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Preface

Sitting on the ICE 954 on my way back from a conference in Magdeburg, writing
this preface seems like a fitting end of the journey this PhD has been. Not only is
it the end of four days in Germany, where I presented the results of the case study
on attribute-based credential verification –you can find these results in Chapter 9
of this thesis, but bear with me for a few more minutes,– it is also the end of four
years of work, of which the text you are holding in your hand is one of the results.

The journey, however, started already in 2006 when, fresh out of school and proud of
my newly attained engineering degree, I was allowed to start work at the DraMCo
research group on an IWT project on indoor localization with wireless sensor
networks. It is only fitting that I thank Luc De Backer, Lieven De Strycker and
Jean-Pierre Goemaere for their faith in me.

I had already expressed my interest in doing a PhD and when I was asked to start
research on a still vague topic involving wireless security with resource-limited
nodes, I could only but accept. However, I have to admit that it was with a heavy
heart, because “security” was a mystery to me. The first two years, consequently,
I felt like a conquistador, carving my way through an academic jungle of papers,
not knowing where my journey would end or what I would discover. That I kept
going, is largely thanks to of my family, friends and (ex-)colleagues. Thank you
mom, dad, Emile, Gerwinde, Maarten, Anneleen, Kevin, Jorge, Bert, Jeroen, Tom,
Henk, Steven, Bogdan, Davy, and Dries. Not only have you been there when “the
going was tough”, but I could share my successes with you as well.

For the final part of this PhD I have had the luck that I could supervise the theses
of two master students with initiative and the will to work. They provided me with
practical support and allowed me to focus on what really mattered for my thesis.
Thank you Sam and Jonas. Also for one of the case studies I was fortunate to be
able to work together with colleagues from the MSEC research group at KAHO
Sint-Lieven. Their expertise proved invaluable and our combined work resulted in
a nice paper. –Jorn and Vincent, next time you should accompany me. Let’s say
to... Hawaii?
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The quality of this text has been safeguarded by the members of the Jury. Thanks
to their remarks, I was able to patch the missing links, plug the holes and improve
the coherency. My special thanks go to my promoters, Prof. Bart Preneel and
Prof. Lieven De Strycker, who have guided and directed me whenever that was
necessary during the past four years. I would also like to express my gratitude
to Dr. Thomas Groß and Prof. François Corthay for agreeing to be members of
the jury, as well as to my assessors Prof. Bart Nauwelaers, Dr. Nele Mentens and
Dr. Vincent Naessens. I would explicitly like to thank Prof. Jean Berlamont for
presiding the jury.

Finally, this text would not have been what it is today, without my beloved
Charlotte. Not only her English skills, but also the simple fact that she was with
me on this journey, has made that you, dear reader, are holding this text in your
hands. I hope you enjoy reading it.

Geoffrey Ottoy
September 27, 2013

Somewhere in Germany



Abstract

The proliferation of wireless embedded devices and the boom of related applications
have set design engineers the difficult task of supporting security for these emerging
applications. This encompasses hiding a user’s sensitive data, safeguarding his privacy
and authenticating communicating parties as well as the data that is being exchanged.
Implementing these security measures in an embedded context requires a multidisciplinary
approach and often forces designers to make a trade-off between, processing speed, memory
usage, energy, cost, etc., which are not only influenced by the security measures itself,
but also by the application and the communication.

In this PhD, we have developed an embedded test platform that allows design engineers
to quickly implement proof-of-concept applications, evaluate them, and make educated
design choices on how to implement the required security measures. As an addition
to this platform we have designed a hardware accelerator for offloading the modular
exponentiations required for several public-key security protocols. To keep the range of
possible applications and hardware platforms as broad as possible, we have made this
design highly customizable. A second topic is the study of Near-Field Communication
(NFC) as a medium to communicate between a mobile device (e.g., a tablet or smartphone)
and an embedded terminal (e.g., a vending machine, access control point, or ticketing
terminal). We also extend the functionality of our embedded test platform by adding
support for NFC.

Finally, we have used our embedded platform in two case studies to validate our design
and to evaluate different design approaches in a practical setup. A first case study
focuses on attribute-based credential verification (a privacy-preserving technique) over
NFC and evaluates the influence of communication and processing (both in hardware and
software) on the application run time. A second case study evaluates the data rates and
communication times of NFC compared to an approach in which NFC is used to initiate
communication over a faster WiFi channel.
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Samenvatting

De opkomst van draadloze ingebedde toestellen en de toename van bijhorende toepassingen,
plaatst ontwerpingenieurs voor de moeilijke taak om de veiligheid in deze nieuwe
toepassingen te ondersteunen. Dit omvat het verbergen gevoelige gegevens van een
gebruiker, de vrijwaring van zijn privacy en het authenticeren van communicerende
partijen, evenals de gegevens die worden uitgewisseld. Het toepassen van deze
beveiligingsmaatregelen in een ingebedde omgeving vereist een multidisciplinaire aanpak en
dwingt ontwerpers vaak tot het maken van een afweging tussen, snelheid, geheugengebruik,
energie, kosten, enz., welke niet alleen worden bëınvloed door de veiligheidsmaatregelen
zelf, maar ook door de applicatie en de communicatie.

In dit doctoraat hebben we een ingebed testplatform ontworpen, dat ontwikkelaars
toe laat om snel tot een proof-of-concept applicatie te komen, deze te evalueren, en
op basis daarvan gefundeerde keuzes te maken over hoe men het beste de benodigde
beveiligingsmaatregelen kan implementeren. Als aanvulling op dit platform hebben we
een hardware-accelerator ontworpen voor het versnellen van de modulaire exponentiaties
die nodig zijn voor verschillende publieke-sleutel beveiligingsprotocollen. Om het aantal
mogelijke toepassingen en hardware platformen zo groot mogelijk te houden, hebben we
dit ontwerp in hoge mate aanpasbaar gemaakt. Een tweede onderdeel van dit werk, is
de studie van Near-Field Communication (NFC) als communicatiemedium tussen een
mobiel apparaat (bijvoorbeeld een tablet of smartphone) en een ingebedde terminal
(zoals een drankenautomaat, elektronisch slot, of ticketing terminal). We hebben ook
de functionaliteit van ons ingebedde testplatform uitgebreid door het toevoegen van
ondersteuning voor NFC.

Ten slotte hebben wij in twee case studies gebruik gemaakt van ons platform om ons
ontwerp te valideren en om verschillende ontwerpmogelijkheden te evalueren in een
praktische opstelling. Een eerste case studie richt zich op verificatie van credentials
gebaseerd op attributen (een privacy-beschermende techniek) over NFC en evalueert
de invloed van communicatie en berekeningen (zowel in hardware en software) op de
uitvoeringstijd van de toepassing. Een tweede case studie evalueert de datasnelheden van
NFC in vergelijking met een aanpak waarbij NFC gebruikt wordt om communicatie via
een sneller WiFi kanaal te starten.
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Chapter 1

Introduction

1.1 Setting

1.1.1 The Mobile Revolution

Whether they are sceptical or enthusiastic about its effect on our everyday lives
and our future, most people will agree that today’s technology is getting smarter.
Moreover, it is seeping into all aspects of our society. Boosted by Moore’s Law,
electronic devices are getting smaller, more energy-efficient and more powerful. To
illustrate this, let us take a look at the Intel Pentium 4 (Extreme Edition), a single
core processor often found in home computers by the turn of the millennium. At
3.2 GHz it obtains 9 to 10 GIPS, dissipating more than 100 W. If we compare
this with the NVIDIA Tegra 3, released in 2011 and found in several of the latest
smartphones, the difference is clear. This quad core can obtain between 13 and
14 GIPS, running at 1.5 GHz but only dissipating a few Watts.

So we are carrying around electronic devices that are already more powerful than
our personal computers of a decade ago. Moreover, chips such as the Tegra not
only house a general purpose processor, but also combine a graphics processing
unit, memory controller, and bridges for peripherals in the same package. This
makes them highly suitable for digital signal processing, such as playing media or
recognizing a song of which you cannot remember the title.

Combined with several wireless interfaces such as Bluetooth, GPRS, WiFi, GPS
or NFC, and packed with sensors such as a touch screen, accelerometers and
gyroscopes, smartphones are becoming an extension to the human body. They have
become like an extra sense and act as a physical interface for ubiquitous computing
applications [BBRS06]. Where a mobile phone was previously used for calling and

1
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sending text messages, it is now much more: a book, a camera, a map, a key, a
wallet,...

The role of the Internet has also changed in the past few years. The days where
people chatted on MSN and searched for information using Altavista are long
gone. Now we can “Google” everything, share our pictures (and “like” them) on
Facebook. We check the news, manage our finances and even file our taxes online.
The upswing of smartphones has lifted this (r)evolution to a whole new level. It
is yet another medium for people to stay in touch with friends, and manage their
social lives [Hay05]. Companies have also discovered this new market, as evidenced
by the many online banking apps or support for storage and validation of e-tickets
on your mobile device. Even schools and healthcare have expressed their interest
in the possibilities offered by mobile computing.

1.1.2 Designing for Embedded and Mobile Security

As mobile devices are increasingly used for financial transactions or to manipulate
personal data, there is an urgent need for reliable security. In cases where embedded
stand-alone devices, often with less computational power than a mobile phone, are
controlling the access to a service, the implementation needs to be well-thought
out as well. Think, for instance, of vending machines where you can pay with you
phone or lockers and storage containers that are accessible by using your mobile
device.

Another upcoming technology is the so-called Internet-of-Things (IoT). Sensors
and actuators are interconnected locally or even worldwide in order to cooperatively
offer an enhanced service. An example here is a healthcare or home monitoring
application for seniors.1 This can include fall detection based on cameras. These
images are processed locally, but in case of a fall detection they might be accessed
remotely. It is clear, however, that they should not be accessible to “spy” on the
residents of the home.

Also in smart metering applications (the smart grid) electronic meters transmit
their measurements to the gas, water or electric companies. When insufficiently
secured, the data communication can also be used for more malicious purposes. In
these cases, where data processing and the accompanying communication2 happens
on and between autonomous devices, it is more a matter of not revealing the
inherently obtained personal information to third parties. This requires encryption,
authentication and a well-conceived key management.

1This is a use case for the IoT, given by Intel: http://www.embeddedintel.com/special_
features.php?article=2721.

2The term Machine-to-machine (M2M) communication is a much-used buzz word.

http://www.embeddedintel.com/special_features.php?article=2721
http://www.embeddedintel.com/special_features.php?article=2721
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When it comes to making the design choices on how to implement the security
in embedded devices, engineers have to make several trade-offs in terms of
standardization, energy, memory, complexity, form factor, cost, etc. to meet the
proposed requirements. This is a daunting task that requires knowledge of e.g.,
encryption algorithms, entity authentication protocols, communication standards,
hardware design, and energy management.

Another important part of embedded security design is physical or electronic security.
When embedded devices store secret information, for instance, a symmetric key
or intellectual property, they can be physically attacked. For example, if the
JTAG interface is not disabled, it can be used to read the FLASH contents of a
microcontroller, possibly revealing a key or proprietary software. A nice overview
of JTAG attacks and how to protect against them, is given by Rosenfeld and
Karri [RK13]. One way to deal with this kind of attacks is to store information
essential for the security in a tamper-proof element e.g., a SIM card or Trusted
Platform Module (see also Chapter 3). These keys and hash values can then be
used to bootstrap security at board power-on. This bootstrapping can include
verification of signed executables, decryption of data stored in unprotected memory,
etc.

During the operation of the device, secret information can be leaked to the outside
world over so-called side channels [Koc96, KJJ08]. These include current drawn
by the circuitry, temperature variations, the electromagnetic field generated by
the device, etc. Preventing this kind of attacks is a difficult task often requiring
low-level hardware and software design. For instance, a metal casing can serve
as electromagnetic shielding. However, holes for I/O and power supply lines are
required through which information can still leak to the outside world. Furthermore,
removal of the shield should be detected and render the device inoperable.

Typically, embedded system designers do not build a complete system from scratch.
They use black boxes (or IP cores) with known specifications and merely provide
the glue logic and software to make them work together in offering the required
functionality. Security is often perceived as a nuisance and is overlooked in the
primary design phase: it is seen as something that will be added later because
it is not viewed as an essential part of the basic functionality. This often leads
to dubious implementations or results in performance drop, because the effects
of the security measures have been misjudged. Even more reprehensible is that
algorithms and protocols that have proven their worth are discarded in favor of
the security by obscurity i.e., some proprietary protocol.
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1.1.3 Your Most Dangerous Possession? Your Smartphone3

Bad guys are following where the people are going – and people are going to
smartphones4

Figure 1.1: Granting permissions
to the Pandora Radio app.

As always, there is also a downside to the
evolution in mobile computing. As mobile
devices are increasingly being used to store
personal information, for mobile banking or
to participate in social network sites, they
have become an attractive target for cyber
criminals. Spoofing attacks (man-in-the-middle)
with a malicious website sitting in between the
victim and his bank’s website to retrieve his
personal information have now come to the
mobile domain. Typically they are initiated by a
fake text message with the link to the malicious
website. Unsuspecting victims often believe this
to be a genuine message from their bank. The
same method is used to install trojans or illegal
data collection services.

Companies will also be able to exploit your
personal data if you allow them to (see Fig. 1.1).
For instance, the Pandora Web Radio or CBS
News apps for Android include third-party

advertising libraries. A study by Veracode has shown that these libraries transmit
personal information such as your GPS location or contact addresses to advertising
agencies in mass quantities.5 With mobile broadband subscriptions still rising
(Fig. 1.2), the problem is likely to only get bigger.

Several projects exist that enhance a user’s privacy or help him stay anonymous;
one of the most notable being TOR [DMS04].6 The main problem with most
of these projects is that they are either small scale, not easily accessible, even
obscure and associated with criminal activities. On the other hand, why would the
leaking of personal information be a problem? Only to get a chance of winning,
for instance, some cinema tickets, people fill in a web form and “give away” their

3Taken from CNN Money: http://money.cnn.com/2011/01/11/pf/smartphone_dangers/
index.htm

4George Peabody, director of emerging technologies at Mercator Advisory Group
5Mobile Apps Invading Your Privacy: http://www.veracode.com/blog/2011/04/mobile-apps-

invading-your-privacy/
Mobile App Privacy Continued... : http://www.veracode.com/blog/2011/04/mobile-app-
privacy-continued/

6https://www.torproject.org/index.html.en

http://money.cnn.com/2011/01/11/pf/smartphone_dangers/index.htm
http://money.cnn.com/2011/01/11/pf/smartphone_dangers/index.htm
http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/
http://www.veracode.com/blog/2011/04/mobile-apps-invading-your-privacy/
http://www.veracode.com/blog/2011/04/mobile-app-privacy-continued/
http://www.veracode.com/blog/2011/04/mobile-app-privacy-continued/
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Figure 1.2: Evolution (prediction) of the number of mobile broadband subscribers
(courtesy by Ericsson).

personal info. Or what about Facebook?7

1.1.4 Privacy Preserving Techniques

The need for privacy is a socially created need. Without society there would be no
need for privacy.8

But what is privacy? In his 2002 article [Sol02], Solove states that previous attempts
to conceptualize privacy can be summarized in six overlapping approaches: the right
to be let alone,9 limited access to the self, secrecy, control of personal information,
personhood, and intimacy. He argues, however, that this generalization leads to
imperfection and that privacy should be conceptualized in a specific context. This
is especially important when ensuring up-to-date and to-the-point legislation for
the Digital Information Age.

As Solove states, the term “privacy” is an umbrella term. It refers to a broad and
heterogeneous group of related things [Sol06]. Rather than focusing on a definition
of privacy itself, he argues that, with regard to lawmaking, effort should be put into
addressing the activities that can create a problem. His taxonomy divides these
activities into four types (each with their own subgroups) acting upon a subject
and most of them related to the personal information of the subject: information
collection, information processing, information dissemination and invasions. The

7... to kick in an open door.
8Barrington Moore, Jr., Privacy: Studies in Social and Cultural History 73 (1984).
9Possibly the first attempt to “boil down” privacy into a single phrase by Warren and Brandeis

(1890) [WB90]
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relationships between theses activities and their corresponding subgroups are shown
in Fig. 1.3.

Figure 1.3: Activities that harm the
privacy of a subject (courtesy by
D. Solove [Sol06]).

The activities do not have to be harmful
per se. When a subject agrees to
them, there is no privacy violation. On
the other hand, people are willing to
consent to some activities for small
rewards [Acq04]. Also, the fact that an
activity is harming the subject’s privacy
does not mean the activity is not
justified, i.e., there are occasions where
the subject should be held accountable
for his actions [All03]. It always comes
down to maintaining a (precarious)
balance between personal liberties and
government control. With the rise of
the digital information flow (i.e., your
personal (digital) dossier flows via the
plumbing of data banks and computer

networks from one organization or company to another) [Sol04] and the fact that
“the web never forgets” [Ros11], the complexity of the problem only seems to grow.

Privacy, only for those with something to hide?

By suggesting that people only care about their privacy when they have something
to hide, any discussion regarding this subject is avoided. For instance, in the US,
a country proud of its civil liberties, those liberties are trampled in the name of
national security. However, the recent disclosures on the NSA Prism program
tapping into our Google, Apple, and Microsoft user data, have stirred the people’s
concern [Mac13].

So why should people have to be aware of the risks associated with the release
of personal information? First of all, social network sites are a great resource
for social engineering attacks on mailboxes and computers (in case of a trivial
password). Also, burglars can scour for potential targets, for instance, people who
are on vacation and who have disclosed this information on their public profile.
Your surfing behaviour, interests and online purchases are monitored and used
to create an extensive (but possibly incorrect) profile that is used to send you
personalised advertising.

But there is no telling what the next step will be. Will your profile be sold,
distributed to insurance companies or financial institutions, that will use it to
decide whether to grant you another insurance or loan? Your smartphone can be
used as a hub for, a personal area network (PAN), or body area network (BAN),
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monitoring your heart rate, brain activity and emotional state.10 It is clear that
the dangers may be great, that digital security awareness must be taught or even
that service providers should even protect their users against their own ignorance.

On the other hand, why would service providers care to do this? It might require
a more complex infrastructure, even a complete redesign. The answer is that they
will only do this if some kind of benefit can be gained from it. So what benefits
could there be in offering privacy-friendly services? Spalding argues that there are
several reasons why service providers should take steps towards protecting their
users, or as he states, to reduce the provider’s liability [Spa13]. Some of these
reasons are of legal nature, e.g., to prevent potential lawsuits or to prevent users
and third parties from using the services in unintended ways. Other reasons are
more economically inspired: happy users keep returning.

To help companies in offering privacy-friendly services, several cryptographic
protocols have been proposed in the literature. These so-called attribute-based
credentials can be compared with classic certificate technology in the sense that
they provide a user with a certified set of attributes (i.e., the credential). However,
instead of showing the entire certificate and thus revealing all the associated
attributes, every time a service is requested, the user can choose to reveal only
the attributes required for accessing the service. Moreover, the next time this user
makes a service request, it cannot be linked to his previous interactions with the
provider. To protect the companies’ interests, credentials can be revoked and when
necessary a user’s identity can be traced back.

IBM with the Identity Mixer [17] en Microsoft with U-Prove [35] have both
implemented a cryptographic library to support the use of attribute-based
credentials. Each implementation is based on different concepts. U-Prove is not
as computationally intensive as the Identity Mixer, but requires more memory
when unlinkablity of transactions is required.

1.2 Contributions

As we have seen, the mobile revolution will require design engineers to come up
with fitting measures to counter the security issues that come with the whole
range of new applications that emerge. The design of embedded devices needs to
incorporate the system design, the communication and the application, as well as
features like energy consumption, form factor, and cost. In this work, we will focus
on the former three. This is presented graphically in Fig. 1.4.

10IMEC Body area network applications: http://www.imec.be/ScientificReport/SR2011/
1414067.html

http://www.imec.be/ScientificReport/SR2011/1414067.html
http://www.imec.be/ScientificReport/SR2011/1414067.html
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Figure 1.4: Structure of the thesis.

Starting from the setting of the mobile revolution, we evolve along three separate
tracks. The first track is the design of a configurable and expandable embedded
platform to aid engineers in prototyping and design evaluation. A second track
is the development of hardware support for cryptographic computations on the
embedded test platform. The main focus is on supporting privacy preserving
techniques, while just like the platform itself, the hardware must be configurable to
maximize the range of applications that can be evaluated. A third track will focus
on the communication between a mobile device and this embedded test platform.
We will consider Near-Field Communication (NFC).

These three tracks lead to two practical cases where the developed test platform,
with its support for communication and computation, is used to evaluate security
protocols. This approach serves to reach our overall goal: building an embedded
test platform that developers can use to implement security protocols as well as
evaluate all their aspects e.g., communication, computation, system requirements.
With the two case studies we validate our design and demonstrate its worth.

The main contributions of this work hence follow from this approach:

Our first main contribution is the design of an embedded platform for testing
and evaluating the impact of hardware offloading of cryptographic operations
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as well as evaluating the performance of certain communication protocols on an
embedded terminal. With this platform a design team can easily experiment with
different hardware IP cores, prototype different blocks separately, join them together,
prematurely detect design flaws and quickly come to a proof-of-concept that can
serve as the basis for the final product. The embedded Linux on the central processor
enables the use of standard libraries for arithmetic or communication, hence
reducing the design effort. We have also provided libraries for NFC communication
and examples on how to write custom hardware drivers and on how to use the
NFC libraries. Currently designers are forced to work with development kits that
are only partially configurable, hence forcing them to focus on only one aspect of
an embedded application. This platform provides the (missing) synergy between
commonly available wireless development platforms on the one hand, and embedded
hardware development boards on the other.

As a second main contribution we have designed an IP core to offload (to
hardware) the multiple modular exponentiations required for attribute-based
credentials and specifically targeted for our embedded test platform. This means
that the main objective of this IP core design is customizability to the designers’
needs, while maintaining an acceptable performance in comparison to specifically
tailored designs. We have validated the core’s performance in terms of resource
usage and run time. In addition, we provide several expressions that allow a
developer to estimate beforehand the run time and required resources for a certain
configuration of our IP core. As the core is able to carry out two exponentiations
simultaneously, we have also validated how this increases performance in comparison
to a single exponentiation. In that regard, we also provide expressions to determine
the run time and performance speedup for simultaneous exponentiations.

Our third main contribution focuses on NFC, a relatively new standard for
short-range wireless communication. We have investigated the requirements for the
mobile device as well as the embedded terminal in order for them to communicate
with one another. We have also implemented several solutions in practice.

A fourth and final contribution is the use of our developed test platform in two
case studies. All the previous work culminates in these two cases, thus validating
our overall goal (p. 8). A first case study focuses specifically on the verification of
attribute-based credentials on an embedded terminal. We have examined the total
run time of the Identity Mixer credential proof protocol and investigated how
the length of the parameters, the number of attributes and the number of revealed
attributes all influence the time required for both communication (over NFC) and
computation. For the latter, we have compared an implementation with both a
single-base exponentiation and a dual-base simultaneous exponentiation offloaded
to hardware. A second case study focuses specifically on the NFC (peer-to-peer)
communication between an Android smartphone and our embedded test platform.
We have evaluated the maximum attainable data rate and compared this to a
scenario with connection handover from NFC to WiFi.
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1.3 Outline

The remainder of this text is structured according to the contributions presented
above.

Chapter 2: A Platform for Developing, Testing and Evaluating Embedded Security
presents the embedded test platform we have developed. We clarify our design
choices and discuss the most important features.

Chapter 3: Introduction to Hardware Support for Modular Multi-Base Exponentia-
tions is an introductory chapter with regard to the applications and requirements
of such hardware support. We provide the evolution and latest work for modular
exponentiation hardware. This gives us an insight into what features are available
and what is the state of the art for resource usage and timing. We look at some
commercial products as well.

Chapter 4: Design of an Open-Source IP Core for Modular Simultaneous
Exponentiation details the goals, underlying ideas and design choices for our
hardware accelerator. We provide insight in the operation and the implemented
features.

Chapter 5: Multiplier Performance demonstrates how the multiplier, which is the
kernel of our IP core, performs in terms of execution speed and resource usage.

Chapter 6: IP Core Performance demonstrates the complete IP core as part of our
embedded test platform. We provide expressions for exponentiation run time and
speedup11 and verify these expression in practice.

Chapter 7: NFC Peer-to-Peer Communication highlights the important features
of the current specification for NFC and NFC peer-to-peer communication. We
specify the requirements for setting up an NFC peer-to-peer connection between
an Android smartphone and an embedded terminal and give examples as to how
to do this for both the smartphone and the terminal.

Chapter 8: Attribute-Based Credentials provides an insight into the topic of attribute-
based credential systems. The first goal is merely to illustrate the difficulties with
embedded implementations of these protocols. A second goal to show how credential
verification is specified in the Identity Mixer, which is the subject of one of the
case studies.

11i.e., the decrease in run time when using simultaneous exponentiations instead of single-base
exponentiations.
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Chapter 9: Attribute-Based Credential Authentication with Embedded Devices
demonstrates a practical setup for attribute-based credential verification on an
embedded platform. We look at communication as well as computation run times
and investigate the effect of using a hardware accelerator.

Chapter 10: NFC P2P versus NFC handover to WiFi investigates the NFC
communication between an Android smartphone and our embedded test platform.
We compare the communication speed attainable over NFC with an approach that
uses communication handover to WiFi.

Chapter 11: General Conclusions restates our most important realizations and
findings.





Chapter 2

A Platform for Developing,
Testing and Evaluating
Embedded Security

2.1 Introduction

When it comes to designing and more specifically making design choices on how to
implement embedded security, engineers have to make several trade-offs in terms
of standardization, energy, memory, complexity, form factor, cost, etc. to meet the
proposed requirements.

If we look, for instance, at the energy cost of encrypting a 128-bit data packet
and sending it over a ZigBee network, encrypting with dedicated hardware can
be up to 20% more energy-efficient compared to software encryption [DOH+10,
OHP+10a, OHP+10b]. However, for a higher transmission power, this gain will be
significantly smaller. The fact that communication is in most cases responsible for
the biggest energy consumption has been shown for several other wireless standards
too [SSBV11].

It is clear that, in order to make educated choices, the designer (or design team)
needs to be multi-disciplinary, bringing together knowledge of e.g., encryption
algorithms, entity authentication protocols, communication standards, hardware
design, energy management, ...

With the use of a flexible, re-usable hardware platform, a design team can prototype
different design parts separately, integrate them, prematurely detect design flaws,

13
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and quickly come to a proof-of-concept they can build on to get to the final product.
This chapter describes our design of such a platform, where the main requirements
are:

• Testing (new) security protocols in an embedded setup.
• Making practical proof-of-concept applications without having to worry about

specific technical problems e.g., communication stack, hardware drivers,...
but just focusing on the application itself.

• Designing and evaluating hardware accelerators to support cryptographic
operations.

Contributions. Starting from an existing Xilinx FPGA development board, we
have designed an embedded hardware platform for designing and evaluating
embedded security. This platform offers the missing link between wireless
development kits and embedded hardware development boards. The hardware is
assembled from existing Xilinx IP cores, e.g., standard embedded hardware like
GPIO, memory controllers, communication interfaces, and custom IP cores i.e.,
cryptographic accelerators (one of which built from scratch).

On top of the embedded processor, we have deployed an embedded Linux operating
system. To this OS, we have made several additions:

• Driver libraries for the cryptographic accelerators.
• A hardware expansion board with two extra UART interfaces, one of which

is used to control an NXP PN532 NFC chip.
• Communication libraries for NFC P2P.
• A boot sequence tailored to speed up development.
• Support for Compact Flash, NFS and NTP.
• Startup scripts to automatically enable this additional functionality.

With this platform set up, proof-of-concept applications can be rapidly deployed
(see Chapter 9). In addition, newly designed hardware accelerator IP cores can
easily be added in a similar fashion to the currently supported cores. The design
of such a core is detailed in Chapter 4.

The next section explains our design choices. Then, we provide the details of the
features we implemented. Section 2.4 then discusses how this design methodology
is applicable to other embedded platforms. Section 2.5 finalizes this chapter with
some conclusions.

Publications. A first version of this platform has been presented at the 12th Joint
IFIP TC6 and TC11 Conference on Communications and Multimedia Security -
CMS 2011 in Gent, Belgium [OMS+11]. A first practical case with an updated
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design has been detailed in an article and presented at the XXI International
Scientific Conference on Electronics – ET 2012 [ODW+12]. With regard to design
choices on AES data encryption in ZigBee networks, several articles have been
published [DOH+10, OHP+10a, OHP+10b].

2.2 Design Choices

2.2.1 The Xilinx ML605 FPGA Development Kit

Systems on Chip (SoCs) are used in many of today’s embedded hardware designs.
These SoCs integrate a complete embedded system into a single chip, housing a
central processor, memory, timing sources, communication interfaces and other
peripherals. Using a SoC allows to more easily manage the complexity of an
embedded system. Designers can focus on the implementation of their specific
hardware/software block, which is then used as a black box by others.

The prototyping of SoCs is typically done with FPGAs so engineers are able to
validate and test the system in a real-life situation at (or close to) the operating
frequency of the final design. This greatly reduces the development and debugging
time of the digital design.

To offer the same features with our design, we use an FPGA development kit;
more specifically the Xilinx ML605 embedded development kit [44] (Fig. 2.1). The
main component of this development board is the Xilinx Virtex-6 XC6VLX240T
FPGA [45]. This device houses a large amount of general purpose logic (e.g., LUTs,
FFs, MUXs, ...), but also enough RAM for user applications (both hardware and
software), hardware multipliers and Multi-Gigabit transceivers. The FPGA can be
configured from one of the non-volatile memories present on the board, or by using
the USB-JTAG interface for on-the-fly reconfiguration (and debugging) [19].

