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Abstract. Formal verification enables developers to provide safety and
security guarantees about their code. A modular verification approach
supports the verification of different pieces of an application in separation.
We propose symbolic linking as such a modular approach, since it allows
to decide whether or not earlier verified source files can be safely linked
together (i.e. earlier proven properties remain valid).
If an annotation-based verifier for C source code supports both symbolic
linking and preprocessing, care must be taken that symbolic linking does
not become unsound. The problem is that the result of a header expansion
depends upon the defined macros right before expansion.
In this paper, we describe how symbolic linking affects the type checking
process and why the interaction with preprocessing results in an un-
soundness. Moreover, we define a preprocessing technique which ensures
soundness by construction and show that the resulting semantics after
type checking are equivalent to the standard C semantics. We imple-
mented this preprocessing technique in VeriFast, an annotation-based
verifier for C source code that supports symbolic linking, and initial
experiments indicate that the modified preprocessor allows most common
use cases. To the extent of our knowledge, we are the first to support
both modular and sound verification of annotated C source code.

Keywords: modular program verification, verification of C programs,
C preprocessor

1 Introduction

One of the means to create safe and secure software is the formal verification of
source code. Formal verification allows a developer to prove certain properties of
his source code, so that he in turn can rigorously provide guarantees to the users
of his software. There are many different tools available to verify source code.
Tools that allow to show arbitrary properties of code, require some hints to be
provided. Indeed, the validity of arbitrary properties of code is undecidable. For
many verifiers these hints must be provided as annotations added to the source
code. We only consider annotation-based verifiers [1–5] in this paper.

Proving security properties of code is most often a daunting task. A modular
verification approach allows a developer to concentrate on the security sensitive
parts of his application. We propose symbolic linking as such a modular approach.



After having verified different source files in isolation, symbolic linking allows to
show whether or not the source files can be safely (i.e. earlier proven properties
remain valid) linked together into an application without having to reverify them.
As far as we can see, we are the first to report on a both modular and sound
verification technique for annotated C source code. To support sound modular
verification with symbolic linking, we modified the lexical and semantical analysis
phases of verification. However, we show that the resulting semantics of these
modifications are equivalent to the standard C semantics.

The first modification impacts the type checking procedure of the semantical
analysis phase. Symbolic linking requires that for each C source file there is a
header file containing forward declarations that describe the functionality from
the source file. Besides that, it also requires that the verification of a single source
file is performed with the assumption that the annotations in the header files of
other source files are valid. Since header files can textually include each other
using the C preprocessor, this last requirement implies, as explained further on,
that the type checking procedure of the verifier must be recursive to type check
every header file in isolation.

The second modification is concerned with lexical analysis, in particular
preprocessing. Allowing the full functionality of the C preprocessor during ver-
ification renders symbolic linking unsound. Indeed, the result of including a
header file depends on the context (i.e. the set of defined macros) at the point of
inclusion. This can trick symbolic linking into thinking that earlier verified files
can be safely linked together, while it is not safe to do so. A possible solution is
to modify the behavior of the C preprocessor: if a header inclusion is encountered
during preprocessing, expand it with an empty set of defined macros so that a
header is always expanded in the same way. This resolves the verification hazard,
but this context-free preprocessor differs from the normal C preprocessor. This
can be solved by running both preprocessors in parallel and signaling an error if
they diverge. To define this parallel preprocessor, precautions must be taken to
support header files that use a macro as guard to prevent double inclusions.

In Section 2, we discuss symbolic linking and recursive type checking in more
detail. The unsoundness problem caused by preprocessing is clarified in Section 3.
Our solution to this problem is presented in Section 4 and in Section 5 we show that
for the verification of a given source file, the semantics of recursive type checking
after parallel preprocessing are equivalent to the standard C semantics. We
implemented symbolic linking and the parallel preprocessing technique in VeriFast
[4], an annotation-based verifier for single- and multi-threaded C programs. The
implementation and some findings of initial experiments are described in Section 6.
Finally, we end this paper with a discussion on related work and some conclusions
in Section 7.

2 Symbolic Linking

Verifying an existing application with an annotation-based verifier is a nontrivial
task. If a lot of source code must be annotated to prove correctness of a small



piece of security-sensitive functionality, the verifier is not modular and verification
would become unmanageable for applications with a large code base. A modular
verifier allows the verification of smaller pieces of code in isolation.

