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Abstract—We propose a parameter-free kernel spectral clus-
tering model for large scale complex networks. The kernel
spectral clustering (KSC) method works by creating a model
on a subgraph of the complex network. The model requires a
kernel function which can have parameters and the number
of communities k has be detected in the large scale network.
We exploit the structure of the projections in the eigenspace to
automatically identify the number of clusters. We use the concept
of entropy and balanced clusters for this purpose. We show
the effectiveness of the proposed approach by comparing the
cluster memberships w.r.t. several large scale community detec-
tion techniques like Louvain, Infomap and Bigclam methods. We
conducted experiments on several synthetic networks of varying
size and mixing parameter along with large scale real world
experiments to show the efficiency of the proposed approach.

Keywords-kernel spectral clustering, number of clusters,
parameter-free spectral clustering

I. INTRODUCTION

In the modern era complex networks are ubiquitous. Their

presence ranges from domains like road graphs, social net-

works, collaboration networks, e-mail networks, trust net-

works, biological networks to financial networks. Complex

networks can be represented as a graph G(V,E), where the

vertices V represent the nodes of the graph and the edges

are represented by E. The nodes represent the entities in the

network and the edges determine the relationship between

these entities. Real world networks exhibit community like

structure. This means that the nodes which are part of one

community tend to be more densely connected within the

community and sparsely connected between the communities.

The problem of community detection has received a lot of

attention [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12] and has often been framed as graph partitioning and

graph clustering [13]. In this paper we refer to clusters and

communities interchangeably.

Spectral clustering methods [9], [10], [11], [12] are widely

used for community detection. Spectral clustering methods

work by performing an eigen-decomposition of a normalized

Laplacian matrix derived from the affinity matrix of the

nodes in the network. The disadvantage of spectral clustering

methods is that they require to compute and store the affinity

matrix. As the size of network increases it becomes in-feasible

to store the N × N affinity matrix where N is the number

of nodes. Also, these methods do not have an out-of-sample

extension property. Hence, they cannot scale for very large

networks (millions of nodes).

Recently, a kernel spectral clustering formulation based on

weighted kernel principal component analysis (PCA) with a

primal-dual framework was proposed in [14]. The method was

extended for community detection in [7] and [22]. The KSC

model requires a kernel function and the number of clusters k

has to be detected. For model selection, the proposed approach

in [7] and [22] uses the concept of Modularity [16]. The

Modularity criteria needs to store a N×N matrix which makes

it in-feasible for large scale networks. An approach to apply

KSC for big data networks was proposed in [15]. We use the

concepts proposed in [15] to build the model. In this paper

we propose to make the kernel spectral clustering approach

parameter-free or in other words

• Use the normalized linear kernel function.

• Automatically detect the number of communities (k) in

the large scale network.

In section II, a description of the KSC method for large

scale networks is given. In section III, we explain the proposed

approach for making KSC parameter-free. In section IV, we

perform experiments on various synthetic and real world

datasets. Section V provides conclusion to the paper.

II. KERNEL SPECTRAL CLUSTERING FOR LARGE SCALE

NETWORKS

The KSC [14] and [7] method consists of three steps. The

first step is building the model on the training data. The second

step is to estimate the model parameters using validation data.

The final step is the out-of-sample extension or community

inference for unseen test nodes.

For building the model, the KSC method selects a sub-

graph which captures the inherent community structure of

the network. Several approaches have been proposed for

sampling a graph including [17], [18], [19], [20]. The Fast

and Unique Representative Subset (FURS) selection approach



was proposed in [18] and used in [15]. We use the FURS

technique for training and validation set selection.

For large scale networks, the training data comprises the

adjacency list of all the nodes vi, i = 1, . . . , Ntr. Let the

training set of nodes be represented by Vtr and the training

set cardinality be Ntr. The validation and test set of nodes are

represented by Vvalid and Vtest respectively. The cardinality

of these sets are Nvalid and Ntest respectively. These sets

of adjacency lists can efficiently be stored in the memory as

real world networks are highly sparse and there are limited

connections for each node vi ∈ Vtr. The maximum length of

the adjacency list can be equal to N . This is the case when a

node is connected to all the other nodes in a network.
A. Model Building and overcoming any kernel parameters

For Vtr training nodes, D = {xi}
Ntr

i=1, such that xi ∈ R
N .