The non-volatile memories can also be used for user application data storage. To
this end, there is also an interface provided for removable Compact Flash cards.
Next to the on-chip block RAM, the board also offers a 512 M DDR3 SO-DIMM
for user applications.

The board also hosts several communication interfaces, most notably an Ethernet
PHY layer and UART-to-USB bridge. Typical GPIO hardware found in embedded
applications such as switches, LEDs, and an LCD (2x16 characters) are also
accessible from the FPGA. Extra pins of the FPGA are available from the FMC
connectors.
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Figure 2.1: The ML605 development board, with the most important components
(courtesy of Xilinx).

2.2.2 MicroBlaze Processor with Memory-Mapped Peripherals

Xilinx offers a processor IP core optimized for implementation in Xilinx FPGAs.
This is the MicroBlazeTM RISC Harvard architecture embedded processor [TG06].
The MicroBlaze processor is highly configurable (see Fig. 2.2). Next to a fixed
feature set, additional functionality can be selected when instantiating the core in
the design [43].

To be able to run an embedded operating system, we have chosen to add a memory
management unit (MMU) and to speed up most computations, we also included a
barrel shifter and multiplier. In our design we use the processor local bus (PLB)
interface to connect peripheral hardware to the controller. Currently, Xilinx has
adopted the AXI4 interface as the embedded hardware interconnect.1 However,
migrating from PLB to AXI4 is rather straightforward when the hardware was
created with the Xilinx tools. For existing PLB cores that need to remain unchanged,
Xilinx also provides an AXI to PLB bridge [42].

We need to note that the MicroBlaze also supports a streaming data interface e.g.,
for video, audio and signal processing in general, with the FSL (legacy) interface [40]
and current AXI4-Stream interface [10, 42]. Because of the nature of our envisioned
applications, we have currently not implemented this interface.

1The reason why the PLB interface is used for this platform, is that at the development start
date the PLB interface was the standard bus for Xilinx memory mapped IP cores.
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MicroBlaze Processor Reference Guide www.xilinx.com 9
UG081 (v14.1)

Chapter 2 

MicroBlaze Architecture

This chapter contains an overview of MicroBlaze™ features and detailed information on 
MicroBlaze architecture including Big-Endian or Little-Endian bit-reversed format, 32-bit general 
purpose registers, virtual-memory management, cache software support, and Fast Simplex Link 
(FSL) or AXI4-Stream interfaces. 

Overview
The MicroBlaze™ embedded processor soft core is a reduced instruction set computer (RISC) 
optimized for implementation in Xilinx® Field Programmable Gate Arrays (FPGAs). Figure 2-1
shows a functional block diagram of the MicroBlaze core.

Figure 2-1: MicroBlaze Core Block Diagram
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Figure 2.2: MicroBlaze core block diagram (courtesy of Xilinx).

All peripheral IP cores are accessible as memory-mapped devices from the
PLB/AXI4 bus. This means that they can be controlled and used by reading and
writing to their local registers and memory of which the addresses are a subset of the
total available memory addresses. Like most microcontrollers the MicroBlaze uses
a Harvard memory architecture. Next to the PLB/AXI4 bus, memory locations
can be accessed with the local memory bus (LMB) and the Xilinx Cache Link
(XCL). The LMB is used to access on-chip RAM while the XCL is typically used to
interface with external RAM, using the multi-port memory controller (MPMC).2
Both the LMB and XCL can be split to create separate instruction and data
memory.

2.2.3 Embedded OS

To deal with the complexity of modern embedded systems, more and more of them
run an operating system. Embedded Linux is highly suitable for that purpose.3

2For current designs, Xilinx has also adopted AXI4 to interface with the MPMC. [47]
3All embedded Linux-based distributions have a collective market share of 50%:
• EE Times’ 2013 embedded survey: http://www.eetimes.com/electronics-news/4407897/

Android--FreeRTOS-top-EE-Times--2013-embedded-survey

• Embedded developers prefer Linux, love Android: http://linuxgizmos.com/embedded-
developers-prefer-linux-love-android/

http://www.eetimes.com/electronics-news/4407897/Android--FreeRTOS-top-EE-Times--2013-embedded-survey
http://www.eetimes.com/electronics-news/4407897/Android--FreeRTOS-top-EE-Times--2013-embedded-survey
http://linuxgizmos.com/embedded-developers-prefer-linux-love-android/
http://linuxgizmos.com/embedded-developers-prefer-linux-love-android/
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Advantages of embedded Linux. The first interesting feature is the availability of
a complete TCP/IP stack, together with a set of standard networking applications.
This greatly increases the ease of developing and debugging applications on the
embedded system as will be detailed in Section 2.3.

A second advantage (especially in comparison to stand-alone embedded applications)
is the support for threading. Together with the MMU this makes that applications
can be tested on the system each in their own memory space, without crashing the
system because of bugs in the application. It is also another way of dealing with the
complexity of the system and allows to partition and develop an application
in smaller parts; e.g., a main application (running as a thread) relies on a
communication stack (several other threads) and a service for writing to the
LCD.

Another benefit of using embedded Linux is the availability of standard libraries for
data and memory manipulation, arithmetic, communication (security), as well as the
possibility to add non-standard tools and libraries available for Linux distributions;
e.g., in the case study (Chapter 9) we use GMP [38] for several arithmetic operations
and a ported version of libnfc [20] for the NFC communication.

A last advantage is the support for non-standard memory-mapped hardware devices.
In Linux this is provided by the userspace I/O (UIO) kernel module. We will use
UIO to control the hardware accelerators and general purpose peripherals.

The UIO kernel module. Creating a complete Linux kernel driver for devices
that are not handled by standard kernel subsystems (like networking or serial or
USB) is often overkill. Many devices only require some way to handle an interrupt
and provide access to the memory space of the device. The logic of controlling the
device does not necessarily have to be within the kernel, because the device does
not need any of the other resources that the kernel provides. Originally designed
for custom PCI-cards, the userspace I/O system now proves its worth on embedded
systems. UIO only provides a very small kernel module to access device memory
and handle interrupts. The rest of the driver functionality resides in user space.

Devices that are configured in the device tree source (DTS)4 as UIO devices, will
appear as /dev/uioX in the OS file tree, where X is a number. To obtain a file
descriptor to these device, the following example code can be used:

int uiofd;
uiofd = open("/dev/uioX", O_RDWR | O_NONBLOCK );

4The DTS is a textual description of the hardware tree structure, where the CPU is the root,
buses are branches and devices are leaves. Every device has several properties e.g., register address
space, driver compatibility,... By setting the compatible property to "generic-uio", the device
is treated as a UIO device by the OS.
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Subsequently, to gain access to the device’s memory and read or write:
int uio_memptr ;
uio_memptr = mmap(NULL , PAGE_SIZE , PROT_READ |PROT_WRITE ,

MAP_SHARED , uiofd , 0);
// reading
int data = *(( unsigned *)( uio_memptr ));
// writing
*(( unsigned *)( uio_memptr )) = data;

To enable the interrupts, it suffices to write a ‘1’ to the device (using the previously
obtained file descriptor).

int enable = 1;
write(uiofd , &enable , sizeof (int));

A developer can check for interrupts by reading from the UIO device.
int ints = 0;
read(uiofd , &ints , sizeof (int));

When an interrupt has occurred, the interrupts have to be enabled again in source
code. This is not done automatically.

All source code written to control the platform’s UIO devices follows the same
structure. However, the developer is responsible for freeing and un-mapping all
allocated memory.

The PetaLinux distribution. Xilinx together with PetaLogix offer a Linux port
targeted for Xilinx FPGAs and Zynq SoCs. The PetaLinux distribution comes
with several board support packages and a tool chain to simplify the deployment
on a broad range of platforms. It also automatically generates a DTS file from
an embedded hardware design created with the Xilinx embedded development
tools. The tool chain also offers the possibility to easily add new applications and
libraries to the basic distribution. For that purpose it creates the necessary make
files and kernel configuration files. Aside from this, the distribution comes with the
lightweight but powerful Busybox shell which contains the most common Linux
utilities.5

A license is required to run the PetaLinux SDK. We use an academic license, which
is free of charge but with limited support.

5Busybox project website: http://www.busybox.net/

http://www.busybox.net/
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2.3 Implemented Features

With the ML605 development kit and embedded Linux running on a MicroBlaze
processor system we created an example platform for testing and evaluating
embedded security. The resulting block diagram is represented in Fig. 2.3. The
implemented features are explained in detail in the following paragraphs.

2.3.1 Debugging and Application Development

Network file system support. A standard capability of Linux operating systems
is the network file system (NFS). With NFS a remote directory can be mounted over
the network and used as if it were physically located on the local host. We included
NFS because it simplifies the embedded application development. A developer
can write applications on a powerful work station, in his favorite development
environment. The development directory is mounted on the embedded platform.
After cross compilation, the application is immediately available on the embedded
platform for testing, without the need to rebuild and download a complete kernel
image. This greatly reduces the development time.

Remote application debug. With the GNU debugger (GDB) a program can be
debugged, i.e., stepping, breaking execution,... One of the utilities that PetaLinux
offers on the embedded platform is a GDB server. This way, applications running
on the platform can be debugged remotely over TCP/IP. A developer can connect
to the server from his workstation and debug an application as if it were running
on the workstation itself.

2.3.2 Communication

TCP/IP. The PetaLinux distribution offers a complete TCP/IP stack. This is,
for instance, necessary to support NFS and remote debugging. Standard kernel
configuration is that the IP address is obtained with DHCP. However, Busybox offers
a broad range of (standard Linux) utilities to make changes to the configuration
e.g., ifup, ifdown, ifconfig,... Other networking tools like ping and wget are
supported as well.

Another advantage of the TCP/IP stack is that application developers can use
socket programming to access remote services as well as offer services on the
platform itself.



IMPLEMENTED FEATURES 21

9

P
ur

po
se

T
er

m
in

al

N
F

C

R
F

U

B
A

U
D

11
52

00

11
52

00

96
00

P
ar

ity

od
d

no
ne

od
d

8 6 7

U
A

R
T

s

1

2 3 4

C
ry

pt
o 

ac
ce

le
ra

to
rs

A
E

S
−

12
8

S
H

A
−

25
6

M
M

E
−

15
36

0

Drivers

Libraries

Applications

P
et

aL
in

ux

M
ic

ro
B

la
ze

510

T
im

er
s

sy
st

em
 ti

m
er

us
er

 ti
m

er

1
0 2

3
4

5
6

7
8

9
10

In
te

rr
up

t
C

on
tr

ol
le

r

F
la

sh
 M

em
or

y
C

on
tr

ol
le

r

E
th

er
ne

t
P

H
Y

D
ev

el
op

m
en

t
P

N
53

2
N

F
C

B
oa

rd

U
S

B
 to

 U
A

R
T

br
id

ge

E
th

er
ne

t
M

A
C

D
IP

 s
w

itc
he

s
P

us
h 

bu
tto

ns
LC

D
LE

D
s

G
P

IO

S
ys

A
C

E

IR
Q

in
st

ru
ct

io
n

da
ta

M
P

M
C

V
ir

te
x 

6
F

P
G

A

51
2 

M
 D

D
R

3 
S

O
−

D
IM

M

C
om

pa
ct

F
la

sh
 C

ar
d

32
 M

 B
P

I F
la

sh

X
ili

nx
 M

L6
05

 D
ev

el
op

m
en

t B
oa

rd

G
P

IO
s

O
n−

ch
ip

 R
A

M

instruction

8 
K

8 
K

data

LMB

LMB

XCL

P
LB

XCL

Fi
gu

re
2.

3:
Bl

oc
k

di
ag

ra
m

of
ou

r
te

st
an

d
de

ve
lo

pm
en

t
pl

at
fo

rm
de

sig
n



22 A PLATFORM FOR DEVELOPING, TESTING AND EVALUATING EMBEDDED SECURITY

NTP. A necessity for many security applications is knowledge of the correct time,
e.g., to determine if a certificate is still valid. With the network time protocol
(NTP) computer systems can synchronize their clock with a time server over a
packet-switched network with unknown latency; in practice using TCP/IP. We
installed an NTP client application for this purpose.

RS-232. The ML605 platform provides a USB to UART bridge so a computer
terminal can be used to monitor and/or control the system’s behavior. In this
particular setup, the USB/UART is used as a serial terminal to control the booting
of the system as well as to issue shell commands (Busybox) to the OS. It also
serves as the stdin and stdout for all applications.

We extended the ML605 with a hardware stack-up board so two extra RS-232
ports are available. One of these ports is being used to control the PN532 NFC
communication module [32]. The other is reserved for future use (RFU). Note that
the free-to-use UART IP core provided by Xilinx (xps uartlite) requires a fixed
baud rate, that needs to be set before design synthesis.

NFC. In Chapter 7 we discuss the selection of libnfc and libnfc-llcp to serve
as NFCIP-1 and LLCP layers for the NFC P2P communication stack. We opted
to keep these libraries separated on the platform as well and not to offer a single
NFC P2P library. The main reason is that in case we want to communicate with a
phone in card emulation mode, we only require libnfc.

Because libnfc has a lot of overhead i.e., not only support for the PN532 and not
only support for UART, we reduced this library to the bare minimum. Currently
the only optional feature that has been left in, is a small number of debug messages,
though not the whole set.

As we mention in Chapter 7, the support for SNEP and NDEF has to be written
by the application designer, but we provide an example on how to make a basic
implementation (Appendix B).

2.3.3 System Timer and Interrupt Control

The operating system’s scheduler requires some way to measure time. This is
provided by the system timer. This 32-bit timer/counter generates an interrupt
after a certain amount of time, predefined in software.

Because the MicroBlaze has only one interrupt input, an interrupt controller is
required to capture and distinguish between interrupts from different sources. The
priority of the interrupts is fixed in hardware and shown on the block diagram.
The highest number corresponds with the highest priority. The OS can distinguish



IMPLEMENTED FEATURES 23

Table 2.1: List of implemented general purpose devices.

Device description UIO device PLB base address

8-bit DIP switches /dev/uio0 0x81460000
LCD 2x166 /dev/uio1 0x814a0000
8-bit LEDs /dev/uio2 0x81440000
5-bit LEDs /dev/uio3 0x81420000
5-bit push buttons /dev/uio4 0x81400000
user timer /dev/uio8 0x83a00000

between the different interrupt sources by reading from the interrupt controller’s
status registers (over the PLB).

The interrupts from e.g., the system timer and the Ethernet MAC are processed
automatically by the kernel subsystems. Interrupts from e.g., the cryptographic
accelerators are caught by the UIO driver and processed by the user space driver.

2.3.4 General Purpose Devices

Support for typical hardware found in embedded applications is also provided. All
these devices have been implemented as UIO devices. The push buttons and user
timer interrupts can be captured by the operating system. Table 2.1 lists all the
supported general purpose devices.

2.3.5 Memory

The FPGA’s on-chip memory is used to create an 8 K instruction memory and an
8 K data memory. Currently, this is only used to store the First-Stage Bootloader
(see paragraphs on booting Sect. 2.3.7), so 16 K is more than sufficient. The
512 M DDR3 RAM forms the main working memory of the operating system. It is
accessible through the MPMC, but the OS in combination with the MMU, ensures
that application developers don’t need to worry about the implementation of the
underlying memory architecture.

Using the System Advanced Configuration Environment (SysACE) IP core [39],
the system can use a Compact Flash card as large non-volatile memory. Although
originally designed for FPGA configuration, we only use the SysACE controller for

6HD44780-based LCD operated in 4-bit mode.
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Table 2.2: List of implemented cryptographic accelerators.

Device description UIO device PLB base address

AES-128 /dev/uio5 0xa1000000
SHA-256 /dev/uio7 0xa2000000
MME-1536 /dev/uio6 0xa00000008

Compact Flash storage. To be able to work with SysACE, the card needs to be
FAT16-formatted.7

The ML605 also houses several non-volatile memory devices, both FLASH and
EEPROM. We use the 32 M BPI Flash memory as configuration and second stage
boot loader memory. It is, however, also accessible at run time, both from the
second stage boot loader and operating system. This is to support in-the-field
configuration updates, which are much faster than the Xilinx tools to program the
Flash. The main reason is that for in-the-field updates the data is downloaded
over TCP/IP, while the Xilinx tools use JTAG, which is much slower.

2.3.6 Hardware for Cryptographic Operations

To be able to support several cryptographic protocols in hardware, we added three
hardware cores; one for symmetric key cryptography (AES-128 [23]) one for hashing
(SHA-256 [25]) and one for asymmetric key cryptography (MME-1536). All cores
have been implemented as UIO devices and are connected as memory-mapped
devices to the PLB (see Table 2.2 for the details).

The AES-128 core is based on the design of Gaj [GC03]. It only implements the
AES encryption/decryption [DR02]. Modes of operation have to be implemented
by the controlling software.9 This core has mainly been implemented to investigate
how easy it is to add existing hardware designs to the platform. It is not currently
being used in any case studies.

The SHA-256 core has been designed by Rykx and Thielen [RT09]. Only the
compression function is implemented in hardware. The padding of the message
has to be performed by the controlling software. A library containing the driver
source (UIO-based) and a user API is added to the OS. The core is used in the

7To be able to read the FAT16 file system, we compiled the kernel including the required
code page (cp437) and iocharset (iso8859-1 [6]). This is not the standard PetaLinux kernel
configuration and hence support needs to be enabled explicitly.

8The control register space starts from address 0xa0006000.
9An up-to-date list of approved modes for approved block ciphers can be found on the NIST

Current Modes: http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html

http://csrc.nist.gov/groups/ST/toolkit/BCM/current_modes.html
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Figure 2.4: Typical platform boot sequence.

case study (Chapter 9) to compute the hash in the CL-based credential verification
(see Chapter 8).

One part of this PhD focuses on the design of a highly configurable hardware
accelerator for modular multi-base exponentiations for use with this embedded
test platform. The MME-1536 core is an instantiation of this core, which supports
modulus and operand lengths of 512 bits, 1024 bits and 1536 bits. The details of
this core’s design are described in Chapters 3 to 6.

2.3.7 Advanced Booting

Aside from configuring the FPGA and MicroBlaze processor from the JTAG debug
chain, it is also possible to automatically configure the system when the board
power is switched on. This automatic configuration is much quicker than the
JTAG-based configuration, which is interesting when only developing embedded
applications i.e., the hardware platform doesn’t need to be changed.

To that end, we created an advanced boot setup that offers both speed and flexibility.
We made use of two existing boot loaders and the on-board Flash memory. In
addition, we also made changes to the kernel initialization.

Boot loaders. To get the operating system running at board power-up, a boot
sequence as shown in Fig. 2.4 is required. At board power-on, the FPGA
image (stored on the boot Flash memory) is used to configure the FPGA. After
configuration, the on-chip RAM contains the FS-Boot (First Stage Boot loader)
provided by PetaLinux. The FS-Boot takes the U-Boot boot loader10 from the
Flash memory and loads it into the DDR3 memory.

When not interrupted, U-Boot will automatically load the kernel image from flash
to the DDR3 memory. It then transfers control to the kernel which assumes its
normal operation after the initialization is complete. However, when a workstation
(serial terminal) is connected to the board, a developer can interrupt the U-Boot
automatic boot. With the (limited) U-Boot shell he can e.g., make changes to

10Das U-Boot – the Universal Boot Loader project website: http://www.denx.de/wiki/U-Boot

http://www.denx.de/wiki/U-Boot
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the TCP/IP configuration, request a new kernel image over the network, boot the
new image or update the Flash contents. The “net-boot” feature is particularly
interesting when developing libraries, because they need to be built into the kernel.
As long as changes are being made to the libraries, net-booting the newly built
kernel is quicker than re-writing the Flash and performing a standard boot.

Boot Flash memory. The boot Flash memory organization we use for the boot
sequence, is shown in Fig. 2.5. The PetaLinux tools provide a utility to configure
the Flash contents. The user, however, needs to ensure (manually) that the
reserved memory spaces are sufficiently large. A requirement for automatic FPGA
configuration is that the FPGA image is located at address 0x0. The FS-Boot
also needs to be compiled with the correct start address of U-Boot. The boot
environment contains environment variables required by U-Boot e.g., network
configuration data or the net-boot. The DTB is a compiled version of the DTS.

The boot Flash can also be updated by the OS itself. This is a utility that is
mainly interesting for in-the-field firmware updates.

Modifications to the kernel initialization. Next to the standard kernel initializa-
tion i.e., populating the device tree, loading kernel modules, setting up network
interfaces, users (developers) can also add their own init scripts. These scripts
need to be located at /etc/rc.d/. To be executed, the script name needs to be of
the form Sxx my custom init script name , where xx is a number. The number
determines the order in the init sequence, where the lower numbers are executed
first.
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We added two init scripts to automatically enable some extra features in the system:

1. To automatically mount the workstation’s NFS share as well as the Compact
Flash card, the script S50custom mount is executed during OS initialization:

#!/ bin/sh
echo " Mounting extra ’s:"
# create mount points
mkdir /mnt/nfs
mkdir /mnt/cf
# mount NFS share
WORKSTATION =10.26.8.2
WORKDIR =/ home/ geoffrey / Petalinux /petalinux -v2.1-final -

full/ software /user -apps
mount -t nfs -o tcp $WORKSTATION : $WORKDIR /mnt/nfs
# mount Compact Flash
mount -t vfat /dev/xsa1 /mnt/cf

2. To make sure the system clock has the correct time, the NTP client is used
to synchronize with a time server (in this case be.pool.ntp.org) at system
start-up. This is done by the script: S51ntp starter :

#!/ bin/sh
NTPHOST =be.pool.ntp.org
echo " Getting time from timeserver : $NTPHOST "
ntpclient -s -h $NTPHOST

2.4 Design Portability

As mentioned in Sect. 2.2, the design is a typical SoC prototype design. It is not
only applicable for the ML605, but every recent Xilinx FPGA (starting from the
Spartan/Virtex 5 series) can be used to create a similar setup. Moreover, when
migrating from PLB to AXI, this design can also be implemented on e.g., a Xilinx
Zynq SoC [46]. These devices integrate a complete dual-core ARM Cortex-A9
combined with FPGA fabric, hence offering an more powerful CPU than the
MicroBlaze.

Altera also offers an embedded microprocessor system with embedded Linux. The
Nios II processor [7] is comparable to the MicroBlaze processor when it comes
to processing power. However, it uses the Avalon switch fabric [8] as peripheral
interconnect. This means that IP cores developed for AXI or PLB will have to be
redesigned, or that an AXI/PLB to Avalon bridge will have to be used.

be.pool.ntp.org
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2.5 Conclusions

In this chapter we have detailed the design of test, prototyping and evaluation
platform for embedded SoCs. This platform offers the features of both embedded
hardware and wireless communication development boards. We have explained
our design choices and provided practical details and discussed advantages and
difficulties.

With regard to supporting cryptographic operations, we have added several
custom hardware IP cores. The bus structure with memory-mapped peripherals in
combination with the UIO driver offered by the operating system makes adding
these peripherals and managing the system’s complexity almost child’s play in the
test and development platform we have set up.

Currently, only one wireless interface has been implemented (i.e., NFC). With
regard to future work, supporting other much-used embedded wireless standards
e.g., Bluetooth, Bluetooth 4.0, WiFi, should be a priority. For offline platforms, it
would be advised to add a real-time clock IC e.g., connected with I2C or SPI, for
keeping track of the time.



Chapter 3

Introduction to Hardware
Support for Modular
Multi-Base Exponentiations

3.1 Motivation

As we have pointed out in the introduction (Chapter 1), it is a challenge for today’s
design engineers to counter the security issues in newly developed applications on
embedded wireless platforms. One of the issues is how to preserve the privacy of
the users, especially in an embedded context where computational power is limited
i.e., on the side of a stand-alone wireless terminal such as a vending machine or an
electronic locker.

A privacy-friendly solution to access electronic services is offered by attribute-based
credential systems. A more detailed overview of these systems is given in Chapter 8.
However, we will briefly outline the difficulties with using attribute-based credential
systems in an embedded context. The main disadvantage of these technologies is
their poor performance, both in terms of processing power and in terms of memory
footprint, compared to classic certificate technology. The Identity Mixer [17] for
instance, uses zero-knowledge proofs that require multiple exponentiations by both
the prover and the verifier (see Chapter 8). This operation is shown in Eqn. (3.1),
where the length of the base operands gi, and the modulus m, is at least 1024 bits.
The length of the exponents ei can range from a few bits to a few thousands of

29



30 INTRODUCTION TO HARDWARE SUPPORT FOR MODULAR MULTI-BASE EXPONENTIATIONS

bits.
l−1∏
i=0

geii mod m . (3.1)

Especially these computations currently lead to unacceptable response times in
many application domains. The same problems arise for other protocols like DSA
signature verification or Direct Anonymous Attestation (DAA).1 In the case of
attribute-based credentials, the existing research has mainly focused on optimizing
the prover operations and exploring the usability boundaries on mobile platforms
such as smart cards and mobile phones. That approach assumes that the verification
of credential proofs occurs at a powerful back end. An overview of this research is
given in Chapter 8.

However, selective disclosure or anonymous authentication is also very relevant
in settings where a user authenticates to a terminal that is not connected with
a powerful back end. For example, a stand-alone cigarette or beverage vending
machine wants to verify if the user is older than 18. Similarly, a local waste disposal
center wants to permit access only to citizens of the area. Therefore, users need to
prove that they live in a certain city before they are granted access to that location.
Another application of attribute-based credentials could be in a self-storage facility
where users only require a valid credential to access the storage. The credential,
however, is only valid for a predetermined time.

In all the above-mentioned situations, users can discourage extensive profiling by
releasing no more information than is strictly necessary. Another similarity is that
hardware that performs the credential verification is most likely to be an embedded
platform and hence limited in processing power.

Example of the problem

Devices like stand-alone terminals or access points are typically run by a
(low-resource) microcontroller. An implementation on a 16 MHz 8-bit AVR
microcontroller with 1024-bit base operands and 24-bit exponents needs 1.72
seconds for one dual-base exponentiation [Bal08]. In comparison, a SHA1
computation on the same system only requires 6 ms.

To enable developers to evaluate different security protocols that require
multiple modular exponentiations (e.g., attribute-based credentials, DSA signature
verification, DAA, or secret sharing protocols), we have designed a hardware
accelerator – also referred to as (hardware) IP core – to be used specifically in an
embedded context. Because often several exponentiations are required, we opted to

1DAA is a cryptographic protocol for remote authentication of a trusted platform comparable
to attribute-based credentials: i.e., it preserves the user’s privacy.
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create a hardware accelerator that is capable of performing these exponentiations
simultaneously.

Many designs of hardware for modular exponentiations have been proposed in the
literature. However, they are always targeted to optimize a certain design goal,
whether that is the footprint, speed, throughput, energy or a product of one of
these. Furthermore, very few exist that are capable of carrying out exponentiations
simultaneously. The same holds for commercially available products. In this
chapter we will give an overview of this research and point out the findings that
are most relevant for our design.

Because we want to be able to test our hardware accelerator with different scenarios,
in a practical setup, our main design goal is a customizable IP core (see outline
for examples of several scenarios). With the hardware accelerator connected
to our embedded test platform (Chapter 2), these different scenarios can be
easily evaluated and in addition, we can state the boundaries for certain design
approaches: e.g., what is the computational speedup by using simultaneous multi-
base exponentiations in this kind of applications.

Need for flexibility

Take the setting where a user rents a locker, for instance, in a train station. If
the user has a previously purchased credential on his smartphone, he can open
and close the locker with it. The credential only holds an expiry date (and of
course a master secret).

In the case of a car rental or sharing application like, for example, Cambio, a
user should only have to prove that he has a valid driver’s license and a car
insurance.

A purchase of cigarettes or liquor at a vending machine using a mobile phone
requires a range check of the age e.g., older than 18.

Also the level of security (determined by the length of the modulus) is an
important factor. It is realistic that for the the vending machines (relatively
small amounts of money), a modulus length of 1536 bits suffices, while for car
rental a longer modulus (at least 2048 bits) is required.

After this introductory chapter, we detail the design of our own IP core in
(Chapter 4). We explain our design choices, how we made the design customizable,
and how that translates into hardware. We also explain the Linux device driver
code for interfacing with the hardware from the embedded OS.

In Chapter 5 we evaluate how the multiplier can be “tuned” in terms of resource
usage and operational frequency. This allows us to somewhat compare our hardware
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with existing material. Chapter 6 continues with including the complete IP core
in the platform as described in Chapter 2. We state some theoretical run times
and verify these in practice. The speedup by doing simultaneous multi-base
exponentiations instead of single-base exponentiations will also be evaluated.

3.2 Related Academic Work

Efficient implementations of finite field arithmetic have long been investigated.
They already received considerable attention due to their extensive use in the theory
of error correction codes. However, research on this topic exploded after Diffie and
Hellman [DH76] introduced the concept of public-key cryptography (PKC).

Since then, several well-known public-key cryptosystems have been proposed e.g.,
RSA [RSA78], DSA [24], ElGamal [Elg85], Schnorr [Sch90], Identity Mixer [17],
U-Prove [35], ECC [Mil86] and HECC [Kob87]. They all rely on factoring and the
discrete logarithm problem, either in a large prime field or on an elliptic curve over
a finite field. The European Network of Excellence in Cryptology II publishes a
yearly report on Algorithms and Keysizes [Eur12]. With more powerful devices
coming up (cf. Moore’s Law), larger keys are required to maintain a certain level
of security. With the design of a test platform in mind, scalability of hardware
implementation is a key factor.

