compilation time using Clang
and -O3 code optimization, is only 7 seconds. This is small compared to the
around 40 seconds for a single iteration of the NLP.

Table 8.3: Parameter estimation for the 2D shallow water equations with Gauss-
Newton, 100-by-100 grid points

drag depth iter ss time ss iter ms time ms

0.5 0.01 5 313.7 4 415.8

5 0.01 5 316 5 502.1

15 0.01 7 428.6 6 589.1

30 0.01 8 471 7 675.4

2 0.005 14 829.8 8 761.8

2 0.02 13 747.2 7 674.4

2 0.1 30 1545 32 2861

0.2 0.001 19 1049 9 852.6

1 0.005 16 879.5 8 760.9

4 0.02 13 718.3 7 672.7

1 0.02 16 854.9 8 759.2

20 0.001 14 763.5 7 674.6
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Table 8.4: Parameter estimation for the 2D shallow water equations with exact
Hessian, 100-by-100 grid points

drag depth iter ss time ss iter ms time ms

2 0.01 0 49.62 2 238.9

0.5 0.01 5 299.2 9 858.5

5 0.01 5 302.5 8 792.5

15 0.01 7 406.6 10 982

30 0.01 8 456.7 11 1089

2 0.005 14 744.7 11 1044

2 0.02 13 692.5 13 1215

2 0.1 30 1516 45 4200

0.2 0.001 19 1009 12 1132

1 0.005 16 842.5 10 943.5

4 0.02 13 696.7 15 1428

1 0.02 16 839 14 1306

20 0.001 14 755.6 11 1054

8.4 Conclusion and outlook

In this chapter, we have presented a novel implementation of the lifted Newton
method for SQP presented in Section 4.5. The implementation, called SCPgen,
uses AD by source code transformation in CasADi and supports generating
optimized C-code for the condensed QP.

As mentioned in the introduction of the chapter, SCPgen is still under
development and a substantial programming effort is still required before it
can be considered competitive with existing state-of-the-art NLP solvers. In
the following, we list some of the extensions planned for SCPgen.

Globalization

SCPgen currently implements a very basic line-search globalization using an ℓ1

merit function. While this does indeed work satisfactory for many problems,
it often requires manual tuning of the line-search parameters. Globalization
techniques that do not suffer from this include filter line-search and trust-region
methods as mentioned in Section 4.4.

Regularization

Another related issue is regularization, also known as convexification, of the
QP. This is required since most QP solvers cannot handle indefinite QPs, and
even if a solution is found, it can not be guaranteed to give a descent direction
for the line-search. SCPgen currently uses a rudimentary regularization based
on shifting all the eigenvalues (by adding a multiple of the identity) until the
Hessian is guaranteed to be positive semi-definite according to Greshgorin’s
circle theorem. This leads to an overly conservative approach. As an
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alternative, the indefinite QP can be solved locally using e.g. IPOPT [179]
(configured to work as a QP solver). Clearly, this is not a satisfactory approach.

Scaling

Scaling of the full-space NLP is important, in particular to avoid that the
reduced space QP becomes too ill-conditioned. In SCPgen, the scaling can be
done as part of the symbolic preprocessing.

Matrix-free QP solution

As mentioned in Section 4.5, the lifted Newton method for SQP can also be
used together with a matrix-free QP solution. This represents an attractive
alternative when the reduced space QP is neither small nor very sparse.

Sequential convex programming

The lifted Newton method for SQP readily extends to SCP. This is an attractive
extension, especially since the symbolic framework in CasADi can be made to
automatically detect convex subproblems present in NLPs. The detection and
reformulation can rely on the rules for disciplined convex programming used to
solve convex optimization problems in nonstandard form in e.g. CVX [99,100].

Code-generation of the main optimization loop

Currently, the main optimization loop including the line-search and regulariza-
tion is not code-generated. By adding code-generation also for this part as well
as for the interface to the QP solver, it is possible to generate an SCP method
in completely self-contained C-code to be used e.g. on an embedded system.

Real-time iterations

The code generation currently generates separate functions for evaluating the
matrices and the vectors in the reduced space QP. In nonlinear model predictive
control (NMPC) implementing real-time iterations [70], the calculation of the
matrices is moved to a so-called preparation phase. This allows the NMPC
controller to provide faster feedback.



Chapter 9

Applications

The methods presented in previous chapters and their implementation in
CasADi has been used successfully both for method development and in
applications at multiple research groups.

Notable applications include trajectory optimization for tethered airfoils [105,
192], parameter estimation in systems biology [114, 168], quadcopter flight
control [95,96], remote sensing for unmanned aerial vehicles [112], time-optimal
path-following flight control [170, 171, 172], geothermal electricity production
[182], control of chemical reactors [137], control of combined-cycle power plants
[128], optimization of production from oil wells [149] and spacecraft trajectory
optimization for gravity assisted transfers to lunar orbit [106].

Notable non-standard optimal control methods whose implementation was
made possible using CasADi include adjoint-based distributed multiple-
shooting [125, 162], robust periodic optimal control [94] and non-conservative
robust NMPC [137].

Finally, CasADi serves as the basis of other software codes, including several
optimal control solvers inside JModelica.org [20, 133, 144]. Applications
spurred indirectly via the CasADi-based solvers in JModelica.org include multi-
objective MPC [146] and automotive control [141]. CasADi is also used in the
RAWESOME code for airborne wind energy optimization and control [14] and
gILC [176] for iterative learning control. Finally, CasADi has been used to
implement direct collocation methods for OpenModelica [166].

In this last chapter, we provide some detail on two of these applications. In
Section 9.1, we present a robustified state and control parameterization and

113
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show how it can be used to control an industrial batch polymerization process.
The second highlighted application is the startup optimization of a combined-
cycle power plant, using a model written in the Modelica modeling language
in Section 9.2.

9.1 Robust control of an industrial batch reactor

In the following we present one way of implementing a robust controller for an
industrial reactor. We start by describing the dynamic model for the reactor
and then describe the optimal control problem, which amounts to a nonlinear
model predictive control (NMPC) formulation with economic cost function. To
get a controller that is robust against uncertainties in the model parameters,
we use a robust NMPC formulation as suggested by Lucia et al. [139,140]. This
allows us to define and efficiently implement robustified versions of the three
direct methods presented in Chapter 2. Finally, we discuss numerical results in
the open-loop case. This application is the result of joint work with BASF SE
and Sergio Lucia at the Technische Universität Dortmund. It was was carried
out as part of the EMBOCON European Project for embedded optimization
and control.