Given D and a user-defined k (maximum number of clusters

in the network), the primal formulation of the weighted kernel

PCA [14] is given by:

min
w(l),e(l),bl

1

2

k−1∑

l=1

w(l)⊺w(l) −
1

2Ntr

k−1∑

l=1

γle
(l)⊺D−1

Ω e(l)

such that e(l) = Φw(l) + bl1Ntr
, l = 1, . . . , k − 1

(1)

where e(l) = [e
(l)
1 , . . . , e

(l)
Ntr

]⊺ are the projections onto the

eigenspace, l = 1, . . . , k − 1 indicates the number of score

variables required to encode the k communities, D−1
Ω ∈

R
Ntr×Ntr is the inverse of the degree matrix associated to

the kernel matrix Ω. Φ is the Ntr × dh feature matrix, Φ =
[φ(x1)

⊺; . . . ;φ(xNtr
)⊺] and γl ∈ R

+ are the regularization

constants. We note that Ntr ≪ N i.e. the number of nodes in

the training set is much less than the total number of nodes

in the large scale network. The kernel matrix Ω is obtained

by calculating the similarity between the adjacency list of

each pair of nodes in the training set. Each element of Ω,

denoted as Ωij = K(xi, xj) = φ(xi)
⊺φ(xj) is obtained by

calculating the cosine similarity between the adjacency lists

xi and xj which has been shown to be an effective similarity

measure for large scale data [25]. Thus, Ωij =
x
⊺

i
xj

‖xi‖‖xj‖

can be calculated efficiently using notions of set unions and

intersections. This corresponds to using a normalized linear

kernel function K(x, z) = x⊺z
‖x‖‖z‖ [24]. The clustering model

is then represented by:

e
(l)
i = w(l)⊺φ(xi) + bl, i = 1, . . . , Ntr (2)

where φ : RN → R
dh is the mapping to a high-dimensional

feature space dh, bl are the bias terms, l = 1, . . . , k − 1.

However, for large scale networks we can utilize the explicit

expression of the underlying feature map and dh = N . Since

the KSC formulation is valid for any positive definite kernel,

we use a normalized linear kernel function to avoid any kernel

parameter. The projections e
(l)
i represent the latent variables

of a set of k − 1 binary cluster indicators given by sign(e
(l)
i )

which can be combined with the final groups using an encod-

ing/decoding scheme. The dual problem corresponding to this

primal formulation is:

D−1
Ω MDΩα(l) = λlα

(l) (3)

where MD = INtr
-(

(1Ntr
1⊺
Ntr

D
−1
Ω )

1⊺
Ntr

D
−1
Ω 1Ntr

). The α(l) are the dual

variables and the kernel function K : RN × R
N → R plays

the role of similarity function.

B. Encoding/Decoding Scheme

Ideally when the communities are non-overlapping, we will

obtain k well separated clusters and the normalized Laplacian

has k piece-wise constant eigenvectors. This is because the

multiplicity of the largest eigenvalue i.e. 1 is k as depicted

in [23]. In case of KSC due to the centering matrix MD

the eigenvectors have zero mean and the optimal threshold

for binarizing the eigenvectors is self-determined (equal to

0). So we need k-1 eigenvectors. In the eigenspace every

cluster Ap, p = 1, . . . , k is a point and is represented with

a unique codebook cp ∈ {−1, 1}k−1. To obtain this codebook

CB = {cp}
k
p=1 we transform the rows of the projected

vector matrix obtained from the training data by binarizing

it i.e. [sign(e(1)), . . . , sign(e(k−1))]. The codebook set CB
is obtained by selecting the top k most frequent codebook

vectors. However, in real world networks the communities do

overlap and we do not have piece-wise constant eigenvectors.