To build a modular application, a linker can be used to combine different
compiled object files into an executable program. Symbolic linking is the veri-
fication counterpart of this compilation stage. Instead of object files, manifest
files are created during verification. These manifest files describe the essential
contents of the source files from the point of view of the verifier. During the
symbolic linking process the manifest files are inspected to decide whether or not
the original verified source files can be safely linked together.

This process imposes some conditions on the structure of the source files.
First, we describe these conditions. Then we elaborate on the contents of the
generated manifest files and how they are used by the symbolic linking process.
We finish our discussion on symbolic linking with the necessity of a recursive
type checking process for the verifier.

2.1 Source File Structure

An abstract view of a source file is one in which the file simply declares some
program elements and these declarations may use program elements from other
files. Symbolic linking requires that these dependencies are explicitly recorded in
interfaces. In the context of the C language, for each source file a header file is
used as its interface. The function headers of the functions implemented in a C
source file are recorded in its corresponding header file together with annotations.
Without going into the details of the VeriFast annotation language, here is an
example of a C source file abs.c implementing the function abs(), which returns
the absolute value of its only argument, together with its interface abs.h:

abs.c

#include ”abs . h”

int abs ( int x )
//@ requ i res true ;
//@ ensures 0 <= x ? r e s u l t == x :

r e s u l t == 0 − x ;
{ i f (0<=x) { return x ;}

else {return 0 − x ;} }

abs.h

#ifndef ABS H
#define ABS H

int abs ( int x ) ;
//@ requ i res true ;
//@ ensures 0 <= x ? r e s u l t == x :

r e s u l t == 0 − x ;
#endif

The verification of another source file that uses the function abs(), has to
include the header abs.h (as would be necessary for compilation too) so the
verifier can find the annotation. That source file must then be verified with the
assumption that the annotation found in the header abs.h is true.

2.2 Manifest Files

The implementation in a source file is thus verified with the assumption that
annotated declarations (without implementation) in interface files are valid.
During verification of a source file, all the declarations that were used but not



implemented by the file, should be recorded in the manifest. These requires-records
from the manifest file contain the name of the interface where the declaration
was found and the name of the declaration itself. Besides the requires-records,
there are also provides-records included in the manifest. These records describe
all implemented constructs from the source file, together with the name of the
interface where the construct was declared. Of course the verifier must check that
an annotation of a declaration in an interface conforms with the annotation of
its implementation in the source file.

The symbolic linking process uses the manifest files to decide if the earlier
verified files can be safely linked together. The process checks that there exists
some matching provides-record for each requires-record in the manifest files of
the earlier verified files. This ensures that all necessary functionality is correctly
implemented somewhere. Due to the annotations in the interface, the linking
process knows that a declaration has the same meaning in all source files (ignoring
preprocessing for now) and thus earlier proven properties remain valid.

2.3 Recursive Type Checking

An important issue was ignored when describing manifest files and the symbolic
linking process. For the verification of C source code with VeriFast, header
files (i.e. interfaces) can contain auxiliary constructs (inductive data types, pure
functions over these data types, predicates, . . . ) for specifying annotations. These
constructs can then be used in the annotations in the rest of the header file
as well as in the source file. Of course a header file can also use annotation
constructs from another header. If this is the case, it must be made sure that
the first header file includes the second. Otherwise the semantics of an inclusion
depends upon the type checking context in which the header file was included
and thus its meaning can be different for different source files that included it.
The following unsound example illustrates this requirement:

main.c

#include ” true . h”
#include ” unsa fe . h”

int main ( )
//@ requ i res true ;
//@ ensures true ;
{ unsafe ( ) ;

return 0 ; }

unsafe.c

#include ” f a l s e . h”
#include ” unsa fe . h”

void unsafe ( )
//@ requ i res f a l s e ;
//@ ensures true ;
{ void **p ;

