
Toward efficient and confidentiality-aware federation of
access control policies

Maarten Decat, Bert Lagaisse, Wouter Joosen
IBBT-DistriNet, KU Leuven, 3001 Leuven, Belgium

first.last@cs.kuleuven.be

ABSTRACT
This paper presents our work in progress on efficient and
confidentiality-aware access control for Software-as-a-Service
applications. In SaaS, a tenant organization rents access to
a shared, typically web-based application. Access control
for these applications requires large amounts of fine-grained
data, also from the remaining on-premise applications, of
which often sensitive application data. With current SaaS
applications the provider evaluates both provider and ten-
ant policies. This forces the tenant to disclose its sensitive
access control data and limits policy evaluation performance
by having to fetch this data. To address these challenges, we
propose to decompose the tenant policies and deploy them
across tenant and provider in order to evaluate parts of the
policies near the data they require as much as possible, while
taking into account the tenant confidentiality constraints.
We present a policy decomposition algorithm based on a gen-
eral attribute-based policy model and describe a supporting
middleware system. In the future, we plan to refine this
work and evaluate the impact on performance using real-life
policies from research projects.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Distributed Applications; D.4.6 [Security and
Protection]: Access controls

General Terms
Security, Performance

Keywords
federation, access control, Software-as-a-Service, performance,
policy decomposition

1. INTRODUCTION
Access control is becoming increasingly complex, as shown

by past and current industrial research projects [2, 3, 4].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG ’12 December 3-7, 2012, Montreal, Canada
Copyright 2012 ACM 978-1-4503-1607-1/12/12 ...$15.00.

Figure 1: Large organizations such as hospitals em-
ploy both SaaS applications and on-premise appli-
cations, leading to a federated setup.

Firstly, access control infrastructures have become large-
scale, distributed systems with strict performance and avail-
ability requirements as a result of the complexity of the ap-
plications they protect. Secondly, access control policies
are growing larger and more complex, for example, hav-
ing to reason about complex organizational structures and
frequently changing business relationships. Access control
policies thus require more data, more fine-grained data and
often sensitive data. Thirdly, with the current ecosystem of
business coalitions, applications involving multiple organi-
zations, referred to as federated applications, have grown in
importance. Access control should allow all parties to ex-
press their access control requirements, thereby adhering the
relationships between them, resulting into federated access
control.

Software-as-a-Service applications are becoming an im-
portant example of such federated applications. Software-as-
a-Service or SaaS is a form of cloud computing in which the
tenant, i.e., an organization representing multiple end-users,
rents access to an application hosted by the provider for use
through a thin client, e.g., a web browser. Originally, SaaS
applications were mainly used by small and medium enter-
prises looking for a fully outsourced IT infrastructure. Typ-
ical examples are Google Apps1 (an office suite) and Sales-
force2 (CRM). Recently however, large enterprises and non-
profit organizations have started to adopt SaaS as well, for
example health care organizations such as large hospitals [3].
For these organizations, SaaS applications outsource spe-
cific functionality and have to integrate with remaining on-
premise applications such as patient management or medi-
cal record systems, as illustrated in Figure 1. This evolution

1http://www.google.com/enterprise/apps/business/
2http://www.salesforce.com/

leads to a federated setup between tenant and provider.
This federated setup poses key challenges for SaaS access

control. For the tenant, SaaS is a form of outsourcing. While
the SaaS application belongs to provider, the application
data, although hosted by the provider, still belongs to the
tenant. Therefore, SaaS access control should allow both the
provider and the tenant to enforce access control upon the
application. Within the scope of this paper, we focus on the
tenant policies because of two reasons. Firstly, the tenant
policies require data from both the tenant and the provider:
its subjects are the tenant end-users and the subject data is
hosted by the tenant, its objects are the data in the applica-
tion and the object data is hosted by the provider. Because
of the increasingly large amounts of data required by cur-
rent policies, fetching this data is becoming the main bot-
tleneck for tenant policy evaluation performance. Secondly,
the tenant policies often employ data from the remaining
on-premise applications which may contain sensitive data.
Although the tenant may trust the provider with the data
in the SaaS application, it does not necessarily trust the
provider with this sensitive on-premise application data and
wants to keep it confidential.

To address these challenges, we propose to decompose the
tenant policies and deploy them across tenant and provider
in order to evaluate parts of the policies near the data they
require as much as possible, while taking into account the
tenant confidentiality constraints. This process of decom-
posing policies and deploying them across the parties in-
volved, we call policy federation.