For the matrix D−1MDΩ each eigenvector contains infor-

mation about binary clustering. However, using the one versus

all encoding scheme, the number of score variables needed to

encode k clusters is k − 1. The decoding scheme consists of

comparing the cluster indicators obtained in the validation/test

stage with the codebook and selecting the nearest codebook

based on Hamming distance. This scheme corresponds to the

ECOC decoding procedure [26] and is used in out-of-sample

extensions as well. The out-of-sample extension is based on

the score variables which correspond to the projections of the

mapped out-of-sample points onto the eigenvectors found in

the training stage. The cluster indicators can be obtained by

binarizing the score variables for the out-of-sample points as:

sign(e
(l)
test) = sign(Ωtestα

(l) + bl1Ntest
) (4)

where l = 1, . . . , k−1, Ωtest is the Ntest×Ntr kernel matrix

evaluated using the test points with entries Ωr,i = K(xr, xi),
r = 1, . . . , Ntest and i = 1, . . . , Ntr. This natural extension

to out-of-sample points is the main advantage of KSC. In this

way the clustering model can be trained, validated and tested

in an unsupervised learning procedure. For the test set we use

the entire network. If the network cannot fit in memory, we

divide it into chunks to calculate the cluster memberships for

each test chunk in parallel.

C. Model Selection or Estimation of k

In [15], the authors proposed a criterion called Balanced

Angular Fit (BAF ) which tries to estimate the number of

clusters using the validation set of nodes. The BAF criterion

is based on the principle that the nodes which belong to the

same cluster have nearly zero or very small angular distance

in the eigenspace w.r.t. each other in comparison to the nodes

belonging to different clusters. To determine the number of

clusters, the end-user provides a maximum possible number of

clusters (maxk). The KSC model is built using this maxk i.e.



we perform an eigen-decomposition of the D−1MDΩ matrix

and select the top maxk eigenvectors. The BAF criterion is

iteratively evaluated for k = 2 to k = maxk−1. The value of

k for which the BAF is maximum is provided to the end-user

as the ideal number of clusters. The method works well but

requires to iterate over all values of k from 2 to maxk − 1.

Hence, it doesn’t automatically determine the ideal value of k

in a few steps. Another approach to automatically determine

the ideal value of k was proposed in [11] using the structure

of the eigenvectors. However, the underlying assumption is

that the eigenvector matrix Z comprises k piece-wise constant

eigenvectors and there is at most one non-zero entry in every

row. Both these assumptions do not hold for the KSC model

for real world overlapping networks. Algorithm 1 provides a

summary of the Original KSC method.

Algorithm 1: Original KSC Algorithm

Data: Given a graph G = (V,E).
Result: The partitions of the graph G, i.e. divide graph

into k clusters.

1 Convert and store the graph G in sparse format.

2 Select the training set of nodes Xtr (i.e. maximum size

= 5, 000 nodes) using FURS.

3 Select the validation set of nodes (same size as Xtr)

after removing the subgraph S corresponding to Xtr

using FURS.

4 Calculate the kernel matrix Ω by applying cosine

similarity operations on sparse adjacency lists of ∀i, j
vi, vj ∈ Xtr.

5 Perform eigen-decomposition of Ω to obtain the model

i.e. α(l), bl.

6 Use out-of-sample extension property to obtain the

projection values for the validation set i.e. e
(l)
valid.

7 Use BAF and e
(l)
valid to estimate the number of

clusters k.

// This is the step which is automated

by our proposed approach.

8 After estimating k, use the out-of-sample property to

assign clusters to unseen test nodes (We use the entire

network as test data).

III. SELF-TUNED KERNEL SPECTRAL CLUSTERING

In section II-A, we have shown that for large scale networks

the normalized linear kernel function is sufficient. The only

parameter left is the number of clusters to be identified (k). We

propose a novel technique to determine the number of clusters

(k) automatically in a few steps. We exploit the projections

of the validation nodes in the eigenspace. The proposed

approach is based on the simple idea that the projections of

the validation nodes which belong to the same cluster have

very small or nearly zero angular distance from each other in

comparison with the nodes belonging to different clusters.