As was also stated in the motivation (Sect. 3.1), the efficiency of an implementation
of a cryptosystem depends greatly on the efficiency of the implementation of the
algorithms. More specifically, in the case of the aforementioned PKCs, the modular
arithmetic will play a decisive role. That is why a great deal of the concerning
research has focused on modular multiplication. It is a key operation in the finite
field arithmetic and forms the basis for a modular exponentiation, also commonly
used.

An excellent overview of some techniques for efficient implementation of both
integer and modular arithmetic can be found in The Handbook of Applied
Cryptography [MVO96]. How finite field arithmetic is implemented efficiently in
hardware and specifically applied to cryptography, can be found in both Guajardo
et al. [GGK+06], and in Sakiyama and Batina [SB10]. Knežević’ work [Kne11],
continues to give a thorough overview of the research on how to improve the
algorithmic efficiency of several hardware implementations.

The research on improving the efficiency always starts with improving the
algorithms; by rearranging steps, by analyzing the requirements, and simplifying
the algorithm or by coming up with new algorithms altogether. The next challenge
is to implement them as efficiently as possible, either to reduce the footprint (fully
sequential design) or to increase the speed (fully parallel design).
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In the next section we give an overview of the evolution and interesting milestones in
the design of modular multipliers, and additionally exponentiators. This will help us
make some well-funded choices in the design of our own hardware implementation.
Some of the commercially available products are discussed in Sect. 3.3. Section 3.4
concludes this chapter.

3.2.1 Modular Multiplication Hardware

The basis: Barrett and Montgomery multiplication. From an algorithmic point
of view, two distinctive implementation types are used: Bit-parallel and Digit-serial.
Bit-parallel algorithms are focused on reducing the run time of a multiplication.
High speeds are achieved by expensive operations like integer division.2 The
trade-off is an increased area utilization. In contrast, digit-serial algorithms reduce
the area by sequentially interleaving multiplication with reduction. Also, less
complex operations like addition and shifting are used. The sequential character of
these algorithms obviously has an impact on the execution speed. Mainly due to
their reduced area (less-expensive), digit-serial algorithms are used in embedded
applications.

Two algorithms have contributed to efficient implementation of modular arithmetic.
In 1985, Montgomery came up with an idea to carry out a modular multiplication
without the need of a trial divivision [Mon85]. His algorithm omits the classical
reduction step. The result is given by Eqn. (3.2), that defines the Montgomery
multiplication (∗) as follows:

x ∗ y = xyR−1 mod m . (3.2)

Where, R = bn with b the base and n the number of digits of m. The algorithm
is highly suited for use in modular exponentiations as the factor R can be
easily removed at the end by (Montgomery) multiplying with R2, which can
be precomputed and is constant as long as the length of the modulus m does not
change.

The approach of Barrett [Bar87] is different in the sense that it uses an estimate
for the intermediate quotient. As a consequence, a number of correction steps
might be needed at the end. However, Dhem [Dhe98] shows that at most one
correction step is needed, provided that the correct values for some algorithm
parameters are chosen. Just like with Montgomery multiplication, the efficiency of
Barrett multiplication increases with the number of multiplications under the same
modulus as the precomputation cost is fixed. Bosselaers et al. provide a thorough
comparison of Barrett and Montgomery multiplication [BGV94]. They state that
for general modular exponentiations, Montgomery’s algorithm performs best.

2Expensive on embedded hardware.
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Speeding up Barret en Montgomery multiplication. In the case of ECC, the
modular reduction can be performed more quickly than in the generalized algorithms
of Barrett and Montgomery. This is due to the properties of the Mersenne prime
moduli used in such cryptosystems. This computational advantage is the reason
behind the use of such moduli in standards like ANSI X9.62 [9], FIPS 186-3 [24] and
SEC2 [34]. Quisquater [Qui92] came up with the first practical algorithm to simplify
the reduction step. Later, Lenstra [Len98] proposes a method to generate RSA
moduli that also simplify the reduction step while maintaining the security level.
This method has later been enhanced by Joye [Joy08]. A high-performance FPGA
implementation that combines the advantages of Mersenne prime moduli with the
features offered by the DSP slices is presented by Güneysu and Paar [GP08].

Specifically for high-speed hardware implementations of ECC, Knežević et al.
[KBV09] propose some sets of moduli that make it possible to implement both
Barrett and Montgomery multiplication without the precomputational phase.
Additionally, their results also show substantial improvement in case of a small
number of reductions.

In an attempt to achieve higher execution speeds, an algorithm is proposed that
combines Montgomery and classical multiplications. The first version of Potgieter
[PvD02] only works with finite fields of characteristic 2. This was extended by
Kaihara and Takagi to the ring of integers [KT05]. The so-called bipartite modular
multiplication (BMM) efficiently combines Montgomery’s modular multiplication
algorithm with a classical modular multiplication method. Higher execution speeds
are achieved by splitting the operand multiplier into two parts which enables
parallel processing. Similarly to previously discussed techniques, the calculations
can be sped up further by using special sets of moduli [KVV10]. The k-partition
method by Néto et al. [NTR11] is an extension to the bipartite algorithm. In
this method, k partitions operate in radix 2k, each computing a part of the total
result. The fastest multiplication would execute in n/k cycles. The complexity of
the partitions, however, is higher than for a standard Montgomery multiplier, but
often the FPGA’s on-board multipliers are used to implement the partitions.

Further parallelization is achieved by Sakiyama et al. with the tripartite modular
multiplication method [SKF+11]. As its name suggests, this algorithm combines
three algorithms: the classic modular multiplication, the Montgomery multiplication
and Karatsuba’s algorithm [KO63]. The latter allows for even more parallelism
by reusing intermediate partial products. While the tripartite algorithm provides
ample parallelism and thus the possibility to fully speed up multiplication, it also
allows for a speed/area trade-off.

Efficient implementation. In spite of the existence of several alternative
algorithms (e.g., Barrett, bipartite, ...), the Montgomery algorithm is one of
the most popular modular multiplication algorithms. This is mainly due to the
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fact that it easily translates into hardware. However, the original Montgomery
algorithm’s main drawback is its carry propagation in the addition; especially for
long multiplicands.

Several architectures have been proposed that combine Montgomery multiplication
with either a redundant radix number system [SKN08, HC09] or the Residue
Number System [BDK97, Phi01] to cope with this problem. However, these
implementations have several other drawbacks. The most remarkable may be the
fact that a lot of preprocessing of the operands is required.

Montgomery multipliers can use Booth encoding [Boo51] to replace the use of
precomputed hard multiples in the processing elements. In [PH07], this is combined
with left-shifting of the input operands –instead of right-shifting the result– to
reduce the critical path. In [APH08, PH08], more flexibility is added to the design
by varying the length of the processing elements and by implementing the Booth
encoding in hardware rather than requiring precomputed hard multiples of the
input operands.

In 1996, Koç et al. [cKKAJ96] made a first classification of implementations of
Montgomery multiplication. Their classification is based on two features. The
first feature is whether multiplication and reduction were interleaved or not. The
interleaving could happen on a coarse-grained or fine-grained basis, depending on
how often there is a switch between multiplication and reduction. The second
feature is the formal structure of the algorithm; operand scanning refers to an
outer loop that moves through words of one of the multiplicands, whether product
scanning loops through words of the product. Their conclusion was that coarse-
grained integrated (interleaved) operand scanning is best-suited for a general
purpose processor. However, they suggested that for DSPs or dedicated hardware
a fine-grained approach would perform better.

Inarguably, the best-known class of hardware Montgomery multipliers is the systolic
array architecture. A first design milestone in that multiplier architecture was the
work of Blum and Paar [BP99]. Nedja and Mourelle [Nd06, dMMN05, NdMM03]
have performed a lot of work concerning practical implementations of systolic
array implementations. They have shown that for operands larger than 512 bit,
the systolic array implementation improves the time × area product over other
implementations.

Systolic array Montgomery multipliers have been implemented in 2-dimensional
(e.g., [Nd06, Nd02]) and 1-dimensional designs (e.g., [OBPV03, TcKK07]). The
1-dimensional variant requires less silicon to implement, but is slower than the
2-dimensional implementation. In 1999, Tenca and Koç [TcKK99] came up with a
pipelined design where the circuit of the Montgomery multiplier is split into “word
size” processing elements. This approach made the design scalable in terms of
both processing speed and multiplicand length. Since then, several improvements
have been made to their original design [TcKK03, ZW10]. One of the fastest
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Montgomery multiplier designs combines pipelining and the FPGA’s hardware
multipliers, further increasing the execution speed compared to the previously
available designs [MSPV07].

Practical concerns. While a lot of the aforementioned (pioneering) research
put its emphasis on either optimizing for speed or area, there are also practical
considerations to make. Consider, for instance, the work of Fournaris and
Koufopavlou [FK07]. They propose a reusable ECC arithmetic unit that supports
basic EC point operations and can thus be used to create a fully functional EC
coprocessor. However, data flow to and from this processor also needs to be taken
into consideration and is (again) highly dependent on the application requirements.
For instance, in the case of high-throughput applications, it may be interesting to
integrate the hardware accelerator in such a way that it is part of the processor data
path.3 In contrast, for applications that only require hardware offload in bursts,
an accelerator designed as memory-mapped peripheral might be more appropriate.
Fan et al. [FBV11] illustrate this point with a unified HECC multiplier and inverter
design for both high-performance and lightweight applications.

Another practical aspect is the resistance of a design against side-channel
attacks [Koc96, KJJ08]. By the way a design is implemented, it can leak information
to the outside world over unintended channels, making them prone to physical
and electrical attacks [HiHA13]. In his CHES 2007 paper [Joy07], Joye presents
algorithms for multiplication that are protected against SPA-type attacks and
safe-error attacks. A comprehensive text on side-channel analysis is written by
Örs et al. [OPV07]. It gives insight in how the attacks are staged and what
countermeasures can be taken.

For many embedded implementations, the footprint of a design is a key feature.
Here, ECC can offer an alternative to RSA-based PKCs. One of the smallest ECC
processors on FPGA is presented by Vliegen et al. [VMG+10]

It may be clear that making an efficient implementation of a cryptographic protocol
is never a story of only algorithmic optimization or only hardware optimization.
It requires a view on “the bigger picture”. Or as Verbauwhede states [Ver12]: ...
on embedded devices a holistic design approach needs to be applied. This design
approach has to look at each abstraction level during design. It includes protocol,
algorithm, architecture, arithmetic and circuit level optimizations.

3.2.2 Modular Exponentiation Hardware

The most straightforward way of performing a modular exponentiation is by
repeated squarings and multiplications to get the final result [BP01, SDI11]. That

3For a MicroBlaze processor this can be achieved at some level by using an FSL connection [40].
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is why most of the research effort went to the design of efficient multipliers. The
square and multiply step can be performed either in parallel [Nd06] or sequentially
[dlPTC11]. Again, this has repercussions on the footprint of the design. Where
square and multiply are performed in parallel, two multipliers will be required.
Blum also states in his thesis [Blu99] that squaring and multiplying in parallel does
not fully utilize the complete design. This is because a multiplication will only be
executed when an exponent bit is one; i.e., on average half the time.

This fact can also be exploited to reduce the execution time (of sequential
implementations). Chang and Lai use Booth’s method [Boo51] to increase the
number of exponent 0-bits [LC03]. This reduces the number of multiplications and
thus results in a speedup. However, more memory is required to store precomputed
values; e.g., a dual-base exponentiation with a classic simultaneous exponentiation
algorithm requires 4 memory locations while Chang’s algorithm requires twice as
many.4 Chang and Lai also proposed a parallel modular exponentiation scheme
(also using recoded exponents) that is specifically targeted for multi-processor
systems [CL05].

To speed up simultaneous exponentiations even more, new exponentiations using
complex arithmetic have also been proposed. In 1999 already, Dimitrov et al. came
up with a first algorithm using complex arithmetic [DJM97]. In 2007, Wu et al.
proposed a new algorithm based on modified complex arithmetic [WLLC07]. Both
algorithms, however, have not been implemented in hardware, mainly due to their
complexity.

Since Montgomery-based implementations are susceptible to timing attacks,
Walter [Wal99] proposes a constant time implementation of a Montgomery
Exponentiation. By leaving out the conditional final reduction, Hachez and
Quisquater [HQ00] have proposed an improved version of this implementation.

3.3 Commercial Products

3.3.1 Trusted Platform Modules

... The heart of a trusted computer system is the Trusted Computing Base
(TCB) which contains all the elements of the system responsible for supporting
the security policy (...) Thus the TCB includes hardware, firmware and software
critical to protection and must be designed and implemented such that system
elements excluded from it need not to be trusted to maintain protection. ... [33]
4The memory locations are all of the same size as the modulus.
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This means that, in order to build a secure architecture, you need at least one piece
of secure hardware that you can build on. The Trusted Platform Module (TPM)
specification [14] by the Trusted Computing Group (TCG) specifies such a piece of
hardware. So in fact the TPM can do more than just some finite field arithmetic.
It can be used to generate a hash value or an RSA key. It also facilitates remote
attestation and sealed storage of keys.

Several manufacturers offer TPM devices. We discuss some devices that are widely
used, also by other manufacturers like Intel or Broadcom. They all implement the
current version (1.2) of the TPM specification.

The Atmel® AT97SC3204 [11] is a fully integrated security module for both
computer systems and embedded systems. An LPC interface is used for
communication between the TPM and the rest of the system. The TPM is
internally controlled by an AVR® RISC microprocessor. Aside from secure key
storage and hashing and signing operations, it also provides a random number
generator (RNG) compliant with the FIPS 140-2 specification [22].

STMicroelectronics® offers two TPM devices. The low-cost ST19NP18-TPM [36]
is based on the ST19N smart card platform which has an 8-bit architecture. The
1088-bit modular arithmetic processor allows for squaring, multiplication and
addition of up to 2176-bit operands. A CRC module, hash generator and RNG are
also included. The ST19NP18-TPM is designed specifically for PC platforms and
BIOS security.

The high-performance ST33TPM12SPI [37] is ARM-based (32-bit @ 30 MHz) and
designed for embedded security; hence the SPI interface. In addition it also has an
AES-128 (CTR mode) core and an DES accelerator.

Infineon’s SLB9635TT description does not contain any information about the
execution speed. We have sent a request for information and are currently waiting
for a reply.

More details about these devices can be found in Table 3.1. Note that the execution
times for hashing and signature generation do not include communication with the
controlling software application.

3.3.2 Cryptographic Accelerators

Hardware security modules (HSMs) are comparable with TPMs when it comes
to functionality and architecture. However, where TPMs are mostly used for
bootstrapping security, HSMs are used to accelerate cryptographic operations in
high-speed or high-throughput applications.

The IBM® 4765 PCIe Cryptographic Coprocessor [18] is a such an HSM



COMMERCIAL PRODUCTS 39

Table 3.1: Comparison of different TPMs and HSMs.

Interface RSA signature HASH

AT97SC3204 LPC 33 MHz 2048 bits 1024 bits SHA-1
(Atmel) 200 ms 40 ms 20 µs a

ST19NP18 LPC 33 MHz 2048 bits 1024 bits SHA-1
(STMicroelectronics) 382 ms 189 ms unknown speed
ST33TPM12SPI SPI 10 MHz 2048 bits 1024 bits SHA-1, SHA-256
(STMicroelectronics) 150 ms 30 ms 155 µs 4

SLB9635TT LPC 33 MHs ? ? ?
(Infineon)

4765 PCIe PCIe x4 2048 bits 1024 bits SHA-1, SHA-256, ...
(IBM) 348.87 b 1067.62 4

922.63 c 1631.30 4

SafeXcelTM PK IP 32-bit bus IF ? 1024 bits Not Available
(Authentec) 0.95 msd

16.3 mse

aFor a 64-byte block
bcalls per second, single-threaded
ccalls per second, multi-threaded (7 threads)
d33 PEs
e4 PEs

suitable for high-security and high-speed cryptographic operations. Typical
applications include financial applications such as PIN generation and verification
in automated teller and point-of-sale transaction servers, but also Internet business,
secure Web-serving applications and any PKI application in general.

Designed as a PCIe plug-in card, the “4765” can be used to offload computationally
intensive cryptographic processes from a hosting server, and to perform sensitive
tasks unsuitable for less secure general-purpose processors. The tamper-responding
programmable secure hardware includes sensors to protect against attacks involving
probe penetration, power sequencing, and temperature manipulation. As such it is
certified under the FIPS 140-2 standard (level 4).

Aside from large number modular math functions for RSA (up to 4096-bit), ECC
Prime Curve and other public-key cryptographic algorithms, it supports symmetric-
key algorithms like AES, DES. Together with hardware for hashing and random
number generation, this forms a complete secure computing environment.

The Authentec SafeXcelTM IP Public Key Accelerators [12] are sold as a
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design only (so-called Intellectual Property). The accelerators contain a multiplier-
based Public Key Crypto Processor (PKCP) and, in most configurations, a Large
Number(Montgomery) Multiplier and Exponentiator (LNME). This LNME consists
of a selectable number of Processing Elements (PEs), that operate simultaneously
in a pipelined manner. The number of PEs can be varied, allowing customers to
make a trade-off between power consumption, gate count, and performance. The
core can run at maximum frequencies of 230 to 250 MHz, provided that the design
is implemented on high-speed 0.13 µm technology. What is remarkable is that the
number of PEs only seems to influence the gate count and the number of cycles
required for an operation and not the maximum clock frequency.

Authentec claims that the architecture and implementation of the LNME offers
resistance against power and timing attacks. According to the product brief
schematic, the IP core has a 32-bit memory-mapped bus interface with separate
input and output.

3.4 Conclusions

Modular arithmetic, and specifically modular multiplication, has seen a long history
of algorithmic optimizations and hardware designs. A lot of the optimizations
are targeted to speeding up the design and make use of assumptions on e.g., the
structure of the modulus. Doing so, however, limits the range of applications for
which the multiplier design can be used. Other optimizations involve recoding
or combination of algorithms to achieve higher execution speeds. However, this
recoding increases the complexity of the implementation and consequently results
in a higher area cost.

It is remarkable, but not surprising, that designs that are targeted for light-weight
PKC, prefer (H)ECC for the cryptographic operations. This allows for smaller
designs (shorter key lengths) and the use of e.g., special moduli. In contrast, most
multipliers for non-ECC-based applications are optimized for speed. If we want
our design to be applicable for a broad rang of protocols, it is clear that we cannot
make any assumptions on the properties of the input data.

Many practical designs for large-number arithmetic use a systolic Montgomery
multiplier of some sort. The main reason is the low complexity, which is essential
for scalability. For large multiplicands (larger than 1024 bits), a 2-dimensional
structure becomes highly impractical. However, if speed is a key factor, parallelism
is mostly introduced in the exponentiation by executing the square and multiply
steps in parallel. This again comes with an increased area cost which is not
preferable in an embedded context.

Regarding simultaneous exponentiation, the proposed algorithms (academic)
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require complex hardware or a great amount of memory (in comparison to classic
designs). Commercially, there is no hardware available that is able to carry out
exponentiations simultaneously. To avoid a time-consuming redesign of both
hardware and software, we prefer an architecture that requires the same features
and has the same complexity for simultaneous and single exponentiations. This way,
we are able to test and compare both computations under the same circumstances.





Chapter 4

Design of an Open-Source IP
Core for Modular Simultaneous
Exponentiation

4.1 Introduction and Design Goals

As seen in Chapter 3, the computations required for attribute-based credentials
systems vary in complexity depending on the kind of application. Sometimes
it suffices to do a verification of a credential with a single attribute, while
other applications require a range proof or a verification of credentials with
several attributes, where some are revealed and others remain hidden. The main
computation, however, is always a product of a series of exponentiations, the
number of which is e.g., dependent on the number of attributes.

This chapter describes the design of a hardware accelerator (a hardware IP core)
for modular simultaneous exponentiations. In practice, the IP core will compute a
dual-base exponentiation (4.1) simultaneously:

ge0
0 · ge1

1 mod m . (4.1)

This IP core is designed with several requirements in mind. First of all, the circuit
should be fit for operation on an embedded platform; i.e., it is controlled by a
microcontroller or embedded processor.

A second goal is to provide the design as an open-source IP core. To ensure

43
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portability to other platforms1, we have specifically opted not to use any device-
specific FPGA primitives like multipliers. The reason for this is twofold. First
of all it allows other researchers to proceed in our work, both for the hardware
design as for the applications. Secondly, a generic hardware description makes
it easier to take the hardware design to a next level i.e., an ASIC or full-custom
design. As a consequence our design might be out-performed by device-tailored
designs (whether they are optimized for speed or area). However, the VHDL is
written in a modular and structural way; any module can be easily replaced with a
device-specific primitive or user-defined module. Well-documented code aides in
customizing the design.

Finally, we want the design to be adaptable to the user’s needs. To this end, we
have written the VHDL in such a way that several parameters can be chosen before
synthesis. The reason for this is twofold: on the one hand the open-source nature
of the project and on the other hand it enables us to easily examine the design’s
resource usage and execution times for different parameter values. This will enable
us to formulate some general guidelines for tuning the design parameters to the
desired performance.

Aside from tuning the operational conditions, flexibility at run time should also be
guaranteed. Varying the modulus length and exponent length without the need to
do a time-consuming redesign or synthesis allows for practical tests in a comparable
setting. Since the number of exponentiations depends on the application, support
for single-base exponentiations and multiplication is also a must.

The developed modular exponentiation accelerator is designed to be part of a
larger embedded system. To that end we need a software interface through which
applications can use the IP core. The library containing this interface and low-level
driver source code will be discussed in Section 4.5.

Publications. The first design has been presented as a poster on the 8th Worshop
on RFID Security and Privacy 2012 in Nijmegen, the Netherlands [Ott12]. An
updated design has been detailed in an article and presented at the 9th International
Symposium on Applied Reconfigurable Computing [OPGS13]. An article that
describes the first tests of the IP core as part of our embedded test platform is
published online at EDN [OPS+13]. The full technical documentation of the latest
version of the IP core design is published on OpenCores [OC].

1Different devices and different manufacturers.
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4.2 Simultaneous Multi-Base Exponentiation

An efficient way of performing a modular exponentiation is the Montgomery
exponentiation algorithm which uses the Montgomery multiplication as the main
computation step. An advantage of Montgomery multiplication over other
techniques is that it requires no division, which simplifies the hardware considerably.
The exponentiation can be extended to an efficient simultaneous exponentiation
algorithm. The case with 2 bases is presented in Algorithm 1, but this can be
easily generalized.

The modulus m and the bases g0 and g1 all have a length of n bits, whereas the
length of the exponents e0 and e1 is w bits. The algorithm also requires R2 mod m
which is 22n mod m. We assume that R2 can be provided i.e., precomputed in
software.

Algorithm 1 Montgomery simultaneous exponentiation
Input: g0, g1, e0 = (e0w−1 · · · e00 )2, e1 = (e0w−1 · · · e00 )2, R2 mod m, m

Output: ge0
0 · ge1

1 mod m
1: g̃0 := Mont(g0, R2), g̃1 := Mont(g1, R2), g̃01 := Mont(g̃0, g̃1)
2: a := Mont(R2, 1) . This is the same as a := R mod m.
3: for i ← (w − 1) downto 0 do
4: a := Mont(a, a)
5: switch e1i , e0i
6: 0, 1 : a := Mont(a, g̃0)
7: 1, 0 : a := Mont(a, g̃1)
8: 1, 1 : a := Mont(a, g̃01)
9: a := Mont(a, 1)

10: return a

What draws attention is that, apart from the main loop (line 3), we need several
multiplications for the precomputation of g̃0, g̃1 and g̃01 (lines 1, 2) and one final
multiplication (line 9). A logical design choice would be to only implement a
multiplier and to implement some control logic in such a way that it can either
run a single multiplication or run the main loop automatically.
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Table 4.1: Example of the required factors in case of simultaneous exponentiation
with 3 bases.

Name Value Exponent bits when used (e0ie1ie2i)

a intermediate result 000
g̃2 (g2) ·R 001
g̃1 (g1) ·R 010
g̃12 (g1 · g2) ·R 011
g̃0 (g0) ·R 100
g̃02 (g0 · g2) ·R 101
g̃01 (g0 · g1) ·R 110
g̃012 (g0 · g1 · g2) ·R 111

Some remarks on precomputation, postcomputation and required memory

To counter the disadvantage of Montgomery multiplication, (i.e., the factorR−1

in the final result), every factor used in the simultaneous square-and-multiply
algorithm is multiplied with R (or Montgomery multiplied with R2). This
ensures that all the intermediate results will also carry this constant factor
R. To get rid of this constant, it suffices to (Montgomery) multiply the final
intermediate result with 1.

To ensure the quickest operation and/or to reduce bus traffic, the required
factors should be stored locally in the core’s dedicated memory. These values are
the bases, all combinations of products between the bases and the intermediate
result. The amount of memory, however, increases exponentially with the
number of simultaneous exponentiations (called l). In Table 4.1 all required
factors are listed in the case of l = 3 simultaneous exponentiations. It is easy to
see that in general one requires 2l n-bit memory locations to store all necessary
values.

4.3 Implementation Strategy

Following a standard design method, we implemented the IP core as a memory-
mapped peripheral. A bus interface is provided so the processor can control the
hardware as well as write data to and read data from the hardware core. The bus
interface itself is split into two parts. A generic part with a 32-bit data input and
output, an address line and control signals to the core; this part is fixed. On top of
that interface is the actual bus interface e.g., PLB [41], AXI [10] or Whishbone [16].
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Figure 4.2: Embedded processing system setup: The IP core interfaces with the
processor over a bus and it can generate interrupts.

The hardware can signal the processor of certain events using an interrupt line
(IRQ) – optionally through an interrupt controller. This basic setup is shown in
Fig. 4.2.

The kernel of the IP core is a Montgomery multiplier. As stated in Sect. 3.2, a
systolic array multiplier is preferable when the base operands are larger than 512
bits; this is the case in most of the current RSA-based PKCs. Because resources
increase proportionally with the length of the base operands, a 1-dimensional array
is preferable over a 2-dimensional array, where resources increase quadratically.
To further increase execution speeds, we applied pipelining. The design of this
multiplier is elaborated in Sect. 4.4.

The operand length n and the number of pipeline stages k (see Sect. 4.4) can
be chosen before synthesis. However, the hardware is designed in such a way
that choosing different operand lengths at run time is also possible. This is done
providing logic that allows to split the multiplier pipeline into an upper and a lower
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part. At run time, users can choose to either use the upper or lower part, or the
entire multiplier. This is an interesting feature when different operand lengths are
needed in the application (e.g., different levels of security), because the execution
time of a multiplication (and hence the exponentiation) is determined by n. It
also facilitates extensive testing because there is no need to change the hardware
configuration every time another operand length is used. It needs to be noted that
calculations can only take place with operands of equal length.

To reduce bus data traffic between the core and the system controller, we provide
RAM (Random Access Memory) to store several operands and the modulus. This
RAM is implemented as dual-port memory. One port provides a 32-bit interface
for reading and writing data over the 32-bit bus. The second port has a full n-bit
interface to the multiplier. The control logic selects the multiplicands x and y
from the operands and determines the destination operand of multiplier result a.
When performing a single multiplication, the controlling software on the embedded
processor (Fig. 4.2) has full control over the operation of the core. Any operand
can be multiplied by another operand (even by itself) and stored in any location.

For maximum flexibility at run time, the exponent length w is determined only
by the controlling software.2 This is supported in hardware by the use of a
FIFO. The exponent FIFO should be filled (at least partially) before starting
the exponentiation. The exponents are split into 16-bit parts and stored in the
FIFO’s 32-bit entries, where the 16 most significant bits are e1-bits and the 16
least significant bits are the corresponding bits of e0. The IP core can be used for
a single-base exponentiation by setting the e1 or the e0 bits to ‘0’ and ignoring
operands 1 and 2 or operands 0 and 2 respectively.

The software on the embedded processor can manage the core’s behavior by writing
to a control register (Fig. 4.1). When using the core to perform a (simultaneous)
exponentiation, the control logic looks at the exponent bits stored in the Exponent
FIFO, and selects the multiplicands and destination accordingly (main loop in
Algorithm 2). This means that the controlling software needs to precompute
the required values and store them in the correct locations before starting the
exponentiation. Operand 0 should contain g̃0, operand 1 should contain g̃1 and
operand 2 should contain g̃01. Operand 3 is used to store the (intermediate) result
a, but before starting the exponentiation, it should contain R mod m.

The core generates an interrupt when a multiplication is completed. In automatic
exponentiation mode, it generates an interrupt only when the last multiplication
is completed i.e. when the FIFO is empty. Other events like a full FIFO buffer
or a RAM access conflict, also generate an interrupt. The controlling software
can distinguish between the different interrupt sources by checking the interrupt
register.

2This is a practical necessity. For instance, a revealed attribute can be 1 bit long (e.g., the sex
of a person), while a hidden attribute will be several hundreds of bits in length.



PIPELINED MONTGOMERY MULTIPLIER 49

Open-source design

The complete VHDL design, including full technical documentation and test
benches for multiplication and exponentiation, is published online at the open-
source website OpenCores. The source is freely downloadable under the GNU
Lesser General Public License (LGPL).

Project website: http://opencores.org/project,mod_sim_exp

4.4 Pipelined Montgomery Multiplier

4.4.1 Montgomery Multiplication

The kernel of our hardware design is the Montgomery multiplier. For our
implementation we take the work of Nedja and Mourelle [Nd06] as a starting
point. They designed a systolic array multiplier by modifying the Montgomery
multiplication algorithm (Algorithm 2). The resulting algorithm easily translates
into hardware. Every bit of the (intermediate) result a is driven by just a multiplexer
(line 6) and an adder (line 12). The resulting circuit is shown in Fig. 4.3(a).