*p = 0 ; }

unsafe.h

void unsafe ( ) ;
//@ requ i res pre ( ) ;
//@ ensures true ;

true.h

/*@
f i x po i n t boo l pre (){

return true ;
} @*/

false.h

/*@
f i x po i n t boo l pre (){

return f a l s e ;
} @*/

The fixpoint functions from true.h and false.h specify pure functions
that can be used in other VeriFast annotations and can be considered to be
synonyms for true, respectively false in the rest of this example. The file
unsafe.h is an interface containing the forward declaration of the function



unsafe() annotated with a contract. In file unsafe.c, the header file unsafe.h

is included after including the file false.h. The expansion of unsafe.h will
be a forward declaration of the function unsafe() with the same contract as
its implementation in unsafe.c. Again without going into the details of the
annotation language of VeriFast, the contract in unsafe.c trivially holds since
the precondition is false. So verification succeeds even if there clearly is a memory
violation in the function unsafe(). A function with false as a precondition
may never be used of course or verification will fail. Verification of the function
main() in main.c also succeeds since by including the file true.h before including
unsafe.h, the precondition of unsafe() is trivially satisfied (i.e. it is simply true)
so the function may be used anywhere. These files verify correctly in isolation,
but they should not be compiled together into an application. It is clear from this
example that the semantics of the forward declaration of the function unsafe()

from the included header unsafe.h is dependent upon previous includes.
A way to ensure that includes are independent from previous includes, is to

type check each (directly or indirectly) included header file recursively in isolation:
type check an included header with an empty set of declarations before using its
declarations to type check the file that included the header. If an included header
file is well-typed in isolation, we know it includes all the necessary constructs
for the semantics of its contents. In our previous example the recursive type
checking of unsafe.h will fail, since the pure function pre() is not defined there.
To ensure that this kind of type checking preserves the semantics of a language,
the language must exhibit the following property which we consider an axiom for
the C language:

Axiom 1
A declaration that is well-typed according to two sets of type checked declarations,
has the same semantics relative to the two sets if one is a subset of the other.

Since in the C programming language a declaration cannot be hidden by a
subsequent declaration in the same scope and we only allow includes at global
scope (this follows from the definitions of a preprocessor tree in Section 4 and the
fact that a proper prefix of a declaration in C is itself not a valid declaration),
the C language has this property.

3 Unsoundness Caused by Preprocessing

In the context of the C programming language, header files are used as interfaces
for symbolic linking and these have to be included in a source file by using
the preprocessor. However, an annotation-based verifier for C source code that
supports symbolic linking, cannot allow full C preprocessor functionality1 without
becoming unsound.

The problem is that the C preprocessor performs textual inclusion and also
allows to define textual macros. The earlier described symbolic linking process

1 C11 - ISO/IEC 9899:2011: standard for the C programming language



implicitly assumes that interfaces contain the same annotations for different
source files being verified. But the result of a header file inclusion, depends on the
context (i.e. defined macros) at the point of inclusion. We clarify this problem by
an example and end this discussion with possible alternative solutions.

3.1 Unsound Example

The unsound example presented here is quite similar to the one from Section 2.
Consider the following files annotated for verification with VeriFast:

main.c

#define PRE true
#include ” unsa fe . h”

int main ( )
//@ requ i res true ;
//@ ensures true ;
{ unsafe ( ) ;

return 0 ; }

unsafe.c

#define PRE f a l s e
#include ” unsa fe . h”

void unsafe ( )
//@ requ i res f a l s e ;
//@ ensures true ;
{ void **p ;

*p = 0 ; }

unsafe.h

#ifndef UNSAFE H
#define UNSAFE H

void unsafe ( ) ;
//@ requ i res PRE;
//@ ensures true ;

#endif

The file unsafe.h is an interface containing the forward declaration of the
function unsafe() annotated with a contract. In file unsafe.c, the header file
unsafe.h is included after defining the preprocessor symbol PRE to false. After
preprocessing, the expansion of unsafe.h will be a forward declaration of the
function unsafe() with the same contract as its implementation. So verification
unsafe.c of will succeed since the precondition is false. Verification of the
function main() in main.c also succeeds since by defining preprocessor symbol
PRE to true before including unsafe.h, the precondition of unsafe() is trivially
satisfied. Like before, these files verify correctly in isolation, but they should not
be compiled together into an application.