Before we explain the technique, we mention a few pre-

requisites. All the experiments were performed on a single

machine with 8 Gb RAM, 2.4Ghz Intel I-7 processor. The

maximum size matrix that can be stored in memory is 5, 000×
5, 000. The training set size is fixed as Ntr = min(15% of

N , 5000) i.e. minimum between 15% of the total nodes in

the network (N ) and 5, 000 nodes. The subset size of 15%
of the nodes in the network is chosen as per experimental

analysis in [21]. We set the validation set size Nvalid to be

the same as Ntr. We put the condition that minimum size

of a cluster is MinCsize = max(0.01% of Nvalid,5) i.e.

maximum between 0.01% of the number of nodes in the

validation set and 5 nodes. Since for estimation of the number

of clusters we use the validation set, we put the minimum size

constraint on the validation set. This constraint is to prevent

the selection of outlier groups of small size as a cluster. Thus,

suppose the training set size is 5, 000 nodes then the minimum

size of cluster has to be 5. The maxk value is determined as

⌈ Ntr

MinCsize
⌉. Thus, if the minimum size of the cluster is 5 and

maximum size of the validation set is 5, 000 then the maximum

number of clusters that can be detected is 1, 000. The runtime

complexity of KSC approach is O(N3
tr) + O(Ntr × Ntest).

However, testing can be done in parallel and the second term

in time complexity can be reduced significantly.

A. Identifying the number of clusters

We obtain the projection of the validation nodes vj ∈ Vvalid

in the eigenspace using the out-of-sample extension and bina-

rize the score variables as follows:

sign(e
(l)
valid) = sign(Ωvalidα

(l) + bl1Nvalid
) (5)

Let the latent variable matrix be represented as E. The size

of the this matrix is Nvalid × (maxk − 1). The matrix E is

defined as [e1, . . . , eNvalid
]⊺. We then create a new symmetric

affinity matrix A from the latent variable matrix E. Since we

already stated that the maximum size of the validation set is

5, 000 nodes, the maximum size of the A matrix is 5, 000 ×
5, 000. The affinity matrix is build using cosine distance as:

A(i, j) = CosDist(ei, ej) = 1− cos(ei, ej) = 1−
e
⊺

i ej

‖ei‖‖ej‖

The CosDist() function can take values between [0, 2]. We

use the concept that nodes which belong to the same com-

munity have smaller or nearly zero angular distance w.r.t the

nodes within the community and more angular distance w.r.t

nodes belonging to different communities. Thus, the nodes

which belong to the same cluster will have very small or nearly

zero CosDist(ei, ej), ∀i, j in the same cluster.

Figure 1 highlights this idea on a synthetic network of 1, 000
nodes generated by the software proposed in [2] with mixing

parameter µ = 0.1. The mixing parameter implies the extent of

overlap in the communities with smaller values representing

less overlap. In Figure 1a, we obtain the projections of the

validation nodes in 2-dimensional space as we set maxk =
3 for the purpose of visualization. Figure 1b showcases the

presence of a block diagonal structure for the affinity matrix A.

To obtain this block diagonal matrix we used the groundtruth

cluster memberships for the validation set of nodes. We then

sort the validation nodes using the groundtruth information on



(a) Validation node projections

(b) Affinity matrix A w.r.t. groundtruth

Fig. 1: First two steps for identifying the number of clusters in a given network

the basis of their cluster affiliation and construct the affinity

matrix A. The black shaded regions represent the part of the

affinity matrix where the CosDist(ei, ej) values are zero and

nearly equal to zero. The aim is to identify the number of such

block diagonals which determine the number of clusters k in

the given network.

Real world networks have overlapping communities. How-

ever, the extent of overlap in these communities is not known

beforehand. Also the groundtruth is not available in most real

world large scale networks. Thus the affinity matrix A, though

contains a block-diagonal structure, need not necessarily be

ordered in block-diagonal format. We observe from Figure

1a, that projection of nodes which belong to the same cluster

do not necessarily have zero angular distance due to presence

of overlap. But the angle between two projection vectors say

ei and ej belonging to the pth cluster (Cp) is mostly less

than 90◦ leading to 0 ≤ cos(ei, ej) ≤ 1. After little algebraic

manipulation we obtain that 0 ≤ CosDist(ei, ej) ≤ 1 for two

nodes i and j belonging to cluster p (Cp).