The focus of the following discussion is the formulation of the OCP and
transcription into an NLP. For more discussion on the numerical results, we
refer to [137].

A batch polymerization process model

The process under consideration is a batch polymerization reactor for
production of complex chemical molecules (polymers) out of simpler molecules
(monomers). The reactor consists of a jacketed vessel which is cooled by a
constant flow of cooling water through the jacket. In addition to the cooling
water, an external heat exchanger can be used to heat or cool the reactor. The
process begins when a mixture of water and monomer is injected into the reactor
and ends when a sufficient fraction of the monomer has been polymerized and
extracted from the reactor. This is an exothermic process with a reaction
rate that has a highly nonlinear temperature dependence. The process is also
subject to considerable uncertainties.

The dynamic behavior of the reactor is modeled using the following system
of ordinary differential equations, provided by BASF SE. It corresponds to an
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industrial reactor for production of polypropylene from propene:

ṁW = µF (1− wM) (9.1a)

ṁM = µF wM − kR m̃M − kP mX
mM

m
(9.1b)

ṁP = kR m̃M + kP mX
mM

m
(9.1c)

ṪR =
1

cR m
[µF cF (TF − TR)− hA (TR − TV)

−µX cR (TR − TP) + hR kR m̃M] (9.1d)

ṪV =
1

cV mV
[hA (TR − TV)− hA (TV − TJ)] (9.1e)

ṪJ =
1

cW mMC

[
µMC cW

(
T IN

J − TJ

)
+ hA (TV − TJ)

]
(9.1f)

ṪP =
1

cR mX
[µX cW (TR − TP)]− α (TP − TX) + kP

mM

m
mX hR] (9.1g)

ṪX =
1

cW mXC

[
φXC cW (T IN

X − TX)− α (TX − TP)
]

(9.1h)

Here, the first three equations describe mass balances for the water in the
reactor (9.1a), the monomer (9.1b) and the polymer (9.1c). The next four
equations describe the energy balances for the reactor (9.1d), the vessel (9.1e),
the jacket (9.1f), the polymer exiting the external heat exchanger (9.1g) and
the coolant leaving the external heat exchanger (9.1h).

In Table 9.1, we summarize the variables and constants entering in (9.1). The
actual numerical values have been left out as requested by BASF SE. We have
also defined the following auxiliary variables:

h =
mW

m
hWS +

mM

m
hMS +

mP

m
hPS, m̃M = mM

(

1−
mX

m

)

,

k = k1
mM

mM +mP
+ k2

mP

mM +mP
, m = mW +mM +mP,

kR = k0 k exp
(

−
Ea

RTR

)

, kP = k0 k exp
(

−
Ea

RTP

)

.
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Table 9.1: Variables and constants in the polymerization model

States x Description
mW Water mass
mM Monomer mass
mP Polymer mass
TR Reactor temperature
TV Vessel temperature
TJ Jacket temperature
TP External heat exchanger polymer temperature
TX External heat exchanger coolant temperature

Controls u Description
µF Feed flow of the water/monomer mixture
T IN

J Jacket inlet temperature
T IN

X External heat exchanger inlet temperature

Constants Description
Uncertain:
hR Specific reaction enthalpy
k0 Specific reaction rate
Certain:
A Jacket surface
cW Specific heat capacity of water (at constant pressure)
cR Specific heat capacity of the reactor (at constant pressure)
cF Specific heat capacity of the feed (at constant pressure)
cV Specific heat capacity of the vessel (at constant pressure)
Ea Activation energy
hWS Heat transfer coefficient, water to steel
hMS Heat transfer coefficient, monomer to steel
hPS Heat transfer coefficient, polymer to steel
k1, k2 Reaction parameters
mX External heat exchanger polymer mass
mXC External heat exchanger coolant mass
mMC Jacket coolant mass
mV Vessel steel mass
R Gas constant
TF Feed temperature
wM Monomer mass fraction in feed
α Product of surface area and heat transfer coefficient for

external heat exchanger
µXC External heat exchanger coolant flow
µMC Coolant flow through the jacket
µX Polymer flow through the jacket
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Optimal control problem formulation

The problem under consideration is to control the plant to minimize the total
batch time while respecting hard constraints on the temperatures. We shall
use an NMPC scheme, trying to find the optimal controls for a time horizon
of tf. Since the total batch time is defined as the point in time when the
polymer mass mP reaches a certain value, we choose as the objective function
to maximize mP at the end of the time horizon. We get the following problem
formulation:

minimize
x,u

−mP(tf)

subject to Equation (9.1)
x(0) = x0

u ≤ u(t) ≤ u, x ≤ x(t) ≤ x, t ∈ [0, tf]
∫ tf

0

µF(t) dt ≤ mmax
F

∫ tf

0

(
hR ṁM

mcR
−
mM hR (ṁM + ṁW + ṁP)

m2 cR
+ ṪR

)

dt ≤ Tmax
ad

(9.2)

In addition to the differential equation (9.1) with given initial conditions, there
are bounds on the state and control trajectories. There are also two constraints
formulated as quadratures. The first one represents an upper bound on the total
amount of monomer remaining to be injected into the reactor and the second
one is a safety constraint that ensures that the exothermic reaction will not
cause the plant to “blow up”, should the cooling system break down.

Solving (9.2) gives a solution trajectory for the controls u. Using the model
predictive control paradigm, the first part of this optimal control trajectory is
then fed into the system. The time horizon is then shifted and the problem
resolved for new initial conditions.

A non-conservative robust NLP transcription

In the OCP formulation (9.2), we assumed all the model parameters (which
are constants in the OCP) to be known with certainty. In reality, there are
considerable uncertainties which can have large implications on the calculated
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optimal control trajectories. When it is not possible to estimate such
parameters, a popular way to take this into account is to use a min-max
formulation as proposed by e.g. Scokaert and Mayne [165]. This means
searching for the best solution (in some sense) that satisfies the constraints
for any realization of the uncertain model parameters. In practice, however,
a min-max formulation can be overly conservative and may fail to find any
feasible solution. Therefore, Lucia et al. [139,140] proposed a less conservative
approach to robust NMPC, which we shall employ here. Rather than to search
for a solution for any realization of the uncertain parameters, we shall look for a
solution that satisfies the constrains for a finite set of parameter combinations.

