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ABSTRACT
Least Squares Support Vector Machines (LSSVM) perform
classification using L2-norm on the weight vector and a
squared loss function with linear constraints. The major
advantage over classical L2-norm support vector machine
(SVM) is that it solves a system of linear equations rather
than solving a quadratic programming problem. The L2-
norm penalty on the weight vectors is known to robustly
select features. The zero-norm or the number of non-zero
elements in a vector is an ideal quantity for feature selec-
tion. The L0-norm minimization is a computationally in-
tractable problem. However, a convex relaxation to the di-
rect zero-norm minimization was proposed recently. In this
paper, we propose a combination of L2-norm penalty and
the convex relaxation of the L0-norm penalty for feature
selection in classification problems. We propose a primal-
dual framework for feature selection using the combination
of L2-norm and L0-norm penalty resulting in closed form
solution. A series of experiments on microarray data and
UCI data demonstrates that our proposed method results
in better performance.

1. INTRODUCTION
Least Squares Support Vector Machines (LSSVM) [1] is an

alternative to the standard support vector machines (SVM)
[2]. It is a widely used tool for classification and regression
problems. Given a dataset D = {(x1, y1), . . . , (xN , yN )},
where the input xi ∈ Rd is a vector with d features and
the class label yi ∈ {−1,+1}, the LSSVM finds an optimal
hyperplane to separate the two classes using the following
optimization problem:

min
w,ek,b

1

2
λ||w||2 +

1

2

NX
k=1

e2k

such that ek = yk − wᵀφ(xk)− b, k = 1, . . . , N,

(1)

where λ is a regularization constant, ek is the error cor-
responding to the kth point and b is the bias term. Here
φ(·) : Rd → Rnh is a mapping to a high dimensional feature
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space as in the standard SVM [2] case. Throughout this pa-
per we use the linear kernel. This means that φ(·) : Rd → Rd
or φ(x) = x. This allows to have interpretable models as the
feature space is known beforehand. Finally the classifier in
the primal is defined as: y(x) = sign[wᵀφ(x) + b].

The corresponding dual classifier is defined as: y(x) =

sign[
PN
k=1 αkK(xk, x) + b]. Here K(xk, xj) = φ(xk)ᵀφ(xj),

K is a positive definite kernel function and αk are the La-
grange multipliers which can be positive or negative due
to equality constraints. The KKT conditions lead to w =PN
k=1 αkφ(xk) and ek = 1

γ
αk. The second KKT condition

makes the LSSVM solutions non-sparse i.e. each data point
is considered as a support vector. Thus, the LSSVM for-
mulation in [1] has the form of a penalty+loss with the λ
playing the role of regularizer.

The major advantage of the LSSVM formulation over a
standard SVM is that the equality constraints and the squared
loss function leads to solving a system of linear equations in-
stead of a quadratic programming (QP) problem as in the
case of classical SVM. It is widely known [1, 3] that solving
a system of linear equations is computationally easier than
solving QPs. In this paper we take this into consideration
and the proposed method always solves a system of linear
equations and have closed form solutions.

The zero-norm defined as ||w||0 = card{wi|wi 6= 0} counts
the number of non-zero elements in the vector w. When the
zero-norm is minimized it results in very sparse models. Re-
cently, the zero norm has been receiving a lot of attention
in the machine learning community [4, 5, 6, 7]. The mini-
mization of the zero-norm is a computationally intractable
problem as shown in [8]. This is because the zero-norm min-
imization is non-convex and NP-hard problem. However, re-
cently a direct zero-norm optimization method was proposed
in [9] which can achieve the true zero-norm asymptotically
under Bayesian interpretation. This is closely related to the
concept of Automatic Relevance Determination (ARD) for
feature selection [11].

1.1 Motivations & Contributions
The role of L2-norm in feature selection for SVM classifiers

is to select the similar set of features upon different random-
izations of the data. This leads to robustness in selection of
features [10]. The L2-norm penalty also results in shrink-
age. It fits the coefficients toward zero but cannot make the
coefficients exactly zero. So, in this paper we combine the
L2-norm penalty along with the convex relaxation for direct
zero-norm penalty as formulated in [9, 6] for feature selec-
tion using LSSVM classifiers. The proposed method selects
groups of essential features for classification and eliminates



the unnecessary variables. We propose a primal-dual frame-
work for sparse feature selection using a combination of L2-
norm and L0-norm penalty while taking into consideration
both the cases when N � d and when d� N . Due to space
limitations we refer the readers to [4, 9, 12, 13, 14, 15, 17,
18, 19, 20] for related work.