Algorithm 2 Systolic Montgomery Multiplication
Input: x = (xn−1 · · ·x0)2, y = (yn−1 · · · y0)2, m = (mn−1 · · ·m0)2
Output: x · y · R−1 mod m with R = 2n
1: my = (myn · · ·my0)2 := m + y

2: a(0) = (a(0)
n−1 · · · a

(0)
0 )2 := 0

3: for i ← 0 to n− 1 do
4: qi := a

(i)
0 ⊕ xi · y0

5: for j ← 0 to n do
6: switch xi, qi
7: 1, 1 : uj := myj
8: 1, 0 : uj := yj
9: 0, 1 : uj := mj

10: 0, 0 : uj := 0
11: cj := a

(i)
j+1 · uj + a

(i)
j+1 · cj−1 + uj · cj−1 . c−1 = 0

12: a
(i+1)
j := a

(i)
j+1 ⊕ uj ⊕ cj

13: if a > m then
14: a := a−m

15: return a

For every bit xi of x, a new version a(i) of a is computed. A right shift operation –
inherent to the Montgomery algorithm – ensures that a is never larger than n+ 2
bit (final carry included). The other multiplexer selection line qi also needs to be
updated. This is done in the first cell (Fig. 4.3(b)).

http://opencores.org/project,mod_sim_exp
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Figure 4.3: A systolic array cell computes 1 bit of the (intermediate) result.

In our design, systolic array cells are grouped into stages. This has two advantages.
First of all it breaks up the long carry-chain in the adders, so we can achieve higher
clock frequencies. Secondly, this approach allows for pipelining, further speeding up
the design. A drawback is that, by increasing the number of stages, more flip flops
will be used. The pipeline design and operation will be explained in the following
paragraphs.

4.4.2 Pipeline Logic Blocks

The resulting pipeline consists of three main computing blocks (shown in Figure 4.4).
The first cell logic computes (for each new bit xi of x) the first carry-in for all
the adders as well as the mux selection input q. The last cell logic computes the
final carry (of the two’s complement addition), which is used to select either the
result or the reduced result. The systolic array stages (k in total) perform the
main computation.

Note that the critical timing path is clearly the path to the final carry bit (line 11
of Algorithm 1). By grouping the systolic array cells in k stages this carry-chain is
broken. To that end some registers are provided at the end of each stage. These
registers store bits xi, qi and the carry bits that go to the next stage. Each stage
has the same length s where s = n/k.

The start signal of each stage serves as an enable line to store the intermediate
result and bits. The stage’s done signal is just a delayed version of start. In this
case the time required for a stage to complete one step is 1 clock cycle. The done
signal of a stage acts as start signal for the next stage. The resulting structure
allows for pipelining.

Because of the right-shift operation (lines 11, 12) the most significant bit of the
previous result a_msb is provided by the next stage, so a stage can only start the
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next step once the next stage has finished the previous step and a_msb is valid.

In Algorithm 2 the value my = m+y is required; two approaches are possible. One
possibility is to let the controlling software send this value over the bus whenever it
is needed. However, this value changes for almost each multiplication when doing a
simultaneous exponentiation, which would lead to a lot of bus traffic and possibly
slow down operation. In our opinion, this is not preferable.

Therefor we use a hardware adder that computes the required my value before the
pipeline starts. An extra advantage is that we don’t need to provide storage for
my. We should note that the length of the carry chain in this adder is no issue here
because the required part of the sum will be available before the corresponding
stage starts its first step.

The final subtraction (Algorithm 2, line 14) is performed by converting the modulus
to its two’s complement representation and using a standard adder to compute
the difference. The carry-out computed by the last cell logic serves to select the
desired result.

4.4.3 Pipeline Operation

Fig. 4.5 shows the operation of the pipeline. A stage can only compute a step every
2 τs, where τs is the time it takes a stage to actually complete a step. In this case
τs is 1 clock cycle, but the index s illustrates that this is influenced by the length
of s.

Based on Stallings’ notation on pipeline run time [Sta06], we can state that for
one multiplication, the total computation time T (×)

k,n for an n-bit operand with
a k-stage pipeline is given by (4.2). Since there are no conditional paths in the
pipeline design,3 T (×)

k,n is only dependent on n and k.

T
(×)
k,n = [k + 2(n− 1)] τs . (4.2)

In the next chapter we will examine the effect of the stage length on τs and what
speedup can be achieved by the pipelining.

4.4.4 Complete Multiplier

The complete multiplier design is shown in Fig. 4.6.
3at least not any that have an influence on the run time...
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Prior to a new multiplication, the x operand is put on the xy line and clocked into
the x shift register using the load_x line. Note that this is done in only one clock
cycle.

The stepping logic makes sure that the first stage in the line starts at the right
moment. It also signals the x shift register to provide a new bit of the x operand.
Finally, it keeps track of the status of the multiplier and drives the ready line
when the last stage finishes the last step. The stepping logic mainly consists of
some counters.

As mentioned before, the design supports different operand lengths at run time.4
This can be achieved by splitting the pipeline into two parts.5 Fig. 4.6 shows the
resulting structure with the upper and lower part and the optional interconnect
logic in between. One can either choose to use the upper part, the lower part or
the total pipeline using the line p_sel. The pipeline interconnect logic makes sure
the correct stages are used. It is however not possible to use both the upper and
lower part at the same time (for a different calculation).

Two more detailed example configurations of the systolic pipeline can be found in
Appendix A.

4.4.5 Resistance Against Side-Channel Analysis

It should be noted that this design has not been tested for its resistance against
side-channel attacks. In [Wal08, SST04] the frequency of occurrence of the final
subtraction (Algorithm 2, line 14) is used to gain knowledge of the inputs. In
this design, however, the final subtraction is always carried out and there is no
difference in timing between the two cases. Still the resistance against any type of
side channel attack has not been investigated.

Also the occurrence of zeros in corresponding bits of the exponents will have an
influence on the execution time of the exponentiation. This means precautions
should be taken to guarantee a constant timing, e.g., adding dummy multiplications
or padding the exponents with preceding zero-bits. As a consequence, this would
mean a drop in performance because the constant timing can only be achieved if
the worst-case timing (i.e., all bits of all exponents are 1) is taken. In the current
version of this design however, no such measures are taken.

This unknown side-channel resistance limits the current range of practical
applications i.e., all applications that require exponentiations on secret information
can be unsafe if this hardware accelerator is used. An example of such an application

4The choice of which operand lengths are supported, however, needs to be made before
synthesis.

5Preferably each with a different length; for instance in our practical setup nl = 512 and
nh = 1024, so ntot = 1536.
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is the building of a credential proof (see Chapter 8). A credential verification,
on the other hand, is safe, provided that there’s no harm in an attacker learning
revealed attributes.

4.5 IP Core Software Interface

As seen in the previous sections, the IP core is designed to be part of a larger
embedded system. The hardware is connected with a bus and IRQ line to an
embedded processor. The core’s internal memory and control registers are mapped
in the controlling software’s (virtual) memory. To ensure portability to other
platforms we assume that the embedded CPU will be running Linux and that the
hardware will be accessible as a UIO device (see Section 2.2.3). This also simplifies
the design of the driver software.

All the source code for working with the hardware IP core is bundled in a library
called libmme1536. This code consists of low-level driver functions and a high-level
API. Users only require this API to work with the hardware accelerator. The library
relies on the UIO driver model [15] and GMP [38]. In the following paragraphs we
will highlight the most important functionality of the API.

Open-source driver library

Like the VHDL code of the hardware design, the driver source is also available
online. The code is is hosted on Google Code. The source is freely downloadable
under the GNU Lesser General Public License (LGPL).

Project website: https://code.google.com/p/libmme

4.5.1 Low-Level Driver and Hardware Control API

Memory organization. As the IP core is developed as a memory-mapped
peripheral, all operations with the core involve reading from and writing to certain
memory locations. The memory organization of the IP core is shown in Fig. 4.7.
One can see that the total 28 Kbyte memory space consists of 7 blocks of each
4 Kbyte.

The control registers are accessed with the UIO driver. Although there are only
a 32-bit control register and an interrupt control register, the UIO kernel driver
expects that at least 4 Kbyte is mapped. This is because the kernel address
translation table of the embedded OS works with 4 Kbyte memory pages. The
great advantage of the UIO kernel driver, however, is that it catches the interrupts

https://code.google.com/p/libmme
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Figure 4.7: IP core memory organization.

generated by the hardware. By reading from the UIO device, the software can
determine if there were any interrupts and how many.

All other memory locations are directly mapped. Four (4) Kbyte is provided for
the modulus and each operand. When the operand length is smaller than the
reserved memory, only the lowest memory locations are used (see example). Since
the exponents are stored in a FIFO, only address 0x5000 is used.

Example

If operands of 1536 bits are being used, they are treated in software as a 32-bit
array with 1536

32 = 48 elements each. The modulus is then stored in hardware
in an address range 0x0000 to 0x0030 (offset to the BASE ADDRESS), OPERAND
0 in range 0x1000 to 0x1030 and so on.

Keep in mind that all other addresses, e.g., 0x0031 to 0x0FFF are in fact not
addressable in hardware so the allocated space of 28 Kbyte does not reflect
the actual available hardware memory of the IP core.

Operation control. Running a computation can be done by calling either
MME1536 StartSingle(), which starts a single multiplication, or MME1536 Start-
Auto(), which starts the main square-and-multiply loop. The function
MME1536 WaitUntilReady() will wait until an interrupt is received, signalling
that the computation has finished. A time-out value can be specified to cope with
missed interrupts or other blocking errors.
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......

[0] [1]index

data b0b31 b32b63

Figure 4.8: IP core data alignment requirement.

Initializing the hardware for use on the embedded platform can easily be done with
MME1536 Initialize(). A user only needs to provide the correct UIO device. As
a result the data and control memory pointers will be initialized as well as the UIO
interrupt. With MME1536 Clean() the reserved memory space can be freed.

Reading and writing data. To write data to a certain memory location in the
IP core, the user can use the MME1536 SetOperand(). Analogously, the function
MME1536 GetOperand() can be used for reading data. The only important thing
is the alignment of the data provided to the functions. This alignment is shown
in Fig. 4.8. Both functions take care of the addressing, and if only a part of the
pipeline is used, they will access the corresponding memory locations.

Similarly, for writing the exponent, the user can use MME1536 SetExponent().
The same data alignment applies for the exponents. When only one exponent is
provided, the software will automatically write 0-bits in the FIFO entries. The
only restriction for the exponents is that they need to be at least 32 bits wide.

In practice, a user only requires the functions MME1536 Initialize() and
MME1536 Clean() and the arithmetic API to use the IP core. But the functions
described above can (after the core has been initialized) be used to test the operation
of the hardware e.g., a start/stop or read/write test.

4.5.2 Arithmetic API

To easily use the hardware accelerator for what it is designed for, three functions
are provided:

• MME1536 Multiply(): perform a modular multiplication.6

• MME1536 MME(): perform a dual-base exponentiation. This performs the
precomputations and stores the results in the designated memory location.
Then the exponents are pushed in the FIFO and the automatic operation of
the main loop is started. After the main loop completes, the postcomputation
is executed and the result is read back.

6This is an actual modular multiplication and not a Montgomery multiplication.
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• MME1536 Exp(): perform a single-base exponentiation. This is basically the
same as the dual-base exponentiation but with one of the exponents set to
zero.

To reduce redundant operations, there is also a function MME1536 UpdateModulus().
This will write a modulus to the hardware and compute R2 in software. These two
operations need to be done only once, as long as the modulus does not change.

4.6 Ongoing Development

As this is an open-source design, the source code is being maintained and has been
subject to changes. The basic functionality and design concept, however, have been
kept as described in the previous sections. Below are the most important changes
that have been made to further increase performance, functionality and flexibility:

• Generic RAM description. To further increase the portability to platforms
others than Xilinx FPGAs, the design of the RAM has been changed to a
more generic description. The current RAM design is now synthesizable on
both Xilinx and Altera FPGAs and effectively uses the available dual-port
RAM. For devices that don’t support asymmetric dual-port RAM, we have
provided an option that uses an alternative RAM design that mimics an
asymmetric RAM by using symmetric RAM and additional FFs. Of course
this design uses more resources.

• AXI(lite) bus. Support has been added for the AXi4(lite) bus. Users can
now choose between AXI or PLB.

• Internal core clock. In the original design, the complete IP core operated
at the same frequency as the bus. For instance on Spartan devices this
could result in a performance loss, where MicroBlaze systems often operate
at frequencies of 66 or 75 MHz. Because the multiplier can work at higher
frequencies, we added a separate input for the multiplier clock. The RAM
operates as the main buffer between the two clock domains.

• Tested on Zynq. The IP core has been tested on a Xilinx Zynq device. The
core was connected with the AXI bus to the Cortex A9 processor, which ran
embedded Linux. Both the core as the developed driver library proved to be
working on this platform as well.
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4.7 Conclusions and Future Work

In this chapter we have presented the design of a flexible VHDL design for
accelerating modular exponentiations in hardware. Both (simultaneous) dual-
base and single-base exponentiations are supported as well as single multiplications.
The IP core is designed for implementation in an embedded processor system on
configurable hardware and requires controlling software to be operated properly.

Flexibility is available in terms of configurable operand length and variable exponent
length. Furthermore, the length of the pipeline stages can be changed to cater to
the user’s needs. How this affects resources and clock frequency will be investigated
in Chapter 5.

The complete design is available as open-source hardware and is maintained as
such. The generic VHDL code does not instantiate any device-specific primitives
e.g., multipliers, RAM, making it suitable for use across different platforms. Future
updates could include other bus interfaces (e.g., Whishbone), side-channel resistance
measures or support for different kinds of adders (e.g., carry-select to find a better
trade-off between resources and speed). Also a JTAG interface [19] or some kind
of self-test ability could be a useful addition.

In the following two chapters we will evaluate the performance of this design in terms
of speed and resource usage. In Chapter 5 we verify the multiplier operation and
the influence of different pipeline configurations on speed and resources. Chapter 6
then looks at the complete design in a practical setup and which speedup can be
gained by deploying simultaneous exponentiations.





Chapter 5

Multiplier Performance

5.1 Introduction

In this section we will cover the performance of the multiplier of the developed
IP core (described in Chapter 4) in terms of resource usage and maximum clock
frequency. Those data come as a result of the synthesis process. Because the
multiplier is the main part of the design, this will give as a good (first) idea about
the performance of the complete IP core.

The synthesis process analyses the VHDL hardware description and turns it into
an implementation consisting of logic gates available in the hardware. The main
features of the synthesis process are presented in Table 5.1. The synthesis process
has been set to optimize the design for area with a high effort. The reason for this
is that, by optimizing for area, the synthesized circuit will be closely linked to what
we designed e.g., no extra gates to reduce critical paths. This will give us a better
understanding of how the variation of certain design parameters will influence the
operational frequency or FPGA resource usage.

We will compare the synthesized multiplier with several designs found in the
literature. As a last step, the multiplier timing will be verified in a practical setup.

61
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Table 5.1: Important features for the synthesis process.

Feature Value Remarks

Device XC6VLX240T-1FFG1156 Xilinx FPGA
Synthesis tool XST
Goal area
Effort high
Technology 40 nm

5.2 Timing

5.2.1 Operational Frequency

Since the maximum frequency is highly influenced by the latency in the critical
path, we can expect to achieve higher frequencies for shorter stage lengths. We
obtained this figure from the static timing analysis during the synthesis step in the
design process (see Fig. 5.1).

We can see that fmax indeed increases when the stage length decreases. For s ≤ 4,
we see that fmax saturates to a maximum (i.e., 350 MHz). A likely explanation
is that this depends on the slice architecture which, for the Virtex 6, contains 4
LUT-FF pairs (see outline).

It is also notable that the maximum frequency is almost independent of n. We
can see, however, that fmax is slightly lower for a design with a split pipeline
(n = 1024 + 512 versus n = 1536). This is due to longer critical paths in the
interconnect logic.

What is striking is that for stages of 512 bits and more, the operational frequency
is less than 10 MHz (Fig. 5.1(a)). This is less than 5% of the maximum attainable
frequency (for this design on this FPGA).
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Figure 5.1: Maximum clock frequency of the pipelined multiplier for different values
of s and n.

Influence of the slice architecture

As we have observed, the clock frequency reaches a maximum when the stage
length is equal to the number of LUT-FF pairs in a slice, designated v (for
our FPGA this is v = 4). Or in other words, the latency of a stage (τs) is
determined by v.
A slice can be used to compute 4 bits of the (intermediate) result in τs. If we
would increase the stage length to 6, it would not take 1.5τs but 2τs, because
now 2 slices are required. This means that τs (and hence f) shows some
granularity, determined by v: τs = αd sv e. Because from s > 4, s progresses in
multiples of 4, we cannot observe this behavior.
Similarly, Blum observed in his thesis [Blu99] that matching the length of the
processing elements to the slice architecture yields the highest speed.
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5.2.2 Execution Time

Now that the effect of the pipeline stage length on the operational frequency is
known, we can see what this does to the multiplication execution time. We recall
equation (4.2), which gives the time required for one multiplication:

T
(×)
k,n = [k + 2(n− 1)] τs .

Or as a function of stage length:

T (×)
s,n =

[n
s

+ 2(n− 1)
]
τs . (5.1)

We defined τs as the time required to compute one stage. In our design τs is
one clock cycle, or τs = 1

f . If we assume the multiplier operates at its maximum
frequency, we can set out T (×)

k,n as a function of the number of stages. For clarity,
however, we set out T (×)

s,n (Fig. 5.2).

One might expect that T (×)
s,n is proportional to 1

s . However, τs is proportional to s
(see outline). After substitution we get:

T (×)
s,n =

[n
s

+ 2(n− 1)
]
α
⌈ s
v

⌉
.

Or in case s is a multiple of v:

T (×)
s,n = αn

v
+ 2α(n− 1)

v
s . (5.2)

And when s ≤ v (or d sv e = 1):

T (×)
s,n = αn

1
s

+ 2α(n− 1) . (5.3)

As we can see in Eqn. (5.2), when s > v, the execution time is proportional with s.
For s ≤ v there is a 1

s -behavior (Eqn. (5.3)). This is set out in Fig. 5.2(b). Because
the maximum frequency is slightly lower for the split pipeline, the run time will
hence be slightly higher.

In any case, the minimal execution speed is achieved when s = v. Then T
(×)
s,n =

α
[
n
v + 2(n− 1)

]
, where α is dependent on the technology of the FPGA and both α

and v are dependent on the slice architecture. This is also valid when the multiplier
operates at a certain fraction of the maximum frequency.
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Figure 5.2: Multiplication execution time of the pipelined multiplier operating at
the maximum frequency for different values of s and n.

5.2.3 Speedup

If no pipelining were to be used, the multiplier would complete one step in one clock
period τn and one multiplication in n· τn. This time is also shown in Fig. 5.2(a)
in the case of n = 512 (the ◦-mark). Now that the execution speed for different
stage lengths is known, we can set out the speedup factor as a function of the stage
length.

Stallings [Sta06] defines the speedup factor Sk as in Eqn. (5.4). Here, T (×)
1,n is the

run time if no pipelining is used.

Sk =
T

(×)
1,n

T
(×)
k,n

= nτn
[k + 2(n− 1)] τs

. (5.4)

Fig. 5.3 shows the speedup for n = 512 and n = 1024 as a function of s. It is clear
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Figure 5.3: Speedup factor in function of the stage length for n = 512 and n = 1024.
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Figure 5.4: Execution time in function of s for n = 1024 on Virtex 6 and Virtex 4.

that pipelining results in a practical speedup which is proportional with the length
of the operands. Of course, the largest speedup is achieved for s = v = 4.

5.2.4 Timing on Different FPGAs

To check if working with a different type of FPGA yields comparable results, we
did the synthesis for the Virtex 4. The two important differences between the
Virtex 6 and Virtex 4 are the technology and the slice architecture. The Virtex 4
series is fabricated with 65 nm technology resulting in slower clock speeds and has
two LUT-FF pairs per slice instead of four. We have set out the execution times
for n = 1024 in Fig. 5.4, for the Virtex 4 as well as the Virtex 6.

It is clear that for s ≤ 8 the execution time has the same linear behavior. Due to
the lower clock frequencies attainable on the Virtex 4, however, execution times are
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longer compare to the Virtex 6. The minimum execution time, however, which lies
for both devices in the non-linear part, is situated at s = 2 for the Virtex 4. This
further corroborates our assumption that the number of LUT-FF pairs determines
the stage length to get a minimum execution time on FPGA devices.

5.3 Resource Usage

5.3.1 Registers

Based on our design we can predict the number of registers required for the
multiplier. Both the x-shift register and the (intermediate) result register are n-bit
registers. For each stage a total of 6 registers is required: 3 for carry bits1 and
1 for the start/done signal, qi and xi signals. To keep track of the operation
progress two counters are being used: one for the number of steps and one for the
stages. That results in Eqn. (5.5).

# FFs = C + 2n+ 6k + dlog2(n)e+ dlog2(k)e . (5.5)

The term C is a constant number of flip flops, independent of k and n. We will
determine C experimentally. We synthesized the IP core with different values of
n and k. The results are set out in Fig. 5.5. We also plotted Eqn. (5.5). With
regression, C was determined as 5.

It is clear that with Eqn. (5.5) the number of registers in the synthesized design
can be determined accurately. Also note that there is no difference between the
split and non-split pipeline. Furthermore, synthesis of this design on a Virtex 4
results in exactly the same number of flip flops being used (see Fig. 5.6).

5.3.2 Combinatorial Logic

The number of look-up tables used is also a result of the synthesis process. It gives
an idea about how many gates are used in the design.2

We have set out the number of LUTs in the multiplier for different values of n and
s in Fig. 5.7. In Fig. 5.8 one can see the number of look-up tables in a 1024-bit
multiplier for different values of k on Virtex 6 and Virtex 4.

It is clear that the number of look-up tables is only dependent on n and the type of
LUT; i.e., the Virtex 4 has 4-input LUTs while the Virtex 4 houses 6-input LUTs.

1One carry bit in the stage itself and 2 in the adders (reduction adder and my adder).
2It is difficult to translate the number of LUTs into a number of GEs. For example, a 6-input

LUT can be used as e.g., a single inverter but also as a 4-to-1 multiplexer etc.
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Figure 5.5: Number of flip flops in the multiplier for different values of n and k.
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Figure 5.6: Number of flip flops in a 1024-bit multiplier for different values of k on
Virtex 6 and Virtex 4.

Equation (5.6) can be used to estimate the number of LUTs in a multiplier with
length n.

# LUTs =
{

8 ·n for 4-input LUTs
6 ·n for 6-input LUTs

(5.6)

5.3.3 Resource Usage on an Altera FPGA

To verify if our design produces a comparable resource usage on FPGAs from
another manufacturer, we have synthesized the multiplier on an Altera Stratix
FPGA. The number of FFs as well as the number of LUTs match with the expected
values; resp. Eqn. (5.5) and Eqn. (5.6).
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Also interesting, is that the Altera design tools give the number of logic gates that
is being used. This allows us to state a first indication of the gate count this design
would need when implemented on ASIC. This way we can also make a cautious
comparison with other designs. The number of gates given by the Altera synthesis
tool, is listed in Table 5.2.

Table 5.2: Required amount of gates for the multiplier (Altera synthesis).

Gate OR XOR AND MUX Total comb.

amount 3n 6n 6n 4n 19n
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If we take a gate equivalent (GE) of 1.5 for the combinational gates and a GE of 5
for a flip flop, then a multiplier with n = 1024 and s = 16 takes a total of about
32 kGE.3 This is of course a rough indication and real gate counts can only be
obtained by actually making an ASIC or full custom design. Keep in mind that for
the complete IP core, also 5n RAM cells are required, which would add at least an
extra 7.7 kGE.

5.4 Comparison with Existing Designs

In this section we compare our multiplier design with some designs found in
literature. We have looked at the resource usage and time required to perform
an exponentiation. This comparison is not an easy task as some designs use, for
instance, the DSP slices or an FPGA with a different slice architecture. Some
articles list only the number of slices or CLBs their design uses, while other designs
are only synthesized for ASIC.

Nevertheless, we have tried to make an honest comparison. To that end, we
have taken a commonly used configuration i.e., a 1024-bit multiplier with 16-
bit processing elements, as benchmark. Also, most designs list the time of an
exponentiation with the F4 exponent so we have taken this as a reference.4 However,
for our design we only list the time required for the main loop.

Table 5.3 shows our comparison. Where necessary, we have listed the number of
LUTs and FFs in the CLB/slice of the FPGA used in a particular design.

Our design has a comparable performance (same order of magnitude) in terms
of resources. Faster designs will either use more (complex) logic, require more
complex pre-computations, or only work under certain assumptions.

The main strength of our design is that it can be tuned to a desired operational
frequency or exponentiation run time independent of the device, while maintaining
an acceptable amount of logic. Moreover, changing the operand length or pipeline
stage length does not require a complete redesign of hardware and software. This
is especially interesting in the case of fast prototyping, where developers are more
interested in the performance gain by using a hardware accelerator with certain
specifications and what effect these specifications have on the overall performance
of the application, rather than selecting a new IP core every time the specifications
need to be changed.

3We take a GE as being the number of transistors in a 2-input NAND gate. For CMOS this is
four transistors, which means that a 32 kGE corresponds with 128 k transistors.

4The Fermat prime 216 + 1 = 65537 is an exponent used in RSA, designated F4.
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Table 5.4: Test setup features.

Feature Value Remarks

Device XC6VLX240T-1FFG1156 Xilinx FPGA
CPU MicroBlaze MMU, barrel shifter, multiplier
OS Linux Petalinux with BusyBox shell
fclk 100 MHz both CPU and IP core

n 512 1024 1536 [bits] – split pipeline
k 32 64 96 for the supported operand lengths resp.
T

(×)
k,n 10.54 21.10 31.66 [µs] – no OS overhead included

5.5 Practical Multiplication Timing

The developed IP core has been added to the embedded test platform described
in Chapter 2. All practical results are obtained with the same configuration. The
most important features of the test setup listed in Table 5.4.

To verify the run time of a single Montgomery multiplication in the IP core itself,
we added an output to the IP core which is high during computations. By sampling
this output with e.g., an oscilloscope we can measure the hardware run time.
These measurements can be seen in Fig. 5.9(a), (b) and (c). Note that the timing
corresponds with the expected values (Table 5.4). However, there is a constant
difference of 0.02 µs, which corresponds with 2 clock cycles.

We also compared the hardware run times with the application run time. The latter
includes writing the operands to the IP core memory, starting the multiplication,
waiting for an interrupt and reading back the result. The average run times (over
40 measurements) are shown in Table 5.5. Fig. 5.9(d) shows a snapshot of the time
between two consecutive multiplications. It is clear that bus communication and
latency introduced by the operating system makes a software-controlled version of
the square-and-multiply algorithm highly inefficient. This certainly justifies the
design choice of implementing a slightly more complex control logic and exponent
FIFO to enable automatic squaring and multiplying in a multi-base exponentiation
hardware accelerator.
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(a) n = 512 (b) n = 1024

(c) n = 1536 (d) Two subsequent multiplications.

Figure 5.9: Hardware run times for a Montgomery multiplication. The positive
pulse width corresponds with the time that the IP core is performing computations.

Table 5.5: Montgomery multiplication application run time versus hardware run
time.

n Expected Measured
Eqn. (4.2) (hardware) (application)

512 10.54 10.56 1182.50 [µs]
1024 21.10 21.12 1400.50 [µs]
1536 31.66 31.68 1623.25 [µs]
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5.6 Conclusions

In this chapter we have evaluated the performance of the multiplier used in our IP
core design (Chapter 4) in terms of resources and timing.

As expected, shorter pipeline stage lengths result in a higher attainable frequency.
When it comes to minimum execution times for multiplications, we can state
that they are proportional to the stage length. However, the absolute value is
determined by the technology and slice architecture of the device for which the
design is synthesized.

In practice the multiplier operates as expected with a timing given by Eqn. (4.2).
However, because of the overhead introduced by the OS and the bus communication,
the actual multiplication timing as seen by an application is orders of magnitude
higher. In the simultaneous exponentiation algorithm, getting data to the multiplier
on time is ensured by the use of the IP core’s operand RAM and control logic. This
approach also omits the bus communication during the main loop of the algorithm.

For the resource usage, we have observed that the amount of combinatorial logic
is only determined by n, where the number of register is dependent on n and the
number of stages. To be able to assess the design’s resource usage before synthesis,
we provide the user with two expressions that state (for an FPGA) the required
number of LUTs and FFs; Eqn. (5.6) resp. (5.5). The resource usage is of the same
order of magnitude as other multiplier designs with same length for operands and
processing elements.

For the complete IP core, only the control logic and operand memory needs to be
added. For large n, the resource usage of the control logic is negligible. Because of
the construction of the asymmetric memory, the current design is quite lavish in
the use of Block RAM, e.g., 96 BRAMs are required to create the 1536-bit operand
RAM. This is, however, a distorted picture as only a fraction of a BRAM cell is
being used. A full custom design would only require 5n bits of RAM instead of the
current 96× 18 K.



Chapter 6

IP Core Performance

6.1 Introduction

The developed modular exponentiation accelerator is designed to be part of a
larger embedded system. To verify the operation and to evaluate the operational
performance of the hardware accelerator in such an embedded system, we add the
core to our embedded test platform (Chapter 2). We use the developed software
API to create several test applications.

First of all, we will compare the theoretical run times for multiplication and
(dual-base) exponentiation with the practical run times achieved on the embedded
platform (Sect. 6.2).