This paper describes the results of our work in progress on
policy federation. In our approach, we define a confidentiality-
aware policy decomposition and deployment algorithm for
optimal policy evaluation time using an abstract attribute-
based policy model. We elaborate on the design of support-
ing technology such as a policy language to express confiden-
tiality constraints and a middleware architecture to support
policy federation. In the future, we plan to refine this work
and evaluate the impact of policy federation on evaluation
time using a larger set of policies from real-life case studies.

The rest of this paper is structured as follows. Section 2
further motivates this work from a case study in e-health.
Section 3 describes the policy model we employ and Sec-
tion 4 describes the policy federation algorithm and the no-
tion of decomposition equivalence. Section 5 describes the
required supporting technology in terms of meta-policies to
express the confidentiality constraints and middleware to
support the policy federation process. Section 6 gives an
overview of related work and Section 7 finally concludes and
elicits future work.

2. MOTIVATION
As stated in the introduction, large enterprises and non-

profit organizations have started to adopt SaaS, for example
in the domain of e-health. An example of such an application
inspired on a number of research projects is a home patient
monitoring system provided to hospitals as a service (see
Figure 2). The system allows patients to be monitored con-
tinuously after leaving the hospital, for example by wearing
a chest band or a wrist sensor. The measurements (the ap-
plication data) are sent from the patients to the application
back-end using a smart-phone as an intermediary device.
The measurements are stored and processed by the provider,
which notifies the patient’s physician at the hospital of im-

Figure 2: A home patient monitoring system offered
as a SaaS application. On-premise applications are
not shown for readability reasons.

portant evolutions. A patient’s status can also be viewed by
other physicians and nurses and by the patients themselves.
The hospital is the tenant of the application, representing
multiple end-users, i.e., patients and physicians. Next to
the monitoring system, the hospital employs other SaaS ap-
plications, e.g., for medical imaging, and on-premise appli-
cations, e.g., for patient or employee management. As for
all e-health applications, security is paramount for the pa-
tient monitoring system, amongst other because it handles
personal data and is subject to stringent regulatory require-
ments (e.g., HIPAA [11] or the European DPD [7]). Of these
security requirements, this paper focuses on the sub-domain
of access control.

Access control is an important part of application-level
security that limits the actions (e.g., read, write) which a
subject (e.g., an end-user) can take on an object in the sys-
tem (e.g., a file) by enforcing access control rules generally
expressed in policies. The most recent attribute-based ac-
cess control (ABAC) [12] generalizes previous access control
models and expresses these access control policies in terms
of general key-value properties of the subject, the object and
the environment, called attributes.

This paper focuses on the access control policies of the
tenant, i.e., the hospital. Even though the patient moni-
toring system is hosted by the provider, the hospital is still
accountable for the data and enforces its access control poli-
cies over the application. As a running example of a tenant
access control policy, we use a policy P containing a single
common rule from the case study, informally summarized as
follows:

P : a user can only read patient data if he or
she is a physician who is currently treating the
patient who owns the data or if he or she is ex-
plicitly allowed to do so by the patient

This rule requires the following attributes: (1) the id of
the subject making the request, (2) the id of the requested
action, (3) the id of the patient owning the data to which
access is requested, (4) the roles of the user making the
request, (5) the list of patients currently being treated by
this user (only available in case the user is a physician) and
(6) the list of subjects explicitly allowed to read the data. Of
these attributes, (3) and (6) are located at the provider, (4)
and (5) are located at the tenant and (1) and (2) are known
to both. The tenant considers the list of patients currently
being treated by a physician (attribute 5) as confidential.

In state-of-practice SaaS applications, all access control
policies are evaluated by the provider. As a result, all re-
quired access control data has to be available to the provider.

This forces the hospital to share its sensitive access control
data. Moreover, this limits the performance of policy eval-
uation since the complexity of current access control poli-
cies makes it impossible to determine the set of required
attributes up-front and attributes have to be fetched dy-
namically while evaluating the policy.

In order address these issues, P can be decomposed and
distributed over the provider and the tenant based on the
location and confidentiality of the attributes, a process we
call policy federation. For example, by having the tenant
evaluate whether the user is a physician who is currently
treating the patient, this data does not have to be shared
with or fetched by the provider. However, in this case, the
tenant does have to fetch the owner of the data from the
provider. This cannot be avoided: this attribute has to be
compared with the list of patients being treated by the physi-
cian, which is confidential for the tenant. More specifically,
the number of attributes to be requested from the other
party can be minimized while meeting the confidentiality
constraints of the tenant using the following policy distri-
bution (PT and PP being the parts of P evaluated by the
tenant and the provider respectively):

• PT : “ a physician can only read patient data when cur-
rently treating the patient who owns the data”,

• PP : “a user can read patient data if explicitly invited
by the patient”.