For the polymerization process, there are two uncertain model parameters,
namely (hR, k0) as indicated in Table 9.1. These are given with nominal values
(hnom

R , knom
0 ) as well as lower (hmin

R , kmin
0 ) and upper (hmax

R , kmax
0 ) bounds. This

allows us to define the following set of realizations of the uncertain model
parameters:

R = { (hnom
R , knom

0 ), (hnom
R , kmin

0 ), (hnom
R , kmax

0 ),
(hmin

R , knom
0 ), (hmin

R , kmin
0 ), (hmin

R , kmax
0 ),

(hmax
R , knom

0 ), (hmax
R , kmin

0 ), (hmax
R , kmax

0 ) }
(9.3)

Robust direct control parameterization

Our task is thus to find a control trajectory that gives a feasible solution
for all of these nine combinations. For this we modify the traditional direct
control discretization described in Section 2.3 taking into account the possible
parameter realization. This gives rise to a scenario tree with different scenarios
for the state trajectory as illustrated for the first two control intervals in
Figure 9.1. For comparison, we also show standard (non-robust) NMPC in
Figure 9.2. For clarity of the presentation, we show only three out of the nine
parameter realizations.

In Figure 9.1, we get different possible values for the state at t = t1
corresponding to the same value for the control but with different parameter
realizations. It also, perhaps counter-intuitively, splits up further for t = t2.
While this is mainly important to be able to handle time-varying disturbances,
it is also useful to be able to prove recursive feasibility and stability for the
NMPC scheme. For details on this, we refer to [138].

To avoid an exponential increase in the number of states, branching of the
state trajectory is only done during the robust horizon, i.e. the first L control
intervals. For the remaining control interval, the uncertainty realization is
kept constant. Using x

(i1,...,ik)
k and u

(i1,...,ik)
k to denote the state and control
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Figure 9.1: Robust NMPC: Scenario tree for the first two control intervals

x0 x1(x0, u0;R1) x2(x1, u1;R1)

Figure 9.2: Standard NMPC: Two first control intervals

values corresponding to the uncertainty realization (Ri1 , . . . ,Rik ) for the first
k control intervals, this gives discrete time dynamics of the form:







x
(i1,...,ik,j)
k+1 = Fk(x(i1,...,ik)

k , u
(i1,...,ik)
k ;Rj),

∀(i1, . . . , ik, j) ∈ [1, 9]k+1,
k = 0, . . . , L− 1

x
(i1,...,iL)
k+1 = Fk(x(i1,...,iL)

k , u
(i1,...,iL)
k ;RiL),

∀(i1, . . . , iL) ∈ [1, 9]L,
k = L, . . . ,K − 1

(9.4)

We also impose the path constraints accordingly, cf. (2.16) from Chapter 2:







u ≤ u
(i1,...,ik)
k ≤ u, ∀(i1, . . . , ik) ∈ [1, 9]k, k = 0, . . . , L− 1

u ≤ u
(i1,...,iL)
k ≤ u, ∀(i1, . . . , iL) ∈ [1, 9]L, k = L, . . . ,K − 1

x ≤ x
(i1,...,ik)
k ≤ x, ∀(i1, . . . , ik) ∈ [1, 9]k, k = 1, . . . , L

x ≤ x
(i1,...,iL)
k ≤ x, ∀(i1, . . . , iL) ∈ [1, 9]L, k = L+ 1, . . . ,K

(9.5)
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Furthermore augmenting the state x with two new entries for the two
quadratures in (9.2) gives a discrete time OCP of the form:

minimize
x, u

−
∑

s∈[1,9]L

ωs (mP)sK

subject to x0 = x0

Equation (9.4)
Equation (9.5)
h(xsK) ≤ h,

(9.6)

where we have used a weighted combination of all the scenarios as the cost
function. The weighting factors ωs are chosen to give all scenarios equal weight.

This allows us to modify the direct optimal control methods from Chapter 2
giving three new methods, namely

1. a robustified direct single shooting method by completely eliminating the
state trajectory from the NLP,

2. a robustified direct multiple shooting method by keeping the state
trajectory in the NLP as well as

3. a robustified direct collocation method by also including the state at the
integrator steps in the NLP.

For more detail on the here presented robust NMPC formulation, we refer to
Lucia et al. [140].

Implementation

Both a robustified direct multiple shooting and a robustified direct collocation
were implemented and used to solve the problem. In the direct multiple
shooting case, CasADi’s interface to CVODES [113]. In the direct collocation
case, Radau collocation points were used with interpolating polynomial of
second order and two finite elements per collocation interval. In both cases a
prediction horizon of K = 30 steps was chosen. The resulting NLP was solved
with IPOPT [179]. For more detail on the implementation, we refer [137].

Conclusions and outlook

In Figure 9.3, we show numerical results for the proposed controller. The
topmost plot shows the evolution of the reactor temperature TR, which is



STARTUP OPTIMIZATION OF A COMBINED-CYCLE POWER PLANT 121

0.0 0.5 1.0 1.5 2.0
88
90
92
94

T
R

 [
◦C

]

0.0 0.5 1.0 1.5 2.00
1000
2000
3000

m
A

 [k
g]

0.0 0.5 1.0 1.5 2.00
10000
20000
30000

ṁ
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Figure 9.3: Evolution of the reactor temperature for the proposed non-
conservative robust NMPC (top), standard NMPC (middle) and worst-case
NMPC (bottom). Different trajectories correspond to different realizations of
the model uncertainty.

subject to safety critical bounds depicted with dashed lines. The nine curves in
the figure correspond to different realizations of the uncertain parameters. We
see that all realizations remain within the safety-critical bounds. This result
is contrasted with the same curves for standard NMPC in the middle figure
and worst-case (conservative) NMPC in the bottom figure. We see that while
standard NMPC fails to satisfy the temperature bounds for some uncertainty
realizations, worst-case NMPC behaves overly conservatively, hence sacrificing
optimality.