Secondly, we will evaluate the performance when the exponents differ in length.
As the hardware is developed to work with exponents of the same length, we can
expect length differences to have an influence on the run time. We will derive
some general expressions for the run time of an l-base simultaneous exponentiation
and the maximum attainable speedup compared to an l-base exponentiation using
single exponentiations and multiplications (Sect. 6.3).

The conclusions from this evaluation are stated in Sect. 6.5.

All practical results are obtained with the same configuration listed in Table 5.4.
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6.2 Simultaneous Exponentiation Run Times

Hardware run time. If we look at Algorithm 1, we see that a multiplication
step (lines 5-8) is only carried out when at least one of the exponent bits is one
(‘1’). Consequently, it is not carried out when all of the exponent bits are zero
(‘0’). Looking at practical applications (Chapter 8), we can see that the exponents
contain a great deal of randomness. That means that the chance of having a one
or a zero is equally large i.e., 1

2 . For a dual-base exponentiation, that means that
there is a chance of 3

4 that at least one of the exponent bits will be one. So on
average Algorithm 1 requires 7

4 multiplications per exponent bit. The run time
of a dual base exponentiation (main loop) is hence given by (6.1), where w is the
length of the exponents.

T
(∧)
2,w =7

4 ·w·T
(×)
k,n . (6.1)

Application run time. To get the practical run time in an application, we need
to add the time required for bus communication with the IP core, the latency
introduced by the OS1 and the time for the precomputation and postcomputation;
both with their own bus communication and OS latency as seen in the previous
paragraphs. We can assume that for a given operand length, this extra time is
independent of w, so Eqn. (6.1) becomes:

T
(∧)
2,w =7

4 ·w·T
(×)
k,n + TC . (6.2)

To verify Eqn. (6.2) and to determine TC we have performed a series of simultaneous
exponentiations for different exponent lengths (Fig. 6.1). Every data point on
the graph is the average of 20 measurements, with new random exponents for
each measurement. The slope and intercept obtained from the least-squares linear
regression are shown in Table 6.1. It is clear that T2,w follows the predicted linear
function and that the slope corresponds with what we expected. Note that TC is
determined by the time required for bus communication (dependent on n) and the
OS latency (independent of n). The latter is clearly dominant and hence we can
state that TC is independent of n.

To illustrate the operation of hardware during execution of the function
MME1536 MME(), which performs a dual-base exponentiation, we can sample the
hardware timing output of our IP core. This measurement is shown in Fig. 6.2.
Note the spikes at the start (precomputation), the main loop and the spike at the
end (postcomputation).

1The time between the interrupt signal and the interrupt being handled by the UIO driver
and the application.
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Figure 6.1: Application run times of a modular simultaneous exponentiation for
different values of w and n.

Table 6.1: Linear regression results for T (∧)
2,w .

n slope (expect.) slope (regres.) intercept correlation coef.

512 0.0184 0.0186 4.629 0.9999743
1024 0.0369 0.0370 4.682 0.9999918
1536 0.0554 0.0555 4.639 0.9999930

Figure 6.2: Hardware run time for MME1536 MME().
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Figure 6.3: Comparison of three embedded implementations of a modular
simultaneous exponentiation for different exponent lengths and n = 1536.

Comparison with alternative embedded implementations. To illustrate the
value of our IP core in embedded applications, we compare the execution time of our
full-hardware simultaneous exponentiation with two alternative implementations:

• An embedded software implementation that uses GMP [38] for the arithmetic,
running completely on the MicroBlaze processor.

• An implementation where only the Montgomery multiplier is used and the
rest of Algorithm 1 runs on the CPU.

The results are shown in Fig. 6.3. It is clear that the full-hardware exponentiation
outperforms an embedded software implementation. And although it is faster than
the embedded software implementation, the software-controlled multiplier approach
is also an order of magnitude slower than a full-hardware exponentiation, as was to
be expected. Moreover, the full-hardware approach requires only a small amount
of extra resources.

6.3 Influence of the Exponent Length Difference

The previous results only illustrate the value of the design compared to approaches
that are destined to be slower. However, as already mentioned in previous chapters,
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...

e0

e1

el−1
w0

w0

w1

wl−1
w1 − w0wl−1 − wl−2

Figure 6.4: Arrangement of the exponents in a simultaneous exponentiation.

a trade-off between speed and area/cost needs to be made for every application
separately. If applications only require a few exponentiations, it might not be
worth it to implement simultaneous exponentiation hardware (due to the increased
memory requirements). Moreover, previous results have been obtained with equal
lengths of the exponents e0 and e1. However, as will be shown later (Chapter 9),
exponents can have different lengths in a practical application.

To be able to make educated decisions e.g., whether to use a multi-base or
a single-base exponentiation accelerator in a certain application, we require a
general expression which gives the time to compute a simultaneous multi-base
exponentiation in function of the exponent lengths and the gain we get in comparison
to a single-base implementation.

6.3.1 A General Expression for Simultaneous Exponentiation
Timing

Let l be the number of factors in the multi-base exponentiation Eqn. (6.3):

l−1∏
i=0

geii mod m . (6.3)

The length of an exponent ei is designated wi. We also assume that the exponents
are ordered in such a way that:

w0 ≤ w1 ≤ ... ≤ wl−1 .

Because the exponentiation hardware requires exponents that all have the same
length, it is required that exponents are padded with preceding zeros to match the
length of the longest exponent. This is also represented graphically in Fig. 6.4.

To generalize the timing for a dual-base exponentiation (6.1) to a multi-base
exponentiation with l exponents, we can state that the chance that for a certain
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position all bits are zero is 1
2l = P0. So the average time for a simultaneous

exponentiation where all exponents have the same length w is given by:

T
(∧)
l,w = [1 + (1− P0)] ·w·T

(×)
k,n .

T
(∧)
l,w =

[
1 +

(
1− 1

2l

)]
·w·T

(×)
k,n .

T
(∧)
l,w =2l+1 − 1

2l ·w·T
(×)
k,n . (6.4)

Or generally for different exponent lengths:

T
(∧)
l,{w0..wl−1} =

l−1∑
i=0

2l−i+1 − 1
2l−i (wi − wi−1)T (×)

k,n . (6.5)

Where we define w−1 = 0. If all exponents have the same length, Eqn. (6.5) can
be simplified, resulting in Eqn. (6.4).

It must be noted that this is an average timing, achieved when random exponents
are being used. If a constant timing must be maintained (e.g., to counter timing
analysis attacks) the worst-case timing must be taken. It is clear to see that this
will be 2 ·w·T

(×)
k,n . However, this is independent of the number of exponents.

6.3.2 An Expression for the Speedup when Using Simultaneous
Exponentiations Instead of Single-Base Exponentiations

We start by assuming that the time for a multiplication is negligible with respect
to the time for a single exponentiation. Even with the overhead (i.e., bus traffic
and OS latency) introduced in a practical setup, this is a justifiable assumption
when the exponents are large enough. In that case T (∧) will be orders of magnitude
larger than T (×).

With that assumption we can state that the time to compute a multi-base
exponentiation with the use of single-base exponentiations is:

l−1∑
i=0

T
(∧)
1,wi . (6.6)



INFLUENCE OF THE EXPONENT LENGTH DIFFERENCE 81

We then define the speedup factor Sl,{w0..wl−1} as:

Sl,{w0..wl−1} =

l−1∑
l=0

T
(∧)
1,wi

T
(∧)
l,{w0..wl−1}

. (6.7)

The index l designates the number of simultaneous exponentiations and {w0..wl−1}
designate the respective lengths of the exponents.

Determining the conditions for maximum speedup in case of two exponents
with different length. We will derive the conditions for a maximum speedup in
the case of l = 2. For l > 2, a similar approach can be followed. Equation (6.7) in
the case of l = 2 becomes:

S2,{w0,w1} =
3
2w0T

(×)
k,n + 3

2w1T
(×)
k,n

7
4w0T

(×)
k,n + 3

2 (w1 − w0)T (×)
k,n

. (6.8)

It is clear that T (×)
k,n has no influence on the speedup, which could be expected. As

stated before, we require that w0 ≤ w1. To be able to see what happens with the
speedup when w0 becomes larger than w1, however, we reformulate (6.8) in both
cases. After simplification we then get:

S2,{w0,w1} =
{

6w0+6w1
w0+6w1

when w0 ≤ w1
6w0+6w1
6w0+w1

when w1 ≤ w0
. (6.9)

To represent this graphically, we define v as w0
w1

. Doing so, we can write (6.9) as:

S2,{w0,w1} =
{

6v+6
v+6 when v ≤ 1

6v+6
6v+1 when 1 ≤ v

. (6.10)

This is set out in Fig. 6.5. We can clearly see that a maximum speedup of 1.7 is
achieved when v = 1 or in other words, when both exponents have the same length.
Also, when an exponent is less than twice as long as the other (0.5 < v < 2), a
speedup of at least 1.4 can be achieved.

Experimental verification of the speedup for l = 2. With our embedded test
setup, we were able to verify the correctness of Eqn. (6.8). We varied w0 and w1
between 256 and 2048 bits. The expected speedup has been set out in Fig. 6.6(a).
The gray scale represents the speedup in steps of 0.5. We then used the times
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Figure 6.5: Speedup factor when using dual-base instead of single-base
exponentiation as a function of the exponent length (ratio).
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(a) S2,{w0,w1} as predicted from (6.8)
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(b) S2,{w0,w1} as measured with the
embedded test setup.

Figure 6.6: S2,{w0,w1}: the speedup factor when using dual-base simultaneous
exponentiation compared to single-base exponentiation.

measured with our embedded test platform to generate Fig. 6.6(b). We can clearly
see that especially for larger values of w, the measured results follow the predicted
values. The reason that there is a difference for smaller exponents is presumably
the fact that Eqn. (6.7) doesn’t take the overhead into account. This overhead is
smaller for single-base exponentiations because only one multiplication is required
in the precomputation step. Since the overhead was independent of w its relative
share of the total computation time will also be lower in this case, and thus higher
in case of a simultaneous exponentiation.
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(a) Smax,l for several numbers of exponents. (b) Smax,l evolving to 3
4 l (dash-dot line).

Figure 6.7: Smax,l: the maximum speedup factor when using l-base simultaneous
exponentiation compared to single-base exponentiation.

General expression for l exponents with equal length w. Knowing that a
maximum speedup can be achieved when the exponents are all of the same length,
we can express this speedup as a function of the number of exponents:

Smax,l =
lT

(∧)
1,w

T
(∧)
l,w

. (6.11)

Again, this is independent of T (×)
k,n . Smax,l further simplifies to:

Smax,l = 3
2

l4l
21+l − 1 . (6.12)

Smax,l is presented in Fig. 6.7(a) for different values of l. Note that Eqn. (6.12) is
only dependent on the number of exponents and not on their length.2 Furthermore,
we can see that for larger values of l the trend for Smax,l becomes 3

4 l. Fig. 6.7(b)
shows how Smax,l evolves towards this trend. Note that for l = 2 we get the same
speedup factor of 1.7. Keep in mind, however, that the required memory evolves
exponentially with l (see Chapter 4).

2Of course, to have a maximum speedup, the exponents need to have an equal length.



84 IP CORE PERFORMANCE

A realistic example

For an Identity Mixer credential verification (only master secret) a 4-base
exponentiation needs to be carried out (see Chapter 9). With a modulus length
of 1536 bits, the exponents have the following lengths: {w0 = 256, w1 = 608,
w2 = 864, w3 = 2592}. Mind that some of these lengths have been increased
to meet the constraint of the IP core; i.e., all exponent lengths should be a
multiple of 32.

In the case of single exponentiations (T1) the total computation time is given
by Eqn. (6.13). Dual-exponentiation (T2) and 4-base exponentiation (T4) run
times are given by Eqn. (6.14) and Eqn. (6.15) respectively.

T1 =
[

3
2256 + 3

2608 + 3
2864 + 3

22592
]
T

(×)
k,n . (6.13)

= 6480 ·T
(×)
k,n .

T2 =
[

7
4(256) + 3

2(608− 256) + 7
4864 + 3

2(2592− 864)
]
T

(×)
k,n . (6.14)

= 5080 ·T
(×)
k,n .

T4 =
[

31
16(256) + 15

8 (608− 256) + 7
4(864− 608) + 3

2(2592− 864)
]
T

(×)
k,n .

(6.15)

= 4142 ·T
(×) .
k,n

The speedup for using dual-base exponentiations is 1.28; this is significantly
lower than the 1.7 maximum. A 4-base simultaneous exponentiation has a 1.56
speedup, but for this to work it requires 4 times the amount of memory as for
a dual-base exponentiation.
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Alternatives for T2

In Eqn. (6.14), the exponents are combined in such a way that the differences
in length are minimal. However, two other options exist:

T2(B) =
[

7
4(256) + 3

2(864− 256) + 7
4608 + 3

2(2592− 608)
]
T

(×)
k,n .

(6.16)

T2(C) =
[

7
4(256) + 3

2(2592− 256) + 7
4608 + 3

2(864− 608)
]
T

(×)
k,n .

(6.17)

Both alternatives result in a run time of 5400 ·T
(×)
k,n , which is significantly

larger than the proposed approach.

6.4 Proposal for a New Operand Memory Architec-
ture

We have observed that with the current design method, we require 2l memory
locations for an l-base simultaneous exponentiation. This rapidly becomes infeasible,
but we have seen that it is imperative that the required operands are immediately
available to the multiplier when doing exponentiations. To cope with this
exponential memory increase, we propose an alternative IP core design, that
at the same time makes the design even more customizable.

We start with the assumption that the main memory used by the OS is shared and
that it can be accessed by peripherals. Even more, peripherals should be able to
read to and write from this memory without intervention of the central processor,
i.e., Direct Memory Access (DMA). This requires either a DMA controller or a
master/slave bus with a bus arbiter.

If that is the case, the core only needs a local operand cache and an address table.
The local cache is always the same size, i.e., one location for the modulus, one
for the intermediate result and at least one location to store an operand (all n
bits). The address table holds the shared memory addresses where all the required
operands are stored. Of course, also 2l − 1 entries need to be stored, but that
requires considerably less space.3

When executing the main loop of the simultaneous exponentiation algorithm, the
first step is squaring the intermediate result. During this step, the control logic

3The reason that it is 2l−1 instead of 2l because no address entry is needed for the intermediate
result.
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Figure 6.8: Provisional block diagram of the IP core redesign.

can analyse the exponent bits and with the corresponding the address from the
address table, retrieve the required operand.4 This is then stored in (one of) the
operand memory cache(s), that is not being used during squaring. This approach
is only useful under the condition that the time to fetch an operand is (ideally)
lower than T

(×)
k,n . In any case, extra logic is required to ensure that the multiply

step is only executed when the operand is present in the cache.

Fig. 6.8 shows a provisional block diagram of the proposed design. The main
difference with the previous design is the smaller RAM, the address table and
more complex control logic and bus interface. Fig. 6.9 shows an example of the
address table usage for l = 4. In this example, only a triple-base simultaneous
exponentiation is executed, so one of the exponents is zero.

4When the exponent bits are all zero, no operand needs to be fetched, of course.
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6.5 Conclusion

In this chapter we have verified some expressions that allow us to determine in
advance computation times for multiplication, single-base exponentiation and l-
base simultaneous exponentiation. We found that in practice there is an overhead
introduced by the latency in the OS and the communication with the IP core. This
overhead is constant regardless of w and n, but it is dependent on the system setup
e.g., clock frequency, CPU tics,...

It is clear that there is a speedup in using simultaneous exponentiations. We have
stated some expressions that allow us to determine the maximum speedup, as well
as the effective speedup in a practical case. For this practical case, we have also
shown that the fastest run times for dual-base exponentiations are achieved when
the exponent length difference is minimal.

Together with the known memory usage, the general expressions allow us to make
an educated trade-off between speed and area for a given case; i.e., whether to
use l-base simultaneous exponentiations or not. Moreover, the influence of the
overhead on the speedup decreases when the exponents are longer. In practice, for
a dual-base exponentiation 2n-bit of extra operand memory is required, resulting
in a maximum speedup of 1.7.

In addition, the analysis shows that the speedup is independent of T (∧)
l,w . This

means that, when Algorithm 1 is used and the multiplication timing is constant
for a given operand length, this analysis is generally applicable for any multiplier
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implementation.

We have proposed a new IP core memory architecture that can be used when
shared memory is available on the embedded system: its advantage is that we can
benefit from simultaneous exponentiations without increasing the operand memory.

We have also evaluated the performance of the IP core in some realistic scenarios
i.e., attribute-based credential verification. This has taught us the optimal way
of combining multiple exponentiations, as well as the practical speedup we can
expect. We will evaluate this in practice in Chapter 9.



Chapter 7

NFC Peer-to-Peer
Communication

7.1 Introduction

As a consequence of the mobile revolution, smartphones and tablet computers will
increasingly be used to gain access to electronic services, e.g., mobile payment
to a vending machine, access control, ... When the user is (required to be)
near the verifying device, Near-Field Communication (NFC) could be useful as a
communication medium.

In this chapter, we will investigate which features NFC offers and how it relates
to other wireless technologies (Section 7.2). Because two-way communication is
required by most of the classic challenge-response protocols as well as by the
more recently developed attribute-based credential protocols, the standard for
peer-to-peer (P2P) communication with NFC is presented in Section 7.3. More
specifically, we will focus on the communication between a smartphone and an
embedded terminal.

To that end we will use an Android phone. Android OS is one of the most-used
operating systems for smartphones.1 Moreover, developing apps for Android is
easier compared to iOS or Windows 8 because no developer account is required.
Also, when needed, root access to the phone can be enabled. For the bidirectional
communication between an Android smartphone and an embedded terminal, we

1According to IDC, Android and iOS Combine for 92.3% of all smartphone operating
system shipments in the first quarter of 2013: http://www.idc.com/getdoc.jsp?containerId=
prUS24108913. Android takes a market share of 75%. This share only includes the smartphone
market and not, e.g., tablets.

89

http://www.idc.com/getdoc.jsp?containerId=prUS24108913
http://www.idc.com/getdoc.jsp?containerId=prUS24108913


90 NFC PEER-TO-PEER COMMUNICATION

will look at the current state of the art for NFC P2P and where needed select a
modus operandi (Section 7.4 for Android OS and Section 7.5 for the embedded
terminal).

Our conclusions are stated in Section 7.6.

7.2 Near Field Communication

7.2.1 Applications

NFC is a relatively new wireless communication standard. Unlike Bluetooth or
WiFi, it only works over short distances, i.e., a few centimeters maximum. On
the other hand, connection setup times are considerably lower. Bringing two NFC
devices close to each other, is enough to set up a connection and exchange data
i.e., the so-called touch.

The NFC Forum2 regulates the design of all NFC specifications and norms. Started
in 2004, it brings together manufacturers and service providers. Among its members
are NXP, Nokia, VISA, Samsung, etc. The main goal of the NFC Forum is to
ensure interoperability of devices and protocols and thus help in building the
so-called NFC ecosystem.

In ticketing applications, NFC is gradually replacing paper tickets. This is,
for instance, the case in Dutch public transportation or in the London Metro,
with respectively the OV-chipkaart3 and Oyster Card.4 A first advantage is
that NFC cards can be reused over and over again, which saves on ink, paper
and storage [NFC11]. But tickets are also increasingly being stored on NFC-
enabled smartphones, which are less prone to loss. In Paris’ and London’s public
transportation, commuters can use their smartphone as a ticket [Cla12, Hea11].
NFC ticketing systems are furthermore assumed to increase the throughput of the
public transportation [NFC11].

Predictions state that in 2016, 13% of US and Western Europe citizens will use
their smartphones as a ticket [The12]. Manufacturers such as Asus, HTC, Nokia
and Samsung have all released NFC-enabled devices. It is expected that 46% of all
the smartphones will support NFC by 2016. The only uncertainty is Apple, which
has to date not launched any NFC phones.

2NFC Forum website: http://www.nfc-forum.org
3OV-chipkaart information website: https://www.ov-chipkaart.nl/
4What is Oyster? Transport for London – Information website: http://www.tfl.gov.uk/

tickets/14836.aspx

http://www.nfc-forum.org
https://www.ov-chipkaart.nl/
http://www.tfl.gov.uk/tickets/14836.aspx
http://www.tfl.gov.uk/tickets/14836.aspx
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7.2.2 Devices and Communication Modes

NFC can be seen as an extension to Radio Frequency Identification (RFID)
operation at 13.56 MHz defined by the ISO 14443 standard [1, 2, 3, 4]. This
implies that for NFC two types of devices are defined:

• Passive devices. These devices –often referred to as tags– don’t carry a
battery and typically have very limited processing power and memory. The
functionality ranges of storage of a simple ID (e.g., a classic RFID tag), over
storage of (secured) data (e.g., a Mifare card, smart posters), to devices with
a cryptographic co-processor (e.g., Java cards). Passive devices draw their
power from an RF field generated by an active device.

• Active devices. An active device –also called NFC-enabled device– has its
own power source. This can be either a net supply or a battery. It typically
has more processing power than a passive device. Examples of NFC-enabled
devices are (some) smartphones and access points.

One of the main differences between RFID and NFC is that with NFC, active
devices are also able to communicate with each other. In this case both devices
can alternately generate their own RF field when sending, or one of the devices
can decide to act as a passive device. Because of the difference in communication
between passive and active devices on the one hand and communication between
two active devices on the other, the NFC forum has defined three different modes
of communication:

• Reader/writer mode. This is the “classic” RFID communication. The active
device acts as reader to read tags of the ISO/IEC 14443 A/B, Felica, etc.

• Peer-to-peer mode. In this mode, two NFC-enabled devices can exchange
data with one another, e.g., digital business cards, an interesting URL, ...
The data rate, however, is small. For this reason, a connection handover
mechanism is used when large amounts of data have to be transferred. With
this mechanism, all necessary parameters to set up a connection over, e.g.,
WiFi or Bluetooth, are transferred over NFC P2P. After the connection has
been established, the NFC communication is terminated.5

• Card emulation mode. In this alternative to P2P, an NFC-enabled device
will act as a traditional RFID tag. The main advantage is that it allows NFC
smart phones to easily blend into the market, without the need to change
the existing infrastructure (i.e., the existing card readers). However, in this
mode the NFC chip of the smartphone communicates directly with a secure
element on the phone (typically a SIM card), which eliminates intervention

5The connection handover mechanism is standardized in the ISO/IEC 18092 spec. [5]
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of the processor and the OS altogether. This is e.g., the case with Google
Wallet.

7.2.3 The Need for P2P Communication

Smartphones are used increasingly for mobile payment and the use of NFC as a
medium is also growing. Several applications already exist where the credentials are
stored on a secure element (SE) e.g., Google Wallet,6 Isis,7 ... and where the phone
operates in card emulation mode. However, this approach has several drawbacks.

Because the communication from the NFC chip is immediately routed to the SE,
this element forms a bottleneck. First of all, payment apps are limited to the
memory size of the SE. Second, the processing and access times to SEs are higher.
A last drawback is that provisioning credentials to a SE is a complex process. In
practice, this implies that every e-wallet app requires its own SE.

An alternative to using card emulation with SEs is the so-called software card
emulation. Instead of passing the NFC communication to the SE, it is captured
by an NFC service in the OS. This approach breaks the dependency on the SE
i.e., credentials can be stored anywhere (e.g., in the phone’s user memory, within a
trusted execution environment (TEE), even in “the cloud”), but it also allows for
several payment applications to use the NFC functionality.

Roland has written a comprehensive article on this subject [Rol12]. His conclusion
is that the main reason to go for software card emulation is that it does not require
any changes to the existing payment infrastructure (i.e., the vendor terminals and
network infrastructure). However, he also states that the most logical choice for
payment and ticketing applications over NFC is to go for P2P because it was
designed for easy communication between NFC devices. Following this conclusion,
we will add support for NFC P2P communication to the embedded platform. We
will look at the specification later (Section. 7.3) and how we implemented it on an
embedded terminal (Section 7.5).

With regard to software card emulation, BlackBerry is the only company that
supports this approach. There have been patches submitted for Android,8 but
none have been merged with the main Android branch. The only way this can be
achieved now on Android is by rooting the phone and installing a custom ROM
like CyanogenMod;9 something that would void your phone’s warranty.

6http://www.google.com/wallet/
7https://www.paywithisis.com/
8The patch by SimplyTapp adds software card emulation to the Android OS: https://github.

com/CyanogenMod/android_external_libnfc-nxp
9http://www.cyanogenmod.org/

http://www.google.com/wallet/
https://www.paywithisis.com/
https://github.com/CyanogenMod/android_external_libnfc-nxp
https://github.com/CyanogenMod/android_external_libnfc-nxp
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7.2.4 Alternative Short-Range Wireless Communication Tech-
nologies

In this section we will try to give a short overview of wireless technologies that can
be an alternative to NFC. The main focus will be on data rates, the time to set up
a connection and the range. In Table 7.1, these parameters, together with some
extra features, have been set out for the considered technologies.10

Classic RFID. RFID defined by the ISO/IEC 14443 standard [1, 2, 3, 4] operates
at 13.56 MHz and was originally designed as an automatic identification technology
to replace barcodes. The main difference with NFC is in the distinctive roles of
active and passive devices. RFID readers are only used to read out a passive tag,
they cannot communicate with one another. Because of the use in tracking and
theft detection, the range of RFID is also larger than is the case with NFC, where
“touching” two devices is part of the concept.

Bluetooth. Bluetooth defines three classes of devices, each with a different
transmission power and thus a different range. Class 3 devices have a maximum
transmission power of 1 mW, where class 1 devices can go to 100 mW. This
corresponds to respective ranges of 1 m to 100 m. Operating at 2.4 GHz with
frequency hopping over 79 channels, the pairing of two devices can take some time.
This pairing involves a device discovery and connection key agreement.

The recently released Bluetooth 4.0 standard is a collection of three separate (and
not inter-operable) standards:

• Bluetooth 2.1, which operates as described above.

• Bluetooth low-energy uses direct-sequence spread spectrum instead of
frequency-hopping. The long connection set-up of Bluetooth 2.1 is countered
with a guaranteed set-up time of under 3 ms. Data rates, however, are much
lower.

• Enhanced Data Rate is designed to achieve higher transmission speeds. This
is accomplished by using a connection handover to another technology with
a higher bandwidth. This is comparable to connection handover in NFC.

ZigBee. Designed for low-power wireless sensor networks (WSNs), ZigBee
operates at 2.4 GHz. Intended for sensing and actuator control (e.g., home
automation), the data rate is rather low. The inter-node distance will be around

10The listed data rates are in fact the maximum raw data rates; practical data rates (as seen
by the application) can be an order of magnitude lower.
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10 m (indoor), but the WSN itself –with thousands of nodes– can obviously span a
large area. A node can connect to the network in a few seconds, key agreement
and service discovery excluded.

WLAN. Wireless LAN is designed to build computer networks without the need
of cables. WLAN is described by the IEEE 802.11 standard of which versions a, b, g
and n are amongst the best-known. The latter supports data rates up to 600 Mbit/s.
WLAN typically requires access points to connect to the existing (cable) LAN.
WLAN can operate at both 2.4 GHz and 5 GHz with ranges up to a few tens
of meters. NFC is not a competitor for WLAN, but more of a complementary
technology. Especially for the Internet of Things, it can be interesting to use NFC
to commission devices that have no other input options, a so-called headless device.
Via the NFC connection, the required WLAN network parameters can be sent to
the headless device i.e., NFC connection handover.

QR codes. A QR code is a 2-dimensional bar code. It can, however, store more
data than a regular bar code and also offers more error correction. To scan a bar
code, the user has to start the correct application, and point the camera at the QR
code. Bidirectional communication is possible between two smartphones if they
alternately generate and scan QR codes.

Despite the limited capabilities, QR codes have been used in several mobile security
applications. In his PhD thesis, Lapon describes an application that uses QR
codes for mobile authentication towards a terminal [Lap12]. The recently released
Bancontact/Mister Cash App also uses QR codes for mobile payments between two
smart phones or tablets.11

7.2.5 Security Issues

Bringing two devices into each other’s vicinity is enough to start data exchange
with NFC. This consequently introduces some security threats [Pau07]. We will
give an overview of the attacks that are most common i.e., they can be staged in
practice.

Eavesdropping. Almost all wireless communications can be subject to eavesdrop-
ping. All that is required is an antenna and some analysis equipment. Hancke has
demonstrated this attack for RFID tags operating at 13.56 MHz [Han08]. However,
it is widely accepted that NFC is harder to eavesdrop because of the lower transmit
power. Also the exact difficulty can not be determined easily, because it depends on

11http://www.bancontact.com/en/cardholders

http://www.bancontact.com/en/cardholders
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a broad range of parameters e.g., the transmit power, signal noise, the environment
(like metallic objects), the sensitivity of the attacker’s equipment,.

Haselsteiner and Breitfuß [HB06] also state that it is more difficult to eavesdrop
on a passive device, than on an active device. They also proclaim a maximum
range for eavesdropping on NFCIP-1 and ISO/IEC 14443 devices. An attacker can
listen to a passive device at a distance of 1 m, while for active devices this is 10 m.
Eavesdropping can be countered by encrypting the data.

Data modification. Probably the easiest attack to perform is a denial of service
(DoS) attack. By sending a sufficiently powerful sine wave at 13.56 MHz, the data
modulation will be altered in such a way that no meaningful communication is
possible. Two communicating devices cannot shield themselves from such an attack,
they can only detect it.

Altering the data in a meaningful way is a lot harder to do. All RFID standards at
13.56 MHz use Amplitude Shift Keying (ASK) to modulate the carrier. Haselsteiner
and Breitfuß [HB06] have shown that for an attacker, it is feasible to change a low
amplitude into a higher amplitude, but that it is impossible the other way around.
Because for bit rates higher than 106 kbit/s, a 10% modulation depth is used
(instead of 100% for 106 kbit/s), Van Damme and Wouters state that it is easier to
perform data modification at higher bit rates [DW09]. The most straightforward
way to counter data modification is to use message authentication.