It is up to the provider to combine the results of both policies
so that the combination gives the same results as before,
in this case by allowing the request if PP or PT allows it.
This concept is called policy equivalence in this paper. As
a result of this policy federation, the tenant has to trust
the provider to correctly evaluate PP and correctly combine
PT and PP . However, this trust was also required with full
provider-side access control. Moreover, the required trust
of the provider in the tenant does not increase since the
protected data belongs to the tenant and it does not have
incentive to lie.

3. POLICY MODEL
In order to reason about policy decomposition, this sec-

tion first defines a general attribute-based policy model, sim-
ilar to the core features of current policy languages such as
XACML [14]. To represent a policy, we employ the concept
of a policy tree, similar to [8, 5].

The basic structure of the policy model is a three-level
hierarchy consisting of policy sets, policies and rules. A
rule specifies an effect (“permit” or “deny”) and conditions
for this to hold. Our model follows the ABAC approach
and expresses conditions as constraints on the attributes of
the subject, the object, the action and the environment. In
case not all required attributes are present, the rule returns
“not applicable”. A policy can contain multiple rules and
combines their effects using a rule-combining algorithm (e.g.,
deny overrides, permit overrides, first applicable), a policy
set can contain multiple policies and combines their results
using a similar policy-combining algorithm.

A rule itself can contain three kinds of elements: (i) func-
tions, e.g.,“ and”, “in”or“==”, (ii) attribute references, e.g.,
“s.roles” referring to the roles of the subject and (iii) literal
values such as “physician”. The top-level function of a rule

Figure 3: Policy tree representation of P as de-
fined in Section 2. Rectangles represent functions,
rounded rectangles represent attributes, plain text
labels represent literal values, diamonds represent
rule or policy combining algorithms, gray items are
labeled confidential.

should result into a boolean (true resulting into the rule ef-
fect), such as equality predicates, numeric comparison func-
tions, date, time and string comparison functions and set
functions, but can internally contain more types of expres-
sions, such as arithmetic operators. Most of these functions
require two arguments, but the whole collection ranges from
unary (e.g., string normalization) to n-ary (e.g., n-of).

In the model, two elements of a policy can be confiden-
tial for the tenant: (i) the attributes used in a policy and
(ii) parts of the policies themselves. Since a function in itself
cannot be confidential (the possible functions in a policy are
publicly known), we limit confidentiality to rules, policies
and policy sets.

Figure 3 shows the policy tree representation of P as de-
fined in the previous section, wrapped in a policy with deny-
overrides rule combining algorithm and policy-set with deny-
overrides policy combining algorithm. This policy only con-
tains one confidential attribute.

4. POLICY FEDERATION ALGORITHM
In this section, we define an algorithm to decompose and

distribute the tenant access control policies across tenant
and provider for optimal policy evaluation time while taking
into account the tenant confidentiality constraints. In terms
of policy trees, branches of the tenant policy will be split off
and combined into a separate policy to be deployed at the
provider.

Policy decomposition equivalence
An important property of the policy decomposition is that
the combination of the sub-policies gives the same results as
before. To make this more concrete, we here introduce the
notion of an equivalent policy decomposition.

Definition: Policy decomposition equivalence The
decomposition of a policy P into sub-policies PT and PP and
a policy-combining algorithm PCA is equivalent to P iff for
every request R and context Ctx, evaluating the decomposi-
tion gives the same result as evaluating P . The context Ctx
is a collection of attribute values of the subject, the object,
the action and the environment: Ctx = (AS , AO, AA, AE).
The request R is a subset of the context: R ⊂ Ctx.

This notion of policy decomposition equivalence translates

into policy distribution equivalence. In case the algorithm
results into an equivalent policy decomposition, the distri-
bution of these parts amongst tenant and provider is also
equivalent since all attributes are available to both tenant
and provider and it can be said that both policies share the
same context.