For more detailed results, we refer [137].

At the time of writing, experimental validation of the proposed controller was
underway at the BASF SE facility in Ludwigshafen, Germany.

9.2 Startup optimization of a combined-cycle power

plant

A relevant and challenging dynamic optimization problem is the minimal
time start-up of combined cycle power plants (CCPP). These plants, which
are often used for peak-load electricity production, are frequently started up
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and shut down causing large energy losses as well as strains in components,
shortening their lifetimes and potentially leading to catastrophic failure. By
using optimization-based control techniques such as nonlinear model predictive
control (NMPC) [77], it is possible to minimize fuel use to (grid) electricity
production, while at the same time respecting these hard constraints on strains
and pressures.

In the following, we make a brief overview of the optimization problem. It
highlights the possibility to import complex dynamic models from physical
modeling languages as described in Section 6.2. The results about the tool
coupling below were first presented in Andersson et al. [26]. These results
were then extended with more focus on the actual optimization problem and
presented by Larsson et al. [128]. The condensed presentation in the following
follows closely that of Andersson et al. [27].

Dynamic model

To model the plant, we use a first-principle model of the plant written in the
physical modeling language Modelica [17] as well as Optimica [20], an extension
of Modelica allowing the formulation of dynamic optimization constructs such
as cost functions and constraints.

A schematic diagram of the model, which was developed by Casella et al. [58],
is shown in Figure 9.4. It consists of a gas turbine and a steam turbine made
up of an economizer, an evaporator and a superheater. For details of the model
and the optimal control problem formulation, the minimum time start-up under
a turbine rotor stress constraint, we refer to [58].

Model import into CasADi and NLP transcription

We use JModelica.org [20] to translate Modelica/Optimica code into an OCP
in DAE with 10 differential states and 127 algebraic variables. The objective
is an Lagrange-type cost function. This OCP is then exported in a symbolic
XML-based format and imported into CasADi as reported in [26]. With the
model now completely formulated as symbolic expressions in CasADi, the OCP
can be used and manipulated just like the OCP formulated natively in CasADi.

To reformulate the OCP to an NLP, we choose direct collocation approach on
40 finite elements using fourth order Radau points as described in Section 2.6.
This implementation is freely available as part of the JModelica.org package. A
first prototype of the CasADi-based collocation implementation was presented
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Figure 9.4: A combined cycle power plant

in [26] and was a translation of an earlier C-based implementation [20]. It was
later completed and extended in [144].

Solution using CasADi and IPOPT

The NLP was solved in [144] using CasADi’s interface to IPOPT (version 3.10)
using MA27 as the linear solver. With default options and exact Hessian of the
Lagrangian calculation using CasADi’s AD framework, IPOPT’s primal-dual
interior point method needed 79 iterations to converge to the optimal solution.
A break-up of the timings into NLP solver initialization as well as the IPOPT
internal and CasADi internal part of the NLP solution time, is shown in Table
9.2.

As seen in the table, over 80 % of the NLP solution time was spent in IPOPT
internally (mainly in the linear solver). The 0.8 s solution time should compared
with 46 s needed by a previous implementation of the same method, based on
the general purpose AD tool CppAD [5] applied to generated C code. This in
addition to being implemented in a high level language (Python) rather than
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Table 9.2: Timings for the CCPP example [144]

Solution step Time

OCP-to-NLP transcription and solver initialization 4.2 s
IPOPT internally and linear solver (MA27) 4.0 s
NLP function and derivative evaluation in CasADi 0.8 s

C. As shown in Chapter 6, the time spent in CasADi can be cut further by up
to a factor five by generating C-code for the NLP functions.

For more detail on this optimization problem, we refer to Larsson et al. [128].



Chapter 10

Conclusion

In this thesis, we have presented methods and software aimed at making
derivative-based numerical optimization in general and simulation-based op-
timization in particular more accessible to users in academia and industry. By
drastically lowering the effort needed to implement the methods, it becomes
easier for researchers to prototype new optimization codes and for advanced
users to tailor an optimization algorithm to a particular application.

10.1 Summary with highlights

Chapters 2, 3 and 4 are background chapters aimed at giving readers a brief but
relatively self-contained introduction into dynamic optimization, algorithmic
differentiation and nonlinear programming. It corresponds essentially to the
kind of background needed to be able to use a software package such as CasADi
efficiently. The only real contribution in these chapters is the presentation of
the lifted Newton method for SQP in Section 4.5, we believe is more accessible
than previous presentations of the method.

In Chapter 5, we presented a novel algorithm for QP condensing. This
algorithm was shown to be equivalent to the condensing algorithm, used for
nearly 30 years in numerous applications of model-based control and estimation,
but with quadratic instead of cubic complexity in the prediction horizon. We
also pointed out variants of the approach that we believe are useful in the
context of first order methods for optimal control.

In Chapter 6, we presented the freely available software framework CasADi,

125



126 CONCLUSION

which is the main contribution of this thesis. We primarily discussed the
implementation of the tool, referring to CasADi’s user guide [28] as well as
a brief tutorial in Appendix A, for a more comprehensive introduction into
the syntax and usage. Although the main focus of CasADi is ease-of-use,
the chapter also includes a benchmarking section which suggests that CasADi
competes favorably against the state-of-the-art algebraic modeling language
AMPL in terms of raw numerical efficiency.

In Chapter 7, we proposed a way to efficiently embed solvers of initial-
value problems in ordinary or differential-algebraic equations into symbolic
expressions. This relieves users of the complex and often error-prone task of
formulating and efficiently solving the forward and adjoint sensitivity equations.
In particular, this drastically reduces the effort needed to implement shooting-
based method for optimal control.

In Chapter 8, we presented work towards a general-purpose structure exploiting
and code-generating NLP solver called SCPgen. The main purpose of this tool
is to address the solution of the NLPs arising in multiple shooting type methods.
These NLPs are often large, but not sparse enough to be handled efficiently
by existing general-purpose NLP solvers. We presented preliminary numerical
results for the solver that confirm that the solver can indeed be used to solver
very large, but structured, NLPs efficiently.