2. PROPOSED METHOD
The direct zero-norm optimization method results in an

iterative convex formulation for L0-norm based classifiers
[6, 9]. It results in a local minimum to the non-convex zero-
norm problem with good predictive capabilities and sparsity
in both the feature and input space [9, 6]. However, the L0-
norm penalty doesn’t guarantee the selection of the same
set of variables for different randomizations. Thus, we use
the L2-norm penalty in combination with L0-norm penalty
along with a squared loss function in our formulation.

2.1 Primal Formulation
We pre-process the dataset D to be mean-centered and

have unit norm along each dimension d. Since the data
is mean-centered we don’t have the intercept term b. The
constrained optimization problem for the proposed approach
at iteration t is given by:

min
w(t),ek

1

2
λ||w||2 +

1

2
wᵀΛ(t−1)w +

1

2

NX
k=1

e2k

such that ek = yk − wᵀxk, k = 1, . . . , N,

(2)

where λ is the regularization parameter and
Λ(t−1) = diag( 1

|w(t−1)
1 |2

, . . . , 1

|w(t−1)
d

|2
). The wᵀΛ(t−1)w term

in the optimization function is the convex relaxation to the
||w||0 minimization. The L0-norm penalty term is the same
as that introduced in [9, 6]. After elimination of ek in (2), we
can obtain the following convex unconstrained optimization
problem:

min
w(t)

1

2
λ||w||2 +

1

2
wᵀΛ(t−1)w +

1

2

NX
k=1

(yk − wᵀxk)2 (3)

The solution to (3) at each iteration t can be obtained by
directly differentiating the convex optimization function in
(3) w.r.t to w. It results in a iteratively weighted ridge
regression [21] like solution:

w(t) = (λI + Λ(t−1) + XᵀX)−1XᵀY (4)

where X = [x1, x2, . . . , xN ]ᵀ and Y = [y1, y2, . . . , yN ]ᵀ. This
solution corresponds to the primal and is more appropriate
for the case when N � d. The final classifier in the primal
is then defined as: y(x) = sign[w(t)ᵀx].

Since the proposed approach follows an iterative proce-
dure to a local minimum, it is needed to have a good start-
ing value. We initially solve the LSSVM problem to ob-
tain the weight vector w(0). The regularization parameter
λ is also obtained by solving the LSSVM problem via cou-
pled simulated annealing (CSA) [22]. Thus, the initial value

of Λ(0) = diag( 1

|w(0)
1 |2

, . . . , 1

|w(0)
d
|2

). The L0-norm penalty

doesn’t introduce any additional tuning parameters as in
[9], performs direct zero-norm objective minimization and
is advantageous over AROM and FSV methods.

2.2 Dual Formulation
One of the KKT conditions of LSSVM provides the con-

nection between the primal weight vector w and the dual
Lagrange multipliers αk. The relation is given by w =PN
k=1 αkxk = Xᵀα where α = [α1, . . . , αN ]ᵀ. In the case

when the number of points in the dataset is much less than

the number of features in the dataset i.e. d� N , it is more
suitable to solve the problem in the dual. Given the con-
nection between w and α, replacing α in (3) results in the
following convex unconstrained optimization problem:

min
α(t)

1

2
λαᵀXXᵀα+

1

2
αᵀXΛ(t−1)Xᵀα+

1

2

NX
k=1

(yk − αᵀXxk)2

(5)
where λ is the regularization parameter and
Λ(t−1) = diag( 1

|w(t−1)
1 |2

, . . . , 1

|w(t−1)
d

|2
). The αᵀXΛ(t−1)Xᵀα

term in the optimization function is the convex relaxation
to the ||w||0 minimization. The solution to (5) at each itera-
tion t can be obtained by directly differentiating the convex
optimization function in (5) w.r.t to α. In (5), we can re-
place XXᵀ by the kernel matrix K as it is the linear kernel
case. The solution to (5) is given by:

α(t) = (λK + XΛ(t−1)Xᵀ +KKᵀ)−1KᵀY (6)

Once we obtain the solution vector α(t) for iteration t, we

recalculate the weight vector w(t) =
PN
k=1 α

(t)
k xk and re-

evaluate Λ(t) using the aforementioned procedure. The ini-
tial coefficients α(0) and the regularization parameter λ are
obtained by solving the LSSVM classifier in the dual. The

initial weight vectors w(0) =
PN
k=1 α

(0)
k xk and

Λ(0) = diag( 1

|w(0)
1 |2

, . . . , 1

|w(0)
d
|2

).

2.3 Stopping Criteria
The iterative procedure proposed for the primal and dual

formulation is executed till we either reach convergence or we
reach a maximum number of iterations (max iterations). In

case of the primal, we define a threshold θ =
||w(t)−w(t−1)||22

d
.

For the dual this threshold is defined as θ =
||w(t)−w(t−1)||22

N
.

We continue the iterative procedure until this threshold θ
reaches machine precision (denoted by ε). Empirically, we
observed that generally 5 to 10 iterations suffice. Once the
iterative procedure stops, we follow the setup in [4] and se-
lect the top r features from the weight vector such that
||w||0 = r.

3. EXPERIMENTAL RESULTS
In this section, we compare our proposed L2-norm and L0-

norm (L2+L0) penalty based feature selection method with
FSV method [15] and L1-SVM [17] from the LibLinear li-
brary (http://www.csie.ntu.edu.tw/~cjlin/liblinear/)
in the primal as these methods have formulations in the
primal. We compare the proposed approach with AROM
method [4] and Recursive Feature Elimination (RFE) [23]
in the dual as these methods are computationally cheaper
in the dual. We utilize the implementation of the afore-
mentioned methods from the matlab toolbox of Spider (http:
//www.kyb.tuebingen.mpg.de/bs/people/spider/index.html).
We also compare the proposed methodology with a primal-
dual formulation of direct zero-norm minimization based
LSSVM (D-L0) [9] and the original LSSVM [1].

3.1 Experiments
We demonstrate our results on 4 microarray gene datasets

in the dual. Out of these 4 datasets, two datasets are cancer
microarray datasets namely Colon and Leukemia which are
obtained from UCI repository [24]. The other two microar-
ray datasets are obtained from http://featureselection.

asu.edu/datasets.php. We also illustrate the effectiveness
of our proposed approach over 6 datasets in the primal.
These datasets are also obtained from the UCI repository.

http://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
http://www.kyb.tuebingen.mpg.de/bs/people/spider/index.html
http://featureselection.asu.edu/datasets.php
http://featureselection.asu.edu/datasets.php


Algorithm 1: Primal-Dual framework for feature selec-
tion using LSSVM

Data: D = {(xi, yi) : xi ∈ Rd, yi ∈ {+1,−1} for
classification, i = 1, . . . , N}.

Result: The optimal feature vector w ∈ Rd s.t.
|wi| ≥ 0, i = 1, . . . , r.

1 if N � d then

2 Solve LSSVM classifier in primal to obtain w(0) and
λ.

3 Initialize Λ(0) = diag( 1

|w(0)
1 |2

, . . . , 1

|w(0)
d
|2

), θ = inf &

cnt = 0.
4 while θ > ε and cnt < max iterations do

5 Solve (4) to obtain w(t).

6 Calculate Λ(t) = diag( 1

|w(t)
1 |2

, . . . , 1

|w(t)
d
|2

).

7 Estimate θ =
||w(t)−w(t−1)||22

d
.

8 Increment cnt to cnt+ 1.

9 else if d� N then
10 Solve the LSSVM classifier in the dual to obtain

α(0) and λ.
11 Calculate w(0) =

PN
k=1 α

(0)
k xk.

12 Initialize Λ(0) = diag( 1

|w(0)
1 |2

, . . . , 1

|w(0)
d
|2

), θ = inf &

cnt = 0.
13 while θ > ε and cnt < max iterations do

14 Solve (6) to obtain α(t).

15 Estimate w(t) =
PN
k=1 α

(t)
k xk.