Unfortunately, the symbolic linking process concludes that they can be safely
linked together. This is clear from the manifest files generated for main.c and
unsafe.c, i.e. main.vfmanifest, respectively unsafe.vfmanifest:

main.vfmanifest

. r e q u i r e s .\ unsafe . h#unsafe

. p rov ides main : pre lude . h#main ( )

unsafe.vfmanifest

. p rov ides .\ unsafe . h#unsafe

The manifest file for unsafe.c only contains a provides-record for function
unsafe() and the manifest file for main.c only contains a requires-record for the
same function and a provides-record for the function main(). Since all required
functionality is provided, symbolic linking decides that the files can be linked
together.

The problem of combining preprocessing with symbolic linking, was shown
here for the contract of a simple function inside a header file. The same problem
can emerge if macro symbols are used for function names, function parameters
or other parts of declarations.



3.2 Alternative Solutions

There are different possible solutions for the unsoundness problem introduced
by preprocessing, each with their advantages and disadvantages. One solution
could be to include annotations after preprocessing in the manifest files and check
during symbolic linking that corresponding annotations are identical. However,
in VeriFast annotations can be specified using inductive data types, primitive
recursive pure functions over these data types and predicates. For this solution
to work, these construct also have to be included in the manifest file and will
make it bloated.

Another possible solution would be to reverify the source files during symbolic
linking. In many cases this solution is unacceptable (e.g. it deteriorates modularity)
or even impossible (e.g. linking with a library when only the header files of that
library are available and not the source code).

Finally, the solution presented in the rest of this paper makes use of a
modified (context-free) preprocessor. This context-free preprocessor does the
trick by processing each included header with an empty set of defined macros.
Thus the inclusion is not dependent on the context in which the include occurs (i.e.
context-free). The context-free preprocessor should then be executed in parallel
with the normal preprocessor and if their outputs diverge, an error is reported.
This ensures that a correct execution of the resulting parallel preprocessor is
context-free and compliant with the normal C preprocessor.

4 Preprocessing for Sound Symbolic linking

Here, we describe our solution to the unsoundness problem. First, we formalize
the preprocessor by describing its behavior with a set of inference rules. Then,
based on this formalization, a parallel preprocessing process is explained that
resolves the unsoundness by construction. We conclude this discussion of our
solution with a formal definition of the resulting semantics of the verification
process as compared to a normal compilation process.

4.1 Preprocessing Formalized

Before presenting our solution, it is instructive to formalize the behavior of the
preprocessor. Using the unspecified sets W and H we define in Definition 1 a
token which represents the contents of a source file. Representing a source file by
a single token simplifies the definitions that follow. A token can be a list of words

Definition 1.
w ∈ W and h ∈ H
t ∈ T ::=
| w̄ | def w w̄
| t t | undef w
| h | ifdef w t else t endif

Definition 2.
m ∈ H→ T

Definition 3.
d ∈W ⇀ W∗

Definition 4.
τ ::=
| []
| w :: τ
| (h, τ) :: τ



h1 w1 h2 w2 w3 w4

w5

h1 w6 w7

w5

Fig. 1: Graphical representation of the preprocessor tree
[(h1, [w5]), w1, (h2, [(h1, [w5]), w6, w7]), w2, w3, w4]

(w̄ ∈ W∗), a sequence of other tokens (t t) or a preprocessor directive. In this
simplified setting there are directives for header inclusion (h), macro definition
(def w w̄), macro removal (undef w) and conditional compilation (ifdef w t
else t endif). During preprocessing, a header map m is used to retrieve the
contents of header files and the partial function d is used to remember the defined
macros. The output of the preprocessor is a preprocessor tree τ, which is in fact
a list of words augmented with the original include structure of the source file as
illustrated in Fig. 1.

The behavior of the C preprocessor can then be captured by the (incomplete)
inference rules rules in Definition 5 using big-step semantics. The complete
set of rules can be found in a technical report [6]. Only the rules for macro
definition, macro expansion and header expansion are shown here. The judgment
m ` (d, t) ⇓ (d′, τ) defined by Definition 5, indicates that, given a certain header
map m, the formal preprocessor will accept a token t and a set of defined macros
d and it returns a resulting preprocessor tree τ and an updated set of defined
macros d′.