Policy evaluation cost
In order to decide whether a part of a policy should best be
evaluated by the tenant or the provider, the following cost
functions are defined in terms of evaluation time:

CP = NA,P ∗ CA,L +NA,T ∗ CA,R + CE

CT = NA,T ∗ CA,L +NA,P ∗ CA,R + CP,R + CE

The cost functions determine the cost of the provider (CP)
and the tenant (CT) evaluating a certain policy based on the
number of required provider attributes (NA,P) and tenant
attributes (NA,T), the cost for fetching an attribute locally
(CL) or remotely (CR) and the cost of evaluating the policy
after fetching the attributes (CE). CT and CP are not com-
pletely dual since a policy evaluation request from provider
to tenant is required, adding an extra constant cost CP,R.
CE is identical for CP and CT because both cost functions
reason about the same policy and tenant and provider in-
frastructure is assumed to be similar. The location of ev-
ery attribute determines the cost of fetching the attribute:
CA,L will be much smaller than CA,R, especially in federated
applications such as SaaS applications because of the com-
plex data flows and the geographical distance between the
involved parties. For example, in case of a local database
call, CA,L can be estimated around 0.1ms while a remote
attribute fetch can be estimated around 10ms, assuming a
modest single-way latency of 5ms and negligible local pro-
cessing time. Using similar reasoning, CP,R can also be es-
timated around 10ms.

Algorithm
A high-level overview of the policy federation algorithm is
given in Algorithm 1. The goal of the policy distribution is
to minimize the total cost of evaluating the tenant policy.
The algorithm requires six inputs: the policy to federate,
the location of every attribute, the confidentiality label of
every attribute, the confidentiality label of every rule, pol-
icy and policy set and the cost functions CP and CT . The
confidentiality label of an attribute or policy element is a
boolean that determines whether it can be shared with the
provider or not. The algorithm provides two outputs: PP ,
being the policy to be evaluated by the provider and PT ,
being the policy to be evaluated by the tenant.

Informally, the algorithm searches the policy tree for sub-
trees which employ remote attributes and determines whether
it is possible to externalize these. An important design de-
cision is the granularity of policy distribution. While in
theory every function in the policy tree can be externalized
from the policy, we limit the granularity to sub-trees result-
ing into a boolean. This way, the result of the externalized
sub-tree can be converted in a policy evaluation result and
the existing policy combination algorithms can be used for
combining the results of PP and PT . Thus, a sub-tree can
only be externalized in case it results into a boolean, it does
not handle confidential tenant attributes and it is not part

Algorithm 1 High-level policy federation algorithm

Inputs: P : a policy, having an effect and a policy tree an-
notated with confidentiality labels (true or false), A: the list
of attributes, each having a value, location (local or remote)
and confidentiality label (true or false), CP : the function de-
termining the cost of the provider evaluating a policy, CT :
the function determining the cost of the tenant evaluating a
policy.

Outputs: PP : the provider policy, PT : the tenant policy.

// list of subtrees to externalize
ext = []
// search for applicable subtrees
foreach Attribute a in P.tree:

// parent function
f = a.parent
if f.returnType == Boolean:

if { ∀ Attribute b in f.attributes | ! b.confidential }:
if (! f.rule.confidential) and (! f.policy.confidential)

and (! f.policySet.confidential):
if CP (f) < CT (f):

ext.add(f)
P .remove(f)

// combine all subtrees to externalize
PP = combine(ext)
// result for tenant is pruned original policy
PT = P

of a confidential rule, policy or policy set. Then the algo-
rithm determines whether it is beneficial to externalize the
sub-tree by comparing CP and CT , splits off sub-trees best
evaluated by the provider and combines these into PP . PT

consists of the pruned original policy.
As an example, we can apply this algorithm to the ex-

ample policy of Section 2 (represented in Figure 3). Of the
four attribute checks, only checking the treating relationship
contains a confidential attribute and should remain at the
tenant. For the other three, the cost functions determine the
optimal evaluation location: (1) checking the roles requires
only tenant-side attributes and CP > CT , (2) checking the
action requires the action id, which is available to both the
tenant and the provider and CP = CT , (3) checking whether
the user is explicitly allowed only requires provider-side at-
tributes and CP < CT . Therefore, (1) is best evaluated by
the tenant, (2) can arbitrarily be deployed and (3) is best
evaluated by the provider. Combining the externalized sub-
trees results into PP as shown in Figure 4, the pruned policy
results into PT as shown in Figure 5.The provider policy set
contains a remote reference to PT to request a policy evalu-
ation and combines the results of PT and PP using permit-
overrides. Notice that for a correct decomposition, checking
the action has to be done in both PT and PP .