Since the extent of overlap in terms of angular dis-

tance is not known beforehand we setup a threshold td =
[0.1, 0.2, . . . , 1]. We need to investigate only 10 different

threshold values which is much less than iteratively solving

for each k = 2 to k = maxk−1 in increments of 1. Generally

as the value of threshold increases the number of clusters

decreases as more validation nodes satisfy the threshold and

fall in the same cluster. For a given value of threshold t ∈ td,

we first identify that validation node (ei) for which the number

of nodes with CosDist(ei, ej) ≤ t is maximum. We keep

the count of this number of nodes in a vector. We obtain the

indices of all those validation nodes and shrink the affinity

matrix A by removing the rows and columns corresponding

to these indices. We repeat this process recursively till it results

in an empty matrix. This procedure is equivalent to identifying

the block diagonal structure. As a result of this procedure

for each value of threshold t, we obtain a vector (SizeCt)

containing information about the size of clusters for that value

of threshold t.

In order to determine the ideal number of clusters k, we

use the notion of entropy and balance w.r.t. the size of the

clusters. For each value of threshold t we have the vector

SizeCt. We also put the constraint that the minimum size

of a cluster is greater than or equal to MinCsize. So we

remove from SizeCt vector all the size of clusters which are

less than MinCsize . The Shannon entropy for a discrete set

of probabilities is defined as:

H(s)t = −

k∑

i=1

p(si)
t log(p(sti)), ∀t ∈ td (6)

where H(s)t is the entropy corresponding to the vector
SizeCt for the threshold t. Here sti is the size of the ith cluster

and p(sti) is defined as ratio between the size of ith cluster

corresponding to threshold t and the size of the validation

set (Nvalid). Entropy values are higher when there is a larger

number of uniformly sized clusters.

Balance is generally defined as the ratio between the

minimum size cluster in SizeCt and the maximum size

cluster in SizeCt. The aim of using balance is to prevent

one or more large community from being superior over all

other communities. Higher balance promotes uniformly sized

clusters and prevents few extremely large communities from

being dominant. This leads to more number of communities.

In this paper, we use the overall balance criterion which is the

sum of balance for all the clusters in SizeCt and defined as:

B(s)t =

k∑

i=1

sti
max(st1, . . . , s

t
k)

, ∀t ∈ td (7)

where sti represents the size of the ith cluster corresponding to

threshold t. The denominator in (7) refers to maximum sized

cluster for the threshold t. The higher the overall balance in

the clusters, the closer the value of B(s)t is to k.



We calculate the entropy and overall balance for each of

these SizeCt and use the harmonic mean or an F-measure to

determine the best of both entropy and overall balance as their

values are comparable. The F-measure is defined as:

F (s)t =
2H(s)tB(s)t

H(s)t +B(s)t
, ∀t ∈ td (8)

where H(s)t and B(s)t represents the entropy and expected

balance for threshold t. We evaluate F (s)t for all values of

threshold t ∈ td and output that value of threshold t say maxt

for which F (s)t is maximum. The number of clusters (k)

is obtained from the vector SizeCmaxt and is equal to the

number of terms in this vector. Algorithm 2 summarizes the

proposed method for identifying the number of clusters (k) in

a given large scale network.

Algorithm 2: Algorithm to automatically identify k com-

munities

Data: E = [e1, e2, . . . , eNvalid
]

Result: The number of clusters k in the given large scale

network.

1 Construct an affinity matrix A using the projection

vectors ei ∈ P and the similarity function CosDist().
2 Set td = [0.1, 0.2, . . . , 1].
3 for each t ∈ td do

4 Save A in a temporary variable B i.e. B := A.

5 Initialize the SizeCt as an empty vector.

6 while B is not an empty matrix do

7 Locate the projection of validation node ei for

which the number of nodes with

CosDist(ei, ej) ≤ t is maximum.

8 Count the number of these nodes and locate the

indices of these nodes.

9 Append the count of these nodes to the vector

SizeCt.