Finally in Chapter 9, we gave an overview of results that have been generated
using CasADi to date. This includes results from several different research
groups, results that in many cases have been generated with very little
interaction with the developers of CasADi. This suggests that CasADi has the
potential of establishing itself as a standard tool for numerical optimization.
Two applications were highlighted, the control of a chemical reactor using a
novel optimization-based control scheme and the startup optimization of a
combined cycle power plant using a model defined in the Modelica physical
modeling language.

10.2 Future research directions

The algorithms and software presented have already proven useful for real-world
applications. By incrementally improving CasADi, we intend to address ever
larger and more challenging problems.
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New problem classes for CasADi

It is possible to extend CasADi to handle new classes of problems, in particular
including mixed-integer NLPs (MINLPs). This would in turn greatly facilitate
the transcription and solution of mixed-integer OCPs (MIOCPs). This would
require the addition of solvers or interfaces for MINLPs as well as an extension
of the symbolic framework to efficiently handle flow control.

Another interesting extension is support for OCPs in partial-differential
equations (PDEs). Such a support is possible either by extending the
symbolic framework or by a tight coupling with existing tools for modeling
and simulation of PDEs such as FEniCS/DOLFIN/dolfin-adjoint [74,135,136].

Structure-exploiting nonlinear programming

As was mentioned in Chapter 8, a possible extension of SCPgen is to
implement the rules for disciplined convex programming [99]. Rather than to
reformulate convex optimization problems in nonstandard form as is done by
e.g. CVX [100], it is possible to use these rules to detect and exploit convex
substructures in (nonconvex) NLPs. The resulting structured NLP can then
be solved using methods for sequential convex programming as described e.g.
in the dissertation by Tran-Dinh [169].





Appendix A

Tutorial to optimal control

with CasADi

In the following, we provide a short tutorial of how to solve the minimal fuel
orbit transfer problem presented in Section 2.1 using CasADi via its Python
front-end. The discussion is intended to be self-contained but mainly intended
to convey the general solution approach. It is our hope that also readers not
proficient with the Python programming language will be able to grasp the
main concepts. We also invite users to revisit Section 6.2, before reading the
tutorial. For a more detailed discussion, we refer to CasADi’s user guide [28].
After encoding the model in CasADi in Section A.1, we show how it can be
solved using direct collocation in Section A.2 and direct single shooting in
Section A.3. The syntax corresponds to CasADi v1.8.0beta.

A.1 Physical modeling

We start by encoding the model equations from Section 2.1:
from casadi import *
import numpy as NP

# Physical parameters
mu = 398600.4418 e9 # Earth ’s gravitational parameter
g0 = 9.80665 # Standard gravity [m/s **2]
R = 6378.1 e3 # Earth ’s radius [m]
def g(r): return mu/r**2 # Gravitational field as a function of r

# Spacecraft parameters
T_max = 180 e3 # Maximum thrust [N]
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Isp = 450. # Specific impulse [s]
beta = 1./( Isp*g0) # Inverse of the thruster velocity

# State vector with scaling factors and bounds
nx = 5 # Number of states
r_n = ssym("r"); r_s =1 e7; r=r_s*r_n; r_lb =0.; r_ub=inf
phi_n = ssym("phi"); phi_s =1; phi= phi_s* phi_n; phi_lb=-inf; phi_ub=inf
v_n = ssym("v"); v_s =1 e3; v=v_s*v_n; v_lb =0; v_ub=inf
gam_n = ssym("v_h"); gam_s =1; gam= gam_s* gam_n; gam_lb=-inf; gam_ub=inf
m_n = ssym("m"); m_s =1 e4; m=m_s*m_n; m_lb =10.0; m_ub=inf
x = vertcat (( r_n , phi_n , v_n , gam_n , m_n )) # State vector
x_s = NP. array( [r_s , phi_s , v_s , gam_s , m_s ]) # Scaling factor
x_lb = NP. array ([ r_lb , phi_lb , v_lb , gam_lb , m_lb ])/ x_s # Lower bound
x_ub = NP. array ([ r_ub , phi_ub , v_ub , gam_ub , m_ub ])/ x_s # Upper bound

# Normalized thrust
nu = 2 # Number of controls
u = ssym("u" ,2) # Control vector

# Spacecraft dynamics
dr = v*sin(gam)
dphi = v/r*cos(gam)
dv = -g(r) * sin(gam) + T_max/m * u[0]
dgam = (v/r - g(r)/v) * cos(gam) + T_max /(m*v) * u[1]

As was mentioned in Section 6.2, an alternative to performing the physical
modeling directly in CasADi like this is to import a description of the model
formulated in the physical modeling language Modelica [17].

Next, we specify the boundary conditions as described in Equation (2.3):

dm = -beta* T_max*sqrt(u [0]**2 + u [1]**2 + 1e -10)
xdot = vertcat (( dr , dphi , dv , dgam , dm )) / x_s

# Initial conditions , corresponding to a sun synchronous orbit (SSO )
r_0 = 200 e3 + R; phi_0 = 0.; v_0 = 5.5 e3; gam_0 = 2* pi /180.; m_0 = 40000.
x_0 = NP. array ([r_0 ,phi_0 ,v_0 ,gam_0 ,m_0 ]) / x_s

# Terminal conditions , corresponding to a circular orbit
r_f = 800 e3 + R; v_f = 7.5 e3; gam_f = 0.
x_lbf = NP. array ([r_f ,-inf ,v_f ,gam_f ,10.]) / x_s
x_ubf = NP. array ([r_f , inf ,v_f ,gam_f ,inf ]) / x_s

We constrain the thrust vector to the positive quadrant, i.e. u1(t) ≥ 0 and
u2(t) ≥ 0). And finally, following the suggestion in Cerf et al. [60], we set the
final time to 1483 seconds and use an initial guess for the solution trajectory
consisting of two thrust arcs:

# Bounds on the controls
def u_lb(t): return NP. array ([ -0. , -0.])
def u_ub(t): return NP. array ([ inf , inf ])

# Final time
tf = 1483. # s

# Optimal trajectory guess
def u0(t):

if t <500: return NP. array ([ .8, .6])
else : return NP. array ([ .0, .0])
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This completes the encoding of the model.

