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1 Scope and context

Classically, within the signal processing community, linear parametric models have been a

method of first choice in several applications. Historically, many computationally efficient

algorithms have been developed for on-line and adaptive signal processing with e.g. LMS,

recursive least squares and Kalman filtering type algorithms [35]. However, more recently

considerable progress has been made also on the use of flexible nonlinear models, e.g. re-

lated to kernel methods, support vector machines [29, 31, 42, 53, 54, 56, 55, 62, 63] and

probabilistic models [20, 37, 41, 43, 44, 51], and the importance of regularization techniques

has been realized both in the context of parametric models and non-parametric models.

This is witnessed also by the progress in the area of compressed sensing and sparse models

[16, 23, 24, 25, 27, 32]. Moreover, many emerging applications in e.g. big data, networks

applications, bioinformatics, brain-machine interfaces, are posing new challenges for pre-

dictive models towards handling large amounts of data in high dimensional input spaces.

In this Machine Learning Section we therefore take a broad view on the subject of signal
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processing & machine learning in connection also to other related areas as pattern recogni-

tion and neural networks [19, 33, 58], mathematics and statistics [30, 31, 34], optimization

[21, 17] and information theory [50] (Figure 1).

In general one distinguishes between different types of learning models, such as super-

vised, unsupervised and semi-supervised learning [26, 18, 62], various tasks such as e.g.

classification, regression, clustering and different types of models, including e.g. linear and

nonlinear parametric models, kernel-based models and probabilistic models (Figure 2). For

many of the successful methods it is interesting to trace back to the original roots. For

on-line learning of linear models in classification problems, the perceptron has originally

served as a paradigm. However, soon one has encountered its limitations. In the neural

networks area this led to introducing one or more hidden layers with multilayer perceptron

neural networks. Backpropagation as the original learning algorithm for such feedforward

networks, in its on-line learning form, could be interpreted as an extension of the LMS

algorithm as used in adaptive signal processing [64]. On a different track, the perceptron

has also been studied within the context of statistical learning theory [60, 61, 62]. Here

one is interested in characterizing the generalization error of the model, which is typically

expressed in terms of the error on the training data and a complexity term.

Multilayer perceptrons are universal approximators [36] which make them powerful

tools to parameterize nonlinear functions. In order to overcome the problem of overfitting

with flexible nonlinear models, an important technique to use is regularization [19, 44].

In the objective function one not only minimizes then the error on the training data but

one also keeps the estimated parameter values small. This leads to the notion of effective

number of parameters which is relevant then to characterize the model complexity, instead

of the number of parameters. The flexibility of the model is controlled by the regulariza-

tion term. In a Bayesian inference and probabilistic modelling picture the regularization

term corresponds then to the prior distribution on the unknown parameters. Classical

regularization schemes minimize the ℓ2 norm on the unknown parameters, which is known

as ridge regression in statistics and dates back also to ill-posed problems and Tikhonov

regularization [59]. In recent years there has been considerable interest in alternative reg-

ularization schemes based on ℓ0, ℓ1 and ℓp regularization to achieve sparsity in the solution

vector (Figure 3), in connection also to compressed sensing [16, 23, 24, 25, 32].
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Regularization also plays an important role in non-parametric and kernel-based mod-

els. The use of positive definite kernels and reproducing kernels dates back to the early

work of Mercer, Moore, Aronszajn [45, 46, 14] and are key ingredients within methods of

function estimation in reproducing kernel Hilbert spaces, the theory of splines and radial

basis function networks [49, 63]. Early use of reproducing kernel Hilbert spaces in signal

processing is e.g. [39, 40, 48]. In Gaussian processes the kernel function relates to the

correlation function [43, 51]. An increasing and renewed interest in kernel-based methods

appeared with the introduction of nonlinear support vector machines for classification and

regression [62]. The use of a positive definite kernel is viewed here in connection to a

feature map (often called the kernel trick, which relates to the Mercer theorem), where

in the primal a constrained optimization problem formulation is given on the model that

is expressed in terms of the feature map. The Lagrange dual problem results then into a

kernel-based model representation. In standard support vector machines a sparse kernel-

based model is then achieved through the choice of the loss function, typically the hinge

loss in classification and the epsilon-insensitive loss function in function estimation.

The kernel trick on its own has also been frequently employed to obtain nonlinear kernel

versions of classically known linear estimation schemes, e.g. kernel principal component

analysis [52] as an extension to the classical linear principal component analysis [38]. Spe-

cial kernel functions have also been designed to handle specific data types or in specific

applications area such as e.g. textmining or bioinformatics [15, 54, 53]. It is also possible

to relate kernel functions to probabilistic graphical models and graphs. In least squares

support vector machines one works with simple core models within the primal-dual setting

for a wide range of problems in supervised and unsupervised learning and beyond [56, 57].

The primal representation relates then to parametric picture, while the dual representation

to a non-parametric. Depending on the nature of the given problem (large number of data

versus dimensionality of the input space) this choice in representation can be exploited for

developing efficient large scale algorithms [56, 57].

An advantage of support vector machines for classification and regression is that the

problem is recasted as a convex optimization problem, up to a small amount of tuning

parameters of regularization constant(s) and kernel parameter(s). This has been viewed as

a considerable advantage over other nonlinear models such as multilayer perceptrons which
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Figure 1: Signal processing & machine learning and several related areas.

suffer from the existence of many local minima solutions. Also towards sparse models and

compressed sensing, convex optimization is playing an important role [21] (Figure 3). In

many emerging applications one often has to cope with large amounts of data in often

high-dimensional input spaces. This is posing new challenges for scalable optimization

algorithms. In this direction efficient first order methods, on-line optimization, stochastic

optimization or distributed optimization are suitable possible algorithms [22, 47].