10 Remove rows and columns corresponding to

these indices.
11 end

12 Calculate the entropy H(s)t from SizeCt.

13 Calculate the expected balance B(s)t from SizeCt.

14 Calculate the F-measure F (s)t using H(s)t and

B(s)t.
15 end

16 Obtain the threshold corresponding to which the

F-measure is maximum as maxt.

17 Estimate k as the number of terms in the vector

SizeCmaxt.

IV. EXPERIMENTS

We conducted experiments on several synthetic and real

world networks. The synthetic networks are generated from

the software proposed in [2] with varying the size of the

network and the mixing parameter µ. The mixing parameter

contains information about the extent of overlap between the

communities in the large scale network.

A. Experiments on Synthetic networks

Figures 2,3, 4 and 5 show the result of our proposed

approach for identifying the number of clusters k on synthetic

networks made of 5, 000, 10, 000, 25, 000 and 50, 000 nodes

respectively. We show the results for two different mixing

parameters µ = 0.1 and µ = 0.5. For smaller µ the extent

of overlap is less in comparison to higher value of µ and

detecting communities is less difficult.

From Figures 2a, 2b, 3a, 3b, 4a, 4b, 5a and 5b, we show

that the proposed method identifies exactly or close to the

exact number of clusters present in the network even when the

extent of overlap is high. The adjusted rand index (ARI) [27]

values are also quite high suggesting that the clusters obtained

via KSC are meaningful. We also observe that the threshold

corresponding to which we obtain the maximum F-measure

is related to the mixing parameter µ. For the smaller mixing

parameter (0.1) the threshold value t for which the F-measure

is maximum is less than or equal to the threshold value

corresponding to higher mixing parameter 0.5 as observed

from Figures 2c, 2d, 3c, 3d, 4c, 4d, 5c and 5d.

B. Experiments on Real World Datasets

We conducted experiments on several real-world large scale

networks ranging from trust networks (PGPnet), collaboration

networks (Cond-mat), citation networks (HepPh), commu-

nication networks (Enron), social networks (Epinion), web

graphs (Youtube), actor networks (Imdb-actor) to road net-

works (roadCA). Details about these networks are available

at http://snap.stanford.edu/data/index.html. Table I provides a

few key statistics of each dataset.

Dataset Vertices Edges CCF

PGPnet 10,876 39,994 0.008

Cond-mat 23,133 186,936 0.6334

HepPh 34,401 421,578 0.1457

Enron 36,692 367,662 0.497

Epinions 75,879 508,837 0.2283

Imdb-actor 383,640 1,342,595 0.453

Youtube 1,134,890 2,987,624 0.173

roadCA 1,965,206 5,533,214 0.0464

TABLE I: Vertices (V), Edges (E) and Clustering Coefficients

(CCF) for each dataset

We use the entire large scale network as test set in our

experiments. We use the clusters obtained by Louvain [8], In-

fomap [6] and Bigclam [28] methods as groundtruth for these

networks. We compare the clusters obtained via the Original

KSC method w.r.t. these groundtruth clusters. Then we modify

the Original KSC method by automatically determining the

number of clusters (k). We combine our proposed approach

with the original out-of-sample extension property of the KSC

model to obtain the Self-Tuned KSC (ST-KSC) method.

In order to perform a comprehensive evaluation, once we

automatically obtain the value of k, we perform k-means on

the projections in the eigenspace for the validation set to obtain

the centroids. We obtain the projections of the test set in the

eigenspace and assign the cluster membership corresponding

to the centroid to which it is the closest. This method is

referred as Self-Tuned k-means KSC (ST k-means KSC). We

http://snap.stanford.edu/data/index.html


(a) A w.r.t. groundtruth (b) A w.r.t. groundtruth

(c) F-measure vs Threshold (d) F-measure vs Threshold

Fig. 2: Self-Tuned KSC on a synthetic network of 5, 000 nodes for mixing parameter values 0.1 and 0.5

(a) A w.r.t. groundtruth (b) A w.r.t. groundtruth

(c) F-measure vs Threshold (d) F-measure vs Threshold

Fig. 3: Self-Tuned KSC on a synthetic network of 10, 000 nodes for mixing parameter values 0.1 and 0.5

then compare the cluster memberships obtained via ST-KSC

and ST k-means KSC w.r.t. the community affiliations via

Louvain, Infomap and Bigclam method respectively.