Data insertion. This attack is possible if a tag needs a lot of time to generate an
answer and if the attacker can generate an answer more quickly. If the fraudulent
and the real answer overlap, the result is a collision and hence data corruption
occurs. Data insertion can be countered by authentication.

Man-in-the-Middle-Attack. In this case, the communication happens between
three parties, one of which is the attacker. In order to execute a successful attack,
the two genuine parties must be unaware the communication is passing through a
third party. This attack is practically impossible to execute without resulting in
collisions [DW09].

Relay Attack. This attack is also relatively easy to stage [FHMM10, FHMM11,
HMM09, KW05]. The main goal of this attack is to trick two NFC devices into
“thinking” they are into each others vicinity, while in fact their traffic is routed
over a larger distance using e.g., Bluetooth, WiFi or GPRS. The attacker does
not alter the data traffic, but only wants to gain access to the service which is
enabled by the communication. Possible targets are wireless smart cards used for
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Figure 7.1: NFC P2P communication stack.

building access control or access to storage lockers. With that regard, Francis et
al. [FHMM11] staged such an attack by using two NFC-enabled mobile phones.
One phone operates in reader/writer mode and acts as a proxy between the smart
card and the relay channel. The other phone acts as a card near the actual terminal.

One way to counter relay attacks is by employing distance bounding proto-
cols [RTŠ+12, HPO13, PH12]. Current RFID communication protocols do not
support this (at the physical layer), because these protocols typically require some
rapid data exchange phase. Another way protecting honest users against relay
attacks, is by asking for their permission before initiating communication.

7.3 NFC P2P Communication

For two active NFC devices to communicate with each other (e.g., a smartphone and
a vending machine), the NFC Forum defines a peer-to-peer (P2P) communication
mode. NFC P2P requires a stack of several protocol layers as shown in Fig. 7.1.
The SNEP layer and LLCP layer are defined by the NFC Forum itself. The lower
layers are manufacturer and hardware dependent. In the following paragraphs, we
will provide a short overview of all the layers. Because we made our own basic
implementation of SNEP on an embedded platform (Chapter 2), we will go into
more detail when it comes to this layer.
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SNEP Client SNEP Server

SNEP Response Message

SNEP Request Message

Figure 7.2: SNEP communication model.

7.3.1 Simple NDEF Exchange Protocol

The Simple NDEF Exchange Protocol (SNEP) is a request/response protocol for
exchanging NDEF12 messages between a client and a server [31]. To exchange these
messages SNEP uses the stable logic connection between two devices, provided by
the underlying LLCP layer.

SNEP message format. SNEP messages (Fig. 7.3) consist of four fields.

• The version field designates which version of the protocol is being used. The
upper nibble represents the major version number, while the lower nibble
represents the minor version number. At the time of writing, the most recent
version is 1.0.

• The request/response field indicates the type of the SNEP message. Currently,
four request codes are defined:

0x00 CONTINUE : The client indicates that the server can send another
fragment of a fragmented SNEP message.13 This can only follow a
previously sent GET. The information field in a CONTINUE message
is empty.

0x01 GET : This code is used to request an NDEF message (see later) from
the server. The type of NDEF message is determined by the NDEF
message that is being sent in the information field of the GET request.

0x02 PUT : Used, when the client wants to sent an NDEF message. The
actual message is sent in the information field.

12NDEF stands for NFC Data Exchange Format. This is discussed later on in this chapter
(p. 99).

13This is the case when the information that is being sent, is too large to fit in the information
field of a single message.
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7 6 5 4 3 12 0
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Figure 7.3: SNEP message format.

0x7F REJECT : When the client is not capable of receiving more messages
(e.g., for a fragmented message), it sends a REJECT. This can imply
that the logical connection will be terminated.

The possible response codes are defined between 0x80 and 0xFF:

0x80 CONTINUE : Analogous to the request.
0x81 SUCCESS : Response to a GET or PUT request. In case of GET, the

information field contains the requested NDEF message. Otherwise, the
information field is empty.

0xC0 NOT FOUND: When the server can not send the requested NDEF
message (as response to a GET request).

0xC1 EXCESS DATA: The response of the server is too large for one message.
0xC2 BAD REQUEST : Response to a request that contains syntax errors.
0xE0 NOT IMPLEMENTED: The specific request is not supported.
0xE1 UNSUPPORTED VERSION : The version used by the client is not

supported by the server.
0xFF REJECT : Analogous to the request.

All undefined codes are reserved for future use.

• The length field (4 bytes) indicates the length of the information field (number
of bytes).

• The information field is used to send the NDEF messages.

NDEF message format. The NFC Data Exchange Format (NDEF) defines the
format of data packets for NFC communication [26]. For P2P communication,
when one application sends some information to another, it must encapsulate this
information in an NDEF message. An NDEF message consists of one or multiple
NDEF records. This can be either a normal record or a short record (Fig. 7.4).
Both have a comparable structure with the same fields:

• Message Begin (MB): Set if it is the first record.
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• Message End (ME): Set if it is the last record. In case of an NDEF message
consisting of a single record, both MB and ME are set.

• Chunk Flag (CF): When data needs to be parsed over several records
(chunking), the CF is set indicating that more records follow. Only in
the last record is the CF cleared. For records following the initial record,
Type Length and IL need to be zero, while TNF is set to 0x06 (unchanged).

• Short Record (SR): Set to 1 if it concerns a short record. For a short record,
the Payload Length field is only one byte (Fig. 7.4(b)), while for a normal
record, it is four bytes (Fig. 7.4(a)).

• ID present (IL): If set, then the [ID] and [ID Length] fields are present.

• Type Name Format (TNF): These three bits indicate the structure of the
Type field:

000 Empty. Used when no payload is present. As a consequence, Type
Length, [ID Length], Payload Length are zero.

001 NFC Forum well-known type (RTD). The Type field has a structure as
defined in [27].

010 Media-type. The Type field has a structure as defined in [21].
011 Absolute URI. The Type field has a structure as defined in [28].
100 NFC Forum external type (RTD). The Type field has a structure as

defined in [27].
101 Unknown.
110 Unchanged; used in the case of chunking.
111 Reserved.

• Type Length: The length of the Type field.

• Payload Length: The length of the Payload field.

• [ID Length]: An optional field, indicating the length of the [ID] field.

• Type: Describes the type of the data. This field should be consistent with
the TNF bits.

• [ID]: An optional field. Can be used to identify data. The application is
responsible for the implementation of this field.

• Payload: The actual data.
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MB ME CF SR IL TNF

2−0347 6 5

Payload Length 3

Payload Length 2

Payload Length 0

Type Length

Payload Length 1

[ID Length]

Type

[ID]

Payload

(a) Normal NDEF record (SR=0)

MB ME CF SR IL TNF

2−0347 6 5

Payload Length

Type Length

[ID Length]

Type

[ID]

Payload

(b) Short NDEF record (SR=1)

Figure 7.4: NDEF record format.

7.3.2 Logical Link Control Protocol

The Logical Link Control Protocol (LLCP) provides to higher layers a logical
connection between two endpoints [30]. Every endpoint offers the same functionality.
This eliminates the inherent asymmetry of the lower MAC layer with an initiator
controlling the communication and a target device that only sends at a request
of the initiator. LLCP creates a so-called asynchronous balanced mode (ABM) on
top of this mechanism, through which each endpoint has the possibility to start a
transmission.

Endpoints connect to the LLCP through service access points (SAPs). Typically,
each protocol (endpoint) has its own SAP. For NFC, only SNEP has been assigned
an SAP (0x04).14

Implementations on top of LLCP can either use connection-oriented or connection-
less communication. Neither of these, however, have a guaranteed delivery time.
This makes LLCP unusable for the streaming of audio or video. Other limitations
are the fact that there is no possibility to send packets to different SAPs (multicast
or broadcast) and that there is no support for encryption or authentication. This
should be implemented by higher layers.

14The up-to-date list of assigned SAP addresses can be found at: http://www.nfc-forum.org/
specs/nfc_forum_assigned_numbers_register .

http://www.nfc-forum.org/specs/nfc_forum_assigned_numbers_register
http://www.nfc-forum.org/specs/nfc_forum_assigned_numbers_register
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7.3.3 NFCIP-1

All layers described above add a level of abstraction to the actual communication
i.e., how bits are physically transmitted from one device to another. For NFC this
is described in the ISO/IEC 18092 specification [5]. In [29], the NFC forum has
tried to make a more concrete description of the protocol.

The NFCIP-1 protocol works according to an initiator/target model. The initiator
sends commands to the target, to which the latter answers. A target can never
send data at its own initiative. Because both devices will never transmit at the
same time, NFC is a half-duplex protocol.

There is also a difference between passive targets and active targets, while this
distinction is not made by higher layers. In active communication mode, a target
will generate its own RF field when sending data to the initiator. A passive target
relies on the RF field generated by the initiator. Through inductive coupling, the
target can draw energy from the RF field. The target can be compared to the
secondary winding and load of a transformer. By varying the load, the target can
send data; the load variations can be detected by the initiator.

7.4 NFC P2P Implementation in Android OS

7.4.1 Android 4.1 – API 16 and Higher

The mechanism that handles NFC P2P communication in Android is called Android
Beam (introduced with API 14). The API provides support for the exchange of
NDEF messages, with support for different types of data. There are methods to
create the NDEF records and combine them into a message.

To send an NDEF message, the API provides two different approaches. The first
one will register a static message to be sent when another NFC-enabled device
establishes communication. The second method allows to dynamically create an
NDEF message at run time. This is interesting when context-sensitive information
needs to be sent.

To receive an NDEF message an application needs to register the correct intent
with the OS; in this case the NDEF DISCOVERED intent. This is important because
the Tag Dispatch System (Fig. 7.5) will try to immediately deliver all data received
over NFC to the correct application. By using filters, the application can further
specify if it is only interested in e.g., plain text NDEF messages. To prevent that a
new instance of an application is started, every time an NDEF message is received,
an active application can use the Foreground Dispatch to process the incoming
intents.
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Figure 7.5: Android tag dispatch system – Taken from http://developer.
android.com/guide/topics/connectivity/nfc/nfc.html

7.4.2 Internal Operation

If we look at the internal operation of the Android NFC service, one important
flaw comes out, more specifically with respect to the NFC P2P specification. The
procedure to send an NDEF message (whether it is a static message or composed
at run time) is only called when the smart phone receives an LLCP Link Activation
message. This message is part of the LLCP layer and is only sent when two devices
are brought close enough to set up a connection. This means that, to be able to
send multiple messages, the two devices have to be alternately brought together
and moved away again [Ber13]. It is obvious that this is highly impractical. It also
implies that currently there is no bidirectional communication possible (with more
than one pass), as is required in security protocols.

A possible explanation is that before the release of the NFC P2P specification (by
the NFC Forum), Google had its own protocol for exchanging NDEF messages,
the NDEF Push Protocol (NPP) [13]. In NPP it is specified that a client has to
sever the LLCP connection after sending a NDEF message. It is likely that SNEP
was implemented without making any changes to the underlying framework, which
explains why this feature is still present.

We note again that this is the case for all Android versions to date.

7.4.3 Solutions

As shown before, bidirectional P2P communication with Android is currently not
possible. We will list some possible workarounds to establish P2P communication
with the current API.

http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
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1. Software card emulation. As mentioned before, card emulation is another
communication mode of NFC. When the SE element is replaced by a software
application or service that acts like a SE, this is called software card emulation.
However, this is not supported by the Android OS. Only custom builds like
CyanogenMod support this mode of operation.

2. External reader. Another workaround could be in using an external reader
which is connected to the smartphone with another interface e.g., Bluetooth
or USB. In this case one could wonder for what reason, users would buy an
extra NFC device while their smartphone supports NFC.

3. Java Native Interface. The Java Native Interface (JNI) is used to create a
link from Java applications to code written in e.g., C or C++. This code
is typically time-critical code, or low-level driver code. An option would be
to create a replacement NFC service that implements the NFC P2P stack
as defined by the NFC Forum. This would include the NFCIP-1 and LLCP
(both written in C) coupled through JNI to a Java API that is usable by
applications that require NFC P2P. The only problem with this approach,
is the access to the NFC chip. The access is restricted to the root user or
software that is signed by Google.

4. Handover. Currently the only solution that does not require tampering with
the OS or external NFC device, is connection handover (standardized in
ISO/IEC 18092 [5]). The drawback here is that this requires an extra wireless
interface and that there is an increased connection setup time. The latter
makes that this mechanism is only interesting when a large amount of data
will be exchanged.

It is clear that all the proposed solutions are far from ideal, especially keeping in
mind that there is a standard for NFC P2P. One could say that for the further
evolution of NFC applications that require P2P communication, the ball is now in
Google’s court. On the other hand, we assume that eventually they will support the
P2P standard. This is a reasonable assumption because 1) an NFC P2P standard
is available and 2) applications, other than payment apps, could benefit from this
as well.

Working JNI solution

In his master thesis, Van Den Berge demonstrates a solution based on
JNI [Ber13]. He has created an application that serves as a proof-of-concept
for NFC P2P communication (according to the specification) with an Android
smartphone. His application bypasses the standard Android NFC service and
is able to act as either an LLCP server or client. Only root access to the PN544
chip was required.
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Figure 7.6: The NXP PN532C106 demo board.

7.5 NFC P2P Support on an Embedded Platform

Even if the current API of Android does not entirely follow the specification, we
need to implement the NFC P2P stack on an embedded terminal (e.g., vending
machine, point of sale, ...) as well. In the following paragraphs we will provide
an overview of the libraries we selected for this purpose. We implemented these
libraries on our embedded test platform (see Chapter 2). For the RF interface we
use an NFC development board by NXP.

7.5.1 NFC Hardware

The NXP PN532C106 demo board is designed for prototyping NFC applications
(Fig. 7.6). The heart of this board is formed by the PN532 NFC chip. An antenna
and matching network are also provided as well as a power supply circuit and
an RS-232 interface. The RS-232 high-speed UART (HSU) is one of the three
interfaces through which a host can control the PN532 [32].

The PN532 and successors such as the PN544 are among the most-used NFC chips
in smartphones. The PN532 supports four different modes of operation:

• support for ISO/IEC 14443A (Mifare) and FeliCa as reader

• card emulation as ISO/IEC 14443A and FeliCa tag

• support for ISO/IEC 14443B only as reader

• NFCIP-1, required for NFC P2P

The HSU operates at 119200 baud. A proprietary command/response instruction
set is used to configure the PN532 and to exchange data.
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7.5.2 Libraries for NFC P2P

Several open-source libraries exist that offer some functionality required for NFC
P2P. One of the main requirements is that the libraries are able to run on an
embedded platform. In particular we selected libraries that work with Linux and
that support the PN532. We considered the following candidates:

• open-nfc15: This library is developed by the company Inside Secure. It
supports the full range of modes of operation, P2P communication according
to the specification as well as handover to Bluetooth and WiFi. It is available
for Linux, Windows and Android, but a great disadvantage is the lack of
hardware support (currently only Inside Secure’s own hardware is supported).
They offer a porting guide, but still this requires a great deal of knowledge of
both the hardware and the open-nfc stack.

• nfcpy16: This library offers all the layers required for P2P communication as
well as manipulation of several types of tags. It comes with several examples
that aid in developing applications. The library is written completely in
Python, which requires the presence of a Python interpreter on the embedded
OS. Because this creates an extra level of overhead, this is obviously a
disadvantage.

• libnfc17: A library with one of the largest communities; also one of the first.
The source code is written entirely in C and supports a broad range of chips
as well as a debug mode. It also offers a broad range of examples, illustrating
the possibilities of the library. Although bidirectional communication is
possible with this library, it does not support LLCP or SNEP.

• libnfc-llcp18: Also written in C, this library implements the LLCP layer on
top of libnfc. There are some examples, but the source is poorly documented.
Still, this library is popular amongst the libnfc-community.

• Qt Mobility19: The Qt Mobility module developed by Nokia, offers the
LLCP layer and support for NDEF. However, it requires the Qt framework.
Qt Mobility is written in C++.

• nfctools20: This library is written in Java. This ensures platform
independence, but also requires a Java virtual machine (JVM) to operate.
Currently nfctools, has been merged with libnfc and libnfc-llcp under
the same project.

15Project website: http://open-nfc.org/wp/
16Project website: http://nfcpy.readthedocs.org/en/latest/
17Project website: http://code.google.com/p/libnfc/
18Project website: http://code.google.com/p/libllcp/
19Project website: http://doc.qt.digia.com/qtmobility-1.2/index.html
20Project website: http://nfc-tools.org/

http://open-nfc.org/wp/
http://nfcpy.readthedocs.org/en/latest/
http://code.google.com/p/libnfc/
http://code.google.com/p/libllcp/
http://doc.qt.digia.com/qtmobility-1.2/index.html
http://nfc-tools.org/


CONCLUSIONS 107

• ismb-snep-java21: This library has evolved from the ismb-npp-java library,
which was initially developed for indoor navigation. As its name suggests,
the source is written in Java.

Keeping in mind the extra resources required by virtual machines, frameworks
or interpreters, the only libraries that are fit for an embedded platform are those
libraries that directly tap into the functionality provided by the OS (e.g., threading,
memory management, device drivers), rather than doing this through an extra
layer of abstraction. Note that on an Android platform, with applications running
in a JVM, the NFCIP-1 and LLCP layers are also written in C.

This leaves only libnfc for NFCIP-1 and libnfc-llcp for the LLCP layer. That
also means that a SNEP implementation and NDEF support has to be written
by the developer. We have made such an implementation on our embedded test
platform (Chapter 2). Appendix B shows a coding example on how to run a SNEP
server application on an embedded terminal using our own SNEP implementation
and the libnfc and libnfc-llcp libraries. The main drawback of the current
implementation is that only short NDEF records are supported.

7.6 Conclusions

In this chapter we have given an overview of NFC as a communication medium
between a mobile and an embedded device e.g., a smartphone and an NFC-enabled
locker. More specifically, we have looked at the value of NFC for exchanging
messages as part of a cryptographic protocol between an Android device and an
embedded platform.

The NFC P2P specification, defined by the NFC forum, is the standard for
bidirectional communication between two NFC devices. However, the current
version of Android (i.e., API 16) implements this standard only partially. To
that end, we have compared several alternatives. These are either complex (JNI,
custom Android build, external reader) and/or require root access to the phone.
Only communication handover to another wireless standard, that does support
bidirectional communication, seems to be a valid alternative at the moment.

Of these alternatives, we implemented the JNI solution and the connection handover
to WiFi. Both solutions were tested in combination with our embedded test platform
(Chapter 2). Our findings are discussed in Chapter 10.

On the side of the embedded platform, we used two open-source libraries i.e.,
libnfc and libnfc-llcp, to implement the NFC P2P stack. Together with a
basic own design of SNEP, we have implemented an example application for sending

21Project website: http://code.google.com/p/ismb-snep-java/

http://code.google.com/p/ismb-snep-java/
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and receiving data over NFC P2P on an embedded platform. The main drawback
of the current implementation is that only short NDEF records are supported
and that the programmer is responsible for parsing long payloads over multiple
records.



Chapter 8

Attribute-Based Credentials

8.1 Introduction

In a society that increasingly relies on electronic services, safeguarding a user’s
personal information is a daunting task. Service providers often collect more
attributes than is required for running their service. While searching and browsing
online stores and the Internet in general, users often reveal more information about
themselves than they realize. This allows for extensive profiling of users, both for
commercial and criminal purposes.

Classic certificate technology binds a public key to a certain identity. By using
certificates both users and service providers can verify the identity of the other party.
Certificates, however, contain a lot of information about the owner that is revealed
during the authentication process. So while certificates have their usefulness in
ensuring authenticated communication, they lack in offering privacy for their users.
In addition, all actions of the same user i.e., with the same certificate, can be
linked [Cha85].

An alternative to the classic certificate technology are the attribute-based credentials
(ABC) or anonymous credentials cryptosystems [CL01, Cha85, Bra00, CL03]. This
technology offers some interesting features:

• Selective disclosure. Like classic certificates, attribute based credentials
contain a set of attributes, properties and values e.g., the user’s name,
gender and date of birth. A user can choose to only reveal a subset of these
attributes, while keeping the remaining attributes hidden. This helps the
user in maintaining his privacy.

109
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• Unlinkablity. A user can use the credential several times but these actions
cannot be linked.

• Accountability. In the case of abuse, a user’s identity can be revealed.

Attribute-based credential systems can be divided into two major classes. The
classification is based on the approach taken to prevent linking of interactions
between a user and an issuer on one hand and between a user and relying parties
on the other hand. To break the link between the user’s credential and the issuer,
the first class [Bra00] uses blind signatures [Cha85]. A blind signature means that
the user’s credential is signed without the issuer learning the resulting signature
value. This way, when showing a credential, it cannot be used to link the user to
the issuance phase, even when the relying party and the issuer share information.
However, to make multiple transactions unlinkable, a user should use a different
credential for every anonymous transaction. The second class, often referred to
as Camenisch-Lysyanskaya (CL) based credentials [CL01, CL03], relies on zero-
knowledge proofs to break the link between the issuance phase of the credential
and its use. When a user wants to authenticate, he proves to the relying party that
he possesses a genuine credential without revealing more than the fact that the
credential is signed by a trusted issuer and that the user knows the corresponding
private key (meaning he is the owner of the credential). The technique used is a
so-called zero-knowledge proof-of-knowledge (ZKPK).

A practical implementation of the first class is U-Prove by Microsoft [35], while
IBM has adopted the second class with the Identity Mixer [17]. Because of
the computational complexity of the latter, it is challenging to implement the
Identity Mixer in an embedded context. Testing the boundaries and offering
solutions for embedded implementations of the Identity Mixer, will be a major
topic in this thesis. We need to note that attribute-based credentials protocols
should use anonymous communication [GRS96, RR98, DMS04, BFK01, KZG07]
in order to fully provide their the privacy features. These measures could include
e.g., hiding or randomizing the hardware and IP addresses. We provide a practical
example to clarify the problem. Consider an e-voting application, where subscribers
can anonymously participate in a weekly online poll regarding social and political
themes. Even if attribute-based credentials are used, different votes of the same
user can be linked, using his NIC hardware address, provided that he votes from
the same computer. His IP address can be used to pin down a geographic location,
or even find other personal information related to this address. In the case of NFC
P2P, this unlinkability could be obtained by using a random NFC ID for each
communication session. Setting a custom ID is supported by most NFC chips.

We start this chapter with an overview of some related work (Section 8.2). In
Section 8.3, the key components and building blocks required for Identity Mixer
attribute-based credentials system are explained. We will not go into detail and
merely give the necessary concepts to understand the practical implementation.
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Because the case study (Chapter 9) will focus on credential verification in an
embedded context, we will detail the cryptographic operations needed for this in
Section 8.4.

8.2 Related Work

Compared with traditional authentication technologies, attribute-based credentials
based on CL signatures, require significantly more computation power for both
proving and verifying. The main reason for this is the substantial amount of
exponentiations during zero-knowledge proofs. If credentials are stored on mobile
devices (e.g., mobile tokens, smart cards, ...) and the proving or verification is done
in an embedded context (e.g., a vending machine), the performance might become
a bottleneck. Several implementations of attribute-based credentials systems with
such devices have been presented in the literature.

In 2009, Bichsel et al. [BCGS09] made a complete Java Card implementation
of attribute-based credentials. In this case, the Java Card had to compute the
proof, which took about 7.4 s for a 1280-bit modulus, and up to 16.5 s for a
1984-bit modulus.1 To increase efficiency, both [BCD+12] and [SGPV09] present
an approach where the computation of the proof is divided between a partially
trusted host with more processing power (e.g., a smartphone) and a tamperproof
smartcard. The drawback of this approach is that partial trust on the host is
required. A practical implementation of this approach, targeted for ticketing
applications over NFC has been demonstrated by Derler et al. [DPWD12]. They
use a Javacard secure element inside the mobile phone to compute the proof. They
show that credential verification takes significantly longer when less attributes
are being revealed. For example, when revealing one attribute, the verification
takes 7.7 s and 16.7 s for a 768-bit modulus and a 1984-bit modulus respectively.
However, when revealing four attributes, the verification time is reduced to 2 s
and 4.5 s respectively. Unfortunately, all the previous results do not differentiate
between the time required for communication and the time required for arithmetic.

One of the most recent implementations of the CL-based prover protocol on smart
card is the one of Vullers and Alpár [VA13], that uses the MULTOS card [FM05]
which has better support for modular arithmetic. For a simple credential proof,

1The length of the modulus determines to a large extent the security level and computational
effort of the algorithm. Based on Lenstra and Verheul’s work [LV00] (updated in 2004 [Len04])
a modulus length of 1984 bits can provide security until the year 2038. The ECRYPT II
recommendations [Eur12] describe the security level as a Legacy standard level. In contrast, a
modulus of 768 bits is not secure as it only provided security until 1999, allowing for attacks
in “real-time” by individuals according to ECRYPT. The meaning (and use) of the modulus is
explained later in Section 8.3.



112 ATTRIBUTE-BASED CREDENTIALS

the computation takes about 1.1 s for a 1024-bit modulus. This result shows that
CL-based credentials on smart cards may become practical in the near future.

The protocols themselves are also still evolving, mainly when it comes to the
attributes. In 2008, Camenisch and Groß [CG08] extended the classic CL scheme
in such a way that selective disclosure became more efficient. Another interesting
concept in the area of attribute-based credentials is the use of encrypted attributes,
introduced by Guajardo et al. [GMS10]. Encrypted credentials allow for the
possibility that none of the involved parties, including the user, learns the values
of the attributes.

Aside from the CL-based implementations, there are also prototypes using
U-Prove [35] attribute-based credentials, which take about 5 s for showing a
credential with two attributes and a 1280-bit modulus [TJ09]. A MULTOS card
implementation of the same protocol by Mostowski and Vullers [MV12], resulted
in computation times of about 0.5 s. This is faster than CL-based credentials
but, for smart cards and memory-limited devices in general, the U-Prove system
might become impractical. When it comes to unlinkability, a new credential has to
be issued for each transaction, which may quickly exhaust the EEPROM of the
card [BCGS09].

8.3 Concepts of CL-Based Credentials

In this section we will give an overview of the concepts used in CL-based credentials
and more specifically in how they are used in the Identity Mixer specification.
Because this thesis will mainly focus on credential verification, we will only discuss
the components required to understand that mechanism. Because they are out of
the scope of this text, we will not explain concepts such as anonymity or credential
revocation, credential updates, or range proofs.

8.3.1 Mathematical Concepts

Groups. A set of elements together with an operation working on any two elements
of that set, resulting in an element from that set, is called a group. All groups
satisfy four conditions (or group axioms). In case of a group G with operation ∗
those conditions are stated as:

Closure: ∀ a, b ∈ G : a ∗ b ∈ G
Associativity: ∀ a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c)
Identity: ∃ e ∈ G : a ∈ G : a ∗ e = e ∗ a = a (e is the identity element)
Invertablity: ∀ a ∈ G : ∃ a−1 ∈ G : a ∗ a−1 = e
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A group can have several additional properties. If the operation ∗ is also
commutative (i.e., ∀ a, b ∈ G : a ∗ b = b ∗ a) the group is called abelian. Groups can
have a finite set of elements e.g., the multiplicative group of integers modulo n.
The size |G| of a finite group is called the order.

A cyclic group means that there is an element g ∈ G such that for each y ∈ G
there exists an integer x so that y = gx. Here, g is called a generator of G.

Subgroups. For g ∈ G, the set of all powers of g is a cyclic subgroup of G. This
subgroup, denoted as 〈g〉, is called the subgroup generated by g.

Quadratic residue. Let Z∗n be the multiplicative group of integers modulo n, then
a ∈ Z∗n is called a quadratic residue if there is an x ∈ Z∗n such that x2 ≡ a mod n.
Then Qn denotes the set of all quadratic residues modulo n.

The Euler totient function. The number of integers in the interval [1, n] (for
n ≥ 1) which are relatively prime to n, is denoted as the Euler totient function,
represented as φ(n). When p is a prime number, then φ(p) = p − 1. When the
greatest common divisor of two integers p and q is 1, then φ(pq) = φ(p)φ(q).

RSA modulus. An RSA modulus n is generated by choosing two large random
(and distinct) primes p and q, each roughly the same size. Then n = pq.

For the RSA algorithm, a random integer e ∈ ]1, φ(n)[ is selected, such that the
greatest common divisor of e and φ(n) is 1. This is the public exponent and forms,
together with n, the public key. The private exponent d ∈ ]1, φ(n)[ is computed
from ed ≡ 1 mod φ(n).

Notation. To make formulation of the protocol easier, we introduce some
notations:

• A signed (binary) value x with a bit length ` is denoted as x ∈ ±{0, 1}`.

• The symbol ‖ means a concatenation of two values.

• The function H() represents a hash function. Throughout this work we will
always use SHA-256 [25], unless specified otherwise.

Assumptions. An attacker with unlimited processing power can crack almost any
security algorithm. Therefor we make the assumption that the attacker is also
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restricted to the current state of the technology. We recall the assumptions that
are used by the protocols presented in this chapter.

1. The Discrete Logarithm problem [DH76, McC90] requires that, for g ∈ G
(multiplicative group) and y ∈ 〈g〉 it is hard to find an integer x so that
gx = y.

2. The RSA assumption [RSA78] requires that, given an RSA modulus n, a
prime e and a random element y ∈ Z∗n, it is hard to compute x ∈ Z∗n so that
xe ≡ y mod n.