In rule P-define the function update is used to add the defined macro to
d. Since a premise in the rule P-words-undefined states that w is not in the
domain of d, the word is just copied to the resulting preprocessor tree. In the rule
P-words-defined on the other hand, w is in the domain of d and its expansion
w̄ is preprocessed before adding it to the resulting preprocessor tree. The domain

Definition 5. Inference rules for preprocessing

m ` (d,def w w̄) ⇓ (d[w := w̄], [])
P-define

w /∈ dom(d) m ` (d, w̄) ⇓ (d, τ)

m ` (d,w :: w̄) ⇓ (d,w :: τ)
P-words-undefined

w ∈ dom(d)
d(w) = w̄1 m ` (d, w̄2) ⇓ (d, τ2)

m ` (d|dom(d) \ {w}, w̄1) ⇓ (d|dom(d) \ {w}, τ1)

m ` (d,w :: w̄2) ⇓ (d, τ1 τ2)
P-words-defined

m ` (d,m(h)) ⇓ (d′, τ)

m ` (d, h) ⇓ (d′, [(h, τ)])
P-header-exp



restriction of a function is used there to indicate that the expansion of a macro is
preprocessed without the macro itself as a defined macro. Finally, the problematic
rule P-words-exp describes how a header is expanded. It is clear from this
rule that the header is preprocessed with the current partial function of defined
macros d before the expansion is returned.

4.2 Parallel Preprocessing

As mentioned before, it is the context-dependency of the inclusion of a header in
rule P-header-exp that renders symbolic linking unsound. To overcome this
problem we define the context-free preprocessor. The context-free preprocessor
works exactly the same as the normal preprocessor except that when it encounters
an include directive, the expansion of the included file is calculated by a recursive
call with an empty set of defined macros. This is done by replacing the rule
P-header-exp with the rule CFP-header-cf-exp from Definition 6 (for the
complete set of rules see [6]), which results in the definition of the judgment
m ` (d, t) ⇓cf (d′, τ). Since the defined macros at the point of inclusion are the
only source of variability in the resulting expansion, the context-free preprocessor
always expands an included file in the same way. So the context of defined macros
does not influence the result of an inclusion. Note that the macros that are defined
during preprocessing of the header file, are added to the preexisting macros.

Definition 6. Inference rule for context-free header expansion

m ` (∅,m(h)) ⇓cf (d′, τ)

m ` (d, h) ⇓cf (d ∪ d′, [(h, τ)])
CFP-header-cf-exp

The context-free preprocessor clearly behaves differently from the normal
preprocessor, but its context-freeness ensures that symbolic linking is sound.
However, the compliance to the C standard of the normal preprocessor is also
required. Our solution is to run both preprocessors in parallel and signal an
error if they diverge. Care must be taken with the inclusion of header files that
protect themselves from double inclusions by using a macro as guard (i.e. guarded
headers). Since the inference rule CFP-header-cf-exp calls the preprocessor
recursively with an empty set of defined macros, the macro guarding a header file is
never defined at that point during preprocessing. Thus the second time a guarded
header is included, it is expanded anyway by the context-free preprocessor. The
normal preprocessor will not expand the second include of that guarded header.
So a naive parallel preprocessing technique, would fail here.

To make parallel preprocessing succeed for guarded headers, we remove
the secondary occurrences of header includes during context-free preprocessing.
Only thereafter are the produced normal preprocessor tree and context-free
preprocessor tree checked for equality during parallel preprocessing. This is safe
to do, since the context-free preprocessor always expands a header to the same
parse tree. To formalize this we first need the function Ih that does nothing more
than collecting all the header names that occur in an outputted preprocessor



tree τ or in a set
¯̃
h containing header nodes (i.e. ordered pairs of header names

and preprocessor trees).

Definition 7. Function Ih collects header names

Ih([]) = ∅
Ih(b :: τ) = Ih(τ)

Ih((h, τh) :: τ) = {h} ∪ Ih(τh) ∪ Ih(τ)
and

Ih(
¯̃
h) =

⋃
h̃∈¯̃
h

Ih([h̃])

Having defined the function Ih, we now can specify the function RSO which
removes secondary occurrences from a preprocessor tree. As shown in Definition 8,
this function expects a preprocessor tree τ and a set of already encountered
header names h̄. Only the case for τ = (h, τh) :: τr and h /∈ h̄ is worth discussing.
Secondary occurrences from the tree τh are removed first and only then are
they removed from τr. Note that the header names encountered while processing
τh must be added to the set of already encountered headers names h̄ before
processing τr. This is the reason for adding the set Ih([(h, τh′)]) to h̄ before RSO
is called recursively.