A.2 Direct collocation

We we now proceed to the solution using direct collocation. To simplify the
presentation, we choose to use a uniform control discretization with K = 500
intervals, but with only one finite element per control interval. We use Legendre
points of order d = 1, which means that Equation (2.22) becomes a mid-point
rule, cf. [43]:

τ1 := 0.5. (A.1)

The collocation equations will hence only be enforced once, in the middle of
each control interval. From (2.24) and (2.25) we can precalculate Cr,1 and Dr:

K = 500
d = 1
C = NP. array ([ -2 ,2])
D = NP. array ([ -1 ,2])

Using the symbolic expressions for the ODE we now form a function object
corresponding to the ODE right hand side:

dae_fcn = SXFunction ([x,u],[ xdot ]); dae_fcn .init ()

Next we declare the free variable in the NLP as a symbolic primitive of the
matrix-valued expression graph and create references to the section of the
variable corresponding to each control interval:

nv_k = (d+1)* nx+nu # Number of NLP variables per control interval
nv = nv_k*K + nx # Total number of NLP variables
v = msym("v",nv) # NLP variable vector

# Split NLP variables up by control interval
vk = [v[k*nv_k : min(nv ,(k+1)* nv_k )] for k in range(K+1)]

We are now ready to form symbolic expressions for the NLP objective functions
and constraints:

# Construct NLP
g = [] # NLP constraint vector
lbv = []; ubv = []; v0 = [] # Bounds and initial guess for NLP variables
lbg = []; ubg = [] # Nonlinear bounds
for k in range(K):

# Time at the beginning of interval
t = (k*tf )/K

# State at the beginning of the interval
xk_0 = vk[k][: nx]
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v0. append(x_0)
lbv. append(x_0 if k==0 else x_lb)
ubv. append(x_0 if k==0 else x_ub)

# Collocation point
xk_1 = vk[k][ nx :2* nx]
v0. append(x_0)
lbv. append(x_lb)
ubv. append(x_ub)

# Parametrized control
uk = vk[k][2* nx :]
v0. append(u0(t)); lbv. append(u_lb(t)); ubv. append(u_ub(t))

# Enforce the path constraint
g. append( inner_prod (uk ,uk )); lbg. append ([- inf ]); ubg. append ([1.0])

# Expression for the state derivative at the collocation point
xp = C[0]* xk_0 + C[1]* xk_1

# Add collocation equations to the NLP
[fk] = dae_fcn .call ([ xk_1 , uk])
g. append (( tf/K)* fk - xp)
lbg. append(NP. zeros(nx ))
ubg. append(NP. zeros(nx ))

# Expression for the state at the end of the finite element
xf = D[0]* xk_0 + D[1]* xk_1

# Add continuity equation to NLP
g. append(vk[k +1][: nx] - xf)
lbg. append(NP. zeros(nx ))
ubg. append(NP. zeros(nx ))

# State constraint and initial guess at end time
v0. append(x_0 ); lbv. append( x_lbf ); ubv. append( x_ubf)

# Objective function value
f = -vk[K][4] # -m, i.e. maximize mass

Finally, the expressions for the NLP are used to define an NLP solver instance,
here using CasADi’s interface to IPOPT [179]:

# NLP instance
nlp = MXFunction ( nlpIn(x=v), nlpOut(f=f,g= vertcat (g)))

# NLP solver instance
solver = IpoptSolver (nlp)
solver.init ()

# Pass initial guess and bounds on variables and constraints
solver. setInput (NP. concatenate (v0),"x0")
solver. setInput (NP. concatenate (lbv),"lbx")
solver. setInput (NP. concatenate (ubv),"ubx")
solver. setInput (NP. concatenate (lbg),"lbg")
solver. setInput (NP. concatenate (ubg),"ubg")

# Solve the problem
solver. solve ()
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Figure A.1: Solution for the orbital transfer problem using direct collocation

This forms an NLP with 5997 nontrivial variables, 5000 equality constraints
and 500 inequality constraints. The script presented in this section converges
to the solution shown in Figure A.1 after 40 iterations of IPOPT’s primal-dual
interior point methods using exact first and second order derivative information
provided by CasADi. The total solution time, including symbolic processing is
less than 1.5 seconds on 2.5 GHz MacBook Pro, out of which 0.15 seconds are
spent to evaluate derivatives and 0.35 seconds are spent internally in IPOPT
and in its linear solver, which here was ma27.

A.3 Direct single shooting

Next, we solve the same problem using the direct single shooting method
as presented in Section 2.4. It relies on the automatic sensitivity analysis
presented in Chapter 7.
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Using a control discretization of K = 20 and with the model equations already
declared exactly as in Section A.2, we start by declaring the NLP variable,
which is now only the sought controls:

K = 20 # Control discretization
v = msym("v",nu*K) # NLP variable vector

We also declare an instance of the CVODES integrator from the SUNDIALS
suite. The integrator integrates over an interval of length tf/K rather than 1,
assumed in the equations so far:

dae = SXFunction ( daeIn(x=x,p=u), daeOut(ode=xdot ))
F = CVodesIntegrator (dae)
F. setOption ("tf",tf/K) # Interval length
F.init ()

Using this function object, we can form a symbolic expression for the state at
the end time,

xk = x_0
for k in range(K):

uk = v[k*nu :(k+1)* nu] # Local control
F_out = F.call( integratorIn (x0=xk ,p=uk )) # Call the integrator
xk , = integratorOut (F_out ,"xf") # Retrieve the state

which in turn can be used to define the objective function and constraints of
the NLP. The constraint consists of two parts, the terminal constraints on r, v
and γ as well the the upper bound on the norm of u:

# Objective function value
f = -xk [4]

# NLP constraints
g = vertcat (( xk [[0 ,2 ,3]] , v [0::2]**2 + v [1::2]**2))
lbg = NP. concatenate (( x_lbf [[0 ,2 ,3]] , -inf*NP.ones(K)))
ubg = NP. concatenate (( x_ubf [[0 ,2 ,3]] , NP.ones(K)))

Finally, we pass this on to the NLP solver, where we again use IPOPT with
exact first and second order derivative information generated by CasADi:

# Allocate an NLP solver
nlp = MXFunction ( nlpIn(x=v), nlpOut(f=f,g=g))
solver = IpoptSolver (nlp)
solver.init ()

# Initial guess
v0 = NP. concatenate ([ u0(k*tf/K) for k in range(K)])

# Set bounds and initial guess
solver. setInput ( 0, "lbx")
solver. setInput ( inf , "ubx")
solver. setInput ( v0 , "x0")
solver. setInput ( lbg , "lbg")
solver. setInput ( ubg , "ubg")

# Solve the problem
solver. solve ()
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This optimization converges to the same solution as presented in Figure A.1
after 27 iterations. The solution time is considerably longer, 15 seconds, as can
be expected from using a variable-order, variable-step size integrator written
to mainly handle very large ODEs.