5. SECURITY MIDDLEWARE
In this section, we elaborate on the supporting security

middleware for policy federation: (i) a way to express the
confidentiality of the attributes and the policy elements and
(ii) a middleware architecture to support the decomposition
and deployment of the policies. This section describes an
initial design of each of these elements.

5.1 Expressing confidentiality constraints

Figure 4: Result of federating P as defined in Sec-
tion 2: PP . The provider policy set contains a re-
mote reference to the tenant policy.

Figure 5: Result of federating P as defined in Sec-
tion 2: PT

In general, confidentiality constraints can be expressed
by providing a separate meta-policy or by annotating the
access control policies. Attributes are referenced multiple
times throughout the tenant access control policies and us-
ing a separate meta-policy provides the advantage of cen-
tral management. A similar approach has been used by the
Shibboleth system for federated authentication [1], where
attribute filters can be used to limit the release of an at-
tribute to a certain party using a custom XML language.
Policy elements on the other hand are best annotated in the
access control policies themselves. A similar approach has
been used by Gheorghe et al. [10]. They extend the XACML
policy language [14] with the AttrProps element in order to
express attribute properties such as cacheability.

In the simplest case, an attribute or policy can be labeled
confidential or non-confidential, as assumed in the federation
algorithm for now, and the required meta-policy or policy
annotations are fairly simple. In a more extensive case, the
policy can express more complex confidentiality rules, for
example, limiting attribute release to some parties based on
their identity or defining a certain combination of multiple
attributes as confidential. Further research is required to
analyze the needed expressiveness of future scenarios.

5.2 Middleware architecture
In order to support the decomposition and deployment

of the tenant policies, a middleware system is required. In
this section, we describe the middleware architecture using
the XACML reference architecture for policy-based access
control infrastructures [14].

In the reference architecture (see Figure 6), the policy de-
cision point (PDP) makes the actual access control decision.
The policy enforcement point (PEP, e.g., an API or a refer-

Figure 6: XACML reference architecture for access
control

Figure 7: XACML reference architecture applied to
SaaS. The Policy Federation Layer is the focus of
this work.

ence monitor) requests an access control decision from the
PDP through the context handler. An access control request
generally consists of information about the subject, the ob-
ject, the action and the environment. The context handler
gathers initially known attributes from one or more policy
information points (PIPs, e.g., a database), which the PDP
uses to evaluate the applicable policies loaded from the pol-
icy administration point (PAP). The PDP can request addi-
tional attributes from the context handler if needed. Even-
tually, the PDP returns its decision (permit or deny), which
the PEP enforces.

The XACML reference architecture can be applied to SaaS
as shown in Figure 7. Both the provider and the tenant can
evaluate policies and have a PAP, a PDP, a context handler,
one or more PIPs and an obligation service. The provider
hosts the SaaS application and therefore also the PEP, no
application components are located at the tenant side. The
provider hosts the attributes concerning the objects in the
application (AO) and the provider part of the environment
(AE,P) and the tenant hosts the attributes concerning the
subjects of the application (AS) and the tenant part of the
environment (AE,T). All attributes are made available to
the other party by means of an attribute service.

In this architecture, the tenant policies can be evaluated
by the provider PDP or by the tenant PDP but in both
cases, attributes have to be requested from the other party.
In the former case, the provider context handler requests
subject attributes from the tenant attribute service. In the
latter case, the provider PDP requests a policy decision from
the Remote Policy Decision Point (RPDP). Such a request
is similar to a request from a PEP to a PDP. For the tenant,
the RPDP acts as a PEP: it forwards the provider request
to the tenant PDP through the context handler, returns the
decision to the provider PDP and fulfills any tenant obliga-
tions using the tenant obligation service. The tenant con-
text handler can request object attributes from the provider

attribute service. While being more complex, tenant-side
policy evaluation does allow the tenant to evaluate its poli-
cies while not having to share any sensitive access control
data.

The Policy Federation Layer shown in Figure 7 is the focus
of this work. This layer cooperates with the tenant and
provider PAP in order to deploy the tenant policies after
the initial decomposition step.