3. The Strong RSA assumption [FO97] requires that, for an RSA modulus n
and a random element y ∈ Z∗n, it is hard to compute x ∈ Z∗n and e ∈ Z > 1
so that xe ≡ y mod n. The CL-signature scheme (explained later) is secure
against adaptive chosen message attacks [GMR88] under the strong RSA
assumption [CL03].

8.3.2 Cryptographic Concepts

Roles. The Identity Mixer specification defines several roles in an attribute-
based credentials system. From a protocol perspective we can distinguish issuers
(I), recipients (or owners), provers (P) and verifiers (V). The terms issuing party
(IP), user (U) and relying party (RP) are mostly used from an application point of
view. During the credential issuance phase an issuing party and a user collaborate
to generate a credential. The user will act as prover to prove to a relying party
that he is the owner of the credential. In this case the relying party acts as verifier
of the proof.

Credentials and attributes. The attributes are a set of values associated with
the owner of the credential. This can include features such as name, age, gender,
nationality, etc. The attributes are all transformed into a numeric value that can
be used in the cryptographic constructions. The attributes are bound to the owner
by means of the owner’s master secret in the issuance phase. The cryptographic
information for this binding, together with the set of attributes form the credential.
It is assumed that binding the attributes to the user’s master secret will prevent
sharing of the credentials as this would result in the user revealing his master secret.
When the user wants to use his credential to access a certain service, he generates
a proof of possession (of the credential). During this proof, he can decide (be
asked) to reveal certain attributes (e.g., age and nationality). The set of revealed
attributes is denoted as Ar, while the set of hidden attributes is Ah (Ar is also
used). Note that the master secret is always contained in Ah.
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The CL Signature Scheme. When an issuing party issues a credential to a user,
he generates a signature on the user’s set of attributes. This allows the relying party
to (1) verify that the credential has not been altered and (2) that the credential
has been issued by the issuer. During the issuance, the user verifies the correctness
of the signature. The CL-signature scheme, between issuer I and verifier V (the
owner of the credential), for blocks of L messages (the attributes) as implemented
in [17] and based on [CL03], goes as follows:

I : (pkSig, skSig)← setupCL(ln)
Choose a special RSA modulus n = pq of length ln with p = 2p′ + 1, q = 2q′ + 1
where p, q, p′ and q′ are prime. Then choose, uniformly at random S ∈ Qn and
Z,R0, ..., RL−1 ∈ 〈S〉. Then the public key pkSig = (n,R0, . . . , RL−1, S, Z) and
secret key skSig = (p).

I : (σ)← signCL(m0, . . . ,mL−1, skSig)
Let lm be a parameter defining the message space as mi ∈ ±{0, 1}lm for 0 <
i < L. Choose a random prime e of length le > lm + 2 and a random number
v ∈R ±{0, 1}ln+lm+lr , with lr a security parameter, and compute the signature
σ = (A, e, v) on (m0, ...,mL−1) such that Ae ≡ Z

R
m0
0 ...R

mL−1
L

Sv
mod n. The

master secret will always be m0.
V : (Bool)← verify(σ,m0, . . . ,mL−1, pkSig)

Parse σ as a tuple (A, e, v) and return true if Z ≡ AeRm0
0 . . . R

mL−1
L−1 Sv mod n,

2le−1 < e < 2le and mi ∈ ±{0, 1}lm for 0 < i ≤ L holds, else return false.

Commitments. A requirement for ZKPKs is a commitment scheme [DF02, FO97,
Ped92], with which a user can commit to a value. A commitment can be seen
as a digital analogue of a lock box having two important properties: i.e., hiding
and binding. When a user commits to a value, the value is stored in the lock box,
which is locked afterwards and given to a receiver. The value is hidden to the
receiver (hiding) and the owner can not alter the value (binding). To state this
more formally, let C be the commitment of a value v: C = Comm(v). Then hiding
means that the recipient is not able to find v from C, while binding means that
the owner cannot convince the recipient that C = Comm(v′) when v 6= v′.

Both Pedersen commitments [Ped92] and the schemes proposed by Damg̊ard et
al. [DF02] and Fujisaki and Okamota [FO97] have the same construction. They
only differ in the mathematical properties of the group parameters x, y, the modulus
n, and the restrictions on r:

C = xvyr mod n . (8.1)

An essential feature is that varying r results in different values of C, hence
contributing to the anonymity and unlinkability of the committer.
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Figure 8.1: Representation of an interactive Σ-protocol.

Proofs-of-Knowledge. In short, we can state that a proof-of-knowledge is a
process in which a prover interacts with a verifier, where the prover convinces the
verifier that he knows a certain value (i.e., the statement). As the verifier learns
nothing more than the fact that the statement is true, the term zero-knowledge
proof-of-knowledge is used. Proofs-of-knowledge should carry certain properties:

• Soundness: A verifier will always accept the statement of an honest prover.

• Completeness: A cheating prover cannot convince a verifier that a statement
is true.

• Zero-knowledgeness (extra property of ZKPKs): A (cheating) verifier
learns nothing more than the truth of the statement.

Typically, the interactions between prover and verifier follow the same pattern,
often referred to as Σ-protocols (Fig. 8.1). The protocol starts with the prover
committing to a “randomized version” of the values he wants to prove knowledge
of. These so-called t-values are sent to the verifier, who returns a challenge. This
challenge is used by the prover to generate a response (the s-values). The verifier
can use the response to complete the check of the proof and act accordingly.

As an example we recall the proof-of-knowledge of a discrete logarithm. Let y = gx

mod n, x being the value we want to prove knowledge of and g, n public values.
This proof-of-knowledge assumes that the discrete logarithm problem is hard (see
p. 114).

1. The prover chooses a random value rx and commits to this value: t = grx

mod n. Then t is sent to the verifier.

2. The verifier chooses a random challenge c and sends that to the prover.

3. The prover computes the s-value sx = rx − xc and sends this as a response
the to verifier.

4. The verifier can check if t ≡ ycgsx mod n.
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Figure 8.2: Representation of an non-interactive proof-of-knowledge.

We can see that if rx has a sufficient length, sx will in turn be close-to-random,
hence hiding x to the verifier (and potential eavesdroppers). We will not delve
deeper into the requirements, properties and lengths of all parameters used in the
protocol. A table of lengths and constraints can be found in the Identity Mixer
specification [17]. We use these values in all practical cases.

For more detailed information about different kinds of proofs, we refer to the
literature. The proof shown above is described for groups of unknown order
in [FO97, BCM05] and for known order in [Sch91]. How to combine both types of
proofs is detailed in [CKY09]. Different variations also exist in the construction of
the challenge. The challenge can be constructed by hashing the t-values, together
with some common values and public information [FS87]. In that case the proof is
called non-interactive i.e., it requires one transaction less (see Fig. 8.2). When the
hash includes a message this is typically called a signature proof-of-knowledge.

More complex variations also exist: proving equality of two public keys with
respect to different bases [CP93, CS97]; proving that a value lies in a certain
interval [BCDvdG88, CFT98, Bou00]; proving of logical relations [CG08]; ...

8.4 Verification of CL-Based Credentials Proofs

Attribute-based credential authentication based on CL signatures (e.g., as in the
Identity Mixer library), mainly consists of a signature proof-of-knowledge of a
CL signature σ = (A, e, v) on a nonce n1. We will recall the protocol for proving
knowledge of a valid credential and selective disclosure as implemented in the
Identity Mixer specification [17]. However, more advanced protocols such as
interval proofs and enumeration can also be found in the specification.

The specification also defines the lengths of the parameters used in the protocol.
Here `e, `v, `m and `H are the bit length of e, v, the attributes, and the challenge
respectively. The security parameter that governs the statistical zero-knowledgeness
is `φ and `e′ is the size of the interval where the e values are taken from. For the
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exact lengths we refer the reader to the specification [17]. The sets Ar and Ah are
the sets of revealed, respectively hidden attributes and m0 is called the master
secret. As mentioned before, m0 is never revealed.

The signature proof-of-knowledge can be divided into two protocols i.e., the
construction of the proof (or building of the proof) and the verification. Every
practical implementation we present in this text is implemented according to the
following description.

Construction of the proof. After the prover receives the nonce n1 from the
verifier, he builds the proof as follows:

1. Randomize CL Signature σ = (A, e, v):
rA ∈R {0, 1}`n+`φ

A′ = ASrA mod n

v′ = v − erA

e′ = e− 2`e−1 .

2. Compute 1st round:
ẽ ∈R ±{0, 1}`e′+`φ+`H

ṽ′ ∈R ±{0, 1}`v+`φ+`H

m̃i ∈R {0, 1}`m+`φ+`H ∀i ∈ Ah

Z̃ = (A′)ẽ
(∏
i∈Ah

Rm̃ii

)
(Sṽ

′
) mod n .

3. Compute challenge:
c = H(context ‖ A′ ‖ Z̃ ‖ n1) .

4. Compute 2nd round:
ê = ẽ+ ce′

v̂′ = ṽ′ + cv′

m̂i = m̃i + cmi ∀i ∈ Ah .

Then the proof is π = (c, A′, ê, v̂′, m̂i,mj ∀i ∈ Ah and ∀j ∈ Ar). This is sent to
the verifier.
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Verification of the proof. When the verifier receives π, he can verify the proof
as follows:

1. Compute:

Ẑ =
(

Z∏
j∈Ar R

mj
j (A′)2le−1

)−c
(A′)ê

(∏
i∈Ah

Rm̂ii

)
(Sv̂

′
) mod n .

(8.2)

2. Check whether:

m̂i

?
∈ {0, 1}`m+`φ+`H+1 ∀i ∈ Ah

ê
?
∈ ±{0, 1}`e′+`φ+`H+1

c
?= H(context ‖ A′ ‖ Ẑ ‖ n1) .

The proof is rejected if any of these checks fail.

We can see that Eqn. (8.2) requires at least four modular exponentiations (for a
credential with only a master secret). It is clear that this requires a great deal of
computational effort, especially on an embedded device.

8.5 Conclusions

In today’s (mobile) embedded environments, attribute-based credentials systems
can offer a more privacy-friendly solution in comparison to classic certificate
technology when it comes to accessing electronic services. The downside is the
increased computational effort, mainly the number of modular exponentiations
required for the zero-knowledge proofs used with attribute-based credentials.

Several solutions and approaches have been proposed to decrease the run times
of a credential verification. Unfortunately, all these solutions aim to optimize
the performance on the side of the prover. However, there is a specific field
of applications where verification is performed on embedded (computationally
less powerful) devices. We feel that embedded support for faster – and possibly
simultaneous – calculation of modular exponentiations may reduce the response
times at the verifier, and consequently, increase the overall performance of an
attribute based authentication procedure.

A great deal of this text will hence focus on the design of a hardware accelerator for
modular exponentiations that is able to meet the requirements for attribute-based
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credential applications. In a case study (Chapter 9) we will use this hardware
accelerator with our embedded test platform (Chapter 2) and evaluate the effect
on the run times of credential verification in an embedded context.



Chapter 9

Attribute-Based Credential
Authentication with Embedded
Devices

9.1 Introduction

With the aid of our platform (Chapter 2) we can now analyze attribute-based
credential verification on an embedded terminal. More particularly, we will
investigate an ABC application over NFC between a smartphone (acting as a prover)
and an embedded terminal (the verifier). We are able to measure the run times of
all aspects of the protocol such as communication and computation, for different
modulus lengths and attributes, and in different scenarios i.e., computations in
software, single-base exponentiation hardware offload, and dual-base simultaneous
exponentiation offload. For this purpose the IP core we developed and the
accompanying software API, will be used (Chapter 4). By looking at the relative
shares of all parts of the protocol, we can show what can be gained by using some
form of hardware offload for verification on an embedded platform. Because this
platform implements a standard embedded design setup, conclusions drawn here
can be generalized to non-FPGA-based systems.

We will start by explaining the details of the implementation we have used for the
tests (Section 9.2). Then we will look at what tests we have performed and what
were the results (Section 9.3). We will evaluate these results (Section 9.4) and
state some conclusions (Section 9.5)

121
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Publications. The results of this case study have been described in a paper,
presented at the 14th Joint IFIP TC6 and TC11 Conference on Communications
and Multimedia Security in Magdeburg, Germany [OLN+13].

9.2 Test Setup and Implementation Detail

9.2.1 Platform Details

We recall some features of the test platform (Chapter 2) as well as the specifications
of the smartphone, that are important for these tests.

• Embedded processor. The MicroBlaze 32-bit RISC processor runs embedded
Linux. For the computation of modular inverses or (large) integer
multiplications, we use the GMP arithmetic library [38]. All peripherals
are connected to the processor via the PLB bus. The processor and bus
operate at 100 MHz.

• Cryptographic accelerators. For the hashing we use the SHA-256 IP core
present in the platform. For the modular arithmetic i.e., multiplication,
single-base and dual-base simultaneous exponentiation, we use the IP core
design described in Chapter 4. The core supports modulus lengths of 512,
1024 and 1536 bits and has 16-bit stages. Run times are given in Chapter 5 for
multiplication and Chapter 6 for exponentiation. Both hardware accelerators
run at 100 MHz.

• NFC Communication. An NXP PN532 development kit implements the
RF front end for the NFC communication and is able to emulate different
types of NFC devices such as, Mifare, ISO14443-A/B, DEP, Felica, etc. We
configure the PN532 as an NFC initiator scanning for ISO14443-A tags. For
this purpose we use libnfc (described in Sect. 7.5). Note that we do not use
NFC P2P communication in this case study.

• Smartphone. The smartphone that computes the proof and sends it over NFC
to the embedded terminal, is a Google Nexus S running the custom-built
CyanogenMod 9.1. The phone operates in card emulation mode with a raw
NFC data rate of 106 kbit/s.
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9.2.2 Implementation Details

We recall Eqn. (8.2), which is to verify a CL-based credential proof.

Ẑ =
(

Z∏
j∈Ar R

mj
j (A′)2le−1

)−c
(A′)ê

(∏
i∈Ah

Rm̂ii

)
(Sv̂

′
) mod n .

To apply the hardware accelerator (in simultaneous mode), this equation is
rearranged and split into a modular product of dual-base exponentiations as
presented in Eqn. (9.1). The A′ exponent

(
c· 2le−1 + ê

)
as well as the modular

inverse Z−1 are computed in software. All multiplications are computed in hardware.
Note that in case of a credential with only the master secret m0, only (a) and (b)
need to be computed.

Ẑ =
(
Z−1)c ·Rm̂0

0︸ ︷︷ ︸
(a)

· (A′)(c· 2le−1+ê) ·Sv̂
′︸ ︷︷ ︸

(b)

·

∏
j∈Ar

R
cmj
j ·

∏
i∈Ah

Rm̂ii︸ ︷︷ ︸
attribute-dependent

mod n . (9.1)

In Chapter 6 we have shown that the grouping of the exponents is important when
performing simultaneous exponentiations. For a minimal run time it is important
that the length of the exponents differs as little as possible. That is why the
verification step is rearranged and computed as shown in Eqn. (9.1). For the
attribute-based part, the revealed and hidden attributes are grouped in separate
dual-base exponentiations where possible.

In Table 9.1(b) we have listed the lengths of the parameters used on the embedded
platform. These are based on the lengths proposed in the Identity Mixer
specification [17] (Table 9.1(a)). Due to the restriction that the exponent lengths
need to be a multiple of 32 (see IP core design Chapter 4), some lengths have been
increased to meet that requirement. To give an idea about the amount of data
that is sent over NFC we have also added the lengths of some proofs. These do not
have to be a multiple of 32. Also note that the length of the attributes has been
fixed to 256 bits for a worst-case scenario.
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Table 9.1: Lengths of system parameters used on the embedded platform [bits] as
defined by the Identity Mixer specification. The lengths that have been increased
to a multiple of 32 are indicated with a (*).

(a) System parameter specifications.

name `n = 1024 `n = 1536

`φ
* 96 96

`m 256 256
`v 2048 2220
`e′ 120 120
`H 256 256
`e 567 597

(b) Parameters used on the embedded platform.

parameter defined by `n = 1024 `n = 1536

c `H 256 256
ê `e′ + `φ + `H 472 472
v̂′ `v + `φ + `H 2400 2592*

m̂0, m̂i `m + `φ + `H 608 608
mj `m 256 256

A′ `n 1024 1536(
c· 2le−1 + ê

)
864 864

π (only m0) `n + `e′ + 3`φ + 4`H + `v + `m 4760 5464*

π (all hidden) ...+ 6(`m + `φ + `H) 8408 9112
π (all revealed) ...+ 6`m 6296 7000

9.3 Tests and Results

9.3.1 Results in the Literature

As pointed out in Chapter 8, only little timing results on the verification of attribute-
based credentials are available in the literature and they are often hard to compare.
Nevertheless, Table 9.2 presents a comparison of our embedded terminal with
comparable implementations available in the literature. Because of the different
architectures, processor speeds, and implementations, it is hard to make a precise
comparison. Still, the figures clearly show the value of our hardware accelerated
solution with respect to general purpose devices. Note that the measurements by
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Table 9.2: Timing results (in ms) for the verification of attribute-based credentials,
with only a master secret, compared to prior work.

n Bichsel [BCD+12] Dietrich [Die10](DAA) This setup
Intel Core 2-Duo Intel Core 2-Duo P910 Nokia 6131 Virtex 6

P9600 T7500 ARM9 ARM9 MicroBlaze

2.53 GHz 2.2 GHz 156 MHz 229 MHz 100 MHz

1024 78 40 8240 16960 124
1536 187 - - - 215
2048 375 110 22100 64270 -

Dietrich [Die10] are performed based on the DAA verification protocol, which is
closely related to the CL credential verification used in this paper.

9.3.2 High-Level Description of the Tests

As pointed out before, we are interested in the run time of the credential verification
protocol on an embedded terminal. To that end, different cases have been evaluated
on our test platform. With these test cases, we want to address several questions:

• What is the effect of hardware acceleration on the run time? We will compare
an embedded software implementation –using GMP on the MicroBlaze
CPU– with an implementation using hardware offload, both using single-base
exponentiations and dual-base simultaneous exponentiations.

• What is the effect of the number of attributes in the credentials on the
verification run time?

• What is the effect of the number of hidden/revealed attributes? (The master
secret (m0) is always hidden.)

• To compare the verification run time with the total protocol run time, we
will also take into account the communication overhead.

9.3.3 Verification Performance

As a first test, the verification of a credential with a single hidden attribute
(i.e., the master secret m0) is evaluated. Table 9.3 presents the run time of an
embedded software implementation (SW), compared with an implementation using
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Table 9.3: Comparison of the average timing results for the credential proof
verification on an embedded platform, where all computations are performed in
software (SW), and where a hardware accelerator is used for single-base 1-exp and
dual-base 2-exp exponentiations. The credential contains a single hidden attribute
(m0, the master secret).

NFC Com. Verification Hash and check Total
n case [ms] [%] [ms] [%] [ms] [%] [ms]

SW 748 11.6 5696 88 .3 7 0.1 6451
1024 1-exp 733 81.5 159 17.7 7 0.8 899

2-exp 721 84.6 124 14.6 7 0.8 852

SW 765 5.2 13846 94.7 9 0.1 14620
1536 1-exp 782 75.8 240 23.3 9 0.9 1031

2-exp 768 79.3 191 19.8 9 0.9 968

the hardware accelerator; both with single-base (1-exp) and dual-base simultaneous
exponentiations (2-exp). The table also shows the NFC communication time (i.e.,
the time required to transmit the proof π) as part of the overall protocol run time.

As expected, the verification with embedded software takes significantly longer
than the hardware-accelerated implementations. For a modulus of 1536 bits, it
takes about 14 seconds or 95% of the total run time. The hardware accelerator
clearly improves the performance of the verification and hence the overall run time.
Moreover, the main share of the run time shifts towards the communication over
NFC. The table also shows that the communication speed is not constant for the
three implementations (for the same modulus length) and this even though the
results are averages. We believe that this is mainly due to overhead introduced in
the operating system; keep in mind that Linux is not a real-time operating system.

The tests also illustrate that a different size of the modulus has a much greater
effect (relatively) on the verification time than on the communication time. This is
the case for all three implementations. As could be expected, the time for hashing
and making the necessary checks is negligible with respect to the time required for
running the verification protocol.

9.3.4 Influence of the Number of Attributes

As a second case, we have examined the effect of the number of attributes in the
credential, where all attributes remain hidden. Fig. 9.1 shows the run time for
the communication (a) and the verification (b) with respect to the number of
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attributes in the credential. Fig. 9.1(c) also presents the speedup of the run time
when using dual-base exponentiations instead of single-base exponentiations, as
defined in Eqn. (6.8).

Increasing the number of attributes increases both the time required for
communication and verification. This is obvious, as the proof π will also be larger.
If a single-base exponentiation accelerator is used, the verification time increases
linearly with the number of attributes. However, if dual-base exponentiations
are used, the verification time increases stepwise. This is because the time for
computing a dual-base exponentiation is comparable to a single-base exponentiation.
Hence, based on Eqn. 9.1, when verifying a credential with an odd number of
attributes (master secret included), our dual-base exponentiations can be used to
their full extent. In contrast, in the case of an even number of attributes, one extra
single-base exponentiation is required. In other words, increasing the number of
attributes from an even number to an odd number results in replacing a single-base
exponentiation by a dual-base exponentiation, which requires only a small overhead.
Increasing the number of attributes from an odd number to an even number results
in having an additional single-base exponentiation.

As can be seen, using dual-base exponentiations instead of single-base exponen-
tiations results in a verification speedup when verifying more attributes (e.g., a
speedup of about 1.4 for a credential with 7 attributes). As a previous example
(Chapter 6, outline A realistic example) we calculated the verification speedup to be
1.28 (in the case where we have only a master secret). As we can see in Fig. 9.1(c)
this is indeed the case (not exactly, but close enough). The speedup is roughly the
same for both 1024-bit and 1536-bit moduli. This is to be expected because we have
seen that the time to compute a multiplication (defined by the modulus length) has
no influence on the speedup. However, the fact that in case of a 1536-bit modulus
(1) the length of v̂′ is longer and (2) computing a modular inverse takes longer,
can explain the difference. The stepped behavior of the dual-base exponentiation
time combined with the linear increase for single-base exponentiations, results in a
saw-tooth behavior for the speedup.

9.3.5 Influence of the Number of Revealed Attributes

As a last test, we have looked at the influence of the number of revealed attributes
on the run time. The number of revealed attributes varies from 0 to 6 (i.e., the
master secret is never revealed). The communication time and verification run time
is set out as well as the verification speedup when using dual-base exponentiations
(Fig. 9.2).

Both the communication time and verification time decrease with an increasing
number of revealed attributes. This is because the exponent mj of a revealed
attribute is shorter than the exponent m̂i of a hidden attribute. Again, there is a
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Figure 9.1: Influence of the number of attributes on the run time. All attributes
remain hidden.
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linear relationship when single exponentiations are used and a stepwise behavior
for dual-base exponentiations. Note that for our tests the size of the attribute
values was 256 bits, while in reality this will often be much smaller. In fact, an
attribute representing, for instance, the user’s gender, could require only a single
bit. Hence, the decrease in time when releasing more attributes would become
even more significant.

9.4 Evaluation

Run time. It is clear that for embedded applications the use of a hardware
accelerator for credential verification greatly increases the feasibility in terms of
run time. Compared to a powerful back end as is used in [BCD+12, Die10], the
run times in this embedded context are of the same order of magnitude. Thus,
applications such as physical access control (e.g., opening a locker) or stand-alone
vending machines that support privacy, anonymity and/or unlinkability become
feasible.

The efficiency of the simultaneous hardware accelerator is maximal in the case of
exponents of the same length. However, in this case, the difference in length of the
exponents in dual-base exponentiation (b) of Eqn. (9.1), is significant (cf. Table 9.1).
A solution is to split exponentiation Sv̂

′ into a dual-base exponentiation Sv̂1
′

1 .Sv̂2
′

2
with smaller exponents (see [BCC04, BCGS09] for more details). This, however,
may require a slight modification of the prover protocol.

Communication. The scenario presented here, uses NFC for communication. It
is clear that the communication results in a great deal of overhead, at least 70% for
all of the examined cases (see Fig. 9.3). This implies that the overall speedup of
the protocol run time by using dual-base simultaneous exponentiations is less than
the verification speedup. The figures in this case study where obtained using NFC
@ 106 kbit/s. Clearly, faster communication (e.g., NFC @ 424 kbit/s or Bluetooth
v2.1 @ 3 Mbit/s) makes the use of a simultaneous exponentiation accelerator more
interesting. We have to note that the communication has been kept to a bare
minimum i.e., only the proof is sent. We assume the issuer public key is known by
the platform.

Keep in mind that, although NFC P2P operates at 424 kbit/s, it also introduces two
extra layers of communication overhead. Also when using communication handover
to another technology like e.g., Bluetooth or WiFi, the connection handover time
needs to be taken into account. In Chapter 10 we examine communication handover
in the case of WiFi.



130 ATTRIBUTE-BASED CREDENTIAL AUTHENTICATION WITH EMBEDDED DEVICES

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

0 1 2 3 4 5 6

co
m

m
un

ic
at

io
n 

tim
e 

[m
s]

# revealed attributes

1-exp 1024
1-exp 1536

2-exp 1024
2-exp 1536

(a) Communication

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 1 2 3 4 5 6

ve
rif

ic
at

io
n 

tim
e 

[m
s]

# revealed attributes

1-exp 1024
1-exp 1536

2-exp 1024
2-exp 1536

(b) Verification

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

0 1 2 3 4 5 6

sp
ee

du
p

# revealed attributes

Speedup 1024 Speedup 1536

(c) Verification speedup

Figure 9.2: Influence of the number of revealed attributes on the run time. The
credential contains 7 attributes (master secret included).
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Figure 9.3: The relative share of the NFC communication in our test setup for
different numbers of attributes.

Applicability. In this scenario, the complete embedded terminal has been
implemented on an FPGA. For several applications where form factor or energy
consumption are key requirements, this is undesirable. However, the accelerator
could be implemented on an ASIC, which is better suited for commercial
applications. The advantages demonstrated with our prototype implementation
remain valid in these settings as well.

The current hardware accelerator is not tamper-proof and resistant against side-
channel attacks. For applications that only require credential verification, this
is not problematic. If, however, disclosed information must not be learned by
other parties than the verifier, extra measures should be taken. For instance, to
prevent timing analysis (which may reveal for instance if more or less attributes
are disclosed), exponentiations should be performed with a constant timing; more
specifically with the worst case timing: (2 ·w0 · tmult). Obviously this entails
a decrease in performance. On the other hand, this timing is the same for both
single-base and l-base exponentiations. Hence, multi-base exponentiations become
even more attractive in this setup.

In this case study, we only examined the speedup of the verification of attribute-
based credential proofs on embedded platforms. Note that for a complete
application, certificate revocation should also be supported.

9.5 Conclusions

In this chapter, we have presented a case study in which we use our embedded test
platform for an ABC application i.e., a smartphone acting as a prover sends the
proof over NFC to an embedded verifier (our test platform). In particular we have
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used a hardware accelerator for modular exponentiations, in order to reduce the
run time of applications that require attribute-based credential verification in an
embedded context.

A first remarkable fact is that the communication is responsible for the largest
share of the overall run time. This raises questions about the applicability of NFC
as a medium for this type of applications. However, this requires more testing.

A second conclusion is that using hardware offload greatly increases the feasibility
in terms of run time of ABC applications in an embedded context e.g., access
control, vending machines, etc. In addition, the use of dual-base (simultaneous)
exponentiation hardware may further increase the overall performance. This is
especially the case when the overhead caused by communication can be decreased
and/or a large number of attributes are included in the credential.

A logical target for future work, is the communication speed of NFC. The efficiency
of communication handover (e.g., from NFC to Bluetooth) could be studied, as well
as the performance of NFC P2P (operating at 424 kbit/s). These communication
issues are partly tackled in Chapter 10 where we present our case study on
communication handover to WiFi.

Another path is the support for more complex credential proofs such as range
proofs and credential revocation. Future work could be directed to find out the
impact of these additional features on the performance of the verification and
the requirements of the embedded platform (e.g., connectivity with a revocation
server). Also the effect of the length of the attributes (now fixed at 256 bits) on
the verification should be further investigated.

To conclude we state the interesting fact that, by using the libraries installed
on the platform (like GMP and libnfc) and by using the developed IP core and
accompanying API, the development of this test case application only took one
day.



Chapter 10

NFC P2P versus NFC
handover to WiFi

10.1 Introduction

As we have seen in the previous case study (Chapter 9), sending the proof required
for CL-based credential verification over NFC takes up a considerable amount of
time when the phone is operating in card emulation mode.1 For example, sending
the proof for a credential containing only a single attribute takes between 700 and
800 milliseconds. For a credential with 7 attributes of which one is revealed, it
takes about 1300 milliseconds.

For NFC P2P communication, a raw data rate of 424 kbit/s is used. This is 4 times
as fast as in card emulation mode. On the other hand two extra layers (LLCP
and SNEP) each introduce a certain amount of overhead, which in turn reduces
the effective data rate. Unfortunately, only the raw data rates are specified (in
the specification as well as in the literature). However, when considering several
communication options, it is imperative that designers know the effective data
rates. We will therefore investigate which data rates can be achieved by using NFC
P2P communication and relate the newly obtained figures to an ABC scenario.

We will compare the effective data rate for NFC P2P communication with a case
where the NFC connection is used to initiate a communication handover to a faster
wireless protocol. All tests have been performed with our embedded test platform
using the libraries for NFC P2P communication.