For evaluating the cluster memberships we use three infor-

mation theoretic measures: mutual information (MI), variation

of information (VI) and adjusted rand index (ARI). These are

standard cluster quality evaluation metrics given two list of

cluster memberships and are described in detail in [29].

Table II evaluates the clusters obtained via the original KSC

method, the proposed ST-KSC method and ST k-means KSC

methods w.r.t. the clusters obtained by Louvain, Infomap and

Bigclam methods. Since the partition obtained by methods like

Louvain and Infomap method are not unique, we perform 10
randomizations and report the mean VI, ARI and MI values.

Figure 6a and 6b shows the variations for these evaluation

metrics in case of Enron and roadCA networks respectively.



(a) A w.r.t. groundtruth (b) A w.r.t. groundtruth

(c) F-measure vs Threshold (d) F-measure vs Threshold

Fig. 4: Self-Tuned KSC on a synthetic network of 25, 000 nodes for mixing parameter values 0.1 and 0.5

(a) A w.r.t. groundtruth (b) A w.r.t. groundtruth

(c) F-measure vs Threshold (d) F-measure vs Threshold

Fig. 5: Self-Tuned KSC on a synthetic network of 50, 000 nodes for mixing parameter values 0.1 and 0.5

From Table II we observe that the absolute values of ARI

are quite small for most networks as it is heavily dependent on

the number of clusters. For methods like Louvain and Infomap

method, the number of clusters found are much more than

that for KSC methods which lead to smaller ARI. From Table

II we observe that clusters obtained by the Original KSC

method generally have better variation of information (VI)

corresponding to the clusters obtained via Louvain, Infomap

and Bigclam methods. This is because the Original KSC

method using the BAF evaluation metric is biased to produce

small number of clusters as observed from Table II. However,

due to this bias it results in poor ARI and MI values for most

of the real world large scale networks. The clusters obtained

by the two self-tuned methods have better ARI and MI values.

The ST-KSC method results in better quality clusters for

PGPnet, Enron, Imdb-actor and roadCA networks when the



(a) For Enron network

(b) For roadCA network

Fig. 6: Variation of evaluation metrics (VI, ARI and MI) for various methods for Enron 6a and roadCA 6b network. It shows

that ST-KSC method gives best results for Enron network and ST k-means KSC method provides best results for roadCA

network.

clusters are evaluated w.r.t. the clusters obtained by Louvain,

Infomap and Bigclam methods. The evaluation metrics for

which ST-KSC method performs better is ARI and MI. The

ST k-means KSC method results in better quality clusters for

Cond-mat, HepPh and Youtube networks w.r.t to the quality

metrics ARI and MI.

Figure 6 showcases the results of the various quality metrics

for the Enron and roadCA networks. Figure 6a shows that the

clusters obtained by all the KSC methods are dissimilar from

those obtained by Louvain method because of the high VI,

low ARI and low MI values. However, the clusters obtained

by the KSC methods are more similar to the ones obtained by

Infomap and Bigclam methods. We observe this from 6a due

to the low VI, high ARI and better MI values. In case of the

Bigclam method, the clusters obtained are highly similar to

that obtained by all the KSC methods. The clusters produced

by the ST-KSC method in particular with VI (0.91), ARI (0.51)