Definition 8. Function RSO removes secondary occurrences

RSO([], h̄) = []
RSO(b :: τr, h̄) = b :: RSO(τr, h̄)

RSO((h, τh) :: τr, h̄) = (h, []) :: RSO(τr, h̄) (if h ∈ h̄)
RSO((h, τh) :: τr, h̄) = let τh′ = RSO(τh, h̄ ∪ {h}) in (if h /∈ h̄)

(h, τh′) :: RSO(τr, h̄ ∪ Ih([(h, τh′)]))

Finally, we can formalize the parallel preprocessing technique. Let the judg-
ment m, t I τp, τcfp as defined in Definition 9 indicate that parallel preprocessing
succeeded and produced the normal preprocessor tree τp and the context-free pre-
processor tree τcfp for a specific token t and header map m (and an empty set of
defined macros). Thus the implementation of the parallel preprocessing technique
(see Section 6) must ensure that if it was successful, then τp = RSO(τcfp,∅)
holds. Notice that this means that we do not support unguarded headers.

Definition 9. Semantics of parallel preprocessing

∀m, t, τp, τcfp. m, t I τp, τcfp ⇔ ∃ dp, dcfp.


m ` (∅, t) ⇓ (dp, τp) ∧
m ` (∅, t) ⇓cf (dcfp, τcfp) ∧
τp = RSO(τcfp,∅)

4.3 Resulting Semantics

Our sound approach to modular verification we call symbolic linking requires a
modified (i.e. context-free) preprocessing phase and a modified semantic analysis
phase (i.e. recursive type checking). While the behavior of each phase separately



differs from the C standard, we prove in Section 5 that their combined semantics
are equivalent to the semantics defined by the C standard.

In order to state the soundness theorem for our approach, we need a way to
specify the semantics of normal compilation and the semantics of a verification
process with parallel preprocessing and recursive type checking. For this reason
we introduce the following concepts:

– a declaration block (b ∈W ∗):
a list of declarations that is not interrupted by an include directive

– a type checked declaration block (btc ∈W ∗ × E):
an ordered pair of a declaration block and its type checking environment

– a type checking environment (e ∈ E = NW
∗×E

0 ):
a multiset of declaration blocks

Strictly speaking E is the smallest set for which E = NW
∗×E

0 holds. Now
we can express the semantics of compilation and verification in terms of a type
checking environment. We will discuss these in turn.

Compilation. Let the function CP from Definition 10 represent the normal
type checking procedure in the compilation process. The input to CP is a normal
preprocessor tree τ and a current global type checking environment eg, and the
output is the resulting type checking environment which represents the semantics
of the source file during compilation. This resulting type checking environment
is a multiset containing all the declaration blocks found in the preprocessor
tree together with the environment in which they are to be type checked. For a
one-pass compile language like C every declaration is type checked given all the
previous encountered declarations. This is the reason that eg is called the global
environment. So the rule for CP(b :: τ, eg) in Definition 10 correctly includes the
previous global environment as the type checking environment of the encountered
declaration block b. Note that b is used here to implicitly indicate the longest
match of consecutive words in the tree that is not interrupted by an include.

Definition 10. Function CP computes semantics of compilation

CP([], eg) = eg
CP(b :: τ, eg) = CP(τ, eg ] {|(b, eg)|})

CP((h, τh) :: τ, eg) = CP(τ,CP(τh, eg))

Verification. The function VF specified in Definition 11 (and named VFs in [6])
represents the recursive type checking process of a verifier that supports our
solution for sound symbolic linking. The output of VF is again a type checking
environment and represents the semantics of the corresponding source file as seen
by the verification process.