16 Calculate Λ(t) = diag( 1

|w(t)
1 |2

, . . . , 1

|w(t)
d
|2

).

17 Evaluate θ =
||w(t)−w(t−1)||22

d
.

18 Increment cnt to cnt+ 1.

19 Sort the final weight vector w based on its absolute
values.

20 Select the top r features s.t. ||w||0 = r and set rest to 0.

We randomly partition the dataset into 80% as the train-
ing set and 20% as the test set. In order to estimate the value
of the hyper-parameter λ, we perform 50 cross-validations
of LSSVM using CSA [22]. We first use the training set for
feature selection by specifying a given number of features
(r). After obtaining the desired weight vector w, classifica-
tion is performed over the test set using this reduced weight
vector. All the experiments are conducted on a PC with 4
Gb RAM, 3Ghz CPU using Matlab 2009a.

3.2 Dual Experimental Results
We evaluate the predictive performance of various fea-

ture selection methods in the dual on the 4 microarray gene
datasets as shown in Figure 1. From Figure 1 we can observe
that the L2 + L0-norm penalty based proposed approach
results in lower or equal error estimates than the original
LSSVM in most cases for different value of r. This justifies
the need of feature selection before prediction is done. For
all the datasets, the L2-norm and L0-norm penalty (L2+L0)
based method and the direct L0-norm (D-L0) based method
perform better than AROM, RFE, L1-norm SVM and stan-
dard LSSVM for different values of r with the exception of
GLI dataset. For the GLI dataset, the AROM, RFE and

L1-norm SVM performs better but they are computationally
more expensive methods. In general, between the proposed
approach (L2+L0) and D-L0, our method performs better
for all the 4 microarray datasets.

DataMethod Largest Common Feature subset size
100 300 500 700 900 1100 1300 1500 1700 1900

L2+L0 26 66 120 196 290 395 508 648 870 1412
C D-L0 2 13 41 83 145 236 350 502 751 1327
O AROM 3 12 39 78 148 225 352 498 753 1330
L RFE 7 18 37 90 135 240 346 498 771 1350

L1 8 16 36 84 140 238 351 501 768 1346
LSSVM 15 52 87 150 214 322 435 568 810 1354

100 800 150022002900 3600 4300 5000 5700 7100
L2+L0 17 229 491 766 1134 1487 1866 2325 3165 7037

L D-L0 9 193 434 676 1022 1370 1795 2267 2859 6882
E AROM 10 183 431 667 1015 1410 1850 2238 2901 6866
U RFE 8 178 429 669 1018 1312 1750 2256 2714 6737

L1 7 169 422 671 1001 1332 1772 2301 2702 6797
LSSVM 13 219 454 704 1032 1376 1773 2205 2788 6872

100230045006700890011100133001550001770022100
L2+L0 100 229 856 1905 3400 5420 7798 10715 1402621920

G D-L0 2 380 671 1066 1610 2469 3653 5357 7572 20853
L AROM 12 278 651 1166 1810 2579 3573 5735 8127 19959
I RFE 8 292 701 1256 1610 2456 3842 5912 7601 20129

L1 8 288 699 1244 1700 2501 3678 5882 7812 20259
LSSVM 4 452 11371938 2899 4048 5305 6785 8633 20749

10021004100610081001010012100 14100 1610018100
L2+L0 10 34 210 545 1064 1902 2989 4545 6778 10772

S D-L0 7 54 215 534 1017 1664 2584 3926 5906 9849
M AROM 6 33 201 526 999 1676 2612 4010 6091 9958
K RFE 5 32 212 536 1010 1767 2588 3992 5990 10100

L1 6 28 221 522 1009 1812 2489 3891 6019 9845
LSSVM 6 293 741 13082001 2908 3918 5157 6995 10340

Table 1: Comparison of largest common feature set sizes
over 10 randomizations for different feature selection meth-
ods in the dual corresponding to various values of r

Table 1 contains information about the largest common
subset size over 10 randomizations for different feature se-
lection methods. This indicates the features that appeared
consistently during each randomization for a given value of
r s.t. ||w||0 = r. Higher values indicate the presence of a
set of variable which is consistently being selected. Thus, it
corresponds to the robustness of the proposed approach. We
observe that the proposed (L2+L0) approach is more robust
in selection of features than the other methods for Col and
Leu (cancer microarray datasets). However, for the SMK
dataset, the LSSVM method shows more robustness in gen-
eral. As we mentioned earlier that it is the L2-norm penalty
which leads to robustness in selection of similar sets of vari-
ables, the standard LSSVM formulation also uses L2-norm
penalty and hence shows this robustness.