Appendix B

Derivative propagation rules

for embedded integrators

For completeness, and as a service to the reader, we state the derivative rules
for the extended integrator formulations proposed in Chapter 7.

B.1 Discrete-time one-step integrators

The derivation follows equivalently with the simplified setting in Section 7.1,
while handling implicit dynamics as in Section 3.10.

Forward mode

The forward derivative propagation rule for the function defined by Algo-
rithm 7.5 is shown in Algorithm B.1.
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Algorithm B.1 Definition of proposed F̂ :
Rnx × Rnu × Rnr × Rnv × Rnx×m × Rnu×m × Rnr×m × Rnv×m

→ Rnx × Rnq × Rnr × Rnp × Rnx×m × Rnq×m × Rnr×m × Rnp×m

input (x0, u, rN , v, X̂0, Û , R̂N , V̂ )

q0 = 0

Q̂0 = 0
for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
0 = Θ̂(xk, zk, u, X̂k, Ẑk, Û) ⊲ Solve for Ẑk
xk+1 = Φ(xk, zk, u)

X̂k+1 = Φ̂(xk, zk, u, X̂k, Ẑk, Û)

qk+1 = Ψ(xk, zk, u) + qk

Q̂k+1 = Ψ̂(xk, zk, u, X̂k, Ẑk, Q̂) + Q̂k
end for

pN = 0

P̂N = 0
for k = N − 1, . . . , 0 do

0 = Θ∗(xk, zk, u, rk+1, sk, v) ⊲ Solve for sk
0 = Θ̂∗(xk, zk, u, rk+1, sk, v, X̂k, Ẑk, Û , R̂k+1, Ŝk, V̂ ) ⊲ Solve for Ŝk
rk = Φ∗(xk, zk, u, rk+1, sk, v)

R̂k = Φ̂∗(xk, zk, u, rk+1, sk, v, X̂k, Ẑk, Û , R̂k+1, Ŝk, V̂ )

pk = Ψ∗(xk, zk, u, rk+1, sk, v) + pk+1

P̂k = Ψ̂∗(xk, zk, u, rk+1, sk, v, X̂k, Ẑk, Û , R̂k+1, Ŝk, V̂ ) + P̂k+1

end for

return (xN , qN , r0, p0, X̂N , Q̂N , R̂0, P̂0)
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To simplify the notation we have introduced:

Φ̂(xk, zk, u, X̂k, Ẑk, Û)

:=
∂Φ
∂x

(xk, zk, u) X̂k +
∂Φ
∂z

(xk, zk, u) Ẑk +
∂Φ
∂u

(xk, zk, u) Û , (B.1a)

Φ̂∗(xk, zk, u, rk+1, sk, v, X̂k, Ẑk, Û , R̂k+1, Ŝk, V̂ )

:=
∂Φ∗

∂x
(xk, zk, u, rk+1, sk, v) X̂k +

∂Φ∗

∂z
(xk, zk, u, rk+1, sk, v) Ẑk

+
∂Φ∗

∂u
(xk, zk, u, rk+1, sk, v) Û

+
∂Φ∗

∂r
(xk, zk, u) R̂k+1 +

∂Φ∗

∂s
(xk, zk, u) Ŝk +

∂Φ∗

∂v
(xk, zk, u) V̂ ,

(B.1b)

with Θ̂, Ψ̂, Θ̂∗ and Ψ̂∗ defined analogously.

Reverse mode

Similarly, the adjoint derivative propagation rule is shown in Algorithm B.2.

Φ̄∗(xk, zk, u, R̄k, S̄k, P̄ ) :=

[
∂Φ∗

∂r
(xk, zk, u)

]⊺

R̄k +
[
∂Θ∗

∂r
(xk, zk, u)

]⊺

S̄k +
[
∂Ψ∗

∂r
(xk, zk, u)

]⊺

P̄ ,

(B.2a)

Φ̄(xk, zk, u, rk+1, sk, v, X̄k+1, Z̄k, Q̄, R̄k, S̄k, P̄ ) :=

[
∂Φ
∂x

(xk, zk, u)
]⊺

X̄k+1 +
[
∂Θ
∂x

(xk, zk, u)
]⊺

R̄k +
[
∂Ψ
∂x

(xk, zk, u)
]⊺

Q̄

+
[
∂Φ∗

∂x
(xk, zk, u, rk+1, sk, v)

]⊺

R̄k +
[
∂Θ∗

∂x
(xk, zk, u, rk+1, sk, v)

]⊺

S̄k

+
[
∂Ψ∗

∂x
(xk, zk, u, rk+1, sk, v)

]⊺

P̄ , (B.2b)

with Θ̄, Ψ̄, Θ̄∗ and Ψ̄∗ defined analogously.
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Algorithm B.2 Definition of proposed F̄ :
Rnx × Rnu × Rnr × Rnv × Rnx×m × Rnq×m × Rnr×m × Rnp×m

→ Rnx × Rnq × Rnr × Rnp × Rnx×m × Rnu×m × Rnr×m × Rnv×m

input (x0, u, rN , v, X̄N , Q̄, R̄0, P̄ )

q0 = 0

V̄0 = 0
for k = 0, . . . , N − 1 do

0 = Θ(xk, zk, u) ⊲ Solve for zk
0 = Θ̄∗(xk, zk, u, R̄k, S̄k, P̄ ) ⊲ Solve for S̄k
xk+1 = Φ(xk, zk, u)