1In that case the raw data rate of NFC is 106 kbit/s.
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10.2 NFC P2P

10.2.1 Test Setup

To be able to measure the data rate of an NFC P2P connection between an
embedded platform and a mobile device we use our embedded test platform with
the NFC P2P stack on one end. An Android smartphone with a custom NFC
service acts as the other end of the connection. The custom service is implemented
using JNI (see Section 7.4.3). As we explained in Chapter 7 this is necessary
because current Android builds do not implement the full NFC P2P stack.

We also made some simplifications to the communication itself. The first one is that
we exchange data over a connection that has already been established. This way we
eliminate the connection setup time in our data rate measurements.2 The second
simplification is that only short NDEF records are being used. The main reason
is that the underlying hardware has a maximum payload length and thus normal
NDEF records would have to be parsed over several LLCP messages anyway.

As SNEP is a request/response protocol: a new message will only be sent when
a SUCCESS response on a previous message has been received. We will use this
mechanism to measure the time needed to send a certain number of bytes from the
platform to the smartphone. At the moment when our embedded platform sends a
SNEP PUT request, a time stamp is taken. The SNEP PUT message contains an
NDEF record which in turn contains the actual payload. When the smartphone
receives this message successfully, it will reply with a SNEP SUCCESS response.
Upon receipt of this message at the embedded platform, a second time stamp is
taken to measure the time needed to send a message with a certain payload size.
Because the NFC stack on the embedded platform is influenced by the load on the
OS, communication times will vary (several ms). To obtain an averaged result, we
performed 10 measurements for every payload size.3

10.2.2 Results

We have set out the average time required to send an NFC P2P message (i.e.,
an NDEF record contained in a SNEP message) for different payload sizes in
Fig. 10.1(a). By dividing the payload size by the time to send the data, we have
obtained the effective data rate. This is set out in Fig. 10.1(b).

2Typically connection setup times for NFC are under 100 ms.
3We limited ourselves to 10 measurements per payload, because the measurement itself is a

tedious procedure that involves resetting the Android application and the embedded NFC stack,
as well as “touching” the platform with the smartphone.
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Figure 10.1: Speed measurements for NFC P2P communication.



136 NFC P2P VERSUS NFC HANDOVER TO WIFI

A first remarkable observation is that the time increases linearly in intervals of 229
bytes. Whenever the payload size exceeds a multiple of 229, an extra overhead is
introduced. The reason for this is that 229 bytes is the maximum payload size
that can be sent with one packet by the underlying layers. This means that when
exceeding a payload size of 229 bytes (or a multiple) an extra message needs to
be sent, which introduces overhead in the form of headers and the processing of
intermediate SNEP CONTINUE responses.

This obviously has its influence on the data rate as well. Only for payloads above
1024 bytes, the data rate more or less stabilizes at about 15 kbit/s, with a maximum
of 15.6 kbit/s. This is only 3.7% of the physical data rate of 424 kbit/s.

Applicability in ABCs. If we look at a CL-based credential proof for a modulus
size of 1024 bits and a single attribute, the size of the proof π will be 4760 bits or
595 bytes (Table 9.1(b)). For card emulation (operating at 106 kbit/s), sending the
proof takes between 720 and 750 ms (see Table 9.3). When NFC P2P communication
would be used, it would take about 330 ms. This has been indicated on the graph
(Fig. 10.1(a)) together with the payload size and communication time for a 1536-bit
modulus. In the case of CL-based credential verification over NFC, these are the
absolute minimum communication times. When either the modulus or number of
attributes becomes larger, the communication time will increase.

In general it is also interesting to note that, although the data rate for card
emulation is four times lower that the one used for NFC P2P, the latter is only
about twice as fast.

10.3 Connection Handover to WiFi

10.3.1 Test Setup

An alternative to NFC P2P communication is using NFC to set up a connection
over a different wireless standard. In this case we will investigate connection
handover to WiFi (TCP/IP). For that, we use the setup as shown in Fig. 10.2.
When the smartphone is brought in the vicinity of the embedded platform an NFC
connection will be set up. Over this connection, a message containing handover
information is sent to the smartphone after which the connection is closed. The
handover data contains information such as the platform’s IP address and the TCP
port to connect to.

The timing measurements have been performed with the smartphone already
connected to the WLAN. This eliminates variations due to the wireless router’s
response times. The time to handover the connection has been measured as time
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Figure 10.2: Setup for testing communication handover from NFC to WiFi.

difference between sending the handover data and accepting the TCP connection.
As a practical case we have transmitted a credential proof over TCP/IP to the
embedded platform (1536-bit modulus, only master secret). We have measured this
transmission time as well. The connection handover with TCP/IP communication
has been repeated 40 times.

10.3.2 Results

We have generated a histogram for the handover timing, the time required for
TCP/IP data transmission, and the total communication timing (handover and data
transmission). This has been set out in Fig. 10.3. It is clear that the communication
handover is responsible for a large portion of the total communication time.
Moreover, it is impossible to do the handover under 0.4 seconds. This is more than
the 350 ms for the total communication when NFC P2P is used. The TCP/IP data
transmission on the other hand clearly outperforms the NFC P2P communication.
This shows that communication handover only pays off when the amount of data
to be sent is large enough. More detailed measurements, however, are required
to determine the exact tipping point. Specifically for attribute-based credentials
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it should be investigated if it pays off to use handover, when more attributes are
being used.

10.4 Conclusions

As a first practical result, we have been able to determine the effective data rate
for NFC P2P communication. These are likely the first figures published regarding
this subject. However, more measurements are required to determine the effect of
the connection set up and the effect of transmitting application data in the other
direction as well. Furthermore, when an new Android release implements NFC P2P
(according to the specification), it would be interesting to repeat the measurements
using this Android version and compare the results with our measurements.

A second conclusion is that NFC P2P is a valid candidate as communication
standard for ABC applications. Newer versions of the standard (at 848 kbit/s and
higher) will result in even shorter communication times. For protocols that require
more data transmission, communication handover could be used. However, more
detailed measurements are required to determine the exact tipping point.

We must note that we have only measured the time of setting up a TCP connection
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and not the time required to connect to a WiFi network. This should deserve some
further attention. Other future work could be targeted to comparing connection
handover to other technologies such as Bluetooth or GPRS.





Chapter 11

General Conclusions

11.1 Summary

The motivation of this work has been based on some emerging trends. That is,
smartphones will play an increasingly prominent role in people’s lives. They will be
used to gain access to all kinds of services, both online and at designated terminals.
These terminals (e.g., vending machines, electronic storage lockers or access control
terminals) can be considered resource-limited in comparison to the mobile device.
They typically have less memory, a limited user interface, less communication
interfaces and run at lower frequencies.

When using the smartphone to obtain a certain service, the time to execute an
authentication, payment, or even a simple data exchange, is a key factor. Think
of a ticketing application in the metro, where it is not desirable that users have
to wait a few seconds before their ticket is verified. That would be a downturn of
the current situation. For obtaining these services in a privacy-friendly manner,
attribute-based credential systems can offer a solution.

Designing these dedicated embedded terminals requires specific knowledge and
tools. Furthermore, when evaluating the performance of (new) security protocols
like attribute-based credentials on such a terminal, both the run time of the
computations and the time required for communication need to be considered.

With that in mind we have directed our work along three tracks. First of all we
have designed a configurable and extendable embedded platform to aid engineers in
prototyping and evaluating security protocols on embedded terminals. Secondly, we
have designed a customizable hardware accelerator for supporting attribute-based
credentials on this (and other) embedded platform(s). A third track was the study
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of NFC, which is an emerging standard for short-range wireless communication, for
bidirectional communication between a mobile device and an embedded terminal.
Combining these three tracks into two practical cases has been the final part of
this work.

We restate our conclusions for each of the main parts in the following paragraphs.

11.2 Embedded Test Platform

Realization. Starting from an existing Xilinx FPGA development board, we have
designed an embedded hardware platform for prototyping and evaluating security
protocols that operate in and embedded context. This platform resembles a typical
embedded design (whether it is e.g., a SoC or FPGA-based) in that it consists
of a central processor with an operating system and peripherals connected to the
processor via a bus. With this platform, design engineers can work on the different
levels of embedded system design.

It is possible to develop and test custom hardware blocks. We have shown this with
the design of our own IP core (Chapters 3 to 6 of this thesis). These and licensed
cores can be easily added to the system by connecting them as memory-mapped
devices to the system’s bus. Interfacing with these hardware blocks is facilitated
and generalized by using the UIO kernel module, present in the OS.

Aside from custom peripherals the platform already offers a wide range of
functionality required in typical embedded systems such as timers, GPIO, memory
controllers, and communication interfaces.

For the OS we have opted to use embedded Linux. A main advantage is that
standard libraries can be used for large integer arithmetic, file I/O, threading,
manipulation of communication sockets. Also, a program (or a part of it) can be
tested and developed on a regular workstation.

To further facilitate application development we added several extra features to
both the standard platform and the standard Linux build. This includes a boot
sequence tailored to speed up development, support for Compact Flash, NFS and
NTP, startup scripts to automatically enable this additional functionality, as well
as hardware and libraries for NFC P2P communication.

We have shown the value of this platform with the development and analysis
of a custom IP core as well as with two case studies regarding attribute-based
credentials and NFC communication. By using the developed libraries (APIs) a
demonstrator application for attribute-based credentials has been developed in
mere days.
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Proposals for future work. Currently, only one wireless interface has been
implemented (i.e., NFC). Future improvements to this platform should definitely be
targeted to adding other much-used embedded wireless standards e.g., Bluetooth,
Bluetooth 4.0, GPRS. For off-line platforms, it would be advised to add a real-time
clock IC e.g., connected with I2C or SPI, for keeping track of the time. Adding
hardware support for other cryptographic protocols would further increase the
applicability of the platform.

Publications. The design and applications of this platform have been presented
in several articles at international conferences. A first version, with the motivation
of the design choices, has been presented at the 12th Joint IFIP TC6 and TC11
Conference on Communications and Multimedia Security [OMS+11]. It has received
the award for Best short paper. A more advanced version of the platform with
extended NFC support, together with a first demonstrator application, has been
presented at the XXI International Scientific Conference on Electronics [ODW+12].

11.3 Modular Exponentiation IP Core Design

Realization. As part of our embedded test platform, we have designed a hardware
accelerator targeted to speed up the multiple modular exponentiations required
for attribute-based credential verification. Because the IP core is intended for
prototyping and evaluation, it had to be customizable to the developer’s needs.
To keep the core as versatile as possible we have made a design that does not
require complex control logic (e.g., for recoding operands) and that is not based on
certain assumptions (e.g., the structure of the modulus). A FIFO buffer to store
the exponents ensures that different exponent lengths can be processed at run time.
This is a necessity for e.g., attribute-based credentials.

A systolic pipelined multiplier with adjustable stage length as kernel of the design,
ensures that the IP core can be synthesized for a given multiplication run time
while requiring an acceptable amount of resources (i.e., same order of magnitude
as multipliers tailored to certain specifications) regardless of the length of the
operands. Furthermore, we have provided expressions to determine the number of
resources required for a given stage length and operand length.

The multiplier is used to perform both the squaring and multiplication step of the
modular exponentiation algorithm. Because we target embedded systems, we have
explicitly chosen not to perform the squaring and multiplying in parallel as this
would lead to a doubling of the required resources. The execution of the algorithm’s
main loop is controlled by the IP core’s control logic. When the necessary operands
are precomputed and stored in the correct memory locations, no time-consuming
bus traffic is required during the automatic operation. This greatly reduces the
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run time, which is now only determined by the length of the exponents and the
configuration of the pipeline.

With this IP core we are also able to execute simultaneous dual-base and single-base
exponentiations both under the same conditions. We have provided expressions
for the multiplication and exponentiation run times as well as for the speedup by
using simultaneous exponentiations. With the IP core as part of our embedded
test platform we have verified these expressions based on measurements.

We found that in practice, run times are slightly higher because there is an overhead
introduced by the latency in the OS and the communication with the IP core. This
overhead is constant regardless of the length of the exponents and modulus, but it
is dependent on the system setup e.g., clock frequency, CPU tics,... However, the
overhead is very small with respect to the actual run time, when the exponents are
sufficiently large, which is always the case in practice.

Regarding the speedup when using simultaneous exponentiations, we have shown
that the fastest run times for dual-base exponentiations are achieved when the
exponent length difference is minimal. When the exponents differ in length, the
speedup decreases. However, a developer can learn this speedup beforehand (and
make the trade-off) by using the expressions we have provided.

In order to make this design available for developers, we have published the VHDL
code as well as the libraries with the driver source and API. It is device-proven on
both Altera and Xilinx FPGAs.

Proposals for future work. Future updates could include other bus interfaces
(e.g., Whishbone), side-channel resistance measures or support for different kinds
of adders (e.g., carry-select to find a better trade-off between resources and speed).
Also a JTAG interface [19] or some kind of self-test ability could be a useful
addition.

In addition, we might investigate how this IP core can be used to speedup other
protocols as well, e.g., DSA verification, DAA or secret sharing protocols.

Finally, we have also proposed a redesign of the IP core’s operand memory so
l-base simultaneous exponentiations can be implemented without the core’s internal
operand memory becoming too large. It requires the presence of shared memory
and a DMA controller or a master/slave bus with a bus arbiter.

Publications. A first design of the pipelined Montgomery multiplier has been
presented at the 8th Workshop on RFID Security and Privacy 2012 [Ott12]. The
complete IP core design has been presented at the 9th International Symposium
on Applied Reconfigurable Computing [OPGS13]. The performance of the IP
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core as part of our embedded test platform has been presented in an article in
EDN [OPS+13].

11.4 NFC P2P Communication

Realization. We have investigated the value of NFC for exchanging messages as
part of a cryptographic protocol between an Android device and an embedded
platform. NFC has its specific place among other short-range wireless technologies
i.e., short connection setup time (in a “touch”), but at low data rates. Like most
wireless technologies, it is susceptible to denial-of-service attacks and eavesdropping.
A relay attack is also easy to stage. If developers take precautions, these attacks
can be countered or detected.

Another main problem, however, is related to the current state of the technology.
The NFC P2P specification, defined by the NFC forum, is the standard for
bidirectional communication between two NFC devices. Unfortunately, the current
version of Android implements this standard only partially. We have compared and
implemented several alternatives. Although functional, these solutions are either
complex and/or require root access to the phone. Only communication handover
to another wireless standard, seems to be a valid alternative at the moment.

We have added support for NFC P2P communication to our embedded test platform
in the form of two open source libraries: libnfc and libnfc-llcp. We have also
created our own basic design of SNEP and provided an example application for
sending and receiving data over NFC P2P on an embedded platform.

Proposals for future work. The main drawback of our current (basic) SNEP
implementation is that only short NDEF records are supported and that the user
is responsible for parsing long payloads over multiple records. Obviously, this could
be extended. For use across different applications, it would also be preferable
that the SNEP layer be compiled into a library (just like the NFCIP-1 and LLCP
layers).

11.5 Case Studies

Attribute-based credential verification. We have examined the scenario where
a smartphone acts as a prover, sending the proof over NFC to our embedded test
platform, which then performs the verification using the hardware accelerator for
modular exponentiations. Hardware acceleration is a necessity on this kind of
systems because a software implementation would lead to unacceptable run times.
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However, when offloading the exponentiations to hardware, the communication now
accounts for the bulk of the total protocol run time; at least 70% in this specific
case. Multi-base (simultaneous) exponentiation hardware may further increase the
overall performance. We have verified this for dual-base exponentiations.

This case study shows that attribute-based credential applications in an embedded
context are feasible when using hardware acceleration. However, while much
research has been (justly) targeted to speeding up the arithmetic, it turns out that
communication (especially with standards with a low data rate like NFC) takes up
a considerable amount of the overall run time as well.

Publications. The results of this case study have been described in a paper,
presented at the 14th Joint IFIP TC6 and TC11 Conference on Communications
and Multimedia Security [OLN+13].

NFC peer-to-peer and connection handover. With our embedded test platform
we were able to measure practical data rates for NFC P2P communication. The
maximum data rate of 15 kbit/s is only a few percent of the advertised physical
data rate (424 kbit/s). Connection setup times as well as bidirectional data
traffic will probably decrease the data rate even further. On the other hand, as a
communication medium in embedded attribute-based credential applications, NFC
P2P seems to be a valid candidate.

For protocols that require the transmission of a significant amount of data,
communication handover could be used. We have observed that a handover takes
at least 0.4 s. However, more detailed measurements are required to determine
the conditions for which handover to WiFi is beneficial with regard to the total
communication time.

In embedded mobile applications, connection handover to Bluetooth or GPRS
might also be useful or desirable. Future work could be targeted to investigating
handover to these technologies as well.
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11.6 Concluding Remarks

It is clear that the mobile revolution that is happening today, brings with it the
need for a well-designed security infrastructure. This infrastructure has components
at every level, each with its specific problems and difficulties. Embedded system
design always requires making trade-offs. For relatively new techniques such as
attribute-based credentials in an embedded context,1 making design choices is extra
hard due to the unknown performance of these techniques and the communication
standards they rely on. Users (and companies alike) will only be able to benefit
from these new technologies when companies, consortia and even the government
work together to standardize, maintain and implement these measures. Our work
can help developers in bringing these techniques into our everyday lives.

1These are relatively new at least to the non-academic world.





Appendix A

Systolic Pipeline Configuration
Examples

In this appendix we give two examples of how the multiplier pipeline can
be configured (before synthesis). Figures A.1 and A.2 show two alternative
configurations. When only one operand length is required at run time one can use
a single pipeline as shown in Fig. A.1. When several operand lengths will be used,
one can use the pipeline configuration as shown in Fig. A.2. Instead of one large
pipeline, two smaller pipelines can be used (only one at a time), which reduces the
multiplication time in case of shorter operands. The two smaller pipelines, however,
can be combined to form one large pipeline.
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Appendix B

SNEP Server Application on
an Embedded Terminal –
Coding Example

This appendix gives a coding example on how to run a SNEP server application on
an embedded terminal using our own SNEP implementation and the libnfc and
libnfc-llcp libraries.

To understand how we structured the SNEP server, we will briefly explain how two
services can communicate over the LLCP layer. The LLCP layer will keep track of
which services are available and what is their respective SAP. Messages from the
services will be passed to the NFCIP-1 layer, here implemented with libnfc, that
relays the messages to the other end of the connection.

When a packet is received by the LLCP layer, several actions are possible. When
there is not yet a logical link between two services, the first packet will be a CONNECT
PDU.1 Upon receiving this PDU, the LLCP layer will check if there is a service
registered for the requested SAP. If this is the case, a connection will be set up
and all following packets will be delivered to this service.

The example we provide here is split into two parts. The main application is
responsible for initialization and clean-up. This involves initialization of both
libnfc and libnfc-llcp, setting up the LLCP link, connecting to the PN532,
creating a thread for every service (here only one – the SNEP service) and freeing
memory when the application terminates. The second part is the SNEP service

1PDU stands for Protocol Data Unit, which is the name of the LLCP packets.
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thread itself, which serves as the actual application i.e., in this case sending and
receiving a data packet.

Main application. The main application will first initialize both libraries.
// Initialize libnfc
static nfc_context * context ;
nfc_init (& context );
if( context == NULL){

printf (" Unable to init libnfc .\n");
exit( EXIT_FAILURE );

}
// Initialize libnfc -llcp
if( llcp_init () < 0)

errx ( EXIT_FAILURE , " llcp_init ()");

After successful initialization, libnfc will be used to connect to the NFC device,
in this case the PN532 connected over RS232 to serial port /dev/ttyUL1.

// Create an NFC device handler
nfc_device * device ;
// Open the NFC device
if (!( device = nfc_open (context , " pn532_uart :/ dev/ ttyUL1

:115200 "))) {
errx ( EXIT_FAILURE , " Cannot connect to NFC device ");

}

When the device is opened, a new LLCP link will be created as well as a handler
to the SNEP service thread. When the service thread is successfully created, it
will be bound to the LLCP link.

// Create LLCP link
struct llc_link * my_llc_link = llc_link_new ();

// Create handler to the service thread
struct llc_service * snep_service ;
// Create SNEP service
if (!( snep_service = llc_service_new_with_uri (NULL ,

snep_service_thread , LLCP_SNEP_URI , NULL)))
errx ( EXIT_FAILURE , " Cannot create snep service ");

// Bind SNEP service to LLCP link
if( llc_link_service_bind ( my_llc_link , snep_service ,

LLCP_SNEP_SAP ) < 0) {
errx ( EXIT_FAILURE , " llc_service_new_with_uri ()");

}
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At this point everything is configured for NFC P2P communication. The only thing
that needs to be done is activate the NFCIP-1 link, in this case the embedded
platform will act as NFC initiator.

// Create MAC link
struct mac_link * my_mac_link = mac_link_new (device ,

my_llc_link );
if (! my_mac_link )

errx ( EXIT_FAILURE , " Cannot establish MAC link");

// Act as initiator
if( mac_link_activate_as_initiator ( my_mac_link ) <= 0)

errx ( EXIT_FAILURE , " Cannot activate link");

When a target device that supports NFC P2P is brought in the platform’s vicinity,
libnfc will set up a MAC link between the two devices. Then libnfc-llcp will
establish the LLCP connection and start delivering messages from and to the SNEP
service.

When this service terminates, the main thread will resume and free any allocated
resources.

// Wait for MAC link to finish
void * status ;
mac_link_wait ( my_mac_link , & status );
// optionally check status

// free MAC and LLCP link
mac_link_free ( my_mac_link );
llc_link_free ( my_llc_link );

// close the connection to the PN532
nfc_close ( device );

// terminate libraries
llcp_fini ();
nfc_exit ( context );

exit( EXIT_SUCCESS );

SNEP service thread. In the SNEP service thread we have written our own basic
implementation of SNEP2.

// Function prototype
void * snep_service_thread (void *arg);

2The application is in the service itself. The protocol functionality is in the files ndef.c/h and
snep.c/h – see online/appendix !?!?!?
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When the thread is created, it can get hold of the LLCP connection by means of
the function argument.

struct llc_connection * connection = ( struct llc_connection
*) arg;

We create an NDEF record containing the data we want to send together with
some data buffers.

struct ndef_record * myRec ;
if (( myRec = malloc ( sizeof * myRec ))) {

myRec ->MB = 1;
myRec ->ME = 1;
myRec ->CF = 0;
myRec ->IL = 0;
myRec ->TNF = 2;
myRec ->SR = 1;
myRec ->type = ( uint8_t *)"text/plain";
myRec -> type_length = strlen (( char *) myRec ->type);
myRec -> payload = ( uint8_t *)"This is some data!";
myRec -> payload_length = strlen (( char *) myRec ->

payload );
}

uint8_t recv_buffer [1024];
uint8_t send_buffer [1024];

To send a packet, the NDEF record is packed in a SNEP message and placed in
a buffer and sent over the LLCP connection. The receiving party should answer
with a SNEP SUCCESS response. When we do receive a message, it is unpacked
and by examining the type we can determine if it is actually a success.

// Pack NDEF message
snep_pack (myRec , send_buffer );
// Send SNEP message
llc_connection_send ( connection , send_buffer , len);

// Receiving the SNEP success response !
if (( len = llc_connection_recv ( connection , recv_buffer ,

sizeof ( res_buffer ), NULL)) < 0)
return NULL;

// Answer received , check if it ’s a success .
struct snep_message *msg = snep_unpack ( recv_buffer , len);
if(msg -> type_field == RESPONSE_SUCCESS ) {

llcp_log_log ("[nfc -p2p - example .c]",
LLC_PRIORITY_DEBUG , "SNEP Response : Success " );

}else{
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llcp_log_log ("[nfc -p2p - example .c]",
LLC_PRIORITY_FATAL , "SNEP Response : Not success
!!" );

}

Receiving data packets works exactly the same way as receiving a SNEP SUCCESS
response. Aside from a method for unpacking the SNEP message, we also provided
a method for unpacking the NDEF record (i.e., the payload of the SNEP message).
When the sending party, i.e., the client, sends a SNEP message, it will be a PUT
message. This implies that the server needs to answer with a response success.

// Receiving a SNEP packet
if (( len = llc_connection_recv ( connection , recv_buffer ,

sizeof ( recv_buffer ), NULL)) < 0)
return NULL;

// Unpack
msg = snep_unpack ( recv_buffer , sizeof ( recv_buffer ));
struct ndef_record * record = ndef_unpack (msg -> ndef_message ,

msg -> data_length );

// Send a response
if(msg -> type_field == REQUEST_PUT ) {

int length = -1;
uint8_t * success_response =

snep_create_success_response (& length );

llc_connection_send ( connection , success_response , 6)
;

}
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MIXes: A System for Anonymous and Unobservable Internet
Access. In International Workshop on Designing Privacy Enhancing
Technologies: Design Issues in Anonymity and Unobservability, pages
115–129. Springer-Verlag New York, Inc., 2001.
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[GP08] Tim Güneysu and Christof Paar. Ultra High Performance ECC
over NIST Primes on Commercial FPGAs. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded
Systems – CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 62–78. Springer Berlin Heidelberg, 2008.

[GRS96] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. Hiding
Routing Information. In Information Hiding, pages 137–150. Springer-
Verlag, 1996.

[Han08] Gerhard Hancke. Eavesdropping Attacks on High-Frequency RFID
Tokens. In Proceedings of the 4th Workshop on RFID Security
(RFIDSec 08), pages 100–113, 2008.

[Hay05] Caroline Haythornthwaite. Social Networks and Internet Connectivity
Effects. Information, Community & Society, 8(2):125–147, 2005.

[HB06] Ernst Haselsteiner and Klemens Breitfuß. Security in Near Field
Communication (NFC). In Workshop on RFID Security 2006, 2006.

[HC09] Yajuan He and Chip-Hong Chang. A New Redundant Binary Booth
Encoding for Fast 2n-Bit Multiplier Design. IEEE Transactions on
Circuits and Systems, I: Regular Papers, 56(6):1192–1201, 2009.



170 BIBLIOGRAPHY

[Hea11] Heather McLean. Transport for London to accept NFC payments
from 2012. 2011. Online: http://www.nfcworld.com/2011/07/12/
38537/transport-for-london-to-accept-nfc-payments-from-
2012/.

[HiHA13] Naofumi Homma, Yu ichi Hayashi, and Takafumi Aoki. Electro-
magnetic Information Leakage from Cryptographic Devices. In
Proceedings of the 2013 International Symposium on Electromagnetic
Compatibility (EMC Europe 2013), pages 401–404, 2013.

[HMM09] Gerhard P Hancke, KE Mayes, and Konstantinos Markantonakis.
Confidence in Smart Token Proximity: Relay Attacks Revisited.
Computers & Security, 28(7):615–627, 2009.

[HPO13] Jens Hermans, Roel Peeters, and Cristina Onete. Efficient, Secure,
Private Distance Bounding without Key Updates. In Proceedings of
the Sixth ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec ’13, pages 207–218. ACM, 2013.
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[KBV09] Miroslav Knežević, Lejla Batina, and Ingrid Verbauwhede. Modular
Reduction Without Precomputational Phase. In IEEE International
Symposium on Circuits and Systems – ISCAS 2009, pages 1389–1392,
2009.

[KJJ08] Paul C. Kocher, Josh Jaffe, and Ben Jun. Differential power analysis,
2008. Presented at the CRYPTO ’98 Rump Session.

http://www.nfcworld.com/2011/07/12/38537/transport-for-london-to-accept-nfc-payments-from-2012/
http://www.nfcworld.com/2011/07/12/38537/transport-for-london-to-accept-nfc-payments-from-2012/
http://www.nfcworld.com/2011/07/12/38537/transport-for-london-to-accept-nfc-payments-from-2012/


BIBLIOGRAPHY 171
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[RTŠ+12] Aanjhan Ranganathan, Nils Ole Tippenhauer, Boris Škorić, Dave
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Ingrid Verbauwhede. Tripartite Modular Multiplication. Integration,
the {VLSI} Journal, 44(4):259–269, 2011.



BIBLIOGRAPHY 177

[SKN08] Koji Shigemoto, Kensuke Kawakami, and Koji Nakano. Accelerating
Montgomery Modulo Multiplication for Redundant Radix-64k
Number System on the FPGA Using Dual-Port Block RAMs. In
IEEE/IFIP International Conference on Embedded and Ubiquitous
Computing – EUC ’08, volume 1, pages 44–51, 2008.

[Sol02] Daniel J. Solove. Conceptualizing Privacy. California Law Review,
90(4):1087–1155, 2002.

[Sol04] Daniel J Solove. The Digital Person: Technology and Privacy in the
Information Age, volume 1. NYU Press, 2004.

[Sol06] Daniel J. Solove. A Taxonomy of Privacy. University of Pennsylvania
Law Review, 154(3):477–564, 2006.

[Spa13] Shaun Spalding. Privacy Issues for Website Operators – Protect Your-
self by Protecting Users. online: http: // privacypolicyexamples.
com/ bonus% 20content/ introduction/ , 2013.

[SSBV11] Dave Singelée, Stefaan Seys, Lejla Batina, and Ingrid Verbauwhede.
The Communication and Computation Cost of Wireless Security –
Extended Abstract. In Proceedings of the Fourth ACM Conference
on Wireless Network Security, WiSec ’11, pages 1–4. ACM, 2011.

[SST04] Hisayoshi Sato, Daniel Schepers, and Tsuyoshi Takagi. Exact Analysis
of Montgomery Multiplication. In Proceedings of the 5th International
Conference on Cryptology in India, INDOCRYPT ’04, pages 290–304.
Springer-Verlag, 2004.

[Sta06] William Stallings. Processor Structure and Function. In Computer
Organization And Architecture: Designing For Performance,
chapter 12, pages 433–434. Pearson Prentice Hall, 2006.

[TcKK99] Alexandre F. Tenca and Çetin K. Koç. A Scalable Architecture for
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