In contrast to CP, VF does recursive type checking and so the type checking
environment ed expected by VF is not global. It only contains declarations
directly declared in the current expansion. Besides a context-free preprocessor
tree τ and a direct type checking environment ed, the function VF also expects



Definition 11. Function VF computes semantics of verification

VF([],
¯̃
ht, ed) = ed

VF(b :: τ,
¯̃
ht, ed) = let e := ed ]MH(

¯̃
ht) in

VF(τ,
¯̃
ht, ed ] {|(b, e)|})

VF(h̃ :: τ,
¯̃
ht, ed) = VF(τ,

¯̃
ht ∪ Iτ([h̃]), ed)

Definition 12. Function Iτ collects header nodes

Iτ([]) = ∅
Iτ(b :: τ) = Iτ(τ)

Iτ((h, τh) :: τ) = {(h, τh)} ∪ Iτ(τh) ∪ Iτ(τ)
and

Iτ(
¯̃
h) =

⋃
h̃∈¯̃
h

Iτ([h̃])

a set of transitively encountered header nodes
¯̃
ht. In this set the occurrences of

included headers are collected together with their transitive includes. As for ed,
this multiset only contains headers from the current expansion. To calculate the

transitive includes of the encountered header in the rule for VF(h̃ :: τ,
¯̃
ht, ed), the

function Iτ from Definition 12 is used before adding the result to
¯̃
ht.

The rule for VF(b :: τ,
¯̃
ht, ed) does all the work to get the correct recursive

type checking environment for type checking the encountered declaration block.
The recursive type checking environment is the direct type checking environment

together with all the declaration blocks occurring in
¯̃
ht. But the declaration blocks

from
¯̃
ht must be type checked before they are to be added to the type checking

environment of the encountered declaration block. So the auxiliary function MH

from Definition 13 is used in the let expression of rule VF(b :: τ,
¯̃
h, ed) to calculate

these type checked declaration blocks from
¯̃
ht. Function MH simply calculates

the resulting type checking environment of all the header nodes in
¯̃
ht using the

function VF. These type checking environments are then merged and the final
resulting type checking environment is returned.

Definition 13. Function MH merges header nodes into type checking environment

MH(
¯̃
h) =

⊎
(h,τ)∈¯̃

h
VF(τ,∅,∅)

5 Proof of Equivalence

In the previous section we formalized the semantics of compilation and verification
with sound symbolic linking. We now must make sure that their semantics are
equivalent. Otherwise a successful verification would be meaningless, since the
verification is then performed on a semantically different program. So we need a
way to compare type checking environments which represent the semantics of
compilation and verification.

Comparing type checking environments can be done using the two mutually
recursive judgments from Definition 14 and Definition 15. The (asymmetric)
judgment v from Definition 14 means equivalence between two type checking



Definition 14. Equivalence of type checking environments

∅ v ∅
Env-eq-empty

e1 v e2 e11 � e21

{|(b, e11)|} ] e1 v {|(b, e21)|} ] e2

Env-eq-not-empty

Definition 15. Subsumption of type checking environments

∀ e1, e2. (e1 � e2 ⇔ ∃e3.e1 v e2 ] e3)

environments. Clearly two empty environments are equivalent. If two environ-
ments are equivalent, adding a type checked declaration block to each of them
where the type checking environment of the first subsumes the one of the second
as defined by the judgment � from Definition 15, preserves this equivalence.

To see why the judgment from Definition 14 indeed implies that equivalent
type checking environments have the same semantics according to the C language,
note that the C language has the property mentioned in Axiom 1: declarations
can not be hidden by subsequent ones.

If we can prove that (when parallel preprocessing succeeds) for a preprocessor
tree τp generated from a specific source file by the normal preprocessor and a pre-
processor tree τcfp generated form the same file by the context-free preprocessor,
the semantics of CP (τp,∅) are the same as that of V F (τcfp,∅,∅)]MH(Iτ(τcfp)),
we know that the verification has the same semantics as compilation. This main
property of our approach is expressed in Theorem 1.

Theorem 1. Soundness theorem

∀m, t, τp, τcfp. m, t I τp, τcfp ⇒ CP(τp,∅) v VF(τcfp,∅,∅) ]MH(Iτ(τcfp))

We proved this theorem by first showing the validity of Lemma 1 from which
Theorem 1 can be straightforwardly deduced. The proof of Lemma 1 is omitted
here for space reasons but can be found in [6].

Lemma 1. Main lemma

∀ τp, τcfp, eg, ed, eo, ¯̃ht, ¯̃ho.