6. RELATED WORK
The problem of confidentiality-aware access control for

outsourced applications has been investigated by several other
authors. For example, Asghar et al. [6] employ attribute and
policy encryption, extending the work of di Vimercati et al.,
e.g., [9]. This approach is dual to policy federation, but is
limited in policy expressivity. Several other authors have
also focused on the problem of policy decomposition and
distribution, such as Su et al. [15] and Lin et al. [13]. To
the best of our knowledge, the work of Lin et al. is the only
to distribute policies based on confidentiality and has been
an important influence for this work. However, their work
stops at describing the algorithms and does not provide con-
fidentiality policies, supporting middleware or an evaluation
of performance impact in practice.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described access control for SaaS ap-

plications and focused on the problem of efficient policy
evaluation while taking into account the tenant attribute
confidentiality constraints. We proposed to decompose and
distribute the tenant policies across provider and tenant in
order to evaluate as much parts of the policy near the data
they require while keeping the tenant access control data
confidential, a concept called policy federation. The paper
described our work in progress on the policy federation al-
gorithm, the supporting policy model and the supporting
middleware.

In the near future, we plan to refine and extend this work
in several ways. Firstly, we plan to further extended the pol-
icy model presented in this paper, amongst others to take
into account obligations. Obligations represent actions to
be executed after the access control decision, e.g., updat-
ing an attribute such as the subject’s access control history
or usage quota and complicate the decomposition further.
Secondly, we plan to proof the correctness of the policy dis-
tribution algorithm in terms of policy equivalence. Thirdly,
the algorithm can be extended for improved performance,
for example by optimizing concurrency or by taking into ac-
count attribute properties such as attribute cacheability [10].
Finally, we plan to further evaluate the performance impact
of our approach on policy evaluation time using a prototype
middleware and a set of policies from real-life case studies.

Acknowledgements This research is partially funded
by the Interuniversity Attraction Poles Programme Belgian
State, by the Belgian Science Policy, by the Research Fund
KU Leuven, by the EU FP7 project NESSoS and by the
Agency for Innovation by Science and Technology in Flan-
ders (IWT).

8. REFERENCES
[1] Shibboleth. http://shibboleth.net/, August 2010.

[2] E-Health Information Platforms (E-HIP).
http://distrinet.cs.kuleuven.be/research/

projects/showProject.do?projectID=E-HIP, May
2012.

[3] Healthcare professional’s collaboration Space
(Share4Health).
http://distrinet.cs.kuleuven.be/research/

projects/showProject.do?projectID=Share4Health,
May 2012.

[4] Permission, User Management and Availability for
multi-tenant SaaS applications (PUMA).
http://distrinet.cs.kuleuven.be/research/

projects/showProject.do?projectID=PUMA, May
2012.

[5] C. Ardagna, S. De Capitani di Vimercati, S. Foresti,
G. Neven, S. Paraboschi, F. Preiss, P. Samarati, and
M. Verdicchio. Fine-grained disclosure of access
policies. Information and Communications Security,
pages 16–30, 2010.

[6] M. Asghar, M. Ion, G. Russello, and B. Crispo.
Espoon: Enforcing encrypted security policies in
outsourced environments. In Availability, Reliability
and Security (ARES), 2011 Sixth International
Conference on, pages 99–108. IEEE, 2011.

[7] E. Commision. Directive 95/46/EC, 1995. Directive of
the European Parliament and of the Council of 24
Oct. 1995 on the protection of individuals with regard
to the processing of personal data and on the free
movement of such data.

[8] J. Crampton and M. Huth. An authorization
framework resilient to policy evaluation failures.
Computer Security–ESORICS 2010, pages 472–487,
2010.

[9] S. De Capitani di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, G. Pelosi, and P. Samarati. Preserving
confidentiality of security policies in data outsourcing.
In Proceedings of the 7th ACM workshop on Privacy
in the electronic society, pages 75–84. ACM, 2008.

[10] G. Gheorghe, B. Crispo, R. Carbone, L. Desmet, and
W. Joosen. Deploy, adjust and readjust: Supporting
dynamic reconfiguration of policy enforcement.
Middleware 2011, pages 350–369, 2011.

[11] U. Government. Health Insurance Portability and
Accountability Act. 1996.

[12] X. Jin, R. Krishnan, and R. Sandhu. A unified
attribute-based access control model covering dac,
mac and rbac. Data and Applications Security and
Privacy XXVI, pages 41–55, 2012.

[13] D. Lin, P. Rao, E. Bertino, N. Li, and J. Lobo. Policy
decomposition for collaborative access control. In
Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 103–112. ACM,
2008.

[14] T. Moses et al. eXtensible Access Control Markup
Language (XACML) Version 2.0. OASIS Standard,
2005.

[15] L. Su, D. Chadwick, A. Basden, and J. Cunningham.
Automated decomposition of access control policies. In
Policies for Distributed Systems and Networks, 2005.
Sixth IEEE International Workshop on, pages 3–13.
IEEE, 2005.