3.3 Primal Experimental Results
We conducted experiments on 6 UCI datasets in the pri-

mal i.e. when N � d. Table 2 demonstrates the effective-
ness of the proposed approach in comparison to methods like
L1 SVM, FSV method, direct zero-norm based LSSVM and
the standard LSSVM. Table 2 contains information about
the value of r corresponding to which each method performs
best in terms of predictive power.

From Table 2 we observe that the proposed approach
(L2+L0) outperforms other methods in terms of accuracy
for 3 datasets. It showcases that our method leads to max-
imum sparsity w.r.t. feature selection. However, for the
Musk1 (Mus) dataset feature selection is not beneficial. This
can be observed from Table 2 since the best results corre-
spond to LSSVM for r = 166. We only highlight those re-



(a) Colon Dataset (b) Leukemia Dataset (c) SMK-CAN-187 Dataset (d) GLI-85 Dataset

Figure 1: Results of various feature selection methods for different subset size on several microarray datasets. The red line
corresponds to proposed L2+L0 method.

Datasets L2+L0 D-L0 L1 FSV LSSVM
Err Time r Err Time r Err Time r Err Time r Err Time r

BC 0.02 ± 0.01 0.01 ± 0.0 8 0.02 ± 0.01 0.01 ± 0.0 8 0.04 ± 0.01 0.11 ± 0.01 8 0.03 ± 0.01 424.3 ± 20 10 0.02 ± 0.01 0.01 ± 0.0 8
GER 0.32 ± 0.03 0.01 ± 0.01 7 0.33 ± 0.03 0.02 ± 0.01 9 0.36 ± 0.01 0.15 ± 0.02 16 0.33 ± 0.02 1040 ± 13.0 16 0.29 ± 0.02 0.01 ± 0.01 16
Mus 0.25 ± 0.04 0.04 ± 0.0 16 0.19 ± 0.06 0.04 ± 0.0 166 0.28 ± 0.03 0.14 ± 0.02 166 0.18 ± 0.03 10.5 ± 0.9 166 0.17 ± 0.03 0.03 ± 0.0 166
Son 0.24 ± 0.05 0.01 ± 0.0 4 0.24 ± 0.14 0.01 ± 0.0 32 0.25 ± 0.06 0.12 ± 0.02 60 0.26 ± 0.05 1.44 ± 0.11 32 0.28 ± 0.07 0.01 ± 0.0 60
Tit 0.21 ± 0.02 0.0 ± 0.0 3 0.22 ± 0.02 0.0 ± 0.0 3 0.22 ± 0.0 0.12 ± 0.03 3 - - - 0.22 ± 0.02 0.0 ± 0.0 3
TN 0.02 ± 0.0 0.02 ± 0.0 20 0.02 ± 0.0 0.02 ± 0.0 20 0.02 ± 0.0 0.18 ± 0.03 20 - - - 0.02 ± 0.0 0.02 ± 0.0 20

Table 2: Performance comparison over 6 datasets in the primal

sults which are unique and correspond to best performance
and least number of features used. We also infer that the
FSV method is computationally quite expensive and is in-
feasible for datasets like Tit and TN. Hence in Table 2 the
results aligning to the FSV method for these datasets are
represented by ‘-’.

4. CONCLUSION
In this paper we proposed a combination of L2-norm penalty

and the convex relaxation of the L0-norm penalty for feature
selection in classification problems. The proposed method
was formulated in a primal-dual framework by iteratively
solving a system of linear equations. It is computationally
easier than standard QP-based SVM solvers. The L2-norm
penalty helped in robustly selecting variables during each
randomization whereas the L0-norm penalty reduced the
noisy feature coefficients to zero. We demonstrated the ef-
ficiency of the proposed approach on 10 real world datasets
and evaluated it against several state-of-the-art feature se-
lection based SVM classifiers.
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