and MI (1.97) is the most similar to the clusters produced by



Original KSC ST-KSC ST k-means KSC

k VI ARI MI k VI ARI MI k VI ARI MI

Louvain 4 4.022 0.004 0.124 30 3.94 0.073 1.102 30 4.08 0.041 0.87

PGPnet Infomap 4 3.583 0.006 0.1 30 3.7 0.1 0.98 30 3.77 0.063 0.78

Bigclam 4 1.57 0.011 0.029 30 3.4 0.12 1.026 303.462 0.07 0.78

Louvain 3 4.021 0.01 0.225 52 3.91 0.011 0.324 52 4.5 0.04 0.68

Cond-mat Infomap 3 3.132 0.05 0.222 52 3.1 0.051 0.32 52 3.63 0.224 0.68

Bigclam 3 0.5 0.49 0.562 52 1.47 0.155 2.49 52 1.22 0.331 1.99

Louvain 3 3.22 0.028 0.093 765.7395 0.014 0.216 76 5.23 0.09 0.64

HepPh Infomap 3 5.72 0.006 0.166 76 7.224 0.014 0.78 76 6.3 0.1 1.4

Bigclam 3 0.95 0.0004 0.0005 76 6.44 0.001 0.51 76 6.25 0.09 0.8

Louvain 3 3.6 0.038 0.274 16 3.57 0.053 0.442 16 3.51 0.0441 0.37

Enron Infomap 3 1.6 0.467 0.261 16 1.73 0.53 0.4 16 1.62 0.51 0.344

Bigclam 3 0.7 0.48 0.51 16 0.91 0.51 1.97 16 0.94 0.50 1.3

Louvain 3 3.1 0.0006 0.005 24 3.08 0.001 0.015 243.451 0.03 0.06

Epinion Infomap 3 4.163 0.017 0.007 24 4.16 0.031 0.013 24 4.47 0.014 0.1

Bigclam 3 0.11 0.1 0.007 24 0.84 0.02 0.02 24 0.74 0.014 0.016

Louvain 3 3.05 0.0005 0.006 59 4.4 0.114 1.09 59 3.84 0.093 0.673

Imdb-actorInfomap 3 2.7 0.0006 0.004 59 4.2 0.11 0.99 59 3.58 0.08 0.63

Bigclam 3 1.1 0.0 0.0 593.0405 0.025 1.07 59 3.14 0.02 0.83

Louvain 3 3.64 0.0003 0.004 21 4.1 0.016 0.047 21 4.55 0.017 0.096

Youtube Infomap 3 3.71 0.0003 0.0035 21 4.16 0.014 0.03 21 4.7 0.016 0.07

Bigclam 3 0.056 0.0 2.6e-06 21 1.6 0.035 0.06 21 1.25 0.09 0.1

Louvain 3 6.12 0.0004 0.141 39 6.38 0.0005 0.41 39 6.42 0.0006 0.242

roadCA Infomap 3 8.0 7.6e-05 0.21 39 7.9 0.0001 0.64 39 8.14 0.000110.40206

Bigclam 3 1.075 0.0 0.0 39 2.62 0.044 1.26 39 1.56 0.17 1.01

TABLE II: Evaluation of the cluster memberships for Original

KSC, ST-KSC and k-means KSC for several real world

networks w.r.t. Louvain, Infomap and Bigclam methods. The

highlighted numbers represent the best results. Original KSC

method performs better w.r.t. VI while the ST-KSC and ST

k-means KSC methods perform well w.r.t. ARI and MI.

Bigclam method.

From Figure 6b we observe that the clusters obtained by

all the KSC methods have high VI and low ARI values in

comparison to the clusters obtained by Louvain and Infomap

method. This is because the mean number of clusters obtained

by Louvain and Infomap method are 3, 000 and 65, 807
respectively over 10 randomizations. This is much larger in

comparison to the number of clusters obtained by Original

KSC (3) and 39 obtained by the proposed approach. How-

ever, the Bigclam method identifies 40 clusters. The clusters

obtained by Bigclam method have best result w.r.t. VI with

Original KSC method (1.075), w.r.t. ARI with ST k-means

KSC (0.17) and w.r.t. MI with ST-KSC (1.26).

V. CONCLUSION

In this paper we proposed an approach to make the kernel
spectral clustering method free of parameters for large scale
networks. We used the normalized linear kernel for large
scale networks and devised an approach to automatically
identify the number of clusters k in the given network. For
achieving this, we exploit the projections of the validation
nodes in the eigenspace by creating an affinity matrix which
had block-diagonal structure. We used the concepts of entropy
and balance to identify these block-diagonals and obtain the
number of clusters. We compared the resulting KSC methods
with large scale community detection methods like Louvain,
Infomap and Bigclam methods. In future work, we plan to
evaluate the clusters obtained by the KSC methods using other
likelihood based techniques like BIC and AIC.
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