R̄k+1 = Φ̄∗(xk, zk, u, R̄k, S̄k, P̄ )

qk+1 = Ψ(xk, zk, u) + qk

V̄k+1 = Ψ̄∗(xk, zk, u, R̄k, S̄k, P̄ ) + V̄k
end for

pN = 0

ŪN = 0
for k = N − 1, . . . , 0 do

0 = Θ∗(xk, zk, u, rk+1, sk, v) ⊲ Solve for sk
0 = Θ̄(xk, zk, u, rk+1, sk, v, X̄k+1, Z̄k, Q̄, R̄k, S̄k, P̄ ) ⊲ Solve for Z̄k
rk = Φ∗(xk, zk, u, rk+1, sk, v)

X̄k = Φ̄(xk, zk, u, rk+1, sk, v, X̄k+1, Z̄k, Q̄, R̄k, S̄k, P̄ )

pk = Ψ∗(xk, zk, u, rk+1, sk, v) + pk+1

Ūk = Ψ̄(xk, zk, u, rk+1, sk, v, X̄k+1, Z̄k, Q̄, R̄k, S̄k, P̄ ) + Ūk+1

end for

return (xN , qN , r0, p0, X̄0, Ū0, R̄N , V̄N )

B.2 Continuous-time integrators

In continuous time, the rule follows as in Section 7.2, while handling implicit
dynamics as in Section 3.11.
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Forward mode

The forward derivative propagation rule for the extended continuous-time
integrator defined in (7.7) becomes:

f̂ : Rnx × Rnu × Rnr × Rnv × Rnx×m × Rnu×m × Rnr×m × Rnv×m

→ Rnx × Rnq × Rnr × Rnp × Rnx×m × Rnq×m × Rnr×m × Rnp×m,

(x0, u, r1, v, X̂0, Û , R̂1, V̂ ) 7→ (x1, q1, r0, p0, X̂1, Q̂1, R̂0, P̂0)






ẋ(t) = φ(x(t), z(t), u),
˙̂
X(t) = φ̂(x(t), z(t), u, X̂(t), Ẑ(t), Û),

0 = θ(x(t), z(t), u),

0 = θ̂(x(t), z(t), u, X̂(t), Ẑ(t), Û),

q̇(t) = ψ(x(t), z(t), u),
˙̂
Q(t) = ψ̂(x(t), z(t), u, X̂(t), Ẑ(t), Q̂),

−ṙ(t) = φ∗(x(t), z(t), u, r(t), s(t), v),

− ˙̂
R(t) = φ̂∗(x(t), z(t), u, r(t), s(t), v, X̂(t), Ẑ(t), Û , R̂(t), Ŝ(t), V̂ ),

0 = φ∗(x(t), z(t), u, r(t), s(t), v),

0 = θ̂∗(x(t), z(t), u, r(t), s(t), v, X̂(t), Ẑ(t), Û , R̂(t), Ŝ(t), V̂ ),

−ṗ(t) = φ∗(x(t), z(t), u, r(t), s(t), v),

− ˙̂
P (t) = ψ̂∗(x(t), z(t), u, r(t), s(t), v, X̂(t), Ẑ(t), Û , R̂(t), Ŝ(t), V̂ ),

t ∈ [0, 1],

x(0) = x0, r(1) = r1, q(0) = 0, p(1) = 0,

X̂(0) = X̂0, R̂(1) = R̂1, Q̂(0) = 0, P̂ (1) = 0,

x1 = x(1), q1 = q(1), r0 = r(0), p0 = p(0),

X̂1 = X̂(1), Q̂1 = Q̂(1), R̂0 = R̂(0), P̂0 = P̂ (0),

(B.3)

with φ̂, θ̂ and ψ̂ defined as in (B.1a) and φ̂∗, θ̂∗ and ψ̂∗ defined as in (B.1b).



142 DERIVATIVE PROPAGATION RULES FOR EMBEDDED INTEGRATORS

Reverse mode

Similarly, the adjoint derivative propagation rule for the extended continuous-
time integrator defined in (7.7) becomes:

f̄ : Rnx × Rnu × Rnr × Rnv × Rnx×m × Rnq×m × Rnr×m × Rnp×m,
→ Rnx × Rnq × Rnr × Rnp × Rnx×m × Rnu×m × Rnr×m × Rnv×m

(x0, u, r1, v, X̄1, Q̄, R̄0, P̄ ) 7→ (x1, q1, r0, p0, X̄0, Ū0, R̄1, V̄1)






ẋ(t) = φ(x(t), z(t), u),
˙̄R(t) = φ̄∗(x(t), z(t), u, R̄(t), S̄(t), P̄ ),

0 = θ(x(t), z(t), u),

0 = θ̄∗(x(t), z(t), u, R̄(t), S̄(t), P̄ ),

q̇(t) = ψ(x(t), z(t), u),
˙̄V (t) = ψ̄∗(x(t), z(t), u, R̄(t), S̄(t), P̄ ),

−ṙ(t) = φ∗(x(t), z(t), u, r(t), s(t), v),

− ˙̄X(t) = φ̄(x(t), z(t), u, r(t), s(t), v, X̄(t), Z̄(t), Q̄, R̄(t), S̄(t), P̄ ),

0 = φ∗(x(t), z(t), u, r(t), s(t), v),

0 = θ̄(x(t), z(t), u, r(t), s(t), v, X̄(t), Z̄(t), Q̄, R̄(t), S̄(t), P̄ ),

−ṗ(t) = φ∗(x(t), z(t), u, r(t), s(t), v),

− ˙̄U(t) = ψ̄(x(t), z(t), u, r(t), s(t), v, X̄(t), Z̄(t), Q̄, R̄(t), S̄(t), P̄ )

t ∈ [0, 1],

x(0) = x0, q(0) = 0, r(1) = r1, p(1) = 0,

X̄(1) = X̄1, V̄ (0) = 0, R̄(0) = R̄0, Ū(1) = 0,

x1 = x(1), q1 = q(1), r0 = r(0), p0 = p(0),

X̄0 = X̄(0), Ū0 = Ū(0), R̄1 = R̄(1), V̄1 = V̄ (1),

(B.4)

with φ̄∗, θ̄∗ and ψ̄∗ defined as in (B.2a) and φ̄, θ̄ and ψ̄ defined as in (B.2b).
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