¯̃
ht = Iτ(

¯̃
ht) ∧

¯̃
ho = Iτ(

¯̃
ho) ∧

(∀h, τh. (h, τh) ∈ Iτ(τcfp) ⇒ (h, τh) /∈ Iτ(τh)) ∧
(∀h, τ1, τ2. ((h, τ1) ∈ Iτ(τcfp) ∧

(h, τ2) ∈ Iτ(τcfp) ∪ ¯̃
ht ∪ ¯̃

ho)⇒ τ1 = τ2) ∧
τp = RSO(τcfp, Ih(

¯̃
ht ∪ ¯̃

ho)) ∧
eg v ed ]MH(

¯̃
ht ∪ ¯̃

ho) ] eo

⇒ CP(τp, eg) v VFs(τcfp,
¯̃
ht, ed) ]MH(

¯̃
ht ∪ ¯̃

ho ∪ Iτ(τcfp)) ] eo

6 Implementation

The recursive type checking procedure as represented by the function VF from
Subsection 4.3, was already implemented in VeriFast to support symbolic linking.



When performing recursive type checking in that implementation, the problem
that occurs due to the removal of secondary occurrences of guarded headers
by the C preprocessor, was solved by preprocessing, parsing and type checking
all header files in isolation. Only then are the declarations a header contains
added to the type checking environment of the file that included the header.
The unsoundness introduced by preprocessing was addressed originally by only
allowing includes and header guards, but nothing else of the capabilities of the C
preprocessor.

The parallel preprocessing technique from Subsection 4.2 was straightforward
to implement in VeriFast. An implementation of the C preprocessor and the
context-free preprocessor are run in parallel and an error is reported if their
outputs diverge. If a single header is included many times, the function VF is
not very efficient. For every declaration block that needs the header for type
checking its declarations, the function VF is recursively called for that header
through the function MH. In the actual implementation the result for each header
is remembered, so when it is needed again, it does not have to be recomputed.
Another issue in the implementation was the use of lemma functions. To make
sure during symbolic linking that these functions are correctly implemented,
lemma functions are also recorded in the manifest files and their termination is
ensured.

Since the verification process itself did not have to be updated, the necessary
modifications were nicely isolated. Only the preprocessing stage and the type
checking stage of the verifier had to be updated. Initial tests with the modified
verifier, show we support most common use cases of the C preprocessor. To
support this claim, these are the use cases we currently support: the use of
header guards, using macro definitions as constants and enumerations, and using
macros for abbreviating repetitive code. Although not supported in the current
implementation, we can extend it to support parameterized headers. This can
be done by introducing a new preprocessor directive that states which macros
are the parameters of a header. The definitions of these macros at the point of
inclusion must then be recorded in the manifest files during verification for an
equality check during symbolic linking to ensure context-freeness. A theoretical
foundation for this approach still has to be developed.

7 Related work and conclusion

There are several annotation-based verifiers available for C source code including
Microsoft’s Verifying C Compiler (VCC) [1], the Escher C Verifier [2] from Escher
Technologies, the work of Claude Marché et al. resulting in the Caduceus [5] tool,
and the Frama-C [3] platform and its plug-ins (e.g. WP [3] and Jessie [3]).

Microsoft states on its website that VCC is sound and modular. VCC indeed
allows the verification of files in isolation, but the problem of linking earlier
verified files together is not mentioned. Since the C preprocessor can be used
before verification, a header file can have a different meaning for different include
sites. However, there is no way to determine if properties of source files earlier



proven by VCC remain valid if they are linked together in an application. So this
seams to break modularity. The Escher C Verifier, the Caduceus tool and the
Frama-C platform do not claim to be modular. The Frama-C platform does let
you verify source files in isolation, but requires all the source files to be presented
together if an entire application is to be soundly verified.

As for as we can see, no other verifier for C source code supports both
modular verification and a mechanism for determining whether or not earlier
proven properties remain valid when source files are linked together. The modular
verification approach we implemented in VeriFast (i.e. symbolic linking with
parallel preprocessing), does support this by limiting the capabilities of the
preprocessor and these limitations are quite permissive. Moreover, we proved that
the resulting semantics are equivalent to the standard C semantics; a property
which is necessary when deviating from the C standard. Since our solution only
impacts the lexical and semantical analysis phases, it is a valid candidate for
implementation in other verifiers.
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