In the next Section a brief overview is given on the chapter contributions that present

introductory and tutorial contributions related to Signal Processing & Machine Learning.
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Figure 2: Learning modes, learning tasks and examples of different possible models.
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Figure 3: Regularization and its role in parametric and non-parametric modelling ap-

proaches.
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2 Contributions

In [1] the authors present an overview of learning theory including statistical and compu-

tational aspects, with emphasis on classification and regression problems. Empirical risk

minimization is discussed and concepts for characterizing the generalization performance

of the model such as Rademacher complexity, covering numbers, Vapnik-Chervonenkis and

fat shattering dimension. In connection to this, the problem of model selection is addressed.

In [2] an overview is presented on different types of neural networks for supervised and

unsupervised learning. Starting from the perceptron, feedforward networks and backprop-

agation is explained. Next recurrent neural networks and recursive structure processing are

discussed. Neural architectures for principal component analysis and topographic mapping

for data mining and data visualization is outlined.

In [3] the authors give an introduction to the foundations and implementations of

kernel methods, computational issues and recent developments. This includes the kernel

trick, properties and types of kernels, kernel principal component analysis, kernel canon-

ical correlation analysis, kernel Fisher discriminant analysis, support vector machines for

classification and regression, and Gaussian processes.

In [4] on-line learning in reproducing kernel Hilbert spaces is presented. First parameter

estimation is discussed in regression and classification tasks and how to overcome overfitting

by applying regularization. It is explained how a nonlinear task can be mapped to a linear

task. In this way kernel LMS and complex kernel LMS are extended to kernel versions of

the well-known LMS algorithm in signal processing. For least squares learning algorithms

extensions to kernel recursive least squares are discussed. Finally, convex analysis concepts

for online learning are provided.

In [5] an introduction to probabilistic graphical models is given. It includes three rep-

resentations of probabilistic graphical models: Markov networks (or undirected graphical

models), Bayesian networks (or directed graphical models) and factor graphs. An overview

about structure and parameter learning techniques is given on maximum likelihood and

Bayesian learning, and generative and discriminative learning. Exact inference methods

and approximate inference techniques are addressed. Applications for each of the three

representations are given: Bayesian networks for expert systems, dynamic Bayesian net-

works for speech processing, Markov random fields for image processing, and factor graphs
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for decoding error-correcting codes.

In [6] a tutorial introduction to Monte Carlo Methods, Markov Chain Monte Carlo

and Particle Filtering is given. Starting from the Monte Carlo principle and basic tech-

niques for simulating and transforming random variables, Markov Chain Monte Carlo is

explained. Other topics that are addressed are rejection sampling, detailed balance, the

Gibbs sampler, sequential Monte Carlo, importance sampling, resampling and advanced

Monte Carlo methods.

In [7] an introduction to clustering is given. Different clustering algorithms are dis-

cussed including hierarchical clustering, the K-means algorithm, fuzzy C-means algorithm,

mixture density-based clustering, neural network-based clustering based on adaptive reso-

nance theory, spectral clustering, subspace clustering and biclustering, and deep learning

clustering.

In [8] unsupervised learning algorithms and latent variable models are presented. Ba-

sic linear and multilinear models for matrix and tensor factorizations and decompositions

are discussed. Constrained matrix and tensor decompositions for sparse representation

of data and their extensions are addressed. Various constraints such as orthogonality,

statistical independence, nonnegativity and/or sparsity are explained. The importance

of matrix/tensor decompositions is given for blind source separation, dimensionality re-

duction, pattern recognition, object detection, classification, multiway clustering, sparse

representation and coding and data fusion.

In [9] an introduction is presented on semi-supervised learning. Discussed topics include

transductive support vector machine and low density separation, co-training and multi-

view, co-regularization and expectation-maximization for mixture models. Finally graph-

based semi-supervised learning is addressed with graph Laplacian regularization, manifold

regularization, measure-based regularization, and semi-supervised learning for structured

outputs.

In [10] an overview is given on sparsity-aware learning and compressed sensing. The

Least Absolute Shrinkage and Selection Operator (LASSO), sparse signal representation,

ℓ2, ℓ0, ℓ1 norm minimizers and their geometric interpretation are discussed. In view of

conditions for equivalence of the ℓ0 and ℓ1 minimizer, mutual coherence and the Restricted

Isometry Property (RIP) is explained. Robust sparse signal recovery from noisy measure-
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ments and compressed sensing is covered. Sparsity-promoting algorithms are discussed like

Orthogonal Matching Pursuit, the Least Angle Regression (LARS) algorithm and Iterative

Shrinkage Algorithms. A case study on time-frequency analysis is provided.

In [11] the authors present information based learning approaches. Starting from in-

formation theoretic descriptors as entropy, divergence and mutual information, a unifying

information theoretic framework for machine learning is outlined. Filtering, classifica-

tion, feature extraction and nonparametric information estimators are discussed. Next a

reproducing kernel Hilbert space framework for information based learning is proposed.

Illustrative examples are given on adaptive system training, classification, information cut

for clustering and independent component analysis.

In [12] model selection aspects are discussed. The Akaike information criterion and the

Kullback information criterion are explained with linear regression as an example appli-

cation. Then consistency and efficiency are addressed. Other topics that are included are

Bayesian approaches to model selection, the Bayesian information criterion, Markov-Chain

Monte-Carlo Bayesian methods, model selection by compression, minimum message length,

model selection consistency, parameter estimation consistency and sequential variants of

minimum description length.

In [13] an overview is given on music mining. Topics that are addressed include ground

truth acquisition and evaluation, audio feature extraction, extracting context information

about music, content-based similarity retrieval, genre classification, emotion/mood classi-

fication, music clustering, automatic tag annotation, audio fingerprinting and cover song

detection.
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